WO2019045176A1 - 냉동기 토출 가스에 의한 응축 폐열 회수를 이용한 냉동 시스템 - Google Patents

냉동기 토출 가스에 의한 응축 폐열 회수를 이용한 냉동 시스템 Download PDF

Info

Publication number
WO2019045176A1
WO2019045176A1 PCT/KR2017/012525 KR2017012525W WO2019045176A1 WO 2019045176 A1 WO2019045176 A1 WO 2019045176A1 KR 2017012525 W KR2017012525 W KR 2017012525W WO 2019045176 A1 WO2019045176 A1 WO 2019045176A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
evaporator
evaporation
chamber
flow path
Prior art date
Application number
PCT/KR2017/012525
Other languages
English (en)
French (fr)
Inventor
박진섭
박상면
Original Assignee
신진에너텍
박진섭
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 신진에너텍, 박진섭 filed Critical 신진에너텍
Publication of WO2019045176A1 publication Critical patent/WO2019045176A1/ko

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D21/00Defrosting; Preventing frosting; Removing condensed or defrost water
    • F25D21/06Removing frost
    • F25D21/12Removing frost by hot-fluid circulating system separate from the refrigerant system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B27/00Machines, plants or systems, using particular sources of energy
    • F25B27/02Machines, plants or systems, using particular sources of energy using waste heat, e.g. from internal-combustion engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/20Disposition of valves, e.g. of on-off valves or flow control valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B47/00Arrangements for preventing or removing deposits or corrosion, not provided for in another subclass
    • F25B47/02Defrosting cycles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B5/00Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity
    • F25B5/02Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity arranged in parallel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B6/00Compression machines, plants or systems, with several condenser circuits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D29/00Arrangement or mounting of control or safety devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2339/00Details of evaporators; Details of condensers
    • F25B2339/04Details of condensers
    • F25B2339/047Water-cooled condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/01Heaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/04Refrigeration circuit bypassing means
    • F25B2400/0403Refrigeration circuit bypassing means for the condenser
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/23Separators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/24Storage receiver heat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2507Flow-diverting valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2104Temperatures of an indoor room or compartment
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2400/00General features of, or devices for refrigerators, cold rooms, ice-boxes, or for cooling or freezing apparatus not covered by any other subclass
    • F25D2400/30Quick freezing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2700/00Means for sensing or measuring; Sensors therefor
    • F25D2700/12Sensors measuring the inside temperature
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P80/00Climate change mitigation technologies for sector-wide applications
    • Y02P80/10Efficient use of energy, e.g. using compressed air or pressurized fluid as energy carrier
    • Y02P80/15On-site combined power, heat or cool generation or distribution, e.g. combined heat and power [CHP] supply

Definitions

  • the present invention relates to a refrigeration system using condensate waste heat recovery by refrigerant discharge gas, and more particularly, to a refrigeration system capable of recovering condensate waste heat for defrosting without using additional power.
  • the refrigeration system has a structure in which an evaporator is installed, and a compressor, a condenser, and an expansion valve are installed.
  • a compressor, a condenser, and an expansion valve are installed.
  • cold air is generated by heat exchange between the evaporation heat of the evaporator and the outside air temperature.
  • the evaporator gathers on the surface due to the difference between the heat of evaporation and the temperature of the outside air.
  • the frost formed on the surface of the evaporator gradually increases the heat exchange effect of the evaporator and increases the power consumption .
  • a defrosting method is constituted such that a defrost heater is installed in the periphery and a heater is operated at a predetermined time point to melt and freeze frost on the evaporator.
  • the defrosting method using the defrost heater has an advantage that defrosting is performed in a short time by providing high-temperature heat to the evaporator, but there is a problem of using an external heat source or energy.
  • the present invention has been made to solve the above-mentioned problems, and it is an object of the present invention to provide a refrigeration system using condenser waste heat recovery by refrigerant discharge gas capable of storing energy available for defrosting in a refrigeration cycle, In order to solve the above problems.
  • the present invention provides a refrigeration system using condensed waste heat recovered by a refrigerant discharge gas, comprising a compressor for compressing a refrigerant, a condenser for introducing a refrigerant compressed in the compressor, a condenser for condensing the refrigerant, A condenser, a condenser, a condenser, a condenser, a condenser, a condenser, a condenser, a condenser, a condenser, a condenser, a condenser, a condenser, a condenser, a condenser, a condenser, a condenser, And an evaporative side composite heat exchanger for evaporating the expanded refrigerant;
  • the evaporative-side composite heat exchanger includes an evaporation pipe through which the refrigerant expanded in the expansion valve passes, and a defrost water supply
  • the auxiliary flow path system includes a heat exchange path passing through the interior of the heat storage tank, a gas-liquid separation unit located at a distal end of the heat exchange path and separating the vaporized refrigerant from the liquefied refrigerant, And an expansion return path for returning the liquefied refrigerant to the expansion valve side by returning condensation returning the vaporized refrigerant to the main flow path.
  • the gas-liquid separator is formed of a cylinder-shaped gas-liquid separating header, and the expansion return path includes a check valve, and is connected to the lower portion of the gas-liquid separation header to discharge the liquefied refrigerant by the gravity And return to the valve side.
  • the auxiliary channel system heat exchanger may have a gentle bending several times in the heat storage tank.
  • the apparatus may further include an auxiliary heater located in the heat storage reservoir and capable of being heated by an external power source.
  • the apparatus further includes a main flow path control valve located between the compressor and the condenser to control the main flow path, and an auxiliary flow path control valve located at the inlet side of the heat exchange path of the auxiliary flow path system, And the flow path control is performed by the main flow path control valve and the auxiliary flow path control valve.
  • the main flow path and the auxiliary flow path system are controlled by a three-way valve.
  • the evaporative-side composite heat exchanger includes a quench chamber evaporator for providing quenching to the quench chamber, a freezer compartment evaporator for providing refrigeration to the freezer compartment, a refrigerator compartment evaporator for providing refrigeration to the refrigerator compartment, a refrigerating compartment evaporator between the freezer compartment evaporator and the expansion valve A refrigerating chamber side evaporation pressure regulator disposed between the refrigerator compartment evaporator and the expansion valve, and a quenching pressure side regulator disposed between the quenching chamber evaporator and the expansion valve.
  • the quenching chamber side evaporation pressure regulator includes a first quench chamber inflow pressure regulator and a second quench chamber inflow pressure regulator, which are connected to the evaporation side inlet piping system and formed at an inlet side of the quench chamber evaporator, And a first quench chamber temperature sensor and a second quench chamber temperature sensor located at an outlet side of the quench chamber evaporator and measuring an outlet temperature of the quench chamber evaporator,
  • the first quench chamber inflow pressure control unit is controlled by the first quench chamber temperature sensor
  • the second quench chamber inflow pressure regulator is controlled by the second quench chamber temperature sensor.
  • the freezing chamber side evaporation pressure regulator is connected to the evaporation side inlet piping system, and is connected to the freezing chamber inlet pressure regulator formed at the inlet side of the freezer compartment evaporator and the evaporation side outlet piping system, And a freezing room temperature sensor located at an outlet side of the freezing compartment evaporator for measuring the outlet temperature of the freezing compartment evaporator, wherein the freezing compartment temperature sensor is disposed at an outlet side of the freezing compartment evaporator,
  • the inflow pressure regulator is controlled by the freezer compartment temperature sensor.
  • the refrigerant from the evaporation side inflow piping system and the refrigerant discharged from the refrigerant inflow path of the refrigeration side are mixed into the freezer compartment evaporator.
  • the refrigerating chamber side evaporation pressure regulator is connected to the evaporation side inlet piping system, and is connected to a refrigerating chamber inlet pressure regulator formed at an inlet side of the refrigerating chamber evaporator and the evaporation side outlet piping system, And a refrigerating chamber temperature sensor located at an outlet side of the refrigerating compartment evaporator for measuring an outlet temperature of the refrigerating compartment evaporator, wherein the refrigerating compartment temperature sensor detects the refrigerating side inflow pressure
  • the control unit is controlled by the refrigerating room temperature sensor, and the refrigerant from the evaporation side inflow piping system and the refrigerant discharged from the refrigerant inflow path of the refrigeration side are mixed into the refrigerating compartment evaporator.
  • FIG. 1 is a view showing a configuration of a condensing waste heat recovery refrigeration system using refrigerant discharge gas according to an embodiment of the present invention.
  • FIG. 2 is a view for explaining driving of the refrigeration system of FIG.
  • FIG 3 is a view illustrating an auxiliary flow path system according to an embodiment of the present invention.
  • FIG. 4 is a view showing an evaporative side composite heat exchanger according to an embodiment of the present invention
  • FIG. 1 is a view showing a configuration of a condensing waste heat recovery refrigeration system using refrigerant discharge gas according to an embodiment of the present invention.
  • a condensing waste heat recovery refrigeration system using refrigerant discharge gas includes a compressor 10 for compressing refrigerant, a condenser 20 for condensing condensed refrigerant, A main flow passage 210 for delivering the refrigerant compressed in the compressor to the condenser, a heat storage reservoir 60 for storing a part of the heat of the refrigerant discharged from the compressor, an auxiliary flow path 100 for transferring the refrigerant compressed in the compressor to the accumulator An expansion valve 30 for expanding the refrigerant condensed in the condenser, and an evaporative-side composite heat exchanger 400 for evaporating the expanded refrigerant.
  • the evaporative side composite heat exchanger 400 includes an evaporation pipe 410 through which the refrigerant expanded in the expansion valve passes and a defrost water supply pipe 420 through which the circulating water in the heat storage reservoir 60 is circulated.
  • the auxiliary flow path system 100 includes a heat exchange path 110 passing through the interior of the heat storage tank 60 and a gas-liquid separation unit 90 located at a distal end of the heat exchange path 110 and separating the vaporized refrigerant and the liquefied refrigerant, A condensation return path 120 for returning the refrigerant vaporized in the gas-liquid separator 90 to the main flow path, an expansion return path 130 for returning the refrigerant liquefied in the gas-liquid separator 90 to the expansion valve 30 side .
  • the heat storage tank (60) may further include an auxiliary heater (70) which can be heated by an external power source.
  • the condenser 20 may further include a defrost sensor 300 on one side of the condenser 20 to detect a condition requiring defrosting of the condenser.
  • the main flow control valve V10 located between the compressor 10 and the condenser 20 and controlling the main flow path 210 and the auxiliary flow path system 100 are located at the inlet side of the heat exchange path 110, And an auxiliary flow path control valve V20 for controlling the flow of air into the auxiliary flow path system 100.
  • the main flow control valve V10 and the auxiliary flow control valve V20 may be integrated by a single three-way valve V50.
  • FIG. 2 is a view for explaining driving of the refrigeration system of FIG.
  • the refrigeration system transfers the refrigerant compressed in the compressor (10) to the condenser (20).
  • the high-temperature refrigerant compressed by the compressor 10 transfers heat to the heat storage tank 60 through the auxiliary flow path system 100 to store energy.
  • the refrigerant transferred to the condenser 20 is again transferred to the expansion valve 30.
  • the cooled refrigerant is transferred to the evaporative side composite heat exchanger 400 to cool the object.
  • the subject can be frozen and refrigerated.
  • defrosting operation proceeds.
  • heat stored in the heat storage tank (60) is transferred to the evaporative side heat exchanger (400) through the circulating water to perform defrosting.
  • a separate defrost pump (50) Start circulation.
  • heat is stored in the heat storage tank 60 at the time of normal operation, defrosting operation is performed at the time of defrosting, and heat can be stored in the heat storage tank 60 without using a separate power source, The defrosting can be activated.
  • the high-temperature refrigerant compressed in the compressor 10 transfers heat to the heat storage tank 60 through the auxiliary flow path system 100 to store energy.
  • the auxiliary flow path system 100 includes a heat exchange path 110 connected to the main flow path 210 and passing through a heat storage tank 60.
  • the high-temperature refrigerant compressed in the compressor 10 stores energy in the heat storage tank 60 through the heat exchange path 110 of the auxiliary flow path system 100.
  • the heat storage reservoir 60 is controlled to store heat only to a specified temperature.
  • the refrigerant is limited to a temperature of typically 40 degrees, stores energy, and controls and stores the refrigerant flow of the auxiliary flow path system 100.
  • the refrigerant flow of the auxiliary flow path system 100 is controlled by the main flow path control valve V10 and the auxiliary flow path control valve V20 described above.
  • main flow control valve V10 and the auxiliary flow control valve V20 can be controlled by a single valve by the three-way valve V50, which is shown in Fig.
  • the heat exchanging passage 110 of the auxiliary flow path system 100 flows from the upper end of the heat storage tank 60 and is discharged at the lower end after the heat exchange is completed. Therefore, the refrigerant is moved in the direction of gravity, and the heat exchange path 110 can be bent and arranged for heat exchange with the heat storage tank 60. However, in order to prevent the pressure loss from increasing, The meeting can have a gentle bend.
  • the heat storage medium in the heat storage tank 60 can circulate by convection, and thus energy (heat) can be efficiently stored.
  • the auxiliary flow path system 100 which has escaped from the heat storage tank 60, is connected to the gas-liquid separation unit 90.
  • the gas-liquid separator 90 serves to separate the vaporized refrigerant and the liquefied refrigerant.
  • the gas-liquid separator 90 may be formed of a gas-liquid separation header in the form of a cylinder.
  • the gas-liquid separator 90 includes a condensing return path 120 for returning the vaporized refrigerant to the main flow path and returning it to the condenser 20 and an expansion return path 130 for returning the liquefied refrigerant to the expansion valve side,
  • the return path 130 may be controlled to return only the liquefied refrigerant including the check valve V30.
  • the evaporative side composite heat exchanger 400 includes a rapid cooling room evaporator 451 for providing rapid cooling to the quenching chamber, a freezer compartment evaporator 452 for providing refrigeration to the freezer compartment, a refrigerator compartment evaporator 453 for providing refrigeration to the refrigerator compartment, A refrigeration chamber side evaporation pressure regulator (463) disposed between the refrigerating compartment evaporator and the expansion valve, and a quenching chamber side evaporation pressure regulator (463) disposed between the quenching chamber evaporator and the expansion valve And a control unit 461.
  • the evaporative-side composite heat exchanger 400 includes an evaporative-side inlet piping system 470 for supplying the refrigerant to the evaporators and an evaporative-side outlet piping system 480 for moving the refrigerant discharged from the evaporators.
  • the evaporation side inflow piping system 470 and the evaporation side outflow piping system 480 are not independent from each other and are designed to be able to supply refrigerant in a special situation to the evaporator side at the same time in a special section.
  • the quenching chamber side evaporation pressure regulator 461 is connected to the evaporation side inflow piping system 470 and is connected to the first quench chamber inflow pressure regulator and the second quench chamber inflow pressure regulator formed at the inlet side of the quench chamber evaporator 451 .
  • the quenching chamber side evaporation pressure regulator 461 is located on the outlet side of the quench chamber evaporator 451 and is provided with a first quench chamber temperature sensor E11 for measuring the outlet temperature of the quench chamber evaporator 451, And a temperature sensor E12.
  • the freezing chamber side evaporation pressure regulator 462 includes a freezing chamber inflow pressure regulator connected to the evaporation side inflow piping system 470 and formed at an inlet side of the freezing compartment evaporator 452.
  • the refrigerating chamber side evaporation pressure regulator 462 is connected to the evaporation side outlet piping system 480 and is connected to the refrigerant re-flow path 414 for introducing the refrigerant discharged from the quenching chamber evaporator 451 to the freezing chamber side evaporator 452 And a freezer compartment temperature sensor E21 located at the outlet side of the freezer compartment evaporator 452 for measuring the outlet temperature of the freezer compartment evaporator 452.
  • the refrigerating chamber side evaporation pressure regulator 463 includes a refrigerating chamber inlet pressure regulator 463 connected to the evaporation side inlet piping system 470 and formed at the inlet side of the refrigerating chamber evaporator 453.
  • the refrigerating chamber side evaporation pressure regulating unit 463 is connected to the evaporation side outlet piping system 480 and is connected to the refrigerating chamber re-flow path 417 for introducing the refrigerant discharged from the freezing compartment evaporator 452 into the refrigerating chamber evaporator 453, And a refrigerating compartment temperature sensor (E31) located at the outlet side of the refrigerating compartment evaporator (453) and measuring the outlet temperature of the refrigerating compartment evaporator (453).
  • E31 refrigerating compartment temperature sensor
  • the quench room evaporator 451 uses only the refrigerant flowing from the evaporation side inflow piping system 470.
  • the quenching chamber side evaporation pressure regulator 461 is connected to the evaporation side inflow piping system 470 and is connected to the first quench chamber inflow pressure regulator and the second quench chamber inflow pressure regulator formed at the inlet side of the quench chamber evaporator 451 .
  • the first quench chamber inflow pressure regulating section includes a first control valve V401 and a first globe valve V421 that are introduced from the evaporation side inflow piping system 470.
  • the second quench chamber inflow pressure regulating section includes a second control valve V402 and a second globe valve V422 which are introduced from the evaporation side inflow piping system 470.
  • the refrigerant controlled by the first and second quench room inflow pressure regulators is introduced by the quench room refrigerant inflow passage 411 in a combined manner.
  • the first and second globe valves V421 and V422 are respectively connected to the first quench chamber temperature sensor E11 and the second quench chamber temperature sensor E12 to control the flow rate of the refrigerant.
  • the first and second quench chamber temperature sensors E11 and E12 are provided on the quench room refrigerant outlet passage 412 of the quench chamber evaporator 451.
  • the use of two inflow pressure regulators in the quench chamber evaporator 451 controls the inflow of the refrigerant according to the two temperature sensors.
  • the first quench chamber temperature sensor E11 may be used at a reference temperature of -25 degrees and the second quench chamber temperature sensor E12 may be used at a reference temperature of -40 degrees.
  • the quench chamber refrigerator 451 removes the inflow amount of the refrigerant so that the internal temperature can be maintained approximately between -40 and -25 degrees.
  • the reference temperature of the quench chamber temperature sensors can be changed variously according to the temperature control range of the quench chamber.
  • the freezer compartment evaporator 452 may use only the refrigerant flowing from the evaporation side inflow piping system 470 or may use the refrigerant introduced from the evaporation side inflow piping system 470 and the refrigerant discharged from the quenching room evaporator 451 side simultaneously.
  • the refrigerating chamber side evaporation pressure regulating portion 462 includes a freezing chamber inflow pressure regulating portion and a freezing side refrigerant material inflow passage 414.
  • the freezing compartment inflow pressure regulating section is connected to the evaporation side inflow piping system 470 and is formed at the inlet side of the freezer compartment evaporator 452 and includes a third control valve V403, a fourth control valve V404, and a third glove valve V431 ).
  • the refrigerant re-inflow path 414 is connected to the evaporation side outlet piping system 480 so that the refrigerant discharged from the quenching room evaporator 451 flows into the freezing chamber side evaporator 452 and the seventh control valve V407 .
  • the freezer compartment evaporator 452 may be operated in two modes. One is the case where the refrigerant supplied from the evaporation side inflow piping system 470 is used and the other is the case where the refrigerant gas discharged from the evaporation side inflow piping system 470 and the quench room evaporator 451 are used at the same time.
  • the third control valve V403 is closed and the fourth control valve V404 is opened. At this time, the seventh control valve V406 is closed.
  • the third globe valve V431 is controlled according to the refrigerant temperature of the freezer compartment evaporator 452 sensed by the freezer compartment temperature sensor E21 to control the refrigerant flowing into the freezer compartment evaporator 452 side .
  • the freezer room temperature sensor E21 is installed on the freezer compartment refrigerant discharge path 415.
  • the refrigerant flows into the freezer compartment evaporator 452 only through the freezer compartment refrigerant inflow passage 413.
  • the freezer compartment evaporator 452 is operated so that the temperature of the gas discharged from the quench room evaporator 451 is lower than the temperature of the freezer compartment evaporator 452, Lt; / RTI > At this time, the refrigerant gas discharged from the quenching room evaporator 451 can be reused.
  • the seventh control valve V407 is opened, the third control valve V403 is opened, and the fourth control valve V404 is closed.
  • the refrigerant gas discharged from the quench room evaporator 451 is introduced into and mixed with the freezer compartment evaporator 452 and used in the freezer compartment evaporator 452.
  • the refrigerant is supplied from both the freezing compartment refrigerant inflow passage 413 and the freezing side refrigerant material inflow passage 414, and both refrigerants are supplied in a mixed state at one point in the freezing compartment evaporator 452.
  • the evaporator 453 is driven substantially similar to that of the freezer compartment evaporator 452 and the refrigerant gas evaporator 451 or the freezer compartment evaporator 452 is used instead of reusing the refrigerant gas discharged from the quench- ) Is reused.
  • the refrigerating compartment evaporator 453 uses only the refrigerant flowing from the evaporation side inflow piping system 470 or the refrigerant introduced from the evaporation side inflow piping system 470 and the refrigerant discharged from the side of the quenching room evaporator 451 or the freezing compartment evaporator 452 Can be used simultaneously.
  • the refrigerating compartment evaporation pressure regulator 463 includes a refrigerating compartment inflow pressure regulator and a refrigerant refrigerant inflow passage 417.
  • the refrigerating compartment inflow pressure regulating section is connected to the evaporation side inflow piping system 470 and is formed at the inlet side of the refrigerating compartment evaporator 453.
  • the refrigerant side refrigerant inlet line 417 is connected to the evaporation side outlet piping system 480 so that the refrigerant discharged from the quenching room evaporator 451 and / or the freezer compartment evaporator 452 flows into the refrigerating chamber side evaporator 452,
  • the construction of the eighth to twelfth control valves may be composed of various models as long as the refrigerant gas discharged from the quench room evaporator 451 and the freezer compartment evaporator 452 can be controlled.
  • the refrigerating compartment evaporator 453 may also be operated in two modes. The other is a case where only the refrigerant supplied from the evaporation side inflow piping system 470 is used and the other is the refrigerant gas discharged from the evaporation side inflow piping system 470 and the quench room evaporator 451 and / Are simultaneously used.
  • the fifth control valve V405 is closed and the sixth control valve V406 is opened. At this time, the ninth control valve V409 and the tenth control valve V410 are closed.
  • the refrigerating compartment evaporator 453 controls the fourth glove valve V441 according to the refrigerant temperature of the refrigerating compartment evaporator 453 detected by the refrigerating compartment temperature sensor E31 to control the refrigerant flowing into the refrigerating compartment evaporator 453 .
  • the temperature of the gas discharged from the freezing compartment evaporator 452 or the quenching chamber evaporator 451 is lowered when the evaporation side inflow piping system 470 and the refrigerant gas discharged from the quenching chamber evaporator 451 or the freezing compartment evaporator 452 are used at the same time, Is lower than the temperature of the refrigerating compartment evaporator (453). At this time, the refrigerant gas discharged from the quench room evaporator 451 or the freezer compartment evaporator 452 can be reused.
  • the ninth control valve V409 is opened, the fifth control valve V405 is opened, and the sixth control valve V406 is closed.
  • the tenth control valve V410 may be opened.
  • the refrigerant gas discharged from the quench room evaporator 451 or the freezer compartment evaporator 452 is introduced into and mixed with the freezer compartment evaporator 452 side and used in the refrigerating compartment evaporator 453.
  • the refrigerant gas discharged after being used in the evaporator of each stage can be reused to increase the refrigerating efficiency.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)

Abstract

본 발명의 냉동기 토출 가스에 의한 응축폐열 회수를 이용한 냉동 시스템은 냉매를 압축하는 압축기, 상기 압축기에서 압축된 냉매가 유입되고, 응축되는 응축기, 상기 압축기에서 압축된 냉매를 응축기에 전달하는 메인 유로, 상기 압축기에서 배출되는 냉매의 열을 일부 저장하는 축열 저장조, 상기 압축기에서 압축된 냉매를 상기 축열 저장조에 전달하는 보조 유로계, 상기 응축기에서 응축된 냉매가 팽창되는 팽창밸브 및 상기 팽창된 냉매를 증발하는 증발측 복합 열교환기 를 포함하고, 상기 증발측 복합 열교환기는 상기 팽창 밸브에서 팽창된 냉매가 경유되는 증발 배관 및 상기 축열 저장조에 있는 순환수가 경유되는 제상수 공급관을 포함한다.

Description

냉동기 토출 가스에 의한 응축 폐열 회수를 이용한 냉동 시스템
본 발명은 냉동기 토출 가스에 의한 응축 폐열 회수를 이용한 냉동 시스템 에 관한 것으로, 보다 상세하게는 부가적인 동력을 사용하지 않고 제상을 위한 응축 폐열 회수를 할 수 있는 냉동 시스템에 관한 것이다.
일반적으로, 냉동 시스템은 증발기가 설치되고, 압축기, 응축기 및 팽창 밸브가 설치되는 구조를 이룬다. 압축기, 응축기, 팽창 밸브 및 증발기로 이루어지는 냉각 사이클 과정에서 증발기의 증발열과 외기 온도와의 열교환에 의해 냉기를 발생시키게 된다. 이때, 증발기는 증발열과 외기 온도의 차이에 의해 표면에 성에가 착상되는데, 상기와 같이 증발기의 표면에 착상된 성에는 점차 성장하면서 증발기의 열교환 작용을 저해하고, 쇼 케이스의 소비전력을 증가시키는 요인이 된다.
따라서, 성에의 착상량이 지나치게 증대될 경우 이를 제거하기 위한 제상 모드 운전이 필수적으로 이루어지도록 구성된다. 종래의 쇼 케이스에서 제상 방법은 주변에 제상 히터를 설치하여 미리 설정된 시점에 히터를 가동하여 증발기에 결빙된 성에를 녹여 제거하도록 구성된다.
상기와 같이 제상 히터를 이용한 제상 방법은 증발기에 고온의 열을 제공함으로써 빠른 시간에 제상이 이루어지는 장점이 있으나, 외부의 열원 또는 에너지를 사용하는 문제점이 발생한다.
또한, 일반적인 냉동 싸이클에 있어서 응축 폐열을 회수하는 시스템을 이용하는 경우, 외부의 열원 또는 에너지를 절감할 수 있는 장점이 있으나, 이것 또한 응축 폐열을 회수하는 시점에서 별도의 외부 에너지를 사용하는 단점이 있다.
본 발명은 전술한 바와 같은 문제점을 해결하기 위한 것으로, 별도의 외부 에너지를 사용하지 않고, 냉동 사이클 내에서 제상에 사용할 수 있는 에너지를 축열할 수 있는 냉동기 토출 가스에 의한 응축 폐열 회수를 이용한 냉동 시스템을 제공하는 것에 목적이 있다.
상기한 목적을 달성하기 위한 본 발명의 냉동기 토출 가스에 의한 응축 폐열 회수를 이용한 냉동 시스템은 냉매를 압축하는 압축기, 상기 압축기에서 압축된 냉매가 유입되고, 응축되는 응축기, 상기 압축기에서 압축된 냉매를 응축기에 전달하는 메인 유로, 상기 압축기에서 배출되는 냉매의 열을 일부 저장하는 축열 저장조, 상기 압축기에서 압축된 냉매를 상기 축열 저장조에 전달하는 보조 유로계, 상기 응축기에서 응축된 냉매가 팽창되는 팽창밸브 및 상기 팽창된 냉매를 증발하는 증발측 복합 열교환기; 를 포함하고, 상기 증발측 복합 열교환기는 상기 팽창 밸브에서 팽창된 냉매가 경유되는 증발 배관 및 상기 축열 저장조에 있는 순환수가 경유되는 제상수 공급관을 포함한다.
일 실시예에 있어서, 상기 보조 유로계는 상기 축열 저장조 내부를 경유하는 열교환로, 상기 열교환로의 말단부에 위치하고, 기화된 상기 냉매와 액화된 상기 냉매를 분리하는 기액분리부, 상기 기액분리부에서 상기 기화된 냉매를 메인 유로로 반환하는 응축 반환로, 상기 기액분리부에서 상기 액화된 냉매를 상기 팽창밸브 측으로 반환하는 팽창 반환로를 포함할 수 있다.
일 실시예에 있어서, 상기 기액분리부는 실린더 형상의 기액분리헤더로 형성되며, 상기 팽창 반환로는 체크밸브를 포함하고, 상기 기액분리헤더의 하부에 연결되어 중력에 의해 상기 액화된 냉매를 상기 팽창밸브 측으로 반환하는 것을 특징으로 할 수 있다.
일 실시예에 있어서, 상기 보조 유로계의 열교환로는 상기 축열 저장조 내에서 수회의 완만한 절곡을 가지는 것을 특징으로 할 수 있다.
일 실시예에 있어서, 상기 축열 저장조 내에 위치하고, 외부 전원에 의해 가열할 수 있는 보조히터를 더 포함하는 것을 특징으로 할 수 있다.
일 실시예에 있어서, 상기 압축기와 상기 응축기 사이에 위치하여 상기 메인유로를 제어하는 메인유로제어밸브 및 상기 보조 유로계의 열교환로 입구측에 위치하는 보조유로제어밸브를 더 포함하고, 상기 냉매의 유로 제어는 상기 메인유로제어밸브 및 보조유로제어밸브에 의해 이루어지는 것을 특징으로 할 수 있다.
일 실시예에 있어서, 상기 메인유로 및 상기 보조 유로계는 삼방향 밸브에 의해 제어되는 것을 특징으로 할 수 있다.
일 실시예에 있어서, 상기 증발측 복합 열교환기는, 급냉실에 급냉을 제공하는 급냉실 증발기, 냉동실에 냉동을 제공하는 냉동실 증발기, 냉장실에 냉장을 제공하는 냉장실 증발기, 상기 냉동실 증발기와 상기 팽창 밸브 사이에 배치되는 냉동실측 증발압력 조절부, 상기 냉장실 증발기와 상기 팽창 밸브 사이에 배치되는 냉장실측 증발압력 조절부 및 상기 급냉실 증발기와 상기 팽창 밸브 사이에 배치되는 급냉실측 증발압력 조절부를 포함하는 것을 특징으로 할 수 있다.
일 실시예에 있어서, 상기 급냉실측 증발압력 조절부는, 상기 증발측 유입 배관계와 연결되고, 상기 급냉실 증발기의 입구측에 형성되는 제1 급냉실 유입 압력 조절부 및 제2 급냉실 유입 압력 조절부 및 상기 급냉실 증발기의 출구 측에 위치하여, 상기 급냉실 증발기의 출구 온도를 측정하는 제1 급냉실 온도 센서 및 제2 급냉실 온도 센서를 포함하고, 상기 제1 급냉실 유입 압력 조절부는 상기 제1 급냉실 온도 센서에 의해 제어되고, 상기 제2 급냉실 유입 압력 조절부는 상기 제2 급냉실 온도 센서에 의해 제어되는 것을 특징으로 할 수 있다.
*일 실시예에 있어서, 상기 냉동실측 증발압력 조절부는, 상기 증발측 유입 배관계와 연결되고, 상기 냉동실 증발기의 입구측에 형성되는 냉동실 유입 압력 조절부 및 상기 증발측 유출 배관계와 연결되어, 상기 급냉실 증발기로부터 배출되는 냉매를 상기 냉동실측 증발기로 유입하는 냉동측 냉매 재유입로, 상기 냉동실 증발기의 출구 측에 위치하여, 상기 냉동실 증발기의 출구 온도를 측정하는 냉동실 온도 센서를 포함하고, 상기 냉동측 유입 압력 조절부는 상기 냉동실 온도 센서에 의해 제어되며, 상기 냉동실 증발기에는 증발측 유입 배관계로부터의 냉매와 상기 냉동측 냉매 재유입로에서의 토출된 냉매가 혼합되어 유입되는 것을 특징으로 할 수 있다.
일 실시예에 있어서, 상기 냉장실측 증발압력 조절부는, 상기 증발측 유입 배관계와 연결되고, 상기 냉장실 증발기의 입구측에 형성되는 냉장실 유입 압력 조절부 및 상기 증발측 유출 배관계와 연결되어, 상기 냉동실 증발기로부터 배출되는 냉매를 상기 냉장실측 증발기로 유입하는 냉장측 냉매 재유입로, 상기 냉장실 증발기의 출구 측에 위치하여, 상기 냉장실 증발기의 출구 온도를 측정하는 냉장실 온도 센서를 포함하고, 상기 냉장측 유입 압력 조절부는 상기 냉장실 온도 센서에 의해 제어되며, 상기 냉장실 증발기에는 증발측 유입 배관계로부터의 냉매와 상기 냉장측 냉매 재유입로에서의 토출된 냉매가 혼합되어 유입되는 것을 특징으로 할 수 있다.
상기와 같이 구성된 본 발명에 의하면, 별도의 에너지를 사용하지 않고, 제상을 위한 열에너지를 수집하여 추가적으로 소비되는 전력 없이 효율적으로 제상을 실시할 수 있게 된다.
또한 급랭-냉동-냉장을 동시에 사용하는 냉동 시스템에 있어서, 냉매의 사용을 효율적으로 할 수 있어 에너지의 효율적인 사용이 가능하다.
도 1은 본 발명의 일 실시예에 따른 냉동기 토출 가스에 의한 응축 폐열 회수 냉동 시스템의 구성을 나타내는 도면이다.
도 2는 도 1의 냉동 시스템의 구동을 설명하기 위한 도면이다.
도 3은 본 발명의 일 실시예에 따른 보조 유로계를 나타내는 도면이다.
도 4는 본 발명의 일 실시예에 따른 증발측 복합 열교환기를 나타내는 도면
직한 실시예를 설명함으로써 본 발명을 상세히 설명하도록 한다.
시스템 전체 구성
도 1은 본 발명의 일 실시예에 따른 냉동기 토출 가스에 의한 응축 폐열 회수 냉동 시스템의 구성을 나타내는 도면이다.
도 1을 참조하면, 본 발명의 일 실시예에 따른 냉동기 토출 가스에 의한 응축 폐열 회수 냉동 시스템은 냉매를 압축하는 압축기(10), 압축기에서 압축된 냉매가 유입되고, 응축되는 응축기(20), 압축기에서 압축된 냉매를 응축기에 전달하는 메인 유로(210), 압축기에서 배출되는 냉매의 열을 일부 저장하는 축열 저장조(60), 압축기에서 압축된 냉매를 상기 축열 저장조에 전달하는 보조 유로계(100), 응축기에서 응축된 냉매가 팽창되는 팽창밸브(30) 및 팽창된 냉매를 증발하는 증발측 복합 열교환기(400)를 포함한다.
증발측 복합 열교환기(400) 팽창 밸브에서 팽창된 냉매가 경유되는 증발 배관(410) 및 축열 저장조(60)에 있는 순환수가 경유되는 제상수 공급관(420)을 포함한다.
보조 유로계(100)는 축열 저장조(60) 내부를 경유하는 열교환로(110), 열교환로(110)의 말단부에 위치하고, 기화된 상기 냉매와 액화된 상기 냉매를 분리하는 기액분리부(90), 기액분리부(90)에서 기화된 냉매를 메인 유로로 반환하는 응축 반환로(120), 기액분리부(90)에서 액화된 냉매를 팽창밸브(30) 측으로 반환하는 팽창 반환로(130)를 포함한다.
축열 저장조(60)에는 외부 전원에 의해 가열할 수 있는 보조히터(70)를 더 포함할 수 있다. 응축기(20)의 일 측면에는 응축기의 제상이 필요한 조건을 감지할 수 있는 제상 센서(300)를 더 포함할 수 있다.
또한, 압축기(10)와 응축기(20) 사이에 위치하여 메인유로(210)를 제어하는 메인유로 제어밸브(V10) 및 보조 유로계(100)의 열교환로(110) 입구측에 위치하여 냉매가 보조 유로계(100)로 유입되는 것을 제어하는 보조유로 제어밸브(V20)를 더 포함할 수 있다.
이러한 메인유로 제어밸브(V10) 및 보조유로 제어밸브(V20)은 하나의 삼방향 밸브(V50)에 의해 통합되어 설치될 수 있다.
정상 가동 및 제상 가동
도 2는 도 1의 냉동 시스템의 구동을 설명하기 위한 도면이다.
본 실시예에 따른 냉동기 토출 가스에 의한 응축폐열 회수를 이용한 냉동 시스템의 구동을 먼저 설명한다.
*정상 가동 시에, 냉동 시스템은 압축기(10)에서 압축된 냉매를 응축기(20)에 전달한다. 이 과정에서 압축기(10)에서 압축된 고온의 냉매는 보조 유로계(100)를 통하여 축열 저장조(60)에 열을 전달하여 에너지를 저장한다. 응축기(20)에 전달된 냉매는 다시 팽창밸브(30)에 전달되고, 이 때에 냉각된 냉매는 증발측 복합 열교환기(400)로 전달되어 대상을 냉각한다. 이러한 사이클을 통하여 대상을 냉동 및 냉장할 수 있다.
제상 센서(300)에 의해 증발측 복합 열교환기(400)에 제상이 필요하다고 판단되는 경우, 제상 가동이 진행된다. 제상 가동은 축열 저장조(60)에 저장된 열을 순환수를 통하여 증발측 복합 열교환기(400)에 열을 전달하여 제상을 실시하며, 이 때에는 별도의 제상 펌프(50)의 가동에 의해 순환수의 순환을 기동한다.
따라서 정상 가동 시에 축열 저장조(60)에 열을 저장하고, 제상이 필요한 시점에서 제상 가동을 실시하여, 별도의 전원을 이용하지 않고, 축열 저장조(60)에 열을 저장할 수 있어 에너지를 절약할 수 있는 제상이 기동될 수 있다.
축열 저장 시스템
도 2를 다시 참조하면, 정상 가동 시에, 압축기(10)에서 압축된 고온의 냉매는 보조 유로계(100)를 통하여 축열 저장조(60)에 열을 전달하여 에너지를 저장한다.
도 1을 다시 참조하면, 보조 유로계(100)는 메인 유로(210)와 연결되어 축열 저장조(60)를 경유하는 열교환로(110)를 포함한다. 압축기(10)에서 압축된 고온의 냉매는 보조 유로계(100)의 열교환로(110)를 통하여 축열 저장조(60)에 에너지를 저장한다.
축열 저장조(60)는 지정된 온도까지만 열을 저장하도록 제어된다. 통상 40도의 온도로 한정되어 에너지를 저장하며, 보조 유로계(100)의 냉매 흐름을 제어하여 저장한다. 또한 보조 유로계(100)의 냉매 흐름은 앞서 설명한 메인유로 제어밸브(V10) 및 보조유로 제어밸브(V20)에 의해 제어된다.
또한 메인유로 제어밸브(V10) 및 보조유로 제어밸브(V20)은 삼방향 밸브(V50)에 의해서 하나의 밸브로 제어될 수 있는데, 이것은 도 3에 나타나 있다.
통상적으로 축열 저장조(60)의 상단에서 보조 유로계(100)의 열교환로(110)가 유입되며, 열 교환을 마친 후 하단에서 배출된다. 따라서 중력방향에 의해 냉매가 이동되며, 축열 저장조(60)과의 열교환을 위하여 열교환로(110)가 절곡하여 배치될 수 있으나, 압력 손실이 커지는 것을 방지하기 위하여 많은 회수의 절곡을 가지지는 않으며, 수회의 완만한 절곡을 가질 수 있다. 축열 저장조(60) 내의 축열 매체는 대류에 의해 순환할 수 있으므로 효율적으로 에너지(열)을 저장할 수 있다.
*축열 저장조(60)에서 빠져 나온 보조 유로계(100)와 기액분리부(90)가 연결된다. 기액분리부(90)는 기화된 냉매와 액화된 냉매를 분리하는 역할을 한다. 기액분리부(90)는 실린더 형상의 기액분리헤더로 형성될 수 있다.
기액분리부(90)는 기화된 냉매를 메인 유로로 반환하여 응축기(20)로 반환하는 응축 반환로(120)와 액화된 냉매를 팽창밸브 측으로 반환하는 팽창 반환로(130)를 포함하며, 팽창 반환로(130)는 체크밸브(V30)를 포함하여 액화된 냉매만 반환하도록 제어할 수 있다.
증발측 복합 열교환기 구성
증발측 복합 열교환기(400)는 급냉실에 급냉을 제공하는 급냉실 증발기(451), 냉동실에 냉동을 제공하는 냉동실 증발기(452), 냉장실에 냉장을 제공하는 냉장실 증발기(453), 냉동실 증발기와 팽창 밸브 사이에 배치되는 냉동실측 증발압력 조절부(462), 냉장실 증발기와 팽창 밸브 사이에 배치되는 냉장실측 증발압력 조절부(463) 및 급냉실 증발기와 상기 팽창 밸브 사이에 배치되는 급냉실측 증발압력 조절부(461)를 포함한다.
또한 증발측 복합 열교환기(400)은 증발기들에 냉매를 공급하는 증발측 유입 배관계(470) 및 증발기들로부터 배출된 냉매가 이동하는 증발측 유출 배관계(480)를 포함한다. 증발측 유입 배관계(470) 및 증발측 유출 배관계(480)는 서로 독립되어 구성되는 것이 아니며, 특수한 구간에서 연결되어 증발기 측에 특수한 상황의 냉매를 동시에 공급할 수 있도록 설계 된다.
급냉실측 증발압력 조절부(461)는 증발측 유입 배관계(470)와 연결되고, 급냉실 증발기(451)의 입구측에 형성되는 제1 급냉실 유입 압력 조절부 및 제2 급냉실 유입 압력 조절부를 포함한다.
또한 급냉실측 증발압력 조절부(461)는 급냉실 증발기(451)의 출구 측에 위치하여, 급냉실 증발기(451)의 출구 온도를 측정하는 제1 급냉실 온도 센서(E11) 및 제2 급냉실 온도 센서(E12)를 포함한다.
냉동실측 증발압력 조절부(462)는 증발측 유입 배관계(470)와 연결되고, 냉동실 증발기(452)의 입구측에 형성되는 냉동실 유입 압력 조절부를 포함한다.
또한 냉동실측 증발압력 조절부(462)는 증발측 유출 배관계(480)와 연결되어, 급냉실 증발기(451)로부터 배출되는 냉매를 냉동실측 증발기(452)로 유입하는 냉동측 냉매 재유입로(414)를 포함하고, 냉동실 증발기(452)의 출구 측에 위치하여, 냉동실 증발기(452)의 출구 온도를 측정하는 냉동실 온도 센서(E21)를 포함한다.
냉장실측 증발압력 조절부(463)는 증발측 유입 배관계(470)와 연결되고, 냉장실 증발기(453)의 입구측에 형성되는 냉장실 유입 압력 조절부(463)를 포함한다.
또한, 냉장실측 증발압력 조절부(463)는 증발측 유출 배관계(480)와 연결되어, 냉동실 증발기(452)로부터 배출되는 냉매를 냉장실 증발기(453)로 유입하는 냉장측 냉매 재유입로(417)를 포함하며, 냉장실 증발기(453)의 출구 측에 위치하여, 냉장실 증발기(453)의 출구 온도를 측정하는 냉장실 온도 센서(E31)를 포함한다.
증발측 급냉실 구동
급냉실 증발기(451)는 증발측 유입 배관계(470)으로부터 유입되는 냉매만을 사용한다. 급냉실측 증발압력 조절부(461)는 증발측 유입 배관계(470)와 연결되고, 급냉실 증발기(451)의 입구측에 형성되는 제1 급냉실 유입 압력 조절부 및 제2 급냉실 유입 압력 조절부를 포함한다.
제1 급냉실 유입 압력 조절부는 증발측 유입 배관계(470)으로부터 유입되는 제1 제어 밸브(V401) 및 제1 글로브 밸브(V421)를 포함한다. 제2 급냉실 유입 압력 조절부는 증발측 유입 배관계(470)으로부터 유입되는 제2 제어 밸브(V402) 및 제2 글로브 밸브(V422)를 포함한다. 이렇게 제1 및 제2 급냉실 유입 압력 조절부에 의해 제어되는 냉매는 급냉실 냉매 유입로(411)에 의해 합하여 유입 된다.
제1 및 제2 글로브 밸브(V421, V422)는 각각 제1 급냉실 온도 센서(E11) 및 제2 급냉실 온도 센서(E12)와 연결되어 냉매의 유량을 제어한다. 이러한 제1 및 제2 급냉실 온도 센서(E11, E12)는 급냉실 증발기(451)의 급냉실 냉매 배출로(412) 상에 설치된다.
급냉실 증발기(451)에서 두 개의 유입 압력 조절부를 사용하는 것은 두 개의 온도 센서에 따른 냉매의 유입량을 제어하기 때문이다. 제1 급냉실 온도 센서(E11)는 기준온도 -25도에서 사용되고, 제2 급냉실 온도 센서(E12)는 기준온도 -40도에서 사용될 수 있다. 급냉실 냉동기(451)는 내부 온도가 대략적으로 -40도에서 -25도 사이를 유지할 수 있도록 냉매의 유입량을 제거한다. 이러한 급냉실 온도 센서들의 기준 온도는 급냉실의 온도 조절 범위에 따라 다양하게 설정을 변경할 수 있다.
증발측 냉동실 구동
냉동실 증발기(452)는 증발측 유입 배관계(470)으로부터 유입되는 냉매만을 사용하거나, 증발측 유입 배관계(470)으로부터 유입되는 냉매와 급냉실 증발기(451)측에서 토출 되는 냉매를 동시에 사용할 수 있다.
냉동실측 증발압력 조절부(462)는 냉동실 유입 압력 조절부 및 냉동측 냉매 재유입로(414)를 포함한다.
냉동실 유입 압력 조절부는 증발측 유입 배관계(470)와 연결되고, 냉동실 증발기(452)의 입구측에 형성되며, 제3 제어 밸브(V403), 제4 제어 밸브(V404) 및 제3 글로브 밸브(V431)를 포함한다.
냉동측 냉매 재유입로(414)는 증발측 유출 배관계(480)와 연결되어, 급냉실 증발기(451)로부터 배출되는 냉매를 냉동실측 증발기(452)로 유입하며, 제7 제어 밸브(V407)를 포함한다.
냉동실 증발기(452)는 두 가지 모드로 운영될 수 있다. 하나는 증발측 유입 배관계(470)측에서 공급되는 냉매를 사용하는 경우이고, 다른 하나는 증발측 유입 배관계(470)와 급냉실 증발기(451)에서 토출 되는 냉매 가스를 동시에 사용하는 경우이다.
증발측 유입 배관계(470)에서 공급되는 냉매만을 이용하는 경우 제3 제어 밸브(V403)가 닫히고, 제4 제어 밸브(V404)가 열린다. 이 때에는 제7 제어 밸브(V406)은 닫히게 된다.
또한 냉동실 증발기(452)에서는 냉동실 온도 센서(E21)에서 감지되는 냉동실 증발기(452)의 냉매 온도에 따라 제3 글로브 밸브(V431)를 제어하여 냉동실 증발기(452) 측으로 유입되는 냉매를 제어할 수 있다. 냉동실 온도 센서(E21)는 냉동실 냉매 배출로(415) 상에 설치된다.
이 경우에는 냉동실 냉매 유입로(413)만을 경유하여 냉매가 냉동실 증발기(452)로 유입된다.
증발측 유입 배관계(470)와 급냉실 증발기(451)에서 토출 되는 냉매 가스를 동시에 사용하는 경우는, 냉동실 증발기(452)는 급냉실 증발기(451)에서 토출 되는 가스의 온도가 냉동실 증발기(452)의 온도보다 낮은 경우이다. 이 때에는 급냉실 증발기(451)에서 토출 되는 냉매 가스를 재사용할 수 있다.
이 경우 제7 제어 밸브(V407)이 개방되고, 제3 제어 밸브(V403)이 열리며, 제4 제어 밸브(V404)가 닫히게 된다. 냉동실 증발기(452) 측으로 급냉실 증발기(451)에서 토출 되는 냉매 가스가 유입 및 혼합되어 냉동실 증발기(452)에서 사용된다.
이 경우에는 냉동실 냉매 유입로(413)와 냉동측 냉매 재유입로(414) 양쪽에서 냉매가 공급되며, 냉동실 증발기(452) 내의 한 지점에서 양쪽의 냉매가 혼합된 상태로 공급된다.
증발측 냉장실 구동
냉장실 증발기(453)의 구동은 실질적으로 냉동실 증발기(452)의 구동과 유사하게 진행되며, 급냉실 증발기(451)에서 토출 되는 냉매 가스를 재사용 하는 대신, 급냉실 증발기(451) 또는 냉동실 증발기(452)에서 토출 되는 냉매 가스를 재사용한다.
냉장실 증발기(453)는 증발측 유입 배관계(470)으로부터 유입되는 냉매만을 사용하거나, 증발측 유입 배관계(470)으로부터 유입되는 냉매와 급냉실 증발기(451) 또는 냉동실 증발기(452)측에서 토출 되는 냉매를 동시에 사용할 수 있다.
냉장실 증발압력 조절부(463)는 냉장실 유입 압력 조절부 및 냉장측 냉매 재유입로(417)를 포함한다.
냉장실 유입 압력 조절부는 증발측 유입 배관계(470)와 연결되고, 냉장실 증발기(453)의 입구측에 형성되며, 제5 제어 밸브(V405), 제6 제어 밸브(V406) 및 제4 글로브 밸브(V441)를 포함한다.
냉장측 냉매 재유입로(417)는 증발측 유출 배관계(480)와 연결되어, 급냉실 증발기(451) 및/또는 냉동실 증발기(452)로부터 배출되는 냉매를 냉장실측 증발기(452)로 유입하며, 제8 제어 밸브(V407), 제9 제어 밸브(V409), 제10 제어 밸브(V410), 제11 제어 밸브(V411) 및 제12 제어 밸브(V412)를 포함하여 구성될 수 있다. 이 경우 제 8 내지 제12 제어 밸브의 구성은 급냉실 증발기(451) 및 냉동실 증발기(452)에서 토출 되는 냉매 가스를 제어할 수 있는 한 다양한 모델로 구성될 수 있음은 물론이다.
냉장실 증발기(453)는 역시 두 가지 모드로 운영될 수 있다. 하나는 증발측 유입 배관계(470)측에서 공급되는 냉매만을 사용하는 경우이고, 다른 하나는 증발측 유입 배관계(470)와 급냉실 증발기(451) 및/또는 냉동실 증발기(453)에서 토출 되는 냉매 가스를 동시에 사용하는 경우이다.
증발측 유입 배관계(470)에서 공급되는 냉매만을 이용하는 경우 제5 제어 밸브(V405)가 닫히고, 제6 제어 밸브(V406)가 열린다. 이 때에는 제9 제어 밸브(V409) 및 제 10 제어 밸브(V410)는 닫히게 된다.
또한 냉장실 증발기(453)에서는 냉장실 온도 센서(E31)에서 감지되는 냉장실 증발기(453)의 냉매 온도에 따라 제4 글로브 밸브(V441)를 제어하여 냉장실 증발기(453) 측으로 유입되는 냉매를 제어할 수 있다.
증발측 유입 배관계(470)와 급냉실 증발기(451) 또는 냉동실 증발기(452)에서 토출 되는 냉매 가스를 동시에 사용하는 경우는, 냉동실 증발기(452) 또는 급냉실 증발기(451)에서 토출 되는 가스의 온도가 냉장실 증발기(453)의 온도보다 낮은 경우이다. 이 때에는 급냉실 증발기(451) 또는 냉동실 증발기(452)에서 토출 되는 냉매 가스를 재사용할 수 있다.
이 경우 제9 제어 밸브(V409)이 개방되고, 제5 제어 밸브(V405)이 열리며, 제6 제어 밸브(V406)가 닫히게 된다. 또한 제 10 제어 밸브(V410)가 개방될 수 있다. 냉동실 증발기(452) 측으로 급냉실 증발기(451) 또는 냉동실 증발기(452)에서 토출 되는 냉매 가스가 유입 및 혼합되어 냉장실 증발기(453)에서 사용된다.
따라서 각 단계의 증발기에서 사용된 후 토출 되는 냉매 가스를 재사용하여, 냉동 효율을 상승시킬 수 있게 된다.
이상에서 설명한 본 발명은 전술한 실시예 및 첨부된 도면에 의해 한정되는 것이 아니고, 본 발명의 기술적 사상을 벗어나지 않는 범위 내에서 여러 가지 치환, 변형 및 변경이 가능함은 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명백할 것이다.

Claims (11)

  1. 냉매를 압축하는 압축기;
    상기 압축기에서 압축된 냉매가 유입되고, 응축되는 응축기;
    상기 압축기에서 압축된 냉매를 응축기에 전달하는 메인 유로;
    상기 압축기에서 배출되는 냉매의 열을 일부 저장하는 축열 저장조;
    상기 압축기에서 압축된 냉매를 상기 축열 저장조에 전달하는 보조 유로계;
    상기 응축기에서 응축된 냉매가 팽창되는 팽창밸브; 및
    상기 팽창된 냉매를 증발하는 증발측 복합 열교환기; 를 포함하고,
    상기 증발측 복합 열교환기는
    상기 팽창 밸브에서 팽창된 냉매가 경유되는 증발 배관 및
    상기 축열 저장조에 있는 순환수가 경유되는 제상수 공급관;을 포함하는 것을 특징으로 하는 냉동기 토출 가스에 의한 응축폐열 회수를 이용한 냉동시스템.
  2. 청구항 1에 있어서,
    상기 보조 유로계는,
    상기 축열 저장조 내부를 경유하는 열교환로;
    상기 열교환로의 말단부에 위치하고, 기화된 상기 냉매와 액화된 상기 냉매를 분리하는 기액분리부;
    상기 기액분리부에서 상기 기화된 냉매를 메인 유로로 반환하는 응축 반환로;
    상기 기액분리부에서 상기 액화된 냉매를 상기 팽창밸브 측으로 반환하는 팽창 반환로;
    를 포함하는 것을 특징으로 하는 냉동기 토출 가스에 의한 응축폐열 회수를 이용한 냉동시스템.
  3. 청구항 2에 있어서,
    상기 기액분리부는 실린더 형상의 기액분리헤더로 형성되며,
    상기 팽창 반환로는 체크밸브를 포함하고, 상기 기액분리헤더의 하부에 연결되어 중력에 의해 상기 액화된 냉매를 상기 팽창밸브 측으로 반환하는 것을 특징으로 하는 냉동기 토출 가스에 의한 응축폐열 회수를 이용한 냉동시스템.
  4. 청구항 2에 있어서,
    상기 보조 유로계의 열교환로는
    상기 축열 저장조 내에서 수회의 완만한 절곡을 가지는 것을 특징으로 하는 냉동기 토출 가스에 의한 응축폐열 회수를 이용한 냉동시스템.
  5. 청구항 2에 있어서,
    상기 축열 저장조 내에 위치하고, 외부 전원에 의해 가열할 수 있는 보조히터를 더 포함하는 것을 특징으로 하는 냉동기 토출 가스에 의한 응축폐열 회수를 이용한 냉동시스템.
  6. 청구항 2에 있어서,
    상기 압축기와 상기 응축기 사이에 위치하여 상기 메인유로를 제어하는 메인유로제어밸브; 및
    상기 보조 유로계의 열교환로 입구측에 위치하는 보조유로제어밸브를 더 포함하고,
    상기 냉매의 유로 제어는 상기 메인유로제어밸브 및 보조유로제어밸브에 의해 이루어지는 것을 특징으로 하는 냉동기 토출 가스에 의한 응축폐열 회수를 이용한 냉동시스템.
  7. 청구항 2에 있어서,
    상기 메인유로 및 상기 보조 유로계는 삼방향 밸브에 의해 제어되는 것을 특징으로 하는 냉동기 토출 가스에 의한 응축폐열 회수를 이용한 냉동시스템.
  8. 청구항 1에 있어서,
    상기 증발측 복합 열교환기는,
    급냉실에 급냉을 제공하는 급냉실 증발기;
    냉동실에 냉동을 제공하는 냉동실 증발기;
    냉장실에 냉장을 제공하는 냉장실 증발기;
    상기 냉동실 증발기와 상기 팽창 밸브 사이에 배치되는 급냉실측 증발압력 조절부;
    상기 냉장실 증발기와 상기 팽창 밸브 사이에 배치되는 냉동실측 증발압력 조절부;
    상기 급냉실 증발기와 상기 팽창 밸브 사이에 배치되는 냉장실측 증발압력 조절부;
    상기 증발기들에 냉매를 공급하는 증발측 유입 배관계; 및
    상기 증발기들로부터 배출된 냉매가 이동하는 증발측 유출 배관계;
    를 포함하는 냉동기 토출 가스에 의한 응축폐열 회수를 이용한 냉동시스템.
  9. 청구항 8에 있어서,
    상기 급냉실측 증발압력 조절부는,
    상기 증발측 유입 배관계와 연결되고, 상기 급냉실 증발기의 입구측에 형성되는 제1 급냉실 유입 압력 조절부 및 제2 급냉실 유입 압력 조절부; 및
    상기 급냉실 증발기의 출구 측에 위치하여, 상기 급냉실 증발기의 출구 온도를 측정하는 제1 급냉실 온도 센서 및 제2 급냉실 온도 센서;를 포함하고,
    상기 제1 급냉실 유입 압력 조절부는 상기 제1 급냉실 온도 센서에 의해 제어되고,
    상기 제2 급냉실 유입 압력 조절부는 상기 제2 급냉실 온도 센서에 의해 제어되는 것을 특징으로 하는 냉동기 토출 가스에 의한 응축폐열 회수를 이용한 냉동시스템.
  10. 청구항 8에 있어서,
    상기 냉동실측 증발압력 조절부는,
    상기 증발측 유입 배관계와 연결되고, 상기 냉동실 증발기의 입구측에 형성되는 냉동실 유입 압력 조절부;
    상기 증발측 유출 배관계와 연결되어, 상기 급냉실 증발기로부터 배출되는 냉매를 상기 냉동실측 증발기로 유입하는 냉동측 냉매 재유입로; 및
    상기 냉동실 증발기의 출구 측에 위치하여, 상기 냉동실 증발기의 출구 온도를 측정하는 냉동실 온도 센서;를 포함하고,
    상기 냉동측 유입 압력 조절부는 상기 냉동실 온도 센서에 의해 제어되며,
    상기 냉동실 증발기에는 증발측 유입 배관계로부터의 냉매와 상기 냉동측 냉매 재유입로에서의 토출된 냉매가 혼합되어 유입되는 것을 특징으로 하는 냉동기 토출 가스에 의한 응축폐열 회수를 이용한 냉동시스템.
  11. 청구항 8에 있어서,
    상기 냉장실측 증발압력 조절부는,
    상기 증발측 유입 배관계와 연결되고, 상기 냉장실 증발기의 입구측에 형성되는 냉장실 유입 압력 조절부;
    상기 증발측 유출 배관계와 연결되어, 상기 냉동실 증발기로부터 배출되는 냉매를 상기 냉장실측 증발기로 유입하는 냉장측 냉매 재유입로; 및
    상기 냉장실 증발기의 출구 측에 위치하여, 상기 냉장실 증발기의 출구 온도를 측정하는 냉장실 온도 센서;를 포함하고,
    상기 냉장측 유입 압력 조절부는 상기 냉장실 온도 센서에 의해 제어되며,
    상기 냉장실 증발기에는 증발측 유입 배관계로부터의 냉매와 상기 냉장측 냉매 재유입로에서의 토출된 냉매가 혼합되어 유입되는 것을 특징으로 하는 냉동기 토출 가스에 의한 응축폐열 회수를 이용한 냉동시스템.
PCT/KR2017/012525 2017-09-04 2017-11-07 냉동기 토출 가스에 의한 응축 폐열 회수를 이용한 냉동 시스템 WO2019045176A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020170112842A KR101962878B1 (ko) 2017-09-04 2017-09-04 냉동기 토출 가스에 의한 응축 폐열 회수를 이용한 냉동 시스템
KR10-2017-0112842 2017-09-04

Publications (1)

Publication Number Publication Date
WO2019045176A1 true WO2019045176A1 (ko) 2019-03-07

Family

ID=65518578

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/012525 WO2019045176A1 (ko) 2017-09-04 2017-11-07 냉동기 토출 가스에 의한 응축 폐열 회수를 이용한 냉동 시스템

Country Status (3)

Country Link
US (1) US10663212B2 (ko)
KR (1) KR101962878B1 (ko)
WO (1) WO2019045176A1 (ko)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110906580A (zh) * 2019-11-27 2020-03-24 青岛海尔空调电子有限公司 空调***的控制方法
KR102604962B1 (ko) * 2023-04-19 2023-11-23 주식회사 세원글로벌엔터프라이즈 제상장치를 구비한 냉동 시스템

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5381665A (en) * 1991-08-30 1995-01-17 Sanyo Electric Co., Ltd. Refrigerating system with compressor cooled by liquid refrigerant
KR100796283B1 (ko) * 2007-09-28 2008-01-21 주식회사삼원기연 토출가스의 폐열을 이용한 에너지 절감형 냉동장치
KR20100027353A (ko) * 2008-09-02 2010-03-11 이형문 냉장냉동장치
KR101315810B1 (ko) * 2013-05-15 2013-10-08 주식회사 유한엔지니어링 복합 제상 수단을 구비한 에너지 절약형 냉동·냉장 장치
KR20170078342A (ko) * 2015-12-29 2017-07-07 주식회사 신진에너텍 냉장, 냉동 및 급냉 보관 장치

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR900000809B1 (ko) * 1984-02-09 1990-02-17 미쓰비시전기 주식회사 냉난방 · 급탕용(給湯用) 히트펌프장치
US4693089A (en) * 1986-03-27 1987-09-15 Phenix Heat Pump Systems, Inc. Three function heat pump system
US4955207A (en) * 1989-09-26 1990-09-11 Mink Clark B Combination hot water heater-refrigeration assembly
US5792327A (en) * 1994-07-19 1998-08-11 Corning Incorporated Adhering metal to glass
EP2306111A1 (en) * 2008-06-06 2011-04-06 Daikin Industries, Ltd. Hot water system
EP3317592B1 (en) * 2015-07-01 2020-10-07 Trane Air Conditioning Systems (China) Co. Ltd. Heat recovery system with liquid separator application and a method of fluid flow through a fluid circuit during both a cooling and a heat recovery mode

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5381665A (en) * 1991-08-30 1995-01-17 Sanyo Electric Co., Ltd. Refrigerating system with compressor cooled by liquid refrigerant
KR100796283B1 (ko) * 2007-09-28 2008-01-21 주식회사삼원기연 토출가스의 폐열을 이용한 에너지 절감형 냉동장치
KR20100027353A (ko) * 2008-09-02 2010-03-11 이형문 냉장냉동장치
KR101315810B1 (ko) * 2013-05-15 2013-10-08 주식회사 유한엔지니어링 복합 제상 수단을 구비한 에너지 절약형 냉동·냉장 장치
KR20170078342A (ko) * 2015-12-29 2017-07-07 주식회사 신진에너텍 냉장, 냉동 및 급냉 보관 장치

Also Published As

Publication number Publication date
KR20190026288A (ko) 2019-03-13
US20190072312A1 (en) 2019-03-07
US10663212B2 (en) 2020-05-26
KR101962878B1 (ko) 2019-03-27

Similar Documents

Publication Publication Date Title
WO2012169764A2 (en) Air conditioner in electric vehicle
WO2011149151A1 (en) Hot water supply device associated with heat pump
WO2021215695A1 (ko) 자동차용 히트 펌프 시스템
WO2016017939A1 (ko) 차량용 히트 펌프 시스템
WO2016013800A1 (en) A refrigerator and a method controlling the same
WO2016148476A1 (ko) 차량용 히트 펌프 시스템
WO2016117946A1 (en) Cooling cycle apparatus for refrigerator
WO2016003028A1 (ko) 복합 열원을 이용한 히트펌프 냉난방 시스템 및 그의 제어방법
WO2020071801A1 (ko) 열관리 시스템
WO2017057861A2 (ko) 공기조화 시스템
WO2018016902A1 (ko) 차량용 공조 시스템 및 그 제어방법
WO2021157820A1 (en) Air conditioner
WO2018182084A1 (ko) 냉온동시 히트펌프 시스템
WO2018147675A1 (ko) 냉동시스템
WO2011090309A2 (en) Refrigerator and method for controlling the same
WO2018155871A1 (ko) 차량용 히트펌프 시스템
WO2019045176A1 (ko) 냉동기 토출 가스에 의한 응축 폐열 회수를 이용한 냉동 시스템
WO2018199682A1 (ko) 실외기 및 그 제어방법
WO2015076644A1 (ko) 공기조화기
WO2011062349A1 (ko) 히트 펌프
WO2019203621A1 (ko) 저온 저장고의 냉각 시스템
WO2022265140A1 (ko) 프리쿨링 냉동기를 구비한 데이터센터 국부 냉각시스템
WO2020209474A1 (en) Air conditioning apparatus
WO2019245096A1 (ko) 효율적인 제상 운전이 가능한 복합식 냉각 시스템
WO2010035982A2 (ko) 히트 펌프 시스템

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17923621

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17923621

Country of ref document: EP

Kind code of ref document: A1