WO2019044042A1 - Battery having electrolytic solution containing alkaline mineral ionized water, electrolyte active material, and method for producing battery electrolytic solution - Google Patents

Battery having electrolytic solution containing alkaline mineral ionized water, electrolyte active material, and method for producing battery electrolytic solution Download PDF

Info

Publication number
WO2019044042A1
WO2019044042A1 PCT/JP2018/017866 JP2018017866W WO2019044042A1 WO 2019044042 A1 WO2019044042 A1 WO 2019044042A1 JP 2018017866 W JP2018017866 W JP 2018017866W WO 2019044042 A1 WO2019044042 A1 WO 2019044042A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
electrolytic solution
electrolyte
active material
water
Prior art date
Application number
PCT/JP2018/017866
Other languages
French (fr)
Japanese (ja)
Inventor
杉山 修
Original Assignee
杉山 修
水口 侑香
水口 果南
水口 悦子
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 杉山 修, 水口 侑香, 水口 果南, 水口 悦子 filed Critical 杉山 修
Priority to JP2019538960A priority Critical patent/JP6947832B2/en
Publication of WO2019044042A1 publication Critical patent/WO2019044042A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L2/00Non-alcoholic beverages; Dry compositions or concentrates therefor; Their preparation
    • A23L2/38Other non-alcoholic beverages
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L2/00Non-alcoholic beverages; Dry compositions or concentrates therefor; Their preparation
    • A23L2/52Adding ingredients
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/68Treatment of water, waste water, or sewage by addition of specified substances, e.g. trace elements, for ameliorating potable water
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/32Liquid carbonaceous fuels consisting of coal-oil suspensions or aqueous emulsions or oil emulsions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/04Cells with aqueous electrolyte

Definitions

  • the present invention relates to a battery, and more particularly to a battery using an alkaline aqueous solution containing specific mineral ions as an electrolyte, an electrolyte active material, and a method for producing an alkaline battery electrolyte.
  • galvanic cells As a primary battery, galvanic cells have long been famous. For galvanic cells, use a zinc plate and a copper plate as electrodes, and use a voltaic cell using sulfuric acid as an electrolyte between them; is there. Further, as a primary battery, a manganese dry battery, a lithium lithium lithium fluoride battery, a lithium thionyl chloride battery, a lithium iron disulfide battery, an alkaline manganese battery, an air zinc battery, a silver oxide battery and the like are known.
  • Patent Document 1 is an invention of a battery structure for fishing such as floating, in which magnesium, aluminum, zinc or the like is used as a negative electrode, and silver chloride, lead chloride, copper chloride, as a positive electrode.
  • a battery in which a water-absorbent material is disposed between copper iodide, potassium persulfate and the like is described.
  • the negative electrode is zinc, nickel, chromium or aluminum
  • the positive electrode is gold, silver, copper or stainless steel
  • the electrolyte is obtained by electrolyzing a liquid containing a sulfate ion substance eluted from tuff.
  • a battery using a "sulfate ion containing electrolyte" is described.
  • Patent Document 3 describes a hybrid battery in which "lead dioxide and lead” or “copper (alloy) and aluminum (alloy)” is used as a combination of metals constituting the electrode plate, and the positive electrode plate and the negative electrode plate are arranged facing each other. Sulfuric acid is used as the electrolyte.
  • batteries using an aqueous alkaline solution as an electrolyte include nickel hydrogen batteries and alkaline manganese batteries, the electrolyte is strongly alkaline potassium hydroxide. Potassium hydroxide oxidizes or dissolves a metal or metal oxide having a high ionization tendency, and the use of these electrolytic solutions shortens the life of the electric material.
  • JP 2004-158209 A JP, 2010-153206, A JP, 2013-247101, A
  • the present invention has been made in view of the above background art, and an object thereof is to provide a battery which stably supplies power for a long time, and a novel battery electrolyte and electrolyte used for the battery. It is to provide an active material.
  • the present inventor uses mineral ion and water containing specific substances (ions, compounds, etc.) as electrolytes existing between them using specific positive electrodes and negative electrodes. And preferably, “high temperature calcined carbon group formed by supporting and firing mineral ion water and an ashed mineral ion precursor”, and a paste-like electrolyte active material containing the ashed mineral ion precursor
  • the present invention can be accomplished by finding that a simple and low-cost battery can be provided by which power can be stably supplied for a long time and the electrode is also a general-purpose metal, particularly a carbon plate or carbon fiber as a positive electrode.
  • a metal body having a larger ionization tendency than hydrogen as the negative electrode, a conductor as the positive electrode, and an alkaline earth metal ion as an electrolyte existing between the negative electrode and the positive electrode has a pH of
  • a battery which contains 12 or more and 14 or less mineral ion water.
  • the present invention is an electrolyte active material for the above battery, which is in the form of a paste containing the above alkaline earth metal ion and the above ashed mineral ion precursor.
  • a metal body having a larger ionization tendency than hydrogen as a negative electrode, a conductor as a positive electrode, and mineral ion water having a pH of 12 to 14 as an electrolyte existing between the negative electrode and the positive electrode It is a manufacturing method of the used battery electrolyte, and Dissolve at least an oxide, hydroxide, carbonate or bicarbonate of magnesium or calcium in water to contain alkaline earth metal ions, adjust the pH, and dissolve the water-soluble components of biological ash It is intended to provide a method for producing a battery electrolytic solution characterized by
  • the present invention it is possible to solve the above-mentioned problems and to provide a battery which supplies electric power (voltage and current) continuously and stably for a long period of time very simply and inexpensively.
  • the battery of the present invention can continuously supply power for 600 hours or more even in a general-purpose simple lamination process in which the electrolytic solution is easily vaporized. At this time, when the power is decreased for more than 600 hours, the electrolyte solution can be dropped to enable repeated use.
  • highly sensitive encapsulation treatment it is possible to generate electricity as long as the negative electrode, for example, an aluminum electrode is not oxidized, as long as the electrolytic solution is not vaporized.
  • the electrolytic solution of a voltaic battery is an acidic aqueous solution such as sulfuric acid or hydrochloric acid. It is also known that aqueous solutions of salts such as saline can be used. An aqueous potassium hydroxide solution is known as one using an alkaline aqueous solution, but this rapidly erodes and dissolves a metal having a large ionization tendency.
  • the battery of the present invention is difficult to oxidize metal electrodes and metal oxides even if the pH is 12 or more and 14 or less because it uses a specific one as the electrolytic solution, and it is extremely simple even though it is extremely simple. Power can be supplied continuously and stably.
  • nickel oxyhydroxide, manganese dioxide, etc. which have been required, are not basically regarded as essential, but “high temperature baking by supporting and calcining the above mineral ion water and the above ashed mineral ion precursor By using the "group of carbon", a battery with higher performance can be obtained.
  • the inclusion of a conventional active material is not excluded from the present invention.
  • the battery performance can also be improved by dispersing an electrolyte active material such as graphite, graphene, nickel oxyhydroxide, manganese dioxide, tin oxide or the like in the electrolytic solution to form a paste.
  • the present invention uses a metal body having a larger ionization tendency than hydrogen as the negative electrode, uses a conductor as the positive electrode, and contains alkaline earth metal ions as an electrolytic solution existing between the negative electrode and the positive electrode. It is a battery characterized by containing 14 or less mineral ion water. Furthermore, it is effective to contain "the above-mentioned mineral ion water and the above-mentioned high temperature calcination carbon group which carries the above-mentioned mineral ion ion precursor" as an electrolyte active material.
  • the “supported high temperature calcined carbon group” includes a high temperature calcined carbon group (made by sintering) after being supported. The same applies below.
  • the electrolyte solution contains a paste containing an alkaline earth metal ion, a paste containing an ashed mineral ion precursor, and an electrolyte active material complexed with a carbon group supported by a high temperature solution and supported by high temperature baking.
  • the “paste containing an ashed mineral ion precursor” is preferably a paste of an ash of biological origin.
  • the form of the battery is not particularly limited as long as it has the electrolytic solution 4 between the negative electrode 1 and the positive electrode 2, and there is an electrode at the center and other electrodes along the casing like a general purpose dry battery.
  • the form may be planar or planar, but as shown in FIGS. 1 and 2, the form in which the electrode is a planar or vertical cell is particularly preferable.
  • an electrolyte solution 4 having an electrolyte active material described above or below be present between both electrodes. That is, it is particularly preferable to further contain a specific paste as described above or below or "a high temperature calcined carbon group formed by supporting and calcining the mineral ion water and the ashed mineral ion precursor".
  • the electrolytic solution 4 may be used by being impregnated into the water absorbent substrate 3. In that case, the portion of the electrode sandwiching the “portion impregnated with the electrolytic solution” acts as a positive electrode and a negative electrode.
  • the size of the electrode plate is not particularly limited, but it is preferably 10 mm or more and 100 mm or less, particularly preferably 20 mm or more and 70 mm or less.
  • the thickness of the electrode plate is not particularly limited, but is preferably 0.5 mm or more and 1 mm or less.
  • the water absorbent substrate 3 is present between the electrodes, and the water absorbent substrate 3 is impregnated with the electrolytic solution 4, and the portion is substantially In the case of a battery, the size of one electrode (the circular portion in which the electrolyte is soaked in FIG.
  • the length, width or diameter is preferably 1 mm or more and 45 mm or less, and 5 mm 40 mm or less is more preferable, 8 mm or more and 35 mm or less is particularly preferable, and when neither rectangular nor circular, the above value is converted based on the area.
  • the distance between the electrodes is not particularly limited as long as power can be supplied satisfactorily, but it is preferably 0.03 mm or more and 8 mm or less, more preferably 0.05 mm or more and 3 mm or less, and particularly preferably 0.1 mm or more and 2 mm or less. If the distance between the electrodes is too small, there is a risk of shorting. It is preferable to apply an insulator around the gap contact interface between both electrodes.
  • the metal used as the negative electrode 1 is not particularly limited as long as it is “a metal having a larger ionization tendency than hydrogen”, but specifically, aluminum, zinc, magnesium, lithium, iron, nickel, tin, lead, etc. It can be mentioned. Among them, aluminum or zinc is particularly preferable in terms of electromotive force, stability, price and the like. Although an alloy is not excluded, a single metal is preferable because the composition of the electrolytic solution 4 is not changed. In addition, it is preferable to use a metal wire such as an aluminum wire or a zinc wire (particularly preferably an aluminum wire) for the negative electrode because miniaturization (minimal cell) can be achieved.
  • the positive electrode 2 of the battery of the present invention is not particularly limited as long as it is a conductor, but the conductive material forming the conductor is preferably copper, silver, palladium, gold or platinum, or an alloy thereof.
  • carbonaceous materials such as graphite (graphite), high temperature calcined carbon, carbon fibers, etc. may be used.
  • the conductive structure may be a conductive structure in which fine particles of these conductive substances are dispersed or compressed, or a thin oxide film may be present on the surface.
  • the metal is more preferably copper or silver or an alloy thereof in terms of electromotive force, stability, cost and the like, and particularly preferably copper for cost reasons.
  • the carbonaceous material is more preferably carbon fiber from the viewpoint of light weight, stability over time, cost (cost) and the like. Use of carbon fiber for the positive electrode is preferable because it can be miniaturized (miniaturized cell).
  • the electrolyte solution 4 of the battery of the present invention is characterized in that it contains mineral ion water having a pH of 12 or more and 14 or less containing an alkaline earth metal ion.
  • the pH is particularly preferably 13 or more and 14 or less. If such an electrolytic solution 4 is used, a battery having a long life can be obtained with stable power, unlike a potassium hydroxide solution or the like which dissolves a metal.
  • the principle of action is not limited, it is considered that the electrode (surface) is stabilized by making the electrolytic solution 4 alkaline “mineral ion water” and further adjusting the pH to a specific range.
  • the pH can be adjusted using the "compound which dissolves in water to give an alkaline earth metal ion” described later, or separately, it can be adjusted by adding a “compound showing alkalinity in water” It is.
  • the pH is adjusted with a “compound that dissolves in water to give an alkaline earth metal ion” or “an ashed mineral ion precursor consisting of a biological ash”, which will be described later.
  • the pH (range) refers to the pH of the electrolyte 4 at the initial stage of battery supply etc., but such an electrolyte that the pH at the time of use (from the start of use to the end of use) always falls within the above range 4 is desirable.
  • Alkaline Earth Metal Ion in Electrolyte As the alkaline earth metal ion (ion of group 2 element), magnesium ion, calcium ion, strontium ion, barium ion and the like are mentioned as preferable ones. More preferably, a battery with stable power and a long life can be produced, a compound containing the ion is inexpensive, a compound containing the ion is easily obtained from a substance, limestone; organisms such as coral stone, egg shell or shell, etc. It is magnesium ion (Mg 2+ ) or calcium ion (Ca 2+ ), particularly preferably calcium ion (Ca 2+ ), from the viewpoint of being easily obtained from the product. These ions may be contained singly or in combination of two or more.
  • alkaline earth metal ion supply compound an oxide of the alkaline earth metal, hydroxylated Substances, carbonates, bicarbonates and the like. More preferably, they are oxides, hydroxides, carbonates, hydrogencarbonates of magnesium or calcium, etc., more preferably oxides, hydroxides, carbonates, hydrogencarbonates of calcium, etc., Particularly preferred is calcium hydroxide (slaked lime). Moreover, what is called what is called “calcaceous" including the above is also preferable.
  • the amount of the alkaline earth metal ion in the electrolytic solution 4 and the amount of the alkaline earth metal ion supply compound used for preparation of the electrolytic solution are such that the finally obtained electrolytic solution 4 has the above-mentioned pH range. Is preferred.
  • the alkaline earth metal ion supply compound can be introduced into water (preferably dissolved and aged in a state where air is shut off), optionally after aging and filtering to obtain the desired electrolytic solution 4. These compounds may be used alone or in combination of two or more. At this time, it is preferable to use the “partially dissolved alkaline earth metal ion paste” also as an electrolyte active material described later or as a raw material of the electrolyte active material.
  • the pH be adjusted only by the “compound that dissolves in water to give an alkaline earth metal ion” and that the pH fall within the above range, but other “ionic compounds showing alkalinity in water” is added as appropriate to adjust the pH. It can also be adjusted.
  • a product of biological origin as the above-mentioned alkaline earth metal ion-supplying compound from the viewpoints of cost advantages and being friendly to humans and nature.
  • biological products coral stones, egg shells, shells such as oyster shells, and the like are also preferable because they can be obtained inexpensively, can be obtained as wastes, and the like.
  • the electrolytic solution in the present invention further contains "an ashed mineral ion precursor consisting of a biological ash" in addition to those described above.
  • an action principle is not limited, it is thought that the compound or ion containing trace elements in an organism stabilizes an electrode (surface) by containing this.
  • the above-mentioned organism is a protist or plant rich in mineral components.
  • the protist include algae, protozoa and the like, and examples of the plant include seed plants and the like.
  • the algae, seaweed and the like are preferable, and among them, green algae; brown algae such as mozuku, kelp, wakame, honda wall, and hijiki; red algae; diatoms and the like are more preferable.
  • the seed plants are preferably tea plants and the like, among which leaves, stems, roots and the like are more preferable.
  • the electrolytic solution in the present invention preferably contains an ashed mineral ion precursor consisting of an ash of a living organism, but as the living organism, it is particularly preferable to be a plant or a seaweed.
  • wastes containing the above-mentioned organisms or parts of the above-mentioned organisms include seeds derived from seed plants such as tea husks, root vegetable processing residues, weeds and the like; seaweeds such as brown algae (preferably desalinated); Nissan Walla and the like.
  • seed plants such as tea husks, root vegetable processing residues, weeds and the like
  • seaweeds such as brown algae (preferably desalinated); Nissan Walla and the like.
  • brown algae preferably desalinated
  • Nissan Walla preferably desalinated
  • the electrolytic solution in the present invention preferably contains “a water-soluble mineral component of an ash of a living organism”, but the water-soluble component is separately separated from the ash and contained in the electrolytic solution 4 although it may be added, it may be added to the water constituting the electrolytic solution 4 and filtered after aging so that only the water-soluble ion component is contained in the electrolytic solution 4.
  • Electrolyte active material in electrolyte solution contains the above-mentioned mineral ion water, and further contains an electrolytic active material, and the electrolytic active material is obtained by calcining a "biological precursor derived from a living organism" carrying the above electrolytic solution. Is preferred.
  • the above-mentioned electrolytic solution further carries out the above-mentioned high temperature calcination carbon by carrying and calcinating the above-mentioned mineral ion water and the above-mentioned incineration mineral ion precursor as an electrolyte active material (preferably to "a carbon precursor derived from a living body") It is preferable to contain a group.
  • the said high temperature baking carbon group is what carried out the high temperature plasma baking by microwave excitation "the carbon precursor of biological origin (it carry
  • the “electrolytic solution to be supported” include those described above, but the "high temperature calcined carbon group obtained by firing” is contained in the same and the same as the electrolytic solution actually used in the battery. It does not have to be an electrolyte having the composition of More preferably, the electrolyte active material is a high-temperature calcined carbon group obtained by high-temperature calcination in a state where mineral ion water is supported on a "biologically-derived carbon precursor".
  • the group be a high temperature calcined carbon group exhibiting strong alkalinity.
  • the organism-derived carbon precursor includes the organisms themselves such as tea and seaweed, they become carbon during high temperature baking (carbonized), and "high temperature baking carbon group” Form is included.
  • the above “organism” can be read as "waste”.
  • the electrolytic solution 4 in the present invention is an alkaline earth containing “the above mineral ion water” as a new electrolyte active material in addition to the usual “mineral ion water having a pH of 12 or more and 14 or less containing alkaline earth metal ions”.
  • Metal ion paste "a paste containing an ashed mineral ion precursor", preferably a paste of an ash from a product of biological origin, particularly preferably a "paste of grass and wood", or the above-mentioned electrolyte It is very preferable to contain “high-temperature-fired carbon group” by supporting It is preferable that the above-mentioned high-temperature-fired carbon group be formed by high-temperature firing and carbonization in a state in which the above-described electrolytic solution and mineral ion water are supported on the above-mentioned "biologically-derived carbon precursor".
  • the electrolytic solution further contains graphene in which graphite is exfoliated by the mineral ion water.
  • Graphite is a stack of graphene structures.
  • the term “graphite” also includes those in which several layers are stacked to form a powder.
  • the shape of the electrolyte active material such as graphite, graphene, nickel oxyhydroxide, manganese dioxide or the like in the electrolytic solution 4 is preferably powdery. When the electrolyte active material is contained, the conductivity of the electrolytic solution 4 is improved, the electrode is stabilized, the battery life is extended, and the voltage and current values are stabilized for a long time.
  • the electrolyte active material may not be contained, but if contained, it is preferably 30% by mass or more and 70% by mass or less, and more preferably 60% by mass or more and 80% by mass or less with respect to the entire electrolyte solution. 85 mass% or more and 90 mass% or less are especially preferable.
  • the electrolyte active material is preferably used by kneading the powder with the above-mentioned mineral ion water electrolyte and containing it in the electrolyte 4, applying to an electrode, or screen printing.
  • ⁇ Thickener in electrolyte, other substances It is also preferable to add a thickener to the electrolytic solution of the present invention for thickening.
  • the thickener is not particularly limited, but a naturally occurring product is preferable, and natural polysaccharides such as fucoidan, xanthan gum and the like which are heat-extracted with an electrolytic solution and thickly deposited with a polymer as low molecules are particularly preferable. Existing carboxymethylcellulose (CMC) and the like may cause current blocking.
  • CMC carboxymethylcellulose
  • other substances other than the above substances can be contained in the electrolytic solution of the present invention as long as the battery performance is not deteriorated.
  • the electrolyte solution 4 may be impregnated in the water-absorbent substrate 3 and sandwiched between the negative electrode 1 and the positive electrode 2.
  • the water-absorbent substrate 3 include cotton, non-woven fabric, felt, woven fabric, paper, through-bubbles and the like.
  • the size of the water-absorbent substrate 3 is preferably in the range of the size of the electrode plate or the electrode described above, and the thickness of the water-absorbent substrate 3 is in the range of the distance between the electrodes described above Is preferred.
  • interposed between both electrodes is preferable.
  • the present invention is also a battery electrolyte having the above-described composition, which is used for the above-described battery.
  • the battery electrolyte of the present invention is suitable for the above-described battery of the present invention.
  • the present invention is also the above-described method for producing the battery. That is, a metal body having a larger ionization tendency than hydrogen is used as the negative electrode 1, a conductor is used as the positive electrode 2, and alkaline water having a pH of 12 or more and 14 or less is used as the electrolytic solution 4 present between the negative electrode 1 and the positive electrode 2.
  • a method for producing a battery electrolyte solution comprising dissolving at least an oxide, hydroxide, carbonate or bicarbonate of magnesium or calcium in water to contain alkaline earth metal ions, and It is also a method for producing a battery electrolyte, characterized in that it is prepared and dissolved in a water-soluble component of a biological ash. In addition, although limitation is not carried out, it is preferable to carry out melt
  • the preferred range of the production method is as described above. Moreover, adjustment of pH injects water into "alkaline earth metal ion supply compound", preferably in a state where air is shut off, preferably for 12 hours or more of aging (standing), "alkaline earth metal ion" A part or the surface layer or all of the feed compound is dissolved as a mineral ion (alkaline earth metal ion), and when the pH falls within the desired range, the pH adjustment is finished (thereby adjusting the pH) Can be regarded as During and / or finally, filtration is preferably performed to produce a battery electrolyte.
  • ⁇ Method of manufacturing battery> Although not limited thereto, it is preferable to sandwich the water-absorbent substrate 3 between the electrodes, impregnate the electrolyte solution 4 there, and seal by a lamination process so that the water of the electrolyte solution 4 is not vaporized. In cold region specifications, it is more preferable to use a heat insulating structure after laminating and sealing. If the electrolyte solution 4 is refilled, the power generation function can be repeated.
  • Example 1 Slaked lime (calcium hydroxide) is added to demineralized water so that the pH of the solution is 13.5 or more and 14.0 or less, and after aging for 12 hours or more in a state where air is blocked, it is filtered and made of mineral ion water An electrolytic solution was obtained.
  • a battery of the type as shown in FIG. 2 was produced.
  • An aluminum plate (20 mm ⁇ 20 mm ⁇ 0.3 mm thick) is used as the negative electrode 1
  • a copper plate 25 mm ⁇ 20 mm ⁇ 0.3 mm thick
  • cotton felt 0.3 mm thick
  • Sandwiches That is, the distance between the electrodes was 0.3 mm.
  • the battery of aluminum foil and copper foil about 0.03 mm was also produced as an electrode.
  • the electrolytic solution was impregnated into the cotton felt to produce a battery as shown in FIG.
  • the electrode size was slightly small, that is, the aluminum electrode 15 mm ⁇ 20 mm, the copper electrode 15 mm ⁇ 17 mm, and the size of the cotton felt was 12 mm ⁇ 15 mm.
  • Example 3 In Example 1, instead of slaked lime (calcium hydroxide) alone, the ratio of slaked lime (calcium hydroxide) to quick lime (calcium oxide) was set to "10/1 (molar ratio of calcium ions)", and pH was set to 14. A battery was produced in the same manner as Example 1 except for the above.
  • Example 4 Plant ash (tea shell ash or Hyundai Wall ash) is further added to the “electrolytic solution consisting of mineral ion water” prepared in Example 1 as “bios ash”, aged for 12 hours, and filtered. The insoluble matter was filtered off. By this, “water-soluble sodium, potassium, calcium, phosphorus, zinc, manganese, selenium, iron, and other multiple ion components such as biological ash” are dissolved in the electrolytic solution, and the pH is adjusted to 12.5. It was an electrolyte. That is, the electrolytic solution contained "an ashed mineral ion precursor consisting of a biological ash.”
  • both the ash of the tea husk and the ash of the Nissan Walla had a voltage of 1.2 V and a current value of 0.92 mA.
  • energization was continued for 113 hours.
  • Example 5 Plant ash (tea shell ash) is added to the “electrolyte consisting of mineral ion water” prepared in Example 1 as “living ash”, and pH is small using calcium hydroxide (calcium hydroxide), The pH was adjusted to 12.0 to prepare an electrolyte. That is, the electrolytic solution contained "an ashed mineral ion precursor consisting of a biological ash.” The electrolyte mainly contained calcium ions (Ca 2+ ), magnesium ions (Mg 2+ ), and other potassium ions (K + ).
  • Example 6 To 98 parts by mass of the electrolytic solution prepared in Example 1, 2 parts by mass of the high-temperature calcined carbon group was added to prepare an electrolytic solution. The pH was 14.
  • the said high temperature baking carbon group was obtained as follows, for example, it is not specifically limited to this. That is, the roasted green tea husk (corresponding to the “biologically derived carbon precursor”) is brought into a dry state, and an electrolyte solution (containing mineral ion water) prepared in each of Examples 1 to 5 with a dry weight of 1 kg. ), Allowed to stand for 2 hours, dried again, and placed in a heat-resistant container. On the other hand, 10 g of "dry matter obtained by impregnating and drying the electrolytic solution in a paper material" was partially carbonized by gas fire. Thereafter, the "partially carbonized paper” and “the tea shell which is the carbon precursor” were lightly mixed together and irradiated with microwaves.
  • Example 7 To 97 parts by mass of the electrolytic solution prepared in Example 1, 3 parts by mass of "High-temperature calcined carbon group used in Example 6" was added to prepare an electrolytic solution. The pH was 14.
  • Example 8 A high temperature obtained by sufficiently moistening 95 parts by mass of the electrolyte prepared in Example 1 with the electrolyte prepared in Example 4 (containing mineral ion water) used in Example 6 and drying and carbonizing it.
  • An electrolyte was prepared by adding 5 parts by mass of “electrolytic active material consisting of calcined carbon”.
  • the voltage between the electrodes was measured.
  • the initial voltage was 3.6 V
  • the stable voltage was 1.287 V
  • the current value was 8.05 mA.
  • the current flow was continued as it is for 111 hours.
  • Example 9 Example 8 is carried out except that “an electrolyte active material obtained by using the electrolytic solution of Example 5 used in Example 6 instead of the electrolytic solution of Example 4 used in Example 6” is used. A battery was prepared as in Example 8 and evaluated similarly. The pH was 14.
  • Example 10 Appropriate amounts of 53.3 parts by mass of plant ash of tea husk, 24.4 parts by mass of slaked lime, 22.3 parts by mass of the same “high temperature calcined carbon group” as in Example 6 and mineral ion water of Example 1 are added and stirred and mixed The mixture was kneaded to prepare an electrolytic solution.
  • one copper plate and one aluminum plate each of 30 mm long ⁇ 35 mm wide ⁇ 0.3 mm thick were prepared. Apply a thin cotton felt on the copper plate so that the electrolyte 4 has an average diameter of 18 mm and a coating thickness of 1.2 mm (inter-electrode distance 1.2 mm), and electrolyze at the center part The solution was dropped, an aluminum plate was placed thereon, and in a state where the electrolytic solution and the cotton felt were sandwiched, the gap between both electrodes was stopped with a masking tape.
  • the electrolyte consisting only of mineral ion water not containing grass and wood ash (the ashes of living organisms) obtained high voltage and high current because of its high pH, but did not attack the electrode.
  • An electrolytic solution containing grass and wood ash (biological ash) is also an electrolytic solution containing "an electrolyte active material in which mineral ion water and grass and wood ash (biological ash) (composite mineral ion precursor) are combined". Also in the “electrolytic solution in which the electrolytic solution and the high-temperature calcined carbon group are combined”, when the pH is 12 or more and 14 or less (even when the pH is around 14), high voltage and high current value are obtained. It did not attack the electrode.
  • the life can be further extended by the encapsulation laminating process in which the water content of the electrolytic solution is not vaporized.
  • the power generation function could be repeated immediately if mineral ion water was re-watered.
  • the battery using the specific electrolytic solution 4 of the present invention is simple, has a long life, and is inexpensive, so it is widely used in the field of manufacturing or using the battery.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Nutrition Science (AREA)
  • Food Science & Technology (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Water Supply & Treatment (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Medicinal Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Electrochemistry (AREA)
  • Primary Cells (AREA)
  • Non-Alcoholic Beverages (AREA)
  • Liquid Carbonaceous Fuels (AREA)
  • Jellies, Jams, And Syrups (AREA)
  • Alcoholic Beverages (AREA)
  • Coloring Foods And Improving Nutritive Qualities (AREA)

Abstract

The present invention addresses the problem of providing a battery which stably supplies power for a long period of time, and providing a novel battery electrolytic solution or electrolyte active material used in the battery. The problem was solved by: a battery characterized in that a metal body having a higher ionization tendency than hydrogen is used as a negative electrode 1, a conductor is used as a positive electrode 2, and an electrolytic solution 4 disposed between the negative electrode 1 and the positive electrode 2 contains mineral ionized water having a pH of 12-14; a specific electrolyte active material; a battery having an electrolytic solution in which the specific electrolyte active material is added to the mineral water; and a method for producing an electrolyte for the battery. In addition, the problem was more appropriately solved by also incorporating "an electrolyte active material obtained by firing an electrolytic solution-carrying biological carbon precursor" in the electrolytic solution.

Description

アルカリ性のミネラルイオン水を含有する電解液を有する電池、電解質活物質及び電池用電解液の製造方法Battery having electrolyte solution containing alkaline mineral ion water, electrolyte active material, and method for producing battery electrolyte solution
 本発明は電池に関するものであり、更に詳しくは、特定のミネラルイオンを含有するアルカリ性水溶液を電解液とする電池、電解質活物質、及び、アルカリ性の電池用電解液の製造法に関するものである。 The present invention relates to a battery, and more particularly to a battery using an alkaline aqueous solution containing specific mineral ions as an electrolyte, an electrolyte active material, and a method for producing an alkaline battery electrolyte.
 一次電池としては、古くからガルバニ電池が有名である。ガルバニ電池には、亜鉛板と銅板を電極として用い、その間の電解液として硫酸を用いたボルタ電池;亜鉛板を硫酸亜鉛水溶液中に浸し、銅板を硫酸銅水溶液中に浸したダニエル電池;等がある。更に、一次電池としては、マンガン乾電池、ふっ化黒鉛リチウム電池、二酸化マンガンリチウム電池、塩化チオニルリチウム電池、二硫化鉄リチウム電池、アルカリマンガン電池、空気亜鉛電池、酸化銀電池等が知られている。 As a primary battery, galvanic cells have long been famous. For galvanic cells, use a zinc plate and a copper plate as electrodes, and use a voltaic cell using sulfuric acid as an electrolyte between them; is there. Further, as a primary battery, a manganese dry battery, a lithium lithium lithium fluoride battery, a lithium thionyl chloride battery, a lithium iron disulfide battery, an alkaline manganese battery, an air zinc battery, a silver oxide battery and the like are known.
 特許文献1に係る発明は、浮き等の釣り用の電池構造体の発明であり、そこには、負極として、マグネシウム、アルミニウム、亜鉛等を用い、正極として、塩化銀、塩化鉛、塩化銅、ヨウ化銅、過硫酸カリウム等を用い、その間に吸水性素材を配した電池が記載されている。 The invention according to Patent Document 1 is an invention of a battery structure for fishing such as floating, in which magnesium, aluminum, zinc or the like is used as a negative electrode, and silver chloride, lead chloride, copper chloride, as a positive electrode. A battery in which a water-absorbent material is disposed between copper iodide, potassium persulfate and the like is described.
 特許文献2には、負極を亜鉛、ニッケル、クロム又はアルミニウムとし、正極を金、銀、銅又はステンレスとし、電解液として、凝灰岩から溶出される硫酸イオン物質を含む液体を電気分解して得られる「硫酸イオン含有電解液」を用いた電池が記載されている。 According to Patent Document 2, the negative electrode is zinc, nickel, chromium or aluminum, the positive electrode is gold, silver, copper or stainless steel, and the electrolyte is obtained by electrolyzing a liquid containing a sulfate ion substance eluted from tuff. A battery using a "sulfate ion containing electrolyte" is described.
 特許文献3には、電極板を構成する金属の組み合わせとして、「二酸化鉛と鉛」又は「銅(合金)とアルミニウム(合金)」とし、正極板と負極板を向かい合わせて並べたハイブリッドバッテリーが記載されており、その電解液として、硫酸等が用いられている。 Patent Document 3 describes a hybrid battery in which "lead dioxide and lead" or "copper (alloy) and aluminum (alloy)" is used as a combination of metals constituting the electrode plate, and the positive electrode plate and the negative electrode plate are arranged facing each other. Sulfuric acid is used as the electrolyte.
 しかしながら、アルカリ水溶液を電解液として用いた電池は、ニッケル水素電池、アルカリマンガン電池があるが、電解液は強アルカリ性水酸化カリウムである。水酸化カリウムはイオン化傾向の大きい金属や金属酸化物を酸化又は溶解するため、これらの電解液を使用すると電材の寿命が短命となる。
 電池の性能を向上させるためのミネラルイオン水、特定の電解液、又は、これらを含有する電解質活物質は知られていなかった。
However, although batteries using an aqueous alkaline solution as an electrolyte include nickel hydrogen batteries and alkaline manganese batteries, the electrolyte is strongly alkaline potassium hydroxide. Potassium hydroxide oxidizes or dissolves a metal or metal oxide having a high ionization tendency, and the use of these electrolytic solutions shortens the life of the electric material.
There is no known mineral ion water, a specific electrolyte solution, or an electrolyte active material containing these for improving the performance of a battery.
特開2004-158209号公報JP 2004-158209 A 特開2010-153206号公報JP, 2010-153206, A 特開2013-247101号公報JP, 2013-247101, A
 本発明は上記背景技術に鑑みてなされたものであり、その課題は、長時間にわたり安定して電力を供給する電池を提供することにあり、該電池に用いられる新規な電池用電解液や電解質活物質を提供することにある。 The present invention has been made in view of the above background art, and an object thereof is to provide a battery which stably supplies power for a long time, and a novel battery electrolyte and electrolyte used for the battery. It is to provide an active material.
 本発明者は、上記の課題を解決すべく鋭意検討を重ねた結果、特定の正極と負極を用い、その間に存在する電解液として、特定の物質(イオン、化合物等)を含有するミネラルイオン水、並びに、好ましくは、「ミネラルイオン水及び灰化ミネラルイオン前駆体を担持して焼成してなる高温焼成炭素群」や、該灰化ミネラルイオン前駆体を含有するペースト状の電解質活物質を用いることによって、長時間にわたり安定して電力を供給でき、電極も汎用の金属で、特に正極は炭素板や炭素繊維等でも、簡易で低コストの電池ができることを見出して本発明を完成するに至った。 As a result of intensive investigations to solve the above problems, the present inventor uses mineral ion and water containing specific substances (ions, compounds, etc.) as electrolytes existing between them using specific positive electrodes and negative electrodes. And preferably, “high temperature calcined carbon group formed by supporting and firing mineral ion water and an ashed mineral ion precursor”, and a paste-like electrolyte active material containing the ashed mineral ion precursor Thus, the present invention can be accomplished by finding that a simple and low-cost battery can be provided by which power can be stably supplied for a long time and the electrode is also a general-purpose metal, particularly a carbon plate or carbon fiber as a positive electrode. The
 すなわち、本発明は、負極として水素よりイオン化傾向の大きい金属体を用い、正極として導電体を用い、該負極と該正極の間に存在する電解液として、アルカリ土類金属イオンを含有するpHが12以上14以下のミネラルイオン水を含有することを特徴とする電池を提供するものである。 That is, according to the present invention, a metal body having a larger ionization tendency than hydrogen as the negative electrode, a conductor as the positive electrode, and an alkaline earth metal ion as an electrolyte existing between the negative electrode and the positive electrode has a pH of A battery is provided which contains 12 or more and 14 or less mineral ion water.
 また、本発明は、上記電池用の電解質活物質であって、上記アルカリ土類金属イオン、及び、上記灰化ミネラルイオン前駆体を含有するペースト状のものであることを特徴とする電解質活物質を提供するものである。 Further, the present invention is an electrolyte active material for the above battery, which is in the form of a paste containing the above alkaline earth metal ion and the above ashed mineral ion precursor. To provide
 また、本発明は、負極として水素よりイオン化傾向の大きい金属体を用い、正極として導電体を用い、該負極と該正極の間に存在する電解液としてpHが12以上14以下のミネラルイオン水を用いた電池用電解液の製造方法であって、
 少なくとも、マグネシウム若しくはカルシウムの、酸化物、水酸化物、炭酸塩又は炭酸水素塩を水に溶解させてアルカリ土類金属イオンを含有させ、pHを調整し、生物の灰化物の水溶性成分を溶解させることを特徴とする電池用電解液の製造方法を提供するものである。
In the present invention, a metal body having a larger ionization tendency than hydrogen as a negative electrode, a conductor as a positive electrode, and mineral ion water having a pH of 12 to 14 as an electrolyte existing between the negative electrode and the positive electrode It is a manufacturing method of the used battery electrolyte, and
Dissolve at least an oxide, hydroxide, carbonate or bicarbonate of magnesium or calcium in water to contain alkaline earth metal ions, adjust the pH, and dissolve the water-soluble components of biological ash It is intended to provide a method for producing a battery electrolytic solution characterized by
 本発明によれば、上記課題を解決し、長期間にわたり連続的に安定して電力(電圧と電流)を供給する電池を極めて簡易に安価に提供することができる。
 本発明の電池は、電解液が気化し易い汎用の簡易なラミネート処理においても600時間以上連続して電力を供給できる。このとき、600時間を超え電力が低下したら、電解液を滴下することによって、繰り返し使用が可能である。更なる長寿命設計には機密性の高い封入処理をすれば、電解液が気化しない限り、負極である例えばアルミニウム電極が酸化しない限りいつまでも発電することが可能である。
According to the present invention, it is possible to solve the above-mentioned problems and to provide a battery which supplies electric power (voltage and current) continuously and stably for a long period of time very simply and inexpensively.
The battery of the present invention can continuously supply power for 600 hours or more even in a general-purpose simple lamination process in which the electrolytic solution is easily vaporized. At this time, when the power is decreased for more than 600 hours, the electrolyte solution can be dropped to enable repeated use. In the case of further long life design, if highly sensitive encapsulation treatment is performed, it is possible to generate electricity as long as the negative electrode, for example, an aluminum electrode is not oxidized, as long as the electrolytic solution is not vaporized.
 更に、好ましくはこれらの単セル(電池)を多数積層することによって、モバイル機器、車、航空機、ロボット、家電等の電力として簡易的に利用できる。また、二酸化炭素を排出する動力に代わって、本発明の電池からの電力を利用した動力を使用すれば、環境に優しい二酸化炭素フリーの動力が得られる。 Furthermore, preferably, by stacking a large number of these single cells (battery), it can be simply used as electric power for mobile devices, cars, aircraft, robots, home appliances and the like. In addition, by using the power utilizing the power from the battery of the present invention instead of the power for discharging carbon dioxide, an environmentally friendly power free of carbon dioxide can be obtained.
 例えば、ボルタ電池の電解液は、硫酸、塩酸等の酸性水溶液である。また、食塩水等の塩の水溶液も使用可能であることが知られている。アルカリ性の水溶液を使用したものとしては水酸化カリウム水溶液が知られているが、これは急速にイオン化傾向の大きい金属を侵食・溶解させる。
 本発明の電池は、電解液として特定のものを用いるために、pHが12以上14以下であっても金属電極や金属酸化物を酸化し難く、極めて簡易であるにもかかわらず、長期間にわたり連続的に安定して電力を供給できる。
For example, the electrolytic solution of a voltaic battery is an acidic aqueous solution such as sulfuric acid or hydrochloric acid. It is also known that aqueous solutions of salts such as saline can be used. An aqueous potassium hydroxide solution is known as one using an alkaline aqueous solution, but this rapidly erodes and dissolves a metal having a large ionization tendency.
The battery of the present invention is difficult to oxidize metal electrodes and metal oxides even if the pH is 12 or more and 14 or less because it uses a specific one as the electrolytic solution, and it is extremely simple even though it is extremely simple. Power can be supplied continuously and stably.
 また、該電解液の中に、草木灰等の「生物の灰化物」を含有させることによって、その中の微量イオン化したミネラル成分の酸化還元反応が穏やかで有効に働き、電池寿命性能を向上させることができる。 In addition, by incorporating "the ashes of living organisms" such as plant and wood ash into the electrolytic solution, the redox reaction of the trace ionized mineral component in the same works effectively and the battery life performance is improved. Can.
 従来、必要とされてきた、オキシ水酸化ニッケル、二酸化マンガン等は、基本的に必須とはされず、「上記ミネラルイオン水及び上記灰化ミネラルイオン前駆体を担持して焼成してなる高温焼成炭素群」を使用することで、更に高性能の電池が得られる。
 ただし、従来の活物質を含有させることは本発明からは排除されない。
 グラファイト、グラフェン、オキシ水酸化ニッケル、二酸化マンガン、酸化スズ等の電解質活物質を、前記電解液中に分散しペースト状にすることによって、電池性能を向上させることもできる。
Conventionally, nickel oxyhydroxide, manganese dioxide, etc., which have been required, are not basically regarded as essential, but “high temperature baking by supporting and calcining the above mineral ion water and the above ashed mineral ion precursor By using the "group of carbon", a battery with higher performance can be obtained.
However, the inclusion of a conventional active material is not excluded from the present invention.
The battery performance can also be improved by dispersing an electrolyte active material such as graphite, graphene, nickel oxyhydroxide, manganese dioxide, tin oxide or the like in the electrolytic solution to form a paste.
本発明の電池の基本的形態の一例を示す概略断面図である。It is a schematic sectional drawing which shows an example of the basic form of the battery of this invention. 本発明の電池の形態の一例を示す概略図である。(a)平面図 (b)縦断面図It is the schematic which shows an example of the form of the battery of this invention. (A) Top view (b) Longitudinal section
 以下、本発明について説明するが、本発明は、以下の具体的形態に限定されるものではなく、技術的思想の範囲内で任意に変形することができる。 Hereinafter, the present invention will be described, but the present invention is not limited to the following specific embodiments, and can be arbitrarily modified within the scope of the technical idea.
 本発明は、負極として水素よりイオン化傾向の大きい金属体を用い、正極として導電体を用い、該負極と該正極の間に存在する電解液として、アルカリ土類金属イオンを含有するpHが12以上14以下のミネラルイオン水を含有することを特徴とする電池である。
 更に、電解質活物質として、「上記ミネラルイオン水及び上記灰化ミネラルイオン前駆体を担持した高温焼成炭素群」を含有することが有効である。ここで、「担持した高温焼成炭素群」とは、担持させてから高温焼成した(してなる)高温焼成炭素群が含まれる。以下、同様である。
The present invention uses a metal body having a larger ionization tendency than hydrogen as the negative electrode, uses a conductor as the positive electrode, and contains alkaline earth metal ions as an electrolytic solution existing between the negative electrode and the positive electrode. It is a battery characterized by containing 14 or less mineral ion water.
Furthermore, it is effective to contain "the above-mentioned mineral ion water and the above-mentioned high temperature calcination carbon group which carries the above-mentioned mineral ion ion precursor" as an electrolyte active material. Here, the “supported high temperature calcined carbon group” includes a high temperature calcined carbon group (made by sintering) after being supported. The same applies below.
 更に、アルカリ土類金属イオンを含有するペーストや、灰化ミネラルイオン前駆体を含有するペースト、更には電解液を担持させ高温焼成した炭素群との複合した電解質活物質が前記電解液に含有されていることが極めて有効で好適である。「灰化ミネラルイオン前駆体を含有するペースト」は、生物由来品の灰化物のペーストであることが好ましい。 Furthermore, the electrolyte solution contains a paste containing an alkaline earth metal ion, a paste containing an ashed mineral ion precursor, and an electrolyte active material complexed with a carbon group supported by a high temperature solution and supported by high temperature baking. Is very effective and preferable. The “paste containing an ashed mineral ion precursor” is preferably a paste of an ash of biological origin.
<電池の形態>
 該電池の形態は、負極1と正極2の間に電解液4を有する形態であれば特に限定はなく、汎用の乾電池のように、中心に電極があり筐体に沿って他の電極がある形態でも、平面状のものであってもよいが、図1、図2に示したように、電極が平面状又は縦型セルである形態が特に好ましい。
<Form of battery>
The form of the battery is not particularly limited as long as it has the electrolytic solution 4 between the negative electrode 1 and the positive electrode 2, and there is an electrode at the center and other electrodes along the casing like a general purpose dry battery. The form may be planar or planar, but as shown in FIGS. 1 and 2, the form in which the electrode is a planar or vertical cell is particularly preferable.
 両電極間に、前記若しくは後記する電解質活物質を有する電解液4がある形態がより好ましい。すなわち、更に、前記若しくは後記の特定のペーストや、「上記ミネラルイオン水及び上記灰化ミネラルイオン前駆体を担持して焼成してなる高温焼成炭素群」を含有することが特に好ましい。
 また、該電解液4は吸水性基材3に染みこませて使用してもよい。その場合、「電解液が含浸した部分」を挟んでいる電極の部分が正極、負極として作用する。
It is more preferable that an electrolyte solution 4 having an electrolyte active material described above or below be present between both electrodes. That is, it is particularly preferable to further contain a specific paste as described above or below or "a high temperature calcined carbon group formed by supporting and calcining the mineral ion water and the ashed mineral ion precursor".
In addition, the electrolytic solution 4 may be used by being impregnated into the water absorbent substrate 3. In that case, the portion of the electrode sandwiching the “portion impregnated with the electrolytic solution” acts as a positive electrode and a negative electrode.
 図1に示したように、負極1と正極2からは、そこに電気的に接合された導線5を通して電流を取り出す。導線の接合については特に限定はない。 As shown in FIG. 1, current is extracted from the negative electrode 1 and the positive electrode 2 through the conducting wire 5 electrically connected thereto. There is no limitation in particular about joining of conducting wire.
 図2(a)(b)のような形態の場合、電極板の大きさは特に限定はないが、縦若しくは横の長さとして、10mm以上100mm以下が好ましく、20mm以上70mm以下が特に好ましい。また、電極板の厚さは特に限定はないが、0.5mm以上1mm以下が特に好ましい。
 また、図2(b)のような形態の場合、すなわち、電極間に吸水性基材3が存在し、該吸水性基材3に電解液4が含浸されていて、その部分が実質的な電池になっている場合、1つの電極(図2では電解液が染みこんでいる円形部分)の大きさは電極より狭く、縦、横若しくは直径の長さとして、1mm以上45mm以下が好ましく、5mm以上40mm以下がより好ましく、8mm以上35mm以下が特に好ましく、長方形でも円形でもない場合は、面積基準で上記値を換算する。
In the case of the embodiment shown in FIGS. 2 (a) and 2 (b), the size of the electrode plate is not particularly limited, but it is preferably 10 mm or more and 100 mm or less, particularly preferably 20 mm or more and 70 mm or less. The thickness of the electrode plate is not particularly limited, but is preferably 0.5 mm or more and 1 mm or less.
Further, in the case of the configuration as shown in FIG. 2 (b), that is, the water absorbent substrate 3 is present between the electrodes, and the water absorbent substrate 3 is impregnated with the electrolytic solution 4, and the portion is substantially In the case of a battery, the size of one electrode (the circular portion in which the electrolyte is soaked in FIG. 2) is narrower than that of the electrode, and the length, width or diameter is preferably 1 mm or more and 45 mm or less, and 5 mm 40 mm or less is more preferable, 8 mm or more and 35 mm or less is particularly preferable, and when neither rectangular nor circular, the above value is converted based on the area.
 電極板や電解液部分の大きさが小さくても十分な電流値を得ることができ、電解液4の量が少なくても補水できる限り寿命が長くなる。この効果は、ミネラルイオン水としての特別な効果であり、pHが12~14においても極めて穏やかで電極を長期間侵さない。
 一方、電極板や電解液部分が大き過ぎると、構造上均一な電極間距離が保ち難い場合があり、直列につないでセルで重ねれば足りるので電極面積が広くなり電流が迷走する。また、コストアップや重量が重くなる等の問題が生じる場合がある。
Even if the size of the electrode plate or the electrolytic solution portion is small, a sufficient current value can be obtained, and even if the amount of the electrolytic solution 4 is small, the life is extended as long as refueling is possible. This effect is a special effect as mineral ion water, and it is extremely mild even at pH 12 to 14 and does not attack the electrode for a long time.
On the other hand, if the electrode plate or the electrolyte portion is too large, it may be difficult to maintain a uniform inter-electrode distance due to the structure, and it is sufficient to connect in series and overlap in the cell, so the electrode area widens and the current strays. In addition, problems such as cost increase and heavy weight may occur.
 電極間の距離は、良好に電力が供給できれば特に限定はないが、0.03mm以上8mm以下が好ましく、0.05mm以上3mm以下がより好ましく、0.1mm以上2mm以下が特に好ましい。電極間距離が小さ過ぎる場合は短絡するおそれがある。
 両電極間の隙間接触界面周囲に絶縁体を施工することが好ましい。
The distance between the electrodes is not particularly limited as long as power can be supplied satisfactorily, but it is preferably 0.03 mm or more and 8 mm or less, more preferably 0.05 mm or more and 3 mm or less, and particularly preferably 0.1 mm or more and 2 mm or less. If the distance between the electrodes is too small, there is a risk of shorting.
It is preferable to apply an insulator around the gap contact interface between both electrodes.
<負極>
 本発明の電池では、負極1において、負極1を構成する金属体から、金属陽イオンが電解液4中に放出され、電子が負極1に取り残されるために電圧・電流が発生する。従って、負極1として用いられる金属は、「水素よりイオン化傾向の大きい金属」であれば特に限定はないが、具体的には、アルミニウム、亜鉛、マグネシウム、リチウム、鉄、ニッケル、錫、鉛等が挙げられる。
 中でも、アルミニウム又は亜鉛であることが、起電力、安定性、価格等の点から特に好ましい。合金は排除されないが、単体金属であることが電解液4の組成を変化させない等のために好ましい。また、アルミニウム線、亜鉛線等の金属線(特に好ましくはアルミニウム線)を負極に用いることで、小型化(極小セルに)することができるので好ましい。
<Negative electrode>
In the battery of the present invention, in the negative electrode 1, metal cations are released from the metal body constituting the negative electrode 1 into the electrolytic solution 4, and electrons are left behind in the negative electrode 1 to generate voltage and current. Therefore, the metal used as the negative electrode 1 is not particularly limited as long as it is “a metal having a larger ionization tendency than hydrogen”, but specifically, aluminum, zinc, magnesium, lithium, iron, nickel, tin, lead, etc. It can be mentioned.
Among them, aluminum or zinc is particularly preferable in terms of electromotive force, stability, price and the like. Although an alloy is not excluded, a single metal is preferable because the composition of the electrolytic solution 4 is not changed. In addition, it is preferable to use a metal wire such as an aluminum wire or a zinc wire (particularly preferably an aluminum wire) for the negative electrode because miniaturization (minimal cell) can be achieved.
<正極>
 本発明の電池の正極2は、導電体であれば特に限定はないが、該導電体を形成する導電性物質は、銅、銀、パラジウム、金若しくは白金、又は、それらの合金が好ましい。また、グラファイト(石墨)、高温焼成炭素、炭素繊維等の炭素質であってもよい。また、これらの導電性物質の微粒子が分散された若しくはプレス圧縮された導電性の構造体であってもよく、表面に薄い酸化膜があるものでもよい。
 該金属は、より好ましくは、起電力、安定性、価格(コスト)等の点から、銅若しくは銀又はその合金であり、特に好ましくはコストの理由から銅である。該炭素質は、より好ましくは、軽量、経時安定性、価格(コスト)等の点から炭素繊維である。正極に炭素繊維を用いることで、小型化(極小セルに)することができるので好ましい。
<Positive electrode>
The positive electrode 2 of the battery of the present invention is not particularly limited as long as it is a conductor, but the conductive material forming the conductor is preferably copper, silver, palladium, gold or platinum, or an alloy thereof. In addition, carbonaceous materials such as graphite (graphite), high temperature calcined carbon, carbon fibers, etc. may be used. In addition, the conductive structure may be a conductive structure in which fine particles of these conductive substances are dispersed or compressed, or a thin oxide film may be present on the surface.
The metal is more preferably copper or silver or an alloy thereof in terms of electromotive force, stability, cost and the like, and particularly preferably copper for cost reasons. The carbonaceous material is more preferably carbon fiber from the viewpoint of light weight, stability over time, cost (cost) and the like. Use of carbon fiber for the positive electrode is preferable because it can be miniaturized (miniaturized cell).
<電解液の構成、物性>
<<電解液のpH>>
 本発明の電池の電解液4は、アルカリ土類金属イオンを含有するpHが12以上14以下のミネラルイオン水を含有することを特徴とする。pHは13以上14以下が特に好ましい。
 このような電解液4にすると、金属を溶解する水酸化カリウム液等と異なり、安定した電力で長寿命の電池ができる。作用原理は限定されないが、電解液4をアルカリ性の「ミネラルイオン水」にすることで、更にはpHを特定範囲に調整することで、電極(表面)が安定化されると考えられる。特に、負極1の酸化還元反応による化学反応がミネラルイオンで抑制され極めて徐々には酸化還元するが溶解せず、正極2(表面)は酸化せずと考察する。
<Composition and physical properties of electrolyte>
<< pH of electrolyte solution >>
The electrolyte solution 4 of the battery of the present invention is characterized in that it contains mineral ion water having a pH of 12 or more and 14 or less containing an alkaline earth metal ion. The pH is particularly preferably 13 or more and 14 or less.
If such an electrolytic solution 4 is used, a battery having a long life can be obtained with stable power, unlike a potassium hydroxide solution or the like which dissolves a metal. Although the principle of action is not limited, it is considered that the electrode (surface) is stabilized by making the electrolytic solution 4 alkaline “mineral ion water” and further adjusting the pH to a specific range. In particular, it is considered that the chemical reaction due to the oxidation-reduction reaction of the negative electrode 1 is suppressed by the mineral ions and the oxidation and reduction is performed very gradually but not dissolved, and the positive electrode 2 (surface) is not oxidized.
 pHは、後述する「水に溶解してアルカリ土類金属イオンを与える化合物」を用いて調整することもできるし、それとは別に、「水中でアルカリ性を示す化合物」を加えて調整することも可能である。好ましくは、後述する「水に溶解してアルカリ土類金属イオンを与える化合物」、又は、「生物の灰化物よりなる灰化ミネラルイオン前駆体」で、pHを調整することが好ましい。 The pH can be adjusted using the "compound which dissolves in water to give an alkaline earth metal ion" described later, or separately, it can be adjusted by adding a "compound showing alkalinity in water" It is. Preferably, the pH is adjusted with a “compound that dissolves in water to give an alkaline earth metal ion” or “an ashed mineral ion precursor consisting of a biological ash”, which will be described later.
 該pH(範囲)は、電池供給時等の初期の電解液4のpHのことを言うが、使用時の(使用開始から使用終了までの)pHが常に上記範囲に入っているような電解液4が望ましい。 The pH (range) refers to the pH of the electrolyte 4 at the initial stage of battery supply etc., but such an electrolyte that the pH at the time of use (from the start of use to the end of use) always falls within the above range 4 is desirable.
<<電解液中のアルカリ土類金属イオン>>
 アルカリ土類金属イオン(第2族元素のイオン)としては、マグネシウムイオン、カルシウムイオン、ストロンチウムイオン、バリウムイオン等が好ましいものとして挙げられる。
 より好ましくは、安定した電力で長寿命の電池ができること、該イオンを含む化合物が安価である、該イオンを含む化合物が物から得られ易い、石灰岩;サンゴ石、卵の殻又は貝殻等の生物由来品から得られ易い点から、マグネシウムイオン(Mg2+)又はカルシウムイオン(Ca2+)であり、特に好ましくは、カルシウムイオン(Ca2+)である。これらのイオンは、単独で含んでいても、2種以上含んでいてもよい。
<< Alkaline Earth Metal Ion in Electrolyte >>
As the alkaline earth metal ion (ion of group 2 element), magnesium ion, calcium ion, strontium ion, barium ion and the like are mentioned as preferable ones.
More preferably, a battery with stable power and a long life can be produced, a compound containing the ion is inexpensive, a compound containing the ion is easily obtained from a substance, limestone; organisms such as coral stone, egg shell or shell, etc. It is magnesium ion (Mg 2+ ) or calcium ion (Ca 2+ ), particularly preferably calcium ion (Ca 2+ ), from the viewpoint of being easily obtained from the product. These ions may be contained singly or in combination of two or more.
 マグネシウムイオン(Mg2+)と、カルシウムイオン(Ca2+)とを含む場合は、その混合比は、Ca2+リッチなモル比がコストパフォーマンス的にも好ましく、Ca2+/Mg2+=15/15~19/1(モル比)が特に好ましい。 When a magnesium ion (Mg 2+ ) and a calcium ion (Ca 2+ ) are contained, the molar ratio of Ca 2+ rich is preferable from the viewpoint of cost performance, and Ca 2+ / Mg 2+ = 15 / 15-19 / 1 (molar ratio) is particularly preferred.
 上記「水に溶解してアルカリ土類金属イオンを与える化合物」(以下、カッコ内を「アルカリ土類金属イオン供給化合物」と略記する。)としては、該アルカリ土類金属の酸化物、水酸化物、炭酸塩、炭酸水素塩等が挙げられる。より好ましくは、マグネシウム若しくはカルシウムの、酸化物、水酸化物、炭酸塩、炭酸水素塩等であり、更に好ましくは、カルシウムの、酸化物、水酸化物、炭酸塩、炭酸水素塩等であり、特に好ましくは、水酸化カルシウム(消石灰)である。また、上記を含む所謂「石灰質」と言われているものも好ましい。 As the above-mentioned “compound that dissolves in water to give an alkaline earth metal ion” (hereinafter, the parenthesis is abbreviated as “alkaline earth metal ion supply compound”), an oxide of the alkaline earth metal, hydroxylated Substances, carbonates, bicarbonates and the like. More preferably, they are oxides, hydroxides, carbonates, hydrogencarbonates of magnesium or calcium, etc., more preferably oxides, hydroxides, carbonates, hydrogencarbonates of calcium, etc., Particularly preferred is calcium hydroxide (slaked lime). Moreover, what is called what is called "calcaceous" including the above is also preferable.
 電解液4中のアルカリ土類金属イオンや、電解液調製に用いるアルカリ土類金属イオン供給化合物の量は、最終的に得られた電解液4が前記pH範囲になるような量の範囲であることが好ましい。
 アルカリ土類金属イオン供給化合物は、水に投入して(好ましくは空気を遮断した状態で溶解熟成させ)、要すれば熟成後濾過を行って、所望の電解液4を得ることができる。これらの化合物は、単独で用いても、2種以上を併用してもよい。
 このときの「一部溶解したアルカリ土類金属イオンペースト」を、後述の電解質活物質として又は電解質活物質の原料としても使用することが好ましい。
 なお、「水に溶解してアルカリ土類金属イオンを与える化合物」のみでpHを調整し前記範囲に収めることが好ましいが、適宜、他の「水中でアルカリ性を示すイオン化合物」を加えてpHを調整することもできる。
The amount of the alkaline earth metal ion in the electrolytic solution 4 and the amount of the alkaline earth metal ion supply compound used for preparation of the electrolytic solution are such that the finally obtained electrolytic solution 4 has the above-mentioned pH range. Is preferred.
The alkaline earth metal ion supply compound can be introduced into water (preferably dissolved and aged in a state where air is shut off), optionally after aging and filtering to obtain the desired electrolytic solution 4. These compounds may be used alone or in combination of two or more.
At this time, it is preferable to use the “partially dissolved alkaline earth metal ion paste” also as an electrolyte active material described later or as a raw material of the electrolyte active material.
In addition, it is preferable that the pH be adjusted only by the “compound that dissolves in water to give an alkaline earth metal ion” and that the pH fall within the above range, but other “ionic compounds showing alkalinity in water” is added as appropriate to adjust the pH. It can also be adjusted.
 上記アルカリ土類金属イオン供給化合物として、生物由来品を用いることが、コスト的に有利である、人体・自然に優しい等の点から好ましい。
 該生物由来品としては、安価に入手できること、廃棄物として入手可能であること等から、サンゴ石;卵の殻;牡蠣殻等の貝殻;等も好ましい。
It is preferable to use a product of biological origin as the above-mentioned alkaline earth metal ion-supplying compound from the viewpoints of cost advantages and being friendly to humans and nature.
As the biological products, coral stones, egg shells, shells such as oyster shells, and the like are also preferable because they can be obtained inexpensively, can be obtained as wastes, and the like.
<<電解液中の生物の灰化物>>
 本発明における電解液は、前記したものの他に、更に「生物の灰化物よりなる灰化ミネラルイオン前駆体」を含有することが好ましい。これらを含有すると酸化が抑制されて電極(表面)や電材活物質が安定になり、一定の安定した電力供給で長寿命の電池ができる。
 なお、作用原理は限定されないが、これを含有することで、生物中の微量元素を含む化合物若しくはイオンが、電極(表面)を安定化すると考えられる。特に、負極1の過度の酸化が抑制されて徐々には酸化するが溶解せず、正極2(表面)の化学反応が抑制されると考えられた。生物中の微量元素としては、ナトリウム、カリウム、マグネシウム、カルシウム、リン、亜鉛、マンガン、セレン、鉄等が挙げられる。このうち、「ミネラルイオン水」に既に含有されていた金属イオン以外の金属イオンが、更に電池性能を向上させると考えられる。
<< Animal of living thing in electrolyte >>
It is preferable that the electrolytic solution in the present invention further contains "an ashed mineral ion precursor consisting of a biological ash" in addition to those described above. When these are contained, oxidation is suppressed, the electrode (surface) and the active material active material become stable, and a battery having a long life can be produced by a constant and stable power supply.
In addition, although an action principle is not limited, it is thought that the compound or ion containing trace elements in an organism stabilizes an electrode (surface) by containing this. In particular, it was considered that excessive oxidation of the negative electrode 1 was suppressed and oxidized gradually but not dissolved, and the chemical reaction of the positive electrode 2 (surface) was suppressed. As trace elements in organisms, sodium, potassium, magnesium, calcium, phosphorus, zinc, manganese, selenium, iron and the like can be mentioned. Among these, metal ions other than the metal ions already contained in “mineral ion water” are considered to further improve the battery performance.
 特に、上記生物がミネラル成分を多く含む原生生物又は植物であることがより好ましい。該原生生物としては、藻類、原生動物類等が挙げられ、該植物としては、種子植物等が挙げられる。
 該藻類としては海藻等が好ましく、中でも、緑藻;モズク、コンブ、ワカメ、ホンダワラ、ヒジキ等の褐藻;紅藻;珪藻等がより好ましい。
 該種子植物としては、チャノキ等が好ましく、中でも、それらの葉、茎、根等がより好ましい。
 本発明における電解液は、生物の灰化物よりなる灰化ミネラルイオン前駆体を含有することが好ましいが、上記生物としては、草木又は海藻であることが特に好ましい。
In particular, it is more preferable that the above-mentioned organism is a protist or plant rich in mineral components. Examples of the protist include algae, protozoa and the like, and examples of the plant include seed plants and the like.
As the algae, seaweed and the like are preferable, and among them, green algae; brown algae such as mozuku, kelp, wakame, honda wall, and hijiki; red algae; diatoms and the like are more preferable.
The seed plants are preferably tea plants and the like, among which leaves, stems, roots and the like are more preferable.
The electrolytic solution in the present invention preferably contains an ashed mineral ion precursor consisting of an ash of a living organism, but as the living organism, it is particularly preferable to be a plant or a seaweed.
 また、上記生物又は上記生物の一部を含む廃棄物から、上記「生物」(生物の加工品、生物由来物を含む)を得ることも好ましい。
 そのような廃棄物としては、茶の出し殻、根菜類加工残渣、雑草類等の種子植物由来品;褐藻等の海藻(脱塩処理がされていることが好ましい);ホンダワラ等が挙げられる。また、該廃棄物としては、菌床残渣等も挙げられる。
In addition, it is also preferable to obtain the above-mentioned "organism" (including processed products of organisms and biological products) from wastes containing the above-mentioned organisms or parts of the above-mentioned organisms.
Examples of such waste include seeds derived from seed plants such as tea husks, root vegetable processing residues, weeds and the like; seaweeds such as brown algae (preferably desalinated); Honda Walla and the like. In addition, as the wastes, fungal bed residues and the like can also be mentioned.
 上記「生物」若しくは上記「生物」の一部や、上記「生物(の一部)を含む廃棄物」は、焼成して炭素になるので、本発明では、これらを、「炭素前駆体」、「生物由来の炭素前駆体」等と言う場合がある。 Since the above "organism" or a part of the above "organism" or the above "waste containing (part of) the organism" is calcined to become carbon, in the present invention, these are "carbon precursors", It may be referred to as "biologically derived carbon precursor" or the like.
 「生物の灰化物」は、上記生物を灰化したものであり、草木灰として入手できるものも好適に使用できる。
 本発明における電解液には、「生物の灰化物の水溶性ミネラル成分」を含有することが好ましいが、該水溶性成分は、該灰化物から別途分離しておいて電解液4中に含有させてもよいが、電解液4を構成する水に投入し、熟成後に濾過して、水溶性イオン成分だけを電解液4に含有させるようにしてもよい。
"Animal ash" is obtained by ashing the above-mentioned organism, and those which can be obtained as plant ash can also be suitably used.
The electrolytic solution in the present invention preferably contains “a water-soluble mineral component of an ash of a living organism”, but the water-soluble component is separately separated from the ash and contained in the electrolytic solution 4 Although it may be added, it may be added to the water constituting the electrolytic solution 4 and filtered after aging so that only the water-soluble ion component is contained in the electrolytic solution 4.
<<電解液中の電解質活物質>>
 上記電解液は、上記ミネラルイオン水を含有すると共に、更に電解質活物質を含有し、該電解質活物質が、上記電解液を担持した「生物由来の炭素前駆体」を焼成してなるものであることが好ましい。
 上記電解液は、更に、電解質活物質として、(好ましくは「生物由来の炭素前駆体」に)、「上記ミネラルイオン水及び上記灰化ミネラルイオン前駆体を担持して焼成してなる高温焼成炭素群」を含有することが好ましい。
 そして、上記高温焼成炭素群は、(上記電解液等を担持した)「生物由来の炭素前駆体」をマイクロ波励起で高温プラズマ焼成したものであることが特に好ましい。
 ここで、該「担持させる電解液」としては前記したものが挙げられるが、「焼成して得られる該高温焼成炭素群」をそこに含有させて実際に電池に使用される電解液と全く同一の組成を有する電解液である必要はない。
 該電解質活物質は、ミネラルイオン水を「生物由来の炭素前駆体」に担持させた状態で、高温焼成してなる高温焼成炭素群であることが更に好ましい。強アルカリ性を示す高温焼成炭素群であることが特に好ましい。ここで、「生物由来の炭素前駆体」には、茶、海藻等の生物自体も含まれるので、それら生物が高温焼成中に炭素になって(炭化して)、「高温焼成炭素群」となる形態が含まれる。上記「生物」は、「廃棄物」と読み換えることもできる。
<< Electrolyte active material in electrolyte solution >>
The above-mentioned electrolytic solution contains the above-mentioned mineral ion water, and further contains an electrolytic active material, and the electrolytic active material is obtained by calcining a "biological precursor derived from a living organism" carrying the above electrolytic solution. Is preferred.
The above-mentioned electrolytic solution further carries out the above-mentioned high temperature calcination carbon by carrying and calcinating the above-mentioned mineral ion water and the above-mentioned incineration mineral ion precursor as an electrolyte active material (preferably to "a carbon precursor derived from a living body") It is preferable to contain a group.
And it is especially preferable that the said high temperature baking carbon group is what carried out the high temperature plasma baking by microwave excitation "the carbon precursor of biological origin (it carry | supports the said electrolyte solution etc.)."
Here, examples of the "electrolytic solution to be supported" include those described above, but the "high temperature calcined carbon group obtained by firing" is contained in the same and the same as the electrolytic solution actually used in the battery. It does not have to be an electrolyte having the composition of
More preferably, the electrolyte active material is a high-temperature calcined carbon group obtained by high-temperature calcination in a state where mineral ion water is supported on a "biologically-derived carbon precursor". It is particularly preferable that the group be a high temperature calcined carbon group exhibiting strong alkalinity. Here, since "the organism-derived carbon precursor" includes the organisms themselves such as tea and seaweed, they become carbon during high temperature baking (carbonized), and "high temperature baking carbon group" Form is included. The above "organism" can be read as "waste".
 本発明における電解液4は、通常の「アルカリ土類金属イオンを含有するpHが12以上14以下のミネラルイオン水」以外に、新たな電解質活物質として、「前記のミネラルイオン水を含むアルカリ土類金属イオンペースト」や、「『灰化ミネラルイオン前駆体を含有するペースト』、好ましくは『生物由来品の灰化物のペースト』、特に好ましくは『草木灰のペースト』」や、「前記の電解液を担持し高温焼成した炭素群」を含有することが極めて好適である。上記高温焼成した炭素群は、前記した電解液やミネラルイオン水を、前記「生物由来の炭素前駆体」に担持させた状態で高温焼成して炭素化してなるものであることが好ましい。 The electrolytic solution 4 in the present invention is an alkaline earth containing “the above mineral ion water” as a new electrolyte active material in addition to the usual “mineral ion water having a pH of 12 or more and 14 or less containing alkaline earth metal ions”. Metal ion paste, "a paste containing an ashed mineral ion precursor", preferably a paste of an ash from a product of biological origin, particularly preferably a "paste of grass and wood", or the above-mentioned electrolyte It is very preferable to contain “high-temperature-fired carbon group” by supporting It is preferable that the above-mentioned high-temperature-fired carbon group be formed by high-temperature firing and carbonization in a state in which the above-described electrolytic solution and mineral ion water are supported on the above-mentioned "biologically-derived carbon precursor".
 従来の活物質である、グラファイト、グラフェン等の電解液中に含有することも好ましく、また、必須ではないが、オキシ水酸化ニッケル、二酸化マンガン等の電解質活物質を含有することも好ましい。
 上記電解液は、更に、上記ミネラルイオン水によってグラファイトを層間剥離したグラフェンを含有することが特に好ましい。
It is also preferable to contain in a conventional active material, such as an electrolyte solution such as graphite and graphene, and although not essential, it is also preferable to contain an electrolyte active material such as nickel oxyhydroxide and manganese dioxide.
It is particularly preferable that the electrolytic solution further contains graphene in which graphite is exfoliated by the mineral ion water.
 グラファイトは、グラフェンの構造が積層してなるものを言う。「グラファイト」としては、何層か積み重なって、粉末状になったものも含まれる。
 グラファイト、グラフェン、オキシ水酸化ニッケル、二酸化マンガン等の電解質活物質の電解液4中の形状は粉体状であることが好ましい。
 これらの電解質活物質が含有されていると、電解液4の電導性を良化させ、電極が安定化され、電池寿命が延び、電圧、電流値が長期間安定する等の効果がある。
Graphite is a stack of graphene structures. The term "graphite" also includes those in which several layers are stacked to form a powder.
The shape of the electrolyte active material such as graphite, graphene, nickel oxyhydroxide, manganese dioxide or the like in the electrolytic solution 4 is preferably powdery.
When the electrolyte active material is contained, the conductivity of the electrolytic solution 4 is improved, the electrode is stabilized, the battery life is extended, and the voltage and current values are stabilized for a long time.
 該電解質活物質は、含有されなくてもよいが、含有される場合は、電解液全体に対して、30質量%以上70質量%以下が好ましく、60質量%以上80質量%以下がより好ましく、85質量%以上90質量%以下が特に好ましい。 The electrolyte active material may not be contained, but if contained, it is preferably 30% by mass or more and 70% by mass or less, and more preferably 60% by mass or more and 80% by mass or less with respect to the entire electrolyte solution. 85 mass% or more and 90 mass% or less are especially preferable.
 該電解質活物質は、その粉体を上記ミネラルイオン水電解液で混練して電解液4中に含有させたり、電極に塗布したり、スクリーン印刷したりして使用することが好ましい。 The electrolyte active material is preferably used by kneading the powder with the above-mentioned mineral ion water electrolyte and containing it in the electrolyte 4, applying to an electrode, or screen printing.
<<電解液中の増粘剤、その他物質>>
 本発明の電解液には、増粘剤を加えて増粘することも好ましい。該増粘剤としては、特に限定はないが、天然由来物が好ましく、電解液で加熱抽出し、高分子を低分子として濃厚に析出させたフコイダン、キサンタンガム等の天然多糖類が特に好ましい。
 既存のカルボキシメチルセルロース(CMC)等は、通電阻害を引き起こす場合がある。
 また、本発明の電解液には、電池性能を悪化させない範囲で、上記物質以外の「その他物質」を含有させることができる。
<< Thickener in electrolyte, other substances >>
It is also preferable to add a thickener to the electrolytic solution of the present invention for thickening. The thickener is not particularly limited, but a naturally occurring product is preferable, and natural polysaccharides such as fucoidan, xanthan gum and the like which are heat-extracted with an electrolytic solution and thickly deposited with a polymer as low molecules are particularly preferable.
Existing carboxymethylcellulose (CMC) and the like may cause current blocking.
In addition, “other substances” other than the above substances can be contained in the electrolytic solution of the present invention as long as the battery performance is not deteriorated.
<吸水性基材>
 本発明の電池は、図2(b)に概略断面図を示したように、電解液4が吸水性基材3に含浸されて負極1と正極2に挟まれていてもよい。
 該吸水性基材3としては、綿、不織布、フェルト、織布、紙、貫通気泡体等が挙げられる。
 該吸水性基材3の大きさは、前記した電極板や電極の大きさの範囲内であることが好ましく、吸水性基材3の厚さは、前記した電極間の距離の範囲内であることが好ましい。また、両電極間に挟まれた状態が好ましい。
<Water-absorbent substrate>
In the battery of the present invention, as shown in a schematic cross-sectional view in FIG. 2B, the electrolyte solution 4 may be impregnated in the water-absorbent substrate 3 and sandwiched between the negative electrode 1 and the positive electrode 2.
Examples of the water-absorbent substrate 3 include cotton, non-woven fabric, felt, woven fabric, paper, through-bubbles and the like.
The size of the water-absorbent substrate 3 is preferably in the range of the size of the electrode plate or the electrode described above, and the thickness of the water-absorbent substrate 3 is in the range of the distance between the electrodes described above Is preferred. Moreover, the state pinched | interposed between both electrodes is preferable.
<電池用電解液>
 本発明は、上記した電池用に用いられる、上記した組成を有する電池用電解液でもある。本発明の電池用電解液は、本発明の上記した電池用として好適である。
<Electrolyte solution for battery>
The present invention is also a battery electrolyte having the above-described composition, which is used for the above-described battery. The battery electrolyte of the present invention is suitable for the above-described battery of the present invention.
<電池用電解液の製造方法>
 本発明は、上記電池の上記した製造方法でもある。すなわち、負極1として水素よりイオン化傾向の大きい金属体を用い、正極2として導電体を用い、該負極1と該正極2の間に存在する電解液4としてpHが12以上14以下のアルカリ水を用いた電池用電解液の製造方法であって、少なくとも、マグネシウム若しくはカルシウムの、酸化物、水酸化物、炭酸塩又は炭酸水素塩を水に溶解させてアルカリ土類金属イオンを含有させ、pHを調整し、生物の灰化物の水溶性成分を溶解させることを特徴とする電池用電解液の製造方法でもある。
 なお、限定はされないが、溶解は空気を遮断した状態で行うことが好ましい。
<Method for producing battery electrolyte>
The present invention is also the above-described method for producing the battery. That is, a metal body having a larger ionization tendency than hydrogen is used as the negative electrode 1, a conductor is used as the positive electrode 2, and alkaline water having a pH of 12 or more and 14 or less is used as the electrolytic solution 4 present between the negative electrode 1 and the positive electrode 2. A method for producing a battery electrolyte solution, comprising dissolving at least an oxide, hydroxide, carbonate or bicarbonate of magnesium or calcium in water to contain alkaline earth metal ions, and It is also a method for producing a battery electrolyte, characterized in that it is prepared and dissolved in a water-soluble component of a biological ash.
In addition, although limitation is not carried out, it is preferable to carry out melt | dissolution in the state which interrupted | blocked air.
 製造方法の好ましい範囲は、前記した通りである。また、pHの調整は、「アルカリ土類金属イオン供給化合物」に水を投入して、好ましくは空気を遮断した状態で、好ましくは12時間以上熟成(静置)し、「アルカリ土類金属イオン供給化合物」の一部又は表面層又は全部を、ミネラルイオン(アルカリ土類金属イオン)として溶解させて、pHが所望の範囲に入ったならば、それでpH調整終了とする(それでpHを調整したとみなす)ことができる。
 途中及び/最後に、濾過をして電池用電解液を製造することが好ましい。
The preferred range of the production method is as described above. Moreover, adjustment of pH injects water into "alkaline earth metal ion supply compound", preferably in a state where air is shut off, preferably for 12 hours or more of aging (standing), "alkaline earth metal ion" A part or the surface layer or all of the feed compound is dissolved as a mineral ion (alkaline earth metal ion), and when the pH falls within the desired range, the pH adjustment is finished (thereby adjusting the pH) Can be regarded as
During and / or finally, filtration is preferably performed to produce a battery electrolyte.
<電池の製造方法>
 限定はされないが、電極間に吸水性基材3を挟み、そこに電解液4を染みこませ、電解液4の水分が気化しないように、ラミネート処理によって封入することが好ましい。寒冷地仕様では、ラミネート封入後、断熱構造にすることがより好ましい。
 電解液4を再注水すれば、発電機能を繰り返すことができる。
<Method of manufacturing battery>
Although not limited thereto, it is preferable to sandwich the water-absorbent substrate 3 between the electrodes, impregnate the electrolyte solution 4 there, and seal by a lamination process so that the water of the electrolyte solution 4 is not vaporized. In cold region specifications, it is more preferable to use a heat insulating structure after laminating and sealing.
If the electrolyte solution 4 is refilled, the power generation function can be repeated.
 以下に、実施例及び比較例を挙げて本発明を更に具体的に説明するが、本発明は、その要旨を超えない限りこれらの実施例に限定されるものではない。 EXAMPLES The present invention will be more specifically described below with reference to examples and comparative examples, but the present invention is not limited to these examples as long as the gist thereof is not exceeded.
実施例1
 脱塩水に消石灰(水酸化カルシウム)を、液のpHが13.5以上14.0以下になるように加え、空気を遮断した状態で12時間以上熟成した後に濾過して、ミネラルイオン水よりなる電解液を得た。
Example 1
Slaked lime (calcium hydroxide) is added to demineralized water so that the pH of the solution is 13.5 or more and 14.0 or less, and after aging for 12 hours or more in a state where air is blocked, it is filtered and made of mineral ion water An electrolytic solution was obtained.
 図2に示したような形態の電池を作製した。負極1としてアルミニウム板(20mm×20mm×厚さ0.3mm)を用い、正極2として銅板(25mm×20mm×厚さ0.3mm)を用い、電極間には、綿フェルト(厚さ0.3mm)を挟んだ。すなわち、電極間距離を0.3mmとした。なお、電極として、0.03mm程度のアルミ箔と銅箔の電池も作製した。
 上記電解液を、上記綿フェルトに染みこませ、図2に示したような電池を作製した。
A battery of the type as shown in FIG. 2 was produced. An aluminum plate (20 mm × 20 mm × 0.3 mm thick) is used as the negative electrode 1, a copper plate (25 mm × 20 mm × 0.3 mm thick) is used as the positive electrode 2, and cotton felt (0.3 mm thick) is used between the electrodes. Sandwiches). That is, the distance between the electrodes was 0.3 mm. In addition, the battery of aluminum foil and copper foil about 0.03 mm was also produced as an electrode.
The electrolytic solution was impregnated into the cotton felt to produce a battery as shown in FIG.
 負極1のアルミニウム板と正極2の銅板の間の電圧を測定したところ、0.605V電流値が0.35mAとなった。すなわち、ミネラルイオン水のみでも発電することが確認された。
 このときの電極サイズは、僅かに、アルミ電極15mm×20mm、銅電極15mm×17mmであり綿フェルトのサイズは12mm×15mmと極めて小さかった。
When the voltage between the aluminum plate of the negative electrode 1 and the copper plate of the positive electrode 2 was measured, the 0.605 V current value was 0.35 mA. That is, it was confirmed that power was generated only with mineral ionized water.
At this time, the electrode size was slightly small, that is, the aluminum electrode 15 mm × 20 mm, the copper electrode 15 mm × 17 mm, and the size of the cotton felt was 12 mm × 15 mm.
 ラミネート処理をせずに放置しても98時間程度、そのままの状態の電圧・電流値で通電し続けたが、その後、解放状態のために電解水が気化すると徐々に電圧・電流値が低下してきた。
 しかし、その間隙部位に電解液を僅かに滴下すると、直ぐにその電圧・電流値が元の状態に復帰した。
Even if left unlaminated, it continued to be energized with the voltage and current values for about 98 hours, but after that the voltage and current values gradually decreased when the electrolytic water vaporized due to the release state. The
However, when the electrolytic solution was slightly dropped on the gap portion, the voltage / current value returned to the original state immediately.
実施例2
 実施例1において、消石灰(水酸化カルシウム)単独に代えて、消石灰(水酸化カルシウム)と酸化マグネシウムの混合物(Ca2+/Mg2+=20/0.3(モル比))に代えて、更にpHを14にした以外は、実施例1と同様にミネラルイオン水を調製し、同様に電池を作製した。
Example 2
In Example 1, in place of slaked lime (calcium hydroxide) alone, in place of a mixture of slaked lime (calcium hydroxide) and magnesium oxide (Ca 2+ / Mg 2+ = 20 / 0.3 (molar ratio)), pH is further added. Mineral ionized water was prepared in the same manner as in Example 1 except that 14 was changed to 14, and a battery was similarly manufactured.
 負極1のアルミニウム板と正極2の銅板の間の電圧を測定したところ、0.803Vであった。電流値が0.8mAと向上した。
 その結果、前記同様な条件下で約108時間、そのままの状態で通電し続けた。
It was 0.803 V when the voltage between the aluminum plate of the negative electrode 1 and the copper plate of the positive electrode 2 was measured. The current value improved to 0.8 mA.
As a result, power was continuously supplied for about 108 hours under the same conditions as described above.
実施例3
 実施例1において、消石灰(水酸化カルシウム)単独に代えて、消石灰(水酸化カルシウム)と生石灰(酸化カルシウム)の比を「10/1(カルシウムイオンのモル比)」とし、pHを14にした以外は、実施例1と同様に電池を作製した。
Example 3
In Example 1, instead of slaked lime (calcium hydroxide) alone, the ratio of slaked lime (calcium hydroxide) to quick lime (calcium oxide) was set to "10/1 (molar ratio of calcium ions)", and pH was set to 14. A battery was produced in the same manner as Example 1 except for the above.
 電極間の電圧を測定したところ、電圧0.85V、電流値0.89mAであった。
 生石灰は不純物として鉄イオンも含むから、その分、電圧・電流値が向上したと考えられた。
 その結果、前記同様な条件下において、約98時間、そのままの状態で通電し続けたが気温が高くその環境下において電解液が早めに気化した。完全な機密性の高い封入処理に変えたところ、上記電圧・電流で、実施例1と同じ時間、連続した電力が得られた。
When the voltage between electrodes was measured, it was a voltage of 0.85 V and a current value of 0.89 mA.
Since quicklime also contains iron ions as impurities, it was thought that the voltage and current values were improved accordingly.
As a result, under the same conditions as described above, electricity was kept supplied for about 98 hours, but the temperature was high and the electrolytic solution was quickly vaporized under the environment. When changing to a completely highly sensitive encapsulation process, continuous power was obtained for the same time as in Example 1 with the above voltage and current.
実施例4
 実施例1で調製した「ミネラルイオン水からなる電解液」に、更に「生物の灰化物」として、草木灰(茶殻の灰化物、又は、ホンダワラの灰化物)を加えて12時間熟成後、濾過して不溶物を濾別した。これによって、電解液に「生物の灰化物の水溶性のナトリウム、カリウム、カルシウム、リン、亜鉛、マンガン、セレン、鉄分等の複数のイオン成分」を溶解させ、pHを12.5に調整して電解液とした。すなわち、電解液に、「生物の灰化物よりなる灰化ミネラルイオン前駆体」を含有させた。
Example 4
Plant ash (tea shell ash or Honda Wall ash) is further added to the “electrolytic solution consisting of mineral ion water” prepared in Example 1 as “bios ash”, aged for 12 hours, and filtered. The insoluble matter was filtered off. By this, "water-soluble sodium, potassium, calcium, phosphorus, zinc, manganese, selenium, iron, and other multiple ion components such as biological ash" are dissolved in the electrolytic solution, and the pH is adjusted to 12.5. It was an electrolyte. That is, the electrolytic solution contained "an ashed mineral ion precursor consisting of a biological ash."
 電極間の電圧を測定したところ、茶殻の灰化物もホンダワラの灰化物も何れも、電圧1.2V、電流値が0.92mAであった。
 その結果、前記同様な条件下において、113時間そのままの状態で通電し続けた。
When the voltage between the electrodes was measured, both the ash of the tea husk and the ash of the Honda Walla had a voltage of 1.2 V and a current value of 0.92 mA.
As a result, under the same conditions as described above, energization was continued for 113 hours.
実施例5
 実施例1で調製した「ミネラルイオン水からなる電解液」に、「生物の灰化物」として、草木灰(茶殻の灰化物)を加えて、pHは少量の消石灰(水酸化カルシウム)を用いて、PH12.0に調整し、電解液を調製した。すなわち、電解液に、「生物の灰化物よりなる灰化ミネラルイオン前駆体」を含有させた。該電解液には、主にカルシウムイオン(Ca2+)とマグネシウムイオン(Mg2+)、その他カリウムイオン(K)が含有されていた。
Example 5
Plant ash (tea shell ash) is added to the “electrolyte consisting of mineral ion water” prepared in Example 1 as “living ash”, and pH is small using calcium hydroxide (calcium hydroxide), The pH was adjusted to 12.0 to prepare an electrolyte. That is, the electrolytic solution contained "an ashed mineral ion precursor consisting of a biological ash." The electrolyte mainly contained calcium ions (Ca 2+ ), magnesium ions (Mg 2+ ), and other potassium ions (K + ).
 電極間の電圧を測定したところ、電圧0.56V、電流値が1.13mAであった。
 その結果、前記同様な条件下において、122時間、そのままの状態で通電し続けた。
When the voltage between the electrodes was measured, the voltage was 0.56 V and the current value was 1.13 mA.
As a result, under the same conditions as described above, the current was continued for 122 hours as it is.
実施例6
 実施例1で調製した電解液98質量部に、高温焼成炭素群を2質量部加えて電解液を調製した。pHは14であった。
Example 6
To 98 parts by mass of the electrolytic solution prepared in Example 1, 2 parts by mass of the high-temperature calcined carbon group was added to prepare an electrolytic solution. The pH was 14.
 上記高温焼成炭素群は、例えば、以下のようにして得たが、具体的にはこれには限定されない。
 すなわち、煎茶出し殻(「生物由来の炭素前駆体」に該当)を乾燥状態とし、乾燥質量1kgを、実施例1ないし実施例5の各実施例で調製した電解液(ミネラルイオン水を含有する)で十分に湿らせ、2時間放置後に再び乾燥させて耐熱容器に入れた。
 一方、「紙素材に電解液を浸み込ませ乾燥させた乾燥物」10gをガス火で一部炭化させた。
 その後、その「一部炭化させた紙」と「前記炭素前駆体である茶殻」を共に軽く混合し、マイクロ波を照射した。まず、炭化した部位から高温熱プラズマが発生すると共に、その約1000℃の熱伝導で、茶殻も炭化しながら徐々に煙を出して燃えた。煙が収まると共に茶殻自体も高温赤熱した。その赤熱状態が約2分間経過した時点で、不定形炭素である高温焼成炭素群が得られた。熱が冷めた時点で、乳鉢にて微細化して、高温焼成炭素群よりなる電解質活物質を得た。実施例1ないし実施例5の各実施例で調製した電解液で十分に湿らせたことに対応して、5種類の電解質活物質を得た。
Although the said high temperature baking carbon group was obtained as follows, for example, it is not specifically limited to this.
That is, the roasted green tea husk (corresponding to the "biologically derived carbon precursor") is brought into a dry state, and an electrolyte solution (containing mineral ion water) prepared in each of Examples 1 to 5 with a dry weight of 1 kg. ), Allowed to stand for 2 hours, dried again, and placed in a heat-resistant container.
On the other hand, 10 g of "dry matter obtained by impregnating and drying the electrolytic solution in a paper material" was partially carbonized by gas fire.
Thereafter, the "partially carbonized paper" and "the tea shell which is the carbon precursor" were lightly mixed together and irradiated with microwaves. First, a high temperature thermal plasma was generated from the carbonized portion, and the heat conduction at about 1000 ° C. caused the smoke to burn out gradually while carbonizing the tea shell. As the smoke subsided, the tea shell itself was also hot red. When the red light state had passed for about 2 minutes, a high temperature calcined carbon group which was amorphous carbon was obtained. When the heat was cooled, it was refined in a mortar to obtain an electrolyte active material comprising a high temperature calcined carbon group. Five types of electrolyte active materials were obtained corresponding to sufficient wetting with the electrolyte prepared in each of Examples 1 to 5.
 電極間の電圧を測定したところ、何れも1.29Vであった。電流値は何れも3.1mAであった。
 その結果、前記同様な条件下において約115時間、そのままの状態で通電し続けた。
When the voltage between electrodes was measured, all were 1.29V. The current value was 3.1 mA in all cases.
As a result, power was continuously supplied for about 115 hours under the same conditions as described above.
実施例7
 実施例1で調製した電解液97質量部に、「実施例6で用いた高温焼成炭素群」3質量部を加えて電解液を調製した。pHは14であった。
Example 7
To 97 parts by mass of the electrolytic solution prepared in Example 1, 3 parts by mass of "High-temperature calcined carbon group used in Example 6" was added to prepare an electrolytic solution. The pH was 14.
 電極間の電圧を測定したところ、1.83Vであった。電流値は5.1mAであった。
 その結果、前記同様な条件下において約108時間、そのままの状態で通電し続けた。
It was 1.83 V when the voltage between electrodes was measured. The current value was 5.1 mA.
As a result, power was continuously supplied for about 108 hours under the same conditions as described above.
実施例8
 実施例1で調製した電解液95質量部に、実施例6で用いた「実施例4で調製した電解液(ミネラルイオン水を含有する)で十分に湿らせて乾燥後炭化させて得た高温焼成炭素よりなる電解質活物質」5質量部を加えて電解液を調製した。
Example 8
A high temperature obtained by sufficiently moistening 95 parts by mass of the electrolyte prepared in Example 1 with the electrolyte prepared in Example 4 (containing mineral ion water) used in Example 6 and drying and carbonizing it. An electrolyte was prepared by adding 5 parts by mass of “electrolytic active material consisting of calcined carbon”.
 電極間の電圧を測定したところ、初期電圧は何れも3.6V、安定電圧は何れも1.287V、電流値は何れも8.05mAであった。
 その結果、実施例1と同様の条件下において、111時間、そのままの状態で通電し続けた。
The voltage between the electrodes was measured. The initial voltage was 3.6 V, the stable voltage was 1.287 V, and the current value was 8.05 mA.
As a result, under the same conditions as in Example 1, the current flow was continued as it is for 111 hours.
実施例9
 実施例8において、「実施例6で用いた実施例4の電解液に代えて、実施例6で用いた実施例5の電解液を用いて得た電解質活物質」を用いた以外は、実施例8と同様に電池を作製し、同様に評価した。pHは14であった。
Example 9
Example 8 is carried out except that “an electrolyte active material obtained by using the electrolytic solution of Example 5 used in Example 6 instead of the electrolytic solution of Example 4 used in Example 6” is used. A battery was prepared as in Example 8 and evaluated similarly. The pH was 14.
 電極間の電圧、電流値を測定したところ、1.13V、11.07mAであった。
 その結果、実施例1と同様の条件下において、118時間、そのままの状態で通電し続けた。
It was 1.13 V and 11.07 mA when the voltage between electrodes, and the electric current value were measured.
As a result, under the same conditions as in Example 1, the power supply was continued for 118 hours as it is.
実施例10
 茶殻の草木灰53.3質量部、消石灰24.4質量部、及び、実施例6と同じ「高温焼成炭素群」22.3質量部、実施例1のミネラルイオン水を適量添加し、撹拌混合して練り込み電解液を調製した。
Example 10
Appropriate amounts of 53.3 parts by mass of plant ash of tea husk, 24.4 parts by mass of slaked lime, 22.3 parts by mass of the same “high temperature calcined carbon group” as in Example 6 and mineral ion water of Example 1 are added and stirred and mixed The mixture was kneaded to prepare an electrolytic solution.
 一方、縦30mm×横35mm×厚さ0.3mmの銅板とアルミニウム板をそれぞれ1枚ずつ用意した。
 該銅板の上に、上記電解液4を平均的に直径18mm、塗布厚さ1.2mmとなるよう(電極間距離1.2mm)、塗布し更に薄い綿フェルトをのせて、その中央部に電解液を滴下しその上にアルミニウム板をのせて、電解液と綿フェルトを挟み込みした状態で、両電極間をマスキングテープで止めた。
On the other hand, one copper plate and one aluminum plate each of 30 mm long × 35 mm wide × 0.3 mm thick were prepared.
Apply a thin cotton felt on the copper plate so that the electrolyte 4 has an average diameter of 18 mm and a coating thickness of 1.2 mm (inter-electrode distance 1.2 mm), and electrolyze at the center part The solution was dropped, an aluminum plate was placed thereon, and in a state where the electrolytic solution and the cotton felt were sandwiched, the gap between both electrodes was stopped with a masking tape.
 電極間の電圧を測定したところ、電圧3.58V、電流値24.74mAであった。
 その結果、前記同様な条件下において約88時間、そのままの状態で通電し続けた。
When the voltage between electrodes was measured, it was a voltage of 3.58 V and a current value of 24.74 mA.
As a result, power was continuously supplied for about 88 hours under the same conditions as described above.
<結果>
 実施例の全ての電池が安定的に電力を供給できた。なお、実施例1~8の電解液はペースト状ではなく低粘度液体であったが、実施例9、10の電解液はペースト状であった。
<Result>
All the batteries of the example were able to stably supply power. Although the electrolytes of Examples 1 to 8 were not paste-like but low viscosity liquids, the electrolytes of Examples 9 and 10 were paste-like.
 草木灰(生物の灰化物)の含有されていないミネラルイオン水のみからなる電解液は、pHが高いために、高電圧と高電流が得られるが、電極を侵さなかった。
 草木灰(生物の灰化物)の含有されている電解液も、「ミネラルイオン水と草木灰(生物の灰化物)(灰化ミネラルイオン前駆体)とが複合された電解質活物質」を含有する電解液も、「それら電解液と高温焼成炭素群とが複合された電解液」も、pHが12以上14以下であれば(pHが14近傍でも)、高電圧と高い電流値が得られた上に電極を侵さなかった。
 草木灰(生物の灰化物)の含有されている電解液は、pH12近傍でも、極めて穏やかであり、草木灰(生物の灰化物)は、過度に電極を酸化溶解させない抑制材としても機能した。
 これらの基本的な機能を効果的に可変することで、要望される電池性能が確保可能である。
The electrolyte consisting only of mineral ion water not containing grass and wood ash (the ashes of living organisms) obtained high voltage and high current because of its high pH, but did not attack the electrode.
An electrolytic solution containing grass and wood ash (biological ash) is also an electrolytic solution containing "an electrolyte active material in which mineral ion water and grass and wood ash (biological ash) (composite mineral ion precursor) are combined". Also in the “electrolytic solution in which the electrolytic solution and the high-temperature calcined carbon group are combined”, when the pH is 12 or more and 14 or less (even when the pH is around 14), high voltage and high current value are obtained. It did not attack the electrode.
The electrolyte containing grass ash (living ash) was extremely mild even at around pH 12, and grass ash (living ash) also functioned as a suppressing material that did not cause excessive dissolution of the electrode.
By effectively varying these basic functions, it is possible to ensure the required battery performance.
 更に、電解液の水分が気化しない封入ラミネート処理によって、更に長寿命化が可能となった。また、電解液が経時で乾燥しても、ミネラルイオン水を再注水すれば、直ぐに発電機能を繰り返すことができた。 Furthermore, the life can be further extended by the encapsulation laminating process in which the water content of the electrolytic solution is not vaporized. In addition, even if the electrolytic solution dried over time, the power generation function could be repeated immediately if mineral ion water was re-watered.
 本発明の特定の電解液4を用いた電池は、簡便で長寿命であり、コストもかからないため、電池を製造又は使用する分野に広く利用されるものである。 The battery using the specific electrolytic solution 4 of the present invention is simple, has a long life, and is inexpensive, so it is widely used in the field of manufacturing or using the battery.
 1 負極
 2 正極
 3 吸水性基材
 4 電解液
 5 導線
DESCRIPTION OF SYMBOLS 1 negative electrode 2 positive electrode 3 water absorbing base material 4 electrolyte solution 5 conducting wire

Claims (12)

  1.  負極として水素よりイオン化傾向の大きい金属体を用い、正極として導電体を用い、該負極と該正極の間に存在する電解液として、アルカリ土類金属イオンを含有するpHが12以上14以下のミネラルイオン水を含有することを特徴とする電池。 A metal body having a larger ionization tendency than hydrogen as a negative electrode, a conductor as a positive electrode, and an alkaline earth metal ion as an electrolyte existing between the negative electrode and the positive electrode, a mineral having a pH of 12 to 14 A battery characterized by containing ionic water.
  2.  上記電解液が含有するアルカリ土類金属イオンが、マグネシウムイオン又はカルシウムイオンである請求項1に記載の電池。 The battery according to claim 1, wherein the alkaline earth metal ion contained in the electrolytic solution is a magnesium ion or a calcium ion.
  3.  上記電解液が、更に、生物の灰化物よりなる灰化ミネラルイオン前駆体を含有する請求項1又は請求項2に記載の電池。 The battery according to claim 1 or 2, wherein the electrolytic solution further contains an ashed mineral ion precursor consisting of a biological ash.
  4.  上記生物が、草木又は海藻である請求項3に記載の電池。 The battery according to claim 3, wherein the organism is a plant or a seaweed.
  5.  上記電解液が、上記ミネラルイオン水を含有すると共に、更に電解質活物質を含有し、該電解質活物質が、上記電解液を担持した「生物由来の炭素前駆体」を焼成してなるものである請求項1ないし請求項4の何れかの請求項に記載の電池。 The electrolyte solution contains the mineral ion water and further contains an electrolyte active material, and the electrolyte active material is obtained by firing a “biologically-derived carbon precursor” carrying the electrolyte solution. The battery according to any one of claims 1 to 4.
  6.  上記電解液が、更に、電解質活物質として、「生物由来の炭素前駆体に、上記ミネラルイオン水及び上記灰化ミネラルイオン前駆体を担持して焼成してなる高温焼成炭素群」を含有する請求項3又は請求項4に記載の電池。 The electrolytic solution further contains, as an electrolyte active material, “a high-temperature calcined carbon group formed by supporting and calcining the mineral ion water and the ashed mineral ion precursor on a carbon precursor derived from a living organism”. The battery of Claim 3 or Claim 4.
  7.  上記高温焼成炭素群が、上記「生物由来の炭素前駆体」をマイクロ波励起で高温プラズマ焼成したものである請求項5又は請求項6に記載の電池。 The battery according to claim 5 or 6, wherein the high temperature fired carbon group is obtained by high temperature plasma firing the "biologically derived carbon precursor" by microwave excitation.
  8.  上記電解液が、更に、上記ミネラルイオン水によってグラファイトを層間剥離したグラフェンを含有する請求項1ないし請求項7の何れかの請求項に記載の電池。 The battery according to any one of claims 1 to 7, wherein the electrolytic solution further contains graphene in which graphite is exfoliated by the mineral ion water.
  9.  請求項3ないし請求項8の何れかの請求項に記載の電池用の電解質活物質であって、上記アルカリ土類金属イオン、及び、上記灰化ミネラルイオン前駆体を含有するペースト状のものであることを特徴とする電解質活物質。 An electrolyte active material for a battery according to any one of claims 3 to 8, which is in the form of a paste containing the alkaline earth metal ion and the ashed mineral ion precursor. An electrolyte active material characterized in that
  10.  負極として水素よりイオン化傾向の大きい金属体を用い、正極として導電体を用い、該負極と該正極の間に存在する電解液としてpHが12以上14以下のミネラルイオン水を用いた電池用電解液の製造方法であって、
     少なくとも、マグネシウム若しくはカルシウムの、酸化物、水酸化物、炭酸塩又は炭酸水素塩を水に溶解させてアルカリ土類金属イオンを含有させ、pHを調整し、生物の灰化物の水溶性成分を溶解させることを特徴とする電池用電解液の製造方法。
    A battery electrolyte using a metal body having a larger ionization tendency than hydrogen as a negative electrode, a conductor as a positive electrode, and mineral ion water having a pH of 12 to 14 as an electrolyte existing between the negative electrode and the positive electrode Manufacturing method of
    Dissolve at least an oxide, hydroxide, carbonate or bicarbonate of magnesium or calcium in water to contain alkaline earth metal ions, adjust the pH, and dissolve the water-soluble components of biological ash A method of producing an electrolytic solution for a battery, comprising:
  11.  上記「マグネシウム若しくはカルシウムの、酸化物、水酸化物、炭酸塩又は炭酸水素塩」として、生物由来品を用いる請求項10に記載の電池用電解液の製造方法。 The method for producing an electrolytic solution for a battery according to claim 10, wherein a biological product is used as the "oxide, hydroxide, carbonate or bicarbonate of magnesium or calcium".
  12.  上記生物由来品が、サンゴ石、卵の殻、又は、貝殻である請求項11に記載の電池用電解液の製造方法。

     
    The method for producing a battery electrolyte according to claim 11, wherein the product of biological origin is coral stone, egg shell or shell.

PCT/JP2018/017866 2017-08-28 2018-05-09 Battery having electrolytic solution containing alkaline mineral ionized water, electrolyte active material, and method for producing battery electrolytic solution WO2019044042A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019538960A JP6947832B2 (en) 2017-08-28 2018-05-09 A method for producing a battery having an electrolytic solution containing alkaline mineral ionized water, an electrolyte active material, and an electrolytic solution for a battery.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-163435 2017-08-28
JP2017163435 2017-08-28

Publications (1)

Publication Number Publication Date
WO2019044042A1 true WO2019044042A1 (en) 2019-03-07

Family

ID=65525302

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2018/017866 WO2019044042A1 (en) 2017-08-28 2018-05-09 Battery having electrolytic solution containing alkaline mineral ionized water, electrolyte active material, and method for producing battery electrolytic solution
PCT/JP2018/021322 WO2019044092A1 (en) 2017-08-28 2018-06-04 Method for producing mineral ionized water, and method for producing liquid or gel using mineral ionized water

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/021322 WO2019044092A1 (en) 2017-08-28 2018-06-04 Method for producing mineral ionized water, and method for producing liquid or gel using mineral ionized water

Country Status (2)

Country Link
JP (2) JP6947832B2 (en)
WO (2) WO2019044042A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112019090A (en) * 2019-05-30 2020-12-01 清华大学 Decorative ring
TWI740163B (en) * 2019-05-30 2021-09-21 鴻海精密工業股份有限公司 Method for generating electrical energy
US11545672B2 (en) 2019-05-30 2023-01-03 Tsinghua University Electrical energy generating device
US11605820B2 (en) 2019-05-30 2023-03-14 Tsinghua University Electrical energy generating element

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2019049611A1 (en) * 2017-09-08 2020-11-19 杉山 修 Hydrogen gas manufacturing method

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5122166B1 (en) * 1968-08-20 1976-07-08
JPS51140131A (en) * 1975-05-29 1976-12-02 Setsu Sasaki Rechargeable dry battery
JPS51140130A (en) * 1975-05-28 1976-12-02 Setsu Sasaki Method of making filler for dry batteries
JPS60175368A (en) * 1984-02-20 1985-09-09 Matsushita Electric Ind Co Ltd Zinc-alkaline primary cell
JPH09320614A (en) * 1996-05-23 1997-12-12 Hamada Keinosuke Development of non-lead type battery based on new battery theory and utilization thereof
JP2011129336A (en) * 2009-12-17 2011-06-30 Tosoh Corp Recovery method of manganese from battery
WO2011102409A1 (en) * 2010-02-19 2011-08-25 株式会社アクモ Battery
JP2011168858A (en) * 2010-02-22 2011-09-01 Eco-System Recycling Co Ltd Method for producing high concentration lithium solution from lithium-containing liquid, and method for producing lithium carbonate
JP2014156648A (en) * 2013-02-18 2014-08-28 Jx Nippon Mining & Metals Corp Metal recovery method from waste positive electrode material and waste battery
WO2015046211A1 (en) * 2013-09-30 2015-04-02 三菱マテリアル株式会社 Method for treating fluorine-containing liquid electrolyte

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0732690B2 (en) * 1990-08-29 1995-04-12 森下仁丹株式会社 Low-salt food
JPH07313099A (en) * 1994-05-20 1995-12-05 Tokiwa Kanpou Seiyaku:Kk Plant mineral composition, its production and health food containing the same
JPH10229850A (en) * 1997-02-18 1998-09-02 Tokiwa Kanpo Seiyaku:Kk High ca phytogenic mineral reinforcing diet food
JP3588010B2 (en) * 1998-11-06 2004-11-10 株式会社やつか Biological mineral hold material
JP2003027964A (en) * 2001-07-11 2003-01-29 Komosu:Kk Gas turbine combustion system
DE10355400A1 (en) * 2003-11-25 2005-07-07 Noack, Andreas, Dr. Multicomponent mineral preparations and method for the preparation of multi-component mineral preparations
JP4759337B2 (en) * 2005-07-20 2011-08-31 栄基 中山 Plant mineral extract and method for producing the same
JP2013000003A (en) * 2011-06-12 2013-01-07 Yoshiro Nagado Ashed brown rice product and brown rice mineral beverage, and production method thereof
JP6381906B2 (en) * 2013-12-25 2018-08-29 キリンビバレッジ株式会社 New textured container-packed beverage and method for producing the same
JP2016036343A (en) * 2014-08-07 2016-03-22 三栄源エフ・エフ・アイ株式会社 Gelatinous food and drink and method for producing gelatinous food and drink
JP6541230B2 (en) * 2016-02-16 2019-07-10 泰弘 山本 Method of producing oil-water fusion fuel

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5122166B1 (en) * 1968-08-20 1976-07-08
JPS51140130A (en) * 1975-05-28 1976-12-02 Setsu Sasaki Method of making filler for dry batteries
JPS51140131A (en) * 1975-05-29 1976-12-02 Setsu Sasaki Rechargeable dry battery
JPS60175368A (en) * 1984-02-20 1985-09-09 Matsushita Electric Ind Co Ltd Zinc-alkaline primary cell
JPH09320614A (en) * 1996-05-23 1997-12-12 Hamada Keinosuke Development of non-lead type battery based on new battery theory and utilization thereof
JP2011129336A (en) * 2009-12-17 2011-06-30 Tosoh Corp Recovery method of manganese from battery
WO2011102409A1 (en) * 2010-02-19 2011-08-25 株式会社アクモ Battery
JP2011168858A (en) * 2010-02-22 2011-09-01 Eco-System Recycling Co Ltd Method for producing high concentration lithium solution from lithium-containing liquid, and method for producing lithium carbonate
JP2014156648A (en) * 2013-02-18 2014-08-28 Jx Nippon Mining & Metals Corp Metal recovery method from waste positive electrode material and waste battery
WO2015046211A1 (en) * 2013-09-30 2015-04-02 三菱マテリアル株式会社 Method for treating fluorine-containing liquid electrolyte

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112019090A (en) * 2019-05-30 2020-12-01 清华大学 Decorative ring
CN112019090B (en) * 2019-05-30 2021-08-31 清华大学 Decorative ring
TWI740163B (en) * 2019-05-30 2021-09-21 鴻海精密工業股份有限公司 Method for generating electrical energy
US11335912B2 (en) 2019-05-30 2022-05-17 Tsinghua University Decorative ring
US11437628B2 (en) 2019-05-30 2022-09-06 Tsinghua University Method for generating electrical energy
US11545672B2 (en) 2019-05-30 2023-01-03 Tsinghua University Electrical energy generating device
US11605820B2 (en) 2019-05-30 2023-03-14 Tsinghua University Electrical energy generating element

Also Published As

Publication number Publication date
JPWO2019044042A1 (en) 2020-09-24
JP6947832B2 (en) 2021-10-13
JPWO2019044092A1 (en) 2020-10-22
WO2019044092A1 (en) 2019-03-07

Similar Documents

Publication Publication Date Title
JP6947832B2 (en) A method for producing a battery having an electrolytic solution containing alkaline mineral ionized water, an electrolyte active material, and an electrolytic solution for a battery.
JP5184212B2 (en) Lithium air secondary battery and lithium air secondary battery manufacturing method
JP5927372B2 (en) Alkaline secondary battery and method for producing alkaline secondary battery
JP6570545B2 (en) Air electrode, metal-air battery and air electrode material
ES2710074T3 (en) Secondary zinc / air battery, and air electrode
JP6517606B2 (en) Air electrode, metal-air battery, air electrode material, and method of manufacturing air electrode material
TWI336147B (en) Secondary battery of improved life characteristics by elimination of metal ions
JP6039269B2 (en) Positive electrode active material for sodium ion secondary battery and sodium ion secondary battery using the same
JP2013134838A (en) Negative electrode mixture for iron-air secondary battery, negative electrode mixture slurry, negative electrode for iron-air secondary battery, method of manufacturing the same, and iron-air secondary battery
JP2011243364A (en) Zinc air cell and manufacturing method of zinc air cell
JP2019016484A (en) Negative electrode for all solid-state battery and all solid-state battery including the same
JP2019019014A (en) Conductive carbon mixture, electrode using the mixture, and power storage device equipped with the electrode
JP6706823B2 (en) Alkaline batteries
Galal et al. Effect of redox electrolyte on the specific capacitance of SrRuO3–reduced graphene oxide nanocomposites
JP6715173B2 (en) Zinc-air battery manufacturing method
CN110620221B (en) Sulfur-doped lithium titanate/graphene oxide composite material, and preparation method and application thereof
JP2013026148A (en) Positive electrode for nonaqueous electrolyte lithium air secondary battery and method for manufacturing the same
JP2019021421A (en) Conductive carbon mixture, electrode arranged by use of the mixture, and power storage device having the electrode
JP2019021420A (en) Conductive carbon mixture, electrode arranged by use of the mixture, and power storage device having the electrode
JP6454496B2 (en) Electrode and battery constructed using the same
Wong et al. Enhanced conductivity boosts the cathodic performance of aluminium-doped SrTiO3 in rechargeable alkaline zinc battery
Lee et al. Binder-free metal fibril-supported Fe 2 O 3 anodes for high-performance lithium-ion batteries
JP5499281B2 (en) Positive electrode active material, magnesium secondary battery, and method for producing positive electrode active material
JP6310413B2 (en) Lithium air secondary battery, method for producing catalyst for air electrode, and method for producing lithium air secondary battery
JP6715209B2 (en) Lithium air secondary battery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18850925

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019538960

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 03/08/2020)

122 Ep: pct application non-entry in european phase

Ref document number: 18850925

Country of ref document: EP

Kind code of ref document: A1