JP2013026148A - Positive electrode for nonaqueous electrolyte lithium air secondary battery and method for manufacturing the same - Google Patents

Positive electrode for nonaqueous electrolyte lithium air secondary battery and method for manufacturing the same Download PDF

Info

Publication number
JP2013026148A
JP2013026148A JP2011162329A JP2011162329A JP2013026148A JP 2013026148 A JP2013026148 A JP 2013026148A JP 2011162329 A JP2011162329 A JP 2011162329A JP 2011162329 A JP2011162329 A JP 2011162329A JP 2013026148 A JP2013026148 A JP 2013026148A
Authority
JP
Japan
Prior art keywords
carbon material
positive electrode
acid
secondary battery
electrolyte lithium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011162329A
Other languages
Japanese (ja)
Other versions
JP5594247B2 (en
Inventor
Hirofumi Iizaka
浩文 飯坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2011162329A priority Critical patent/JP5594247B2/en
Publication of JP2013026148A publication Critical patent/JP2013026148A/en
Application granted granted Critical
Publication of JP5594247B2 publication Critical patent/JP5594247B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide a positive electrode for a nonaqueous electrolyte lithium air secondary battery, capable of providing high coulomb efficiency (charge capacity/discharge capacity), and a method for manufacturing the positive electrode for the nonaqueous electrolyte lithium air secondary battery.SOLUTION: A positive electrode for a nonaqueous electrolyte lithium air secondary battery contains a carbon material. The carbon material is fired after acid treatment, and has an acid amount of 0.04 mmol/g or more. There is also provided a method for manufacturing the positive electrode for the nonaqueous electrolyte lithium air secondary battery.

Description

本発明は、非水電解液リチウム空気二次電池の正極およびその製造方法に関し、さらに詳しくは特定の炭素材料を含有することによって高いクーロン効率[初回の充電容量と放電容量との比率(充電容量/放電容量)を示す。]を与え得る非水電解液リチウム空気二次電池の正極およびその製造方法に関する。   The present invention relates to a positive electrode of a non-aqueous electrolyte lithium-air secondary battery and a method for manufacturing the same, and more specifically, by including a specific carbon material, high coulomb efficiency [ratio of initial charge capacity to discharge capacity (charge capacity) / Discharge capacity). The present invention relates to a positive electrode of a non-aqueous electrolyte lithium-air secondary battery and a method for manufacturing the same.

近年、放電できる電気容量が大きく小型化や軽量化が容易であり、外部からの酸素を用いるため資源的な制約が少なく環境負荷も一般的に用いられているリチウム二次電池に比べて小さい非水電解液リチウム空気電池が注目され、様々な研究が行われている。
この非水電解液リチウム空気電池は、外部からの酸素を正極活物質とする電池であり、主要な構成材として正極、非水電解液、セパレータ、負極および酸素拡散層を有するものである。
In recent years, the dischargeable electric capacity is large and it is easy to reduce the size and weight, and since oxygen is used from the outside, there are few resource restrictions and the environmental load is small compared to the commonly used lithium secondary battery. Water electrolyte lithium-air batteries have attracted attention and various studies have been conducted.
This non-aqueous electrolyte lithium-air battery is a battery using oxygen from the outside as a positive electrode active material, and has a positive electrode, a non-aqueous electrolyte, a separator, a negative electrode, and an oxygen diffusion layer as main components.

そして、このような非水電解液リチウム空気電池において前記の主要な構成材のうちで従来のリチウム二次電池と比較して大きく機能が異なるものの1つが正極であり、非水電解液リチウム空気電池の正極について様々な検討がなされている。
しかし、従来技術による非水電解液リチウム空気電池の正極を用いた空気電池では、クーロン効率が低く、二次電池化ができていない。
一方、前記正極に含有される炭素材料は、炭素骨格を有し通常表面に細孔を有するもので、その性能向上の検討がなされている。
And in such a non-aqueous electrolyte lithium-air battery, one of the main constituents whose functions are significantly different from those of conventional lithium secondary batteries is the positive electrode, and the non-aqueous electrolyte lithium-air battery Various studies have been made on these positive electrodes.
However, in the air battery using the positive electrode of the non-aqueous electrolyte lithium-air battery according to the prior art, the coulomb efficiency is low and the secondary battery cannot be formed.
On the other hand, the carbon material contained in the positive electrode has a carbon skeleton and usually has pores on the surface, and studies have been made on improving its performance.

例えば、特許文献1には、触媒や空気電池に用い得る多孔体として、固体骨格部と細孔とを有する多孔体を含む、ナノ粒子含有複合多孔体、およびさらに有機凝集体、例えばデンドリマーを含むナノ粒子含有複合多孔体が記載されている。そして、具体例として、多孔体の固体骨格部としてのポリフェノール系高分子からなるカーボン前駆体ゲル、ポリアミドアミンデンドリマーを含むナノ粒子含有複合多孔体を600℃以上の温度で熱処理してデンドリマーを除去するとともにカーボン前駆体の炭化処理をして見掛け密度、比表面積および細孔直径が特定の数値であるカーボン多孔体からなる複合多孔体を得た例が示されているが、電極を作製した例は示されていない。   For example, Patent Document 1 includes a nanoparticle-containing composite porous body including a porous body having a solid skeleton portion and pores as a porous body that can be used for a catalyst or an air battery, and further an organic aggregate such as a dendrimer. A nanoparticle-containing composite porous body is described. As a specific example, a carbon precursor gel composed of a polyphenol-based polymer as a solid skeleton portion of the porous body and a nanoparticle-containing composite porous body containing a polyamidoamine dendrimer are heat-treated at a temperature of 600 ° C. or more to remove the dendrimer. In addition, the carbon precursor is carbonized and an example of obtaining a composite porous body composed of a carbon porous body with specific values of apparent density, specific surface area, and pore diameter is shown. Not shown.

また、特許文献2には、金属空気電池用のカソード(正極)であって、酸と接触していない炭素粒子と、第1有機ポリマーとを含む第1層と、酸素と接触した炭素粒子と第2有機ポリマーとを含む第2層とを備え、第1層と第2層とが交互に接触しているカソードが記載されている。そして、具体例として、炭素粒子と硝酸と水とを攪拌下に加熱して得られた炭素粒子を用いて形成したカソード、亜鉛粒子、電解質としての水酸化カリウムの水溶液、空気を取り込む孔を覆う取り外し可能なシートを用いて金属空気電池を得た例が示されている。しかし、亜鉛/空気電池は性能面から基本的には一次電池に属すると考えられている。   Patent Document 2 discloses a cathode (positive electrode) for a metal-air battery, a first layer containing carbon particles not in contact with an acid, a first organic polymer, and carbon particles in contact with oxygen. A cathode is described comprising a second layer comprising a second organic polymer, wherein the first layer and the second layer are in alternating contact. As specific examples, the cathode, zinc particles, an aqueous solution of potassium hydroxide as an electrolyte, and a hole for taking in air are formed by using carbon particles obtained by heating carbon particles, nitric acid, and water under stirring. An example of obtaining a metal-air battery using a removable sheet is shown. However, zinc / air batteries are basically considered to belong to primary batteries in terms of performance.

また、特許文献3には、微粒子カーボンおよびポリマーエマルジョンを含む液体含有前駆体を形成する工程と、前記の液体含有前駆体から前駆体エアロゾルの小滴を生成する工程と、前記前駆体エアロゾルの小滴を加熱して、小滴から液体を除去して前記粒子を形成する工程を含む、ポリマー相を含む粒子の製造方法が記載されている。そして、前記微粒子が亜鉛−空気電池や燃料電池などのエネルギーデバイス作製のための電極触媒粉末などの微粒子材料であることが示されている。   Patent Document 3 discloses a step of forming a liquid-containing precursor containing particulate carbon and a polymer emulsion, a step of generating droplets of a precursor aerosol from the liquid-containing precursor, and a small amount of the precursor aerosol. A method of producing particles comprising a polymer phase is described, comprising the step of heating the droplet to remove liquid from the droplet to form the particle. And it is shown that the said microparticles | fine-particles are fine particle materials, such as an electrode catalyst powder for energy device manufacture, such as a zinc-air battery and a fuel cell.

また、特許文献4には、正極活物質として酸素と、負極活物質として鉄および鉄イオンとを有し、電解液が酸性である二次空気電池が記載されている。そして、具体例として、電解液に酸性添加剤として酸性のカーボンの微粉末を使用した二次空気電池が示されている。   Patent Document 4 describes a secondary air battery having oxygen as a positive electrode active material, iron and iron ions as a negative electrode active material, and having an acidic electrolyte solution. As a specific example, a secondary air battery using an acidic carbon fine powder as an acidic additive in an electrolytic solution is shown.

また、特許文献5には、Co、Ni、Feの1以上の遷移金属を含み該遷移金属が担体である炭素材料に10重量%以上40重量%以下の担持量で担持されており該遷移金属の粒子径が2.5nm以上20nm以下である触媒を酸素の酸化還元触媒として有する正極と、負極活物質を有する負極と、イオン伝導体とを備えたリチウム空気電池が記載されている。そして、具体例として、蟻酸コバルトとカーボン材料とを窒素気流中、300℃で熱処理してコバルトナノ粒子が5重量%担持された炭素材料を得た例が示されている。   Further, Patent Document 5 includes one or more transition metals of Co, Ni, and Fe, and the transition metal is supported on a carbon material as a support at a loading amount of 10 wt% to 40 wt%. Describes a lithium-air battery including a positive electrode having a catalyst having a particle diameter of 2.5 nm to 20 nm as an oxygen redox catalyst, a negative electrode having a negative electrode active material, and an ionic conductor. As a specific example, there is shown an example in which cobalt formate and a carbon material are heat-treated at 300 ° C. in a nitrogen stream to obtain a carbon material carrying 5% by weight of cobalt nanoparticles.

さらに、特許文献6には、導電性材料を含有する空気極層、空気極集電体を有する空気極と、負極層、および負極と、非水電解質とを有する金属空気二次電池であって、前記導電性材料として平均アスペクト比が10以上の針状炭素を用いた金属空気二次電池が記載されている。そして、具体例として、平均アスペクト比が100の気相成長炭素繊維(VGCF)を用いた金属空気二次電池が示されている。   Furthermore, Patent Document 6 discloses a metal-air secondary battery having an air electrode layer containing a conductive material, an air electrode having an air electrode current collector, a negative electrode layer, a negative electrode, and a nonaqueous electrolyte. A metal-air secondary battery using acicular carbon having an average aspect ratio of 10 or more is described as the conductive material. As a specific example, a metal-air secondary battery using vapor grown carbon fiber (VGCF) having an average aspect ratio of 100 is shown.

国際特許公開2004−110930号公報International Patent Publication No. 2004-110930 特表2005−510829号公報JP 2005-510929 A 特開2008−173635号公報JP 2008-173635 A 特開2010−140736号公報JP 2010-140736 A 特開2010−176907号公報JP 2010-176907 A 特開2010−287390号公報JP 2010-287390 A

しかし、これらの従来技術を適用して非水電解液リチウム空気電池の正極を作製しても高いクーロン効率(充電容量/放電容量)を与え得る非水電解液リチウム空気二次電池の正極を得ることはできない。
従って、本発明の目的は、高いクーロン効率(充電容量/放電容量)を与え得る非水電解液リチウム空気二次電池の正極を提供することである。
また、本発明の目的は、前記非水電解液リチウム空気二次電池の正極の製造方法を提供することである。
However, a positive electrode of a non-aqueous electrolyte lithium-air secondary battery that can provide high coulomb efficiency (charge capacity / discharge capacity) even when a positive electrode of a non-aqueous electrolyte lithium-air battery is manufactured by applying these conventional techniques is obtained. It is not possible.
Accordingly, an object of the present invention is to provide a positive electrode of a non-aqueous electrolyte lithium-air secondary battery that can provide high coulomb efficiency (charge capacity / discharge capacity).
Moreover, the objective of this invention is providing the manufacturing method of the positive electrode of the said nonaqueous electrolyte lithium air secondary battery.

本発明者らは、前記目的を達成することを目的として鋭意検討を行った結果、従来技術による炭素材料を正極材として用いたのでは、充電時に、放電析出物(Li)が分解し得ず、クーロン効率が低く、二次電池化が困難であることを見出し、さらに検討を行った結果、本発明を完成した。
本発明は、炭素材料を含有する非水電解液リチウム空気二次電池の正極であって、前記炭素材料が、酸処理後に焼成されたものであって且つ酸量が0.04mmol/gより多いことを特徴とする、前記正極に関する。
As a result of intensive studies aimed at achieving the above object, the present inventors have used a carbon material according to the prior art as a positive electrode material, so that discharge deposits (Li 2 O 2 ) are decomposed during charging. However, as a result of further finding out that the coulomb efficiency is low and it is difficult to make a secondary battery, the present invention has been completed.
The present invention is a positive electrode of a non-aqueous electrolyte lithium-air secondary battery containing a carbon material, wherein the carbon material is fired after acid treatment and has an acid amount greater than 0.04 mmol / g. The present invention relates to the positive electrode.

また、本発明は、炭素材料を含有する非水電解液リチウム空気二次電池の正極の製造方法であって、前記炭素材料として、
多孔質炭素材料を酸処理する工程、および
得られた酸処理した炭素材料を焼成(加熱処理ともいう)する工程、
を含む方法によって得られる材料を用いる、前記方法に関する。
本発明における酸量とは、後述の実施例の欄に詳述する測定法によって求められる炭素材料1g当たりの酸量(mmol)を示す。
また、本発明において酸処理とは、多孔質酸素材料を酸と接触させることを意味する。
また、本発明において酸処理後に焼成されたものとは、酸処理された炭素材料が加熱処理されたものであることを意味する。
Further, the present invention is a method for producing a positive electrode of a non-aqueous electrolyte lithium air secondary battery containing a carbon material,
A step of acid-treating the porous carbon material, and a step of firing (also referred to as heat treatment) the obtained acid-treated carbon material,
It relates to the said method using the material obtained by the method containing this.
The acid amount in the present invention indicates the acid amount (mmol) per 1 g of the carbon material determined by the measurement method described in detail in the column of Examples described later.
In the present invention, the acid treatment means contacting the porous oxygen material with an acid.
Moreover, what was baked after the acid treatment in the present invention means that the acid-treated carbon material has been heat-treated.

本発明によれば、高いクーロン効率[初回の充電容量と放電容量との比率(充電容量/放電容量)を与え得る非水電解液リチウム空気二次電池の正極を得ることができる。
また、本発明によれば、高いクーロン効率(充電容量/放電容量)を与え得る非水電解液リチウム空気二次電池の正極を容易に得ることができる。
本明細書において、高いクーロン効率とは85%以上のクーロン効率であることを意味する。
ADVANTAGE OF THE INVENTION According to this invention, the positive electrode of the nonaqueous electrolyte lithium air secondary battery which can give high coulomb efficiency [ratio (charge capacity / discharge capacity) of the initial charge capacity and discharge capacity] can be obtained.
Further, according to the present invention, it is possible to easily obtain a positive electrode of a non-aqueous electrolyte lithium-air secondary battery that can provide high coulomb efficiency (charge capacity / discharge capacity).
In this specification, high Coulomb efficiency means that the Coulomb efficiency is 85% or more.

図1は、実施例および比較例で得られた正極を用いた非水電解液リチウム空気二次電池における炭素材料の調製時の焼成温度と電池のクーロン効率および放電容量との関係を示すグラフである。FIG. 1 is a graph showing the relationship between the firing temperature at the time of preparation of a carbon material, the coulombic efficiency of the battery, and the discharge capacity in a non-aqueous electrolyte lithium-air secondary battery using positive electrodes obtained in Examples and Comparative Examples. is there. 図2は、実施例および比較例で得られた正極を用いた非水電解液リチウム空気二次電池における炭素材料の酸量と電池のクーロン効率との関係を示すグラフである。FIG. 2 is a graph showing the relationship between the acid amount of the carbon material and the Coulomb efficiency of the battery in the non-aqueous electrolyte lithium-air secondary battery using the positive electrode obtained in Examples and Comparative Examples. 図3は、実施例および比較例で得られた正極に用いた炭素材料の調製時焼成温度と炭素材料の酸量との関係を示すグラフである。FIG. 3 is a graph showing the relationship between the firing temperature at the time of preparation of the carbon material used in the positive electrode obtained in Examples and Comparative Examples and the acid amount of the carbon material. 図4は、非水電解液リチウム空気二次電池の電極構造を説明するための模式図である。FIG. 4 is a schematic diagram for explaining an electrode structure of a non-aqueous electrolyte lithium-air secondary battery. 図5は、非水電解液リチウム空気二次電池の正極における充電後の状態を示す断面SEM写真の写しである。FIG. 5 is a copy of a cross-sectional SEM photograph showing a state after charging in the positive electrode of the non-aqueous electrolyte lithium-air secondary battery. 図6は、非水電解液リチウム空気二次電池のクーロン効率の原理を説明するための模式図である。FIG. 6 is a schematic diagram for explaining the principle of the Coulomb efficiency of the non-aqueous electrolyte lithium-air secondary battery. 図7は、本発明の製造方法の実施態様における炭素材料の製造工程を示す模式図である。FIG. 7 is a schematic view showing a carbon material manufacturing process in the embodiment of the manufacturing method of the present invention. 図8は、本発明の製造方法の実施態様における炭素材料を用いて正極を製造する工程を示す模式図である。FIG. 8 is a schematic diagram showing a process for producing a positive electrode using a carbon material in an embodiment of the production method of the present invention. 図9は、非水電解液リチウム空気二次電池の正極を適用した評価空気電池の概略図を示す。FIG. 9 shows a schematic diagram of an evaluation air battery to which a positive electrode of a non-aqueous electrolyte lithium-air secondary battery is applied.

特に、本発明において、以下の実施態様を挙げることができる。
1)前記酸量が、0.04mmol/gより多く2mmol/g未満である前記正極。
2)さらに、バインダーを含有する前記正極。
3)150℃以上600℃未満の温度で焼成する前記製造方法。
4)前記焼成が、不活性雰囲気下に行われる前記製造方法。
5)前記酸処理が、無機酸と多孔質炭素材料との接触によって行われる前記製造方法。
6)前記酸処理した炭素材料を大気中で仮焼成する工程、をさらに含む、前記製造方法。
In particular, in the present invention, the following embodiments can be mentioned.
1) The positive electrode, wherein the acid amount is more than 0.04 mmol / g and less than 2 mmol / g.
2) The positive electrode further containing a binder.
3) The said manufacturing method baked at the temperature of 150 to 600 degreeC.
4) The said manufacturing method with which the said baking is performed in inert atmosphere.
5) The said manufacturing method with which the said acid treatment is performed by the contact of an inorganic acid and a porous carbon material.
6) The said manufacturing method further including the process of carrying out the temporary baking of the said acid-treated carbon material in air | atmosphere.

本発明において、炭素材料を含有する非水電解液リチウム空気二次電池の正極は、前記炭素材料が、酸処理後に焼成されたものであって且つ酸量が0.04mmol/gより多いことが必要であり、これによって高いクーロン効率を与え得る非水電解液リチウム空気二次電池の正極を得ることができる。   In the present invention, the positive electrode of the non-aqueous electrolyte lithium-air secondary battery containing a carbon material is such that the carbon material is fired after acid treatment and the acid amount is greater than 0.04 mmol / g. A positive electrode of a non-aqueous electrolyte lithium-air secondary battery that can provide high coulomb efficiency can be obtained.

前記の炭素材料を含有する非水電解液リチウム空気二次電池の正極は、例えば、前記炭素材料として、
多孔質炭素材料を酸処理する工程、および
酸処理した炭素材料を焼成する工程、
を含む方法によって得られる材料を用いることによって得ることができる。
The positive electrode of the non-aqueous electrolyte lithium air secondary battery containing the carbon material, for example, as the carbon material,
A step of acid-treating the porous carbon material, and a step of firing the acid-treated carbon material,
It can obtain by using the material obtained by the method containing.

以下、図面を参照して本発明の実施の形態を詳説する。
図1から、空気電池正極に用いて85%以上のクーロン効率を与え得る炭素材料は、酸処理した炭素材料を焼成したものであり、さらに焼成温度が高くなるとクーロン効率が低下する傾向にあること、および酸処理した炭素材料であっても焼成しないものはクーロン効率が低いことが理解される。図1における酸処理しただけの炭素材料が低いクーロン効率を示す理論的な解明はなされていないが、1つには細孔内に残存する微量の水分が悪影響を及ぼしていると考えられる。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
From FIG. 1, the carbon material that can be used for the positive electrode of the air battery and can give a coulomb efficiency of 85% or more is obtained by firing an acid-treated carbon material, and the coulombic efficiency tends to decrease as the firing temperature increases. It is understood that even an acid-treated carbon material that is not fired has low Coulomb efficiency. Although the theoretical elucidation that the carbon material only treated with acid in FIG. 1 shows low Coulomb efficiency has not been made, it is considered that the trace amount of water remaining in the pores has an adverse effect on one.

また、本発明の実施態様の空気電池正極においては、図2に示すように、正極に含有される炭素材料として、酸処理した炭素材料を焼成したものであって且つ酸価が0.04mmol/gより多いことが85%以上のクーロン効率を達成するために必要であること、そして酸価が0.04mmol/gより多くても焼成していないものはクーロン効率が低いことが理解される。
また、図3から、酸処理した炭素材料を焼成して酸量が0.04mmol/gより多い炭素材料を得るためには、焼成温度としては150℃以上600℃未満の温度が適していることが理解される。
Further, in the air battery positive electrode according to the embodiment of the present invention, as shown in FIG. 2, as the carbon material contained in the positive electrode, an acid-treated carbon material is baked and the acid value is 0.04 mmol / It is understood that it is necessary to achieve a Coulomb efficiency of 85% or more to be more than g, and that the coke efficiency is low if the acid value is more than 0.04 mmol / g and not fired.
Also, from FIG. 3, in order to obtain a carbon material having an acid amount greater than 0.04 mmol / g by firing the acid-treated carbon material, a temperature of 150 ° C. or more and less than 600 ° C. is suitable as the firing temperature. Is understood.

本発明の前記炭素材料を含有する非水電解液リチウム二次電池の正極によって高いクーロン効率を示す空気電池が得られる理論的な解明は未だ十分になされていないが、以下のように考え得る。
先ず、非水電解液リチウム二次電池においては、図4に示すように、電極上に生成物Liを堆積させる構造となっている。そして、正極と電解液と空気相との3相界面上で放電時に生成物であるLiを生成し、充電時に生成物Liを分解する反応が進む。このため、電池特性は3相界面に依存することになる。
そして、従来の炭素材料を用いた非水電解液リチウム電池の正極では、図5および図6に示すように、充電時に、放電析出物(Li)が分解せず、クーロン効率を低くし、二次電池化が困難であった。
これに対して、本願発明における酸処理後に焼成されたものであって且つ0.04mmol/gより多酸量を有する炭素材料を用いると、電池反応における酸化の際にCOOH基がLi交換をもたらし、COOH基が近接して存在するため、放電析出物の成長が抑制され、放電析出物を高分散に生成し得ることにより、クーロン効率が高くなると考えられる。
The theoretical elucidation of obtaining an air battery exhibiting high Coulomb efficiency with the positive electrode of the non-aqueous electrolyte lithium secondary battery containing the carbon material of the present invention has not yet been sufficiently made, but can be considered as follows.
First, in the nonaqueous electrolyte lithium secondary battery, as shown in FIG. 4, the product Li 2 O 2 is deposited on the electrode. Then generates a Li 2 O 2 as a product during discharge on the three-phase interface of the cathode and the electrolyte solution and the air phase, decompose the reaction product Li 2 O 2 during charge proceeds. For this reason, battery characteristics depend on the three-phase interface.
And in the positive electrode of the nonaqueous electrolyte lithium battery using the conventional carbon material, as shown in FIG. 5 and FIG. 6, the discharge deposit (Li 2 O 2 ) is not decomposed during charging, and the Coulomb efficiency is lowered. However, it was difficult to make a secondary battery.
In contrast, when a carbon material that has been baked after acid treatment in the present invention and has a higher acid content than 0.04 mmol / g is used, the COOH group causes Li exchange during oxidation in the battery reaction. Since COOH groups are present close to each other, the growth of discharge precipitates is suppressed, and the discharge precipitates can be generated in a highly dispersed state, which is considered to increase the Coulomb efficiency.

本発明の実施態様における炭素材料は、例えば、図7に示すように、多孔質炭素材料を酸処理する工程、および
酸処理した炭素材料を通常は150℃以上600℃未満の温度で焼成する工程、
を含む方法によって得られる。
前記の焼成する温度は、好適には175℃以上600℃未満、特に200℃以上600℃未満、その中でも200℃以上500℃以下、さらには200℃以上400℃以下であり得る。
For example, as shown in FIG. 7, the carbon material in the embodiment of the present invention is a step of acid-treating a porous carbon material, and a step of firing the acid-treated carbon material at a temperature of usually 150 ° C. or higher and lower than 600 ° C. ,
Obtained by a method comprising:
The calcination temperature is preferably 175 ° C. or more and less than 600 ° C., particularly 200 ° C. or more and less than 600 ° C., among which 200 ° C. or more and 500 ° C. or less, and more preferably 200 ° C. or more and 400 ° C. or less.

前記の酸処理は、通常、多孔質炭素材料を水中に分散させた状態で無機酸、例えば硝酸、硫酸、塩酸と多孔質炭素材料との接触によって行われ得る。前記の無機酸と多孔質炭素材料との接触は、室温以上100℃未満の温度、好適には50℃以上100℃未満の温度で実施し得る。前記の接触の時間は0.1〜10時間程度であり得る。また、前記の無機酸は、無機酸の濃度として多孔質炭素材料が分散される水中、0.5〜2mol/Lであり得る。
前記の炭素材料の酸処理によって、炭素材料の表面にCOOHあるいはCOO−M[M:リチウム、ナトリウム、カリウムなどのアルカリ金属、マグネシウムやカルシウムなどのアルカリ土類金属などの炭素材料(カーボン)の賦活元素の残渣成分]が生成されると考えられる。
前記の酸処理後、通常、酸処理した炭素材料を水で洗浄して残存する酸を除去する。
The acid treatment can be usually performed by contacting an inorganic acid such as nitric acid, sulfuric acid, hydrochloric acid and the porous carbon material in a state where the porous carbon material is dispersed in water. The contact between the inorganic acid and the porous carbon material can be performed at a temperature of room temperature to 100 ° C, preferably 50 ° C to less than 100 ° C. The contact time may be about 0.1 to 10 hours. The inorganic acid may be 0.5 to 2 mol / L in water in which the porous carbon material is dispersed as the concentration of the inorganic acid.
By the acid treatment of the carbon material, COOH or COO-M + [M: carbon material such as alkali metal such as lithium, sodium and potassium, alkaline earth metal such as magnesium and calcium, etc. It is considered that a residual component of the activation element] is generated.
After the acid treatment, the acid-treated carbon material is usually washed with water to remove the remaining acid.

前記の焼成工程は、好適には不活性雰囲気、例えば、Ar、N、He雰囲気中で行い得る。また、前記の焼成工程は、温度によって変わり得るが通常10分間以上、好適には0.5〜10時間程度、特に0.5〜5時間程度行い得る。
前記の焼成(加熱処理)工程によって、炭素材料の表面の酸量が調整され得る。
前記の焼成による酸量が変化する理由としては、温度が高くなるほど炭素材料に結合したCOOH基が炭素材料から離脱し、200℃前後の温度では加熱によりCOOH基が炭素材料に付加されと考えられる。
前記の工程に、さらに、前記酸処理した炭素材料を大気中で仮焼成する工程、をさらに加え得る。
前記の酸処理工程および焼成工程によって、出発材料である多孔質炭素材料の多孔質である特性を少なくとも一部維持し、且つ前記の酸量を有する炭素材料が得られる。
The firing step can be suitably performed in an inert atmosphere, such as an Ar, N 2 , or He atmosphere. Moreover, although the said baking process can change with temperature, it is normally 10 minutes or more, Preferably it is about 0.5 to 10 hours, It can carry out especially about 0.5 to 5 hours.
The amount of acid on the surface of the carbon material can be adjusted by the firing (heat treatment) step.
The reason for the change in the acid amount due to the firing is that the higher the temperature, the more the COOH group bonded to the carbon material is detached from the carbon material, and the COOH group is added to the carbon material by heating at a temperature around 200 ° C. .
The step of calcining the acid-treated carbon material in the atmosphere may be further added to the step.
By the acid treatment step and the firing step, a carbon material having at least a part of the porous property of the porous carbon material as a starting material and having the acid amount is obtained.

本発明の正極は、前記の酸処理後に焼成されていて特定の酸量を有する炭素材料を用いることが必須要件であり、通常は例えば、バインダー(結着材)と混合することによって得られる。
本発明の正極は、例えば、図8に示すように、本発明における前記の炭素材料、バインダー、さらに必要であれば溶媒、例えば沸点が200℃以下のアセトン、NMPや、エタノール、エタノールあるいはプロパノールなどのアルコールを混ぜ合わせ、ロールプレスし、前乾燥、切り出し、最終乾燥を含む工程によって得ることができる。
また、本発明の正極には必要であればさらに触媒を加え得る。
In the positive electrode of the present invention, it is essential to use a carbon material that is baked after the acid treatment and has a specific acid amount, and is usually obtained, for example, by mixing with a binder (binder).
For example, as shown in FIG. 8, the positive electrode of the present invention includes the carbon material, binder, and solvent if necessary, such as acetone, NMP having a boiling point of 200 ° C. or less, ethanol, ethanol, propanol, etc. Can be obtained by a process including mixing, roll pressing, pre-drying, cutting, and final drying.
Further, if necessary, a catalyst can be further added to the positive electrode of the present invention.

本発明における前記の炭素材料の出発材料である多孔質炭素材料としては、炭素骨格を有し表面に細孔を有する炭素材料が挙げられ、例えば炭素元素含有化合物、例えば炭化水素を加熱処理により炭化して得られる疎水性の特性を有し、4〜20μm程度の平均粒径を有する炭素粒子が挙げられる。また、前記多孔質炭素材料としては表面処理がされていてもよいが表面処理されていないものが好適である。
前記の多孔質炭素材料としては、例えばケッチェンブラック、ブルカンブラック、プリンテックス、ブラックパール、活性炭、アセチレンブラック、デンカブラック、カーボンブラックなどが挙げられ、例えば、比表面面積が1270m/gのケッチェンブラックEC600JD(ライオン社製)、800m/gのケッチェンブラックEC300J(ライオン社製)などのケッチェンブラック、比表面積が214m/gのバルカンXC−72(キャボット社製)、スーパーP(活性炭)などが単独で又は組み合わせて用いられ得る。
Examples of the porous carbon material which is the starting material of the carbon material in the present invention include a carbon material having a carbon skeleton and having pores on the surface. For example, a carbon element-containing compound such as a hydrocarbon is carbonized by heat treatment. And carbon particles having a hydrophobic property and having an average particle size of about 4 to 20 μm. The porous carbon material may be surface-treated but is preferably not surface-treated.
Examples of the porous carbon material include ketjen black, vulcan black, print tex, black pearl, activated carbon, acetylene black, denka black, carbon black and the like. For example, a ketjen having a specific surface area of 1270 m 2 / g. Chain black EC600JD (manufactured by Lion), Ketjen black such as 800 m 2 / g ketjen black EC300J (manufactured by Lion), Vulcan XC-72 (made by Cabot) having a specific surface area of 214 m 2 / g, Super P ( Activated carbon) and the like may be used alone or in combination.

前記のバインダーとしては、PTFE、PVdF、SBRなどのそれ自体周知の材料を挙げることができる。
前記のバインダーは、全成分の合計量中に1〜40質量%、特に5〜30質量%含み得る。
Examples of the binder include known materials such as PTFE, PVdF, and SBR.
Said binder may be included in the total amount of all components in an amount of 1-40% by weight, in particular 5-30% by weight.

本発明の非水電解液リチウム空気電池の正極は、例えば集電体、例えば多孔質構造体、例えばカーボンペーパー、カーボンクロス、金属メッシュなどや、非多孔質体、例えば金属箔に、前記の炭素材料およびバインダーを溶媒に分散させたスラリーを塗工し、乾燥、切断することによって得ることができる。
また、前記のスラリーを塗工する際には、ドクターブレード法、インクジェット法などを用い得る。
The positive electrode of the non-aqueous electrolyte lithium-air battery of the present invention includes, for example, a current collector, such as a porous structure, such as carbon paper, carbon cloth, a metal mesh, or a non-porous body, such as a metal foil. It can be obtained by applying a slurry in which a material and a binder are dispersed in a solvent, drying, and cutting.
Further, when applying the slurry, a doctor blade method, an ink jet method or the like can be used.

本発明の非水電解液リチウム空気電池の正極を用いた空気電池は、前記の空気電池の正極を用いて、例えば負極、非水電解液を含んだセパレータ、酸素拡散層の各部材を複数の酸素孔がシールされた固定部材とともに積層することによって得ることができる。   The air battery using the positive electrode of the non-aqueous electrolyte lithium-air battery according to the present invention uses, for example, a negative electrode, a separator containing a non-aqueous electrolyte, and a plurality of oxygen diffusion layer members using the positive electrode of the air battery. It can be obtained by laminating together with a fixing member in which oxygen holes are sealed.

前記負極は、負極材料種として金属を含有する負極活物質を有する負極層を備えたものであり得る。
前記負極材料種としては、Li、Na、K、Mg、Ca、Al、Zn、Feなど、エネルギー密度の高い電池が得られることから好適にはLiが挙げられる。
そして、Liの場合、Li金属やLi炭素質物、Li酸化物、Li硫化物、Li窒化物などが挙げられる。
前記負極は、集電体、例えばSUS、Niなどの任意の金属箔を用いてそれ自体周知の技術によって調製し得る。
The negative electrode may include a negative electrode layer having a negative electrode active material containing a metal as a negative electrode material species.
As the negative electrode material type, Li is preferably used because a battery having a high energy density such as Li, Na, K, Mg, Ca, Al, Zn, and Fe can be obtained.
In the case of Li, examples include Li metal, Li carbonaceous material, Li oxide, Li sulfide, and Li nitride.
The negative electrode can be prepared by a technique known per se by using a current collector, for example, any metal foil such as SUS or Ni.

前記セパレータは電解質を含むものであり得る。
前記のセパレータとしては、ポリエチレン(PE)、ポリプロピレン(PP)、PP/PE/PP製の1層〜3層構造の多孔膜、樹脂不織布、ガラス繊維不織布等の不織布が挙げられる。
前記の電解質は、負極層および正極層の間で金属イオンの伝導を行うためのものである。この電解質としては、負極金属種に応じたイオン伝導性を示す非水電解液である。
特に、前記セパレータは、本発明の空気電池の正極が高い放電容量を与え得るため、電解質がイオン液体を含むものであり得て、通常イオン液体とともにリチウム塩を含むものであり得る。
The separator may include an electrolyte.
Examples of the separator include polyethylene (PE), polypropylene (PP), PP / PE / PP 1-layer to 3-layer porous membranes, nonwoven fabrics such as resin nonwoven fabrics and glass fiber nonwoven fabrics.
The electrolyte is for conducting metal ions between the negative electrode layer and the positive electrode layer. This electrolyte is a non-aqueous electrolyte that exhibits ionic conductivity in accordance with the negative electrode metal species.
Particularly, in the separator, since the positive electrode of the air battery of the present invention can provide a high discharge capacity, the electrolyte can contain an ionic liquid, and can usually contain a lithium salt together with the ionic liquid.

前記のリチウム塩としては、例えばLiPF、LiBF、LiClOおよびLiAsF等の無機リチウム塩;およびLiCFSO、LiN(CFSO、LiN(CSO、LiC(CFSO等が挙げられる。
また、前記イオン液体としては、カチオンとアニオンとを組み合わせたイオン分子のみから成る物質であり、且つ、常温(15℃〜25℃)において液体である物質が挙げられる。
Examples of the lithium salt include inorganic lithium salts such as LiPF 6 , LiBF 4 , LiClO 4, and LiAsF 6 ; and LiCF 3 SO 3 , LiN (CF 3 SO 2 ) 2 , LiN (C 2 F 5 SO 2 ) 2 , LiC (CF 3 SO 2 ) 3 and the like.
In addition, examples of the ionic liquid include substances that are composed of only ionic molecules in which cations and anions are combined and that are liquid at room temperature (15 ° C. to 25 ° C.).

前記イオン液体のカチオン種としては、2−エチルイミダゾリウム、3−プロピルイミダゾリウム、1−エチル−3−メチルイミダゾリウム、1−ブチル−3−メチルイミダゾリウム、1,3−ジメチルイミダゾリウム等のイミダゾリウム;ジエチルメチルアンモニウム、テトラブチルアンモニウム、シクロヘキシルトリメチルアンモニウム、メチルトリ−n−オクチルアンモニウム、トリエチル(2−メトキシエトキシメチル)アンモニウム、ベンジルジメチルテトラデシルアンモニウム、ベンジルトリメチルアンモニウム等のアンモニウム;その他にもアルキルピリジニウム、ジアルキルピロリジニウム、テトラアルキルフォスフォニウム、トリアルキルスルフォニウム等が挙げられる。   Examples of the cation species of the ionic liquid include 2-ethylimidazolium, 3-propylimidazolium, 1-ethyl-3-methylimidazolium, 1-butyl-3-methylimidazolium, 1,3-dimethylimidazolium, and the like. Imidazolium; ammonium such as diethylmethylammonium, tetrabutylammonium, cyclohexyltrimethylammonium, methyltri-n-octylammonium, triethyl (2-methoxyethoxymethyl) ammonium, benzyldimethyltetradecylammonium, benzyltrimethylammonium; and other alkylpyridiniums , Dialkylpyrrolidinium, tetraalkylphosphonium, trialkylsulfonium and the like.

前記イオン液体のアニオン種としては、Cl、Br、Iなどのハロゲン化物アニオン;BF 、B(CN) 、B(C 等のホウ素化物アニオン;(CN)、[N(CF、[N(SOCF等のアミドアニオン又はイミドアニオン;RSO (以下、Rは脂肪族炭化水素基又は芳香族炭化水素基を指す)、RSO 、RSO (以下、Rは含フッ素ハロゲン化炭化水素基を指す)、RSO 等のスルフェートアニオン又はスルフォネートアニオン;R P(O)O、PF 、R PF 等のリン酸アニオン;SbF等のアンチモンアニオン;その他、ラクテート、硝酸イオン、トリフルオロアセテート等が挙げられる。 Examples of the anionic species of the ionic liquid include halide anions such as Cl , Br and I ; boride anions such as BF 4 , B (CN) 4 and B (C 2 O 4 ) 2 ; CN) 2 N , [N (CF 3 ) 2 ] , [N (SO 2 CF 3 ) 2 ] − and the like amide anions or imide anions; RSO 3 (hereinafter R is an aliphatic hydrocarbon group or aromatic Sulfate anion or sulfonate anion such as RSO 4 , R f SO 3 (hereinafter R f represents a fluorinated halogenated hydrocarbon group), R f SO 4 −, etc .; Phosphate anions such as R f 2 P (O) O , PF 6 , R f 3 PF 3 ; antimony anions such as SbF 6 ; and others such as lactate, nitrate ion, trifluoroacetate, etc. The

前記酸素拡散層は、前記正極に積層されていて外部から酸素孔を通じて取り込まれた酸素を正極に拡散させる機能を有するもので、例えば酸素透過膜から構成され得る。
前記酸素透過膜として、空孔率が5%以上60%以下にするのが好ましい。空孔率が5%より小さい場合、酸素分子が拡散することができる細孔空間が不十分となり、酸素の透過速度が著しく低下してしまう。空孔率が60%より大きい場合、膜の強度が著しく低下してしまう。より最適な空孔率の範囲は、8%以上50%以下であり得る。
The oxygen diffusion layer is laminated on the positive electrode and has a function of diffusing oxygen taken from the outside through oxygen holes into the positive electrode, and may be composed of, for example, an oxygen permeable membrane.
The oxygen permeable membrane preferably has a porosity of 5% to 60%. When the porosity is less than 5%, the pore space in which oxygen molecules can diffuse becomes insufficient, and the oxygen transmission rate is significantly reduced. When the porosity is larger than 60%, the strength of the film is remarkably lowered. A more optimal porosity range may be 8% or more and 50% or less.

前記酸素拡散層は、高分子材料、例えばポリエチレン、ポリプロピレン、ポリ−4−メチル−1−ペンテン、ポリ−3−メチル−1−ブテン、ポリスチレン、ポリメチルメタクリレート、ポリ塩化ビニル、ナイロン6、ナイロン66、ポリカーボネート、ポリビニルアルコール、ポリブチレンテレフタレート、ポリフェニレンサルファイド、ポリテトラフルオロエチレン、セルロース、酢酸セルロース、ポリイミドなど、好適にはポリテトラフルオロエチレンから形成され得る。   The oxygen diffusion layer is made of a polymer material such as polyethylene, polypropylene, poly-4-methyl-1-pentene, poly-3-methyl-1-butene, polystyrene, polymethyl methacrylate, polyvinyl chloride, nylon 6, nylon 66. , Polycarbonate, polyvinyl alcohol, polybutylene terephthalate, polyphenylene sulfide, polytetrafluoroethylene, cellulose, cellulose acetate, polyimide, and the like, which can be preferably formed from polytetrafluoroethylene.

前記固定部材としては、孔を備えていればその形態は特に限定されるものではなく、例えば、金属又は炭素材料によって構成される繊維状部材、不織布、及び、発泡材等の形態を採ることができる。これらの中でも、カーボンペーパーや金属メッシュによって構成される固定部材を用いることが好ましく、孔の大きさや分布等を制御しやすい形態にする等の観点からは、金属メッシュ(例えば、エキスパンドメタルやパンチングメタル等)によって構成される固定部材を用いることがより好ましい。また、本発明の空気電池の正極に備えられる固定部材は、絶縁性材料によって構成されていても良い。ただし、電子伝導性を向上させることにより高性能の空気電池の正極を提供可能にする等の観点からは、導電性材料によって構成される固定部材が備えられる形態としてもよい。   The form of the fixing member is not particularly limited as long as it is provided with holes. For example, the fixing member may take the form of a fibrous member, a nonwoven fabric, and a foamed material made of a metal or a carbon material. it can. Among these, it is preferable to use a fixing member composed of carbon paper or a metal mesh. From the viewpoint of easily controlling the size and distribution of holes, a metal mesh (for example, expanded metal or punching metal) is preferable. It is more preferable to use a fixing member constituted by, for example. Moreover, the fixing member provided in the positive electrode of the air battery of the present invention may be made of an insulating material. However, from the viewpoint of making it possible to provide a positive electrode for a high-performance air battery by improving the electronic conductivity, a fixing member made of a conductive material may be provided.

前記固定部材には、正極に酸素を取り込むために複数の酸素孔(空気孔ともいう)が設けられている。
前記の酸素孔は、通常直径0.1〜3mmの範囲、好適には0.3〜1mmの範囲、例えば直径0.5mmの貫通孔を可能な限り多い複数個、例えば5〜10個程度の貫通孔を固定部材に設けられ得る。
The fixing member is provided with a plurality of oxygen holes (also referred to as air holes) for taking oxygen into the positive electrode.
The oxygen holes are usually in the range of 0.1 to 3 mm in diameter, preferably in the range of 0.3 to 1 mm, for example, a plurality of through holes having a diameter of 0.5 mm as many as possible, for example, about 5 to 10 pieces. A through hole may be provided in the fixing member.

前記の非水電解液リチウム空気電池は、前記の各部材を積層して組立てて作製し得るものであるが、さらに外部からの水分の導入を阻止するために撥水膜が積層されていてもよい。
また、前記の空気電池において、導入される酸素は乾燥された空気中の酸素であってもよいが好適には純酸素であり得る。
The non-aqueous electrolyte lithium-air battery can be manufactured by laminating and stacking the above-described members, but even if a water-repellent film is laminated to prevent the introduction of moisture from the outside. Good.
In the air battery, the introduced oxygen may be oxygen in dry air, but may be pure oxygen.

以下、本発明の実施例を示す。
以下の実施例は単に説明するためのものであり、本発明を限定するものではない。
以下の各例において、炭素材料についての測定および電池の評価は以下に記載の測定法により行った。なお、以下の測定は例示であって当業者が同等と考える測定法も同様に用い得る。
Examples of the present invention will be described below.
The following examples are for illustrative purposes only and are not intended to limit the invention.
In each of the following examples, the measurement of the carbon material and the evaluation of the battery were performed by the measurement methods described below. In addition, the following measurement is an illustration and the measuring method considered by those skilled in the art to be equivalent can be used similarly.

酸量の測定
試料0.5gを秤量(n=2)し、0.1NのNaOH水溶液20mLを添加し、超音波を20分間加え、ろ過(ろ紙:No.5C)し、5mL分取し、溶媒として純水40mLを用い、0.1M−HClで、自動滴定装置を用いて中和滴定して求めた。
自動滴定装置条件:Standard File (Acid−Ba、mV−HCl)
Measurement of acid amount Weigh 0.5 g of sample (n = 2), add 20 mL of 0.1 N NaOH aqueous solution, add ultrasonic waves for 20 minutes, filter (filter paper: No. 5C), take 5 mL, 40 mL of pure water was used as a solvent, and neutralization titration was performed with 0.1 M HCl using an automatic titrator.
Automatic titrator conditions: Standard File (Acid-Ba, mV-HCl)

充放電評価方法
充放電試験機:ナガノ製充放電装置(BTS2004H)
電流密度:0.05mA/cm
放電終始電圧:2.0V
充電終始電圧:3.8V
測定温度:60℃
Charge / Discharge Evaluation Method Charge / Discharge Tester: Nagano Charge / Discharge Device (BTS2004H)
Current density: 0.05 mA / cm 2
Discharge start voltage: 2.0V
Charge starting voltage: 3.8V
Measurement temperature: 60 ° C

実施例1
多孔質炭素材料としてSuper P(TIMCAL社製、特性:疎水性、平均粒径:5μm)を用い、図7に示す工程に従って1mol/L硝酸により70℃で1時間の酸処理を行った。次いで、水洗した後、得られた酸処理した炭素材料を、大気雰囲気中、120℃で12時間(昇温速度:10℃/分)仮焼成した後、Ar雰囲気中、200℃で2時間(昇温速度:10℃/分)焼成した。
得られた酸処理後に焼成した炭素材料について酸量測定を行った。酸量は1.06mmol/gであった。なお、得られた炭素材料について常法により測定した比表面積は101m/gであり、多孔質炭素材料であることが確認された。
Example 1
Super P (manufactured by TIMCAL, characteristics: hydrophobic, average particle size: 5 μm) was used as the porous carbon material, and acid treatment was performed at 70 ° C. for 1 hour with 1 mol / L nitric acid according to the process shown in FIG. Next, after rinsing with water, the obtained acid-treated carbon material was calcined at 120 ° C. for 12 hours (temperature increase rate: 10 ° C./min) in an air atmosphere, and then at 200 ° C. for 2 hours in an Ar atmosphere ( (Temperature increase rate: 10 ° C./min)
The acid amount of the carbon material fired after the acid treatment was measured. The acid amount was 1.06 mmol / g. In addition, the specific surface area measured by the conventional method about the obtained carbon material was 101 m < 2 > / g, and it was confirmed that it is a porous carbon material.

得られた酸処理後に焼成した炭素材料を用いて、図8に示す工程に従って、炭素材料(90質量%)とバインダー(PTFE、10質量%)とを混合してペレット化し、乾燥して正極を作製した。
得られた正極を用いて、図9に断面構造を示す放電評価用セルを下記のセル条件で作製した。
負極:金属リチウム(厚み:200μm、φ15mm)
電解液:PP13−TFSA/0.32mol/kgLi−TFSA
セパレータ:ポリプロピレン不織布(JH1004N)
セル:F型セル(北斗電工社)
容器:ガス置換コック付ガラスデシケータ(500mL)
ガス:酸素、アルゴン
得られた放電評価用セルを用いて評価を行った。得られた結果を他の結果とまとめて図1、図2および図3に示す。
Using the obtained carbon material fired after the acid treatment, the carbon material (90% by mass) and the binder (PTFE, 10% by mass) are mixed and pelletized according to the process shown in FIG. Produced.
Using the positive electrode obtained, a discharge evaluation cell having a cross-sectional structure shown in FIG. 9 was produced under the following cell conditions.
Negative electrode: metallic lithium (thickness: 200 μm, φ15 mm)
Electrolyte: PP13-TFSA / 0.32 mol / kg Li-TFSA
Separator: Polypropylene nonwoven fabric (JH1004N)
Cell: F-type cell (Hokuto Denko)
Container: Glass desiccator with gas replacement cock (500 mL)
Gas: Oxygen, Argon Evaluation was performed using the obtained discharge evaluation cell. The obtained results are shown together with other results in FIG. 1, FIG. 2, and FIG.

比較例1
酸処理後に焼成しないで室温乾燥のみを行った炭素材料について酸量測定を行った。酸量は0.90mmol/gであった。
この酸処理後に焼成処理を行わなかった炭素材料を用いた他は実施例1と同様にして正極を作製した。
得られた正極を用いた他は実施例1と同様にして、放電評価用セルを作製した。
得られた放電評価用セルを用いて評価を行った。得られた結果を他の結果とまとめて図1および図2に示す。
Comparative Example 1
The amount of acid was measured for the carbon material that was dried at room temperature without firing after the acid treatment. The acid amount was 0.90 mmol / g.
A positive electrode was produced in the same manner as in Example 1 except that the carbon material that was not subjected to the firing treatment after the acid treatment was used.
A discharge evaluation cell was fabricated in the same manner as in Example 1 except that the obtained positive electrode was used.
Evaluation was performed using the obtained discharge evaluation cell. The obtained results are shown together with other results in FIG. 1 and FIG.

実施例2
焼成温度を200℃から400℃(昇温速度:10℃/分)に変えた他は実施例1と同様にして酸処理、焼成を行った。
得られた酸処理後に焼成した炭素材料について酸量測定を行った。酸量は0.08mmol/gであった。
得られた酸処理後に焼成した炭素材料を用いた他は実施例1と同様にして、正極を作製した。
得られた正極を用いた他は実施例1と同様にして、放電評価用セルを作製した。
得られた放電評価用セルを用いて評価を行った。得られた結果を他の結果とまとめて図1、図2および図3に示す。
Example 2
Acid treatment and calcination were performed in the same manner as in Example 1 except that the calcination temperature was changed from 200 ° C. to 400 ° C. (temperature increase rate: 10 ° C./min).
The acid amount of the carbon material fired after the acid treatment was measured. The acid amount was 0.08 mmol / g.
A positive electrode was produced in the same manner as in Example 1 except that the carbon material fired after the acid treatment was used.
A discharge evaluation cell was fabricated in the same manner as in Example 1 except that the obtained positive electrode was used.
Evaluation was performed using the obtained discharge evaluation cell. The obtained results are shown together with other results in FIG. 1, FIG. 2, and FIG.

比較例2〜3
本焼成の温度を200℃から600℃(昇温速度:10℃/分)(比較例2)又は800℃(昇温速度:10℃/分)(比較例3)に変えた他は実施例1と同様にして酸処理、焼成を行った。
得られた酸処理後に焼成した炭素材料について酸量測定を行った。酸量はいずれも0.01mmol/g未満であった。
得られた酸処理後に焼成した炭素材料を用いた他は実施例1と同様にして、正極を作製した。
得られた正極を用いた他は実施例1と同様にして、放電評価用セルを作製した。
得られた放電評価用セルを用いて評価を行った。得られた結果を他の結果とまとめて図1、図2および図3に示す。
Comparative Examples 2-3
Example except that the temperature of the main firing was changed from 200 ° C. to 600 ° C. (temperature increase rate: 10 ° C./min) (Comparative Example 2) or 800 ° C. (temperature increase rate: 10 ° C./min) (Comparative Example 3) In the same manner as in No. 1, acid treatment and baking were performed.
The acid amount of the carbon material fired after the acid treatment was measured. The acid amount was less than 0.01 mmol / g.
A positive electrode was produced in the same manner as in Example 1 except that the carbon material fired after the acid treatment was used.
A discharge evaluation cell was fabricated in the same manner as in Example 1 except that the obtained positive electrode was used.
Evaluation was performed using the obtained discharge evaluation cell. The obtained results are shown together with other results in FIG. 1, FIG. 2, and FIG.

図1および図2から、正極に含有される炭素材料として酸処理した炭素材料を焼成したものであって酸価が0.04mmol/gより多いと、85%以上のクーロン効率を達成し得ることが示された。
また、図3から、酸処理した炭素材料を200℃又は400℃で焼成することによって、酸量が0.04mmol/gより多い炭素材料が容易に得られることが示された。
From FIG. 1 and FIG. 2, when the acid-treated carbon material is calcined as the carbon material contained in the positive electrode and the acid value is more than 0.04 mmol / g, it is possible to achieve a Coulomb efficiency of 85% or more. It has been shown.
Further, FIG. 3 shows that a carbon material having an acid amount greater than 0.04 mmol / g can be easily obtained by firing the acid-treated carbon material at 200 ° C. or 400 ° C.

本発明の正極によって、85%以上の高いクーロン効率[初回の充電容量と放電容量との比率(充電容量/放電容量)を示す。]を与え得る非水電解液リチウム空気二次電池の正極を得ることができる。   With the positive electrode of the present invention, a high Coulomb efficiency of 85% or more [the ratio between the initial charge capacity and the discharge capacity (charge capacity / discharge capacity) is shown. The positive electrode of the non-aqueous electrolyte lithium-air secondary battery can be obtained.

Claims (8)

炭素材料を含有する非水電解液リチウム空気二次電池の正極であって、前記炭素材料が、酸処理後に焼成されたものであって且つ酸量が0.04mmol/gより多いことを特徴とする、前記正極。   A positive electrode of a non-aqueous electrolyte lithium-air secondary battery containing a carbon material, wherein the carbon material is fired after acid treatment and has an acid amount greater than 0.04 mmol / g. The positive electrode. 前記酸量が、0.04mmol/gより多く2mmol/g未満である請求項1に記載の正極。   The positive electrode according to claim 1, wherein the acid amount is greater than 0.04 mmol / g and less than 2 mmol / g. さらに、バインダーを含有する請求項1又は2に記載の正極。   Furthermore, the positive electrode of Claim 1 or 2 containing a binder. 炭素材料を含有する非水電解液リチウム空気二次電池の正極の製造方法であって、前記炭素材料として、
多孔質炭素材料を酸処理する工程、および
得られた酸処理した炭素材料を焼成する工程、
を含む方法によって得られる材料を用いる、前記方法。
A method for producing a positive electrode of a non-aqueous electrolyte lithium air secondary battery containing a carbon material, the carbon material,
A step of acid-treating the porous carbon material, and a step of firing the obtained acid-treated carbon material,
Said method using the material obtained by the method containing this.
150℃以上600℃未満の温度で焼成する請求項4に記載の製造方法。   The manufacturing method according to claim 4, wherein baking is performed at a temperature of 150 ° C. or higher and lower than 600 ° C. 前記焼成が、不活性雰囲気下に行われる請求項4又は5に記載の製造方法。   The method according to claim 4 or 5, wherein the firing is performed in an inert atmosphere. 前記酸処理が、無機酸と多孔質炭素材料との接触によって行われる請求項4〜6のいずれか1項に記載の製造方法。   The manufacturing method according to any one of claims 4 to 6, wherein the acid treatment is performed by contact between an inorganic acid and a porous carbon material. 前記酸処理した炭素材料を大気中で仮焼成する工程、をさらに含む、請求項4〜7のいずれか1項に記載の製造方法。   The manufacturing method of any one of Claims 4-7 which further includes the process of pre-baking the said acid-treated carbon material in air | atmosphere.
JP2011162329A 2011-07-25 2011-07-25 Non-aqueous electrolyte lithium-air secondary battery positive electrode and method for producing the same Active JP5594247B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011162329A JP5594247B2 (en) 2011-07-25 2011-07-25 Non-aqueous electrolyte lithium-air secondary battery positive electrode and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011162329A JP5594247B2 (en) 2011-07-25 2011-07-25 Non-aqueous electrolyte lithium-air secondary battery positive electrode and method for producing the same

Publications (2)

Publication Number Publication Date
JP2013026148A true JP2013026148A (en) 2013-02-04
JP5594247B2 JP5594247B2 (en) 2014-09-24

Family

ID=47784237

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011162329A Active JP5594247B2 (en) 2011-07-25 2011-07-25 Non-aqueous electrolyte lithium-air secondary battery positive electrode and method for producing the same

Country Status (1)

Country Link
JP (1) JP5594247B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014165178A (en) * 2013-02-21 2014-09-08 Samsung Electronics Co Ltd Cathode, lithium air battery including the same, and method of manufacturing cathode
JP2014238985A (en) * 2013-06-07 2014-12-18 スズキ株式会社 Positive electrode structure of lithium air battery, and method for manufacturing positive electrode
US9548500B2 (en) 2011-09-28 2017-01-17 Johnson Matthey Fuel Cells Limited Carbon supported catalyst
KR20180087439A (en) * 2016-01-22 2018-08-01 아사히 가세이 가부시키가이샤 Non-aqueous lithium secondary battery
CN114600265A (en) * 2019-10-31 2022-06-07 日本瑞翁株式会社 Paste for secondary battery, slurry for secondary battery positive electrode, secondary battery, and method for producing paste for secondary battery

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07134995A (en) * 1993-11-09 1995-05-23 Toyota Central Res & Dev Lab Inc Fuel cell
JP2002015737A (en) * 2000-06-30 2002-01-18 Toshiba Corp Nonaqueous electrolyte cell
JP2005510829A (en) * 2001-04-27 2005-04-21 ザ ジレット カンパニー battery
JP2008186807A (en) * 1999-04-30 2008-08-14 Acep Inc Novel electrode material with high surface conductivity
JP2014503933A (en) * 2011-02-16 2014-02-13 トヨタ自動車株式会社 Method for producing positive electrode material for lithium air secondary battery, positive electrode material for lithium air secondary battery, and lithium air secondary battery

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07134995A (en) * 1993-11-09 1995-05-23 Toyota Central Res & Dev Lab Inc Fuel cell
JP2008186807A (en) * 1999-04-30 2008-08-14 Acep Inc Novel electrode material with high surface conductivity
JP2002015737A (en) * 2000-06-30 2002-01-18 Toshiba Corp Nonaqueous electrolyte cell
JP2005510829A (en) * 2001-04-27 2005-04-21 ザ ジレット カンパニー battery
JP2014503933A (en) * 2011-02-16 2014-02-13 トヨタ自動車株式会社 Method for producing positive electrode material for lithium air secondary battery, positive electrode material for lithium air secondary battery, and lithium air secondary battery

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9548500B2 (en) 2011-09-28 2017-01-17 Johnson Matthey Fuel Cells Limited Carbon supported catalyst
JP2014165178A (en) * 2013-02-21 2014-09-08 Samsung Electronics Co Ltd Cathode, lithium air battery including the same, and method of manufacturing cathode
US9947933B2 (en) 2013-02-21 2018-04-17 Samsung Electronics Co., Ltd. Cathode, lithium air battery including same, and preparation method thereof
US10439227B2 (en) 2013-02-21 2019-10-08 Samsung Electronics Co., Ltd. Cathode, lithium air battery including same, and preparation method thereof
JP2014238985A (en) * 2013-06-07 2014-12-18 スズキ株式会社 Positive electrode structure of lithium air battery, and method for manufacturing positive electrode
KR20180087439A (en) * 2016-01-22 2018-08-01 아사히 가세이 가부시키가이샤 Non-aqueous lithium secondary battery
KR20190067276A (en) * 2016-01-22 2019-06-14 아사히 가세이 가부시키가이샤 Nonaqueous lithium-type power storage element
KR101990261B1 (en) 2016-01-22 2019-06-17 아사히 가세이 가부시키가이샤 Non-aqueous lithium secondary battery
KR102333849B1 (en) 2016-01-22 2021-12-01 아사히 가세이 가부시키가이샤 Nonaqueous lithium-type power storage element
CN114600265A (en) * 2019-10-31 2022-06-07 日本瑞翁株式会社 Paste for secondary battery, slurry for secondary battery positive electrode, secondary battery, and method for producing paste for secondary battery

Also Published As

Publication number Publication date
JP5594247B2 (en) 2014-09-24

Similar Documents

Publication Publication Date Title
JP6367390B2 (en) Production of large capacity prism lithium ion alloy anode
JP6257066B2 (en) Lithium manganese oxide positive electrode active material for lithium ion secondary battery and lithium ion secondary battery including the same
JP5675989B2 (en) Method for producing positive electrode material for lithium air secondary battery and lithium air secondary battery
KR101451905B1 (en) Cathode Catalyst for Lithium-Air Battery, Method of Manufacturing the Same, and Lithium-Air Battery Comprising the Same
JP5580931B2 (en) Cathode catalyst for metal-air secondary battery and metal-air secondary battery
JP6352884B2 (en) Anode material for metal-air secondary battery, metal-air secondary battery comprising the same, and method for producing anode material for metal-air secondary battery
CN112272894B (en) Functional separator, method for preparing same, and lithium secondary battery comprising same
US20160285110A1 (en) Positive electrode for lithium air battery and lithium air battery comprising the same
JP5594247B2 (en) Non-aqueous electrolyte lithium-air secondary battery positive electrode and method for producing the same
KR101484503B1 (en) Cathode Catalyst for Lithium-Air Battery, Method of Manufacturing the Same, and Lithium-Air Battery Comprising the Same
JP2015046403A (en) Air electrode for air batteries, and air battery
JP5718874B2 (en) Carbon material for positive electrode of lithium air battery and lithium air battery
JP2016012572A (en) Carbon nanostructure, metal-supported carbon nanostructure, and lithium secondary battery
JP2008288091A (en) Lithium secondary battery
US20160043409A1 (en) Lithium Air Battery
WO2017177960A1 (en) Electrolyte solution, battery, and battery pack
TWI565125B (en) Electrode composite material of lithium ion battery, method for making the same, and battery
CN111512478A (en) Method for producing positive electrode active material for nonaqueous electrolyte secondary battery
CA3145312A1 (en) Nanoporous lithium vanadium fluorophosphate materials and cathodes for fast charging li-ion batteries
WO2014128844A1 (en) Lithium ion secondary battery
JP2014078418A (en) Secondary battery cathode and manufacturing method thereof and nonaqueous secondary battery
Xie Ni/NiO on hollow carbon as a cathode material for nickel-zinc batteries
JP5755604B2 (en) Carbon material for air electrode for metal air battery, air electrode for metal air battery and metal air battery
KR20230039179A (en) Method for manufacturing a positive electrode active material surface-modified using egg shell membrane(ESM), and a positive electrode active material and lithium-ion battery manufactured using the same
KR20200137816A (en) Positive electrode for lithium secondary battery, method for preparing the same and lithium secondary battery including the positive electrode

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130910

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140313

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140401

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140519

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140708

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140721

R151 Written notification of patent or utility model registration

Ref document number: 5594247

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151