WO2019045203A1 - Cerium-aminoclay nanoparticle-containing ultraviolet blocking composition and method for preparing same - Google Patents

Cerium-aminoclay nanoparticle-containing ultraviolet blocking composition and method for preparing same Download PDF

Info

Publication number
WO2019045203A1
WO2019045203A1 PCT/KR2018/001129 KR2018001129W WO2019045203A1 WO 2019045203 A1 WO2019045203 A1 WO 2019045203A1 KR 2018001129 W KR2018001129 W KR 2018001129W WO 2019045203 A1 WO2019045203 A1 WO 2019045203A1
Authority
WO
WIPO (PCT)
Prior art keywords
cerium
amino clay
clay nanoparticles
nanoparticles
amino
Prior art date
Application number
PCT/KR2018/001129
Other languages
French (fr)
Korean (ko)
Inventor
이영철
Original Assignee
가천대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 가천대학교 산학협력단 filed Critical 가천대학교 산학협력단
Priority to JP2020510589A priority Critical patent/JP6909922B2/en
Publication of WO2019045203A1 publication Critical patent/WO2019045203A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/19Cosmetics or similar toiletry preparations characterised by the composition containing inorganic ingredients
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/19Cosmetics or similar toiletry preparations characterised by the composition containing inorganic ingredients
    • A61K8/25Silicon; Compounds thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/30Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
    • A61K8/40Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds containing nitrogen
    • A61K8/44Aminocarboxylic acids or derivatives thereof, e.g. aminocarboxylic acids containing sulfur; Salts; Esters or N-acylated derivatives thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/72Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds
    • A61K8/84Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds obtained by reactions otherwise than those involving only carbon-carbon unsaturated bonds
    • A61K8/89Polysiloxanes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q17/00Barrier preparations; Preparations brought into direct contact with the skin for affording protection against external influences, e.g. sunlight, X-rays or other harmful rays, corrosive materials, bacteria or insect stings
    • A61Q17/04Topical preparations for affording protection against sunlight or other radiation; Topical sun tanning preparations
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K2800/00Properties of cosmetic compositions or active ingredients thereof or formulation aids used therein and process related aspects
    • A61K2800/40Chemical, physico-chemical or functional or structural properties of particular ingredients
    • A61K2800/41Particular ingredients further characterized by their size
    • A61K2800/413Nanosized, i.e. having sizes below 100 nm

Definitions

  • the present invention relates to a UV-blocking composition containing cerium-amino clay nanoparticles and a process for producing the same.
  • cerium oxide nanoparticles are now available as paints for aerosol, foot care, ointment, keyboards, dyes and antimicrobial coatings due to their high surface area to volume ratio, ultraviolet and visible light absorption capacity, Gas sensors, electronic materials, photocatalysts, and cosmetics and biomedical applications.
  • Cerium dioxide called ceria or cerium oxide
  • cerium dioxide is one of the most attractive materials with a cubic crystal structure and very high applicability among rare earth oxides. Therefore, cerium dioxide has various industrial applications such as fuel cell, insulator, abrasive, gas sensor, and high-temperature oxidation resistance material, and is also used as a support for ternary catalysts, catalyst activators or catalysts in automobile mufflers.
  • cerium dioxide ultrafine powder has high transparency to visible light and is excellent in absorption ability against ultraviolet rays, and can exhibit a natural skin color with less concern about pale skin tone, that is, It is ideal for use as an inorganic sunscreen for sunscreen or sun block cosmetics.
  • cerium dioxide ultrafine powder powder has a catalytic characteristic of easily oxidizing an organic substance, and thus is hardly used in a cosmetic for ultraviolet ray shielding.
  • the present invention has been made in order to solve the above-mentioned problems, and it is an object of the present invention to provide an ultraviolet shielding composition containing cerium-amino clay nanoparticles having no cytotoxicity and excellent ultraviolet shielding effect and a method for producing the same.
  • a cerium-amino clay nanoparticle-containing ultraviolet light blocking composition according to a preferred embodiment of the present invention comprises cerium-amino clay nanoparticles, wherein the cerium- Is characterized by being functionalized with 3-aminopropyl and represented by the following formula (1).
  • the cerium-amino clay nanoparticles are preferably cerium layered silicates.
  • the average size of the cerium-amino clay nanoparticles is preferably 10 to 500 nm.
  • the cerium-amino clay nanoparticles are preferably non-toxic to human-derived fibroblasts.
  • a process for preparing a cerium-amino clay nanoparticle-containing UV blocking composition comprising the steps of: (a) dissolving a precursor in an organic solvent to prepare a precursor solution; (b) dropping 3-aminopropyltriethoxysilane into the precursor solution of step (a) and stirring to obtain a reaction product; (c) centrifuging the reactant obtained in step (b); (d) washing and drying the centrifuged reactant in the step (c).
  • the precursor of step (a) is selected from the group consisting of cerium chloride, cerium acetate, cerium carbonate, cerium fluoride, cerium nitrate, cerium sulfate, cerium bromide, cerium iodide cerium oxalate, cerium perchlorate, cerium sulfate, And at least one selected from the group consisting of
  • the organic solvent in step (a) is at least one selected from the group consisting of methanol, ethanol and acetone.
  • the cerium (Ce) and 3-aminopropyltriethoxysilane (Si) of the precursor solution are preferably added in a molar ratio of 1: 0.5-3.
  • the centrifugation in step (c) is preferably performed at 2,500 to 3,000 rpm for 10 to 15 minutes.
  • the ultraviolet barrier cosmetic composition is characterized by comprising cerium-amino clay nanoparticles functionalized with 3-aminopropyl.
  • cerium-amino clay nanoparticles are preferably represented by the following formula (1).
  • the cosmetic composition is preferably one of the group consisting of a solution, a suspension, an emulsion, a paste, a gel, a cream, a lotion, a powder, an oil, a powder foundation, an emulsion foundation and a spray.
  • the ultraviolet ray blocking composition containing cerium-amino clay nanoparticles according to the present invention and the method for producing the ultraviolet ray blocking composition containing cerium-amino clay nanoparticles according to the present invention can provide a cerium-amino clay nanoparticle-containing ultraviolet ray blocking composition which is different from conventional cerium oxide nanoparticles There are advantages.
  • the ultraviolet ray blocking composition containing cerium-amino clay nanoparticles has high water solubility, it has less effect on the pores after cleansing than the conventional ultraviolet ray blocking composition.
  • the ultraviolet ray blocking composition containing the cerium-amino clay nanoparticles may exhibit specific toxicity to cervical cancer cells different from cerium oxide nanoparticles, and toxicity to normal cells is very low.
  • FIG. 1 is a process flow diagram illustrating a method for preparing a cerium-amino clay nanoparticle-containing UV-curable composition according to an embodiment of the present invention.
  • Figure 2 is a schematic representation of the chemical structure of the cerium-amino clay nanoparticles of the present invention.
  • 3 (a) to 3 (e) are transmission electron micrographs of cerium-amino clay nanoparticles prepared according to Example 1 of the present invention.
  • Example 4 is a graph showing an X-ray diffraction pattern of cerium-amino clay nanoparticles prepared according to Example 1 of the present invention.
  • Example 5 is an infrared spectrum graph of cerium-amino clay nanoparticles prepared according to Example 1 of the present invention.
  • Figure 6 shows the hydrodynamic size and zeta potential at DI water and RMPI of the cerium-amino clay nanoparticles prepared according to Example 1 of the present invention.
  • FIG. 9 (a) is a graph showing the survival rate of a fibroblast-like cell line (WI-38) according to the concentration of cerium-amino clay nanoparticles prepared according to Example 1 of the present invention.
  • FIG. 9 (b) is a graph showing the survival rate of normal fibroblasts (CCD-986SK) according to the concentration of cerium-amino clay nanoparticles prepared according to Example 1 of the present invention.
  • FIG. 10 (a) is a graph showing the survival rate of lung cancer cells (A549) according to the concentration of cerium-amino clay nanoparticles prepared according to Example 1 of the present invention.
  • FIG 10 (b) is a graph showing the survival rate of fibroblast-like cell line (WI-38) according to the concentration of cerium-amino clay nanoparticles prepared according to Example 1 of the present invention.
  • Example 11 (a) is an image of a section of an animal cell after treating animal cells with cerium-amino clay nanoparticles prepared according to Example 1 of the present invention.
  • FIG. 11 (b) is an enlarged cross-sectional view of animal cells after treating animal cells with cerium-amino clay nanoparticles prepared according to Example 1 of the present invention.
  • the present invention relates to a cerium-amino clay nanoparticle composition
  • a cerium-amino clay nanoparticle composition comprising cerium-amino clay nanoparticles, wherein the cerium-amino clay nanoparticles are functionalized with 3-aminopropyl to form a cerium-amino clay nanoparticle- .
  • Cerium oxide oxidized in air is called cerium oxide (CeO 2 ) or ceria.
  • the cerium oxide (CeO 2 ) itself exhibits ultraviolet light shielding property and can exhibit toxicity to cells. However, when the cerium-amino clay nanoparticles and the hybrid nanomaterials are formed, .
  • cerium oxide (CeO 2 ) shows toxicity to cells is that the active radical is generated by receiving a light source as a semiconductor.
  • cerium-amino clay nanoparticles do not exert toxicity on human-derived fibroblasts.
  • the cerium-amino clay nanoparticle represented by Formula 1 has a structure similar to that of magnesium amino clay, but is formed by placing cerium at the magnesium position on an octahedral sheet.
  • the cerium-amino clay nanoparticles have a plate-like structure and may have an average particle size of 10 to 500 nm.
  • the cerium-amino clay nanoparticles may be formed by a sol-gel reaction.
  • a process for preparing a precursor solution comprising the steps of: (a) dissolving a precursor in an organic solvent to prepare a precursor solution; (b) dropping 3-aminopropyltriethoxysilane into the precursor solution of step (a) and stirring to obtain a reaction product; (c) centrifuging the reactant obtained in step (b); (d) washing and drying the centrifuged reactant in the step (c).
  • the present invention also provides a method for preparing a cerium-amino clay nanoparticle-containing ultraviolet screening composition.
  • FIG. 1 is a flowchart illustrating a method of preparing a cerium-amino clay nanoparticle-containing ultraviolet screening composition according to an embodiment of the present invention.
  • the precursor of step (a) may be selected from the group consisting of cerium chloride, cerium acetate, cerium carbonate, cerium fluoride, cerium nitrate, cerium sulfate, cerium bromide, cerium iodide, cerium oxalate, perchloric acid Cerium, cerium sulfate, and a hydrate thereof.
  • the organic solvent in step (a) may be at least one selected from the group consisting of methanol, ethanol and acetone.
  • Silicon (Si) of cerium (Ce) and 3-aminopropyltriethoxysilane of the precursor solution may be added in a molar ratio of 1: 0.5 to 3, preferably 1: 2 All of the precursors participating in the reaction can be exhausted and reacted.
  • the centrifugation in the step (c) may be performed at 2,500 to 3,000 rpm for 10 to 15 minutes.
  • the cerium-amino clay nanoparticles can be recovered in powder form.
  • reaction product centrifuged in step (d) may be washed with ethanol 2-3 times and then dried in an oven at 40-60 ° C for 12-48 hours.
  • cerium-amino clay nanoparticles can be obtained as a powder in the above-mentioned drying conditions, and therefore, it is very advantageous to produce the modified cerium-amino clay nanoparticles in the form of a UV-curable composition.
  • an ultraviolet barrier cosmetic composition comprising cerium-amino clay nanoparticles functionalized with 3-aminopropyl.
  • the cerium-amino clay nanoparticles may be represented by the following formula (1).
  • the cosmetic composition may be formulated into one of the group consisting of solution, suspension, emulsion, paste, gel, cream, lotion, powder, oil, powder foundation, emulsion foundation and spray, no. More specifically, it can be prepared in the form of a soft lotion, a nutritional lotion, a nutritional cream, a massage cream, an essence, an eye cream, a cleansing cream, a cleansing foam, a cleansing water, a pack or a powder.
  • the components contained in the cosmetic composition may contain components commonly used in cosmetic compositions in addition to the above-mentioned components, and may contain conventional additives such as stabilizers, solubilizers, vitamins, pigments and fragrances, .
  • the cerium-amino clay nanoparticles may be contained in an amount of 0.1 to 10% by weight based on 100% by weight of the cosmetic composition.
  • Cerium chloride hydrate (CeCl 3 .7H 2 O), 3-aminopropyltriethoxysilane (hereinafter, 'APTES') and alcohol were prepared as precursors for preparing cerium-amino clay nanoparticles.
  • cerium-amino clay nanoparticles were centrifuged at 3,000 rpm for 15 minutes.
  • the separated cerium-amino clay nanoparticles were washed once with 100 mL ethanol and dried in an oven at 60 ° C. for one day Respectively. After drying, each of them was ground in a mortar to recover a powdery cerium-amino clay nanoparticle-containing UV blocking composition.
  • Example 1 The procedure of Example 1 was repeated except that CeCl 3 .7H 2 O was used as a precursor.
  • Cerium oxide was purchased and prepared.
  • Cerium chloride was purchased and prepared.
  • FIG. 2 shows the chemical structure of cerium-amino clay nanoparticles according to an embodiment of the present invention.
  • FIGS. 3 (a) to 3 (e) FIG. 4 is a graph showing an X-ray diffraction pattern of the cerium-amino clay nanoparticles prepared according to Example 1 of the present invention.
  • FIG. 4 is a graph showing an X-ray diffraction pattern of the cerium-amino clay nanoparticles prepared according to Example 1 of the present invention.
  • the image of the cerium-amino clay nanoparticle shows a heterogeneous shape with different electron contrast without a lattice structure, and cerium, silicon, chlorine, and nitrogen components were confirmed, This is possible when considering layered silicates of clay nanoparticles.
  • the cerium-amino clay nanoparticles have a layered structure, which means that the cerium-amino clay nanoparticles are clay.
  • the cerium-amino clay nanoparticles show a layered silicate peak.
  • FIG. 5 is a graph of an infrared spectrum of Example 1 prepared according to the present invention
  • FIG. 6 shows hydrodynamic size and zeta potential in DI water and RMPI medium of Example 1 prepared according to the present invention, Are XANES analysis graphs of Example 1, Comparative Example 2 and Comparative Example 3 produced according to the present invention.
  • the cerium-amino clay nanoparticles according to Example 1 showed a zeta potential of 30 to 36 mV regardless of the change in the concentration in DI water. In the RMPI medium, the zeta potential increased .
  • Example 1 increased as the concentration of cerium-amino clay nanoparticles increased. Particularly, in the RMPI medium, the higher the concentration of the cerium-amino clay nanoparticles, Higher than the others.
  • Example 8 is a graph showing the ultraviolet absorbance of Example 1 and Comparative Example 2 prepared according to the present invention.
  • Example 1 As shown in FIG. 8, it was confirmed that the absorption rate of Example 1 was much lower than that of Comparative Example 2 at 200 to 400 nm in the ultraviolet region. That is, it can be confirmed that the cerium-amino clay nanoparticles according to the present invention significantly improve the ultraviolet blocking effect of the cerium oxide nanoparticles themselves.
  • FIG. 9 is a graph showing the survival rate of fibroblast-like cell line (WI-38) and normal fibroblast (CCD-986SK) according to the concentration of cerium-amino clay nanoparticles prepared according to Example 1 of the present invention, (A549) and fibroblast-like cell line (WI-38) according to the concentration of cerium-amino clay nanoparticles prepared according to Example 1 of the present invention.
  • Cell culture medium was prepared by mixing RPMI 1640 with 10% FBS, 1% L-Glutamine and 1% Pen / Strep. Cervical cancer cells and normal cells were subcultured every other day. The supernatant of the RPMI medium was discarded, the residual medium was washed thoroughly with PBS buffer, and then dropped with trypsin-EDTA dropwise, and the cells were desorbed from the bottom of the flask. Cervical cancer cells were collected in 15 mL conical tubes, mixed with fresh RPMI medium, and centrifuged at 1,000 rpm for 5 min to harvest residual cells from the bottom of the tubes.
  • the number of cells is counted in a hematocytometer at approximately 10 5 to 10 6 cells / mL.
  • the cells were cultured in a T-75 culture flask at 37 ° C with 5% carbon dioxide
  • 10 is a graph showing the survival rate of cervical cancer cells (A549) and normal fibroblast-like cell line (WI-38) according to the concentration of cerium-amino clay nanoparticles prepared according to Example 1 of the present invention
  • 1 is an image of a section of an animal cell after treating animal cells with cerium-amino clay nanoparticles prepared according to Example 1 of the present invention.
  • the cerium-amino clay nanoparticles according to Example 1 showed toxicity to cervical cancer cells, whereas they did not show toxicity below normal (500 ( ⁇ g / mL) In the case of cancer cells, weak acidity is exhibited.
  • the cerium-amino clay nanoparticles When cerium-amino clay nanoparticles are treated with cancer cells, the cerium-amino clay nanoparticles serve as oxidase, which is toxic to cancer cells. In normal cells, Is high, it can be confirmed that it does not show toxicity.
  • the organelles of normal cells exhibit weak acidity, they may be toxic if the cerium-amino clay nanoparticles penetrate into the cells, but as shown in Fig. 11, the cerium-amino clay nanoparticles can not penetrate into the organelle Can be confirmed. Therefore, it can be confirmed that cerium-amino clay nanoparticles do not exhibit toxicity in normal cells.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Epidemiology (AREA)
  • Birds (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Dermatology (AREA)
  • Cosmetics (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)

Abstract

A cerium-aminoclay nanoparticle-containing ultraviolet blocking composition according to the present invention contains cerium aminoclay nanoparticles, wherein the cerium-aminoclay nanoparticles are functionalized with 3-aminopropyl and thus are represented by chemical formula 1 below. [Chemical formula 1] [H2N(CH2)3]8Si8Ce6O12(OH)4)]

Description

세륨-아미노클레이 나노입자 함유 자외선 차단 조성물 및 그 제조방법UV-blocking composition containing cerium-amino clay nanoparticles and method for producing the same
본 발명은 세륨-아미노클레이 나노입자 함유 자외선 차단 조성물 및 그 제조방법에 관한 것이다.The present invention relates to a UV-blocking composition containing cerium-amino clay nanoparticles and a process for producing the same.
하이브리드 나노물질들 또는 단독 금속 산화물 나노입자들 가령, 이산화티타늄, 산화세륨, 산화주석 및 산화세륨 나노입자는 다른 나노입자 사이에서 환경 및 인간의 건강 및 안전에 대한 관심을 유발하고 있다. 공학적으로 합성한 반도체 금속 산화물 중에서 산화세륨 나노입자는 이들의 높은 표면적 대 부피비, 자외선 및 가시광 흡수능, 긴 수명 때문에, 자외선 차단제, 발 관리, 연고, 자판판매품, 염료 및 항균 코팅제로써 페인트 항공팜이제, 가스 센서, 전자 소재, 광촉매로써 화장품 및 바이오의학 분야에서 그 사용이 폭발적으로 증가하고 있다.Hybrid nanomaterials or single metal oxide nanoparticles Titanium dioxide, cerium oxide, tin oxide and cerium oxide nanoparticles, among other nanoparticles, are causing environmental and human health and safety concerns. Of engineered semiconducting metal oxides, cerium oxide nanoparticles are now available as paints for aerosol, foot care, ointment, keyboards, dyes and antimicrobial coatings due to their high surface area to volume ratio, ultraviolet and visible light absorption capacity, Gas sensors, electronic materials, photocatalysts, and cosmetics and biomedical applications.
이산화세륨(cerium dioxide)은 세리아(ceria) 또는 산화세륨이라고 불리우고, 입방형의 결정구조를 가지며, 희토류 산화물 중에서 응용성이 매우 높은 매력적인 재료 중 하나이다. 따라서 이산화세륨은 연료전지, 절연체, 연마제, 가스센서, 고온 산화저항재료 등 산업적으로 다양한 활용 가능성을 지니고 있고, 또한 자동차 머플러의 3원계 촉매, 촉매 활성제 또는 촉매의 지지체로 사용된다.Cerium dioxide, called ceria or cerium oxide, is one of the most attractive materials with a cubic crystal structure and very high applicability among rare earth oxides. Therefore, cerium dioxide has various industrial applications such as fuel cell, insulator, abrasive, gas sensor, and high-temperature oxidation resistance material, and is also used as a support for ternary catalysts, catalyst activators or catalysts in automobile mufflers.
특히, 이산화세륨 초미분체 분말은 가시광에 대한 투명성이 높을 뿐만 아니라 자외선에 대한 흡수능이 뛰어나, 많은 양을 발랐을 경우 쉽게 나타날 수 있는 창백한 피부톤, 즉 백탁현상에 대한 우려가 적어 자연스러운 피부색을 나타낼 수 있으므로, 썬크림 또는 썬블록으로 불리우는 자외선 차단용 화장료의 무기계 자외선 차단제로서 사용하기에 이상적인 특징을 가지고 있다. In particular, cerium dioxide ultrafine powder has high transparency to visible light and is excellent in absorption ability against ultraviolet rays, and can exhibit a natural skin color with less concern about pale skin tone, that is, It is ideal for use as an inorganic sunscreen for sunscreen or sun block cosmetics.
그러나, 이산화세륨 초미분체 분말은 유기계 물질을 쉽게 산화시키는 촉매 특성을 가지고 있어 자외선 차단용 화장료에 거의 사용되지 못하고 있다.However, cerium dioxide ultrafine powder powder has a catalytic characteristic of easily oxidizing an organic substance, and thus is hardly used in a cosmetic for ultraviolet ray shielding.
따라서 상기와 같은 문제점을 극복하기 위하여, 무정형 실리카(SiO2)를 이산화세륨 표면에 코팅하여 이산화세륨의 촉매 활성을 감소시키려는 연구가 진행되어 왔다. 그러나 무정형 실리카무정형 실리카(SiO2)를 이산화세륨 표면에 코팅할 경우 자외선 차단효과도 함께 저감되는 단점이 있었다.Therefore, in order to overcome the above problems, studies have been made to reduce the catalytic activity of cerium dioxide by coating amorphous silica (SiO 2 ) on the surface of cerium dioxide. However, when the amorphous silica amorphous silica (SiO 2 ) is coated on the surface of cerium dioxide, there is a disadvantage that the UV blocking effect is also reduced.
본 발명은 상기와 같은 문제점을 해결하기 위하여 제안된 것으로, 세포에 독성이 없으며, 자외선 차단 효과가 우수한 세륨-아미노클레이 나노입자 함유 자외선 차단 조성물 및 그 제조방법을 제공하는데 목적이 있다.Disclosure of Invention Technical Problem [8] Accordingly, the present invention has been made in order to solve the above-mentioned problems, and it is an object of the present invention to provide an ultraviolet shielding composition containing cerium-amino clay nanoparticles having no cytotoxicity and excellent ultraviolet shielding effect and a method for producing the same.
본 발명이 해결하고자 하는 과제는 이상에서 언급한 과제(들)로 제한되지 않으며, 언급되지 않은 또 다른 과제(들)는 이하의 기재로부터 통상의 기술자에게 명확하게 이해될 수 있을 것이다.The problem to be solved by the present invention is not limited to the above-mentioned problem (s), and another problem (s) not mentioned can be clearly understood by a person skilled in the art from the following description.
상기 과제를 해결하기 위해서, 본 발명의 바람직한 일 실시예에 따른, 세륨-아미노클레이 나노입자 함유 자외선 차단 조성물은, 세륨-아미노클레이 나노입자를 함유하되, 상기 세륨-아미노클레이 나노입자는 3-아미노프로필(3-aminopropyl)로 기능화되어 하기의 화학식 1로 표시되는 것을 특징으로 한다.In order to solve the above problems, a cerium-amino clay nanoparticle-containing ultraviolet light blocking composition according to a preferred embodiment of the present invention comprises cerium-amino clay nanoparticles, wherein the cerium- Is characterized by being functionalized with 3-aminopropyl and represented by the following formula (1).
[화학식 1][Chemical Formula 1]
[H2N(CH2)3]8Si8Ce6O12(OH)4)][H 2 N (CH 2 ) 3 ] 8 Si 8 Ce 6 O 12 (OH) 4 )]
일 실시예에 있어서, 상기 세륨-아미노클레이 나노입자는 세륨 층상규산염인 것이 바람직하다.In one embodiment, the cerium-amino clay nanoparticles are preferably cerium layered silicates.
일 실시예에 있어서, 상기 세륨-아미노클레이 나노입자의 평균 크기는 10 내지 500 nm인 것이 바람직하다.In one embodiment, the average size of the cerium-amino clay nanoparticles is preferably 10 to 500 nm.
일 실시예에 있어서, 상기 세륨-아미노클레이 나노입자는 인간 유래 섬유아세포(Fibroblast)에 대하여 무독성인 것이 바람직하다.In one embodiment, the cerium-amino clay nanoparticles are preferably non-toxic to human-derived fibroblasts.
본 발명의 바람직한 다른 실시예에 따른, 세륨-아미노클레이 나노입자 함유 자외선 차단 조성물의 제조방법은, (a) 전구체를 유기용 매에 용해해 전구체 용액을 제조하는 단계; (b) 상기 (a) 단계의 전구체 용액에 3-아미노프로필 트리에 톡시실란(3-aminopropyltriethoxysilane)을 적하하고 교반하여 반응물을 수득하는 단계; (c) 상기 (b) 단계의 수득된 반응물을 원심분리하는 단계; (d) 상기 (c) 단계의 원심분리된 반응물을 세척건조하는 단계;를 포함하는 것을 특징으로 한다.According to another preferred embodiment of the present invention, there is provided a process for preparing a cerium-amino clay nanoparticle-containing UV blocking composition, comprising the steps of: (a) dissolving a precursor in an organic solvent to prepare a precursor solution; (b) dropping 3-aminopropyltriethoxysilane into the precursor solution of step (a) and stirring to obtain a reaction product; (c) centrifuging the reactant obtained in step (b); (d) washing and drying the centrifuged reactant in the step (c).
일 실시예에 있어서, 상기 (a) 단계의 전구체는, 염화세륨, 아세트산세륨, 탄산세륨, 불화세륨, 질산세륨, 황산세륨, 브롬화세륨, 요오드화세륨 옥살산세륨, 과염소산세륨, 황산세륨 및 이들의 수화물로 이루어진 그룹 중에서 선택되는 1종 이상인 것이 바람직하다.In one embodiment, the precursor of step (a) is selected from the group consisting of cerium chloride, cerium acetate, cerium carbonate, cerium fluoride, cerium nitrate, cerium sulfate, cerium bromide, cerium iodide cerium oxalate, cerium perchlorate, cerium sulfate, And at least one selected from the group consisting of
일 실시예에 있어서, 상기 (a) 단계의 유기용매는, 메탄올, 에탄올 및 아세톤으로 이루어진 군으로부터 선택된 1종 이상인 것이 바람직하다.In one embodiment, the organic solvent in step (a) is at least one selected from the group consisting of methanol, ethanol and acetone.
일 실시예에 있어서, 상기 전구체 용액의 세륨(Ce) 및 3-아미노프로필트리에톡시실란(3-aminopropyltriethoxysilane)의 규소(Si)는 1 : 0.5 ~ 3의 몰비로 첨가되는 것이 바람직하다.In one embodiment, the cerium (Ce) and 3-aminopropyltriethoxysilane (Si) of the precursor solution are preferably added in a molar ratio of 1: 0.5-3.
일 실시예에 있어서, 상기 (c) 단계의 원심분리는, 10 내지 15분 동안 2,500 내지 3,000 rpm으로 수행되는 것일 바람직하다.In one embodiment, the centrifugation in step (c) is preferably performed at 2,500 to 3,000 rpm for 10 to 15 minutes.
본 발명의 바람직한 다른 실시예에 따른, 자외선 차단 화장료 조성물은, 3-아미노프로필(3-aminopropyl)로 기능화된 세륨-아미노클레이 나노입자를 포함하는 것을 특징으로 한다.According to another preferred embodiment of the present invention, the ultraviolet barrier cosmetic composition is characterized by comprising cerium-amino clay nanoparticles functionalized with 3-aminopropyl.
일 실시예에 있어서, 상기 세륨-아미노클레이 나노입자는 하기의 화학식 1로 표시되는 것이 바람직하다.In one embodiment, the cerium-amino clay nanoparticles are preferably represented by the following formula (1).
[화학식 1][Chemical Formula 1]
[H2N(CH2)3]8Si8Ce6O12(OH)4)][H 2 N (CH 2 ) 3 ] 8 Si 8 Ce 6 O 12 (OH) 4 )]
일 실시예에 있어서, 상기 화장료 조성물은, 용액, 현탁액, 유탁액, 페이스트, 겔, 크림, 로션, 파우더, 오일, 분말 파운데이션, 유탁액 파운데이션 및 스프레이로 이루어진 그룹 중 1종의 것이 바람직하다.In one embodiment, the cosmetic composition is preferably one of the group consisting of a solution, a suspension, an emulsion, a paste, a gel, a cream, a lotion, a powder, an oil, a powder foundation, an emulsion foundation and a spray.
본 발명에 의한 세륨-아미노클레이 나노입자 함유 자외선 차단 조성물 및 그 제조방법을 이용하면 종래의 산화세륨 나노입자와 상이하게 세포독성을 감소시킨 세륨-아미노클레이 나노입자 함유 자외선 차단 조성물을 제공할 수 있는 장점이 있다.The ultraviolet ray blocking composition containing cerium-amino clay nanoparticles according to the present invention and the method for producing the ultraviolet ray blocking composition containing cerium-amino clay nanoparticles according to the present invention can provide a cerium-amino clay nanoparticle-containing ultraviolet ray blocking composition which is different from conventional cerium oxide nanoparticles There are advantages.
또한, 상기 세륨-아미노클레이 나노입자 함유 자외선 차단 조성물은 물에 대한 수용성이 높기 때문에 종래의 자외선 차단제 조성물에 비해 세안 후 모공 등에 덜 잔류하는 효과가 있다.Further, since the ultraviolet ray blocking composition containing cerium-amino clay nanoparticles has high water solubility, it has less effect on the pores after cleansing than the conventional ultraviolet ray blocking composition.
또한, 상기 세륨-아미노클레이 나노입자 함유 자외선 차단 조성물은 산화세륨 나노입자와 상이하게 자궁경부암세포에 대한 특이적 독성을 나타낼 수 있으며, 이외 정상 세포에 대한 독성은 매우 낮은 장점을 갖는다.In addition, the ultraviolet ray blocking composition containing the cerium-amino clay nanoparticles may exhibit specific toxicity to cervical cancer cells different from cerium oxide nanoparticles, and toxicity to normal cells is very low.
도 1은 본 발명의 실시예에 따른 세륨-아미노클레이 나노입자 함유 자외선 차단 조성물의 제조방법을 나타낸 공정 흐름도이다.1 is a process flow diagram illustrating a method for preparing a cerium-amino clay nanoparticle-containing UV-curable composition according to an embodiment of the present invention.
도 2는 본 발명의 세륨-아미노클레이 나노입자의 화학구조를 근사적으로 도시한 것이다.Figure 2 is a schematic representation of the chemical structure of the cerium-amino clay nanoparticles of the present invention.
도 3(a) 내지 (e)는 본 발명의 실시예 1에 따라 제조된 세륨-아미노클레이 나노입자의 투과전자현미경 사진이다.3 (a) to 3 (e) are transmission electron micrographs of cerium-amino clay nanoparticles prepared according to Example 1 of the present invention.
도 4는 본 발명의 실시예 1에 따라 제조된 세륨-아미노클레이 나노입자의 X선 회절 패턴을 나타난 그래프이다.4 is a graph showing an X-ray diffraction pattern of cerium-amino clay nanoparticles prepared according to Example 1 of the present invention.
도 5는 본 발명의 실시예 1에 따라 제조된 세륨-아미노클레이 나노입자의 적외선 스펙트럼 그래프이다.5 is an infrared spectrum graph of cerium-amino clay nanoparticles prepared according to Example 1 of the present invention.
도 6은 본 발명의 실시예 1에 따라 제조된 세륨-아미노클레이 나노입자의 DI water 및 RMPI에서의 유체 역학적 크기 및 제타 포텐셜을 나타낸 것이다.Figure 6 shows the hydrodynamic size and zeta potential at DI water and RMPI of the cerium-amino clay nanoparticles prepared according to Example 1 of the present invention.
도 7은 본 발명의 실시예 및 비교예에 따라 제조된 세륨-아미노클레이 나노입자, 염화세륨 및 산화세륨의 XANES 분석 그래프이다.7 is a XANES analysis graph of cerium-amino clay nanoparticles, cerium chloride, and cerium oxide prepared according to Examples and Comparative Examples of the present invention.
도 8은 본 발명의 실시예 및 비교예에 따라 제조된 세륨-아미노클레이 나노입자 및 산화세륨의 자외선 흡광도를 나타낸 그래프이다.8 is a graph showing the ultraviolet absorbance of cerium-amino clay nanoparticles and cerium oxide prepared according to Examples and Comparative Examples of the present invention.
도 9(a)는 본 발명의 실시예 1에 따라 제조된 세륨-아미노클레이 나노입자의 농도에 따른 섬유모유사세포주(WI-38)의 생존율을 나타낸 그래프이다.FIG. 9 (a) is a graph showing the survival rate of a fibroblast-like cell line (WI-38) according to the concentration of cerium-amino clay nanoparticles prepared according to Example 1 of the present invention.
도 9(b)는 본 발명의 실시예 1에 따라 제조된 세륨-아미노클레이 나노입자의 농도에 따른 정상 섬유아세포(CCD-986SK)의 생존율을 나타낸 그래프이다.9 (b) is a graph showing the survival rate of normal fibroblasts (CCD-986SK) according to the concentration of cerium-amino clay nanoparticles prepared according to Example 1 of the present invention.
도 10(a)는 본 발명의 실시예 1에 따라 제조된 세륨-아미노클레이 나노입자의 농도에 따른 폐암세포(A549))의 생존율을 나타낸 그래프이다.10 (a) is a graph showing the survival rate of lung cancer cells (A549) according to the concentration of cerium-amino clay nanoparticles prepared according to Example 1 of the present invention.
도 10(b)는 본 발명의 실시예 1에 따라 제조된 세륨-아미노클레이 나노입자의 농도에 따른 섬유모유사세포주(WI-38)의 생존율을 나타낸 그래프이다.10 (b) is a graph showing the survival rate of fibroblast-like cell line (WI-38) according to the concentration of cerium-amino clay nanoparticles prepared according to Example 1 of the present invention.
도 11(a)는 본 발명의 실시예 1에 따라 제조된 세륨-아미노클레이 나노입자를 동물세포에 처리한 후의 동물세포의 단면을 촬영한 이미지이다.11 (a) is an image of a section of an animal cell after treating animal cells with cerium-amino clay nanoparticles prepared according to Example 1 of the present invention.
도 11(b)는 본 발명의 실시예 1에 따라 제조된 세륨-아미노클레이 나노입자를 동물세포에 처리한 후의 동물세포의 단면을 확대한 이미지이다.11 (b) is an enlarged cross-sectional view of animal cells after treating animal cells with cerium-amino clay nanoparticles prepared according to Example 1 of the present invention.
이하, 첨부된 도면을 참조하면서 본 발명에 따른 바람직한 실시예를 상세히 설명하기로 한다.Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings.
본 발명의 이점 및 특징, 그리고 그것을 달성하는 방법은 첨부된 도면과 함께 상세하게 후술되어 있는 실시예들을 참조하면 명확해질 것이다.BRIEF DESCRIPTION OF THE DRAWINGS The advantages and features of the present invention and the manner of achieving it will become apparent with reference to the embodiments described in detail below with reference to the accompanying drawings.
그러나, 본 발명은 이하에 개시되는 실시예들에 의해 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 수 있고, 단지 본 실시예들은 본 발명의 개시가 완전하도록 하며, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이다. 또한, 본 발명은 청구항의 범주에 의해 정의될 뿐이다.It should be understood, however, that the present invention is not limited to the disclosed embodiments, but may be embodied in many different forms and should not be construed as limited to the exemplary embodiments set forth herein. To fully inform the inventor of the category of invention. Further, the present invention is only defined by the scope of the claims.
나아가, 본 발명을 설명함에 있어 관련된 공지 기술 등이 본 발명의 요지를 흐리게 할 수 있다고 판단되는 경우 그에 관한 자세한 설명은 생략하기로 한다.Further, in the following description of the present invention, if it is determined that related arts or the like may obscure the gist of the present invention, detailed description thereof will be omitted.
본 발명은 세륨-아미노클레이 나노입자를 함유하되, 상기 세륨-아미노클레이 나노입자는 3-아미노프로필(3-aminopropyl)로 기능화되어 하기의 화학식 1로 표시되는 세륨-아미노클레이 나노입자 함유 자외선 차단제 조성물을 제공한다.The present invention relates to a cerium-amino clay nanoparticle composition comprising cerium-amino clay nanoparticles, wherein the cerium-amino clay nanoparticles are functionalized with 3-aminopropyl to form a cerium-amino clay nanoparticle- .
[화학식 1][Chemical Formula 1]
[H2N(CH2)3]8Si8Ce6O12(OH)4)][H 2 N (CH 2 ) 3 ] 8 Si 8 Ce 6 O 12 (OH) 4 )]
상기 세륨은 공기 중에 쉽게 산화한다. 공기 중에 산화된 세륨은 산화세륨(CeO2) 또는 세리아(ceria)라 한다.The cerium readily oxidizes in air. Cerium oxide oxidized in air is called cerium oxide (CeO 2 ) or ceria.
또한, 상기 산화세륨(CeO2)은 자체적으로 자외선 차단성을 나타내며, 세포에 대한 독성을 나타낼 수 있으나, 상기 세륨-아미노클레이 나노입자와 하이브리드 나노물질(hybrid nanomaterials)을 형성하는 경우에는 세포독성을 감소시킬 수 있다.The cerium oxide (CeO 2 ) itself exhibits ultraviolet light shielding property and can exhibit toxicity to cells. However, when the cerium-amino clay nanoparticles and the hybrid nanomaterials are formed, .
상기 산화세륨(CeO2)이 세포에 독성을 나타내는 이유는 반도체로써 광원을 받으면 활성라디칼이 생성되기 때문이다.The reason why the cerium oxide (CeO 2 ) shows toxicity to cells is that the active radical is generated by receiving a light source as a semiconductor.
따라서, 세륨-아미노클레이 나노입자는 인간 유래 섬유아세포(Fibroblast)에 대하여 독성을 발휘하지 않는다.Therefore, the cerium-amino clay nanoparticles do not exert toxicity on human-derived fibroblasts.
상기 화학식 1로 표시되는 상기 세륨-아미노클레이 나노입자는 마그네슘 아미노클레이와 유사한 구조를 가지며, 다만 8면체판(octahedral sheet)에서 마그네슘 위치에 세륨이 배치되어 구성된 것이다. The cerium-amino clay nanoparticle represented by Formula 1 has a structure similar to that of magnesium amino clay, but is formed by placing cerium at the magnesium position on an octahedral sheet.
상기 세륨-아미노클레이 나노입자는 판상 구조로써, 평균 입자크기가 10 내지 500 nm일 수 있다.The cerium-amino clay nanoparticles have a plate-like structure and may have an average particle size of 10 to 500 nm.
상기 세륨-아미노클레이 나노입자는 졸-겔 반응에 의하여 형성될 수 있다.The cerium-amino clay nanoparticles may be formed by a sol-gel reaction.
본 발명의 다른 실시예에 의하면 본 발명은 (a) 전구체를 유기용매에 용해시켜 전구체 용액을 제조하는 단계; (b) 상기 (a) 단계의 전구체 용액에 3-아미노프로필트리에톡시실란(3-aminopropyltriethoxysilane)을 적하하고 교반하여 반응물을 수득하는 단계; (c) 상기 (b) 단계의 수득된 반응물을 원심분리하는 단계; (d) 상기 (c) 단계의 원심분리된 반응물을 세척건조하는 단계;를 포함하는 것을 특징으로 하는 세륨-아미노클레이 나노입자 함유 자외선 차단제 조성물의 제조방법을 제공한다.According to another embodiment of the present invention, there is provided a process for preparing a precursor solution, comprising the steps of: (a) dissolving a precursor in an organic solvent to prepare a precursor solution; (b) dropping 3-aminopropyltriethoxysilane into the precursor solution of step (a) and stirring to obtain a reaction product; (c) centrifuging the reactant obtained in step (b); (d) washing and drying the centrifuged reactant in the step (c). The present invention also provides a method for preparing a cerium-amino clay nanoparticle-containing ultraviolet screening composition.
도 1은 본 발명의 일 실시예에 따른 세륨-아미노클레이 나노입자 함유 자외선 차단제 조성물의 제조방법을 순서도로 나타낸 것이다.FIG. 1 is a flowchart illustrating a method of preparing a cerium-amino clay nanoparticle-containing ultraviolet screening composition according to an embodiment of the present invention.
도 1을 참조하면, 상기 (a) 단계의 전구체는 상기 (a) 단계의 전구체는, 염화세륨, 아세트산세륨, 탄산세륨, 불화세륨, 질산세륨, 황산세륨, 브롬화세륨, 요오드화세륨 옥살산세륨, 과염소산세륨, 황산세륨 및 이들의 수화물로 이루어진 그룹 중에서 선택되는 1종 이상일 수 있다.1, the precursor of step (a) may be selected from the group consisting of cerium chloride, cerium acetate, cerium carbonate, cerium fluoride, cerium nitrate, cerium sulfate, cerium bromide, cerium iodide, cerium oxalate, perchloric acid Cerium, cerium sulfate, and a hydrate thereof.
상기 (a) 단계의 유기용매는 메탄올, 에탄올 및 아세톤으로 이루어진 군으로부터 선택된 1종 이상일 수 있다.The organic solvent in step (a) may be at least one selected from the group consisting of methanol, ethanol and acetone.
상기 전구체 용액의 세륨(Ce) 및 3-아미노프로필트리에톡시실란(3-aminopropyltriethoxysilane)의 규소(Si)는 1 : 0.5 ~ 3의 몰비로 첨가될 수 있으며, 바람직하게는 1 : 2 몰비일 경우 반응에 참여한 전구체가 모두 반응하여 소진될 수 있다.Silicon (Si) of cerium (Ce) and 3-aminopropyltriethoxysilane of the precursor solution may be added in a molar ratio of 1: 0.5 to 3, preferably 1: 2 All of the precursors participating in the reaction can be exhausted and reacted.
상기 (c) 단계의 원심분리는, 10 내지 15분 동안 2,500 내지 3,000 rpm으로 수행될 수 있다.The centrifugation in the step (c) may be performed at 2,500 to 3,000 rpm for 10 to 15 minutes.
상기 (c) 단계를 거친 후 세륨-아미노클레이 나노입자는 분말 형태로 회수될 수 있다.After step (c), the cerium-amino clay nanoparticles can be recovered in powder form.
이후에 상기 (d) 단계에서 원심분리된 반응물을 에탄올로 2 ~ 3회 세척한 이후에, 40 내지 60℃ 오븐에서 12 내지 48시간 동안 건조할 수 있다. Thereafter, the reaction product centrifuged in step (d) may be washed with ethanol 2-3 times and then dried in an oven at 40-60 ° C for 12-48 hours.
상기 세척을 과정에서 불순물을 제거할 수 있으며, 상기 건조 조건에서 세륨-아미노클레이 나노입자를 분말(powder)로 수득할 수 있으므로, 이를 자외선 차단제 조성물의 형상으로 변형하여 제조하는 데 매우 유리하다.The cerium-amino clay nanoparticles can be obtained as a powder in the above-mentioned drying conditions, and therefore, it is very advantageous to produce the modified cerium-amino clay nanoparticles in the form of a UV-curable composition.
본 발명의 또 다른 실시예에 의하면, 본 발명은 3-아미노프로필(3-aminopropyl)로 기능화된 세륨-아미노클레이 나노입자를 포함하는 것을 특징으로 하는 자외선 차단 화장료 조성물를 제공한다.According to another embodiment of the present invention, there is provided an ultraviolet barrier cosmetic composition comprising cerium-amino clay nanoparticles functionalized with 3-aminopropyl.
상기 세륨-아미노클레이 나노입자는 하기의 화학식 1로 표시될 수 있다.The cerium-amino clay nanoparticles may be represented by the following formula (1).
[화학식 1][Chemical Formula 1]
[H2N(CH2)3]8Si8Ce6O12(OH)4)][H 2 N (CH 2 ) 3 ] 8 Si 8 Ce 6 O 12 (OH) 4 )]
상기 화장료 조성물은, 용액, 현탁액, 유탁액, 페이스트, 겔, 크림, 로션, 파우더, 오일, 분말 파운데이션, 유탁액 파운데이션 및 스프레이로 이루어진 그룹 중 1종의 것으로 제형화될 수 있으나, 이에 한정되는 것은 아니다. 보다 상세하게는 유연 화장수, 영양 화장수, 영양크림, 마사지 크림, 에센스, 아이 크림, 클렌징 크림, 클렌징 포옴, 클렌징 워터, 팩 또는 파우더의 제형으로 제조될 수 있다.The cosmetic composition may be formulated into one of the group consisting of solution, suspension, emulsion, paste, gel, cream, lotion, powder, oil, powder foundation, emulsion foundation and spray, no. More specifically, it can be prepared in the form of a soft lotion, a nutritional lotion, a nutritional cream, a massage cream, an essence, an eye cream, a cleansing cream, a cleansing foam, a cleansing water, a pack or a powder.
또한, 상기 화장료 조성물에 포함되는 성분은 상기한 성분 외, 화장료 조성물에 통상적으로 이용되는 성분들을 포함할 수 있으며, 예컨대 안정화제, 용해화제, 비타민, 안료 및 향료와 같은 통상적인 보조제, 그리고 담체를 포함할 수 있다.In addition, the components contained in the cosmetic composition may contain components commonly used in cosmetic compositions in addition to the above-mentioned components, and may contain conventional additives such as stabilizers, solubilizers, vitamins, pigments and fragrances, .
그리고 세륨-아미노클레이 나노입자는 화장료 조성물 100중량%를 기준으로, 0.1~10중량%의 비율로 포함될 수 있다.The cerium-amino clay nanoparticles may be contained in an amount of 0.1 to 10% by weight based on 100% by weight of the cosmetic composition.
이하, 본 발명의 이해를 돕기 위하여 바람직한 실시예를 제시하나, 하기 실시예는 본 발명을 예시하는 것일 뿐 본 발명의 범위가 하기 실시예에 한정되는 것은 아니다.Hereinafter, the present invention will be described in more detail with reference to the following examples. However, the scope of the present invention is not limited to the following examples.
실시예 1 : 세륨-아미노클레이 나노입자의 제조Example 1: Preparation of cerium-amino clay nanoparticles
세륨-아미노클레이 나노입자를 제조하기 위한 전구체로 세륨염화수화물(CeCl3·7H2O), 3-아미노프로필트리에톡시실란(3-Aminopropyltriethoxysilane; 이하 'APTES') 및 알콜을 준비하였다.Cerium chloride hydrate (CeCl 3 .7H 2 O), 3-aminopropyltriethoxysilane (hereinafter, 'APTES') and alcohol were prepared as precursors for preparing cerium-amino clay nanoparticles.
세륨염화수화물(CeCl3·7H2O)인 전구체를 8.4g을 정량하여 200 mL 에탄올에 녹인 후에, 10분 정도 혼합하여 전구체용액을 제조한 후, 20 mL 3-아미노프로필트리에톡시실란(3-Aminopropyltriethoxysilane; 이하 'APTES')를 순차적으로 적하하며 교반하였다. 이때 졸-겔 반응으로 반응물이 생성되며, Ce : Si의 몰비는 1 : 2로 적정하였다. 결과적으로 만들어지는 용액은 밤새도록 혼합이 되며, 슬러리 형태의 고형을 수확할 수 있다.8.4 g of a precursor of cerium chloride hydrate (CeCl 3 .7H 2 O) was quantitatively dissolved in 200 mL of ethanol and mixed for 10 minutes to prepare a precursor solution. Then, 20 mL of 3-aminopropyltriethoxysilane (3 -Aminopropyltriethoxysilane; hereinafter, 'APTES') were sequentially added dropwise and stirred. At this time, a reaction product was formed by a sol-gel reaction, and the molar ratio of Ce: Si was titrated to 1: 2. The resulting solution is mixed overnight and can be harvested in solid form in slurry form.
상기 반응물을 수득하여 각각의 세륨-아미노클레이 나노입자를 15분 동안 3,000 rpm으로 원심분리하며, 이렇게 분리한 세륨-아미노클레이 나노입자를100 mL 에탄올로 1번 세척하여, 60 ℃ 오븐에 하루 동안 건조하였다. 건조 후에 각각을 막자사발로 갈아서 분말 형태의 세륨-아미노클레이 나노입자 함유 자외선 차단 조성물을 회수하였다. The cerium-amino clay nanoparticles were centrifuged at 3,000 rpm for 15 minutes. The separated cerium-amino clay nanoparticles were washed once with 100 mL ethanol and dried in an oven at 60 ° C. for one day Respectively. After drying, each of them was ground in a mortar to recover a powdery cerium-amino clay nanoparticle-containing UV blocking composition.
비교예 1Comparative Example 1
실시예 1과 동일하게 실시하되, 전구체로 CeCl3·7H2O를 이용하였다.The procedure of Example 1 was repeated except that CeCl 3 .7H 2 O was used as a precursor.
비교예 2Comparative Example 2
산화세륨을 구입하여 준비하였다.Cerium oxide was purchased and prepared.
비교예3Comparative Example 3
염화세륨을 구입하여 준비하였다.Cerium chloride was purchased and prepared.
<평가><Evaluation>
1. TEM 분석 및 XRD patterns of CeAC 분석1. TEM analysis and XRD patterns of CeAC analysis
증류수에 0.5 mg/mL 농도로 분산시킨 세륨-아미노클레이 나노입자의 형태적 관찰을 투과전자현미경으로 관찰하였다.Morphological observations of cerium - amino clay nanoparticles dispersed at 0.5 mg / mL in distilled water were observed by transmission electron microscopy.
도 2는 본 발명의 실시예에 따른 세륨-아미노클레이 나노입자의 화학구조를 나타낸 것이고, 도 3(a) 내지 (e)는 본 발명의 실시예 1에 따라 제조된 세륨-아미노클레이 나노입자의 투과전자현미경 사진이며, 도 4는 본 발명의 실시예 1에 따라 제조된 세륨-아미노클레이 나노입자의 X선 회절 패턴을 나타난 그래프이다.FIG. 2 shows the chemical structure of cerium-amino clay nanoparticles according to an embodiment of the present invention. FIGS. 3 (a) to 3 (e) FIG. 4 is a graph showing an X-ray diffraction pattern of the cerium-amino clay nanoparticles prepared according to Example 1 of the present invention. FIG.
도 2을 참조하면, 세륨-아미노클레이 나노입자의 이미지는 격자 구조없이 다른 전자 대조를 지닌 불균질한 모양을 보여주는 것을 확인할 수 있으며, 세륨, 실리콘, 염소, 질소 성분이 확인되었으며, 이는 세륨-아미노클레이 나노입자의 층상규산염을 고려할 때 가능하다.Referring to FIG. 2, the image of the cerium-amino clay nanoparticle shows a heterogeneous shape with different electron contrast without a lattice structure, and cerium, silicon, chlorine, and nitrogen components were confirmed, This is possible when considering layered silicates of clay nanoparticles.
도 3(a)에 나타낸 TEM 이미지를 참조하여, 세륨-아미노클레이 나노입자가 층상 구조임을 확인할 수 있으며, 이것은 세륨-아미노클레이 나노입자가 점토라는 것을 의미한다.Referring to the TEM image shown in Fig. 3 (a), it is confirmed that the cerium-amino clay nanoparticles have a layered structure, which means that the cerium-amino clay nanoparticles are clay.
도 4를 참조하면 세륨-아미노클레이 나노입자는 층상 규산염 피크를 보여주고 있음을 나타낸다.Referring to FIG. 4, the cerium-amino clay nanoparticles show a layered silicate peak.
2. FTIR spectra, Zeta potential/hydrodynamic 분석 및 XANES 분석2. FTIR spectra, Zeta potential / hydrodynamic analysis and XANES analysis
도 5는 본 발명의 따라 제조된 실시예 1의 적외선 스펙트럼 그래프이며, 도 6은 본 발명에 따라 제조된 실시예 1의 DI water 및 RMPI배지에서의 유체 역학적 크기 및 제타 포텐셜을 나타낸 것이고, 도 7은 본 발명에 따라 제조된 실시예 1, 비교예 2 및 비교예 3의 XANES 분석 그래프이다.FIG. 5 is a graph of an infrared spectrum of Example 1 prepared according to the present invention, and FIG. 6 shows hydrodynamic size and zeta potential in DI water and RMPI medium of Example 1 prepared according to the present invention, Are XANES analysis graphs of Example 1, Comparative Example 2 and Comparative Example 3 produced according to the present invention.
도 6에 도시된 바와 같이, 실시예 1에 따른 세륨-아미노클레이 나노입자는 DI water에서는 농도의 변화에 관계없이 제타 포텐셜이 30 ~ 36 mV로 나타났으며, RMPI배지에서는 농도에 제타 포텐셜이 증가함을 확인할 수 있다.As shown in FIG. 6, the cerium-amino clay nanoparticles according to Example 1 showed a zeta potential of 30 to 36 mV regardless of the change in the concentration in DI water. In the RMPI medium, the zeta potential increased .
또한, 실시예 1의 유체 역학적 크기는 세륨-아미노클레이 나노입자의 농도가 증가함에 따라 크기가 증가함을 보여주었으며, 특히 RMPI배지에서 세륨-아미노클레이 나노입자는 농도가 높을수록 DI water에서의 증가율 보다 높음을 확인할 수 있었다.In addition, the hydrodynamic size of Example 1 increased as the concentration of cerium-amino clay nanoparticles increased. Particularly, in the RMPI medium, the higher the concentration of the cerium-amino clay nanoparticles, Higher than the others.
도 7에 도시된 바와 같이, 실시예 1의 세륨-아미노클레이 나노입자는 산화수가 4가에 가깝게 존재하는 것을 확인할 수 있다.As shown in FIG. 7, it can be confirmed that the cerium-amino clay nanoparticles of Example 1 exist in the oxidation state close to tetravalent.
3. UV-Vis absorbance spectra 분석3. UV-Vis absorbance spectra analysis
도 8은 본 발명에 따라 제조된 실시예 1 및 비교예 2의 자외선 흡광도를 나타낸 그래프이다.8 is a graph showing the ultraviolet absorbance of Example 1 and Comparative Example 2 prepared according to the present invention.
도 8에 도시된 바와 같이, 자외선 영역대인 200 ~ 400nm에서 실시예 1의 흡수율이 비교예 2에 비해 월등히 낮은 것을 확인할 수 있었다. 즉, 본 발명에 따른 세륨-아미노클레이 나노입자는 산화세륨 나노입자 자체의 자외선 차단 효과보다 월등히 향상됨을 확인할 수 있다.As shown in FIG. 8, it was confirmed that the absorption rate of Example 1 was much lower than that of Comparative Example 2 at 200 to 400 nm in the ultraviolet region. That is, it can be confirmed that the cerium-amino clay nanoparticles according to the present invention significantly improve the ultraviolet blocking effect of the cerium oxide nanoparticles themselves.
4. 세포 생존율 분석4. Cell survival analysis
도 9는 본 발명의 실시예 1에 따라 제조된 세륨-아미노클레이 나노입자의 농도에 따른 섬유모유사세포주(WI-38) 및 정상 섬유아세포(CCD-986SK)의 생존율을 나타낸 그래프이며, 도 10은 본 발명의 실시예 1에 따라 제조된 세륨-아미노클레이 나노입자의 농도에 따른 폐암세포(A549) 및 섬유모유사세포주(WI-38)의 생존율을 나타낸 그래프이다.9 is a graph showing the survival rate of fibroblast-like cell line (WI-38) and normal fibroblast (CCD-986SK) according to the concentration of cerium-amino clay nanoparticles prepared according to Example 1 of the present invention, (A549) and fibroblast-like cell line (WI-38) according to the concentration of cerium-amino clay nanoparticles prepared according to Example 1 of the present invention.
각각의 세포의 밀도가 10,000 세포수/mL이 되도록 투명 96-well 플레이트에 100 μL의 배양액을 주입하였다. 즉각적으로, 배지는 CO2 인큐베이터에서 37 ℃에서 24시간 배양하였다.100 μL of culture was injected into a transparent 96-well plate such that the density of each cell was 10,000 cells / mL. Immediately, the medium was incubated in a CO 2 incubator at 37 ° C for 24 hours.
만약 세포가 플레이트 바닥에 붙어있다면, 성장 배지를 제거한다. 각각의 배양 배지에, 세륨-아미노클레이 나노입자의 농도에 따른 생존율을 분석하였다.If cells are attached to the bottom of the plate, remove the growth medium. In each culture medium, the survival rate according to the concentration of cerium-amino clay nanoparticles was analyzed.
도 9에 도시된 바와 같이, 섬유모유사세포(WI-38) 및 정상 섬유아세포(CCD-986SK)는 세륨-아미노클레이 나노입자의 농도가 높아져도 생존율이 떨어지지 않는 것을 확인할 수 있었다. 즉, 세륨-아미노클레이 나노입자는 섬유모유사세포(WI-38) 및 정상 섬유아세포(CCD-986SK)에 대해 독성을 나타내지 않는 것을 확인할 수 있었다.As shown in FIG. 9, it was confirmed that the survival rate of fibroblast-like cells (WI-38) and normal fibroblasts (CCD-986SK) did not decrease even when the concentration of cerium-amino clay nanoparticles increased. That is, it was confirmed that the cerium-amino clay nanoparticles did not show toxicity to fibroblast-like cells (WI-38) and normal fibroblasts (CCD-986SK).
5. 자궁경부암세포 대상 세포독성 평가 및 Cross-section TEM 분석5. Evaluation of cervical cancer cell cytotoxicity and cross-section TEM analysis
세포 배양 배지는 RPMI 1640을 10% FBS, 1% L-Glutamine 및 1% Pen/Strep로 혼합하여 제조하였다. 자궁경부암세포 및 정상세포는 이틀에 한번씩 계대배양하였다. RPMI 배지의 상등액을 버리고, PBS 버퍼로 잔류 배지를 깨끗하게 씻은 후에, trypsin-EDTA로 한 방울씩 적하하며, 세포를 플라스크 바닥으로부터 탈리하였다. 자궁경부암 세포를 15 mL 코니컬 튜브에 모은 후에 새 RPMI 배지로 혼합한 후 이를 튜브 바닥으로부터 잔류 세포를 수확하기 위해 5분 동안 1,000 rpm으로 원심분리를 하였다.Cell culture medium was prepared by mixing RPMI 1640 with 10% FBS, 1% L-Glutamine and 1% Pen / Strep. Cervical cancer cells and normal cells were subcultured every other day. The supernatant of the RPMI medium was discarded, the residual medium was washed thoroughly with PBS buffer, and then dropped with trypsin-EDTA dropwise, and the cells were desorbed from the bottom of the flask. Cervical cancer cells were collected in 15 mL conical tubes, mixed with fresh RPMI medium, and centrifuged at 1,000 rpm for 5 min to harvest residual cells from the bottom of the tubes.
세포 수를 대략 105에서 106 세포수/mL로 헤마토사이토미터로 개수를 센다. 세포를 T-75 배양 플라스크에서 37 ℃, 5% 이산화탄소를 공급하여 배양하였다The number of cells is counted in a hematocytometer at approximately 10 5 to 10 6 cells / mL. The cells were cultured in a T-75 culture flask at 37 ° C with 5% carbon dioxide
세포 밀도가 10,000 세포수/mL이 되도록 투명 96-well 플레이트에 100 μL의 배양액을 주입하였다. 즉각적으로, 배지는 CO2 인큐베이터에서 37 ℃에서 24시간 배양하였다.100 μL of culture was injected into a transparent 96-well plate such that the cell density was 10,000 cells / mL. Immediately, the medium was incubated in a CO 2 incubator at 37 ° C for 24 hours.
만약 세포가 플레이트 바닥에 붙어있다면, 성장 배지를 제거한다. 이 배양 배지에, 세륨-아미노클레이 나노입자의 농도를 높이면서 생존율을 기록하였다.If cells are attached to the bottom of the plate, remove the growth medium. In this culture medium, the survival rate was recorded while increasing the concentration of the cerium-amino clay nanoparticles.
도 10은 본 발명의 실시예 1에 따라 제조된 세륨-아미노클레이 나노입자의 농도에 따른 자궁경부암세포(A549) 및 정상 섬유모유사세포주(WI-38)의 생존율을 나타낸 그래프이며, 도 11은 본 발명의 실시예 1에 따라 제조된 세륨-아미노클레이 나노입자를 동물세포에 처리한 후의 동물세포의 단면을 촬영한 이미지이다.10 is a graph showing the survival rate of cervical cancer cells (A549) and normal fibroblast-like cell line (WI-38) according to the concentration of cerium-amino clay nanoparticles prepared according to Example 1 of the present invention, 1 is an image of a section of an animal cell after treating animal cells with cerium-amino clay nanoparticles prepared according to Example 1 of the present invention.
도 10에 도시된 바와 같이, 실시예 1에 따른 세륨-아미노클레이 나노입자는 자궁경부암세포에는 독성을 나타내는 것에 반해, 정상세포에 대해서는 500(㎍/mL)농도 이하에서는 독성을 나타내지 않는 것을 확인할 수 있었으며, 암세포의 경우 약한 산성을 나타내며, 세륨-아미노클레이 나노입자를 암세포에 처리하면 상기 세륨-아미노클레이 나노입자는 산화효소(oxidase)역할을 하여 암세포에 대하여 독성을 나타내지만, 정상세포에서는 세포생존률이 높게 나오므로 독성을 나타내지 않는 것을 확인할 수 있다.As shown in FIG. 10, it was confirmed that the cerium-amino clay nanoparticles according to Example 1 showed toxicity to cervical cancer cells, whereas they did not show toxicity below normal (500 (㎍ / mL) In the case of cancer cells, weak acidity is exhibited. When cerium-amino clay nanoparticles are treated with cancer cells, the cerium-amino clay nanoparticles serve as oxidase, which is toxic to cancer cells. In normal cells, Is high, it can be confirmed that it does not show toxicity.
또한, 정상세포의 소기관들은 약한 산성을 나타내기 때문에 세륨-아미노클레이 나노입자가 세포 내로 침투된다면 독성을 나타낼수 있으나, 도 11 도시된 바와 같이, 세륨-아미노클레이 나노입자는 세포 소기관까지 침투하지 못하는 것을 확인 할 수 있다. 따라서 정상세포에서 대해서는 세륨-아미노클레이 나노입자는 독성을 발휘하지 않는 것을 확인할 수 있다.In addition, since the organelles of normal cells exhibit weak acidity, they may be toxic if the cerium-amino clay nanoparticles penetrate into the cells, but as shown in Fig. 11, the cerium-amino clay nanoparticles can not penetrate into the organelle Can be confirmed. Therefore, it can be confirmed that cerium-amino clay nanoparticles do not exhibit toxicity in normal cells.
지금까지 본 발명의 일 실시예에 따른 세륨-아미노클레이 나노입자 함유 자외선 차단 조성물 및 그 제조방법에 관한 구체적인 실시예에 관하여 설명하였으나, 본 발명의 범위에서 벗어나지 않는 한도 내에서는 여러 가지 실시 변형이 가능함은 자명하다.Although the ultraviolet screening composition containing cerium-amino clay nanoparticles according to one embodiment of the present invention and the method of preparing the ultraviolet screening composition have been described above, various modifications may be made without departing from the scope of the present invention. It is self-evident.
그러므로 본 발명의 범위에는 설명된 실시예에 국한되어 정해져서는 안 되며, 후술하는 특허청구범위뿐만 아니라 이 특허청구범위와 균등한 것들에 의해 정해져야 한다.Therefore, the scope of the present invention should not be construed as being limited to the embodiments described, but should be determined by equivalents to the appended claims, as well as the following claims.
즉, 전술된 실시예는 모든 면에서 예시적인 것이며, 한정적인 것이 아닌 것으로 이해되어야 하며, 본 발명의 범위는 상세한 설명보다는 후술될 특허청구범위에 의하여 나타내어지며, 그 특허청구범위의 의미 및 범위 그리고 그 등가 개념으로부터 도출되는 모든 변경 또는 변형된 형태가 본 발명의 범위에 포함되는 것으로 해석되어야 한다.It is to be understood that the foregoing embodiments are illustrative and not restrictive in all respects and that the scope of the present invention is indicated by the appended claims rather than the foregoing description, It is intended that all changes and modifications derived from the equivalent concept be included within the scope of the present invention.

Claims (12)

  1. 세륨-아미노클레이 나노입자를 함유하되, Cerium-amino clay nanoparticles,
    상기 세륨-아미노클레이 나노입자는 3-아미노프로필(3-aminopropyl)로 기능화되어 하기의 화학식 1로 표시되는 세륨-아미노클레이 나노입자 함유 자외선 차단제 조성물.Wherein the cerium-amino clay nanoparticle is functionalized with 3-aminopropyl, and is represented by the following formula (1).
    [화학식 1][Chemical Formula 1]
    [H2N(CH2)3]8Si8Ce6O12(OH)4)][H 2 N (CH 2 ) 3 ] 8 Si 8 Ce 6 O 12 (OH) 4 )]
  2. 제 1항에 있어서,The method according to claim 1,
    상기 세륨-아미노클레이 나노입자는 세륨 층상규산염인 것을 특징으로 하는 세륨-아미노클레이 나노입자 함유 자외선 차단제 조성물.Wherein the cerium-amino clay nanoparticle is a cerium layered silicate.
  3. 제1항에 있어서,The method according to claim 1,
    상기 세륨-아미노클레이 나노입자의 평균 크기는 10 내지 500 nm인 것을 특징으로 하는 세륨-아미노클레이 나노입자 함유 자외선 차단제 조성물.Wherein the cerium-amino clay nanoparticles have an average size of 10 to 500 nm.
  4. 제 1항에 있어서,The method according to claim 1,
    상기 세륨-아미노클레이 나노입자는 인간 유래 섬유아세포(Fibroblast)에 대하여 무독성인 것을 특징으로 하는 세륨-아미노클레이 나노입자 함유 자외선 차단제 조성물.Wherein the cerium-amino clay nanoparticles are non-toxic to human-derived fibroblasts.
  5. (a) 전구체를 유기용매에 용해시켜 전구체 용액을 제조하는 단계;(a) dissolving the precursor in an organic solvent to prepare a precursor solution;
    (b) 상기 (a) 단계의 전구체 용액에 3-아미노프로필트리에톡시실란(3-aminopropyltriethoxysilane)을 적하하고 교반하여 반응물을 수득하는 단계;(b) dropping 3-aminopropyltriethoxysilane into the precursor solution of step (a) and stirring to obtain a reaction product;
    (c) 상기 (b) 단계의 수득된 반응물을 원심분리하는 단계;(c) centrifuging the reactant obtained in step (b);
    (d) 상기 (c) 단계의 원심분리된 반응물을 세척건조하는 단계;를 포함하는 것을 특징으로 하는 세륨-아미노클레이 나노입자 함유 자외선 차단제 조성물의 제조방법.and (d) washing and drying the centrifuged reactant in the step (c). &lt; Desc / Clms Page number 19 &gt;
  6. 제 5항에 있어서,6. The method of claim 5,
    상기 (a) 단계의 전구체는,The precursor of step (a)
    염화세륨, 아세트산세륨, 탄산세륨, 불화세륨, 질산세륨, 황산세륨, 브롬화세륨, 요오드화세륨 옥살산세륨, 과염소산세륨, 황산세륨 및 이들의 수화물로 이루어진 그룹 중에서 선택되는 1종 이상인 것을 특징으로 하는 세륨-아미노클레이 나노입자 함유 자외선 차단제 조성물의 제조방법.Which is at least one selected from the group consisting of cerium chloride, cerium acetate, cerium carbonate, cerium fluoride, cerium nitrate, cerium sulfate, cerium bromide, cerium iodide cerium oxalate, cerium perchlorate, cerium sulfate and hydrates thereof, A process for preparing an ultraviolet screening composition containing amino clay nanoparticles.
  7. 제 5항에 있어서,6. The method of claim 5,
    상기 (a) 단계의 유기용매는,The organic solvent of step (a)
    메탄올, 에탄올 및 아세톤으로 이루어진 군으로부터 선택된 1종 이상인 것을 특징으로 하는 세륨-아미노클레이 나노입자 함유 자외선 차단제 조성물의 제조방법.Wherein the at least one cerium-amino clay nanoparticle is at least one selected from the group consisting of methanol, ethanol and acetone.
  8. 제 5항에 있어서,6. The method of claim 5,
    상기 전구체 용액의 세륨(Ce) 및 3-아미노프로필트리에톡시실란의 규소(Si)는 1 : 0.5 ~ 3의 몰비로 첨가되는 것을 특징으로 하는 세륨-아미노클레이 나노입자 함유 자외선 차단제 조성물의 제조방법.Wherein the cerium (Ce) of the precursor solution and the silicon (Si) of 3-aminopropyltriethoxysilane are added in a molar ratio of 1: 0.5 to 3. The process for producing a cerium-amino clay nanoparticle- .
  9. 제 5항에 있어서,6. The method of claim 5,
    상기 (c) 단계의 원심분리는,The centrifugal separation in the step (c)
    10 내지 15분 동안 2,500 내지 3,000 rpm으로 수행되는 것을 특징으로 하는 세륨-아미노클레이 나노입자 함유 자외선 차단제 조성물의 제조방법.Wherein the ultraviolet light blocking agent is performed at 2,500 to 3,000 rpm for 10 to 15 minutes.
  10. 3-아미노프로필(3-aminopropyl)로 기능화된 세륨-아미노클레이 나노입자를 포함하는 것을 특징으로 하는 자외선 차단 화장료 조성물.Wherein the cosmetic composition comprises cerium-amino clay nanoparticles functionalized with 3-aminopropyl.
  11. 제 10항에 있어서,11. The method of claim 10,
    상기 세륨-아미노클레이 나노입자는 하기의 화학식 1로 표시되는 것을 특징으로 하는 자외선 차단 화장료 조성물.Wherein the cerium-amino clay nanoparticles are represented by the following formula (1).
    [화학식 1][Chemical Formula 1]
    [H2N(CH2)3]8Si8Ce6O12(OH)4)][H 2 N (CH 2 ) 3 ] 8 Si 8 Ce 6 O 12 (OH) 4 )]
  12. 제 11항에 있어서,12. The method of claim 11,
    상기 화장료 조성물은,In the cosmetic composition,
    용액, 현탁액, 유탁액, 페이스트, 겔, 크림, 로션, 파우더, 오일, 분말 파운데이션, 유탁액 파운데이션 및 스프레이로 이루어진 그룹 중 1종의 것으로 제형화되는 것을 특징으로 하는 자외선 차단 화장료 조성물.Wherein the composition is formulated into one of the group consisting of a solution, suspension, emulsion, paste, gel, cream, lotion, powder, oil, powder foundation, emulsion foundation and spray.
PCT/KR2018/001129 2017-08-30 2018-01-25 Cerium-aminoclay nanoparticle-containing ultraviolet blocking composition and method for preparing same WO2019045203A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020510589A JP6909922B2 (en) 2017-08-30 2018-01-25 UV blocking composition containing cerium-aminoclay nanoparticles and method for producing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2017-0110021 2017-08-30
KR1020170110021A KR101968307B1 (en) 2017-08-30 2017-08-30 UV-blocking composition containing cerium-amino clay nanoparticles and method for producing the same

Publications (1)

Publication Number Publication Date
WO2019045203A1 true WO2019045203A1 (en) 2019-03-07

Family

ID=65525861

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/001129 WO2019045203A1 (en) 2017-08-30 2018-01-25 Cerium-aminoclay nanoparticle-containing ultraviolet blocking composition and method for preparing same

Country Status (3)

Country Link
JP (1) JP6909922B2 (en)
KR (1) KR101968307B1 (en)
WO (1) WO2019045203A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115487169A (en) * 2022-09-02 2022-12-20 金陵科技学院 Drug-loaded cerium nanoparticle hydrogel and preparation method and application thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003267850A (en) * 2002-02-28 2003-09-25 L'oreal Sa Dispersed powder providing sun protection suitable for use in cosmetic composition
KR20090125194A (en) * 2007-03-23 2009-12-03 바스프 에스이 Method for producing surface-modified nanoparticulate metal oxides, metal hydroxides, and/or metal oxide hydroxides
KR101339767B1 (en) * 2012-07-20 2013-12-11 한국과학기술원 Effective peroxidase-like activity of fe-aminoclay for use in immunoassay
JP5456388B2 (en) * 2009-07-03 2014-03-26 株式会社日本触媒 UV-cutting agent for cosmetics and cosmetics using the same

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11222421A (en) * 1998-01-31 1999-08-17 Naris Cosmetics Co Ltd Ultraviolet light shielding agent and its production, and cosmetic
WO2009003981A2 (en) * 2007-07-02 2009-01-08 Basf Se Hybrid nanoparticles
KR101258190B1 (en) 2011-11-28 2013-04-25 한국지질자원연구원 Cosmetic composition comprising transition metal-doped cerium dioxide complex nanoparticle for uv protection
KR101437925B1 (en) * 2013-05-28 2014-11-04 한국생명공학연구원 Methods for genetic transformation of microalgae using aminoclay
FR3008700B1 (en) * 2013-07-18 2015-08-14 Univ Nice Sophia Antipolis ACTIVE OR BIOACTIVE NETWORK POLYMERIZED CERAMIC NANOPARTICLES, TOPIC PROJECTORS, PROCESSES FOR THEIR PREPARATION AND USES THEREOF
KR101522722B1 (en) * 2013-09-27 2015-05-26 에이스틴 주식회사 Aggregates Comprising Ionic Organic/Inorganic Hybrid Particle, Cosmetic Composition Comprising the Aggregates, and Method for Preparing the Same
KR101438458B1 (en) * 2013-10-16 2014-09-17 한국에너지기술연구원 Aminoclay coated photocatalystic materials and its manufacturing method
KR101743866B1 (en) * 2016-01-19 2017-06-08 가천대학교 산학협력단 Cultivating method of microalgae using aminoclay, microalgae cultivated thereof and recycling method of microalgae medium

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003267850A (en) * 2002-02-28 2003-09-25 L'oreal Sa Dispersed powder providing sun protection suitable for use in cosmetic composition
KR20090125194A (en) * 2007-03-23 2009-12-03 바스프 에스이 Method for producing surface-modified nanoparticulate metal oxides, metal hydroxides, and/or metal oxide hydroxides
JP5456388B2 (en) * 2009-07-03 2014-03-26 株式会社日本触媒 UV-cutting agent for cosmetics and cosmetics using the same
KR101339767B1 (en) * 2012-07-20 2013-12-11 한국과학기술원 Effective peroxidase-like activity of fe-aminoclay for use in immunoassay

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JI, HYE-MIN ET AL.: "Efficient Harvesting of Wet Blue-green Microalgal Biomass by Two-aminoclay [AC]-mixture Systems", BIORESOURCE TECHNOLOGY, vol. 21, no. 1, 2016, pages 313 - 318, XP029520482, DOI: doi:10.1016/j.biortech.2016.03.111 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115487169A (en) * 2022-09-02 2022-12-20 金陵科技学院 Drug-loaded cerium nanoparticle hydrogel and preparation method and application thereof
CN115487169B (en) * 2022-09-02 2023-09-29 金陵科技学院 Drug-loaded cerium nanoparticle hydrogel and preparation method and application thereof

Also Published As

Publication number Publication date
JP2020531504A (en) 2020-11-05
KR101968307B1 (en) 2019-04-11
JP6909922B2 (en) 2021-07-28
KR20190023772A (en) 2019-03-08

Similar Documents

Publication Publication Date Title
US5401309A (en) Rare earth metal sulfide pigment compositions
US7491349B2 (en) Black titanium oxynitride
AU672688B2 (en) Process for the treatment of pigments based on rare-earth metal sulphides, new pigments thus obtained and their uses
AU718157B2 (en) Titanium dioxide particles, process for preparing them and their use in cosmetics, varnishes and transparent coverings
KR20150144748A (en) Silicon oxide-coated zinc oxide and method for manufacturing same, silicon oxide-coated zinc oxide containing composition, and cosmetic
JP5849944B2 (en) Composite particles and method for producing the same
FI84618B (en) SKIVFORM JAERNOXIDPIGMENT.
CN109890762B (en) Iron oxide for red pigment and method for producing same
KR20010049645A (en) Surface-modified titanium dioxide
JP6314955B2 (en) Method for producing rectangular plate-like zinc oxide particles
JP2018168007A (en) Metatitanic acid particle, production method of metatitanic acid particle, composition for photocatalyst formation, photocatalyst and structure
JP2018094495A (en) Titanium oxide particles and method for producing the same, composition for forming photocatalyst, photocatalyst and structure
WO2019045203A1 (en) Cerium-aminoclay nanoparticle-containing ultraviolet blocking composition and method for preparing same
JP3493717B2 (en) Zinc oxide-supported spherical silica for cosmetics, method for producing the same, and cosmetics
CN107250046B (en) Silica-coated zinc oxide, composition containing silica-coated zinc oxide, and cosmetic
JP2001058821A (en) Zinc oxide particle having suppressed surface activity, its production and utilization thereof
KR101242816B1 (en) UV protecting Foundation cosmetic composite containing hybrid titanium dioxide composites
WO2012067308A1 (en) Zinc oxide/titanium dioxide composite particles and preparation method thereof
CN110801401B (en) Preparation method of multifunctional nano material with better sun-screening effect
JP6349877B2 (en) Silicon oxide-coated zinc oxide, production method thereof, silicon oxide-coated zinc oxide-containing composition, and cosmetics
WO2023224341A1 (en) Mesoporous silica containing zinc oxide and manufacturing method thereof
WO2019123670A1 (en) Iron oxide for orange pigment and method for producing same
KR101926876B1 (en) ZnTiO3 having hexagonal illmenite structure and cosmetic composition comprising thereof
JPH10226518A (en) Cerium oxide powder, its production, paint and cosmetic
WO2023054898A1 (en) Oil-dispersed cosmetic composition comprising inorganic oxide surface-modified with amino acid derivative

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18851453

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020510589

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18851453

Country of ref document: EP

Kind code of ref document: A1