WO2013127099A1 - 一种并联电池组中荷电平衡及负载控制的方法 - Google Patents

一种并联电池组中荷电平衡及负载控制的方法 Download PDF

Info

Publication number
WO2013127099A1
WO2013127099A1 PCT/CN2012/072205 CN2012072205W WO2013127099A1 WO 2013127099 A1 WO2013127099 A1 WO 2013127099A1 CN 2012072205 W CN2012072205 W CN 2012072205W WO 2013127099 A1 WO2013127099 A1 WO 2013127099A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery pack
voltage
value
current
battery
Prior art date
Application number
PCT/CN2012/072205
Other languages
English (en)
French (fr)
Inventor
蔡英
Original Assignee
智晖有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 智晖有限公司 filed Critical 智晖有限公司
Priority to CN201280059540.6A priority Critical patent/CN104106175A/zh
Publication of WO2013127099A1 publication Critical patent/WO2013127099A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • H01M10/441Methods for charging or discharging for several batteries or cells simultaneously or sequentially
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • H02J7/0014Circuits for equalisation of charge between batteries
    • H02J7/0016Circuits for equalisation of charge between batteries using shunting, discharge or bypass circuits
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to the field of battery management technologies, and in particular, to a method for charging balance and load control in a parallel battery pack. Background technique
  • Battery management technology is to detect and estimate battery status, temperature, current, DC internal resistance, polarization voltage, state of charge soc, maximum available capacity, age and consistency, and provide battery (group) optimization accordingly.
  • the method of use can prevent abuse and unreasonable use of the battery (group), ensure the safety and long life of the battery, and maximize the performance of the battery to achieve high efficiency of battery capacity and energy utilization.
  • the prior art employs a configuration in which individual cells are connected in parallel, in series, and in parallel.
  • These battery packs can be connected in parallel to share the current between the battery packs and increase the available capacity of the entire battery energy storage system, as shown in Figure 1. Since the deletion of any single battery pack does not change the voltage of the entire system, this design concept allows the energy storage system to be redundant in the event of a partial failure of a battery pack. At the same time, the design offers different users the flexibility to choose different load capacities.
  • Embodiments of the present invention provide a method for controlling load balancing load in a parallel battery pack, which prevents a single battery pack from impacting the upper and lower limits of the state of charge of the system when fully charged or vented, so that charging and discharging under controlled and optimized conditions
  • the battery pack can effectively improve the effective capacity of the battery system.
  • an embodiment of the present invention provides a method for controlling load balancing load in a parallel battery pack, including:
  • the battery packs When the voltage difference between the battery packs is greater than a voltage set value, the battery packs are respectively charged from the lowest voltage, or the battery packs are respectively discharged from the highest voltage;
  • the voltage and current of each battery pack currently being charged and discharged are monitored, and the offline switching of the battery pack is performed according to the current voltage value and the limit value of the current value.
  • the method for controlling the load balancing load of the parallel battery pack improves the charging efficiency, optimizes the discharge speed according to the power demand and the system capacity on the premise of good balance of the battery pack; and prevents the single battery pack from being filled or emptied
  • the effective capacity of the upper system that impacts the state of charge of the system.
  • the optimal position of the venting interval can also effectively extend the storage life of the battery.
  • FIG. 1 is a schematic structural view of a parallel battery pack in the prior art
  • FIG. 2 is a flow chart of a method for controlling a load balancing load of a parallel battery pack according to an embodiment of the present invention
  • FIG. 3 is a flow chart showing a method for controlling a load balancing load during charging of a parallel battery pack according to a second embodiment of the present invention. and a flowchart for implementing the control method. detailed description
  • An embodiment of the present invention provides a method for controlling a load balancing load in a parallel battery pack.
  • the specific implementation process is as shown in FIG. 2, including:
  • Step S101 Determine whether the voltage difference between the battery packs is greater than a set value.
  • Step S102 When the voltage difference between the battery packs is greater than a set value, the battery packs are respectively charged from the lowest voltage, or the battery packs are respectively discharged from the highest voltage.
  • Step S103 monitoring the voltage and current of each battery pack currently performing charging and discharging, and performing switching of the upper and lower lines of the battery pack according to the current voltage value and the limit value of the current value.
  • the method for controlling the load balancing load of the parallel battery pack provided by the embodiment of the invention improves the charging efficiency, optimizes the discharge speed according to the power demand and the system capacity on the premise of good balance of the battery pack; and can prevent the single battery pack from being full or
  • the upper and lower limits of the state of charge of the system are impacted when venting, so that the battery pack that is charged and discharged under controlled and optimized conditions can effectively improve the effective capacity of the battery system.
  • maintaining the state of charge of the battery pack in the optimal position of the full and venting intervals as long as possible can effectively extend the storage life of the battery.
  • the method for implementing the load balancing control of the battery pack during charging is taken as an example to further describe the method for controlling the load balancing load of the parallel battery pack according to the first embodiment.
  • the charge balance and dynamic load configuration between parallel battery packs is realized by two high voltage circuit breakers (positive and negative) on each battery pack and control algorithms for controlling these circuit breakers. 3 is shown.
  • Step S201 Determine whether the voltage difference A V of any two battery packs to be charged is greater than a voltage setting value.
  • the voltage setting value is set by the user to ensure that there is sufficient voltage difference between the battery groups.
  • ⁇ ⁇ is greater than the voltage setting value
  • the process goes to step S2021, when AV is not greater than the voltage setting.
  • the fixed value step S2022 optimizes the charging speed by turning on a plurality of battery packs on the premise of the total charging power permit.
  • Step S2021 Turn on the low voltage battery pack, starting from the lowest voltage battery pack and charging one group.
  • Step S2023 Monitor whether the voltage of the current rechargeable battery pack is close to the voltage of any battery pack to be charged. When the voltage of the battery pack to be charged is close to the voltage of the battery pack to be charged, go to step S201 to re-determine whether the voltage difference between any two batteries to be charged is It is greater than the voltage setting value; when it is not close, it proceeds to step S203.
  • Step S203 determining whether the current difference of any two rechargeable battery packs is greater than a current set value, when the current difference is greater than the current set value, proceeding to step S204; when the current difference is not greater than the current set value, then turning Step S205.
  • Step S204 determining the voltage value and the current value of the two rechargeable battery packs whose current difference is greater than the current set value in step S203, and completing the offline switching of the battery pack.
  • VI, II, V2, and 12 be the voltage and current measured by the first battery pack and the second battery pack, respectively.
  • the battery pack capacity is reduced by x% compared with the original battery pack capacity ( X is the percentage of capacity decay), identifies the current battery pack as a weak battery pack, and takes repair remedial action.
  • Step S205 Steps S201 and S2022 are repeatedly performed until all the to-be-charged pool groups are charged online, and when any one of the battery packs reaches the upper voltage limit, the offline line is switched to complete the charging process of the battery pack.
  • charging is performed in groups one from the lowest voltage battery pack.
  • the battery pack is also switched on. Due to the auto-balancing feature between the parallel battery packs, the d-difference between the groups does not cause problems, and the optimized charging speed extends the life of the battery pack. Closely monitor the current and voltage of each battery pack and switch it to the upper and lower lines by controlling the circuit breaker on the battery pack to reduce the internal current backflow caused by the voltage difference between the parallel battery packs. Limiting the internal current loop also minimizes the power dissipation caused by the conductive path. Once a battery pack reaches the maximum voltage limit, the battery pack can be switched off the line.
  • the method for controlling the load balancing load of the parallel battery pack provided by the embodiment of the invention not only improves the efficiency of the system during the charging process, but also identifies the weak battery pack, so that the ear can be compensated in the future.
  • an implementation method of the charge balance load control of the battery pack during discharge is taken as an example, and the implementation process is as shown in FIG. 4 .
  • Step S301 determining whether the required discharge speed of the single battery pack is less than a preset allowable discharge speed nC, wherein n is a multiple of the discharge speed, and C is a unit of the battery discharge speed.
  • 1C means that the battery uses a ' ⁇ !, when it is fully emptied, 2C means that the battery is fully emptied for half an hour.
  • 1/3C means that the battery is fully vented for three hours.
  • step S302 when the required discharge speed of the single battery pack is greater than the preset allowable discharge speed (nC), the process goes to step S302, otherwise the process goes to step S303.
  • Step S302 Optimize the discharge speed by turning on a plurality of battery packs together under the premise of similar voltages, and monitor whether the voltage of the online battery pack falls near the voltage of any battery pack to be charged.
  • Step S303 Determine whether the voltage difference of any two standby battery packs is greater than a set value.
  • step S304 the battery pack having the highest voltage is turned on, and the voltage of the online battery pack is monitored in step S304; if not, the plurality of battery packs are turned on to optimize the discharge speed, and the voltage of the online battery pack is monitored in step S304.
  • Step S304 monitoring the voltage of the online battery pack, determining whether the online battery pack voltage drops to the voltage of any offline battery pack to be charged, and if yes, proceeding to step S305; if not, indicating that the two battery packs have the same power storage capacity, Turn on to optimize the discharge speed. At this time, it is still necessary to monitor whether the voltage of the online battery pack falls below the voltage of any battery pack to be charged, and return to step S303.
  • Step S305 determining whether the current difference between the online battery pack and the any other online battery pack in which the voltage falls to the battery pack voltage to be charged in step S304 is greater than the current set value, and when it is greater than the current set value, the process proceeds to step S306. Perform the switching of the battery pack; when it is not greater than the current set value, judge whether any battery pack reaches the lower voltage limit. When the lower voltage limit is reached, switch the battery pack offline and wait for charging.
  • Step S306 Determine the voltage value and the current value of the two online battery packs larger than the current set value in step S305 to complete the switching of the upper and lower lines of the battery pack.
  • VI, II, V2, and 12 are voltages and currents measured by the first battery pack and the second battery pack, respectively.
  • step S306 it is determined in step S306 that the voltage value and the current value of the online battery pack are determined. After switching the upper and lower lines of the battery pack, it is necessary to check the battery pack capacity by using the capacity algorithm. When the battery pack capacity is reduced by X% compared with the original battery pack capacity (X is the capacity attenuation percentage), the current battery pack is identified as a weak battery pack. Take repair remedy operations.
  • the method for charging balance and load control of the parallel battery pack is applied to the charge balance of the battery pack during discharge. If there is a significant voltage difference between the battery packs after charging, the first discharge from the battery pack can be The highest voltage battery pack begins, one after the other discharge. When any of the battery packs reaches the lower voltage limit, the battery pack can be switched off-line. For lithium batteries, if the charge and discharge speed is too fast, the effective capacity of the battery will be reduced. Under the premise of good balance of the battery pack, the discharge speed can be optimized according to the power demand and system capacity, that is, the effective capacity of the entire energy storage system can be improved.
  • control of the charge and discharge rates of the battery pack in the present invention can also be used for voltage-based capacity monitoring, and real-time monitoring of battery capacity is the key to calculating battery state of charge and power estimation.
  • the method for controlling the load balancing load of the parallel battery pack improves the charging efficiency, optimizes the discharge speed according to the power demand and the system capacity on the premise of good balance of the battery pack; and prevents the single battery pack from being filled or emptied
  • the effective capacity of the upper system that impacts the state of charge of the system.
  • maintaining the state of charge of the battery pack in the optimal position of the full and venting intervals as long as possible can effectively extend the battery life of the battery.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Secondary Cells (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

一种并联电池组中荷电平衡负载控制的方法,包括:判断电池组之间的电压差是否大于电压设定值(S101);当电压差大于设定值时,从最低电压开始分别对电池组进行充电,或者从最高电压开始分别对电池组进行放电(S102);监测当前进行充放电的每个电池组的电压与电流,并根据当前电压值和电流值的极限值执行电池组的上下线切换(S103)。通过防止单个电池组在充满电或放空电时冲击***荷电状态的上下限,使得在受控和优化条件下充放电的电池组可以有效地改进电池***的有效容量。

Description

一种并联电池组中荷电平衡及负载控制的方法 本申请要求于 2012 年 2 月 28 日提交中国专利局, 申请号为 201210048368.6, 发明名称为 "一种并联电池组中荷电平衡及负载控 制的方法" 的中国专利申请的优先权, 其全部内容通过引用结合在本 申请中。 技术领域
本发明涉及电池管理技术领域,尤其涉及一种并联电池组中荷电 平衡及负载控制的方法。 背景技术
电池管理技术就是通过实时检测和估算电池状态、 温度、 电流、 直流内阻、 极化电压、 荷电状态 soc、 最大可用容量、 老化程度以 及一致性等, 并据此提供电池(组)的优化使用方法, 既能防止电池 (组) 出现滥用和不合理使用, 保障其使用的安全性和长寿命; 又能 最大限度的发挥其性能, 实现电池容量和能量利用的高效性。
为了满足应用于电网服务的大型电池组在电压、容量和功率方面 的要求, 现有技术采用了将电芯个体进行并联、 串联、 并联的配置。 先将多个电芯并联成一个电芯模块,再将这些模块串联成较高电压的 电池组。这些电池组可以多个并联以便分担电池组之间的电流和增加 整个电池储能***的可用容量, 如图 1 所示。 由于删除任何单个电 池组不会改变整个***的电压,这一设计理念可使得能量存储***在 某一电池组发生局部故障时有冗余。 同时该设计还为不同的用户提供 了选择不同负载容量的灵活性。
由于电芯制造偏差、 电芯和模块以及监测电路之间的温度差, 电 池组内各个模块间的失衡可以表现在多种方面, 包括: 实际 SOC
(荷电状态), 漏电 (自放电电流), 内阻和容量。
现有电池组的普通并联结构,往往会使各个电池組之间自动相互 平衡。 因为这些并联的电池组具有相同电压, 因此使得电池组之间在 无外部电压影响的情况下仍可相互充放电。另外这还使得发生在*** 中任何一个电池组内的电气短路都可能变成灾难性的, 因为一个故障 的电池组在与其它电池组并联的情况下会消耗其它电池组中的能量。 这可以使整个***的能量在短短的时间内自行耗光。在故障和良好的 电池组之间的高电流回路也可能导致整个***的安全问题。由于电网 应用时所需电芯数量较大,它们的故障率要比少量电芯***的故障率 高得多。 电芯越多, 故障的机会就越多, ***可靠性就越低。 密切实 时监控每个电池组的各项参数是至关重要的。 发明内容
本发明实施例提供了一种并联电池组中荷电平衡负载控制的方 法, 防止单个电池组在充满电或放空电时冲击***荷电状态的上下 限,使得在受控和优化条件下充放电的电池组可以有效地改进电池系 统的有效容量。
为达到上述目的 ,本发明实施例一方面提供了一种并联电池组中 荷电平衡负载控制的方法, 包括:
判断电池组之间的电压差是否大于电压设定值;
当所述电池组之间的电压差大于电压设定值时,从最低电压开始 分别对所述电池组进行充电 ,或从最高电压开始分别对所述电池组进 行放电;
监测当前进行充放电的每个电池组的电压与电流,并根据当前电 压值与电流值的极限值执行电池组的下线切换。
本发明提供的并联电池组荷电平衡负载控制的方法,提高了充电 效率,在电池组平衡良好的前提下根据用电需求及***容量来优化放 电速度;可以防止单个电池组在充满或放空时冲击***荷电状态的上 ***的有效容量。 另外, 尽量长时间地将电池组荷电状态维持在充满 和放空区间的最优位置还可以有效地延长电池的储电寿命。 附图说明
为了更清楚的说明本发明实施例的技术方案,下面将对实施例描 述中所需要使用的附图作简单的介绍, 显而易见的, 下面描述中的附 图仅仅是本发明的一些实施例, 对于本领域普通技术人员来讲, 在不 付出创造性劳动的前提下, 还可以根据这些附图获得其他的附图。
图 1为现有技术中并联电池组结构示意图;
图 2 为本发明实施例一并联电池组荷电平衡负载控制方法流程 图 ;
图 3 为本发明实施例二中并联电池组充电过程中荷电平衡负载 控制方法实现流程图 ; 控制方法实现流程图。 具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方 案进行清楚、 完整的描述, 显然所描述的实施例仅是本发明的一部分 实施例, 不是全部的实施例, 基于本发明中的实施例, 本领域普通技 术人员在没有付出创造性劳动前提下所获得的所有其他实施例,都属 于本发明保护的范围。
本发明实施例一方面提供了一种并联电池组中荷电平衡负载控 制的方法, 具体实现过程如图 2所示, 包括:
步骤 S101: 判断电池组之间的电压差是否大于设定值。
步骤 S102: 当所述电池组之间的电压差大于设定值时, 从最低 电压开始分别对所述电池组进行充电,或从最高电压开始分别对所述 电池组进行放电。
步骤 S103: 监测当前进行充放电的每个电池組的电压与电流, 并根据当前电压值与电流值的极限值执行电池組的上下线切换。 本发明实施例提供的并联电池组荷电平衡负载控制的方法,提高 了充电效率,在电池组平衡良好的前提下根据用电需求及***容量来 优化放电速度;可以防止单个电池组在充满或放空时冲击***荷电状 态的上下限,使得在受控和优化条件下充放电的电池组可以有效地改 进电池***的有效容量。 另外, 尽量长时间地将电池组荷电状态维持 在充满和放空区间的最优位置还可以有效地延长电池的储电寿命。
本发明实施例二以电池组在充电期间荷电平衡负载控制的实现 方法为例对实施例一所述的并联电池组荷电平衡负载控制的方法#支 进一步详细的说明,本发明实施例中对并联的电池组之间的荷电平衡 和动态负载配置是由每个电池组上的两个高压断路器 (正极和负极) 以及控制这些断路器的控制算法来实现的, 具体实现过程如图 3 所 示。
步骤 S201 : 判断任何两个待充的电池组的电压差 A V是否大于 电压设定值。
具体的, 该电压设定值是由用户设定的, 保证电池组之间有足够 的电压差即可, 当 Δ ν大于所述电压设定值时转步骤 S2021 , 当 A V 不大于该电压设定值时转步骤 S2022在充电总功率许可的前提下,通 过开通多个电池组来优化充电速度。
步骤 S2021 : 开通低电压的电池组, 从最低电压的电池组开始, 一组一组的充电。
步骤 S2023: 监测当前充电电池组的电压是否接近任何待充电池 组的电压, 当接近所述待充电池组的电压时, 则转步骤 S201 , 重新 判断任意两个待充电池组的电压差是否大于电压设定值; 当不接近 时, 则转步骤 S203。
步骤 S203: 判断任意两个充电电池組的电流差是否大于电流设 定值, 当所述电流差大于电流设定值时, 转步骤 S204; 当所述电流 差不大于电流设定值时则转步骤 S205。
步骤 S204: 判断步骤 S203中电流差大于电流设定值的两个充电 电池组的电压值与电流值, 完成电池组的下线切换。 具体的, 设 VI , II , V2和 12分别为第一电池组和第二电池组测 出的电压和电流, 则
如果 V1=V2, 且 11<12, 则, 切换第一电池组下线;
如果 V1<V2, 且 11>12, 则, 切换第一电池组下线;
如果 V1<V2, 且 11<12, 则, 切换第二电池组下线;
优选的, 在步骤 S204判断充电电池组的电压值与电流值完成电 池组的下线切换后需要用容量算法检查电池组容量, 当所述电池组容 量比原始电池组容量减少了 x%时( X为容量衰减百分比), 标识当前 电池组为疲弱电池组, 采取维修补救操作。
步骤 S205: 重复执行步骤 S201与步骤 S2022, 直到所有待充电 池组全部上线充电, 并当任何一个电池组达到电压上限时, 切换其下 线, 完成电池组的充电过程。
优选的, 本发明实施例中如果电池组之间有足够的电压差, 则从 最低电压的电池组开始, 一组一组地充电。 当第一个组的电压越来越 接近其余的电池组中的任何一个时, 将那个电池组也切换上。 由于并 行电池组之间具有的自动平衡特性,组与组之间的 d、压差不会造成问 题, 而经过优化的充电速度则能延长电池组的寿命。 密切监测每个电 池组的电流和电压、 并通过控制电池组上的断路器将其切换上下线, 能够减少并联的各电池组间由于电压差引起的内部电流回流。 限制 内部的电流回路也可尽量减少电传导路径造成的功耗。 一旦某个电 池组到达最大电压上限, 该电池组即可以切换下线。
本发明实施例提供的并联电池组荷电平衡负载控制的方法不但 提高了充电过程中***的效率, 还可以标识疲弱电池组, 以便日后采 耳又补 it行动。
本发明实施例三中以电池组在放电期间荷电平衡负载控制的实 现方法为例进行说明, 实现过程如图 4所示。
步骤 S301 : 判断单个电池组所需放电速度是否小于预先设定的 允许放电速度 nC, 其中, n为放电速度的倍数, C为电池放电速度单 位。 1C表示电池用一'■!、时从满放空, 2C表示电池用半小时从满放空, 1/3C表示电池用三小时从满放空。
具体的, 当所述单个电池组所需放电速度大于预先设定的允许放 电速度 (nC)时则转步骤 S302, 否则转步骤 S303。
步骤 S302: 在电压相似的前提下通过一起开通多个电池组来优 化放电速度,并监测在线电池组的电压是否跌近任何待充电电池组的 电压。
步骤 S303: 判断任何两个待用的电池组的电压差是否大于设定 值。
具体的, 若是, 则开通具有最高电压的电池组, 并转步骤 S304 监测在线电池组的电压; 若否, 则开通多个电池組优化放电速度, 并 转步骤 S304监测在线电池组的电压。
步骤 S304: 监测在线电池组的电压, 判断在线电池组电压是否 跌近任何离线待充电电池组的电压, 若是, 则转步骤 S305; 若否, 则表明这两个电池组存电量相同, 可同时开通来优化放电速度, 此时 仍需监测在线电池组的电压是否跌近任何待充电电池组的电压,返回 步骤 S303。
步骤 S305: 判断步骤 S304中所述电压跌到待充电池组电压的在 线电池组与其他任意一个在线电池组的电流差是否大于电流设定值, 当大于电流设定值时转步骤 S306判断并执行有关电池组的切换; 当 不大于电流设定值时, 判断是否有任何一个电池组达到电压下限, 当 达到电压下限时, 切换该电池组下线, 等待充电。
步骤 S306: 判断步骤 S305中大于电流设定值的两个在线电池组 的电压值与电流值完成电池组的上下线切换。
具体的, 设 VI, II, V2和 12分别为第一电池組和第二电池组测 出的电压和电流, 则
如果 V1=V2, 且 11<12, 则, 切换第二电池组下线;
如果 V1<V2, 且 11>12, 则, 切换第二电池组下线;
如果 V1<V2, 且 11<12, 则, 切换第一电池组下线;
优选的, 在步驟 S306判断判断在线电池组的电压值与电流值完 成电池组的上下线切换后需要用容量算法检查电池组容量, 当所述电 池组容量比原始电池组容量减少了 X%时( X为容量衰减百分比 ) , 标 识当前电池组为疲弱电池组, 采取维修补救操作。
本发明实施例中将并联电池组荷电平衡及负载控制的方法应用 于电池组在放电期间的荷电平衡,如果充电后在各电池组间存在显著 的电压差, 便可在放电时首先从最高电压的电池组开始, 一个接一个 的放电。 当任何一个电池組达到电压下限时, 即可将该电池组切换离 线。 对锂电池来说, 若充放电速度太快, 电池的有效容量将会减少。 在电池组平衡良好的前提下根据用电需求及***容量来优化放电速 度, 即可以提高整个储能***的有效容量。
优选的,本发明中对电池组充电和放电率的控制也可以用于以电 压为基础的容量监测,并且对电池容量进行实时监控是计算电池荷电 状态和功率估算的关键。
本发明提供的并联电池组荷电平衡负载控制的方法,提高了充电 效率,在电池组平衡良好的前提下根据用电需求及***容量来优化放 电速度;可以防止单个电池组在充满或放空时冲击***荷电状态的上 ***的有效容量。 另外, 尽量长时间地将电池组荷电状态维持在充满 和放空区间的最优位置还可以有效地延长电池的储电寿命。
以上公开的仅为本发明的具体实施例, 但是, 本发明并非局限于此, 任何本领域的技术人员能思之的变化都应落入本发明的保护范围。

Claims

权利要求
1、 一种并联电池组中荷电平衡及负载控制的方法, 其特征在于, 该方法包括:
判断电池组之间的电压差是否大于电压设定值;
当所述电池组之间的电压差大于设定值时,从最低电压开始分别 对所述电池組进行充电,或从最高电压开始分别对所述电池组进行放 电;
监测当前进行充放电的每个电池組的电压与电流,并根据当前电 压值与电流值的极限值执行电池组的上下线切换。
2、 如权利要求 1所述的方法, 其特征在于, 在所述判断电池组 之间的电压差是否大于电压设定值之前包括:
每个电池组上设置两个高压断路器。
3、 如权利要求 2所述的方法, 其特征在于, 所述根据当前电压 值与电流值的极限值执行电池组的上下线切换具体为:
通过比较任意两个充放电的电池组的电压值与电流值确定当前 需要切换的电池组,并通过所述高压断路器切换所述当前需要切换的 电池组上下线。
4、 如权利要求 1所述的方法, 其特征在于, 所述荷电平衡为充 电过程的荷电平衡时, 所述荷电平衡负载控制的方法具体包括:
判断任意两个待充电池组的电压差是否大于电压设定值; 若是, 则开通具有最低电压的电池组, 并监测当前充电电池组的 电压是否接近任何待充电池组的电压; 具体的, 当接近所述待充电池 组的电压时,则重新判断任意两个待充电池组的电压差是否大于电压 设定值; 当不接近时, 判断任意两个充电电池组的电流差是否大于电 流设定值;
若否,则开通多个电池组优化充电速度并判断任意两个充电电池 组的电流差是否大于电流设定值;
当所述电流差小于所述电流设定值时,重复执行荷电平衡负载控 制的过程至全部待充电池组上线, 并完成电池组上下线的切换; 当所述电流差大于所述电流设定值时,通过判断充电电池组的电 压值与电流值完成电池组的上下线切换。
5、 如权利要求 4所述的方法, 其特征在于, 所述通过判断充电 电池组的电压值与电流值完成电池组的上下线切换具体包括:
当第一电池组的电压值与第二电池组的电压值相等并且第一电 池组的电流值小于第二电池组的电流值时, 切换第一电池组下线; 当第一电池组的电压值 d、于第二电池组的电压值,并且第一电池 组的电流值大于第二电池组的电流值时, 切换第一电池组下线; 当第一电池组的电压值 d、于第二电池组的电压值,并且第一电池 组的电流值小于第二电池组的电流值时, 切换第二电池组下线。
6、 如权利要求 4所述的方法, 其特征在于, 所述通过判断充电 电池组的电压值与电流值完成电池组的下线切换后还包括:
用容量算法检查电池组容量, 当所述电池组容量比原始电池组容 量减少了固定的容量衰减百分比时, 标识当前电池组为疲弱电池组。
7、 如权利要求 1所述的方法, 其特征在于, 所述荷电平衡为放 电过程的荷电平衡时, 所述荷电平衡负载控制的方法具体包括: 判断单个电池组所需放电速度是否小于预先设定的允许放电速 度, 当所述单个电池组所需放电速度大于所述预先设定的允许放电速 度时, 开通多个并联的电池组来减少单个电池组所需的放电速度, 并 当所述单个电池组所需放电速度小于所述预先设定的允许放电 速度时, 判断任何两个待用的电池组的电压差是否大于电压设定值; 若是, 则开通具有最高电压的电池组, 并监测在线电池组的电压是否 跌近任何待充电电池组的电压; 若否, 则开通多个并联的电池组来减 少单个电池组所需的放电速度,并监测在线电池組的电压是否跌近任 何待充电电池组的电压;
当未跌到待充电电池组的电压时,则重新判断任意两个待用电池 组的电压差是否大于电压设定值; 当所述在线电池组的电压跌到待充电电池组的电压时,判断所述 在线电池组与除其本身以外的任意一个在线电池组的电流差是否大 于电流设定值; 若所述电流差大于所述电流设定值, 则通过判断在线 电池组的电压值与电流值完成电池组的下线切换;若所述电流差不大 于所述电流设定值, 则将达到电压下限的电池组切换下线。
8、 如权利要求 7所述的方法, 其特征在于, 所述通过判断在线 电池组的电压值与电流值完成电池组的下线切换具体包括:
当第一电池组的电压值与第二电池组的电压值相等并且第一电 池组的电流值小于第二电池组的电流值时, 切换第二电池组下线; 当第一电池组的电压值 d、于第二电池组的电压值,并且第一电池 组的电流值大于第二电池组的电流值时, 切换第二电池组下线; 当第一电池组的电压值小于第二电池组的电压值,并且第一电池 组的电流值小于第二电池组的电流值时, 切换第一电池组下线。
9、 如权利要求 7所述的方法, 其特征在于, 所述通过判断充电 电池组的电压值与电流值完成电池组的下线切换后还包括:
用容量算法检查被切换下线的电池组容量, 当所述电池组容量比 原始电池组容量减少了固定的容量衰减百分比时,标识该电池组为疲 弱电池组。
PCT/CN2012/072205 2012-02-28 2012-03-12 一种并联电池组中荷电平衡及负载控制的方法 WO2013127099A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201280059540.6A CN104106175A (zh) 2012-02-28 2012-03-12 一种并联电池组中荷电平衡及负载控制的方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210048368.6 2012-02-28
CN201210048368 2012-02-28

Publications (1)

Publication Number Publication Date
WO2013127099A1 true WO2013127099A1 (zh) 2013-09-06

Family

ID=49081560

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/072205 WO2013127099A1 (zh) 2012-02-28 2012-03-12 一种并联电池组中荷电平衡及负载控制的方法

Country Status (2)

Country Link
CN (1) CN104106175A (zh)
WO (1) WO2013127099A1 (zh)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104425852A (zh) * 2013-09-06 2015-03-18 苏州宝时得电动工具有限公司 控制方法、控制组件、电池***及电动工具
CN106716771A (zh) * 2016-09-22 2017-05-24 深圳市大疆创新科技有限公司 电池组的控制方法、控制***、存储介质及无人飞行器
CN106785123A (zh) * 2017-01-10 2017-05-31 上海空间电源研究所 一种低轨道卫星用高压氢镍蓄电池组在轨维护方法
WO2018129894A1 (zh) * 2017-01-13 2018-07-19 宁德时代新能源科技股份有限公司 电压一致性检测方法及装置、电压均衡方法及装置
CN112448433A (zh) * 2019-09-03 2021-03-05 苏州宝时得电动工具有限公司 电动工具
CN112803506A (zh) * 2019-10-28 2021-05-14 苏州宝时得电动工具有限公司 电动工具
CN112864480A (zh) * 2019-11-28 2021-05-28 比亚迪股份有限公司 一种电池组并联保护的方法
WO2021201768A1 (en) * 2020-04-02 2021-10-07 Grabtaxi Holdings Pte. Ltd. Method of operating an electric power system, electric power system, and computer executable code
CN113561846A (zh) * 2020-04-29 2021-10-29 微宏动力***(湖州)有限公司 一种电池组充电控制方法和放电控制方法
US11381094B2 (en) * 2018-05-09 2022-07-05 Lg Energy Solution, Ltd. Battery control apparatus and energy storage system including same

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106329641B (zh) * 2016-09-09 2018-06-08 苏州精控能源科技有限公司 一种并联电池组充、放电的控制方法及动力电池***
EP3513477B8 (en) * 2016-09-15 2021-05-26 Form Energy, Inc. Hybrid battery system
CN110015185B (zh) 2017-08-31 2022-09-06 比亚迪股份有限公司 电池均衡方法、***、车辆、存储介质及电子设备
CN109435777B (zh) 2017-08-31 2021-02-23 比亚迪股份有限公司 电池均衡***、车辆、电池均衡方法及存储介质
CN108462216A (zh) * 2018-01-09 2018-08-28 威睿电动汽车技术(苏州)有限公司 一种多支路并联电池的电气控制方法和装置
CN108512269A (zh) * 2018-03-14 2018-09-07 深圳市爱克斯达电子有限公司 一种电池并联平衡装置及充放电控制方法
CN116368704A (zh) * 2020-08-19 2023-06-30 微宏有限责任公司(德国) 一种并联电池管理方法
CN112798968B (zh) * 2020-12-24 2024-07-23 重庆峘能电动车科技有限公司 估算电池并联***soc的方法、用电设备及介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007016671A (ja) * 2005-07-07 2007-01-25 Matsushita Electric Ind Co Ltd 冷媒圧縮機
CN200990518Y (zh) * 2006-12-26 2007-12-12 天津华云自控股份有限公司 蓄电池组充、放电的隔离电路
CN100356656C (zh) * 2003-06-19 2007-12-19 美国凹凸微系有限公司 可充电电池监控及平衡电路
CN201113530Y (zh) * 2007-07-23 2008-09-10 范汉强 一种串联蓄电池组的混合均衡充电设备
CN101471460A (zh) * 2007-12-28 2009-07-01 深圳市比克电池有限公司 对电池组进行均衡控制的方法和电池组充电方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4812419B2 (ja) * 2005-12-09 2011-11-09 ソニー株式会社 電池パック及び電池パックの充放電方法
CN101872877A (zh) * 2009-04-22 2010-10-27 张建新 一种电池均衡能量转移的方法和***

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100356656C (zh) * 2003-06-19 2007-12-19 美国凹凸微系有限公司 可充电电池监控及平衡电路
JP2007016671A (ja) * 2005-07-07 2007-01-25 Matsushita Electric Ind Co Ltd 冷媒圧縮機
CN200990518Y (zh) * 2006-12-26 2007-12-12 天津华云自控股份有限公司 蓄电池组充、放电的隔离电路
CN201113530Y (zh) * 2007-07-23 2008-09-10 范汉强 一种串联蓄电池组的混合均衡充电设备
CN101471460A (zh) * 2007-12-28 2009-07-01 深圳市比克电池有限公司 对电池组进行均衡控制的方法和电池组充电方法

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104425852A (zh) * 2013-09-06 2015-03-18 苏州宝时得电动工具有限公司 控制方法、控制组件、电池***及电动工具
CN106716771A (zh) * 2016-09-22 2017-05-24 深圳市大疆创新科技有限公司 电池组的控制方法、控制***、存储介质及无人飞行器
WO2018053741A1 (zh) * 2016-09-22 2018-03-29 深圳市大疆创新科技有限公司 电池组的控制方法、控制***、存储介质及无人飞行器
CN106716771B (zh) * 2016-09-22 2018-11-13 深圳市大疆创新科技有限公司 电池组的控制方法、控制***、存储介质及无人飞行器
CN106785123A (zh) * 2017-01-10 2017-05-31 上海空间电源研究所 一种低轨道卫星用高压氢镍蓄电池组在轨维护方法
WO2018129894A1 (zh) * 2017-01-13 2018-07-19 宁德时代新能源科技股份有限公司 电压一致性检测方法及装置、电压均衡方法及装置
US11381094B2 (en) * 2018-05-09 2022-07-05 Lg Energy Solution, Ltd. Battery control apparatus and energy storage system including same
CN112448433A (zh) * 2019-09-03 2021-03-05 苏州宝时得电动工具有限公司 电动工具
CN112803506A (zh) * 2019-10-28 2021-05-14 苏州宝时得电动工具有限公司 电动工具
CN112803506B (zh) * 2019-10-28 2024-06-14 苏州宝时得电动工具有限公司 电动工具
CN112864480A (zh) * 2019-11-28 2021-05-28 比亚迪股份有限公司 一种电池组并联保护的方法
WO2021201768A1 (en) * 2020-04-02 2021-10-07 Grabtaxi Holdings Pte. Ltd. Method of operating an electric power system, electric power system, and computer executable code
US11621572B2 (en) 2020-04-02 2023-04-04 Grabtaxi Holdings Pte. Ltd. Method of operating an electric power system, electric power system, and computer executable code
CN113561846A (zh) * 2020-04-29 2021-10-29 微宏动力***(湖州)有限公司 一种电池组充电控制方法和放电控制方法

Also Published As

Publication number Publication date
CN104106175A (zh) 2014-10-15

Similar Documents

Publication Publication Date Title
WO2013127099A1 (zh) 一种并联电池组中荷电平衡及负载控制的方法
CN110048487B (zh) 一种电池充放电的控制方法及其***
CN103560548B (zh) 电池组、电池组连接方法及电池组充放电管理方法
WO2019019296A1 (zh) 蓄电池组在线核对性放电装置及方法
WO2011157116A1 (zh) 锂电模块并联使用方法及***
US20110127964A1 (en) Power storage system
JP2014511095A (ja) 充電式バッテリシステム及びその作動方法
CN108155657B (zh) 储能变流器及其主电路拓扑结构以及均衡控制方法
CN201947015U (zh) 锂离子动力电池控制装置
CN108282007B (zh) 通信电池模块充电限流策略
JP2014504140A (ja) 充電式バッテリシステム及びその作動方法
WO2023184700A1 (zh) 基于动态可重构电池网络的电池***充放电控制方法
JP2013192389A (ja) 組電池の放電制御システムおよび放電制御方法
KR20130062894A (ko) 에너지 저장 시스템 및 그 제어방법
JP6288722B2 (ja) 電池システム
KR20150142673A (ko) 축전지 관리 시스템
CN109586361B (zh) 一种锂电池储能供电***
JP6845068B2 (ja) 蓄電システム
CN110854965A (zh) 一种多路并联用的锂电池***及其控制方法
KR20190085094A (ko) 무정전 전원 장치(ups) 시스템들을 위한 변환 회로 디바이스
US11646588B2 (en) Battery system, control method of cell balance procedure, and calculation method of balance charge capacity
CN103532193A (zh) 基于双向变换器的电池均衡装置及控制电池均衡的方法
CN102856976A (zh) 一种不间断电源、电池管理***及不间断供电***
CN114865772A (zh) 储能***及其供电方法
JP5409163B2 (ja) リチウムイオン組電池管理装置、管理方法およびリチウムイオン組電池システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12870148

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12870148

Country of ref document: EP

Kind code of ref document: A1