WO2019042042A1 - 一种空调的控制方法及装置 - Google Patents

一种空调的控制方法及装置 Download PDF

Info

Publication number
WO2019042042A1
WO2019042042A1 PCT/CN2018/096354 CN2018096354W WO2019042042A1 WO 2019042042 A1 WO2019042042 A1 WO 2019042042A1 CN 2018096354 W CN2018096354 W CN 2018096354W WO 2019042042 A1 WO2019042042 A1 WO 2019042042A1
Authority
WO
WIPO (PCT)
Prior art keywords
wind speed
speed gear
temperature
gear position
indoor
Prior art date
Application number
PCT/CN2018/096354
Other languages
English (en)
French (fr)
Inventor
谢琳琳
李朋
曹壬艳
张青花
何振华
Original Assignee
青岛海尔空调器有限总公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛海尔空调器有限总公司 filed Critical 青岛海尔空调器有限总公司
Publication of WO2019042042A1 publication Critical patent/WO2019042042A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • F24F11/64Electronic processing using pre-stored data
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/72Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure
    • F24F11/74Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure for controlling air flow rate or air velocity
    • F24F11/77Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure for controlling air flow rate or air velocity by controlling the speed of ventilators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • F24F11/86Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling compressors within refrigeration or heat pump circuits
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Definitions

  • This paper relates to the field of air conditioning technology, and in particular to a method and device for controlling an air conditioner.
  • the air conditioner compressor In the hot weather in summer, in order to create comfortable temperature conditions indoors, users generally turn on the air conditioner for a long time. After the indoor ambient temperature reaches a preset temperature, the air conditioner compressor is generally shut down for the purpose of energy saving and consumption reduction. At this time, the indoor temperature will rise again due to the influence of the outdoor ambient temperature, when indoors When the ambient temperature rises to a certain temperature, the air conditioner restarts the compressor to cool down the room until the indoor ambient temperature drops again to the set temperature, after which the compressor is shut down again. In this way, in order to maintain the indoor environment at the set temperature, the air conditioner will repeatedly perform the above process. During this process, the compressor will also start and stop frequently, and the noise is large, which affects the user experience.
  • a method for controlling an air conditioner includes: obtaining an indoor temperature of a space in which the air conditioner is located; and controlling when a temperature difference between the indoor temperature and the target indoor temperature satisfies a preset shutdown temperature condition The initial wind speed gear of the inner fan is reduced to the target wind speed gear position corresponding to the shutdown temperature condition; when the temperature difference within the set time period of the inner wind turbine running at the target wind speed gear position still meets the shutdown temperature condition, the compressor is controlled to be turned off.
  • the preset shutdown temperature condition includes: T1 ⁇ ⁇ T ⁇ T2, wherein T1 is the first temperature difference threshold, T2 is the second temperature difference threshold, ⁇ T is the temperature difference; and the initial wind speed of the control internal fan is reduced to
  • the target wind speed gear position corresponding to the shutdown temperature condition includes: when T1 ⁇ ⁇ T ⁇ T2, the initial wind speed gear of the control inner fan is lowered to the first wind speed gear position.
  • the preset shutdown temperature condition includes: T2 ⁇ T ⁇ T3, wherein T3 is the third temperature difference threshold; and the initial wind speed gear of the control internal fan is reduced to the target wind speed gear corresponding to the shutdown temperature condition, including: When T2 ⁇ T ⁇ T3, the initial wind speed gear of the control inner fan is lowered to the second wind speed gear position, and the second wind speed gear position is less than or equal to the first wind speed gear position.
  • control method further includes: when the temperature difference within the set time period in which the inner fan runs at the target wind speed gear position does not satisfy the shutdown temperature condition, the control inner fan is raised from the target wind speed gear position to the fourth wind speed gear position, The four wind speed gear position is greater than the target wind speed gear position.
  • the fourth wind speed gear position is an initial wind speed gear position.
  • a control device for an air conditioner comprising: an acquisition unit for obtaining an indoor temperature of a space in which the air conditioner is located; and a gear position control unit for using the indoor temperature and the target indoor temperature
  • the initial wind speed gear of the control inner fan is reduced to the target wind speed gear position corresponding to the shutdown temperature condition; the press control unit is used for the inner fan to operate at the target wind speed gear position.
  • the compressor is turned off when the temperature difference within the predetermined length still meets the shutdown temperature condition.
  • the preset shutdown temperature condition includes: T1 ⁇ T ⁇ T2, wherein T1 is the first temperature difference threshold, T2 is the second temperature difference threshold, and ⁇ T is the temperature difference; the gear position control unit is specifically used to: when T1 ⁇ T ⁇ T2, the initial wind speed gear of the control inner fan is lowered to the first wind speed gear position.
  • the preset shutdown temperature condition includes: T2 ⁇ T ⁇ T3, wherein T3 is a third temperature difference threshold; the gear position control unit is specifically configured to: control the initial wind speed of the inner fan when T2 ⁇ T ⁇ T3 The gear position is lowered to the second wind speed gear position, and the second wind speed gear position is less than or equal to the first wind speed gear position.
  • gear position control unit is further configured to: when the temperature difference within the set time period in which the inner fan runs at the target wind speed gear position does not satisfy the shutdown temperature condition, the control inner fan is raised from the target wind speed gear position to the fourth wind speed gear position. Bit, the fourth wind speed gear is greater than the target wind speed gear.
  • the fourth wind speed gear position is an initial wind speed gear position.
  • the temperature difference between the indoor temperature and the target indoor temperature can determine the change of the indoor temperature in the case of reducing the cooling capacity to the indoor, so that the indoor after the compressor is stopped can be judged analogically.
  • the change of temperature in turn, precisely controls the start-stop operation of the compressor, avoids frequent start and stop of the compressor, and improves user comfort.
  • FIG. 1 is a flow chart of a method of controlling an air conditioner herein, according to an exemplary embodiment
  • FIG. 2 is a block diagram showing the structure of an air conditioning control apparatus herein according to an exemplary embodiment.
  • relational terms such as first and second are used merely to distinguish one entity or operation from another entity or operation, and do not require or imply any actual relationship between the entities or operations or order.
  • the terms “comprises” or “comprising” or “comprising” or any other variations are intended to encompass a non-exclusive inclusion, such that a process, method, or device that includes a plurality of elements includes not only those elements but also other items not specifically listed. Elements, or elements that are inherent to such a process, method, or device. An element that is defined by the phrase “comprising a " does not exclude the presence of additional equivalent elements in the process, method, or device that comprises the element.
  • FIG. 1 is a flow chart of a method of controlling an air conditioner herein, according to an exemplary embodiment.
  • the present invention provides a control method for an air conditioner, which can be used for starting and stopping control of a compressor in a process of adjusting an indoor temperature to a target indoor temperature and maintaining the indoor temperature at a target indoor temperature;
  • the main steps of the control method of this paper include:
  • the paper mainly takes the temperature regulation and the compressor start-stop control in the summer working condition as an example.
  • the indoor temperature is generally higher than the temperature that the user feels comfortable, and therefore, in order to reduce the indoor temperature to the user.
  • the user When the temperature is comfortable, the user generally controls the air conditioning operation cooling mode or dehumidification mode to cool down the indoor environment until the comfortable temperature is reached. Therefore, in the summer working condition, the control method of this paper is used for the air conditioning operation cooling mode process. Start-stop control of the compressor in the middle.
  • the air conditioner generally controls the operation of the air conditioning operation heating mode to raise the indoor ambient temperature to a temperature that the user feels comfortable. Therefore, the control method of the present invention can also be used in the air conditioning operation heating mode. Start and stop control of the compressor.
  • the air conditioner is provided with a temperature sensor, which can be used to obtain the real-time indoor temperature of the space in which the air conditioner is located, and can transmit the relevant temperature data to a control component such as a computer board of the air conditioner; this is the real-time indoor temperature as step S101.
  • the indoor temperature obtained in the room is the real-time indoor temperature obtained in the room.
  • a temperature sensor is separately disposed in the space where the air conditioner is located, and can be used to obtain the real-time indoor temperature of the space where the air conditioner is located, and the temperature sensor and the air conditioner can perform data communication through a data network, thereby transmitting the measured related temperature data.
  • Control components such as computer boards for air conditioners.
  • the indoor temperature detected and transmitted by the independent temperature sensor can also be used as the indoor temperature obtained in step S101.
  • step S102 Determine whether the temperature difference between the indoor temperature and the target indoor temperature meets a preset shutdown temperature condition. If yes, execute step S103. If not, maintain the current running state, and the current process ends;
  • the air conditioner is pre-set with a shutdown temperature condition, and can be used to determine whether to control the compressor to stop according to the shutdown temperature condition; specifically, the air conditioner compressor can be shut down on the premise that the indoor ambient temperature has met the user's comfort requirement. That is, the indoor temperature is equal to or close to the target indoor temperature, so that after the compressor is stopped, the indoor temperature can be maintained at the target indoor temperature for a certain time, thereby saving energy and reducing consumption while ensuring user comfort.
  • the temperature difference between the indoor temperature and the target indoor temperature is used as a temperature condition for determining whether the compressor can be stopped, wherein the indoor temperature is the indoor temperature acquired in step S101, and the target indoor temperature is the user passing the remote controller or controlling The desired indoor temperature set by the panel; or, the target indoor temperature is the default target indoor temperature when the air conditioner is turned on; or the target indoor and outdoor temperature is the set temperature when the air conditioner is last turned off.
  • the air conditioner can stop compressing.
  • the indoor temperature and the target room temperature are large, it indicates that the current real-time indoor temperature has not yet reached the target indoor temperature, and the indoor ambient temperature cannot meet the user's comfort requirement temporarily.
  • the air conditioner still needs to control the operation of the compressor.
  • the indoor environment is continuously cooled and cooled, that is, when the temperature difference between the indoor temperature and the target indoor temperature does not satisfy the preset shutdown temperature condition, the air conditioner maintains the current operating state, and the compressor continues to compress the refrigerant.
  • the indoor temperature is mostly greater than the target indoor temperature set by the user.
  • the temperature difference between the indoor temperature and the target indoor temperature is a positive value; and in the winter working condition, the indoor temperature is generally smaller than the user.
  • the set target indoor temperature at this time, the temperature difference between the indoor temperature and the target indoor temperature is a negative value.
  • the indoor temperature is first lowered to below the target indoor temperature, and then, according to the temperature difference between the indoor temperature and the target indoor temperature, it is determined whether to control the compressor to stop, thus, the indoor temperature and The temperature difference of the target indoor temperature is also negative. Therefore, in order to facilitate the comparison of the temperature difference with the preset shutdown temperature condition, the temperature difference in this paper is generally the absolute value of the difference between the indoor temperature target indoor temperature.
  • the cooling method of the indoor air conditioner in the indoor environment is not the relevant process steps of performing the control method when the indoor temperature is lowered to the set temperature or before, but after the indoor temperature is lowered to below the target indoor temperature, the execution is performed.
  • Related process steps in this article In this way, after the compressor is stopped, the actual temperature in the room is lower than the set temperature, which can prolong the time during which the indoor environment is heated by the heat of the outdoor environment, so that the indoor ambient temperature can be kept in the user for a long time. Comfortable target indoor temperature range.
  • the preset shutdown temperature condition includes: T1 ⁇ ⁇ T ⁇ T2, wherein T1 is a first temperature difference threshold, T2 is a second temperature difference threshold, and ⁇ T is a temperature difference. Therefore, when the determined temperature difference ⁇ T is greater than the first temperature difference threshold T1 and less than the second temperature difference threshold ⁇ T, the preset shutdown temperature condition is satisfied.
  • the first temperature difference threshold T1 preset by the air conditioner is 0.5 ° C
  • the second temperature difference threshold T2 is 1 ° C
  • the target indoor temperature set by the user is 25 ° C.
  • the indoor temperature is lowered to Below the target indoor temperature, at this time, the current indoor temperature detected by the temperature sensor is 24.3 ° C.
  • the temperature difference between the two is 0.7 ° C, which satisfies 0.5 ° C (T1) ⁇ 0.7 ° C ( ⁇ T) ⁇ 1 °C (T2) shutdown temperature conditions, at this time, the indoor ambient temperature can meet the user's comfort needs, and the compressor shutdown has less impact on the indoor environment temperature.
  • the temperature difference between the indoor temperature and the target indoor temperature is 0.2 ° C, which cannot meet the shutdown temperature condition of 0.5 ° C ⁇ ⁇ T ⁇ 1 ° C.
  • the air conditioner needs to remain compressed. The current operating state of the machine remains unchanged to continue cooling and cooling the indoor environment.
  • the preset shutdown temperature condition herein includes not only T1 ⁇ ⁇ T ⁇ T2 but also T2 ⁇ ⁇ T ⁇ T3, wherein T3 is a third temperature difference threshold and greater than T2.
  • the second temperature difference threshold T2 preset by the air conditioner is 1 ° C
  • the third temperature difference threshold T3 is 1.5 ° C
  • the target indoor temperature set by the user is 25 ° C.
  • the indoor temperature is lowered to Below the target room temperature
  • the current indoor temperature detected by the temperature sensor is 23.8 ° C.
  • the temperature difference between the two is 1.2 ° C, which satisfies 1 ° C (T2) ⁇ 1.2 ° C ( ⁇ T) ⁇ 1.5 °C (T3) shutdown temperature conditions, at this time, the indoor ambient temperature can meet the user's comfort needs, and the compressor has a small impact on the indoor environment temperature.
  • the compressor can be directly stopped without Judgment is made in the relevant steps of downshifting by the internal fan.
  • the compressor in order to avoid the problem of frequent start and stop of the compressor, when the temperature difference meets the preset shutdown temperature condition, the compressor does not stop temporarily, but the wind speed gear of the indoor fan of the indoor unit is initially The wind speed gear is reduced to the target wind speed gear corresponding to the shutdown temperature.
  • the change in the cooling capacity of the air conditioner to the indoor environment after the compressor is stopped. For example, after the compressor is stopped, the refrigerant delivered to the air conditioning system by the compressor is reduced or even zero, and therefore, the amount of heat absorbed by the indoor unit from the indoor environment is reduced. The cold air delivered is also reduced, and the cooling effect is reduced.
  • this analog simulation is that the frequent start and stop of the compressor is caused by the excessive temperature change of the indoor temperature after the compressor is stopped. If the indoor temperature rises rapidly in summer, the compressor needs to be restarted. The time interval between stops is short. Therefore, if it can be ensured that the time interval between the start and stop of the compressor is not too short, the compressor can be protected. Therefore, this paper simulates the compressor by means of wind speed downshift. The temperature change after shutdown, so that when the indoor temperature changes too fast after the wind speed downshift, it means that the temperature change after the compressor is stopped will be faster, and the compressor will frequently start and stop.
  • the compressor It should be kept running without stopping the machine; when the temperature change is small after the wind speed downshift, it means that the temperature change after the compressor is stopped will be small, and the compressor will not need to restart immediately after the machine is stopped. At this time, the compressor will be restarted. Can stop energy saving.
  • the air conditioner prestores a correspondence relationship between the shutdown temperature condition and the current target wind speed gear position.
  • the corresponding relationship includes: when the shutdown temperature condition is T1 ⁇ ⁇ T ⁇ T2, it corresponds to the first wind speed gear position; When the shutdown temperature condition is T2 ⁇ T ⁇ T3, it corresponds to the second wind speed gear position, and the second wind speed gear position is less than or equal to the first wind speed gear position. The greater the temperature difference in the shutdown temperature condition, the lower the target wind speed gear of the downshift.
  • the wind speed gear position of a certain air conditioner applied in the control method of the present invention is divided into 1 to 5 gear positions, and the wind speed corresponding to each wind speed gear position is sequentially increased.
  • the temperature of the shutdown is 2°C ⁇ T ⁇ 3°C
  • the first wind speed is the third gear. Therefore, when the temperature difference satisfies the shutdown temperature.
  • the wind speed gear of the control inner fan is reduced from the fourth gear to the third gear, and the wind speed of the inner fan is reduced to the wind speed corresponding to the third gear; or, the shutdown temperature condition is the second wind speed corresponding to T2 ⁇ ⁇ T ⁇ T3
  • the gear position is the second gear. Therefore, when the temperature difference satisfies the shutdown temperature condition, the wind speed gear of the control inner fan is reduced from the fourth gear to the second gear, and the wind speed of the inner fan is reduced to the wind speed corresponding to the second gear.
  • the air conditioner may pre-store the correspondence between the shutdown temperature condition and the number of downshifts.
  • the corresponding relationship includes: when the shutdown temperature condition is T1 ⁇ ⁇ T ⁇ T2, the corresponding relationship is the first downshift party number; when the shutdown temperature When the condition is T2 ⁇ T ⁇ T3, it corresponds to the second downshift number, and the second downshift number is greater than or equal to the first downshift number. That is, the greater the temperature difference in the shutdown temperature condition, the greater the number of gears in the downshift.
  • the air conditioner supplies air to the indoor environment at a wind speed of four speeds in the cooling mode, and the temperature of the shutdown is the first downshift of the relationship corresponding to 0.5 ° C ⁇ ⁇ T ⁇ 1 ° C.
  • the number of gears is 1, therefore, when the temperature difference satisfies the shutdown temperature condition, the wind speed gear of the control inner fan is lowered by 1 gear from the fourth gear, that is, to the third gear, and the wind speed of the inner fan is reduced to the wind speed corresponding to the third gear.
  • the shutdown temperature condition is T2 ⁇ ⁇ T ⁇ T3 corresponds to the second wind speed gear position is 2, therefore, when the temperature difference meets the shutdown temperature condition, then the control of the internal fan wind speed gear position is reduced from the fourth gear by 2 gears , that is, down to the second gear, the wind speed of the inner fan is reduced to the wind speed corresponding to the second gear.
  • the inner fan of the indoor unit in order to maintain the cooling effect on the indoor environment, in the downshift operation of step S103, the inner fan of the indoor unit needs to supply air to the indoor environment. Therefore, the lower limit of the number of wind speeds of the inner fan is the minimum wind.
  • File which is a file in the embodiment.
  • step S104 before the step of step S104 is performed, after the downshifting operation of step S103, the indoor temperature is repeatedly detected by the temperature sensor, and the temperature difference between the indoor temperature and the target indoor temperature is further determined.
  • the temperature difference within the predetermined length still satisfies the shutdown temperature condition in step S102, which indicates that the indoor ambient temperature change after the internal fan is downshifted is small, so it can be determined that the indoor environmental temperature change after the compressor is stopped is also small.
  • the compressor can be shut down. If the temperature difference within the set time does not satisfy the shutdown temperature condition, the indoor temperature change after the internal fan is downshifted is large, so it can be determined that the indoor ambient temperature change after the compressor is stopped is also large. The compressor cannot be stopped.
  • the temperature sensor may acquire a plurality of indoor temperature values within a set time period, thereby calculating a plurality of temperature difference values.
  • the temperature difference value according to the shutdown temperature condition may be The proportional relationship between the temperature differences that do not meet the shutdown temperature condition determines whether the compressor can be shut down. For example, when the proportion of the temperature difference that satisfies the shutdown temperature condition is large, the compressor can be stopped; and when the shutdown is not satisfied When the proportion of the temperature difference of the temperature condition is large, the open state of the compressor is maintained.
  • the indoor temperature generally rises gradually. Therefore, it is possible to detect only the indoor temperature at a single time that reaches the set time. At this time, the temperature difference between the indoor temperature and the target indoor temperature is set. The maximum temperature difference within the duration, therefore, it can be judged according to the maximum temperature difference whether the shutdown temperature condition is satisfied, thereby controlling the start and stop of the compressor.
  • the indoor temperature change range is small when the internal fan downshift and the cooling capacity is reduced, therefore, if the compression is small.
  • the indoor ambient temperature can also be maintained within a suitable temperature range for a certain period of time, and can meet the needs of air conditioning energy saving and protection of the compressor start and stop. At this time, the compressor can be controlled to be closed.
  • the air conditioner maintains the current operating state.
  • step S106 in order to ensure In the cooling effect of the air conditioner to the indoor environment, in step S106, not only the current operating state of the compressor is maintained, but also the air supply volume of the indoor unit to the indoor environment can be increased by increasing the wind speed gear position or the like. To speed up the indoor environment.
  • the fourth wind speed gear position is an initial wind speed gear position, that is, the wind speed gear position of the inner fan is increased to an initial wind speed gear position before the execution of the current flow, and at this time, the initial wind speed gear position is greater than the target wind speed gear position. It can effectively increase the air supply volume of the air conditioner and enhance the cooling efficiency of the air conditioner.
  • the fixed-frequency air conditioner mostly adopts the energy-saving mode of turning off the compressor in step S105, and for the existing inverter air conditioner, the energy-saving mode mainly reduces the frequency of the compressor. Therefore, preferably, in step S105, when the temperature difference within the set time period in which the inner fan is operated at the target wind speed gear position still satisfies the shutdown temperature condition, the method of controlling the operating frequency of the compressor for reducing the air conditioner may also be adjusted. The operating state of the compressor. In this way, for the inverter compressor adopting the control method of the present invention, the temperature of the frequent frequency rise and fall of the compressor caused by the indoor temperature fluctuation can be avoided, and the effect of protecting the compressor and reducing the strain of the press can also be achieved.
  • FIG. 2 is a block diagram showing the structure of an air conditioning control apparatus herein according to an exemplary embodiment.
  • the present invention also provides a control device for an air conditioner, which can be used to control the related process steps of the air conditioner to execute the control method in the foregoing embodiment.
  • the control device includes:
  • the obtaining unit 201 is configured to acquire an indoor temperature of a space in which the air conditioner is located;
  • the gear position control unit 202 is configured to: when the temperature difference between the indoor temperature and the target indoor temperature meets the preset shutdown temperature condition, the initial wind speed gear of the control inner fan is reduced to a target wind speed gear position corresponding to the shutdown temperature condition;
  • the press control unit 203 is configured to control to turn off the compressor when the temperature difference within the set time period in which the inner fan is operated at the target wind speed gear position still meets the shutdown temperature condition.
  • the preset shutdown temperature condition includes: T1 ⁇ ⁇ T ⁇ T2, wherein T1 is a first temperature difference threshold, T2 is a second temperature difference threshold, and ⁇ T is a temperature difference;
  • the gear position control unit 202 is specifically configured to: when T1 ⁇ ⁇ T ⁇ T2, control the initial wind speed gear of the inner fan to decrease to the first wind speed gear position.
  • the preset shutdown temperature condition includes: T2 ⁇ ⁇ T ⁇ T3, wherein T3 is a third temperature difference threshold;
  • the gear position control unit 202 is specifically configured to: when T2 ⁇ ⁇ T ⁇ T3, control the initial wind speed gear of the inner fan to decrease to the second wind speed gear position, and the second wind speed gear position is less than or equal to the first wind speed gear position.
  • the gear position control unit 202 is further configured to: when the temperature difference within the set time period in which the inner fan is operated at the target wind speed gear position does not satisfy the shutdown temperature condition, control the inner fan to be raised from the target wind speed gear position to The fourth wind speed gear position, the fourth wind speed gear position is greater than the target wind speed gear position.
  • the fourth wind speed gear position is an initial wind speed gear position.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Fluid Mechanics (AREA)
  • Fuzzy Systems (AREA)
  • Mathematical Physics (AREA)
  • Thermal Sciences (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

一种空调的控制方法及装置,属于空调技术领域。该控制方法包括:获取空调所处空间的室内温度;当室内温度与目标室内温度的温差值满足预设的停机温度条件时,控制内风机的初始风速档位降低至停机温度条件对应的目标风速档位;当内风机以目标风速档位运行的设定时长内的温差值仍满足停机温度条件时,控制关闭压缩机。通过室内温度和目标室内温度的温差值,结合降低风档等方式,可以确定在向室内减少冷量输送的情况下的室内温度的变化,从而可以类比的判断出压缩机停机以后的室内温度的变化,进而精确控制压缩机的启停运行,避免压缩机频繁启停,提高用户的舒适度。

Description

一种空调的控制方法及装置
本申请基于申请号为201710748741.1、申请日为2017.08.28的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本申请作为参考。
技术领域
本文涉及空调技术领域,特别是涉及一种空调的控制方法及装置。
背景技术
在夏季高温天气,为了在室内营造有舒适的温度条件,用户一般会长时间开启空调运行。而在室内环境温度达到预先设定的温度之后,出于节能降耗的目的,空调的压缩机一般是关停,此时,受室外环温的影响,室内温度会重新升高,当室内环温升高到某一温度时,空调会重新启动压缩机,以对室内进行制冷降温,直至室内环境温度重新下降到设定的温度,之后,压缩机重新关停。这样,为了将室内环境维持在设定温度,空调会重复执行上述流程,在此过程中,压缩机也会频繁的启停,噪音较大,影响用户的体验。
发明内容
本文提供了一种空调的控制方法及装置,旨在解决压缩机因室内环温变化而频繁启停运行的问题。为了对披露的实施例的一些方面有一个基本的理解,下面给出了简单的概括。该概括部分不是泛泛评述,也不是要确定关键/重要组成元素或描绘这些实施例的保护范围。其唯一目的是用简单的形式呈现一些概念,以此作为后面的详细说明的序言。
根据本文的第一个方面,提供了一种空调的控制方法,控制方法包括:获取空调所处空间的室内温度;当室内温度与目标室内温度的温差值满足预设的停机温度条件时,控制内风机的初始风速档位降低至停机温度条件对应的目标风速档位;当内风机以目标风速档位运行的设定时长内的温差值仍满足停机温度条件时,控制关闭压缩机。
进一步的,预设的停机温度条件包括:T1<△T<T2,其中,T1为第一温差阈值, T2为第二温差阈值,△T为温差值;控制内风机的初始风速档位降低至停机温度条件对应的目标风速档位,包括:当T1<△T<T2时,控制内风机的初始风速档位降低至第一风速档位。
进一步的,预设的停机温度条件包括:T2<△T<T3,其中,T3为第三温差阈值;控制内风机的初始风速档位降低至停机温度条件对应的目标风速档位,包括:当T2<△T<T3时,控制内风机的初始风速档位降低至第二风速档位,第二风速档位小于或等于第一风速档位。
进一步的,控制方法还包括:当内风机以目标风速档位运行的设定时长内的温差值不满足停机温度条件时,控制内风机由目标风速档位升高至第四风速档位,第四风速档位大于目标风速档位。
进一步的,第四风速档位为初始风速档位。
根据本文的第二个方面,还提供了一种空调的控制装置,控制装置包括:获取单元,用于获取空调所处空间的室内温度;档位控制单元,用于当室内温度与目标室内温度的温差值满足预设的停机温度条件时,控制内风机的初始风速档位降低至停机温度条件对应的目标风速档位;压机控制单元,用于当内风机以目标风速档位运行的设定时长内的温差值仍满足停机温度条件时,控制关闭压缩机。
进一步的,预设的停机温度条件包括:T1<△T<T2,其中,T1为第一温差阈值,T2为第二温差阈值,△T为温差值;档位控制单元具体用于:当T1<△T<T2时,控制内风机的初始风速档位降低至第一风速档位。
进一步的,预设的停机温度条件包括:T2<△T<T3,其中,T3为第三温差阈值;档位控制单元具体用于:当T2<△T<T3时,控制内风机的初始风速档位降低至第二风速档位,第二风速档位小于或等于第一风速档位。
进一步的,档位控制单元还用于:当内风机以目标风速档位运行的设定时长内的温差值不满足停机温度条件时,控制内风机由目标风速档位升高至第四风速档位,第四风速档位大于目标风速档位。
进一步的,第四风速档位为初始风速档位。
本文明通过室内温度和目标室内温度的温差值,结合降低风档等方式,可以确定在向室内减少冷量输送的情况下的室内温度的变化,从而可以类比的判断出压缩机停机以后的室内温度的变化,进而精确控制压缩机的启停运行,避免压缩机频繁启停,提高用户的舒适度。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性和解释性的,并不能限制本文。
附图说明
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本文的实施例,并与说明书一起用于解释本文的原理。
图1是根据一示例性实施例所示出的本文空调控制方法的流程图;
图2是根据一示例性实施例所示出的本文空调控制装置的结构框图。
具体实施方式
以下描述和附图充分地示出本文的具体实施方案,以使本领域的技术人员能够实践它们。其他实施方案可以包括结构的、逻辑的、电气的、过程的以及其他的改变。实施例仅代表可能的变化。除非明确要求,否则单独的部件和功能是可选的,并且操作的顺序可以变化。一些实施方案的部分和特征可以被包括在或替换其他实施方案的部分和特征。本文的实施方案的范围包括权利要求书的整个范围,以及权利要求书的所有可获得的等同物。在本文中,各实施方案可以被单独地或总地用术语“发明”来表示,这仅仅是为了方便,并且如果事实上公开了超过一个的发明,不是要自动地限制该应用的范围为任何单个发明或发明构思。本文中,诸如第一和第二等之类的关系术语仅仅用于将一个实体或者操作与另一个实体或操作区分开来,而不要求或者暗示这些实体或操作之间存在任何实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法或者设备中还存在另外的相同要素。本文中各个实施例采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似部分互相参见即可。对于实施例公开的方法、产品等而言,由于其与实施例公开的方法部分相对应,所以描述的比较简单,相关之处参见方法部分说明即可。
图1是根据一示例性实施例所示出的本文空调控制方法的流程图。
如图1所示,本文提供了一种空调的控制方法,可用于空调在将室内温度调节至 目标室内温度、以及将室内温度维持在目标室内温度的过程中的压缩机的启停控制;具体的,本文控制方法的主要步骤包括:
S101、获取空调所处空间的室内温度;
在本实施例中,本文主要以夏季工况中的温度调节和压缩机启停控制为例,在夏季工况,室内温度一般高于用户感到舒适的温度,因此,为了使室内温度降低至用户感到舒适的温度,用户一般控制空调运行制冷模式或者除湿模式,以对室内环境进行制冷降温,直至达到该舒适的温度,因此,在夏季工况,本文的控制方法是用于空调运行制冷模式过程中的压缩机的启停控制。
应当理解的是,在冬季工况中,空调一般控制空调运行制热模式运行,以使室内环境温度升温至用户感到舒适的温度,因此,本文的控制方法还可用于空调运行制热模式中的压缩机的启停控制。
在本实施例中,空调设置有温度传感器,可用于获取空调所处空间的实时室内温度,并可将相关温度数据传输至空调的电脑板等控制元器件;本文即将该实时室内温度作为步骤S101中所获取的室内温度。
或者,空调所处的空间中单独设置有一温度传感器,可用于获取空调所处空间的实时室内温度,该温度传感器与空调可通过数据网络等方式进行数据通讯,从而将测得的相关温度数据传输至空调的电脑板等控制元器件。该独立的温度传感器检测并传输的实施室内温度也可以作为步骤S101中所获取的室内温度。
S102、判断室内温度和目标室内温度的温差值是否满足预设的停机温度条件,如果是,则执行步骤S103,如果否,则维持当前运行状态不变,本次流程结束;
在本实施例中,空调预设有停机温度条件,可用于根据停机温度条件判断是否控制压缩机停机;具体的,空调的压缩机可以停机的前提是室内环境温度已经满足用户的舒适度需要,即室内温度等于或者接近于目标室内温度,这样,压缩机在停机之后,室内温度可以维持在目标室内温度一定时间,从而在保证用户舒适度的情况下,起到节能降耗的目的。
较佳的,本文将室内温度和目标室内温度的温度差作为判断压缩机是否可以停机的温度条件,其中,室内温度为步骤S101中所获取的室内温度,目标室内温度为用户通过遥控器或者控制面板所设置的期望达到的室内温度;或者,目标室内温度为空调开机运行时默认的目标室内温度;又或者,目标室内外温度为空调上一次关机时的设定温度。
这样,在室内温度和目标室内温度的温差值较小时,说明当前的实时室内温度低于或者等于目标室内温度,室内环境温度已经满足用户的舒适度需要,出于节能的目的,空调可以停止压缩机的运行;而在室内温度和目标室内温度较大时,则说明当前实时室内温度尚未达到目标室内温度,室内环境温度暂不能满足用户的舒适度需要,空调仍需要控制压缩机的运行,以继续对室内环境进行制冷降温,即,在室内温度和目标室内温度的温差值不满足预设的停机温度条件时,空调维持当前运行状态不变,压缩机继续对冷媒进行压缩作业。
一般的,在夏季工况,室内温度大多大于用户所设定的目标室内温度,此时,室内温度和目标室内温度之间的温差值为正值;而在冬季工况,室内温度一般小于用户所设定的目标室内温度,此时,室内温度和目标室内温度之间的温差值为负值。而对于本文的控制方法,空调在制冷模式运行时是将室内温度先降低至目标室内温度以下,之后,根据室内温度和目标室内温度的温差值判断是否要控制压缩机停机,这样,室内温度和目标室内温度的温差值也为负值,因此,为了便于温差值与预设的停机温度条件的比较,本文的温差值一般为室内温度目标室内温度的差值的绝对值。
应当理解的是,本文空调对室内环境的制冷方式并不是将室内温度降低至设定温度时或者之前就执行控制方法的相关流程步骤,而是在将室内温度降低至目标室内温度以下之后,执行本文的相关流程步骤。这样,在压缩机停机之后,室内的实际温度要低于设定温度,可以延长室内环境因受室外环境热量的影响而升温的时间,从而使室内环境温度可以在较长时间内保持在用户感到舒适的目标室内温度的范围内。
在本文的一实施例中,预设的停机温度条件包括:T1<△T<T2,其中,T1为第一温差阈值,T2为第二温差阈值,△T为温差值。因此,当确定的温差值△T大于第一温差阈值T1且小于第二温差阈值△T时,即满足预设的停机温度条件。
例如,空调预设的第一温差阈值T1为0.5℃,第二温差阈值T2为1℃,用户所设定的目标室内温度为25℃,在空调运行一段时间的制冷模式之后,室内温度降低至目标室内温度以下,此时,温度传感器所检测到的当前室内温度为24.3℃,此时,两者之间的温差值为0.7℃,满足0.5℃(T1)<0.7℃(△T)<1℃(T2)的停机温度条件,此时,室内环境温度可满足用户的舒适度需要,且压缩机停机的话对室内环境的温度影响较小。
而如果检测到的当前室内温度为24.8℃,室内温度与目标室内温度之间的温差值则为0.2℃,不能满足0.5℃<△T<1℃的停机温度条件,此时,空调需要保持压缩 机的当前运行状态不变,以继续对室内环境进行制冷降温。
在本文的实施例中,本文的所预设的停机温度条件不仅包括T1<△T<T2,还包括T2<△T<T3,其中,T3为第三温差阈值,且大于T2。
例如,空调预设的第二温差阈值T2为1℃,第三温差阈值T3为1.5℃,用户所设定的目标室内温度为25℃,在空调运行一段时间的制冷模式之后,室内温度降低至目标室内温度以下,此时,温度传感器所检测到的当前室内温度为23.8℃,此时,两者之间的温差值为1.2℃,满足1℃(T2)<1.2℃(△T)<1.5℃(T3)的停机温度条件,此时,室内环境温度可满足用户的舒适度需要,且压缩机停机的话对室内环境的温度影响较小。
而如果检测到的当前室内温度为23℃,室内温度与目标室内温度之间的温差值则为2℃,则满足△T>T3停机温度条件,此时,可以控制压缩机直接停机,而无需在通过内风机降挡的相关步骤进行判断。
S103、控制内风机的初始风速档位降低至停机温度条件对应的目标风速档位;
在本实施例中,为了避免压缩机的频繁启停的问题,本文在温差值满足预设的停机温度条件时,压缩机暂不停机,而是将室内机的内风机的风速档位从初始风速档位降低至停机温度所对应的目标风速档位。这样,可以模拟压缩机停机之后空调对室内环境的制冷量的变化,如压缩机停机之后,压缩机向空调***输送的冷媒减少甚至为零,因此,室内机从室内环境中的吸收的热量减少,输送的冷空气也减少,制冷效果降低;同样效果的,当室内机的内风机的风速档位降低之后,由于流经室内机的空气流量减少,因此,室内机向室内环境所输送的冷空气也是减少的,从而可以模拟出压缩机停机之后的制冷效果。这样,就可以根据风机降挡之后的温差值变化情况,判断处压缩机停机之后的室内温度变化情况。
采用这种类比模拟的目的在于,压缩机的频繁启停的原因是压缩机停机之后室内温度变化幅度过快的情况下,如夏季室内温度迅速升高,就会导致压缩机需要重新启动,启停之间的时间间隔较短,因此,如果可以保证压缩机启停之间的时间间隔不至于过短,就可以起到保护压缩机的作用,因此,本文通过风速降挡的方式模拟压缩机停机之后的温度变化情况,这样,在风速降档之后室内温度变化幅度过快时,则说明压缩机停机之后的温度变化也会较快,压缩机会出现频繁启停的问题,此时,压缩机就应保持运行,不停机;而在风速降档之后温度变化幅度较小时,则说明压缩机停机之后的温度变化也会较小,压缩机停机之后不会需要马上重启,此时,压缩机就可以 进行停机节能。
在本实施例中,空调预存有停机温度条件与当前目标风速档位的对应关系,例如,对应关系包括,当停机温度条件为T1<△T<T2时,其对应第一风速档位;当停机温度条件为T2<△T<T3时,其对应第二风速档位,第二风速档位小于或等于第一风速档位。停机温度条件中的温差值越大,则降挡的目标风速档位就越低。
例如,本文控制方法所应用的某一空调的风速档位共分为1~5个档位,每一风速档位所对应的风速依次增大。空调在制冷模式时以四档的风速向室内环境送风,停机温度条件为2℃<△T<3℃所对应关系的第一风速档位为三档,因此,当温度差满足该停机温度条件时,则控制内风机的风速档位从四档降低至三档,内风机的风速降低至三档所对应的风速;或者,停机温度条件为T2<△T<T3所对应的第二风速档位为二档,因此,当温度差满足该停机温度条件时,则控制内风机的风速档位从四档降低至二档,内风机的风速降至二档所对应的风速。
或者,空调还可以预存停机温度条件与降挡档数的对应关系,例如,对应关系包括,当停机温度条件为T1<△T<T2时,其对应关系第一降档党数;当停机温度条件为T2<△T<T3时,其对应第二降档档数,第二降档档数大于或等于第一降挡档数位。也即,停机温度条件中的温差值越大,则降挡档的档数就越大。
例如,前一实施例中所应用的某一空调:空调在制冷模式时以四档的风速向室内环境送风,停机温度条件为0.5℃<△T<1℃所对应关系的第一降档档数为1,因此,当温度差满足该停机温度条件时,则控制内风机的风速档位从四档降低1档,即降低至三档,内风机的风速降低至三档所对应的风速;或者,停机温度条件为T2<△T<T3所对应的第二风速档位为2,因此,当温度差满足该停机温度条件时,则控制内风机的风速档位从四档降低2档,即降低至二档,内风机的风速降至二档所对应的风速。
在本实施例中,为了保持对室内环境的制冷效果,在步骤S103的降挡操作中,室内机的内风机需要仍向室内环境送风,因此,内风机的风速档数的下限为最小风档,即实施例中的一档。
S104、判断内风机以目标风速档位运行的设定时长内的温差值是否满足停机温度条件,如果是,则执行步骤S105,如果否,则执行步骤S106;
在本实施例中,在执行步骤S104的步骤之前,需要在步骤S103的降档操作之后,通过温度传感器重复多次检测室内温度,并进一步确定室内温度与目标室内温度的温差值,如果在设定时长内的温差值仍然满足步骤S102中的停机温度条件,则说明内 风机降档之后的室内环境温度变化较小,因此,可以确定压缩机停机之后的室内环境温度变化也较小,此时,压缩机可以停机。而如果在设定时长内的温差值不满足该停机温度条件,则说明内风机降档之后的室内温度变化较大,因此,可以确定压缩机停机之后的室内环境温度变化也较大,此时,压缩机不能停机。
在实施例中,在设定时长内,温度传感器可能获取多个室内温度值,从而计算得到多个温差值,较佳的,为了提高判断的精确性,可以根据满足停机温度条件的温差值与不满足停机温度条件的温差值之间的比例关系确定是否可以压缩机停机,例如,当满足停机温度条件的温差值的所占比例较大时,则可控制压缩机停机;而当不满足停机温度条件的温差值的所占比例较大时,则维持压缩机的开启状态。
或者,夏季工况的风机降挡之后,室内温度一般是逐渐上升的,因此,可以仅检测达到设定时长的单一时刻的室内温度,此时,室内温度和目标室内温度的温差值是设定时长内的最大温差值,因此,可根据该最大温差值判断是否满足停机温度条件,进而控制压缩机的启停。
S105、控制关闭压缩机。
在内风机以目标风速档位运行的设定时长内的温差值仍满足停机温度条件的情况下,说明在内风机降挡、制冷量减少的情况下室内温度变化幅度较小,因此,如果压缩机停机,室内环境温度也可以在一定时间中维持在适宜的温度范围内,并能满足空调节能以及保护压缩机启停的需要,此时,可以控制压缩机关闭。
S106、控制内风机由目标风速档位升高至第四风速档位。
在内风机以目标风速档位运行的设定时长内的温差值不满足停机温度条件的情况下,说明在内风机降挡、制冷量减少的情况下室内温度变化幅度较大,因此,如果压缩机停机,室内环境温度则会产生较大幅度的波动且不能维持在用户感舒适的温度范围内,此时,空调维持当前的运行状态不变。
同时,由于空调需要继续对室内环境进行降温制冷,而在步骤S103中调节之后的内风机的风速档位要小于调整之前的风速档位,空调的出风量减少,制冷效率降低,因此,为了保证空调对室内环境的制冷效果,在步骤S106中,不仅维持压缩机当前的运行状态不变,同时,还可以通过升高风速档位等方式,以增大室内机向室内环境的送风量,以加快室内环境的降低。
较佳的,第四风速档位为初始风速档位,即,将内风机的风速档位提高至执行本次流程之前的初始风速档位,此时,初始风速档位大于目标风速档位,可以有效提高 空调的送风量,增强空调的制冷效率。
一般的,在室内温度达到或者接近于目标室内温度时,定频空调多采用步骤S105中的关闭压缩机的节能方式,而对于现有的变频空调,其节能方式主要是降低压缩机的频率,因此,较佳的,在步骤S105中,当内风机以目标风速档位运行的设定时长内的温差值仍满足停机温度条件时,也可以采用控制降低空调的压缩机的运行频率的方式调节压缩机的运行状态。这样,对于采用本文控制方法的变频压缩机,可以避免因室内温度波动所导致的压缩机频繁升降频的温度,同样可以达到保护压缩机、减少压机劳损的效果。
图2是根据一示例性实施例所示出的本文空调控制装置的结构框图。
如图2所示,本文还提供了一种空调的控制装置,可用于控制空调执行前述实施例中的控制方法的相关流程步骤;具体的,控制装置包括:
获取单元201,用于获取空调所处空间的室内温度;
档位控制单元202,用于当室内温度与目标室内温度的温差值满足预设的停机温度条件时,控制内风机的初始风速档位降低至停机温度条件对应的目标风速档位;
压机控制单元203,用于当内风机以目标风速档位运行的设定时长内的温差值仍满足停机温度条件时,控制关闭压缩机。
在一实施例中,预设的停机温度条件包括:T1<△T<T2,其中,T1为第一温差阈值,T2为第二温差阈值,△T为温差值;
档位控制单元202具体用于:当T1<△T<T2时,控制内风机的初始风速档位降低至第一风速档位。
在一实施例中,预设的停机温度条件包括:T2<△T<T3,其中,T3为第三温差阈值;
档位控制单元202具体用于:当T2<△T<T3时,控制内风机的初始风速档位降低至第二风速档位,第二风速档位小于或等于第一风速档位。
在一实施例中,档位控制单元202还用于:当内风机以目标风速档位运行的设定时长内的温差值不满足停机温度条件时,控制内风机由目标风速档位升高至第四风速档位,第四风速档位大于目标风速档位。
在本实施例中,第四风速档位为初始风速档位。
应当理解的是,本文并不局限于上面已经描述并在附图中示出的流程及结构,并且可以在不脱离其范围进行各种修改和改变。本文的范围仅由所附的权利要求来限 制。

Claims (10)

  1. 一种空调的控制方法,其特征在于,所述控制方法包括:
    获取空调所处空间的室内温度;
    当所述室内温度与目标室内温度的温差值满足预设的停机温度条件时,控制所述内风机的初始风速档位降低至所述停机温度条件对应的目标风速档位;
    当所述内风机以所述目标风速档位运行的设定时长内的所述温差值仍满足所述停机温度条件时,控制关闭压缩机。
  2. 根据权利要求1所述的控制方法,其特征在于,
    所述预设的停机温度条件包括:T1<△T<T2,其中,所述T1为第一温差阈值,T2为第二温差阈值,△T为所述温差值;
    所述控制所述内风机的初始风速档位降低至所述停机温度条件对应的目标风速档位,包括:
    当T1<△T<T2时,控制所述内风机的初始风速档位降低至第一风速档位。
  3. 根据权利要求2所述的控制方法,其特征在于,
    所述预设的停机温度条件包括:T2<△T<T3,其中,所述T3为第三温差阈值;
    所述控制所述内风机的初始风速档位降低至所述停机温度条件对应的目标风速档位,包括:
    当T2<△T<T3时,控制所述内风机的初始风速档位降低至第二风速档位,所述第二风速档位小于或等于所述第一风速档位。
  4. 根据权利要求1所述的控制方法,其特征在于,所述控制方法还包括:
    当所述内风机以所述目标风速档位运行的设定时长内的所述温差值不满足所述停机温度条件时,控制所述内风机由所述目标风速档位升高至第四风速档位,所述第四风速档位大于所述目标风速档位。
  5. 根据权利要求4所述的控制方法,其特征在于,所述第四风速档位为所述初始风速档位。
  6. 一种空调的控制装置,其特征在于,所述控制装置包括:
    获取单元,用于获取空调所处空间的室内温度;
    档位控制单元,用于当所述室内温度与目标室内温度的温差值满足预设的停机温度条件时,控制所述内风机的初始风速档位降低至所述停机温度条件对应的目标风速 档位;
    压机控制单元,用于当所述内风机以所述目标风速档位运行的设定时长内的所述温差值仍满足所述停机温度条件时,控制关闭压缩机。
  7. 根据权利要求6所述的控制装置,其特征在于,
    所述预设的停机温度条件包括:T1<△T<T2,其中,所述T1为第一温差阈值,T2为第二温差阈值,△T为所述温差值;
    所述档位控制单元具体用于:
    当T1<△T<T2时,控制所述内风机的初始风速档位降低至第一风速档位。
  8. 根据权利要求7所述的控制装置,其特征在于,
    所述预设的停机温度条件包括:T2<△T<T3,其中,所述T3为第三温差阈值;
    所述档位控制单元具体用于:
    当T2<△T<T3时,控制所述内风机的初始风速档位降低至第二风速档位,所述第二风速档位小于或等于所述第一风速档位。
  9. 根据权利要求6所述的控制装置,其特征在于,所述档位控制单元还用于:
    当所述内风机以所述目标风速档位运行的设定时长内的所述温差值不满足所述停机温度条件时,控制所述内风机由所述目标风速档位升高至第四风速档位,所述第四风速档位大于所述目标风速档位。
  10. 根据权利要求9所述的控制装置,其特征在于,所述第四风速档位为所述初始风速档位。
PCT/CN2018/096354 2017-08-28 2018-07-20 一种空调的控制方法及装置 WO2019042042A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710748741.1A CN107621048B (zh) 2017-08-28 2017-08-28 一种空调的控制方法及装置
CN201710748741.1 2017-08-28

Publications (1)

Publication Number Publication Date
WO2019042042A1 true WO2019042042A1 (zh) 2019-03-07

Family

ID=61088180

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/096354 WO2019042042A1 (zh) 2017-08-28 2018-07-20 一种空调的控制方法及装置

Country Status (2)

Country Link
CN (1) CN107621048B (zh)
WO (1) WO2019042042A1 (zh)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107621048B (zh) * 2017-08-28 2020-02-04 青岛海尔空调器有限总公司 一种空调的控制方法及装置
CN108489016A (zh) * 2018-01-31 2018-09-04 青岛海尔空调电子有限公司 一种空调自适应的控制方法及装置
CN108444067A (zh) * 2018-03-29 2018-08-24 广东美的制冷设备有限公司 空调器控制方法、装置、空调器及计算机可读存储介质
CN108662729A (zh) * 2018-03-29 2018-10-16 广东美的制冷设备有限公司 空调器控制方法、装置、空调器及计算机可读存储介质
CN108759021B (zh) * 2018-05-24 2021-04-20 青岛海尔空调器有限总公司 空调压缩机的频率控制方法
CN109059201B (zh) * 2018-06-19 2021-04-20 广东美的制冷设备有限公司 空调的控制方法、装置及具有其的空调
CN109248019A (zh) * 2018-08-08 2019-01-22 安阳市翔宇医疗设备有限责任公司 一种冷疗机温度控制方法和装置
CN109798635A (zh) * 2019-01-15 2019-05-24 广东美的暖通设备有限公司 空调***的控制方法及空调***
CN111609527B (zh) * 2019-02-26 2021-05-18 珠海格力电器股份有限公司 空调控制方法及计算器可存储介质及空调
CN110895031B (zh) * 2019-11-07 2021-05-25 重庆海尔空调器有限公司 空调停机控制的方法及装置、空调
CN111720979B (zh) * 2020-06-16 2021-11-05 海信(山东)空调有限公司 空调器及其节能控制方法
CN112984720A (zh) * 2021-02-01 2021-06-18 青岛海尔空调器有限总公司 用于空调的控制方法及装置、空调
CN112923520A (zh) * 2021-02-05 2021-06-08 海信(山东)空调有限公司 一种空调及空调控制方法
CN115235055B (zh) * 2021-04-22 2024-03-26 芜湖美智空调设备有限公司 空调器及其控制方法、计算机可读存储介质
CN113531834B (zh) * 2021-07-21 2022-07-12 四川虹美智能科技有限公司 空调室内机的制冷防热风处理方法及装置
CN114216201B (zh) * 2021-12-02 2024-03-22 珠海格力电器股份有限公司 定频空调的控制方法及定频空调
CN114264048B (zh) * 2021-12-14 2023-01-24 珠海格力电器股份有限公司 一种空调机组控制方法、装置及空调
CN114183889B (zh) * 2021-12-23 2023-07-28 邵阳学院 一种空调器的控制方法、控制装置及空调器
CN114811715A (zh) * 2022-04-27 2022-07-29 浙江中广电器集团股份有限公司 一种热泵evi无水地暖多联机的节能控制方法
CN115654646B (zh) * 2022-10-19 2024-05-31 珠海格力电器股份有限公司 一种空调的控制方法、控制装置和空调

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8011199B1 (en) * 2010-07-27 2011-09-06 Nordyne Inc. HVAC control using discrete-speed thermostats and run times
CN102967027A (zh) * 2012-12-14 2013-03-13 四川长虹空调有限公司 变频热泵空调控制方法
CN102980274A (zh) * 2012-12-18 2013-03-20 华为技术有限公司 精密空调***风机控制方法、装置及精密空调***
CN103940058A (zh) * 2014-03-31 2014-07-23 广东美的制冷设备有限公司 空调器的控制方法、空调器的控制装置和空调器
CN105091242A (zh) * 2015-08-31 2015-11-25 青岛海尔空调器有限总公司 一种壁挂式空调器控制方法
CN106091259A (zh) * 2016-06-17 2016-11-09 珠海格力电器股份有限公司 一种用于空调的控制方法、装置及空调
CN107621048A (zh) * 2017-08-28 2018-01-23 青岛海尔空调器有限总公司 一种空调的控制方法及装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100452771B1 (ko) * 2001-12-26 2004-10-14 삼성전자주식회사 공기조화기의 제어방법
JP2016003848A (ja) * 2014-06-19 2016-01-12 日立アプライアンス株式会社 空気調和システムおよびその制御方法
CN104596055B (zh) * 2014-12-23 2017-07-28 广东美的制冷设备有限公司 空调风机转速控制方法及装置
WO2016132466A1 (ja) * 2015-02-18 2016-08-25 三菱電機株式会社 空気調和システム
CN105180347B (zh) * 2015-07-17 2018-06-29 美的集团武汉制冷设备有限公司 空调器防热风控制方法及空调器
CN105588272B (zh) * 2015-09-29 2018-05-18 海信(广东)空调有限公司 一种空调风机控制方法及装置
CN105423489B (zh) * 2015-11-30 2019-02-05 青岛海尔空调器有限总公司 一拖多空调器的控制方法
CN106352470B (zh) * 2016-08-12 2019-05-31 青岛海尔空调器有限总公司 一种用于空调的控制方法、装置及空调
CN106225183B (zh) * 2016-09-14 2019-04-19 广东美的制冷设备有限公司 一种适于空调器的达温停机控制方法及空调器

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8011199B1 (en) * 2010-07-27 2011-09-06 Nordyne Inc. HVAC control using discrete-speed thermostats and run times
CN102967027A (zh) * 2012-12-14 2013-03-13 四川长虹空调有限公司 变频热泵空调控制方法
CN102980274A (zh) * 2012-12-18 2013-03-20 华为技术有限公司 精密空调***风机控制方法、装置及精密空调***
CN103940058A (zh) * 2014-03-31 2014-07-23 广东美的制冷设备有限公司 空调器的控制方法、空调器的控制装置和空调器
CN105091242A (zh) * 2015-08-31 2015-11-25 青岛海尔空调器有限总公司 一种壁挂式空调器控制方法
CN106091259A (zh) * 2016-06-17 2016-11-09 珠海格力电器股份有限公司 一种用于空调的控制方法、装置及空调
CN107621048A (zh) * 2017-08-28 2018-01-23 青岛海尔空调器有限总公司 一种空调的控制方法及装置

Also Published As

Publication number Publication date
CN107621048B (zh) 2020-02-04
CN107621048A (zh) 2018-01-23

Similar Documents

Publication Publication Date Title
WO2019042042A1 (zh) 一种空调的控制方法及装置
CN107525234B (zh) 一种空调压缩机变频保护的方法及装置
CN104949270B (zh) 空调器的制冷控制方法、装置及空调器
WO2020056960A1 (zh) 机组的温控方法和装置、空调机组
CN108088035B (zh) 一种空调制热模式下的控制方法及空调
CN105042785B (zh) 空调器舒适节能控制方法
CN103940058B (zh) 空调器的控制方法、空调器的控制装置和空调器
CN1712839B (zh) 一种节能型空调器及其控制方法
WO2019011094A1 (zh) 空调强力制冷控制方法
CN104913445B (zh) 风机档位的控制方法、风机档位的控制***和空调器
CN104251531B (zh) 空调器的控制方法及空调器
CN105571068A (zh) 空调器工作控制方法及装置
CN105352109A (zh) 基于气候补偿的变风量空调末端温度控制***及方法
CN104515254A (zh) 一种空调压缩机频率控制方法
CN111140984A (zh) 一种水多联中央空调控制方法、计算机可读存储介质及空调
CN102538132B (zh) 带有辅助电加热的空调器智能控制方法
CN103388880A (zh) 一种空调器的控制方法
EP3561406B1 (en) Heating control method and device for air conditioner
CN109323377B (zh) 空调器及其控制方法和控制装置
CN107917512B (zh) 一种空调***的控制方法、装置与空调器
CN107894045B (zh) 空调***的节流控制方法、装置与空调器
CN106352510A (zh) 适于空调器的自动模式控制方法及装置
TW201721061A (zh) 空調機溫度節能控制裝置及溫度節能控制方法
CN102721151A (zh) 加湿控制装置及其控制方法
CN108278723A (zh) 空调的控制方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18852504

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18852504

Country of ref document: EP

Kind code of ref document: A1