WO2019045302A1 - Metal-supported solid oxide fuel cell and manufacturing method therefor - Google Patents

Metal-supported solid oxide fuel cell and manufacturing method therefor Download PDF

Info

Publication number
WO2019045302A1
WO2019045302A1 PCT/KR2018/008913 KR2018008913W WO2019045302A1 WO 2019045302 A1 WO2019045302 A1 WO 2019045302A1 KR 2018008913 W KR2018008913 W KR 2018008913W WO 2019045302 A1 WO2019045302 A1 WO 2019045302A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal
fuel cell
solid oxide
metal support
oxide fuel
Prior art date
Application number
PCT/KR2018/008913
Other languages
French (fr)
Korean (ko)
Inventor
김종희
이계만
이재화
박수호
강형구
조규진
Original Assignee
주식회사 포스코
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 포스코 filed Critical 주식회사 포스코
Publication of WO2019045302A1 publication Critical patent/WO2019045302A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/11Making porous workpieces or articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/11Making porous workpieces or articles
    • B22F3/1121Making porous workpieces or articles by using decomposable, meltable or sublimatable fillers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • B22F9/18Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
    • B22F9/20Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from solid metal compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8605Porous electrodes
    • H01M4/8621Porous electrodes containing only metallic or ceramic material, e.g. made by sintering or sputtering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/023Porous and characterised by the material
    • H01M8/0232Metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M8/1213Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the electrode/electrolyte combination or the supporting material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M8/124Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M2008/1293Fuel cells with solid oxide electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0068Solid electrolytes inorganic
    • H01M2300/0071Oxides
    • H01M2300/0074Ion conductive at high temperature
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a solid oxide fuel cell, and more particularly, to a metal-supported solid oxide fuel cell including a porous metal support consisting of a sintered body of metal powders having a polygonal crystal grain shape.
  • Solid Oxide Fuel Cell is a device that directly generates electrical energy by electrochemically reacting fuel and oxidizer.
  • the electrolyte is operated at a high temperature of 650 ° C to 1000 ° C using a solid oxide capable of permeating oxygen or hydrogen ions.
  • the solid oxide fuel cell can generate thermal combined power using not only electric energy but also waste heat and hot water, so that it has a theoretical efficiency of 80% or higher and commercialized products have a high power generation efficiency of 40 to 60%.
  • the solid oxide fuel cell is composed of a fuel electrode, an electrolyte, and an air electrode as basic unit cells.
  • the solid oxide fuel cell is composed of an oxygen ion conductive electrolyte, an air electrode (cathode) and a fuel electrode (anode) located on both sides thereof.
  • hydrogen moves from the fuel electrode to the air electrode, it reacts with oxygen to generate water.
  • electrons are generated at the anode and electrons are consumed at the cathode.
  • a buffer layer may be inserted to prevent the reaction between the electrolyte and the anode.
  • the power generation capacity per unit area in one cell based on the air electrode, the electrolyte and the fuel electrode is about 1 V or so. Therefore, in order to output an output required for an actual power generation facility, a plurality of unit cells are usually connected in series and parallel, and a stack is formed by inserting a separator plate and a current collector between the cells. For this stacking, it is necessary that the air electrode of one unit cell and the anode electrode of another unit cell be electrically connected, and a separator is used for this purpose. Also, a current collector may be provided between the air electrode or the fuel electrode and the separator to allow the air electrode or the fuel electrode to electrically and uniformly contact the separator. Such a current collector may be made of a ceramic material, silver or platinum.
  • the solid oxide oxide is very susceptible to impact.
  • a metal support type solid oxide fuel cell is being developed.
  • the metal-supported solid oxide fuel cell has the advantages of being highly resistant to thermal shock and mechanical shock due to the high electrical conductivity and thermal conductivity of the metal support and high high temperature strength.
  • a metal-supported solid oxide fuel cell can generally be manufactured by a method of coating an electrode and an electrolyte on a porous metal support for the supply of hydrogen fuel.
  • a method of manufacturing fine holes by machining a metal plate is used.
  • fine holes having a diameter of several tens of micrometers in a metal support need.
  • precision machining has a problem in that an expensive manufacturing cost is required.
  • the embodiments of the present invention provide a solid oxide fuel cell having an aspect ratio of 0.5 to 2.0 and a metal powder having a polygonal crystal grain shape
  • a solid oxide fuel cell of metal support type including a sintered body is provided.
  • a metal-supported solid oxide fuel cell includes a metal support; A fuel electrode provided on the metal support; An electrolyte provided on the anode; And an air electrode provided on the electrolyte, wherein the metal support includes a sintered body of a metal alloy powder including polygonal crystal grains having an aspect ratio of 0.5 to 2.0.
  • the metal alloy powder may contain 0.001 to 1% of C, 10 to 32% of Cr, balance Fe, and other unavoidable impurities in weight percent.
  • the metal alloy powder may include crystal particles having a size of 1 to 500 mu m.
  • the metal support may have an open pore rate of 5% to 70%.
  • the anode may include nickel oxide (NiO), yttria-stabilized zirconia (YSZ) or nickel oxide and gadolinium-doped cerium oxide (GDC).
  • NiO nickel oxide
  • YSZ yttria-stabilized zirconia
  • GDC gadolinium-doped cerium oxide
  • the electrolyte may further include LSGM ((La 1-a Sr a ) (Ga 1-b Mg b ) O 3 ) in which a: 0.01 to 0.5 and b: 0.05 to 0.4; LSGMC ((La 1-a Sr a ) (Ga 1 -bc Mg b Co c O 3 ) in which a: 0.01 to 0.5, b: 0.05 to 0.4, and c: 0.01 to 0.2; a: ((Ce 1-a Gd a) O 2) of gadolinium doped ceria (GDC) 0.05 to 0.3; a: a samarium doped ceria (SDC) 0.05 to 0.3 ((Ce 1-a Sm a) O 2); And a: yttria-stabilized zirconia (YSZ) ((Zr 1 -a Ya) O 2 ) of 0.05 to 0.3; Or a mixture thereof.
  • LSGM ((La 1-a Sr
  • the air electrode is, a: 0.2 to 0.6, b: 0.6 to 0.9 of LSCF ((La 1 -a Sr a ) (Co 1-b Fe b) O 3); a: 0.2 to 0.6, b: 0.6 to 0.9 mixture of LSCF ((La 1 -a Sr a ) (Co 1 -b Fe b) O 3) and a gadolinium-doped ceria (GDC); x: the LSM 0.05 to 0.3 ((La 1 -x Sr x ) MnO 3); And x: 0.05 to 0.3 LSM ((La 1- x Sr x ) MnO 3 ) and yttria-stabilized zirconia; Or the like.
  • the metal support for a solid oxide fuel cell includes a sintered body of a metal alloy powder containing 0.001 to 1% of C, 10 to 32% of Cr, balance Fe and other unavoidable impurities in weight% , And the sintered body of the metal alloy powder includes a polygonal crystal grain having an aspect ratio of 0.5 to 2.0.
  • the metal alloy powder may include crystal particles having a size of 1 to 500 mu m.
  • the metal support may have an open pore rate of 5% to 70%.
  • a method of manufacturing a metal-supported solid oxide fuel cell includes the steps of forming a metal alloy containing 0.001 to 1% of C, 10 to 32% of Cr, balance Fe and other unavoidable impurities in a weight percentage of 0.5 To form a metal alloy powder including polygonal crystal grains having an aspect ratio of not less than 2.0; Mixing the powder with an organic solution to produce a metal support; And laminating an anode, an electrolyte, and an air electrode on the metal support.
  • the step of machining into a metal alloy powder may include the steps of machining the metal alloy into a base material containing crystal grains of 1 to 500 mm in size; Subjecting the base material to a heat treatment at a temperature of 500 to 900 degrees Celsius; Depositing the heat-treated base material in an acidic solution to cause intergranular corrosion; And processing the intergranular corrosion-treated base material into a powder.
  • the metal support type solid oxide fuel cell according to the embodiment of the present invention can be manufactured using a metal alloy powder which can be easily adjusted in powder size and alloy component content through annealing and corrosion process without special equipment, Mass production is possible.
  • the metal alloy powder produced according to the embodiment of the present invention may have a high purity in comparison with the crushing method and the spraying method, and the aspect ratio of the polygonal powder particles is close to 1, thereby replacing the expensive spherical powder.
  • FIG. 1 is a schematic diagram showing the structure of a metal-supported solid oxide fuel cell according to the disclosed embodiment.
  • FIG. 2 is a photograph of a metal alloy powder according to the disclosed embodiment measured by a scanning electron microscope.
  • a metal-supported solid oxide fuel cell includes a metal support; A fuel electrode provided on the metal support; An electrolyte provided on the anode; And an air electrode provided on the electrolyte, wherein the metal support includes a sintered body of a metal alloy powder including polygonal crystal grains having an aspect ratio of 0.5 to 2.0.
  • a solid oxide fuel cell refers to a stack of unit cells. However, in the following embodiments, the solid oxide fuel cell refers to a unit cell for convenience of explanation.
  • FIG. 1 is a schematic diagram showing the structure of a metal-supported solid oxide fuel cell according to the disclosed embodiment.
  • a solid oxide fuel cell according to an embodiment of the present invention includes a metal support 10, a fuel electrode 20, an electrolyte 30, and an air electrode 40.
  • the metal-supported solid oxide fuel cell shown in FIG. 1 is a planar fuel cell, but it may be cylindrical.
  • a metal-supported solid oxide fuel cell will be described as an example of a flat metal support solid oxide fuel cell.
  • the metal-supported solid oxide fuel cell shown in Fig. 1 comprises a step of sequentially forming an anode and an electrolyte on a metal support to produce a semi-conductor formed article, sintering the semi-formed article in a reducing atmosphere to form a porous metal support, , And forming a cathode on the electrolyte to produce a solid oxide fuel cell.
  • the metal support is a sintered body of a metal alloy powder.
  • the fuel electrode may be provided on the metal support.
  • the anode may comprise nickel oxide (NiO), yttria-stabilized zirconia (YSZ) or nickel oxide and gadolinium-doped cerium oxide (GDC).
  • NiO nickel oxide
  • YSZ yttria-stabilized zirconia
  • GDC gadolinium-doped cerium oxide
  • the anode may consist of nickel oxide and 40 vol% yttria stabilized zirconia.
  • the anode may be coated on the metal support by a screen printing method to a thickness of about 60 ⁇ and then dried at 150 ⁇ for 30 minutes.
  • the electrolyte LSGM ((La 1 -a Sr a ) (Ga 1 -b Mg b) O 3) (a: 0.01 to 0.5, b: 0.05 to 0.4), LSGMC ((La 1 -a Sr a) (Ga 1 -bc Mg b Co c) O 3 ) (a: 0.01 to 0.5, b: 0.05 to 0.4, c: 0.01 to 0.2), gadolinium-doped ceria (GDC) ((Ce 1 -a Gd a) O 2) ( a: 0.05 to 0.3), samarium-doped ceria (SDC) ((Ce 1 -a Sm a) O 2) (a: 0.05 to 0.3), and yttria-stabilized zirconia (YSZ) ((Zr 1- a Ya) O 2 ) (a: 0.05 to 0.3), or a mixture thereof.
  • GDC gadolinium-doped
  • the yttria-stabilized zirconia electrolyte is coated on the anode by the screen printing method and then dried at 150 degrees for 30 minutes, a structure in which the anode and the electrolyte are coated on the metal support can be manufactured.
  • Air electrode is LSCF ((La 1 -a Sr a ) (Co 1 -b Fe b) O 3) (a: 0.2 to 0.6, b: 0.6 to 0.9), LSCF ((La 1 -a Sr a) (Co 1 -b Fe b) O 3) ( a: 0.2 to 0.6, b: 0.6 to 0.9) and a mixture of gadolinium doped ceria (GDC), LSM ((La 1 -x Sr x) MnO 3) (x: 0.05 to 0.3), LSM ((La 1 -x Sr x) MnO 3) (x: may include at least one of 0.05 to 0.3) and a mixture of yttria stabilized zirconia.
  • GDC gadolinium doped ceria
  • the air electrode is LSCF ((La 0. 6 Sr 0 .4) (Co 0. 2 Fe 0. 8) O 3) method is screen printed on the electrolyte of the structure of the fuel electrode and the electrolyte coating on a metal support To a thickness of about 30 ⁇ , and then dried at 100 ⁇ for 30 minutes. Thereafter, a metal support type solid oxide fuel cell can be manufactured by performing a heat treatment at 900 degrees for 2 hours.
  • the air electrode of the metal-supported solid oxide fuel cell manufactured according to the disclosed embodiment was exposed to the air A and hydrogen gas (H 2 97% -H 2 O 3%) was supplied to the fuel electrode as fuel F, -
  • hydrogen gas H 2 97% -H 2 O 37%
  • the power was 510 mW / cm 2 at 800 ° C.
  • the method of manufacturing a metal support comprises the steps of: machining a metal alloy sheet by cold working and heat treatment into a base metal whose grain size is controlled; subjecting the base metal to an annealing heat treatment; a step of immersing the annealed base metal in an acidic solution to cause intergranular corrosion , Washing and cracking the intergranular corrosion-treated base material to form a powder, mixing the metal alloy powder and the organic solution to mold the metal support, and performing drying and heat treatment.
  • the metal alloy for the production of the metal support comprises 0.001 to 1% of C, 10 to 32% of Cr, balance Fe and other unavoidable impurities in weight percent.
  • the reason for limiting the numerical value of the component content in the examples according to the present invention will be described. Unless otherwise stated, the unit is wt% (wt%).
  • C may be contained in an amount of 0.001% or more for the formation of Cr carbide in the alloy.
  • the content of C is limited to 0.001% or more. If the C content exceeds 1%, excessive Cr carbide is formed and the production of the alloy plate becomes difficult, so the content of C is limited to 1% or less.
  • Cr is an element that increases oxidation resistance in an operating environment of a solid oxide fuel cell operating at a high temperature of 700 ° C or 800 ° C and an acidic atmosphere. In order to ensure oxidation resistance in the operating environment of the above-mentioned solid oxide, 10 to 32%.
  • the composition ratio of Cr is limited to 32% or less.
  • the composition ratios of C and Cr are limited as described above, but elements such as Ni, Mn, Cu, and Mo may be added.
  • the thickness of the metal alloy is preferably 1.0 mm or less so as to be able to form a grain boundary in a short time, but is not particularly limited to this.
  • the method of manufacturing a metal support includes dissolving an alloy component from a steelmaking process, hot rolling a steel slab produced by continuous casting or ingot casting, , A step of annealing, a step of cold rolling, and a step of annealing to form a base material such as a plate or bar having controlled grain size and shape.
  • the size and shape of the metal alloy powder as the material of the solid support is determined by the size and shape of the crystal grains of the metal alloy, the size and shape of the crystal grains are controlled through cold working and annealing in accordance with the size of the powder to be manufactured .
  • the shape of the polygonal metal alloy powder is changed so as to be a polygonal equiaxed crystal having an aspect ratio of 0.5 to 2.0, Machining and annealing should be performed.
  • the annealing heat treatment of the base material includes heat treatment for 1 minute to 50 hours through batch annealing or continuous annealing at a temperature of 500 to 900 degrees centigrade. As described above, when the base material is heat-treated at 500 to 900 ° C, Cr is deficient in the crystal grain boundary, and a sensitive structure susceptible to grain boundary corrosion can be formed.
  • the sensitized structure refers to a grain boundary structure in which Cr carbide is formed at grain boundaries and a Cr-depleted layer is formed around grain boundaries to be vulnerable to corrosion.
  • sensitizing heat treatment When the sensitizing heat treatment is carried out at a temperature lower than 500 ⁇ , chromium deficiency phenomenon may not appear in the sensitized tissue, or the deficiency rate may be slow, and chromium deficiency may not be exhibited even when the heat treatment is performed at a temperature exceeding 900 ⁇ ,
  • the above-mentioned sensitizing heat treatment can be carried out in a temperature range of 500 to 900 ° C. In order to form a sensitized structure in a short time, it is preferable to perform heat treatment in a temperature range of 500 to 700 degrees.
  • the concentration of Cr in the grain boundary can be lowered through the sensitization step, Cr is continuously supplied through Cr diffusion in the crystal grains, so that the concentration of the grain boundary Cr in the sensitized structure is less than 5 wt%, and more than 13 wt% It is difficult to easily form intergranular corrosion cracks through the acidic solution. Therefore, it is preferable that the concentration of Cr in the grain boundary of the above-mentioned sensitized tissue is 5 to 13% by weight. More preferably, the concentration of intergranular Cr in the sensitized tissue may be 5 to 10% by weight.
  • the step of causing intergranular corrosion includes a step of weakening the grain boundaries by immersing the base material in which the sensitized structure is formed in an acidic solution to corrode a Cr-depleted layer formed in the grain boundary.
  • the acidic solution may be a solution of sulfuric acid, nitric acid, hydrofluoric acid, or an acidic solution, but the present invention is not limited thereto.
  • a solution capable of causing intergranular corrosion can be used in the method of preparing a metal support according to the present invention .
  • the method of manufacturing a metal support according to the present invention is a method of manufacturing a metal support by cracking a grain boundary of a base material to produce a powder, and therefore, when the acidic solution is washed and removed after acidic solution immersion, a metal alloy powder of high purity There are advantages.
  • metallic alloy powder particles can also be obtained with a size of 1.0 to 500 mm.
  • the metal alloy powder particles may also have an aspect ratio of 0.5 to 2.0.
  • the metal alloy powder may have a polygonal shape.
  • the powders prepared according to the method of the present invention have a polygonal shape having an aspect ratio of 0.5 to 2.0, and the size of the powder particles is similar to that of the base material.
  • the metal powder according to the present invention has a polygonal shape, and it can be seen that the porosity is more easily formed when the metal support for a solid oxide fuel cell is manufactured by the sintering process.
  • a metal support for a solid oxide fuel cell can be manufactured through mixing a metal powder and an organic solution to form a metal support, and drying and heat-treating the metal support.
  • a polygonal metal alloy powder having an average powder size of 39 ⁇ m is mixed with a polymer solution such as a polyethylene glycol (PEG) solution and stirred to form a metal alloy powder It can be processed into a paste-type metal support.
  • a metal support having a thickness of 1 mm can be manufactured by uniaxially pressing a paste-like metal support into an area of 5 cm 2 and drying at 200 ° C for 1 hour.
  • a metal-supported solid oxide fuel cell according to the present invention can be manufactured by stacking a fuel electrode, an electrolyte and an air electrode on the thus-prepared metal support.
  • the open pore ratio of the metal support is less than 5%, fuel diffusion is disadvantageous. If the metal support has a percentage of open pore of more than 70%, the strength of the support is limited, and thus the open pore ratio of the metal support according to the disclosed embodiment It is preferably from 5% to 70%.
  • the open porosity of the porous metal support prepared using the polygonal metal alloy powder according to the disclosed embodiment was 38%, indicating that formation of pores was easier, and mechanical strength was also excellent.
  • the metal support according to the embodiment disclosed herein can be easily formed into a flat or cylindrical shape, and the manufacturing cost of the solid oxide fuel cell stack using the metal support can be reduced and mass production can be achieved.
  • the metal-supported solid oxide fuel cell according to the present invention can be manufactured using a metal alloy powder capable of easily adjusting the powder size and the alloy component content through annealing and corrosion process without special equipment, thereby enabling mass production at low cost Do.

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Electrochemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Mechanical Engineering (AREA)
  • Ceramic Engineering (AREA)
  • Fuel Cell (AREA)
  • Inert Electrodes (AREA)

Abstract

In order to provide a solid oxide fuel cell readily ensuring porosity and having excellent deformation resistance at high temperatures so as to have advantageous large-scalability, embodiments of the present invention provide a metal-supported solid oxide fuel cell comprising a sintered body of metal powder formed as polygonal grains having an aspect ratio of 0.5-2.0. The metal-supported solid oxide fuel cell, according to one embodiment of the present invention, comprises: a metal support; a fuel electrode provided on the metal support; an electrolyte provided on the fuel electrode; and an air electrode provided on the electrolyte, wherein the metal support comprises a sintered body of a metal alloy powder comprising polygonal grains having an aspect ratio of 0.5-2.0.

Description

금속지지체형 고체산화물 연료전지 및 그 제조방법 Metal Support Type Solid Oxide Fuel Cell and Manufacturing Method Thereof
본 발명은 고체산화물 연료전지에 관한 것으로, 보다 상세하게는 다각형 형상의 결정립자 형상을 갖는 금속 분말들의 소결체로 이루어진 다공성 금속 지지체를 포함하는 금속지지체형 고체산화물 연료전지에 관한 것이다.The present invention relates to a solid oxide fuel cell, and more particularly, to a metal-supported solid oxide fuel cell including a porous metal support consisting of a sintered body of metal powders having a polygonal crystal grain shape.
고체산화물 연료 전지(Solid Oxide Fuel Cell: SOFC)는 연료와 산화제를 전기화학적으로 반응시켜 직접 전기에너지를 발생시키는 장치이다. 전해질로는 산소 또는 수소 이온을 투과시킬 수 있는 고체 산화물을 이용하여 650 ℃ 내지 1000 ℃의 고온에서 작동한다.Solid Oxide Fuel Cell (SOFC) is a device that directly generates electrical energy by electrochemically reacting fuel and oxidizer. The electrolyte is operated at a high temperature of 650 ° C to 1000 ° C using a solid oxide capable of permeating oxygen or hydrogen ions.
따라서 고체 산화물 연료전지는 전기에너지 발생량뿐만 아니라 폐열 및 온수를 이용한 열 복합 발전이 가능하므로 이론적으로 80% 이상, 상용화 제품은 40 내지 60%의 높은 발전효율을 갖는다.Therefore, the solid oxide fuel cell can generate thermal combined power using not only electric energy but also waste heat and hot water, so that it has a theoretical efficiency of 80% or higher and commercialized products have a high power generation efficiency of 40 to 60%.
고체 산화물 연료전지의 이러한 장점을 바탕으로 향후 100㎾ 내지 수십㎿ 급 규모의 중대형 발전 시스템 분야, 1㎾ 내지 10㎾ 급 규모의 가정용 소형 발전 시스템 및 자동차 보조 동력원의 용도 등으로 활용하기 위하여 관련 기술 개발이 여러 방면에서 진행되고 있다.Based on these advantages of solid oxide fuel cells, we will develop related technologies to utilize small power generation system of 100 ~ kW to several tens of MW scale, small household power generation system of 1 ~ kW to 10 kW class size and automobile auxiliary power source. This is proceeding in many ways.
고체산화물 연료전지는 연료극, 전해질 및 공기극을 기본 단위 셀로 하여 구성되며, 산소 이온전도성 전해질과 그 양면에 위치한 공기극(음극) 및 연료극(양극)으로 이루어진다. 연료극에서 수소가 수소 이온이 되어 공기극으로 이동하면 산소와 반응하여 물을 생성하게 되고, 이때, 연료극에서는 전자가 생성되고 공기극에서는 전자가 소모되므로 두 전극을 서로 연결하면 전기가 흐르게 되는 것이다. 한편, 상기 전해질과 양극 사이에서 반응이 일어나는 것을 방지하기 위해 버퍼(buffer)층을 삽입할 수도 있다.The solid oxide fuel cell is composed of a fuel electrode, an electrolyte, and an air electrode as basic unit cells. The solid oxide fuel cell is composed of an oxygen ion conductive electrolyte, an air electrode (cathode) and a fuel electrode (anode) located on both sides thereof. When hydrogen moves from the fuel electrode to the air electrode, it reacts with oxygen to generate water. At this time, electrons are generated at the anode and electrons are consumed at the cathode. Meanwhile, a buffer layer may be inserted to prevent the reaction between the electrolyte and the anode.
그러나, 상기 공기극, 전해질 및 연료극을 기본으로 하는 셀 하나에서 단위 면적 당 얻어지는 발전 용량은 약 1V 정도이다. 따라서 실제 발전 설비에 필요한 출력을 내기 위해서는 통상적으로 여러 개의 단위 셀을 직렬 및 병렬로 연결하고 셀과 셀 사이에 분리판 및 집전체를 삽입하여 스택(stack)을 구성하여야 한다. 이러한 적층을 위해서는 하나의 단위 전지의 공기극과 다른 단위 전지의 연료극이 전기적으로 연결되어야 할 필요가 있으며, 이를 위해 분리판(separator)이 사용된다. 또한, 상기 공기극 또는 연료극과 분리판 사이에는 집전체(current collector)가 구비되어 공기극 또는 연료극이 분리판과 전기적으로 균일하게 접촉할 수 있게 할 수 있다. 이러한 집전체로는 세라믹 재질의 재료나 은 또는 백금이 사용될 수 있다.However, the power generation capacity per unit area in one cell based on the air electrode, the electrolyte and the fuel electrode is about 1 V or so. Therefore, in order to output an output required for an actual power generation facility, a plurality of unit cells are usually connected in series and parallel, and a stack is formed by inserting a separator plate and a current collector between the cells. For this stacking, it is necessary that the air electrode of one unit cell and the anode electrode of another unit cell be electrically connected, and a separator is used for this purpose. Also, a current collector may be provided between the air electrode or the fuel electrode and the separator to allow the air electrode or the fuel electrode to electrically and uniformly contact the separator. Such a current collector may be made of a ceramic material, silver or platinum.
현재까지 연료전지의 상용화에 어려움을 겪는 부분은 단위 셀의 면적을 크게 할수록 효율이 떨어지는 점과, 밀봉(sealing)의 문제, 그리고 연료전지가 열 충격 및 물리적 충격에 대한 파괴 인성이 매우 낮다는 점이다.The difficulty in commercialization of the fuel cell until now is that the larger the area of the unit cell is, the lower the efficiency, the sealing problem, and the very low fracture toughness of the fuel cell due to thermal shock and physical impact to be.
특히 세라믹 지지체형 고체 산화물의 경우 근본적으로 파괴 인성이 더욱 낮기 때문에 충격에 매우 취약하므로, 이를 해결하기 위하여 금속 지지체형 고체 산화물 연료전지가 개발되고 있다. Particularly, in the case of the ceramic support type solid oxide, since the fracture toughness is basically lower than that of the solid oxide type, the solid oxide oxide is very susceptible to impact. To solve this problem, a metal support type solid oxide fuel cell is being developed.
금속지지체형 고체산화물 연료전지는 금속지지체의 높은 전기전도도 및 열전도도와 높은 고온 강도로 인해 열 충격 및 기계적 충격에 강한 장점을 갖고 있다.The metal-supported solid oxide fuel cell has the advantages of being highly resistant to thermal shock and mechanical shock due to the high electrical conductivity and thermal conductivity of the metal support and high high temperature strength.
금속지지체형 고체산화물 연료전지는 일반적으로 수소 연료의 공급을 위해서 다공성 형태의 금속지지체 위에 전극 및 전해질을 코팅하는 방법으로 제조될 수 있다. 다공성 금속지지체를 제조하기 위해, 금속판재에 미세 홀(hole)을 가공하여 제조하는 방법이 사용되고 있으나, 수십 μm 직경크기의 미세 홀을 금속지지체내에 균일하게 가공하기 위해서는 레이져 천공 등의 정밀가공이 필요하다. 그러나, 이런 정밀 가공은 고가의 제조비용이 소요되는 문제점이 있다.A metal-supported solid oxide fuel cell can generally be manufactured by a method of coating an electrode and an electrolyte on a porous metal support for the supply of hydrogen fuel. In order to produce a porous metal support, a method of manufacturing fine holes by machining a metal plate is used. However, in order to uniformly process fine holes having a diameter of several tens of micrometers in a metal support, need. However, such precision machining has a problem in that an expensive manufacturing cost is required.
본 발명의 실시예들은 다공성 확보가 용이하고 및 고온에서 변형 저항성이 우수하여 대면적화가 유리한 고체산화물 연료전지를 제공하기 위해, 종횡비가 0.5 내지 2.0이고, 다각형 형상의 결정립자 형상을 갖는 금속 분말들의 소결체를 포함하는 금속 지지체형 고체산화물 연료전지를 제공한다.In order to provide a solid oxide fuel cell which is easy to secure porosity and excellent in deformation resistance at a high temperature and large in area, the embodiments of the present invention provide a solid oxide fuel cell having an aspect ratio of 0.5 to 2.0 and a metal powder having a polygonal crystal grain shape A solid oxide fuel cell of metal support type including a sintered body is provided.
본 발명의 일 실시예에 따른 금속지지체형 고체산화물 연료전지는 금속지지체; 상기 금속지지체 상에 마련된 연료극; 상기 연료극 상에 마련된 전해질; 및 상기 전해질 상에 마련된 공기극;을 포함하고, 상기 금속지지체는 0.5 이상 2.0 이하의 종횡비(aspect ratio)를 갖는 다각형 형상의 결정립자를 포함하는 금속합금 분말의 소결체를 포함한다.According to an embodiment of the present invention, a metal-supported solid oxide fuel cell includes a metal support; A fuel electrode provided on the metal support; An electrolyte provided on the anode; And an air electrode provided on the electrolyte, wherein the metal support includes a sintered body of a metal alloy powder including polygonal crystal grains having an aspect ratio of 0.5 to 2.0.
또한, 상기 금속합금 분말은, 중량%로, C: 0.001 내지 1%, Cr: 10 내지 32%, 잔부 Fe 및 기타 불가피한 불순물을 포함할 수 있다.Also, the metal alloy powder may contain 0.001 to 1% of C, 10 to 32% of Cr, balance Fe, and other unavoidable impurities in weight percent.
상기 금속합금 분말은 1 내지 500μm 크기의 결정립자를 포함할 수 있다.The metal alloy powder may include crystal particles having a size of 1 to 500 mu m.
상기 금속 지지체는 5% 내지 70%의 개기공(open pore)율을 가질 수 있다.The metal support may have an open pore rate of 5% to 70%.
상기 연료극은 산화니켈(NiO)과 이트리아 안정화 지르코니아(YSZ, Yttria-stabilized zirconia) 또는 산화니켈과 가돌리늄 도핑 산화세륨(GDC, Gadolinium-doped Cerium oxide)을 포함할 수 있다.The anode may include nickel oxide (NiO), yttria-stabilized zirconia (YSZ) or nickel oxide and gadolinium-doped cerium oxide (GDC).
또한, 상기 전해질은, a: 0.01 내지 0.5, b: 0.05 내지 0.4인 LSGM((La1-aSra)(Ga1-bMgb)O3); a: 0.01 내지 0.5, b: 0.05 내지 0.4, c: 0.01 내지 0.2인 LSGMC((La1-aSra)(Ga1-b-cMgbCoc)O3); a: 0.05 내지 0.3인 가돌리늄 도핑 산화세륨(GDC)((Ce1-aGda)O2); a: 0.05 내지 0.3인 사마륨 도핑 산화세륨(SDC)((Ce1-aSma)O2); 및 a: 0.05 내지 0.3인 이트리아 안정화 지르코니아(YSZ)((Zr1 -aYa)O2); 중 적어 도 하나 또는 그 혼합물을 포함할 수 있다.The electrolyte may further include LSGM ((La 1-a Sr a ) (Ga 1-b Mg b ) O 3 ) in which a: 0.01 to 0.5 and b: 0.05 to 0.4; LSGMC ((La 1-a Sr a ) (Ga 1 -bc Mg b Co c O 3 ) in which a: 0.01 to 0.5, b: 0.05 to 0.4, and c: 0.01 to 0.2; a: ((Ce 1-a Gd a) O 2) of gadolinium doped ceria (GDC) 0.05 to 0.3; a: a samarium doped ceria (SDC) 0.05 to 0.3 ((Ce 1-a Sm a) O 2); And a: yttria-stabilized zirconia (YSZ) ((Zr 1 -a Ya) O 2 ) of 0.05 to 0.3; Or a mixture thereof.
또한, 상기 공기극은, a:0.2 내지 0.6, b: 0.6 내지 0.9인 LSCF((La1 -aSra)(Co1-bFeb)O3); a:0.2 내지 0.6, b: 0.6 내지 0.9인 LSCF((La1 -aSra)(Co1 -bFeb)O3)와 가돌리늄 도핑 산화세륨(GDC)의 혼합물; x: 0.05 내지 0.3인 LSM((La1 -xSrx)MnO3); 및 x: 0.05 내지 0.3인 LSM((La1 -xSrx)MnO3)와 이트리아 안정화 지르코니아의 혼합물; 중 적어도 하나를 포함할 수 있다.Also, the air electrode is, a: 0.2 to 0.6, b: 0.6 to 0.9 of LSCF ((La 1 -a Sr a ) (Co 1-b Fe b) O 3); a: 0.2 to 0.6, b: 0.6 to 0.9 mixture of LSCF ((La 1 -a Sr a ) (Co 1 -b Fe b) O 3) and a gadolinium-doped ceria (GDC); x: the LSM 0.05 to 0.3 ((La 1 -x Sr x ) MnO 3); And x: 0.05 to 0.3 LSM ((La 1- x Sr x ) MnO 3 ) and yttria-stabilized zirconia; Or the like.
본 발명의 일 실시예에 따른 고체산화물 연료전지용 금속지지체는 중량%로, C: 0.001 내지 1%, Cr: 10 내지 32%, 잔부 Fe 및 기타 불가피한 불순물을 포함하는 금속합금 분말의 소결체를 포함하고, 상기 금속합금 분말의 소결체는 0.5 내지 2.0의 종횡비(aspect ratio)를 갖는 다각형 형상의 결정립자를 포함한다.The metal support for a solid oxide fuel cell according to an embodiment of the present invention includes a sintered body of a metal alloy powder containing 0.001 to 1% of C, 10 to 32% of Cr, balance Fe and other unavoidable impurities in weight% , And the sintered body of the metal alloy powder includes a polygonal crystal grain having an aspect ratio of 0.5 to 2.0.
또한, 상기 금속합금 분말은 1 내지 500μm 크기의 결정립자를 포함할 수 있다.In addition, the metal alloy powder may include crystal particles having a size of 1 to 500 mu m.
또한, 상기 금속 지지체는 5% 내지 70%의 개기공(open pore)율을 가질 수 있다.Also, the metal support may have an open pore rate of 5% to 70%.
본 발명의 일 실시예에 따른 금속지지체형 고체산화물 연료전지의 제조방법은 중량%로, C: 0.001 내지 1%, Cr: 10 내지 32%, 잔부 Fe 및 기타 불가피한 불순물을 포함하는 금속합금을 0.5 이상 2.0 이하의 종횡비(aspect ratio)를 갖는 다각형 형상의 결정립자를 포함하는 금속합금 분말로 가공하는 단계; 상기 분말을 유기용액과 혼합하여 금속지지체를 제조하는 단계; 및 상기 금속지지체 상에 연료극, 전해질 및 공기극을 적층하는 단계;를 포함한다.A method of manufacturing a metal-supported solid oxide fuel cell according to an embodiment of the present invention includes the steps of forming a metal alloy containing 0.001 to 1% of C, 10 to 32% of Cr, balance Fe and other unavoidable impurities in a weight percentage of 0.5 To form a metal alloy powder including polygonal crystal grains having an aspect ratio of not less than 2.0; Mixing the powder with an organic solution to produce a metal support; And laminating an anode, an electrolyte, and an air electrode on the metal support.
또한, 금속합금 분말로 가공하는 단계는, 금속합금을 1 내지 500mm 크기의 결정립을 포함하는 모재로 가공하는 단계; 상기 모재를 500 내지 900도의 온도로 예민화 열처리하는 단계; 상기 열처리된 모재를 산성용액에 침적하여 입계부식을 일으키는 단계; 및 상기 입계부식 처리된 모재를 분말로 가공하는 단계;를 포함할 수 있다.Further, the step of machining into a metal alloy powder may include the steps of machining the metal alloy into a base material containing crystal grains of 1 to 500 mm in size; Subjecting the base material to a heat treatment at a temperature of 500 to 900 degrees Celsius; Depositing the heat-treated base material in an acidic solution to cause intergranular corrosion; And processing the intergranular corrosion-treated base material into a powder.
본 발명의 실시예에 따른 금속지지체형 고체산화물 연료전지는, 특수 설비 없이 소둔 및 부식 공정을 통해 분말 크기 및 합금 성분함량이 용이하게 조절될 수 있는 금속합금 분말을 이용하여 제조될 수 있으므로 저비용으로 대량 생산이 가능하다. The metal support type solid oxide fuel cell according to the embodiment of the present invention can be manufactured using a metal alloy powder which can be easily adjusted in powder size and alloy component content through annealing and corrosion process without special equipment, Mass production is possible.
또한, 본 발명의 실시예에 따라 제조된 금속합금 분말은 파쇄법과 분사법 대비하여 높은 순도를 가질 수 있으며, 다각형의 분말 입자의 종횡비가 1에 가까워 고가의 구형 분말을 대체할 수 있다.In addition, the metal alloy powder produced according to the embodiment of the present invention may have a high purity in comparison with the crushing method and the spraying method, and the aspect ratio of the polygonal powder particles is close to 1, thereby replacing the expensive spherical powder.
또한, 본 발명의 실시예에 따르면 가공모재의 결정립 크기를 조절함으로써 원하는 크기의 금속합금 분말을 용이하게 제조할 수 있고, 고체산화물 연료전지용 금속지지체의 기공율을 용이하게 조절할 수 있다.In addition, according to the embodiment of the present invention, it is possible to easily produce a metal alloy powder of a desired size by adjusting the grain size of the base metal and to easily adjust the porosity of the metal support for a solid oxide fuel cell.
도 1은 개시된 실시예에 따른 금속지지체형 고체산화물 연료전지의 구조를 나타낸 모식도이다.1 is a schematic diagram showing the structure of a metal-supported solid oxide fuel cell according to the disclosed embodiment.
도 2는 개시된 실시예에 따른 금속합금 분말을 주사전자 현미경으로 측정한 사진이다.2 is a photograph of a metal alloy powder according to the disclosed embodiment measured by a scanning electron microscope.
본 발명의 일 실시예에 따른 금속지지체형 고체산화물 연료전지는 금속지지체; 상기 금속지지체 상에 마련된 연료극; 상기 연료극 상에 마련된 전해질; 및 상기 전해질 상에 마련된 공기극;을 포함하고, 상기 금속지지체는 0.5 이상 2.0 이하의 종횡비(aspect ratio)를 갖는 다각형 형상의 결정립자를 포함하는 금속합금 분말의 소결체를 포함한다.According to an embodiment of the present invention, a metal-supported solid oxide fuel cell includes a metal support; A fuel electrode provided on the metal support; An electrolyte provided on the anode; And an air electrode provided on the electrolyte, wherein the metal support includes a sintered body of a metal alloy powder including polygonal crystal grains having an aspect ratio of 0.5 to 2.0.
이하에서는 본 발명의 실시 예를 첨부 도면을 참조하여 상세히 설명한다. 이하의 실시 예는 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 본 발명의 사상을 충분히 전달하기 위해 제시하는 것이다. 본 발명은 여기서 제시한 실시 예만으로 한정되지 않고 다른 형태로 구체화될 수도 있다. 도면은 본 발명을 명확히 하기 위해 설명과 관계 없는 부분의 도시를 생략하고, 이해를 돕기 위해 구성요소의 크기를 다소 과장하여 표현할 수 있다.Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings. The following embodiments are provided to fully convey the spirit of the present invention to a person having ordinary skill in the art to which the present invention belongs. The present invention is not limited to the embodiments shown herein but may be embodied in other forms. For the sake of clarity, the drawings are not drawn to scale, and the size of the elements may be slightly exaggerated to facilitate understanding.
일반적으로 고체산화물 연료전지는 단위 전지가 적층된 것을 지칭한다. 그러나 이하의 실시예에서는 설명의 편의를 위해 고체산화물 연료전지가 단위전지를 지칭한다.Generally, a solid oxide fuel cell refers to a stack of unit cells. However, in the following embodiments, the solid oxide fuel cell refers to a unit cell for convenience of explanation.
도 1은 개시된 실시예에 따른 금속지지체형 고체산화물 연료전지의 구조를 나타낸 모식도이다.1 is a schematic diagram showing the structure of a metal-supported solid oxide fuel cell according to the disclosed embodiment.
도 1을 참조하면, 본 발명의 일 실시예에 따른 고체산화물 연료전지는 금속지지체(10), 연료극(20), 전해질(30) 및 공기극(40)을 포함한다.Referring to FIG. 1, a solid oxide fuel cell according to an embodiment of the present invention includes a metal support 10, a fuel electrode 20, an electrolyte 30, and an air electrode 40.
도 1에 도시된 금속지지체형 고체산화물 연료전지는 평판형 연료전지를 도시하고 있으나, 원통형으로 마련될 수 있음은 물론이다. 이하 금속지지체형 고체산화물 연료전지가 평판형 금속지지체형 고체산화물 연료전지를 일 예로 하여 설명된다. 도 1에 도시된 금속지지체형 고체산화물 연료전지는 금속지지체상에 연료극 및 전해질을 순차적으로 형성하여 반전지 성형체를 제조하는 단계, 반전지 성형체를 환원 분위기에서 소결하여, 다공질 금속지지체, 음극 및 전해질로 이루어진 반전지를 제조하는 단계, 전해질 상에 공기극을 형성하여 고체산화물 연료전지를 제조하는 단계를 포함한다.The metal-supported solid oxide fuel cell shown in FIG. 1 is a planar fuel cell, but it may be cylindrical. Hereinafter, a metal-supported solid oxide fuel cell will be described as an example of a flat metal support solid oxide fuel cell. The metal-supported solid oxide fuel cell shown in Fig. 1 comprises a step of sequentially forming an anode and an electrolyte on a metal support to produce a semi-conductor formed article, sintering the semi-formed article in a reducing atmosphere to form a porous metal support, , And forming a cathode on the electrolyte to produce a solid oxide fuel cell.
금속지지체는 금속합금 분말의 소결체로 구체적인 내용은 후술된다.The metal support is a sintered body of a metal alloy powder.
연료극은 금속지지체 상에 마련될 수 있다. 연료극은 산화니켈(NiO)과 이트리아 안정화 지르코니아(YSZ, Yttria-stabilized zirconia) 또는 산화니켈과 가돌리늄 도핑 산화세륨(GDC, Gadolinium-doped Cerium oxide)을 포함할 수 있다. 예를 들면, 연료극은 산화니켈과 40 vol%의 이트리아 안정화 지르코니아로 이루어질 수 있다. The fuel electrode may be provided on the metal support. The anode may comprise nickel oxide (NiO), yttria-stabilized zirconia (YSZ) or nickel oxide and gadolinium-doped cerium oxide (GDC). For example, the anode may consist of nickel oxide and 40 vol% yttria stabilized zirconia.
연료극은 금속 지지체 상에 스크린 프린팅 방법으로 약 60 μm 두께로 코팅된 다음, 150도에서 30분간 건조하는 과정을 거쳐 마련될 수 있다.The anode may be coated on the metal support by a screen printing method to a thickness of about 60 탆 and then dried at 150 캜 for 30 minutes.
전해질은 LSGM((La1 -aSra)(Ga1 -bMgb)O3)(a: 0.01 내지 0.5, b: 0.05 내지 0.4), LSGMC((La1-aSra)(Ga1-b-cMgbCoc)O3)(a: 0.01 내지 0.5, b: 0.05 내지 0.4, c: 0.01 내지 0.2), 가돌리늄 도핑 산화세륨(GDC)((Ce1 -aGda)O2)(a: 0.05 내지 0.3), 사마륨 도핑 산화세륨(SDC)((Ce1 -aSma)O2)(a: 0.05 내지 0.3) 및 이트리아 안정화 지르코니아(YSZ)((Zr1-aYa)O2)(a: 0.05 내지 0.3) 중 적어도 하나 또는 그 혼합물을 포함할 수 있다. The electrolyte LSGM ((La 1 -a Sr a ) (Ga 1 -b Mg b) O 3) (a: 0.01 to 0.5, b: 0.05 to 0.4), LSGMC ((La 1 -a Sr a) (Ga 1 -bc Mg b Co c) O 3 ) (a: 0.01 to 0.5, b: 0.05 to 0.4, c: 0.01 to 0.2), gadolinium-doped ceria (GDC) ((Ce 1 -a Gd a) O 2) ( a: 0.05 to 0.3), samarium-doped ceria (SDC) ((Ce 1 -a Sm a) O 2) (a: 0.05 to 0.3), and yttria-stabilized zirconia (YSZ) ((Zr 1- a Ya) O 2 ) (a: 0.05 to 0.3), or a mixture thereof.
예를 들면, 이트리아 안정화 지르코니아 전해질이 연료극 상에 스크린 프린팅 방법으로 코팅된 다음, 150도에서 30분동안 건조되면, 금속지지체 상에 연료극과 전해질이 코팅된 구조체가 제조될 수 있다.For example, if the yttria-stabilized zirconia electrolyte is coated on the anode by the screen printing method and then dried at 150 degrees for 30 minutes, a structure in which the anode and the electrolyte are coated on the metal support can be manufactured.
공기극은 LSCF((La1 -aSra)(Co1 -bFeb)O3)(a:0.2 내지 0.6, b: 0.6 내지 0.9), LSCF((La1-aSra)(Co1-bFeb)O3)(a:0.2 내지 0.6, b: 0.6 내지 0.9)와 가돌리늄 도핑 산화세륨(GDC)의 혼합물, LSM((La1 -xSrx)MnO3)(x: 0.05 내지 0.3), LSM((La1 -xSrx)MnO3)(x: 0.05 내지 0.3)과 이트리아 안정화 지르코니아의 혼합물 중 적어도 하나를 포함할 수 있다.Air electrode is LSCF ((La 1 -a Sr a ) (Co 1 -b Fe b) O 3) (a: 0.2 to 0.6, b: 0.6 to 0.9), LSCF ((La 1 -a Sr a) (Co 1 -b Fe b) O 3) ( a: 0.2 to 0.6, b: 0.6 to 0.9) and a mixture of gadolinium doped ceria (GDC), LSM ((La 1 -x Sr x) MnO 3) (x: 0.05 to 0.3), LSM ((La 1 -x Sr x) MnO 3) (x: may include at least one of 0.05 to 0.3) and a mixture of yttria stabilized zirconia.
예를 들면, 공기극은 금속지지체 상에 연료극 및 전해질이 코팅된 구조체의 전해질 상에 LSCF((La0 . 6Sr0 .4)(Co0 . 2Fe0 . 8)O3)가 스크린 프린팅 방법으로 약 30μm 두께로 코팅된 다음, 100도에서의 30분간의 건조과정을 거친 마련될 수 있다. 그후, 900도에서 2시간 열처리 과정을 거치면 금속지지체형 고체산화물 연료전지가 제조될 수 있다. For example, the air electrode is LSCF ((La 0. 6 Sr 0 .4) (Co 0. 2 Fe 0. 8) O 3) method is screen printed on the electrolyte of the structure of the fuel electrode and the electrolyte coating on a metal support To a thickness of about 30 탆, and then dried at 100 캜 for 30 minutes. Thereafter, a metal support type solid oxide fuel cell can be manufactured by performing a heat treatment at 900 degrees for 2 hours.
개시된 실시예에 따라 제조된 금속지지체형 고체산화물 연료전지의 공기극을 공기(A)중에 노출시키고 연료극에 수소가스(H2 97%-H2O 3%)를 연료(F)로 공급하여, 전압-전류 특성을 평가한 결과, 800℃에서 510 mW/㎠의 전력을 나타내었다. The air electrode of the metal-supported solid oxide fuel cell manufactured according to the disclosed embodiment was exposed to the air A and hydrogen gas (H 2 97% -H 2 O 3%) was supplied to the fuel electrode as fuel F, - As a result of evaluating the current characteristics, the power was 510 mW / cm 2 at 800 ° C.
이하 전술한 금속지지체의 제조방법 및 금속지지체형 고체산화물 연료전지의 제조방법이 구체적으로 설명된다.Hereinafter, a method for producing the metal support and a method for manufacturing the metal-supported solid oxide fuel cell will be described in detail.
금속지지체의 제조방법은 금속합금 판재를 냉간가공과 열처리를 통해 결정립 크기가 제어된 모재로 가공하는 단계와, 모재를 예민화 열처리하는 단계와, 열처리된 모재를 산성용액에 침적하여 입계부식을 일으키는 단계와, 입계부식 처리된 모재를 세척하고 균열을 일으켜 분말화하는 단계와, 금속합금 분말과 유기용액을 혼합하여 금속지지체를 성형하고, 건조 및 열처리를 수행하는 단계를 포함한다. The method of manufacturing a metal support comprises the steps of: machining a metal alloy sheet by cold working and heat treatment into a base metal whose grain size is controlled; subjecting the base metal to an annealing heat treatment; a step of immersing the annealed base metal in an acidic solution to cause intergranular corrosion , Washing and cracking the intergranular corrosion-treated base material to form a powder, mixing the metal alloy powder and the organic solution to mold the metal support, and performing drying and heat treatment.
금속지지체의 제조를 위한 금속합금은 중량%로, C: 0.001 내지 1%, Cr: 10 내지 32%, 잔부 Fe 및 기타 불가피한 불순물을 포함한다. 이하, 본 발명에 따른 실시 예에서의 성분 함량의 수치 한정 이유에 대하여 설명하기로 한다. 이하에서는 특별한 언급이 없는 한 단위는 중량%(wt%)이다.The metal alloy for the production of the metal support comprises 0.001 to 1% of C, 10 to 32% of Cr, balance Fe and other unavoidable impurities in weight percent. Hereinafter, the reason for limiting the numerical value of the component content in the examples according to the present invention will be described. Unless otherwise stated, the unit is wt% (wt%).
C: 0.001 내지 1%C: 0.001 to 1%
C는 합금 중에서 Cr 탄화물을 형성을 위한 함량으로 0.001%이상 포함될 수 있다. C 함량이 0.001% 이하가 되면, Cr 탄화물 형성이 어려우므로, C의 함량을 0.001% 이상으로 제한하였다. C 함량이 1%를 초과할 경우에는 과도한 Cr 탄화물이 형성되어 합금판재의 생산이 어려워지므로, C의 함량을 1%이하로 제한하였다.C may be contained in an amount of 0.001% or more for the formation of Cr carbide in the alloy. When the C content is 0.001% or less, it is difficult to form Cr carbide, so the content of C is limited to 0.001% or more. If the C content exceeds 1%, excessive Cr carbide is formed and the production of the alloy plate becomes difficult, so the content of C is limited to 1% or less.
Cr: 10 내지 32%Cr: 10 to 32%
Cr은 700℃ 또는 800℃의 고온과 산성 분위기에서 작동하는 고체산화물 연료전지의 작동 환경 내에서 내산화성을 증가시키는 원소로, 전술한 고체산화물의 작동 환경에서 내산화성을 보장하기 위해 Cr의 조성비를 10 내지 32%로 제한하였다.Cr is an element that increases oxidation resistance in an operating environment of a solid oxide fuel cell operating at a high temperature of 700 ° C or 800 ° C and an acidic atmosphere. In order to ensure oxidation resistance in the operating environment of the above-mentioned solid oxide, 10 to 32%.
Cr이 32%를 초과하게 되면, 열간 가공성이 저해되므로 Cr의 조성비를 32% 이하로 한정하였다. 본 발명에서는 C 및 Cr의 조성비를 전술한 것처럼 한정하였으나, Ni, Mn, Cu, Mo등의 원소가 추가될 수 있다. If the Cr content exceeds 32%, the hot workability is impaired, so that the composition ratio of Cr is limited to 32% or less. In the present invention, the composition ratios of C and Cr are limited as described above, but elements such as Ni, Mn, Cu, and Mo may be added.
금속합금의 두께는 짧은 시간에 입계부식이 가능하도록 1.0 mm 이하인 것이 바람직하나, 이에 특별히 한정되는 것은 아니다. The thickness of the metal alloy is preferably 1.0 mm or less so as to be able to form a grain boundary in a short time, but is not particularly limited to this.
전술한 금속 합금을 결정립 크기가 제어된 모재로 가공하기 위해, 개시된 실시예에 따른 금속지지체의 제조방법은 제강공정으로부터 합금성분을 용해하고, 연속주조 혹은 잉곳주조 등에 의해 생산된 강 주편을 열간압연, 소둔, 냉간압연, 소둔을 거치는 일련의 공정을 통해 결정립의 크기와 형상이 제어된 판재 혹은 봉강 등의 모재로 가공하는 단계를 포함할 수 있다. In order to process the above-described metal alloy into a base metal whose grain size is controlled, the method of manufacturing a metal support according to the disclosed embodiment includes dissolving an alloy component from a steelmaking process, hot rolling a steel slab produced by continuous casting or ingot casting, , A step of annealing, a step of cold rolling, and a step of annealing to form a base material such as a plate or bar having controlled grain size and shape.
고체지지체의 재료가 되는 금속합금 분말은 그 크기와 형상이 금속합금의 결정립의 크기와 형상에 따라 결정되므로, 제작하고자 하는 분말의 크기에 맞게 냉간가공과 소둔을 통해 결정립의 크기와 형상이 조절될 수 있다. Since the size and shape of the metal alloy powder as the material of the solid support is determined by the size and shape of the crystal grains of the metal alloy, the size and shape of the crystal grains are controlled through cold working and annealing in accordance with the size of the powder to be manufactured .
특히 장변과 단변의 비인 종횡비(aspect ratio)가 0.5 내지 2.0인 구형에 가까운 형상의 다각형 금속합금 분말을 제조하기 위해서는 가공모재인 금속합금의 결정립 형상의 종횡비를 0.5 내지 2.0인 다각형의 등축정이 되도록 냉간가공 및 소둔이 이루어져야 한다.Particularly, in order to produce a polygonal metal alloy powder having a spherical shape with an aspect ratio of 0.5 to 2.0, which is a ratio of the long side to the short side, the shape of the polygonal metal alloy powder is changed so as to be a polygonal equiaxed crystal having an aspect ratio of 0.5 to 2.0, Machining and annealing should be performed.
모재의 예민화 열처리는, 모재를 섭씨 500 내지 900도 내에서 Batch소둔 혹은 연속소둔을 통해 1분 내지 50시간 동안 열처리하는 것을 포함한다. 이처럼, 모재를 500 ~ 900 °C에서 열처리하면 결정립계에 Cr이 결핍되어, 입계부식에 취약한 예민화 조직이 형성될 수 있다. The annealing heat treatment of the base material includes heat treatment for 1 minute to 50 hours through batch annealing or continuous annealing at a temperature of 500 to 900 degrees centigrade. As described above, when the base material is heat-treated at 500 to 900 ° C, Cr is deficient in the crystal grain boundary, and a sensitive structure susceptible to grain boundary corrosion can be formed.
합금 내부의 탄소와 크롬이 반응하여 크롬 탄화물이 입계에 형성되면, 입계 주위의 크롬의 농도는 결정립 내부의 평균 크롬 농도보다 낮아지고 상대적으로 철 농도는 높아지게 되므로 입계부식에 취약한 예민화 조직이 형성될 수 있다. 즉 예민화 조직은 결정립계에 Cr탄화물이 형성되어 결정립계 주위에 Cr 고갈층이 형성됨으로써 부식에 취약해진 결정립계의 조직을 말한다.When the carbon in the alloy reacts with chromium to form chromium carbide in the grain boundary, the chromium concentration around the grain boundary becomes lower than the average chromium concentration inside the grain and the iron concentration becomes relatively higher, so that a sensitive structure vulnerable to grain boundary corrosion is formed . In other words, the sensitized structure refers to a grain boundary structure in which Cr carbide is formed at grain boundaries and a Cr-depleted layer is formed around grain boundaries to be vulnerable to corrosion.
예민화 열처리가 500 ℃ 미만의 온도 에서 행해지는 경우 예민화 조직 내 크롬 결핍 현상이 나타나지 않거나 결핍 속도가 느릴 수 있고, 900 ℃를 초과하는 온도에서 수행되는 경우에도 크롬 결핍 현상이 나타나지 않을 수 있기 때문에, 전술한 예민화 열처리는 500 ~ 900 ℃의 온도범위에서 이루어질 수 있다. 단시간에 예민화 조직을 형성시키기 위해서는 500 ~ 700도의 온도범위에서 열처리하는 것이 바람직하다. When the sensitizing heat treatment is carried out at a temperature lower than 500 캜, chromium deficiency phenomenon may not appear in the sensitized tissue, or the deficiency rate may be slow, and chromium deficiency may not be exhibited even when the heat treatment is performed at a temperature exceeding 900 캜 , The above-mentioned sensitizing heat treatment can be carried out in a temperature range of 500 to 900 ° C. In order to form a sensitized structure in a short time, it is preferable to perform heat treatment in a temperature range of 500 to 700 degrees.
입계 Cr의 농도는 예민화 단계를 통해 낮출 수 있지만, 결정립 내부의 Cr 확산을 통해 Cr이 지속적으로 공급되므로 예민화 조직의 입계 Cr의 농도는 5 중량% 미만으로 형성하기 어렵고, 13 중량%를 초과하는 경우 산성용액을 통한 입계 부식 균열이 용이하게 형성되기 어렵다. 따라서, 전술한 예민화 조직의 입계의 Cr의 농도는 5 내지 13 중량%인 것이 바람직하다. 더욱 바람직하게는, 예민화 조직의 입계 Cr의 농도가 5 내지 10 중량%일 수 있다.Since the concentration of Cr in the grain boundary can be lowered through the sensitization step, Cr is continuously supplied through Cr diffusion in the crystal grains, so that the concentration of the grain boundary Cr in the sensitized structure is less than 5 wt%, and more than 13 wt% It is difficult to easily form intergranular corrosion cracks through the acidic solution. Therefore, it is preferable that the concentration of Cr in the grain boundary of the above-mentioned sensitized tissue is 5 to 13% by weight. More preferably, the concentration of intergranular Cr in the sensitized tissue may be 5 to 10% by weight.
입계부식을 일으키는 단계는, 예민화 조직이 형성된 모재를 산성용액에 침적하여 결정립계에 형성되어 있는 Cr 고갈층을 부식시켜 결정립계를 취약화시키는 것을 포함한다.The step of causing intergranular corrosion includes a step of weakening the grain boundaries by immersing the base material in which the sensitized structure is formed in an acidic solution to corrode a Cr-depleted layer formed in the grain boundary.
이때, 산성 용액으로는 황산, 질산, 불산 또는 이러한 산성용액을 혼합한 용액이 사용될 수 있으나, 이에 한정되는 것은 아니며 입계부식을 일으킬 수 있는 용액은 본 발명에 따른 금속지지체의 제조방법에 사용될 수 있다. The acidic solution may be a solution of sulfuric acid, nitric acid, hydrofluoric acid, or an acidic solution, but the present invention is not limited thereto. A solution capable of causing intergranular corrosion can be used in the method of preparing a metal support according to the present invention .
산성용액에 침적되어 모재의 결정립계가 취약해지면, 취약해진 결정립계를 균열시켜 분말로 가공할 수 있다. 본 발명에 따른 금속지지체의 제조방법은, 모재의 결정립계를 균열시켜 분말을 제조하기 때문에 산성용액 침적 후 산성용액을 세척하여 제거하면 모재의 성분이 그대로 유지된 고순도의 금속합금 분말을 획득할 수 있는 장점이 있다.When the grain boundary of the base material is weakened by being immersed in an acidic solution, the fragile grain boundary can be cracked and processed into a powder. The method of manufacturing a metal support according to the present invention is a method of manufacturing a metal support by cracking a grain boundary of a base material to produce a powder, and therefore, when the acidic solution is washed and removed after acidic solution immersion, a metal alloy powder of high purity There are advantages.
결정립의 크기가 냉간가공 및 열처리를 통해 1.0 내지 500 mm로 조절되면, 금속합금 분말 입자도 1.0 내지 500 mm 크기로 획득될 수 있다.If the size of the crystal grains is adjusted to 1.0 to 500 mm through cold working and heat treatment, metallic alloy powder particles can also be obtained with a size of 1.0 to 500 mm.
또한 모재의 결정립 형상의 장축과 단축의 비인 종횡비(aspect ratio)가 냉간가공 및 열처리를 통해 0.5 내지 2.0으로 조절되면, 금속합금 분말 입자도 0.5 내지 2.0의 종횡비를 가질 수 있다. 금속합금 분말은 다각형 형상을 가질 수 있다. Also, if the aspect ratio of the major axis and minor axis of the grains of the base material is adjusted to 0.5 to 2.0 through cold working and heat treatment, the metal alloy powder particles may also have an aspect ratio of 0.5 to 2.0. The metal alloy powder may have a polygonal shape.
도 2는 개시된 실시예에 따른 금속합금 분말을 주사전자 현미경으로 측정한 사진이다. 도 2에 나타낸 것처럼, 본 발명에 따른 금속지지체의 제조방법에 따라 제조된 분말들은 0.5 내지 2.0의 종횡비를 갖는 다각형의 형상을 가지고 있으며, 분말 입자의 크기는 모재의 결정립 크기와 유사하다.2 is a photograph of a metal alloy powder according to the disclosed embodiment measured by a scanning electron microscope. As shown in FIG. 2, the powders prepared according to the method of the present invention have a polygonal shape having an aspect ratio of 0.5 to 2.0, and the size of the powder particles is similar to that of the base material.
이처럼, 본 발명에 따른 금속분말은 다각형 형상을 갖게 되어, 고체산화물 연료전지용 금속지지체를 소결공정에 의해서 제조할 때 기공율 형성이 보다 용이한 것을 알 수 있었다.As described above, the metal powder according to the present invention has a polygonal shape, and it can be seen that the porosity is more easily formed when the metal support for a solid oxide fuel cell is manufactured by the sintering process.
금속합금 분말이 제조되면, 금속 분말과 유기용액을 혼합하여 금속지지체를 성형하고, 건조 및 열처리 공정을 통해 고체산화물 연료전지용 금속지지체가 제조될 수 있다. When the metal alloy powder is produced, a metal support for a solid oxide fuel cell can be manufactured through mixing a metal powder and an organic solution to form a metal support, and drying and heat-treating the metal support.
예를 들면, 개시된 실시예에 따른 금속지지체의 제조방법은 평균 분말크기가 39μm인 다각형의 금속합금 분말을 폴리에틸렌 글리콜(Polyethylene Glycol, PEG) 용액과 같은 고분자 용액과 혼합 및 교반함으로써, 금속합금 분말을 페이스트 형태의 금속지지체로 가공할 수 있다. 또한, 개시된 실시예에 따른 금속지지체의 제조방법은 페이스트 형태의 금속지지체를 면적 5cm2의 1축 가압성형하고 200℃에서 1시간 건조하여 두께 1mm의 금속지지체를 제조할 수 있다. 이렇게 제조된 금속지지체 상에 전술한 것처럼, 연료극, 전해질 및 공기극이 적층되어 본 발명에 따른 금속지지체형 고체산화물 연료전지가 제조될 수 있다.For example, in the method of manufacturing a metal support according to the disclosed embodiment, a polygonal metal alloy powder having an average powder size of 39 μm is mixed with a polymer solution such as a polyethylene glycol (PEG) solution and stirred to form a metal alloy powder It can be processed into a paste-type metal support. Also, in the method of manufacturing a metal support according to the disclosed embodiment, a metal support having a thickness of 1 mm can be manufactured by uniaxially pressing a paste-like metal support into an area of 5 cm 2 and drying at 200 ° C for 1 hour. As described above, a metal-supported solid oxide fuel cell according to the present invention can be manufactured by stacking a fuel electrode, an electrolyte and an air electrode on the thus-prepared metal support.
금속지지체의 개기공(open pore)율은 5% 미만에서는 연료 확산에 불리하고, 70% 이상에서는 지지체의 강도유지에 한계가 있으므로, 개시된 실시예에 따른 금속지지체의 개기공(open pore)율은 5%에서 70%인 것이 바람직하다. If the open pore ratio of the metal support is less than 5%, fuel diffusion is disadvantageous. If the metal support has a percentage of open pore of more than 70%, the strength of the support is limited, and thus the open pore ratio of the metal support according to the disclosed embodiment It is preferably from 5% to 70%.
전술한 것처럼, 개시된 실시예에 따른 다각형 금속합금 분말을 이용하여 제조한 다공성 금속지지체의 개기공율은 38% 를 나타내어, 기공형성이 보다 용이함을 알 수 있었으며 기계적 강도 또한 우수하였다. As described above, the open porosity of the porous metal support prepared using the polygonal metal alloy powder according to the disclosed embodiment was 38%, indicating that formation of pores was easier, and mechanical strength was also excellent.
이처럼 개시된 실시예에 따른 금속지지체는 기공형성이 보다 용이하여 평판형 혹은 원통형 형태로 제조될 수 있으며, 이를 이용한 고체산화물 연료전지 스택 제조 시 제조비용을 낮출 수 있고 대량생산이 가능한 장점이 있다.The metal support according to the embodiment disclosed herein can be easily formed into a flat or cylindrical shape, and the manufacturing cost of the solid oxide fuel cell stack using the metal support can be reduced and mass production can be achieved.
상술한 바에 있어서, 본 발명의 예시적인 실시예들을 설명하였지만, 본 발명은 이에 한정되지 않으며 해당 기술 분야에서 통상의 지식을 가진 자라면 다음에 기재하는 특허청구범위의 개념과 범위를 벗어나지 않는 범위 내에서 다양한 변경 및 변형이 가능함을 이해할 수 있을 것이다.While the present invention has been described with reference to exemplary embodiments, it is to be understood that the invention is not limited thereto. Those skilled in the art will readily obviate modifications and variations within the spirit and scope of the appended claims. It will be understood that various changes and modifications may be made therein without departing from the spirit and scope of the invention.
본 발명에 따른 금속지지체형 고체산화물 연료전지는 특수 설비 없이 소둔 및 부식 공정을 통해 분말 크기 및 합금 성분함량이 용이하게 조절될 수 있는 금속합금 분말을 이용하여 제조될 수 있으므로 저비용으로 대량 생산이 가능하다.The metal-supported solid oxide fuel cell according to the present invention can be manufactured using a metal alloy powder capable of easily adjusting the powder size and the alloy component content through annealing and corrosion process without special equipment, thereby enabling mass production at low cost Do.

Claims (12)

  1. 금속지지체;Metal support;
    상기 금속지지체 상에 마련된 연료극;A fuel electrode provided on the metal support;
    상기 연료극 상에 마련된 전해질; 및An electrolyte provided on the anode; And
    상기 전해질 상에 마련된 공기극;을 포함하고,And an air electrode provided on the electrolyte,
    상기 금속지지체는 0.5 이상 2.0 이하의 종횡비(aspect ratio)를 갖는 다각형 형상의 결정립자를 포함하는 금속합금 분말의 소결체를 포함하는 금속지지체형 고체산화물 연료전지.Wherein the metal support comprises a sintered body of a metal alloy powder including polygonal crystal grains having an aspect ratio of 0.5 to 2.0.
  2. 제1항에 있어서,The method according to claim 1,
    상기 금속합금 분말은,Wherein the metal alloy powder comprises
    중량%로, C: 0.001 내지 1%, Cr: 10 내지 32%, 잔부 Fe 및 기타 불가피한 불순물을 포함하는 금속지지체형 고체산화물 연료전지.0.001 to 1% of C, 10 to 32% of Cr, balance Fe and other unavoidable impurities in terms of% by weight.
  3. 제1항에 있어서,The method according to claim 1,
    상기 금속합금 분말은 1 내지 500μm 크기의 결정립자를 포함하는 금속지지체형 고체산화물 연료전지.Wherein the metal alloy powder comprises crystal particles having a size of 1 to 500 mu m.
  4. 제1항에 있어서,The method according to claim 1,
    상기 금속 지지체는 5% 내지 70%의 개기공(open pore)율을 갖는 금속 지지체형 고체산화물 연료전지.Wherein the metal support has an open pore rate of 5% to 70%.
  5. 제1항에 있어서,The method according to claim 1,
    상기 연료극은 산화니켈(NiO)과 이트리아 안정화 지르코니아(YSZ, Yttria-stabilized zirconia) 또는 산화니켈과 가돌리늄 도핑 산화세륨(GDC, Gadolinium-doped Cerium oxide)을 포함하는 금속지지체형 고체산화물 연료전지The fuel electrode may be a metal-supported solid oxide fuel cell comprising nickel oxide (NiO), yttria-stabilized zirconia (YSZ) or nickel oxide and gadolinium-doped cerium oxide (GDC)
  6. 제1항에 있어서,The method according to claim 1,
    상기 전해질은,The electrolyte,
    a: 0.01 내지 0.5, b: 0.05 내지 0.4인 LSGM((La1 -aSra)(Ga1 -bMgb)O3);a: 0.01 to 0.5, b: 0.05 to 0.4 LSGM ((La 1 -a Sr a ) (Ga 1 -b Mg b) O 3);
    a: 0.01 내지 0.5, b: 0.05 내지 0.4, c: 0.01 내지 0.2인 LSGMC((La1 -aSra)(Ga1-b-cMgbCoc)O3);a: 0.01 to 0.5, b: 0.05 to 0.4, c: 0.01 to 0.2 the LSGMC ((La 1 -a Sr a ) (Ga 1-bc Mg b Co c) O 3);
    a: 0.05 내지 0.3인 가돌리늄 도핑 산화세륨(GDC)((Ce1 -aGda)O2);a: a gadolinium-doped ceria (GDC) 0.05 to 0.3 ((Ce 1 -a Gd a ) O 2);
    a: 0.05 내지 0.3인 사마륨 도핑 산화세륨(SDC)((Ce1 -aSma)O2); 및a: a samarium doped ceria (SDC) 0.05 to 0.3 ((Ce 1 -a Sm a ) O 2); And
    a: 0.05 내지 0.3인 이트리아 안정화 지르코니아(YSZ)((Zr1 -aYa)O2); 중 적어 도 하나 또는 그 혼합물을 포함하는 금속지지체형 고체산화물 연료전지a: 0.05 to 0.3 of yttria-stabilized zirconia (YSZ) ((Zr 1 -a Ya) O 2); A metal-supported solid oxide fuel cell comprising at least one or a mixture thereof
  7. 제1항에 있어서,The method according to claim 1,
    상기 공기극은,The air electrode
    a:0.2 내지 0.6, b: 0.6 내지 0.9인 LSCF((La1 -aSra)(Co1 -bFeb)O3);a: 0.2 to 0.6, b: 0.6 to 0.9 of LSCF ((La 1 -a Sr a ) (Co 1 -b Fe b) O 3);
    a:0.2 내지 0.6, b: 0.6 내지 0.9인 LSCF((La1 -aSra)(Co1 -bFeb)O3)와 가돌리늄 도핑 산화세륨(GDC)의 혼합물;a: 0.2 to 0.6, b: 0.6 to 0.9 mixture of LSCF ((La 1 -a Sr a ) (Co 1 -b Fe b) O 3) and a gadolinium-doped ceria (GDC);
    x: 0.05 내지 0.3인 LSM((La1 -xSrx)MnO3); 및x: the LSM 0.05 to 0.3 ((La 1 -x Sr x ) MnO 3); And
    x: 0.05 내지 0.3인 LSM((La1 -xSrx)MnO3)와 이트리아 안정화 지르코니아의 혼합물; 중 적어도 하나를 포함하는 금속지지체형 고체산화물 연료전지.x: the LSM 0.05 to 0.3 ((La 1 -x Sr x ) MnO 3) and a mixture of yttria stabilized zirconia; The solid oxide fuel cell comprising: a solid oxide fuel cell;
  8. 중량%로, C: 0.001 내지 1%, Cr: 10 내지 32%, 잔부 Fe 및 기타 불가피한 불순물을 포함하는 금속합금 분말의 소결체를 포함하고,And a sintered body of a metal alloy powder containing 0.001 to 1% of C, 10 to 32% of Cr, balance Fe and other unavoidable impurities,
    상기 금속합금 분말의 소결체는 0.5 내지 2.0의 종횡비(aspect ratio)를 갖는 다각형 형상의 결정립자를 포함하는 고체산화물 연료전지용 금속지지체.Wherein the sintered body of the metal alloy powder comprises polygonal crystal grains having an aspect ratio of 0.5 to 2.0.
  9. 제8항에 있어서,9. The method of claim 8,
    상기 금속합금 분말은 1 내지 500μm 크기의 결정립자를 포함하는 고체산화물 연료전지용 금속지지체.Wherein the metal alloy powder comprises crystal particles having a size of 1 to 500 mu m.
  10. 제8항에 있어서,9. The method of claim 8,
    상기 금속 지지체는 5% 내지 70%의 개기공(open pore)율을 갖는 고체산화물 연료전지용 금속지지체.Wherein the metal support has an open pore rate of 5% to 70%.
  11. 중량%로, C: 0.001 내지 1%, Cr: 10 내지 32%, 잔부 Fe 및 기타 불가피한 불순물을 포함하는 금속합금을 0.5 이상 2.0 이하의 종횡비(aspect ratio)를 갖는 다각형 형상의 결정립자를 포함하는 금속합금 분말로 가공하는 단계;And a metal alloy containing polygonal crystal grains having an aspect ratio of 0.5 or more and 2.0 or less in terms of% by weight, a metal alloy containing 0.001 to 1% of C, 10 to 32% of Cr, balance Fe and other unavoidable impurities. Processing with an alloy powder;
    상기 분말을 유기용액과 혼합하여 금속지지체를 제조하는 단계; 및Mixing the powder with an organic solution to produce a metal support; And
    상기 금속지지체 상에 연료극, 전해질 및 공기극을 적층하는 단계;를 포함하는 금속지지체형 고체산화물 연료전지의 제조방법.And stacking a fuel electrode, an electrolyte, and an air electrode on the metal support.
  12. 제11항에 있어서,12. The method of claim 11,
    금속합금 분말로 가공하는 단계는,The step of processing into a metal alloy powder comprises:
    금속합금을 1 내지 500mm 크기의 결정립을 포함하는 모재로 가공하는 단계;Processing the metal alloy into a base material comprising crystal grains having a size of 1 to 500 mm;
    상기 모재를 500 내지 900도의 온도로 예민화 열처리하는 단계;Subjecting the base material to a heat treatment at a temperature of 500 to 900 degrees Celsius;
    상기 열처리된 모재를 산성용액에 침적하여 입계부식을 일으키는 단계; 및Depositing the heat-treated base material in an acidic solution to cause intergranular corrosion; And
    상기 입계부식 처리된 모재를 분말로 가공하는 단계;를 포함하는 금속지지체형 고체산화물 연료전지의 제조방법.And processing the intergranular corrosion-treated base material into a powder. The method of manufacturing a metal-supported solid oxide fuel cell according to claim 1,
PCT/KR2018/008913 2017-08-31 2018-08-06 Metal-supported solid oxide fuel cell and manufacturing method therefor WO2019045302A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020170110954A KR101952806B1 (en) 2017-08-31 2017-08-31 Metal-supported solid oxide fuel cell and manufacturing method thereof
KR10-2017-0110954 2017-08-31

Publications (1)

Publication Number Publication Date
WO2019045302A1 true WO2019045302A1 (en) 2019-03-07

Family

ID=65527594

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/008913 WO2019045302A1 (en) 2017-08-31 2018-08-06 Metal-supported solid oxide fuel cell and manufacturing method therefor

Country Status (2)

Country Link
KR (1) KR101952806B1 (en)
WO (1) WO2019045302A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102600903B1 (en) * 2020-01-10 2023-11-13 한양대학교 산학협력단 Method for manufacturing metal supported solid oxide fuel cell using light sintering

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004091889A (en) * 2002-09-02 2004-03-25 Sumitomo Metal Mining Co Ltd Metal niobium powder and its manufacturing method
KR100858572B1 (en) * 2002-08-09 2008-09-17 제이에프이 스틸 가부시키가이샤 Metal material for fuel cell, fuel cell using the same and method for producing the material
JP2012508320A (en) * 2008-11-12 2012-04-05 コミッサリア ア レネルジー アトミーク エ オ ゼネルジ ザルタナテイヴ Substrate made from porous metal or metal alloy, method for its preparation, and HTE or SOFC cell using a metal support comprising this substrate
JP2013065518A (en) * 2011-09-20 2013-04-11 Honda Motor Co Ltd Metal support-type electrolyte-electrode assembly and manufacturing method thereof
KR20160030677A (en) * 2014-09-11 2016-03-21 포항공과대학교 산학협력단 Support for micro-solid oxide fuel cell and manufacturing method for micro-solid oxide fuel cell

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100858572B1 (en) * 2002-08-09 2008-09-17 제이에프이 스틸 가부시키가이샤 Metal material for fuel cell, fuel cell using the same and method for producing the material
JP2004091889A (en) * 2002-09-02 2004-03-25 Sumitomo Metal Mining Co Ltd Metal niobium powder and its manufacturing method
JP2012508320A (en) * 2008-11-12 2012-04-05 コミッサリア ア レネルジー アトミーク エ オ ゼネルジ ザルタナテイヴ Substrate made from porous metal or metal alloy, method for its preparation, and HTE or SOFC cell using a metal support comprising this substrate
JP2013065518A (en) * 2011-09-20 2013-04-11 Honda Motor Co Ltd Metal support-type electrolyte-electrode assembly and manufacturing method thereof
KR20160030677A (en) * 2014-09-11 2016-03-21 포항공과대학교 산학협력단 Support for micro-solid oxide fuel cell and manufacturing method for micro-solid oxide fuel cell

Also Published As

Publication number Publication date
KR101952806B1 (en) 2019-02-28

Similar Documents

Publication Publication Date Title
US5670270A (en) Electrode structure for solid state electrochemical devices
JP5283896B2 (en) Method of coating protective film on interconnector for solid oxide fuel cell
CA2922744A1 (en) Metal supported solid oxide fuel cell
JP2008538543A (en) Precursor material infiltration and coating methods
Ali et al. Influence of sintering temperature on the power density of samarium-doped-ceria carbonate electrolyte composites for low-temperature solid oxide fuel cells
Yang et al. High performance intermediate temperature micro-tubular SOFCs with Ba0. 9Co0. 7Fe0. 2Nb0. 1O3− δ as cathode
WO2014178484A1 (en) Method for preparing solid electrolyte for solid oxide fuel cell, and method for preparing unit cell
KR101576314B1 (en) Electrolyte for an inexpensive, electrolyte-supported high-temperature fuel cell having high power and high mechanical strength
KR20140057080A (en) Cathode for solid oxide fuel cell, method for preparing the same and solid oxide fuel cell including the same
CN113667998A (en) Reversible solid oxide electrolytic cell and preparation method thereof
Ahmed et al. Development of novel LSM/GDC composite and electrochemical characterization of LSM/GDC based cathode-supported direct carbon fuel cells
Cao et al. Novel reduction-resistant Ba (Ce, Zr) 1− xGdxO3− δ electron-blocking layer for Gd0. 1Ce0. 9O2− δ electrolyte in IT-SOFCs
JP5259480B2 (en) Interconnector for solid oxide fuel cell and method for forming the same
WO2019045302A1 (en) Metal-supported solid oxide fuel cell and manufacturing method therefor
KR20190028340A (en) Solid oxide fuel cell and a battery module comprising the same
KR20230087170A (en) Sintering method of proton ceramic fuel cell electrolyte and proton ceramic fuel cell manufactured using the same
WO2019164217A1 (en) Method for preparing solid oxide fuel cell
Le et al. Constrained sintering of Y2O3-stabilized ZrO2 electrolyte on anode substrate
Visco et al. Development of low-cost alloy supported SOFCs
Simner et al. Development of fabrication techniques and electrodes for solid oxide fuel cells
KR20180010355A (en) Current Collector For Solid Oxide Fuel Cell, And Method Of Manufacturing The Same
WO2009102120A2 (en) Micro solid oxide fuel cell using a porous metal thick-film substrate, and a production method therefor
KR100760605B1 (en) A method for production of a lamellar structure of metal support/fuel electrode/solid electrolyte for a solid oxide fuel cell
WO2024111818A1 (en) Solid oxide cell and manufacturing method thereof
KR101158317B1 (en) Preparation method of ternary alloy anode for molten carbonate fuel cell

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18852285

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18852285

Country of ref document: EP

Kind code of ref document: A1