WO2019042398A1 - 电池均衡方法、***、车辆、存储介质及电子设备 - Google Patents

电池均衡方法、***、车辆、存储介质及电子设备 Download PDF

Info

Publication number
WO2019042398A1
WO2019042398A1 PCT/CN2018/103468 CN2018103468W WO2019042398A1 WO 2019042398 A1 WO2019042398 A1 WO 2019042398A1 CN 2018103468 W CN2018103468 W CN 2018103468W WO 2019042398 A1 WO2019042398 A1 WO 2019042398A1
Authority
WO
WIPO (PCT)
Prior art keywords
equalization
battery
value
equalized
cell
Prior art date
Application number
PCT/CN2018/103468
Other languages
English (en)
French (fr)
Inventor
罗红斌
王超
沈晓峰
曾求勇
刘苑红
张祥
Original Assignee
比亚迪股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 比亚迪股份有限公司 filed Critical 比亚迪股份有限公司
Priority to EP18850012.8A priority Critical patent/EP3677465A4/en
Priority to US16/642,811 priority patent/US11292360B2/en
Publication of WO2019042398A1 publication Critical patent/WO2019042398A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/18Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules
    • B60L58/21Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules having the same nominal voltage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/18Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules
    • B60L58/22Balancing the charge of battery modules
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • H02J7/0014Circuits for equalisation of charge between batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • H02J7/0014Circuits for equalisation of charge between batteries
    • H02J7/0016Circuits for equalisation of charge between batteries using shunting, discharge or bypass circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0047Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with monitoring or indicating devices or circuits
    • H02J7/0048Detection of remaining charge capacity or state of charge [SOC]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/547Voltage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/80Time limits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • H02J7/0014Circuits for equalisation of charge between batteries
    • H02J7/0019Circuits for equalisation of charge between batteries using switched or multiplexed charge circuits

Definitions

  • the present application relates to the field of control technologies, and in particular, to a battery equalization method, system, vehicle, storage medium, and electronic device.
  • a vehicle power battery generally consists of a plurality of single cells connected in series to form a module. With the use of the battery, the difference between the individual cells gradually expands, and the consistency between the cells is poor. Due to the short board effect of the battery, the capacity of the battery pack is limited, so that the capacity of the battery pack cannot be fully exerted, resulting in the battery pack. The overall capacity is reduced. On the other hand, the gradual enlargement of the differences between the individual cells will cause over-charging of some single cells, over-discharge of some single cells, affecting battery life, damaging the battery, and possibly generating a large amount of heat to cause the battery. Burning or exploding.
  • the battery pack is balancedly managed, and the battery information of each single battery in the battery pack is usually collected in real time, and then according to the collected battery information, it is determined whether there is a need for the single battery to be balanced, and when there is a need for a single battery to be balanced. Further determining the duration of the equalization based on the battery information.
  • a method may occur while collecting battery information, and is also performing equalization. Since the equalization process may cause fluctuations in battery information, this may result in inaccurate battery information being collected, thereby making equalization in a single battery. When the calculated equalization time is inaccurate, the equalization effect is poor.
  • the purpose of the application is to provide a battery equalization method, system, vehicle, storage medium and electronic device, which can separately perform sampling and equalization in a unit cycle, ensuring the accuracy of the collected battery information, and calculating the equilibrium.
  • the duration is more accurate, and it also improves the balance of the battery pack.
  • the present application provides a battery equalization method, the method comprising:
  • the equalization duty cycle is a unit period a ratio of the equalization period within the unit period to the unit period, the unit period including the equalization period and the sampling period;
  • the equalization of the cells to be equalized is controlled during the equalization period of the unit period.
  • the application provides a battery equalization system, where the system includes: an equalization module, an acquisition module, and a control module;
  • the collecting module is configured to collect battery information of a battery pack, and the battery information is used to determine a voltage value of each single battery in the battery group;
  • the control module is configured to acquire a voltage value of the unit cell to be equalized in the battery group; obtain a reference voltage value required for equalization; and according to the voltage value of the unit to be equalized, the reference voltage value, and a preset Determining a duty ratio of the target equalization time of the unit to be equalized, wherein the equalization duty ratio is a ratio of the equalization period to the unit period; and, according to the target equalization period, Controlling the equalization of the cells to be equalized during the equalization period of the unit period;
  • the equalization module is configured to equalize the to-equalize cells under the control of the control module.
  • the present application provides a vehicle comprising the battery equalization system of the above second aspect.
  • the present application provides a computer readable storage medium having stored thereon computer program instructions that, when executed by a processor, implement the method of the first aspect described above.
  • the application provides an electronic device, including:
  • One or more processors for executing a program in the computer readable storage medium.
  • the collection and equalization of the battery information are performed in a time-division manner in a unit period, so as to avoid the influence of the equalization current on the accuracy of the battery information collection when the battery information collection and equalization are simultaneously performed; on the other hand, the equalization duty ratio can be It reflects the proportion of the equalization period and the adoption period in the unit duration. Therefore, the target equalization period calculated in consideration of the equilibrium duty ratio can better balance the cells that need to be balanced, and also provides a kind of A new way to determine the target's equilibrium duration.
  • FIG. 1 is a schematic diagram of a battery equalization system according to an embodiment of the present application.
  • FIG. 2 is a schematic diagram of a battery equalization system in which two single cells share an equalization module according to an embodiment of the present application
  • FIG. 3 is a schematic diagram of a battery equalization system according to another embodiment of the present application.
  • FIG. 4 is a schematic diagram of a battery equalization system in which two single cells share an equalization module according to another embodiment of the present application;
  • FIG. 5 is a schematic flow chart of a battery equalization method according to an embodiment of the present application.
  • FIG. 7 is a schematic diagram of a battery internal resistance model according to an embodiment of the present application.
  • FIG. 8 is a schematic diagram of an equalization module according to an embodiment of the present application.
  • the battery equalization system includes a control module 101, an acquisition module 102, and an equalization module 103.
  • the battery equalization system can be used to equalize the battery pack 104.
  • each unit cell corresponds to one acquisition module 102 and one equalization module 103.
  • the acquisition module 102 and the equalization module 103 corresponding to the same single cell are respectively connected to the control module 101 through different control channels.
  • the control module may include a control chip, and the control chip is respectively connected to the acquisition module and the equalization module corresponding to the same single cell through two pins, and the two pins are in one-to-one correspondence with the two channels.
  • control module 101 controls the collection module 102 and the equalization module 103 to be turned on and off according to the unit cycle, respectively, to collect battery information and equalize the battery, so that battery information collection and equalization are performed in a time-sharing manner. Avoid the impact of equalizing current on the accuracy of battery information collection when battery information acquisition and equalization are performed simultaneously.
  • each of the cells in the battery is coupled to an acquisition module 102 and an equalization module 103, respectively. If the battery pack includes N single cells, there are N acquisition modules 102 and N equalization modules 103. Thus, the control module 101 passes through 2 ⁇ N control channels, respectively, with N acquisition modules and N equalization modules. connection.
  • different single cells may share an equalization module, for example, N single cells in a battery pack, may share the same equalization module, or each preset number (eg, 2, 3, or 5 equal) single cells share an equalization module and the like.
  • the equalization module and each of the at least two single cells that need to be equalized are equalized during the equalization period of the unit period.
  • the batteries are connected alternately.
  • two single cells share an equalization module.
  • the equalization module is alternately connected with each cell during an equalization period of a unit cycle. Alternate connections may be alternate connections at a certain period. For example, referring to FIG. 2, when the parallel switch 150 on the parallel branch 15 corresponding to one of the two single cells 111 is closed for 2 s under the control of the control module 14, the other of the two cells The parallel switch 150 on the parallel branch 15 corresponding to the unit cell 111 is disconnected for 2 s under the control of the control module 14.
  • the parallel switch 150 on the parallel branch 15 corresponding to each of the two single cells, in the equalization period switches from the closed state to the open state every two seconds, or from the disconnected state. Switch to the closed state. Therefore, on the basis of the time-division of the acquisition module and the equalization module, during the equalization period, the single cells sharing the same equalization module are alternately connected with the shared equalization module to achieve equalization.
  • FIG. 3 is a schematic structural diagram of a battery equalization system according to another embodiment of the present application.
  • the battery equalization system includes a control module 301, an acquisition module 302, and an equalization module 303, which can be used to equalize the battery pack 304.
  • the battery pack 304 includes a plurality of unit cells connected in series.
  • the control module 301 is connected to the acquisition module 302 and the equalization module 303 corresponding to the same single cell through a control channel 305.
  • the control module 301 is configured to control and control when it is determined that the single battery connected to the control module 301 does not need to be equalized.
  • the module 301 is connected to the corresponding sampling module 302.
  • control module 301 is further configured to: when determining that the single battery connected to the control module 301 needs to be equalized, the collecting module 302 and the equalizing module 303 time-multiplexing the unit according to a unit cycle. Control channel 305.
  • One unit period includes: an acquisition period and an equalization period.
  • the control module 301 controls the acquisition module 302 to sample the battery information of the single battery during the collection period to obtain the battery information of the single battery.
  • the battery information includes at least one of the following: voltage, current, temperature, and the like.
  • the battery information may include only voltage values, whereby voltage performance parameters of the single battery may be obtained.
  • the battery information may also include a voltage value, a current value, a temperature value, and the like, thereby obtaining a SOC (State of Charge), an internal resistance, a self-discharge rate, and the like of the single battery. parameter.
  • SOC State of Charge
  • the control module 301 determines, according to the battery information of the single battery collected by the collection module 302, the cell to be equalized that needs to be balanced.
  • the control module 301 controls an equalization module corresponding to the to-be-equalized unit cell to balance the cells to be equalized during the equalization period.
  • the acquisition module and the equalization module share the same control channel, and the control module controls the acquisition module and the equalization module, and the control channel is time-multiplexed according to the unit period, thereby avoiding battery information collection and equalization.
  • the control module controls the acquisition module and the equalization module, and the control channel is time-multiplexed according to the unit period, thereby avoiding battery information collection and equalization.
  • the influence of the equalization current on the accuracy of the battery information collection on the other hand, compared with the embodiment shown in FIG. 1 above, the number of channels of the control module chip is reduced, and the hardware cost can be saved.
  • a switch K is provided in the control channel shared by the acquisition module and the equalization module, and the control module 301 is connected to the switch K, and the time-sharing is connected to the acquisition module 302 or the equalization module 303 by controlling the switch K.
  • the control module 301 controls the acquisition module 302 to collect battery information for the single battery during the collection cycle.
  • the control module 301 controls the equalization module 303. The corresponding single cells are equalized.
  • each of the cells in the battery is connected to an acquisition module 302 and an equalization module 303, respectively. If the battery pack includes N single cells, the number of the acquisition modules 302 is N, and the equalization module 303 is N. Thus, the control module 301 is connected to the acquisition module and the equalization module through N control channels.
  • different single cells may share an equalization module, for example, N single cells in a battery pack, may share the same equalization module, or each preset number (eg, 2, 3, or 5 equal) single cells share an equalization module and the like.
  • the equalization module and each of the at least two single cells that need to be equalized are equalized during the equalization period of the unit period.
  • the batteries are connected alternately.
  • an exemplary schematic diagram of sharing an equalization module for two single cells is shown.
  • the equalization module is alternately connected with each unit cell during the equalization period of the unit period. Alternate connections may be alternate connections at a certain period. Therefore, on the basis of the time-division of the acquisition module and the equalization module, during the equalization period, the single cells sharing the same equalization module are alternately connected with the shared equalization module to achieve equalization.
  • the acquisition module can be a voltage acquisition chip for collecting the voltage of the single battery during the acquisition period.
  • the battery equalization method according to an embodiment of the present application includes:
  • step S51 the voltage value of the unit cell to be equalized in the battery pack is acquired.
  • step S52 the reference voltage value required for equalization is obtained.
  • step S53 determining a target equalization time period of the unit cells to be equalized according to the voltage value of the unit cells to be equalized, the reference voltage value, and a preset equalization duty ratio, wherein the equalization duty ratio is an equalization in a unit period.
  • the ratio of the time period to the unit period, and the unit period includes the equalization period and the sampling period.
  • step S54 the equalization of the cells to be equalized is controlled in the equalization period of the unit period in accordance with the target equalization period.
  • the voltage value may be a load voltage value, and the load voltage value may be directly collected by the sampling module for the unit cell to be equalized in the battery pack during the sampling period of the unit period.
  • the voltage collected when the single cell stops working and reaches a steady state, or the battery just starts to work is itself an open circuit voltage or can be approximated as an open circuit voltage, so in this case, Directly collect the open circuit voltage value of the single cell.
  • the cell to be balanced may be a cell that needs to be equalized by some performance parameters of the battery in the battery, and parameters for determining the cell to be equalized may include, for example, a voltage value, a SOC, and an internal resistance. , self-discharge rate, voltage change rate, power change rate, time change rate, and so on.
  • the manner of determining the unit cells that need to be balanced from the battery pack is diversified, and further, the performance parameter of the battery for judging the equalization may be directly acquired during the sampling period of the unit period, or may be It is calculated by the battery information collected during the sampling period of the unit period. Therefore, the performance parameters of the single cell used for judging the equalization are relatively accurate, and the determined single cells that need to be balanced are also relatively accurate.
  • Table 1 exemplifies the parameters used to determine the cell to be equalized as voltage value, SOC, internal resistance, self-discharge rate, voltage change rate, power change rate or time change rate.
  • the manner in which the cell to be equalized is to be balanced is determined in the battery pack, and after determining the cell to be equalized, the corresponding cell to be equalized is subsequently balanced.
  • the self-discharge rate of the single cell is used to characterize the capacity loss and capacity loss rate of the single cell.
  • the open circuit voltage value V1 of each unit battery of the power battery pack is detected and recorded; when the battery pack starts to start again (t2 time) Detecting and recording the open circuit voltage value V2 of each single cell of the power battery pack; calculating the self-discharge rate ⁇ of each single cell and calculating the self-discharge rate value ⁇ according to the open circuit voltage values of the individual cells obtained by the two tests
  • the method is:
  • the voltage change rate of the unit cell may be a voltage change amount when the unit of the specified physical quantity of the unit cell is changed.
  • a predetermined amount of power is charged or discharged to a single battery, a voltage variation (dv/dq) of the single battery, or a preset time for charging or discharging the single battery, and a voltage change of the single battery.
  • the amount (dv/dt) is taken as an example for explanation.
  • the rate of change in the amount of electricity of the unit cell may be the amount of change in the amount of electricity when the unit of the specified physical quantity of the unit cell changes.
  • the amount of charge (dq/dv) required to increase the voltage of the unit cell by one unit voltage from the initial voltage, or the amount of decrease in the unit voltage by one unit voltage from the initial voltage (dq/) Dv) is explained as an example.
  • the time change rate of the unit cell may be the amount of time change when the unit of the specified physical quantity of the unit cell changes.
  • the charging time (dt/dv) required for the voltage of the single cell to rise by one unit voltage from the initial voltage, or the discharge time required for the voltage of the single cell to drop by one unit voltage from the initial voltage (dt/) Dv) is explained as an example.
  • the reference voltage value used to calculate the target equalization time of the unit cells to be equalized may be a minimum value among the voltage values of the single cells, a maximum value or a single value of the voltage values of the single cells.
  • the equalization duty ratio is a ratio of the equalization period in the unit period to the unit period, and can be used to represent the proportion of the equalization period and the sampling period in the unit period.
  • the preset equalization duty ratio may be preset, and the equalization duty ratio is constant during the equalization process, for example, set to 50%, and the like.
  • the target equalization time period for equalizing the cell to be equalized under the set equalization duty ratio may be calculated.
  • a description will be given of a manner in which it is possible to determine the target equalization time of the cell to be balanced according to the voltage value of the cell to be balanced and the reference voltage value.
  • FIG. 6 is an open circuit voltage OCV-remaining power SOC curve of a single battery according to an embodiment of the present application.
  • the single cell in which the difference between the voltage value and the reference voltage value is the smallest (possibly 0) in the unit cell may be determined as a reference battery, and the reference battery is determined according to the voltage value of the reference battery and the internal resistance value of the reference battery.
  • the OCV value is referenced; then, the SOC value corresponding to the reference OCV value is determined as the first SOC value based on the reference OCV value and the OCV-SOC curve of the reference battery.
  • the SOC value corresponding to the OCV value is the second SOC value.
  • the battery internal resistance model is used, and the single battery is equivalent to an ideal voltage source in series with the resistor R. Then, for a single cell, the sampled voltage value V L (ie, the load voltage value) of the single cell can be converted into an open circuit voltage value according to formula (1):
  • V L is a load voltage value collected by the acquisition module during the acquisition period;
  • I is a discharge current or a charging current (which may be a preset value) collected by the acquisition module during the acquisition period;
  • R is a single battery Internal resistance value.
  • the internal resistance of the single cell can be preset.
  • the internal resistance of the unit cell may be determined based on the voltage and capacity of the unit cell.
  • the internal resistance of the unit cell is determined based on the correspondence between the voltage, the capacity, and the internal resistance value of the unit cell.
  • other battery models such as Thevenin model, PNGV (Partnership for a New Generation of Vehicles) model, etc., can be used to convert the load voltage of the collected single cells. Is the open circuit voltage.
  • the SOC value corresponding to the single cell can be obtained according to the OCV-SOC curve of the single cell.
  • OCV-SOC curve shown in FIG. 6 can also be converted into a correspondence table of OCV and SOC, an OCV value corresponding to an SOC value, or an OCV range corresponding to an SOC value.
  • an OCV-SOC curve or an OCV-SOC correspondence table is obtained by measurement. For example, for a single cell, in the process of changing its SOC value from 0 to 100%, every time a certain SOC value is separated, the open circuit voltage OCV of the battery is measured once, and then the OCV of each point is corresponding.
  • the SOCs correspond one-to-one to form a SOC-OCV curve or an OCV-SOC correspondence table of the unit cells.
  • the load voltage of the single cell can be collected first, and then converted to the corresponding open circuit voltage OCV according to the formula (1).
  • the first SOC value of the reference battery can be obtained according to the reference voltage value, the internal resistance value of the reference battery, and the OCV-SOC curve corresponding to the reference battery.
  • the second SOC value of the cell to be equalized is obtained according to the voltage value of the cell to be balanced, the internal resistance of the cell to be balanced, and the OCV-SOC curve corresponding to the cell to be equalized.
  • ⁇ Q is the power difference
  • ⁇ SOC is the SOC difference between the first SOC value and the second SOC value
  • C n is the available capacity of the unit cell to be equalized.
  • the equalization duty ratio is the ratio of the equalization period to the unit period in the unit period.
  • the equalization duty ratio may be a value set in advance according to requirements, for example, set to 50%, and the like.
  • the equalized cells are equalized to achieve equalization efficiency and reduce the equalization cost.
  • the second method of determining includes the following steps:
  • the correspondence between the preset voltage difference, the equalization duty ratio and the equalization time can be obtained by multiple equalization tests or experience, for example, by means of a table, then the measured voltage difference can be found in the table. And the value of the corresponding target equalization time period under the preset equalization duty ratio.
  • the equalized cells can be equalized according to the target equalization duration in the equalization period of the unit period.
  • the method of equalization may be different depending on the difference in the reference voltage value used to calculate the equalization duration.
  • the cell to be equalized is controlled to be discharged during the equalization period of the unit period; or, if the reference voltage value is the voltage value of each of the single cells The maximum value of the unit cell to be equalized during the equalization period of the unit period; or, if the reference voltage value is an average value among the voltage values of the unit cells, the voltage value of the unit cell to be equalized is greater than the reference voltage value
  • the battery cells to be equalized are controlled to be discharged, and when the voltage value of the unit to be equalized is less than the reference voltage value, the battery to be equalized is controlled to be equalized during the equalization period of the unit period.
  • FIG. 8 is a schematic diagram of an equalization module according to an embodiment of the present application.
  • the equalization of the unit cells to be equalized in the equalization period of the unit period is performed in conjunction with the above-described equalization judgment.
  • the equalization mode of the cells to be equalized is passive equalization (ie, discharging the cell to be equalized), or is actively equalized (that is, charging the cell to be equalized), and the corresponding equalization is turned on. Module.
  • the equalization module includes: a resistor 811, each of which corresponds to an equalization module, that is, a resistor is connected in parallel with each end of each unit cell.
  • the control module controls parallel circuit conduction between the cell to be equalized and its corresponding resistor to perform passive operation on the cell balanced.
  • the control module is turned on by controlling the switch module 812 to realize conduction of a parallel circuit between the cell to be equalized and its corresponding resistor.
  • the resistor 811 can be a fixed value resistor or a variable resistor.
  • the resistor 811 can be a positive temperature coefficient thermistor, which can change with temperature, thereby adjusting the equalization current generated during equalization, thereby automatically adjusting the heat generation of the battery equalization system, and finally The temperature of the battery equalization system is effectively controlled.
  • the equalization module includes a charging branch 94 connected in parallel with each of the unit cells 95 in the battery pack.
  • the charging branch 94 is in one-to-one correspondence with the unit cells 95, and each charging branch 94 is provided. Both are coupled to a generator 92 that is mechanically coupled to the engine 91 via a gear.
  • the control module controls the charging branch 94 corresponding to the battery to be equalized to be turned on for the unit to be balanced that needs to be actively equalized.
  • the generator 92 is driven to generate electricity, so that the electric power generated by the generator 92 is supplied to the unit cells to be equalized, so that the electric quantity of the unit to be equalized is increased.
  • the equalization module when the generator 92 is an alternator, the equalization module further includes a rectifier 93 in series with the generator 92, each of the charging branches 130 being connected in series with the rectifier 132. After the alternating current generated by the generator 92 is converted to direct current by the rectifier 93, the generator 92 can be enabled to charge the individual cells to be equalized.
  • control module can be turned on by controlling the switch 96 corresponding to the cell to be balanced, so that the charging branch corresponding to the cell to be balanced is turned on, and the active equalization of the cell to be equalized is performed.
  • the battery to be equalized in addition to charging the single battery with the generator as shown in FIG. 8, the battery to be equalized can also be charged by the starting battery in the vehicle.
  • the battery to be equalized in addition to the parallel resistor and the unit cell to be balanced, as shown in FIG. 8, the battery to be equalized can be connected in parallel with the starting battery of the vehicle, and the battery to be balanced can be charged. The battery is activated to achieve equalization of the cells to be balanced while effectively avoiding waste of energy.
  • a plurality of single cells can share one equalization module, and when at least two of the multi-cell cells sharing one equalization module need to be equalized, in a unit period During the equalization period, the equalization module is alternately connected with each of the at least two single cells that need to be equalized, and is separately equalized.
  • the embodiment of the present application further provides a vehicle, including the battery equalization system described above.
  • the embodiment of the present application further provides a computer readable storage medium, where computer program instructions are stored, and the program instructions are implemented by the processor to implement the battery balancing method described above.
  • the embodiment of the present application further provides an electronic device, including: the foregoing computer readable storage medium; and one or more processors, for executing a program in the computer readable storage medium.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Secondary Cells (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

一种电池均衡方法、***、车辆、存储介质及电子设备,所述方法包括:获取电池组中的待均衡单体电池的电压值(S51);获取均衡所需的参考电压值(S52);根据待均衡单体电池的电压值、参考电压值和预设的均衡占空比,确定待均衡单体电池的目标均衡时长(S53),其中,均衡占空比为单位周期内的均衡时段与单位周期的比值,单位周期包括均衡时段和采样时段;按照目标均衡时长,在单位周期的均衡时段控制待均衡单体电池的均衡(S54)。该方法可以将采样和均衡在单位周期内分开进行,确保了采集的电池信息的准确性,计算出的均衡时长较为准确,同时也提升了电池组的均衡效果。

Description

电池均衡方法、***、车辆、存储介质及电子设备
相关申请的交叉引用
本申请基于申请号为201710775005.5,申请日为2017年8月31日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本申请作为参考。
技术领域
本申请涉及控制技术领域,具体地,涉及一种电池均衡方法、***、车辆、存储介质及电子设备。
背景技术
为电动汽车提供动力能源的大容量蓄电池常称作动力电池。车用动力电池一般由多个单体电池串联组成一个模块。随着电池的使用,各单体电池间的差异性逐渐扩大,单体电池间一致性差,由于电池的短板效应,电池组容量发挥受到限制,使电池组容量不能充分发挥,导致电池组的整体的容量减少。另一方面,各单体电池间的差异性逐渐扩大后,将造成某些单体电池过充电,某些单体电池过放电,影响电池寿命,损坏电池,而且还可能产生大量的热量引起电池燃烧或***。
因此,对电动汽车动力电池进行有效的均衡管理,有利于提高动力电池组中各电池的一致性,减少电池的容量损失,延长电池的使用寿命及电动汽车续驶里程,具有十分重要的意义。
目前,对电池组进行均衡管理,通常会实时地采集电池组中各单体电池的电池信息,然后依据采集的电池信息来确定有没有单体电池需要均衡,以及在有单体电池需要均衡时,进一步依据电池信息确定对其均衡的时长。然而,这样的方式可能会出现采集电池信息的同时,也在进行均衡,由于均衡过程可能会引起电池信息的波动,这将可能导致采集的电池信息不准确,进而使得在有单体电池需要均衡时,计算出的均衡时长不准确,均衡效果较差。
发明内容
本申请的目的是提供一种电池均衡方法、***、车辆、存储介质及电子设备,该方法可以将采样和均衡在单位周期内分开进行,确保了采集的电池信息的准确性,计算出的均衡时长较为准确,同时也提升了电池组的均衡效果。
为了实现上述目的,第一方面,本申请提供一种电池均衡方法,所述方法包括:
获取电池组中的待均衡单体电池的电压值;
获取均衡所需的参考电压值;
根据所述待均衡单体电池的电压值、所述参考电压值和预设的均衡占空比,确定所述待均衡单体电池的目标均衡时长,其中,所述均衡占空比为单位周期内的均衡时段与所述单位周期的比值,所述单位周期包括所述均衡时段和采样时段;
按照所述目标均衡时长,在所述单位周期的均衡时段控制所述待均衡单体电池的均衡。
第二方面,本申请提供一种电池均衡***,所述***包括:均衡模块、采集模块以及控制模块;
所述采集模块用于采集电池组的电池信息,所述电池信息用于确定所述电池组中各单体电池的电压值;
所述控制模块用于获取所述电池组中的待均衡单体电池的电压值;获取均衡所需的参考电压值;根据所述待均衡单体电池的电压值、所述参考电压值和预设的均衡占空比,确定所述待均衡单体电池的目标均衡时长,其中,所述均衡占空比为所述均衡时段与所述单位周期的比值;及,按照所述目标均衡时长,在所述单位周期的均衡时段控制所述待均衡单体电池的均衡;
所述均衡模块用于在所述控制模块的控制下对所述待均衡单体电池进行均衡。
第三方面,本申请提供一种车辆,包括上述第二方面所述的电池均衡***。
第四方面,本申请提供一种计算机可读存储介质,其上存储有计算机程序指令,该程序指令被处理器执行时实现上述第一方面所述的方法。
第五方面,本申请提供一种电子设备,包括:
第四方面所述的计算机可读存储介质;以及
一个或者多个处理器,用于执行所述计算机可读存储介质中的程序。
通过上述技术方案,电池信息的采集和均衡在单位周期内分时进行,避免电池信息采集和均衡同时进行时,均衡电流对电池信息采集的精度的影响;另一方面,通过均衡占空比可以反映单位时长内均衡时段与采用时段的占比,因此,在考虑了均衡占空比的情况下计算的目标均衡时长可以更好地对需要均衡的单体电池进行均衡,同时也提供了一种新的确定目标均衡时长的方法。
本申请的其他特征和优点将在随后的具体实施方式部分予以详细说明。
附图说明
附图是用来提供对本申请的进一步理解,并且构成说明书的一部分,与下面的具体实 施方式一起用于解释本申请,但并不构成对本申请的限制。在附图中:
图1是本申请一实施例的电池均衡***的示意图;
图2是本申请一实施例的两个单体电池共用一个均衡模块的电池均衡***的示意图;
图3是本申请另一实施例的电池均衡***的示意图;
图4是本申请另一实施例的两个单体电池共用一个均衡模块的电池均衡***的示意图;
图5是本申请一实施例的电池均衡方法的流程示意图;
图6是本申请一实施例的单体电池的开路电压OCV-剩余电量SOC曲线;
图7是本申请一实施例的电池内阻模型的示意图;
图8是本申请一实施例的均衡模块的示意图。
具体实施方式
以下结合附图对本申请的具体实施方式进行详细说明。应当理解的是,此处所描述的具体实施方式仅用于说明和解释本申请,并不用于限制本申请。
参见图1,为本申请一实施例的电池均衡***的示意图。该电池均衡***包括:控制模块101、采集模块102及均衡模块103。该电池均衡***能够用于对电池组104进行均衡。
在一个实施例中,每节单体电池都对应一个采集模块102和一个均衡模块103。对应于同一单体电池的采集模块102和均衡模块103分别通过不同的控制通道与控制模块101连接。控制模块可包括控制芯片,控制芯片通过两个引脚分别与对应于同一单体电池的采集模块和均衡模块连接,两个引脚与两个通道一一对应。
在该实施例中,控制模块101按照单位周期,控制采集模块102和均衡模块103分时导通,分别进行电池信息的采集和电池的均衡,使得电池信息采集和均衡分时进行。避免电池信息采集和均衡同时进行时,均衡电流对电池信息采集的精度的影响。
在一个实施例中,参见图1所示,电池中的每一单体电池分别与一采集模块102和一均衡模块103连接。若电池组包括N个单体电池,则采集模块102为N个,均衡模块103为N个,由此,控制模块101通过2×N个控制通道,分别与N个采集模块和N个均衡模块连接。
在另一些实施例中,不同的单体电池可共用均衡模块,例如,电池组中的N个单体电池,可共用同一个均衡模块,或每预设数量(例如,2个、3个或5个等)个单体电池共用一个均衡模块等。当共用一个均衡模块的多节单体电池中有至少两节单体电池需要均衡时,在单位周期的均衡时段内,该均衡模块与需要均衡的至少两节单体电池中的每节单体电池交替连接。
参见图2,两个单体电池共用一个均衡模块,当共用一个均衡模块的两节单体电池均需要均衡时,在单位周期的均衡时段内,该均衡模块与每节单体电池交替连接。交替连接可为按照一定的周期交替性的连接。例如,参见图2,两节单体电池中的一个单体电池111所对应的并联支路15上的并联开关150在控制模块14的控制下闭合2s时,两节单体电池中的另一个单体电池111所对应的并联支路15上的并联开关150在控制模块14的控制下断开2s。即两节单体电池中的每个单体电池111对应的并联支路15上的并联开关150,在均衡时段内,每隔两秒就从闭合状态切换为断开状态,或者从断开状态切换为闭合状态。由此,在采集模块和均衡模块分时导通的基础上,在均衡时段时,共用同一均衡模块的单体电池交替的与该共用的均衡模块连接,实现均衡。
参见图3,为本申请另一实施例的电池均衡***的结构示意图。
该电池均衡***包括:控制模块301、采集模块302和均衡模块303,该电池均衡***能够用于对电池组304进行均衡。其中,电池组304包括多个串联的单体电池。控制模块301通过一个控制通道305与对应于同一单体电池的采集模块302和均衡模块303连接,控制模块301用于在确定与该控制模块301连接的单体电池不需要进行均衡时,控制控制模块301与对应的采样模块302连接;或者,控制模块301还用于在确定与该控制模块301连接的单体电池需要进行均衡时,采集模块302和均衡模块303按照单位周期分时复用该控制通道305。
一个单位周期包括:采集时段和均衡时段。控制模块301控制采集模块302,在采集时段内对单体电池的电池信息进行采样,以获取单体电池的电池信息。电池信息至少包括以下其中之一:电压、电流和温度等。在一个实施例中,电池信息可以只包括电压值,由此,可得到单体电池的电压性能参数。在另一实施例中,电池信息也可以同时包括电压值、电流值和温度值等,由此,可得到单体电池的SOC(State of Charge,剩余电量)、内阻、自放电率等性能参数。
控制模块301,根据采集模块302采集的单体电池的电池信息,确定需要进行均衡的待均衡单体电池。对于需要开启均衡的待均衡单体电池,控制模块301控制与该待均衡单体电池对应的均衡模块,在均衡时段内,对该待均衡单体电池进行均衡。
由此,在本申请实施例中,采集模块和均衡模块间共用同一个控制通道,控制模块控制采集模块和均衡模块,按照单位周期分时复用该控制通道,避免了电池信息采集和均衡同时进行时,均衡电流对电池信息采集的精度的影响;另一方面,相比于上述图1所示的实施例,减少了对控制模块芯片的通道数量要求,可节省硬件成本。
在一个实施例中,在采集模块和均衡模块共用的控制通道中,设置有一开关K,控制模块301与开关K连接,并通过控制开关K,实现分时与采集模块302或均衡模块303连 接。当开关K与采集模块302连接时,控制模块301控制采集模块302,在采集周期内,对单体电池进行电池信息的采集;当开关K与均衡模块303连接时,控制模块301控制均衡模块303对所对应的单体电池进行均衡。
在一个实施例中,参见图3所示,电池中的每一单体电池分别与一采集模块302和一均衡模块303连接。若电池组包括N个单体电池,则采集模块302为N个,均衡模块303为N个,由此,控制模块301通过N个控制通道,分别与采集模块和均衡模块连接。
在另一些实施例中,不同的单体电池可共用均衡模块,例如,电池组中的N个单体电池,可共用同一个均衡模块,或每预设数量(例如,2个、3个或5个等)个单体电池共用一个均衡模块等。当共用一个均衡模块的多节单体电池中有至少两节单体电池需要均衡时,在单位周期的均衡时段内,该均衡模块与需要均衡的至少两节单体电池中的每节单体电池交替连接。
参见图4,为两个单体电池共用一个均衡模块的一示例性示意图。当共用一个均衡模块的两节单体电池均需要均衡时,在单位周期的均衡时段内,该均衡模块与每节单体电池交替连接。交替连接可为按照一定的周期交替性的连接。由此,在采集模块和均衡模块分时导通的基础上,在均衡时段时,共用同一均衡模块的单体电池交替的与该共用的均衡模块连接,实现均衡。
在一个实施例中,采集模块可为电压采集芯片,用于在采集时段,对单体电池的电压进行采集。
参见图5,基于上述图1、图2、图3或图4任一实施例所示的电池均衡***,本申请一实施例的电池均衡方法包括:
在步骤S51中,获取电池组中的待均衡单体电池的电压值。
在步骤S52中,获取均衡所需的参考电压值。
在步骤S53中,根据待均衡单体电池的电压值、参考电压值和预设的均衡占空比,确定待均衡单体电池的目标均衡时长,其中,均衡占空比为单位周期内的均衡时段与单位周期的比值,单位周期包括均衡时段和采样时段。
在步骤S54中,按照目标均衡时长,在单位周期的均衡时段控制待均衡单体电池的均衡。
电压值可以是负载电压值,那么负载电压值可以由采样模块在单位周期的采样时段直接对电池组中的待均衡单体电池进行采集得到。电压值也可以是开路电压值,那么开路电压值可以由控制模块根据采样模块在单位周期的采样时段采集的负载电压值计算得到,即,即开路电压值=负载电压值+单体电池的内阻值×单体电池的充电电流值或放电电流值。或者,在另一实施例中,在单体电池停止工作并达到稳定状态、或者电池刚开始工作的瞬间 所采集到的电压本身就是开路电压或者可近似看作开路电压,因此在该情况下可以直接采集得到单体电池的开路电压值。
可选的,待均衡单体电池可以是电池组中通过电池的一些性能参数确定出的需要均衡的单体电池,用于确定待均衡单体电池的参数例如可以包括电压值、SOC、内阻、自放电率、电压变化率、电量变化率、时间变化率,等等。可见,本申请中从电池组中确定需要均衡的单体电池的方式多元化,再且,用于判断均衡的电池的性能参数可以是在单位周期的采样时段直接采集获得的,或者也可以是通过在单位周期的采样时段采集的电池信息来计算得到的,因此,用于判断均衡的单体电池的性能参数较为准确,进而判断出的需要均衡的单体电池也较为准确。
请参见下述表1,表1例举了用于确定待均衡单体电池的参数分别为电压值、SOC、内阻、自放电率、电压变化率、电量变化率或时间变化率时,从电池组中确定需要均衡的待均衡单体电池的方式,以及在确定待均衡单体电池后,后续给对应的待均衡单体电池进行均衡的方式。
其中,单体电池的自放电率,用于表征单体电池的容量损失情况和容量损失速率。在一个实施例中,在电池组停止工作并达到稳定状态时(t1时刻),检测并记录动力电池组各单体电池的开路电压值V1;当电池组再次启动开始工作的瞬间(t2时刻),检测并记录动力电池组各单体电池的开路电压值V2;根据两次检测得到的各单体电池开路电压值,计算出各单体电池的自放电率η,自放电率值η的计算方法为:
(1)基于电池的OCV(Open Circuit Voltage,开路电压)-SOC曲线(比如图6所示的曲线),根据检测到的V1和V2找出V1对应的SOC值和V2对应的SOC值;
(2)根据分别对应于V1和V2的两个SOC值计算出电池的SOC变化值ΔSOC;
(3)根据ΔSOC与电池满电容量C,计算出电池自放电放出的电池容量,ΔQ=ΔSOC*C;
(4)计算电池自放电率η的值:η=ΔQ/(t1-t2)。
单体电池的电压变化率可以为单体电池的指定物理量发生单位改变时的电压变化量。例如,本申请中以对单体电池充入或放出预设电量,单体电池的电压变化量(dv/dq);或者对单体电池进行充电或放电预设时长,单体电池的电压变化量(dv/dt)为例进行说明。
单体电池的电量变化率可以为单体电池的指定物理量发生单位改变时的电量变化量。例如,本申请中以单体电池的电压从初始电压上升一个单位电压所需充入的电量(dq/dv),或单体电池的电压从初始电压下降一个单位电压所减少的电量(dq/dv)为例进行说明。
单体电池的时间变化率可以为单体电池的指定物理量发生单位改变时的时间变化量。例如,本申请中以单体电池的电压从初始电压上升一个单位电压所需的充电时间(dt/dv),或单体电池的电压从初始电压下降一个单位电压所需的放电时间(dt/dv)为例进行说明。
表1
Figure PCTCN2018103468-appb-000001
Figure PCTCN2018103468-appb-000002
Figure PCTCN2018103468-appb-000003
Figure PCTCN2018103468-appb-000004
本申请实施例中,用于计算待均衡单体电池的目标均衡时长的参考电压值可以是各单体电池的电压值中的最小值、各单体电池的电压值中的最大值或各单体电池的电压值中的平均值。
均衡占空比为单位周期内的均衡时段与所述单位周期的比值,可以用来表征均衡时段与采样时段在单位周期中的占比。预设的均衡占空比可以是预先设定的,在均衡过程中不变的均衡占空比,比如设定为50%,等等。
可选的,确定获取待均衡单体电池的电压值后,可以计算在设定的均衡占空比下,对待均衡单体电池进行均衡的目标均衡时长。以下对可能的根据需要均衡的单体电池的电压值以及参考电压值,确定需要均衡的单体电池的目标均衡时长的方式进行说明。
第一种方式:
首先,请参见图6,为本申请一实施例的单体电池的开路电压OCV-剩余电量SOC曲线。
可以将单体电池中,电压值与参考电压值之差最小(可能为0)的单体电池确定为参考电池,根据参考电池的电压值及参考电池的内阻值,确定所述参考电池的参考OCV值;而后,根据参考OCV值及参考电池的OCV-SOC曲线,将参考OCV值对应的SOC值确定为第一SOC值。
根据待均衡单体电池的电压值及待均衡单体电池的内阻值,确定待均衡单体电池的OCV值;而后,根据待均衡单体电池的OCV-SOC曲线,确定待均衡单体电池的OCV值对应的SOC值为第二SOC值。
以下,将结合图7和式(1)描述通过电压值和内阻值,得到SOC值的过程:
参见图7和式(1),当电池组处于放电状态或充电状态时,采用电池内阻模型,将单体电池等效为理想电压源与电阻R串联。则对于一单体电池,可根据式(1)将采样得到的该单体电池的电压值V L(即负载电压值)转换为开路电压值:
OCV=V L+I×R                                                    (1)
其中,V L为采集时段内,采集模块采集到的负载电压值;I为采集时段内,采集模块采集到的放电电流或充电电流(可以为预先设定的值);R为单体电池的内阻值。
单体电池的内阻值可为预置的。或者单体电池的内阻值可为根据单体电池的电压和容量确定的。例如,根据单体电池的电压、容量和内阻值的对应关系,确定单体电池的内阻 值。应理解,还可采用其它电池模型,如:Thevenin(戴维南)模型、PNGV(Partnership for a New Generation of Vehicles,新一代汽车合作伙伴计划)模型等,实现将采集到的单体电池的负载电压转换为开路电压。
获取到单体电池的开路电压后,根据该单体电池的OCV-SOC曲线,即可得到该单体电池对应的SOC值。
应理解,图6所示的OCV-SOC曲线还可转换为OCV和SOC的对应关系表,一OCV值对应一SOC值,或一OCV范围对应一SOC值。
在本申请的一个实施例中,OCV-SOC曲线或OCV-SOC对应关系表,可是经过测定获取到的。例如,对于某一单体电池,在其SOC值从0到100%之间变化的过程中,每间隔一定的SOC值,则测定一次电池的开路电压OCV,然后将每个点对应的OCV和SOC一一对应,形成该单体电池的SOC-OCV曲线或OCV-SOC对应关系表。
应理解,测定开路电压OCV时,可以先采集单体电池的负载电压,然后根据式(1)转换为对应的开路电压OCV。
由此,可根据参考电压值、参考电池的内阻值以及参考电池对应的OCV-SOC曲线,获取到参考电池的第一SOC值。根据待均衡单体电池的电压值、待均衡单体电池的内阻值以及待均衡单体电池对应的OCV-SOC曲线,获取到待均衡单体电池的第二SOC值。
接下来,按照式(2)确定电量差:
ΔQ=ΔSOC×C n                                                      (2)
其中,ΔQ为电量差,ΔSOC为第一SOC值与第二SOC值之间的SOC差值,C n为待均衡单体电池的可用容量。
按照式(3)确定待均衡单体电池的目标均衡时长:
t=ΔQ/(I×τ)                                                       (3)
其中,t为待均衡单体电池的预设均衡时长,I为待均衡单体电池的预设均衡电流,τ为均衡占空比。均衡占空比是指单位周期内的均衡时段与单位周期的比值,本申请实施例中,均衡占空比可以是预先根据需求设定好的值,比如设定为50%,等等。
当确定了待均衡单体电池的目标均衡时长后,按照该目标均衡时长,对待均衡单体电池进行均衡,以实现提高均衡效率,降低均衡成本。
第二种确定方式包括以下步骤:
根据所述待均衡单体电池的电压值与所述参考电压值之间的电压差值、以及预设的电压差值、均衡占空比及均衡时长三者之间的对应关系,确定所述待均衡单体电池的目标均衡时长。
预设的电压差值、均衡占空比及均衡时长三者之间的对应关系可以通过多次均衡试验或者经验得到,比如通过表格的方式记录,那么可以在表格中查找测得的电压差值和预设的均衡占空比下,对应的目标均衡时长的值。
在得到目标均衡时长后,可以按照目标均衡时长在单位周期的均衡时段对待均衡单体电池进行均衡。根据计算均衡时长采用的参考电压值的不同,均衡的方式可能不同。
可选的,若参考电压值为各单体电池的电压值中的最小值,在单位周期的均衡时段控制待均衡单体电池放电;或,若参考电压值为各单体电池的电压值中的最大值,在单位周期的均衡时段控制待均衡单体电池充电;或,若参考电压值为各单体电池的电压值中的平均值,在待均衡单体电池的电压值大于参考电压值时,在单位周期的均衡时段控制待均衡单体电池放电,以及,在待均衡单体电池的电压值小于参考电压值时,在单位周期的均衡时段控制待均衡单体电池充电。
均衡过程
参见图8,为本申请一实施例的均衡模块的示意图。控制待均衡单体电池在单位周期的均衡时段进行均衡,需要结合上述均衡判断进行。根据均衡判断的步骤中,确定待均衡单体电池的均衡方式为被动均衡(即对待均衡单体电池进行放电),还是主动均衡(即对待均衡单体电池进行充电),并导通相应的均衡模块。
参见图8,对于被动均衡,均衡模块包括:一电阻811,每个单体电池对应一个均衡模块,即每节单体电池的两端均并联一个电阻。
对于需要进行被动均衡的待均衡单体电池,在单位周期的均衡时段内,控制模块控制该待均衡单体电池与其对应的电阻之间的并联回路导通,以执行对该单体电池的被动均衡。参见图8,控制模块通过控制开关模块812导通,实现待均衡单体电池与其对应的电阻之间的并联回路的导通。
电阻811可为定值电阻或可变电阻。在一个实施例总,电阻811可为正温度系数的热敏电阻,其可随温度的变化而变化,从而可调节均衡时产生的均衡电流,进而自动调节电池均衡***的发热量,并最终对电池均衡***的温度进行有效控制。
参见图8,对于主动均衡,均衡模块包括与电池组中的每一个单体电池95均并联的充电支路94,充电支路94与单体电池95一一对应,且每个充电支路94均连接于发电机92,发电机92与发动机91通过齿轮机械连接。
对于需要进行主动均衡的待均衡单体电池,控制模块控制与该待均衡单体电池对应的充电支路94导通。发动机91转动时,则带动发电机92发电,从而将发电机92所发的电量输送给待均衡单体电池,使该待均衡单体电池的电量增加。
参见图8,当发电机92为交流发电机时,均衡模块还包括与发电机92串联的整流器 93,每个充电支路130均串联所述整流器132。通过整流器93将发电机92发出的交流电转换为直流电后,可以使得发电机92能够用于对待均衡单体电池进行充电。
参见图8,控制模块可通过控制与待均衡单体电池对应的开关96导通,使得该待均衡单体电池对应的充电支路导通,执行对待均衡单体电池的主动均衡。
在另一些实施例中,除了图8所示的,利用发电机对单体电池进行充电外,还可通过整车中的启动电池为待均衡单体电池进行充电。
在另一实施例中,除了图8所示的,并联电阻与待均衡单体电池外,还可将待均衡单体电池与整车的启动电池并联,将待均衡单体电池放出的电量充入启动电池,实现对待均衡单体电池的均衡的同时有效避免能量的浪费。
如上所述,在本申请的实施例中,多个单体电池可共用一个均衡模块,当共用一个均衡模块的多节单体电池中有至少两节单体电池需要均衡时,在单位周期的均衡时段内,该均衡模块与需要均衡的至少两节单体电池中的每节单体电池交替连接,分别进行均衡。
相应的,本申请实施例还提供一种车辆,包括上述的电池均衡***。
相应的,本申请实施例还提供一种计算机可读存储介质,其上存储有计算机程序指令,该程序指令被处理器执行时实现上述的电池均衡方法。
相应的,本申请实施例还提供一种电子设备,包括:前述计算机可读存储介质;以及一个或者多个处理器,用于执行所述计算机可读存储介质中的程序。
以上结合附图详细描述了本申请的优选实施方式,但是,本申请并不限于上述实施方式中的具体细节,在本申请的技术构思范围内,可以对本申请的技术方案进行多种简单变型,这些简单变型均属于本申请的保护范围。
另外需要说明的是,在上述具体实施方式中所描述的各个具体技术特征,在不矛盾的情况下,可以通过任何合适的方式进行组合。为了避免不必要的重复,本申请对各种可能的组合方式不再另行说明。
此外,本申请的各种不同的实施方式之间也可以进行任意组合,只要其不违背本申请的思想,其同样应当视为本申请所公开的内容。

Claims (21)

  1. 一种电池均衡方法,其特征在于,所述方法包括:
    获取电池组中的待均衡单体电池的电压值;
    获取均衡所需的参考电压值;
    根据所述待均衡单体电池的电压值、所述参考电压值和预设的均衡占空比,确定所述待均衡单体电池的目标均衡时长,其中,所述均衡占空比为单位周期内的均衡时段与所述单位周期的比值,所述单位周期包括所述均衡时段和采样时段;
    按照所述目标均衡时长,在所述单位周期的均衡时段控制所述待均衡单体电池的均衡。
  2. 根据权利要求1所述的方法,其特征在于,所述根据所述待均衡单体电池的电压值、所述参考电压值和预设的均衡占空比,确定所述待均衡单体电池的目标均衡时长,包括:
    根据参考电池的电压值及所述参考电池的开路电压OCV-剩余电量SOC曲线,确定与所述参考电池的电压值对应的第一SOC值,其中,所述参考电池为所述电池组中电压值与所述参考电压值之差最小的单体电池;
    根据所述待均衡单体电池的电压值及所述待均衡单体电池的OCV-SOC曲线,确定与所述待均衡单体电池的电压值对应的第二SOC值;
    根据所述第一SOC值、所述第二SOC值和所述均衡占空比,确定所述目标均衡时长。
  3. 根据权利要求2所述的方法,其特征在于,所述根据参考电池的电压值及所述参考电池的开路电压OCV-剩余电量SOC曲线,确定与所述参考电池的电压值对应的第一SOC值,包括:
    根据所述参考电池的电压值及所述参考电池的内阻值,确定所述参考电池的参考OCV值;
    根据所述参考OCV值及所述参考电池的OCV-SOC曲线,将所述参考OCV值对应的SOC值确定为所述第一SOC值;
    所述根据所述待均衡单体电池的电压值及所述待均衡单体电池的OCV-SOC曲线,确定与所述待均衡单体电池的电压值对应的第二SOC值,包括:
    根据所述待均衡单体电池的电压值及所述待均衡单体电池的内阻值,确定所述待均衡单体电池的OCV值;
    根据所述待均衡单体电池的OCV-SOC曲线,确定所述待均衡单体电池的OCV值对应的SOC值为所述第二SOC值。
  4. 根据权利要求2所述的方法,其特征在于,所述根据所述第一SOC值、所述第二SOC值和所述均衡占空比,确定所述目标均衡时长,包括:
    按照ΔQ=ΔSOC×C n确定电量差,其中,ΔQ为所述电量差,ΔSOC为所述第一SOC值与所述第二SOC值之间的SOC差值,C n为所述待均衡单体电池的可用容量;
    按照t=ΔQ/(I×τ)确定所述目标均衡时长,其中,t为所述目标均衡时长,I为所述待均衡单体电池的均衡电流,τ为所述均衡占空比。
  5. 根据权利要求1所述的方法,其特征在于,所述根据所述待均衡单体电池的电压值、所述参考电压值和预设的均衡占空比,确定所述待均衡单体电池的目标均衡时长,包括:
    根据所述待均衡单体电池的电压值与所述参考电压值之间的电压差值、以及预设的电压差值、均衡占空比及均衡时长三者之间的对应关系,确定所述待均衡单体电池的目标均衡时长。
  6. 根据权利要求1所述的方法,其特征在于,所述参考电压值为各单体电池的电压值中的最小值、各单体电池的电压值中的最大值或各单体电池的电压值中的平均值。
  7. 根据权利要求6所述的方法,其特征在于,在所述单位周期的均衡时段控制所述待均衡单体电池的均衡,包括:
    若所述参考电压值为各单体电池的电压值中的最小值,在所述单位周期的均衡时段控制所述待均衡单体电池放电;或,
    若所述参考电压值为各单体电池的电压值中的最大值,在所述单位周期的均衡时段控制所述待均衡单体电池充电;或,
    若所述参考电压值为各单体电池的电压值中的平均值,在所述待均衡单体电池的电压值大于所述参考电压值时,在所述单位周期的均衡时段控制所述待均衡单体电池放电,以及,在所述待均衡单体电池的电压值小于所述参考电压值时,在所述单位周期的均衡时段控制所述待均衡单体电池充电。
  8. 根据权利要求1-7任一所述的方法,其特征在于,所述方法还包括:
    根据所述电池组中各单体电池的性能参数,从所述电池组中确定所述待均衡单体电池,其中,所述性能参数包括SOC值、内阻值、自放电率值、电压变化率、电量变化率、及时间变化率中的至少一者。
  9. 一种电池均衡***,其特征在于,包括:均衡模块、采集模块以及控制模块,
    所述采集模块用于采集电池组的电池信息,所述电池信息用于确定所述电池组中各单体电池的电压值;
    所述控制模块用于获取所述电池组中的待均衡单体电池的电压值;获取均衡所需的参考电压值;根据所述待均衡单体电池的电压值、所述参考电压值和预设的均衡占空比,确定所述待均衡单体电池的目标均衡时长,其中,所述均衡占空比为所述均衡时段与所述单 位周期的比值;及,按照所述目标均衡时长,在所述单位周期的均衡时段控制所述待均衡单体电池的均衡;
    所述均衡模块用于在所述控制模块的控制下对所述待均衡单体电池进行均衡。
  10. 根据权利要求9所述的电池均衡***,其特征在于,所述控制模块用于:
    根据参考电池的电压值及所述参考电池的开路电压OCV-剩余电量SOC曲线,确定与所述参考电池的电压值对应的第一SOC值,其中,所述参考电池为所述电池组中电压值与所述参考电压值之差最小的单体电池;
    根据所述待均衡单体电池的电压值及所述待均衡单体电池的OCV-SOC曲线,确定与所述待均衡单体电池的电压值对应的第二SOC值;
    根据所述第一SOC值、所述第二SOC值和所述均衡占空比,确定所述目标均衡时长。
  11. 根据权利要求10所述的电池均衡***,其特征在于,所述控制模块用于:
    根据所述参考电池的电压值及所述参考电池的内阻值,确定所述参考电池的参考OCV值;
    根据所述参考OCV值及所述参考电池的OCV-SOC曲线,将所述参考OCV值对应的SOC值确定为所述第一SOC值;
    根据所述待均衡单体电池的电压值及所述待均衡单体电池的内阻值,确定所述待均衡单体电池的OCV值;
    根据所述待均衡单体电池的OCV-SOC曲线,确定所述待均衡单体电池的OCV值对应的SOC值为所述第二SOC值。
  12. 根据权利要求10所述的电池均衡***,其特征在于,所述控制模块用于:
    按照ΔQ=ΔSOC×C n确定电量差,其中,ΔQ为所述电量差,ΔSOC为所述第一SOC值与所述第二SOC值之间的SOC差值,C n为所述待均衡单体电池的可用容量;
    按照t=ΔQ/(I×τ)确定所述目标均衡时长,其中,t为所述目标均衡时长,I为所述待均衡单体电池的均衡电流,τ为所述均衡占空比。
  13. 根据权利要求9所述的电池均衡***,其特征在于,所述控制模块用于:
    根据所述待均衡单体电池的电压值与所述参考电压值之间的电压差值、以及预设的电压差值、均衡占空比及均衡时长三者之间的对应关系,确定所述待均衡单体电池的目标均衡时长。
  14. 根据权利要求9-13任一所述的电池均衡***,其特征在于,所述控制模块还用于:
    根据所述电池组中各单体电池的性能参数,从所述电池组中确定所述待均衡单体电池,其中,所述性能参数包括SOC值、内阻值、自放电率值、电压变化率、电量变化率、及时 间变化率中的至少一者。
  15. 根据权利要求9所述的电池均衡***,其特征在于,所述控制模块通过一个通道与对应于同一单体电池的采集模块和均衡模块连接,所述控制模块用于在确定与该控制模块连接的单体电池不需要进行均衡时,控制所述控制模块与对应的采样模块连接;或者,
    所述控制模块还用于在确定与该控制模块连接的单体电池需要进行均衡时,所述采集模块和所述均衡模块分时复用所述通道。
  16. 根据权利要求15所述的电池均衡***,其特征在于,所述控制模块包括控制芯片,所述控制芯片通过一个引脚和所述一个通道与对应于同一单体电池的采集模块和均衡模块连接。
  17. 根据权利要求9所述的电池均衡***,其特征在于,所述控制模块通过两个通道分别与对应于同一单体电池的采集模块和均衡模块连接。
  18. 根据权利要求17所述的电池均衡***,其特征在于,所述控制模块包括控制芯片,所述控制芯片通过两个引脚分别与对应于同一单体电池的采集模块和均衡模块连接,所述两个引脚与所述两个通道一一对应。
  19. 一种车辆,其特征在于,所述车辆包括:电池组以及权利要求9-18任一项所述的电池均衡***。
  20. 一种计算机可读存储介质,其上存储有计算机程序指令,其特征在于,该程序指令被处理器执行时实现权利要求1-8任一项所述的方法。
  21. 一种电子设备,其特征在于,包括:
    权利要求20中所述的计算机可读存储介质;以及
    一个或者多个处理器,用于执行所述计算机可读存储介质中的程序。
PCT/CN2018/103468 2017-08-31 2018-08-31 电池均衡方法、***、车辆、存储介质及电子设备 WO2019042398A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP18850012.8A EP3677465A4 (en) 2017-08-31 2018-08-31 BATTERY REGALIZATION METHOD AND SYSTEM, VEHICLE, STORAGE MEDIUM AND ELECTRONIC DEVICE
US16/642,811 US11292360B2 (en) 2017-08-31 2018-08-31 Battery equalization method and system, vehicle, storage medium, and electronic device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710775005.5A CN110015185B (zh) 2017-08-31 2017-08-31 电池均衡方法、***、车辆、存储介质及电子设备
CN201710775005.5 2017-08-31

Publications (1)

Publication Number Publication Date
WO2019042398A1 true WO2019042398A1 (zh) 2019-03-07

Family

ID=65524895

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/103468 WO2019042398A1 (zh) 2017-08-31 2018-08-31 电池均衡方法、***、车辆、存储介质及电子设备

Country Status (4)

Country Link
US (1) US11292360B2 (zh)
EP (1) EP3677465A4 (zh)
CN (1) CN110015185B (zh)
WO (1) WO2019042398A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020227833A1 (en) 2019-05-16 2020-11-19 Troes Corporation Method and system for dual equilibrium tm battery and battery pack performance management
CN116995782A (zh) * 2023-09-25 2023-11-03 杭州鹏成新能源科技有限公司 一种电池的被动均衡方法、***、电子设备及存储介质

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11577624B2 (en) * 2019-06-05 2023-02-14 GM Global Technology Operations LLC Low voltage battery SOC confirmation and cell balancing
DE102019214343A1 (de) * 2019-09-20 2021-03-25 Robert Bosch Gmbh Verfahren zum Ausgleichen von Ladezuständen eines elektrischen Energiespeichers
CN111628544B (zh) * 2020-05-29 2023-09-29 西北工业大学 一种动力电池组***的高精度均衡方法
CN112491111B (zh) * 2020-11-10 2024-05-10 奇瑞汽车股份有限公司 一种功率型电池均衡方法
CN112526380B (zh) * 2020-11-19 2024-04-16 许继集团有限公司 一种电池管理单元均衡效率测试方法及***
KR20220141599A (ko) * 2021-04-13 2022-10-20 현대자동차주식회사 전기자동차의 배터리팩 용량 균등화 방법
CN114069796A (zh) * 2021-11-24 2022-02-18 广东电网有限责任公司广州供电局 一种电池组主动均衡控制方法、装置、设备及介质
FR3137457A1 (fr) * 2022-07-04 2024-01-05 Powerup Procédé de détection d'un risque de défaillance par déséquilibre d'un dispositif de stockage d'énergie comprenant un ensemble d’étages de cellules électrochimiques
CN115840157B (zh) * 2022-12-08 2023-08-22 斯润天朗(合肥)科技有限公司 基于eof分析的锂电池电性能指标协调性分析***
CN117895626B (zh) * 2024-03-15 2024-05-14 上海采日能源科技有限公司 储能***中电芯均衡的控制方法及控制***

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014090560A2 (de) * 2012-12-11 2014-06-19 Robert Bosch Gmbh Verfahren zur batteriemodulausbalancierung und batteriemanagementsystem
CN104079016A (zh) * 2013-03-28 2014-10-01 比亚迪股份有限公司 电池组均衡***及其均衡控制方法
CN104377776A (zh) * 2014-11-20 2015-02-25 重庆长安汽车股份有限公司 一种电动汽车用锂离子电池高效被动均衡控制方法
CN105429236A (zh) * 2015-12-25 2016-03-23 华南理工大学 一种基于电流预测的动力电池组均衡控制方法
CN207241459U (zh) * 2017-08-31 2018-04-17 比亚迪股份有限公司 电池均衡***及车辆

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8350528B2 (en) * 2009-02-04 2013-01-08 Samsung Sdi Co., Ltd. Battery pack and balancing method of battery cells
TWI379486B (en) 2009-02-17 2012-12-11 Green Solution Tech Co Ltd The battery charging controlling apparatus and battery balance charging controller
JP5537913B2 (ja) 2009-11-30 2014-07-02 三洋電機株式会社 均等化装置、それを備えたバッテリシステムおよび電動車両
TWI415361B (zh) 2010-04-22 2013-11-11 Green Solution Tech Co Ltd 電池電壓平衡裝置及電池充電裝置
KR101256079B1 (ko) * 2010-12-28 2013-04-19 삼성에스디아이 주식회사 배터리 팩의 밸런싱 방법 및 밸런싱 시스템
US8786261B2 (en) 2011-03-03 2014-07-22 Davide Andrea Cell modules for detecting temperature and voltage of cells
TW201246751A (en) * 2011-05-12 2012-11-16 Lite On Clean Energy Technology Corp A battery system and a battery equalizer
CN102957173B (zh) 2011-08-23 2015-03-11 福建睿能科技股份有限公司 一种多节串联锂电池组均衡及保护***
JP5573818B2 (ja) 2011-11-08 2014-08-20 株式会社豊田自動織機 電池均等化装置および方法
CN102496979A (zh) 2011-11-28 2012-06-13 上海交通大学 一种极性自动切换的锂离子电池组均衡电路
CN103166257A (zh) 2011-12-14 2013-06-19 比亚迪股份有限公司 电池组电压均衡***及均衡方法
US9013147B2 (en) * 2012-02-08 2015-04-21 O2Micro, Inc. Circuit and method for cell balancing
WO2013127099A1 (zh) 2012-02-28 2013-09-06 智晖有限公司 一种并联电池组中荷电平衡及负载控制的方法
CN103701171A (zh) 2013-12-23 2014-04-02 湖北工业大学 一种混合动力汽车电池组均衡充电控制***
US9381825B2 (en) * 2014-02-20 2016-07-05 Ford Global Technologies, Llc State of charge quality based cell balancing control
US9819208B2 (en) 2014-08-29 2017-11-14 General Electronics Applications, Inc. Battery management circuit having cell connections for batteries and a plurality of corresponding windings and diodes
CN104795857B (zh) * 2015-03-23 2017-09-29 上海交通大学 锂离子电池能量均衡的实现方法
KR101702379B1 (ko) 2015-04-21 2017-02-03 공주대학교 산학협력단 모듈형 능동 셀밸런싱 장치, 모듈형 배터리 블록, 배터리 팩, 및 에너지 저장 시스템
TWI610486B (zh) 2015-10-14 2018-01-01 Active balance charging device
CN105449295B (zh) * 2015-11-17 2018-02-02 北京新能源汽车股份有限公司 动力电池均衡控制方法、装置和电路
CN205945121U (zh) 2016-07-15 2017-02-08 深圳市科列技术股份有限公司 一种电池管理***的动态均衡电路
CN106340926B (zh) * 2016-09-29 2018-10-23 中国科学院广州能源研究所 锂电池均衡控制策略优化方法
CN106549454A (zh) * 2016-12-15 2017-03-29 深圳晶福源科技股份有限公司 一种电压采样与电量均衡共线的电池管理***和管理方法
CN106602668B (zh) 2017-01-20 2019-03-22 深圳晶福源科技股份有限公司 一种双向全时电量均衡的电池管理***和管理方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014090560A2 (de) * 2012-12-11 2014-06-19 Robert Bosch Gmbh Verfahren zur batteriemodulausbalancierung und batteriemanagementsystem
CN104079016A (zh) * 2013-03-28 2014-10-01 比亚迪股份有限公司 电池组均衡***及其均衡控制方法
CN104377776A (zh) * 2014-11-20 2015-02-25 重庆长安汽车股份有限公司 一种电动汽车用锂离子电池高效被动均衡控制方法
CN105429236A (zh) * 2015-12-25 2016-03-23 华南理工大学 一种基于电流预测的动力电池组均衡控制方法
CN207241459U (zh) * 2017-08-31 2018-04-17 比亚迪股份有限公司 电池均衡***及车辆

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3677465A4

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020227833A1 (en) 2019-05-16 2020-11-19 Troes Corporation Method and system for dual equilibrium tm battery and battery pack performance management
EP3970258A4 (en) * 2019-05-16 2023-01-25 Troes Corporation METHOD AND SYSTEM FOR A TM BATTERY WITH DUAL BALANCE AND POWER MANAGEMENT FOR A BATTERY PACK
US11811247B2 (en) 2019-05-16 2023-11-07 Troes Corporation Method and system for dual equilibrium battery and battery pack performance management
CN116995782A (zh) * 2023-09-25 2023-11-03 杭州鹏成新能源科技有限公司 一种电池的被动均衡方法、***、电子设备及存储介质
CN116995782B (zh) * 2023-09-25 2024-01-23 杭州鹏成新能源科技有限公司 一种电池的被动均衡方法、***、电子设备及存储介质

Also Published As

Publication number Publication date
US20200346558A1 (en) 2020-11-05
CN110015185A (zh) 2019-07-16
EP3677465A4 (en) 2020-10-28
EP3677465A1 (en) 2020-07-08
CN110015185B (zh) 2022-09-06
US11292360B2 (en) 2022-04-05

Similar Documents

Publication Publication Date Title
WO2019042398A1 (zh) 电池均衡方法、***、车辆、存储介质及电子设备
CN109435773B (zh) 电池均衡方法、***、车辆、存储介质及电子设备
CN110015169B (zh) 电池均衡方法、***、车辆、存储介质及电子设备
CN109435778B (zh) 电池均衡方法、***、车辆、存储介质及电子设备
CN110015171B (zh) 电池均衡方法、***、车辆、存储介质及电子设备
CN110015187B (zh) 电池均衡方法、***、车辆、存储介质及电子设备
CN109428355B (zh) 电池均衡方法、***、车辆、存储介质及电子设备
CN109435766B (zh) 电池均衡方法、***、车辆、存储介质及电子设备
WO2019042357A1 (zh) 电池均衡方法、***、车辆、存储介质及电子设备
CN110015177B (zh) 电池均衡方法、***、车辆、存储介质及电子设备
CN110015170B (zh) 电池均衡方法、***、车辆、存储介质及电子设备
WO2019042415A1 (zh) 电池均衡方法、***、车辆、存储介质及电子设备
CN109428129B (zh) 电池均衡方法、***、车辆、存储介质及电子设备
CN109428356B (zh) 电池均衡方法、***、车辆、存储介质及电子设备
CN110015179B (zh) 电池均衡方法、***、车辆、存储介质及电子设备
CN110015184B (zh) 电池均衡方法、***、车辆、存储介质及电子设备
CN110015174B (zh) 电池均衡方法、***、车辆、存储介质及电子设备
CN110015188B (zh) 电池均衡方法、***、车辆、存储介质及电子设备
CN109435770B (zh) 电池均衡方法、***、车辆、存储介质及电子设备
CN109435768B (zh) 电池均衡方法、***、车辆、存储介质及电子设备
CN109435774B (zh) 电池均衡方法、***、车辆、存储介质及电子设备
CN109435758B (zh) 电池均衡方法、***、车辆、存储介质及电子设备
CN110015168B (zh) 电池均衡方法、***、车辆、存储介质及电子设备
WO2019042356A1 (zh) 电池均衡方法、***、车辆、存储介质及电子设备
CN110015176B (zh) 电池均衡方法、***、车辆、存储介质及电子设备

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018850012

Country of ref document: EP

Effective date: 20200331