WO2019041621A1 - 图像处理装置及方法、显示装置及方法、图像拍摄与显示装置及方法 - Google Patents

图像处理装置及方法、显示装置及方法、图像拍摄与显示装置及方法 Download PDF

Info

Publication number
WO2019041621A1
WO2019041621A1 PCT/CN2017/114738 CN2017114738W WO2019041621A1 WO 2019041621 A1 WO2019041621 A1 WO 2019041621A1 CN 2017114738 W CN2017114738 W CN 2017114738W WO 2019041621 A1 WO2019041621 A1 WO 2019041621A1
Authority
WO
WIPO (PCT)
Prior art keywords
color
image
brightness
light
pixel
Prior art date
Application number
PCT/CN2017/114738
Other languages
English (en)
French (fr)
Inventor
李屹
Original Assignee
深圳光峰科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳光峰科技股份有限公司 filed Critical 深圳光峰科技股份有限公司
Publication of WO2019041621A1 publication Critical patent/WO2019041621A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/206Control of light source other than position or intensity
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/02Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the intensity of light
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/005Projectors using an electronic spatial light modulator but not peculiar thereto
    • G03B21/008Projectors using an electronic spatial light modulator but not peculiar thereto using micromirror devices
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/208Homogenising, shaping of the illumination light
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • H04N9/3129Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM] scanning a light beam on the display screen
    • H04N9/3132Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM] scanning a light beam on the display screen using one-dimensional electronic spatial light modulators
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • H04N9/3141Constructional details thereof
    • H04N9/315Modulator illumination systems

Definitions

  • the present invention relates to the field of image display technologies, and in particular, to an image processing device and method, a display device and method, and an image capturing and displaying device and method.
  • Existing display devices (such as projection devices and projection systems) generally include a light source, a spatial light modulator (such as a LCOS spatial light modulator or a DMD spatial light modulator) that emits light from the source, the spatial light modulator depending on the image The data is image-modulated by the light emitted by the light source to generate image light.
  • a spatial light modulator such as a LCOS spatial light modulator or a DMD spatial light modulator
  • the data is image-modulated by the light emitted by the light source to generate image light.
  • existing display devices may have a low contrast condition, and improvement is necessary.
  • the present invention provides an image processing device and method with high contrast, a display device and method, and an image capturing and displaying device and method.
  • An image processing apparatus includes a photographing apparatus, a memory, and a processor, wherein the photographing apparatus includes a lens and a brightness acquirer, wherein
  • the brightness acquirer is configured to obtain a brightness of a color of each pixel of an image on the basis of the amount of light taken by the standard lens;
  • the processor is configured to acquire a maximum brightness C1 of the color of each pixel of the image
  • the processor controls the lens to increase the amount of light intake based on the amount of light taken by the standard lens;
  • the brightness acquirer is further configured to acquire the brightness of the color of each pixel of the image again on the basis of increasing the amount of light taken by the lens, wherein the image obtained again
  • the processor divides the luminance range from 0 to the luminance value C3 into M first luminance intervals, and the M first luminance intervals respectively correspond to the maximum gray represented by the N-bit grayscale data from low to high.
  • the processor mapping an arbitrary luminance value Ci1 of the color of the color of each pixel of the image that is acquired again to represent the brightness N-bit gray scale data of gray scale values corresponding to the first luminance region to which the value Ci1 belongs;
  • the processor is further configured to obtain a brightness improvement indicator of the color of the image, wherein the brightness improvement indicator is characterized by increasing brightness of the color of the image sensed by the brightness acquirer after increasing the amount of light taken by the lens The degree of increase in brightness of the color of the image obtained based on the amount of light taken by the standard lens;
  • the processor is further configured to store the N-bit grayscale data of the color of each pixel of the image that is captured again and the brightness improvement indicator to the memory.
  • An image capture method includes the following steps:
  • Storing the image data of the color of the image storing the brightness of the color of each pixel of the sensed image as N-bit grayscale data, wherein the N-bit grayscale data can represent M+1 grayscales a value, the luminance value C3 of the brightness of the color of each pixel of the sensed image is mapped to a maximum grayscale value that can be represented by N-bit grayscale data, wherein 0 to a luminance range within the luminance value C3 Divided into M first brightness intervals, and the M first bright The degree interval from low to high respectively corresponds to M low-to-high gray scale values below the maximum gray scale value represented by the N-bit gray scale data, and the sensed brightness of the color of each pixel of the image is small
  • the brightness improvement indicator of the color of the image the brightness of the color of the image sensed after increasing the amount of light taken by the lens, and the brightness of the color obtained based on the amount of light taken by the standard lens The degree to which the brightness of the color of the image is increased.
  • An image display device comprising a data acquisition module, a light source, a light source controller and an image modulation module, wherein the data acquisition module acquires image data of an image, the image data comprising N of a color of each pixel of the image Bit gray scale data, and a brightness improvement indicator of the color of the image, the brightness improvement indicator of the color of the image is characterized by: N-bit gray scale data of the color of each pixel of the image The degree to which the brightness is increased relative to the actual brightness of the color of each pixel of the image, wherein the actual brightness of the color of a pixel is an entity corresponding to the image processing device sensing the image under a preset standard condition The brightness of the color of the pixel sensed by the brightness;
  • the light source controller correspondingly reduces the light source exiting station according to a brightness improvement index of the color based on a preset standard brightness of the color The brightness of the color light;
  • the image modulation module modulates the color light based on N-bit grayscale data of the color of each pixel of the image to form image light of the color of the image.
  • An image display method includes the following steps:
  • image data of an image comprising N-bit grayscale data of one color of each pixel of the image, and brightness enhancement index of the color of the image, brightness of the color of the image Improving the characterization of the indicator: the brightness of the N-bit gray-scale data of the color of each pixel of the image is increased relative to the actual brightness of the color of each pixel of the image, wherein a pixel
  • the actual brightness of the color is the brightness of the color of the pixel sensed when the brightness of the entity corresponding to the image is sensed under a preset standard condition;
  • the color light is modulated according to N-bit gray scale data of the color of each pixel of the image to form image light of the color of the image.
  • An image capturing and displaying device includes a lens, a brightness acquirer, a processor, a data acquisition module, a light source, a light source controller, and an image modulation module, wherein the amount of light intake of the lens is adjustable.
  • the processor controls the lens to be photographed in the standard lens when a maximum brightness C1 of a color of each pixel of an image acquired by the brightness acquirer based on a standard lens intake light amount is less than a preset brightness Cmax Increasing the amount of light intake based on the amount of light incident, so that the brightness acquirer acquires the brightness of one color of each pixel of the image again on the basis of increasing the amount of light taken by the lens, wherein the image obtained again
  • the processor further stores, by the brightness acquirer, the brightness of a color of each pixel of the image as N-bit grayscale data, wherein the N-bit grayscale data can represent M+1 grayscale values,
  • the luminance value C3 of the luminance of the color of each pixel of the image is again acquired to be the maximum grayscale value that can be represented by the N-bit grayscale data, wherein the luminance range from 0 to the luminance value C3 is divided into M firsts.
  • the processor also stores a brightness improvement indicator of the color of the image, wherein the brightness improvement indicator is characterized by increasing brightness of the color of the image sensed by the brightness acquirer after increasing the amount of light taken up by the lens The degree to which the brightness of the color of the image obtained on the basis of the amount of light taken by the standard lens is increased,
  • the data acquisition module acquires N-bit grayscale data of the color of each pixel of the image, and the light source controller acquires a brightness improvement indicator of the image,
  • the light source controller correspondingly reduces the light source exiting station according to a brightness improvement index of the color based on a preset standard brightness of the color The brightness of the color light; the image modulation module modulates the color light according to the N-bit gray scale data of the color of each pixel of the image to form the image light of the color of the image.
  • An image capture and display method includes the following steps:
  • the N-bit grayscale data may represent M+1 grayscale values
  • the acquiring the image again The luminance value C3 of the luminance of the color of each pixel is mapped to a maximum grayscale value that can be represented by the N-bit grayscale data, wherein the luminance range from 0 to the luminance value C3 is divided into M first luminance intervals, and The M first luma intervals respectively correspond to M low-to-high gray scale values below the maximum gray scale value represented by the N-bit gray scale data from the low to the high, and the obtaining the pixels of the image again
  • the brightness improvement indicator is characterized by increasing the brightness of the color of the image sensed after the lens is increased by the amount of light taken up by the lens relative to the amount of light taken by the standard lens The degree to which the brightness of the color of the image is increased;
  • image data of the image comprising N-bit gray scale data of the color of each pixel of the image and a brightness improvement index of the color of the image;
  • the color light is modulated according to N-bit gray scale data of the color of each pixel of the image to form image light of the color of the image.
  • the display apparatus and method, the image capturing and displaying apparatus and method of the present invention when the maximum brightness of a color of each pixel of an acquired image is less than a preset brightness, Controlling the lens to increase the amount of light intake based on the amount of light taken by the standard lens, thereby obtaining the brightness of the color of each pixel of the image again, and the obtained light is increased because the amount of light taken up by the lens is increased.
  • the brightness of the color of each pixel of the image is increased, so that the image acquired again can capture some of the darker image details that cannot be captured before the amount of light is increased, ie, some of the original are not recorded.
  • the details down will be recorded so that the image capture method and apparatus can capture more dark state details.
  • the light-emitting brightness of the light source can be adjusted according to the brightness improvement index, so that the light output of the light source can be accurately restored according to the N-bit gray-scale data converted by the improved image brightness.
  • the luminance value C3 is mapped to a maximum grayscale value M that can be represented by N-bit grayscale data, wherein 0 to the luminance value C3 are divided into M corresponding to M grayscale values arranged from low to high.
  • the range of the first brightness interval can be relatively small, not only causing some dark portion details of the displayed image to be displayed, but also increasing the degree of detail of the displayed image.
  • the light-emitting brightness of the light source can be adjusted to be small, the gray-scale value corresponding to the N-bit gray-scale data is relatively increased, and the modulation time when the image is modulated according to the N-bit gray-scale data can be long (such as the ON time of the DMD). Longer), thereby improving the phenomenon of generating more stray light caused by a shorter modulation time, thereby improving the contrast of the displayed image.
  • FIG. 1 is a schematic structural view of a display device capable of improving contrast.
  • FIG. 2 is a block diagram showing the structure of an image capturing and displaying apparatus of the present invention.
  • Figure 3 is a flow chart of the image capturing and displaying apparatus shown in Figure 2
  • FIG. 4 is a schematic diagram showing the structure of a light source of an image capturing and displaying apparatus for an embodiment of a first scene.
  • FIG. 5 is a schematic structural diagram of a light source of an image capturing and displaying apparatus for an embodiment of a second scenario.
  • FIG. 6 is a schematic structural diagram of a light source of an image capturing and displaying apparatus for another embodiment of the second scenario.
  • Fig. 7 is a schematic structural view of the color wheel shown in Fig. 6.
  • FIG. 8 is a schematic structural view of a light source employed for the image capturing and displaying apparatus of the third scene.
  • Figure 9 is a schematic view showing the structure of the color wheel of the light source of Figure 8.
  • Figure 10 is a block diagram showing the structure of a display device for another light source employed in the third scenario.
  • the human eye adapts to the acceptance of brightness very broadly. If it is the limit, the darkest can sense 0.0001 nits, and the brightest can sense nearly 100,000 nits. In extremely bright and extremely dark environments, the eyesight of the human eye will decrease.
  • the human eye brightness perception range that does not affect vision is about 0.01-1000 nits, and the brightness perception range that people commonly use in daily life is about 0.0001-1000 nits.
  • the brightest signal acceptable to the human eye is 100,000 times that of the darkest signal.
  • the image modulation module composed of a normal single-chip spatial light modulator (such as DMD) has a modulating gray scale range and a limited range.
  • a common 8-bit gray scale signal is taken as an example, and the gray scale that can be displayed is only 255 steps.
  • the contrast is also hard to exceed 2000:1.
  • the range of modulation of the image modulation module formed by a normal monolithic spatial light modulator is much lower than that perceived by the human eye.
  • the pursuit of displaying images is to hope to be as close as possible to the human eye's perception of the natural environment, and high dynamic illumination rendering (ie, HDR) techniques have been proposed to improve the dynamic range of display devices such as projection devices.
  • HDR high dynamic illumination rendering
  • any kind of spatial light modulator when a pixel is completely black, for various reasons, it is impossible to output a pixel with zero brightness, so all kinds of spatial light modulators have their own contrast. . Limited to the principle of various spatial light modulators, its own display gray scale and contrast are difficult to increase significantly, far below the dynamic range acceptable to the human eye.
  • FIG. 1 is a schematic structural diagram of a display device capable of improving contrast, wherein reference numeral 1 is a light source, 2 is a relay system composed of a uniform light relay lens, and reference numeral 3 is a spatial light modulator (eg, DMD or LCOS), reference numeral 4 is another relay system, reference numeral 5 is a light splitting system, and reference numeral 6 is a spatial light modulator (such as a DMD).
  • reference numerals 3 and 6 can be either transmissive or reflective.
  • the spatial light modulator of the DMD for the spectroscopic system shown by reference numeral 5 may include a TIR prism, and the spatial light modulator for the LCD or LCOS may include a polarizing plate.
  • the contrast of the spatial light modulator 3 is M: 1
  • the contrast of the spatial light modulator 6 is N: 1.
  • the contrast of the entire system is M*N:1.
  • the use of two spatial light modulators greatly increases the contrast of the display device. If the two spatial light modulators are all normal 8-bit gray scales, the system gray scale can reach 16 bits, more than 60,000 steps, and the system gray scale is also greatly improved.
  • a normal image processing apparatus such as a camera, a video camera, etc.
  • a digital photographing apparatus does not have a gray scale of up to 16 bits.
  • the general method is to take two pictures in the shooting time of one frame of image, one short exposure time, which contains all the highlight details, one long exposure time, which contains all the dark details. Then, through the image processing technique, the two low-level gray-scale images respectively including the highlight detail and the shadow detail are combined into a high-order gray-scale image including both the highlight detail and the shadow detail.
  • the information of the displayed image is distributed to the two spatial light modulators of the display device by an algorithm, and finally a high dynamic range image is displayed.
  • a common mitigation is two spatial light modulators, one with high resolution and one with low resolution.
  • One pixel on the low resolution spatial light modulator corresponds to a plurality of pixels on the high resolution spatial light modulator. Since, in general, two adjacent pixels rarely exhibit an image with a large difference between light and dark, a similar effect to that of using two high-contrast spatial light modulators can be obtained by this method.
  • Reduce the data information of the image by reducing the resolution of a spatial light modulator, and alleviate the storage and data transmission pressure caused by high data volume images.
  • the present invention provides a display device with a primary color tunable light source HDR technology, which requires processing of stored image signals during shooting, thereby obtaining an image with higher dynamic range and more delicate display effects.
  • the image processing apparatus is required to dynamically increase the exposure duration or increase the aperture size according to the brightness of each frame of the image, thereby adjusting the dynamic range signal of each frame image to match the adjustable light source during projection. Use to expand the dynamic range of each frame of image.
  • the projected image of each image can be analyzed (eg, by software analysis) to find the brightest point of each image (ie, the color of the image) Maximum brightness).
  • the brightest point of most images will not be the brightest value that the system can emit. This means that even at the brightest point of an image, the spatial light modulator still needs to attenuate the incident source light before exiting.
  • the light source can adjust the brightness at high frequency, for each image, the light source can actively reduce the brightness to the brightness of the brightest point of the frame image by adjusting the value of each pixel on the image modulation module (such as the spatial light modulator). Keep the image unchanged. By dynamically adjusting the brightness of the light source, the modulation capability of the spatial light modulator can be released.
  • the light splitting The device further splits the mixed color light into light of a plurality of colors, and the further plurality of spatial light modulators respectively modulate the light of one of the colors, and then, when the brightness of a certain primary color of a certain pixel in an image is high, Then the light source has to maintain a relatively high brightness.
  • the light source separately emits independent three primary colors of light, and the ratio of each primary color light is adjustable to some extent.
  • the light source can The light of the color maintains a relatively high brightness while the brightness of the other colors is relatively low. This reduces the overall brightness of the light source and increases system contrast.
  • the shooting device dynamically adjusts the brightness of each primary color of each image, and the use of a primary color tunable light source further expands the dynamic range of each image. For example, for a laser that is configured to sequentially illuminate a three-stage color wheel to sequentially emit red, green, and blue light, the brightness of each of the primary colors can be adjusted separately.
  • the three primary colors of light can be modulated in a time division using only one spatial light modulator.
  • the image capturing and displaying device of the present invention includes an image processing device and a display device, and the working principle of the image capturing and displaying device can be described in the following three scenarios.
  • the light source of the display device is a light source that emits white light, and each color light for modulation (such as each primary color light) is split by white light, and the light source can only be adjusted by the light source controller to adjust the brightness of the white light, but The brightness of each color light (such as each primary light) cannot be individually adjusted.
  • the image processing device captures an image of the target scene based on the amount of light taken by the standard lens, and knows the brightness of the brightest pixel of each color of the image (such as red, green, and blue). (maximum brightness), let the brightness of the brightest pixel of each color of the detected image (and the maximum brightness of the red, green and blue primary colors of each pixel) be C R1 , C G1 , C B1 , respectively; The ratios C R1 /Cmax1, C G1 /Cmax2, C B1 /Cmax3, whichever is the largest.
  • the image processing device increases the exposure duration and/or enlarges the aperture based on the amount of light taken by the standard lens, and captures and acquires each color of each pixel of the image again for the same target scene.
  • the brightness data is such that the maximum brightness of the red color of each pixel that can be sensed according to the brightness data of each color of each pixel of the image captured again reaches Cmax1, that is, the color of each pixel of the image captured again.
  • the brightness data is increased by Cmax1/C R1 compared to the brightness data taken on the basis of the amount of light taken by the standard lens.
  • the sensed maximum red brightness is Cmax1
  • the maximum brightness of green red is C G1 *(Cmax1/ C R1 )
  • the maximum blue luminance is C B1 *(Cmax1/C R1 )
  • the ratio of the brightness increase (also the brightness improvement index) Cmax1/C R1 is recorded.
  • the proportion of small white light source brightness adjustment is C R1 / Cmax1, upcoming white light source brightness to the original C R1 / Cmax1 (i.e., standard white luminance for C R1 / Cmax1).
  • the second scenario is that the display device emits light of each color (such as three primary colors of light), and each color of light can individually adjust the amount of light.
  • This kind of scene is divided into various situations, for example, a light source that emits light of each color in a time series; three light sources that respectively emit light of each color; a white light source emits white light, and white light is split into light of each color, and light in each color
  • An adjusting device is disposed on the outgoing light path to adjust the amount of light of each color light.
  • the image processing device can accordingly store image data for each color of an image.
  • the brightness is enlarged and the magnification ratio of each color is recorded.
  • the amount of light of each color light is independently adjusted according to the magnification ratio of the corresponding color.
  • the brightness (maximum brightness) of the brightest pixels of each color of an image (such as red, green, and blue primary colors) of an image captured by the image processing device on the basis of the amount of light taken by the standard lens is C R1 , C, respectively.
  • the image processing device corresponds to each color based on the amount of light taken by the standard lens Adjusting the aperture and the exposure duration respectively, so that the maximum red brightness sensed in sequence is Cmax1, the sensed green maximum brightness is Cmax2, and the blue maximum brightness is Cmax3, and further pixels of the image after brightness enhancement are further
  • Each primary color luminance data is converted and stored as N-bit grayscale data of image data of each color, and the ratio of brightness increase of each color is recorded (also referred to as brightness improvement index, such as Cmax1/C R1 , Cmax2/C G1 , Cmax3/ C B1 ).
  • the light-emitting brightness of each color light is correspondingly reduced according to the brightness increase ratio of each color.
  • the red brightness increase ratio is Cmax1/C R1 , that is, before the exposure time and the aperture size are not increased, if the detected maximum red brightness is C R1 , the time length is increased and/or the aperture is increased, and the detected red is maximum.
  • the green brightness increase ratio is Cmax2/C G1 , that is, before the exposure time and aperture size increase
  • the third scenario is that the light source of the display device is a light source that emits white light, and the color light for modulation includes mixed color light that is emitted at the same time (for example, mixed color light of two colors of light: yellow light generated by yellow phosphor),
  • the brightness of the mixed color light is adjusted by the light source controller, but the two colors of light contained in the mixed color light cannot be separately controlled and adjusted.
  • the image processing apparatus can perform brightness enlargement processing for storing image data of each color of one image, and record the brightness enlargement ratio of each color, in the same manner as in the second scene.
  • the image processing apparatus may have different brightness magnification ratios when storing image data of the first color and the second color, the two colors of light included in the mixed color light may not be separate.
  • the light source controller can only adjust the color mixture emitted by the light source according to one of the brightness amplification ratio of the first color and the brightness magnification ratio of the second color (such as the brightness amplification ratio of the first color)
  • the brightness of the light is such that one of the color-mixed lights emitted by the light source (eg, the first color light) is correspondingly reduced according to the brightness amplification ratio.
  • the image is modulated.
  • the light source controller selects the smallest one of the brightness amplification ratios corresponding to the first color and the second color (eg, a magnification ratio of one color) reducing a brightness of the light source to emit the mixed color light, so that the minimum of the mixed color light (such as a brightness amplification ratio of the first color) corresponds to Luminance of light color on the basis of the predetermined standard color according to the brightness of the smallest (e.g., a first color The brightness amplification ratio) is correspondingly reduced.
  • the minimum of the mixed color light such as a brightness amplification ratio of the first color
  • the second color is adjusted.
  • the brightness enlargement ratio when the image data is stored may be different from the brightness enlargement ratio when the image data of the first color is stored, so the light source emits the first color and the second type during the modulation period of the image
  • the image data of the second color stored by the image processing device may be further converted into a brightness amplification ratio according to the brightness amplification ratio of the first color, and the second color after conversion is performed.
  • the image data modulates the second color light of the mixed color light to produce image light, thereby accurately reducing the image.
  • the image processing apparatus increases the exposure time and/or adjusts the aperture to the advantage that darker image details can be captured. Because the exposure time is long, or the aperture becomes larger, some of the original unrecorded details will be recorded.
  • the display device reduces the light-emitting luminance of the light source.
  • the ratio of the luminance of the image light of each pixel of the projected different images to the actual luminance of each pixel can be made substantially the same. Since the luminance data of one section is converted into a grayscale value when the luminance data is converted into a grayscale value, it is impossible to completely agree, but the trend is corresponding.
  • the actual brightness of the first pixel is greater than the actual brightness of the second pixel, and the brightness of the image light of the first pixel is not less than the brightness of the image light of the second pixel.
  • the intensity of the stray light can be reduced, so that the contrast of the system can be improved.
  • FIG. 2 is a block diagram showing the structure of the image capturing and displaying apparatus 10 according to the first embodiment of the present invention.
  • the image capturing and displaying device 10 includes an image processing device 11 and a display device 12.
  • the image processing device 11 can capture an image and output image data of the image, and the display device 12 receives the image data of the image and modulates the light emitted by the light source according to the image data to generate image light for display. image.
  • the image processing apparatus 11 includes a photographing apparatus 111, a memory 113, and a processor 112, and the photographing apparatus 111 includes a lens 114 and a brightness acquirer.
  • the display device 12 includes a data acquisition module 121, a light source 124, a light source controller 123, and an image modulation module 122.
  • the image processing device 11 may include, but is not limited to, an electronic device such as a camera, a video camera, a camera, a computer, a mobile phone, or the like.
  • the brightness acquirer 115 may include an image sensor for detecting brightness of each color of each pixel of an image, and a conversion circuit for simulating a digitizer for converting the image The brightness signal detected by the sensor is converted into a digital signal for subsequent processing.
  • the memory 113 and the processor 112 may also be integrated into an image processing device capable of image processing, such as a terminal (such as a camera, a camera, a computer, a mobile phone, etc.), a server, a network platform, A computer device or the like that communicates with a photographing device 111 (such as a camera) to control the photographing device, process signals output by the photographing device 111, and transmit the processed image data to the display device 12.
  • a terminal such as a camera, a camera, a computer, a mobile phone, etc.
  • a server such as a server, a network platform, A computer device or the like that communicates with a photographing device 111 (such as a camera) to control the photographing device, process signals output by the photographing device 111, and transmit the processed image data to the display device 12.
  • a photographing device 111 such as a camera
  • FIG. 3 is a flowchart of an image capturing and displaying method when the image capturing and displaying apparatus 10 is in operation. Specifically, when the image processing apparatus 11 is in operation, the image capturing method may include steps S1 - S7.
  • step S1 the maximum brightness C1 of one color of each pixel of an image taken on the basis of the amount of light taken by the standard lens is acquired.
  • the brightness acquirer 115 captures the target scene based on the amount of light taken by the standard lens to acquire the brightness data of each color of each pixel of an image, which can be understood.
  • the luminance data of each color of each pixel includes the maximum luminance of each color of the image.
  • the brightness acquirer 115 may transmit the brightness data of each color of each pixel of the image to the processor 112, and the processor 112 may obtain the brightness data according to the brightness data of each color of each pixel of the image.
  • the maximum brightness C1 of the color of each pixel of the image may be understood.
  • the color may include any of the primary colors of red, blue, and green. It can be understood that the processor 112 can obtain the maximum brightness of each color of each pixel of the image according to the brightness data of each color of each pixel of the image, such as red maximum brightness C R1 , green maximum brightness C G1 , blue Maximum color brightness C B1 .
  • Step S2 determining whether the maximum brightness C1 is less than the preset brightness Cmax, and when the maximum brightness C1 is less than the preset brightness Cmax, performing step S3, if the maximum brightness C1 If it is greater than or equal to the preset brightness Cmax, step S6 is performed.
  • the light source 124 of the display device 12 is a light source that emits white light, and each color light for modulation (such as each primary color light) is split by white light, and can only pass through the light source controller 123. Adjusting the light source 124 to adjust the amount of light of the white light, but the amount of light of each color light cannot be separately adjusted, and the processor 112 acquires each color of each pixel of the image according to the brightness data of each color of each pixel of the image.
  • the maximum brightness (such as red maximum brightness C R1 , green maximum brightness C G1 , blue maximum brightness C B1 ) and compare the maximum brightness of each color with the preset brightness Cmax1, Cmax2 and Cmax3 of each color, and When the maximum brightness of the color is less than the corresponding preset brightness (ie, C R1 ⁇ Cmax1, C G1 ⁇ Cmax2, C B1 ⁇ Cmax1), the largest of C R1 /Cmax1 , C G1 /Cmax2 , C B1 /Cmax1 and Step S3 is performed; and when the maximum brightness of at least one color is greater than or equal to the corresponding preset brightness, respectively, step S6 is performed.
  • the corresponding preset brightness ie, C R1 ⁇ Cmax1, C G1 ⁇ Cmax2, C B1 ⁇ Cmax1
  • the display device 12 emits light of each color (such as each primary color light), and each color light can separately adjust the amount of light, and the processor 112 can be based on the frame.
  • the brightness data of each color of each pixel of the image acquires the maximum brightness of each color of each pixel of the image (such as red maximum brightness C R1 , green maximum brightness C G1 , blue maximum brightness C B1 ) and the respective colors
  • the maximum brightness is compared with the preset brightnesses Cmax1, Cmax2, and Cmax3 corresponding to the respective colors, so as to determine whether the maximum brightness of each color is less than the corresponding preset brightness, that is, whether the red maximum brightness C R1 is less than the preset brightness.
  • step S3 when the maximum brightness C1 of one of the colors of the pixels of the image (the color may be any color of red, green, or blue) is less than the corresponding preset value Cmax, step S3 is performed; otherwise, step S6 is performed. .
  • Step S3 when the maximum brightness C1 is less than the preset brightness Cmax, acquiring brightness of the color of each pixel of the image that is re-photographed by increasing the amount of light taken by the lens based on the amount of light taken by the standard lens,
  • step S3 when the maximum brightness C1 is less than the preset brightness Cmax, the processor 112 controls the lens to increase the amount of light intake based on the amount of light taken by the standard lens, so that the brightness acquirer 115 acquires each pixel of the image again based on the increased amount of light taken by the lens.
  • the brightness of the color when the maximum brightness C1 is less than the preset brightness Cmax, the processor 112 controls the lens to increase the amount of light intake based on the amount of light taken by the standard lens, so that the brightness acquirer 115 acquires each pixel of the image again based on the increased amount of light taken by the lens. The brightness of the color.
  • the standard lens intake light amount corresponds to a preset standard exposure duration and a preset standard aperture size
  • the processor 112 may control the lens 114 at the preset
  • the amount of light taken up by the lens 114 is increased by increasing the exposure time on the basis of the standard exposure time, or by adjusting the large aperture on the basis of the preset standard aperture size, or by increasing the exposure time and the aperture.
  • the maximum brightness of each color of each pixel of the image is determined by step S2 (eg, red maximum brightness C R1 , green maximum brightness C G1 , blue)
  • the processor 112 controls the lens 114 to be ingested by the standard lens.
  • the amount of light intake is increased on the basis of the amount of light, so that the brightness acquirer 115 acquires the brightness of each color of each pixel of the image sensed for the same target scene again on the basis of the increased amount of light taken by the lens.
  • the maximum brightness C1 is smaller than the corresponding pre-pre.
  • the processor 112 controls the lens to increase the amount of light intake based on the amount of light taken by the standard lens, and the brightness acquirer 115 can acquire the piece of the light again based on the increased amount of light taken by the lens.
  • the brightness data of the color of each pixel of the image, wherein the increase in the amount of light intake may be based on a ratio and/or a difference between the preset brightness and the maximum brightness of the color, such as the ratio And the greater the difference, the greater the increase, the maximum brightness of the color of each pixel of the image taken again is C2 greater than the maximum brightness C1 due to the increase of the amount of light taken by the lens, and the control
  • the processor 112 may respectively control the lens 114 according to the ratio and/or the difference between the maximum brightness of each color and the preset brightness. Increasing the amount of light intake based on the amount of light taken by the standard lens, it can be understood that if the ratio and/or difference between the maximum brightness of each color and the preset brightness is different, the lens 114 improves the intake.
  • the amount of light may be different, and the brightness acquirer separately obtains brightness data of each color of each pixel of the image on the basis of the corresponding increased lens intake light amount, for example, if each color includes red, green, and blue
  • the base color, and the maximum brightness of each color (such as red, green, and blue) is smaller than the corresponding preset brightness, and the processor 112 may sequentially (eg, three times) according to the maximum brightness of each color and the preset brightness.
  • the ratio and/or difference control of the lens respectively increases the amount of light intake based on the amount of light taken by the standard lens, and the brightness acquirer 114 can sequentially (eg, three times) increase the lens intake in each color.
  • the basis of the amount of light acquires the luminance data of each color of each pixel of the image for the same target scene in step S1.
  • the maximum brightness (such as the red maximum brightness C R2 , the green maximum brightness C G2 , and the blue maximum brightness C B2 ) of each color of each pixel of the image taken in sequence may be different.
  • the maximum brightness of each color of each pixel of the image acquired again eg, red maximum brightness C R2 , green maximum brightness C G2 , blue maximum brightness C) B2
  • red maximum brightness C R2 is greater than C R1
  • green maximum brightness C G2 is greater than C G1
  • blue maximum brightness C B2 is greater than C B1
  • the maximum brightness of each color of each pixel of the image may be less than or just equal to the preset brightness of each color (eg Cmax1, Cmax2 and Cmax3)
  • step S3 when it is determined in step S2 that the maximum brightness of a part of the color (such as a primary color or two primary colors) of each color (such as a red, green, and blue primary color) is less than the corresponding preset brightness,
  • the processor 112 sequentially controls the lens to increase the amount of light intake based on the ratio of the maximum brightness of the partial color to the preset brightness and/or the difference, respectively.
  • the brightness acquirer 115 is caused to acquire the brightness data of the partial color of each pixel of the image for the last time on the basis of the corresponding increase in the amount of light taken by the lens.
  • step S3 is performed for the first color, that is, the processor 112 controls the amount of light taken by the lens 114 at the standard lens.
  • the brightness acquirer 115 acquires the brightness data of the first color of each pixel of the image again on the basis of increasing the amount of light taken by the lens, and performs the brightness data obtained for the step S3.
  • the luminance data of blue and blue) is performed in steps S6 and S7.
  • Step S4 converting the brightness of the color of each pixel of the image that is captured again into N-bit grayscale data; wherein the N-bit grayscale data may represent M+1 grayscale values, the acquiring the The luminance value C3 of the luminance of the color of each pixel of the image is mapped to the maximum grayscale value M that can be represented by the N-bit grayscale data, wherein the luminance range from 0 to the luminance value C3 is divided into M first luminances.
  • An interval, and the M first luminance intervals respectively correspond to M low-to-high gray-scale values 0, 1, ..., M-1, which are lower than a maximum gray-scale value M represented by N-bit gray-scale data, from low to high
  • the arbitrary brightness value Ci1 of the brightness of the color of each color of the pixel that acquires the image again is mapped to the N-bit gray level representing the gray level value corresponding to the first brightness area to which the brightness value Ci1 belongs.
  • the processor 112 converts the brightness of each color of each pixel of the image that is captured again into N-bit grayscale data.
  • the N-bit gray scale data of each color can represent M+1 gray scale values, wherein the N can represent the binary digits of the gray scale data, such as 3 bits, 8 bits, etc.
  • N is equal to 3
  • N is 3 bits of binary data
  • the 3-bit binary data can represent 8 grayscale values, that is, 0 to 7 total 8 grayscale values, that is, M+1 is equal to 8.
  • the 0 to 7 gray scale values may be represented by three bits of binary data 000, 001, 010, 011, 100, 101, 110, 111, respectively. Assuming that N is equal to 8, that is, N is 8-bit binary data, 8-bit binary data can represent 256 gray-scale values, that is, 0 to 255 total 256 gray-scale values, that is, M+1 is equal to 256, where The 0 to 255 gray scale values can be respectively represented by eight bits of binary data, and the specific 256 eight bits of binary data are not listed here.
  • the processor 112 sets each color of each pixel of the image that is captured again.
  • the luminance value of the luminance value of C3 is mapped to the maximum grayscale value M that can be represented by the N-bit grayscale data, and the processor 112 further divides the luminance range from 0 to the luminance value C3 into M numbers.
  • the M first luminance intervals respectively correspond to M low-to-high grayscale values (such as grayscale values 0, 1, ..., M-, respectively, below the maximum grayscale value M represented by the N-bit grayscale data from low to high.
  • the arbitrary brightness value Ci1 of the brightness of the color of each color of the pixel that acquires the image again is mapped to N representing the gray level value corresponding to the first brightness area to which the brightness value Ci1 belongs Bit grayscale data, for example, when the Ci1 is at the first Degree interval [C3 * (j-1) / M, C3 * j / M), the processor to convert the representative grayscale values Ci1 j-1 N-bit gray scale data.
  • the brightness value C3 may be equal to the brightness value C2.
  • the brightness value C3 of each color may be different for the brightness of each color of each pixel of the image captured again, such as the brightness value of red, the brightness value of green, and the brightness value of blue.
  • the processor 112 converts the brightness of each color or partial color of each pixel of the image that is captured again into an N-bit grayscale. data.
  • the N-bit gray scale data of each color can represent M+1 gray scale values, wherein the N can represent the binary digits of the gray scale data, such as 3 bits, 8 bits, etc.
  • N is equal to 3
  • N is 3 bits of binary data
  • the 3-bit binary data can represent 8 grayscale values, that is, 0 to 7 total 8 grayscale values, that is, M+1 is equal to 8.
  • the 0 to 7 gray scale values may be represented by three bits of binary data 000, 001, 010, 011, 100, 101, 110, 111, respectively. Assuming that N is equal to 8, that is, N is 8-bit binary data, 8-bit binary data can represent 256 gray-scale values, that is, 0 to 255 total 256 gray-scale values, that is, M+1 is equal to 256, where The 0 to 255 gray scale values can be respectively represented by eight bits of binary data, and the specific 256 eight bits of binary data are not listed here.
  • the processor 112 may sequentially convert the brightness of each color or part of each pixel of the image that is captured again into N bits. Grayscale data. For the brightness of any one of the pixels of the image taken again, the processor 112 sets the brightness value of the brightness of the color of each pixel of the image captured again to C3.
  • An arbitrary luminance value Ci1 of the luminance of the color of the pixels of the image that is smaller than the luminance value C3 is mapped to
  • the brightness value C3 may be equal to the brightness value C2.
  • the brightness value C3 of each color or part of the color may be different for the brightness of each color or part of the color (different two or three) of each pixel of the image captured again, such as red.
  • Step S5 storing the brightness improvement index of the color of the image and the N-bit gray scale data of the brightness conversion of the color of each pixel of the image captured again.
  • the brightness improvement index is indicative of an increase in the brightness of the color of the image sensed by increasing the amount of light taken up by the lens relative to the brightness of the color of the image obtained based on the amount of light taken by the standard lens.
  • the N-bit gray scale data of the brightness conversion of the color of each pixel of the image that is captured again is obtained by the processor 112 according to the step S4, and the processor 112 sets the frame that is shot again.
  • the N-bit gray scale data of the luminance conversion of the color of each pixel of the image is stored in the memory 113.
  • the processor 112 may store the N-bit grayscale data of each color or partial color of each pixel of the image and the brightness improvement indicator to the memory 113.
  • the indicator is Cmax/C1 or (Cmax-C1)/C1. Further, it can be understood that the brightness improvement index of each color may be different.
  • the brightness improvement index may be Cmax2/C G1 or (Cmax2-C G1 )/C G2 , and the blue brightness improvement indicator may be Cmax3/C B1 or (Cmax3-C B1 )/C B2 .
  • the processing is performed in the step S5.
  • the processor 112 stores N-bit gray scale data of each color of each pixel of the image that is captured again into the memory 113.
  • the processor 112 further stores a brightness improvement index corresponding to the N-bit gray scale data of the color of each pixel of the image (ie, a brightness improvement index of the color),
  • a brightness improvement index of the color corresponding to the N-bit gray scale data of the color of each pixel of the image.
  • each color of each pixel of the image corresponds to the same brightness improvement indicator, and the same brightness improvement indicator is a color brightness improvement indicator of each pixel of the image, and the processor 112 may By comparing the ratios C R1 /Cmax1, C G1 /Cmax2, C B1 /Cmax3 of the respective colors, the brightness improvement index of the color corresponding to the largest one is taken as the same brightness improvement index.
  • the red brightness improvement index is C R2 /C R1 or (C R2 -C R1 )/C R2
  • the green brightness improvement index is C G2 .
  • the color brightness improvement index is Cmax3/C B1 or (Cmax3-C B1 )/C B2
  • the ratio C R1 /Cmax1, C G1 /Cmax2, C B1 /Cmax3 of each color is C R1 /Cmax1
  • Take the brightness improvement index corresponding to the color R of the largest C R1 /Cmax1 such as C R2 /C R1 or (C R2 -C R1 )/C R
  • the N-bit gray scale data of each color of each pixel of the image taken again and the same brightness improvement index constitute image data (such as one frame image data) of the image, that is, the image of the image
  • the image data includes sub-frame image data of N-bit gray scale data of each color and the same brightness improvement index.
  • the step S5 is performed.
  • the processor 112 stores N-bit grayscale data of each color or partial color of each pixel of the image that is captured again into the memory. Further, in the step S5, the processor 112 stores N-bit grayscale data of each color or partial color of each pixel of the image and a corresponding brightness improvement index (ie, a brightness improvement index of the color).
  • the N-bit gray scale data of each color of each pixel of the image and the corresponding brightness improvement index may constitute sub-frame image data of each color, that is, each color of the image
  • the sub-frame image data includes N-bit gray scale data of each color of each pixel of the image and a brightness improvement index corresponding to the sub-frame image data.
  • the processor 112 stores N-bit grayscale data of each color or partial color of each pixel of the image and a brightness improvement index corresponding to the subframe image data into the memory. That is, sub-frame image data of each color or partial color of each pixel of the image is stored in the memory 113.
  • Step S6 when the maximum brightness C1 is greater than or equal to the preset brightness Cmax, convert the brightness of the color of each pixel of the image taken on the basis of the amount of light taken by the standard lens into N-bit gray-scale data;
  • a luminance value equal to the luminance value Cmax is mapped to a maximum grayscale value M that can be represented by N-bit grayscale data, wherein a luminance range from 0 to the luminance value Cmax is divided into M second luminance intervals, and the M The second brightness interval from low to high respectively corresponds to M low-to-high gray scale values below the maximum gray scale value represented by the N-bit gray scale data, and the color of each pixel of the image is less than Cmax
  • the luminance value Ci2 is mapped to N-bit grayscale data representing a grayscale value corresponding to the second luminance region to which the luminance value Ci2 belongs.
  • step S6 to convert the luminance data of each color of each pixel of the image on the basis of the amount of light taken by the standard lens into N-bit gray scale data.
  • the processor 112 treats each pixel according to the following rules.
  • the brightness of the color is stored as corresponding N-bit gray-scale data: a brightness value greater than or equal to the brightness value Cmax (eg, Cmax1) is mapped to a maximum gray-scale value M that can be represented by N-bit gray-scale data, where 0 to the The luminance range within the luminance value Cmax (eg, Cmax1) is divided into M second luminance intervals [0, Cmax*1/M), [Cmax*1/M, Cmax*2/M), [Cmax*2/M, Cmax*3/M), ..., [Cmax*(j-1)/M, Cmax*j/M), ..., [Cmax*(M-1)/M, Cmax), j is a natural number greater than or equal to 1 and less than or equal to M, and the M second luminance intervals respectively correspond to M low-to-high grays below the maximum grayscale value represented by the N-bit grayscale data from low to high respectively a step value (such as a gray scale value of 0, 1, ... M-1), an arbitrary brightness value
  • the luminance of the color of each pixel is stored as corresponding N-bit grayscale data by dividing the luminance range from 0 to the luminance value Cmax (eg, Cmax2) into M second luminance intervals [0, Cmax] *1/M), [Cmax*1/M, Cmax*2/M), [Cmax*2/M, Cmax*3/M), ..., [Cmax*(j-1)/M, Cmax* j/M), ..., [Cmax*(M-1)/M, Cmax), j is a natural number greater than or equal to 1 and less than or equal to M, and the M second luminance intervals correspond to N bits from low to high respectively Gray low-to-high grayscale values (such as grayscale values 0, 1, ..., M-1) below the maximum grayscale value represented by grayscale data, the color of
  • the processor 112 performs step S6 to convert the brightness of each color or partial color of each pixel of the image on the basis of the amount of light taken by the standard lens into N-bit gray scale data.
  • the processor 112 converts the brightness of each color or part of the color of each pixel of the image captured by the brightness acquirer based on the amount of light taken by the standard lens into N-bit gray scale data as follows:
  • the processor 112 maps the brightness value greater than or equal to the brightness value Cmax to a maximum gray level value M that can be represented by the N-bit gray level data, wherein the brightness range from 0 to the brightness value Cmax is equally divided into M pieces.
  • Two luminance intervals [0, Cmax * 1 / M), [Cmax * 1 / M, Cmax * 2 / M), [Cmax * 2 / M, Cmax * 3 / M), ..., [Cmax * (j- 1) / M, Cmax * j / M), ..., [Cmax * (M-1) / M, Cmax), where j is greater than or equal to 1 small
  • a natural number equal to M and the M second luminance intervals respectively correspond to M low-to-high gray scale values (such as grayscale value 0) below the maximum grayscale value represented by the N-bit grayscale data from low to high.
  • an arbitrary brightness value Ci2 of the color of each pixel of the image captured on the basis of the amount of light taken by the standard lens is less than the second brightness to which the brightness value Ci2 belongs.
  • N-bit gray scale data of the gray scale value corresponding to the luminance region for example, when the Ci2 is located in the second luminance interval [Cmax*(j-1)/M, Cmax*j/M), the processor will The Ci2 is converted into N-bit grayscale data representing a grayscale value j-1.
  • the preset brightness of each color may be different, such as red preset brightness, green
  • the preset brightness and the blue preset brightness may be Cmax1, Cmax2, and Cmax3, respectively.
  • Step S7 storing N-bit gray scale data of the brightness conversion of the color of each pixel of the image captured on the basis of the amount of light taken by the standard lens, and a brightness improvement index of the color corresponding to the image, That is, the brightness improvement index of the color of the image when the maximum brightness C1 is greater than or equal to the preset brightness Cmax, and the brightness improvement index of the color of the image when the maximum brightness C1 is greater than or equal to the preset brightness Cmax.
  • the brightness represented by the N-bit gray scale data of the color of each pixel characterizing the image is not improved with respect to the actual brightness of the color of each pixel of the image.
  • the brightness improvement indicator may pass 1 Or 0 to characterize.
  • the processor 112 may improve the N-bit grayscale data of each color of each pixel of the image obtained in step S6 and the same brightness.
  • the indicator is stored in the memory 113, that is, the N-bit gray scale data of each color of each pixel of the image captured on the basis of the amount of light taken by the standard lens and the same brightness improvement index are stored to The memory.
  • the N-bit gray scale data of each color of each pixel of the image captured on the basis of the amount of light taken by the standard lens and the same brightness improvement index constitute image data of the image (eg, a frame image data), the N-bit gray scale data of each color of each pixel of the image captured on the basis of the amount of light taken by the standard lens, and the same brightness improvement index constituting the image Sub-frame image data for each color.
  • the processor 112 may store the N-bit grayscale data of each color or partial color of each pixel of the image obtained in step S6 and the corresponding brightness improvement indicator to
  • the memory 113 is configured to increase the brightness of the N-bit gray scale data of each color or part of the color of each pixel of the image captured on the basis of the amount of light taken by the standard lens, and the brightness corresponding to each color or part of the color.
  • the indicator is stored to the memory 113.
  • the N-bit gray scale data of the brightness conversion of any one of the colors or partial colors of the pixels of the image captured on the basis of the amount of light taken by the standard lens and the corresponding brightness improvement index constitute the image
  • the sub-frame image data of the color that is, the processor 112 stores sub-frame image data of each color or partial color of the image captured on the basis of the amount of light taken by the standard lens.
  • the processor 112 when the image processing apparatus 11 captures an image of the target scene for the first scenario, the processor 112 finally stores the memory in the memory according to steps S3, S4, and S5.
  • the image data of the image captured again (such as one frame of image data, including sub-frame image data of each color and brightness improvement index corresponding to each color) and the amount of light taken in accordance with the standard lens obtained according to steps S6 and S7
  • the image data of the image (such as one frame of image data, including sub-frame image data of each color and a brightness improvement index corresponding to each color, at which time the brightness improvement index is 0 or 1).
  • the image processing device 11 may output image data of the image captured again or image data of the image captured on the basis of the amount of light taken by the standard lens to the display device, such that the display device 12 Image display is performed based on the image data of the image.
  • the image data finally stored by the processor 112 in the memory 113 may be Divided into at least three cases.
  • the image data finally stored by the processor 112 in the memory 113 is image data of each color of the image captured in accordance with steps S3, S4, and S5 (eg, one frame of image data, including each Sub-frame image data of color or partial color and brightness improvement index of each color).
  • the processor 112 does not store data through the steps S6 and S7, and the processor 112 may perform steps S3, S4, S5 gets another
  • the image data of each color of the image captured one time is output to the display device 12, so that the display device 12 performs image display in accordance with image data of the image.
  • the image data finally stored by the processor 112 in the memory 113 is image data of each color of the image captured on the basis of the amount of light taken by the standard lens obtained according to steps S6, S7 (The sub-frame image data of each color and the brightness improvement index of each color are included. At this time, the brightness improvement index of each color is 0 or 1), and the basis of the amount of light taken in the standard lens obtained according to steps S6 and S7 is used.
  • Image data of each color of the image taken thereon may be supplied to the display device 12 by the processor 112 such that the display device 12 performs image display in accordance with image data of each color of the image.
  • the image data finally stored by the processor 112 in the memory 113 includes image data of a partial color of the image captured again according to steps S3, S4, S5 (eg, a sub-frame including partial colors) Image data and a brightness improvement index of a part of the color) and image data of a part of the color of the image taken based on the amount of light taken by the standard lens obtained in accordance with steps S6 and S7 (including sub-frame image data of part color and partial color)
  • the brightness improvement index of the partial color is 0 or 1)
  • the image data of the partial color of the image captured again according to steps S3, S4, and S5 is obtained according to steps S6 and S7.
  • the obtained image number of the partial color of the image taken on the basis of the amount of light taken by the standard lens constitutes image data (such as one frame of image data) of the image
  • the processor 112 outputs the image data of the image to In the display device, the display device performs image display according to image data of the image.
  • N 3 and M is equal to 8
  • the image processing apparatus 11 captures the target scene and stores image data of one image in conjunction with FIG. 3 .
  • the brightness acquirer 115 takes the light amount of the maximum brightness C1 of the color of each pixel of an image captured by the standard lens for the target scene. 800, because the maximum brightness 800 is less than the preset brightness 1300, the processor 112 controls the brightness acquirer 115 to shoot again for the same target scene to obtain the frame after the lens is taken up according to the step S3.
  • the preset brightness of the color eg, first color, red
  • the processor 112 controls the brightness acquirer 115 to shoot again for the same target scene to obtain the frame after the lens is taken up according to the step S3.
  • step S4 the brightness of the color of each pixel of the image that is captured again is stored as N-bit grayscale data according to the following rule: wherein the brightness data whose brightness is greater than or equal to the preset brightness 1300 is stored as the maximum gray.
  • a step value ie, a grayscale value of 7, the corresponding three-bit binary data is 111
  • a brightness smaller than the preset brightness 1300 is stored as a corresponding grayscale value according to the first brightness interval thereof (eg, a grayscale value) 0-6), wherein the relationship between the M (such as 7) luminance intervals and the N-bit grayscale data corresponding to the M grayscale values (0 to 6) below the maximum grayscale value is as follows:
  • Table 1 shows the corresponding schematic tables of M luminance intervals, M grayscale values, and N-bit grayscale data when the maximum luminance Cx is greater than or equal to Cmax.
  • the brightness improvement indicator of the color may be characterized by C2/C1 (eg, 1300/800) or (C2-C1)/C1 (eg, (1300-800)/800).
  • the brightness acquirer 115 takes the light amount of the maximum brightness C1 of the color of each pixel of an image captured by the standard lens for the target scene. 1300, because the maximum brightness 1300 is less than the preset brightness 1300, the processor 112 according to the step S6, according to the step S6, the brightness of the color of each pixel of the image of the standard lens intake light amount is as follows: Stored as N-bit grayscale data: wherein the luminance data whose luminance is greater than or equal to the preset luminance 1300 is stored as the maximum grayscale value (ie, the grayscale value is 7, and the corresponding three-bit binary data is 111), which is small.
  • N-bit grayscale data wherein the luminance data whose luminance is greater than or equal to the preset luminance 1300 is stored as the maximum grayscale value (ie, the grayscale value is 7, and the corresponding three-bit binary data is 111), which is small.
  • the brightness of the preset brightness 1300 is stored as a corresponding gray level value (eg, gray scale value 0-6) according to the first brightness interval thereof, wherein the M gray level values below the maximum gray level value (0 to 6)
  • a corresponding gray level value eg, gray scale value 0-6
  • M gray level values below the maximum gray level value 0 to 6
  • the relationship between the corresponding M (eg, 7) luminance intervals and the N-bit grayscale data is as shown in Table 1 above. It can be understood that the brightness improvement index of the color can be represented by 1 or 0.
  • the preset brightness of the first color (such as red) is 1300, and the preset brightness of the second color is also 1300, and the brightness acquiring device is in the standard lens.
  • the maximum brightness C R1 of the first color of each pixel of an image taken for the target scene is 1000, but the maximum brightness C G1 of the second color of each pixel of the image is 800, the processor 112 Controlling, according to the step S3, the brightness acquiring device to re-shoot the same target scene to obtain the brightness of each color of each pixel of the image, and set each of the images of the re-photographed
  • the maximum brightness C R2 of the first color of the pixel is 1300, and the maximum brightness C G2 of the second color is 800*1300/1000.
  • step S4 the brightness of the color of each pixel of the image that is captured again is stored as N-bit grayscale data according to the following rule: wherein the brightness data whose brightness is greater than or equal to the preset brightness 1300 is stored as the maximum gray.
  • Order value (ie gray level value 7 The corresponding three-bit binary data is 111), and the brightness less than the preset brightness 1300 is stored as a corresponding gray level value according to the first brightness interval (eg, grayscale value 0-6), wherein the maximum gray
  • the relationship between the M (such as 7) luminance intervals and the N-bit grayscale data corresponding to the M grayscale values (0 to 6) below the order value is as shown in Table 1.
  • the brightness improvement index of the color can pass 1300/1000. Or (1300-1000) / 1000 characterization.
  • the preset brightness of the first color (such as red) is 1300
  • the preset brightness of the second color is also 1300
  • the brightness acquirer 115 is in the standard.
  • the maximum brightness C R1 of the first color of each pixel of an image captured by the lens for the target scene is 1300
  • the maximum brightness C G1 of the second color of each pixel of the image is 800
  • the processor According to the step S6, the brightness of the color of each pixel of the image of the standard lens intake light amount is stored as N-bit gray scale data according to the following rule: wherein the brightness is greater than or equal to the preset brightness 1300
  • the luminance data is stored as a maximum grayscale value (ie, a grayscale value of 7, the corresponding three-bit binary data is 111), and a luminance smaller than the preset luminance 1300 is stored as a corresponding gray according to the first luminance interval thereof.
  • the order value (such as the gray scale value 0-6), wherein the M (such as 7) brightness intervals and the N-bit gray level data corresponding to the M gray scale values (0 to 6) below the maximum gray scale value are as described above.
  • the brightness improvement index of the color can pass 1 0 characterization.
  • the display method may include the following steps.
  • Step S8 acquiring image data of an image, the image data comprising N-bit grayscale data of a color of each pixel of the image, and a brightness improvement index of the color of the image, the image of the image
  • the brightness enhancement index of the color is characterized by the degree to which the brightness represented by the N-bit gray scale data of the color of each pixel of the image is increased relative to the actual brightness of the color of each pixel of the image, wherein
  • the actual brightness of the color of the pixel can be regarded as being under the preset standard condition (such as the brightness acquirer based on the amount of light taken by the standard lens) sensing the brightness of the entity corresponding to the image (ie, shooting the image) The brightness of the color of the pixel sensed by the image.
  • the data acquiring module 121 can acquire image data of the image. Specifically, the data acquiring module 121 can receive an image of the image output by the processor of the image processing device. According to the introduction of the image capturing method of the image processing apparatus 11 described above, if the image data includes N-bit grayscale data of one color of each pixel of the image according to steps S3, S4, and S5, the image is imaged for the image.
  • Steps S9 and S10 are performed for the N-bit gray scale data of the color of each pixel, and if the image data includes N-bit gray scale data of a color of each pixel of the image obtained according to steps S6 and S7, Steps S11 and S12 are performed on the N-bit gray scale data of the color of each pixel of the image.
  • the data acquiring module 121 receives the image data obtained by the processor 112 of the image processing apparatus 11 according to steps S3, S4, and S5 or receives the image according to steps S6 and S7.
  • the image data of the image If the image data of the image is obtained according to steps S3, S4, and S5, steps S9 and S10 are performed; if the image data of the image is obtained according to steps S6 and S7, steps S11 and S12 are performed.
  • the data acquiring module 121 performs different processing on the received image data of the image according to different situations. Specifically, in the first case, steps S9 and S10 are performed, in the second case, steps S11 and S12 are performed, and in the third case, for the steps S3, S4, and S5, re-shooting is obtained.
  • the image data of the partial color of the image is subjected to steps S9 and S10, and steps S11 and S12 are performed on the image data of the partial color of the image captured on the basis of the amount of light taken by the standard lens obtained in accordance with steps S6 and S7.
  • Step S9 in the modulation period of the image light of the color of the image, lowering the brightness of the color light emitted by the light source: according to the preset standard brightness of the color, according to the brightness of the color
  • the indicator accordingly reduces the brightness of the color light emitted by the light source.
  • the light source controller 123 inversely proportionally reduces the brightness of the color light emitted by the light source 124 according to the brightness improvement index on the basis of the preset standard brightness, for example, the brightness improvement index is C2/C1, Then, the brightness of the color light emitted by the light source 123 controlled by the light source controller 123 is C1/C2 times the preset standard brightness.
  • the brightness improvement index of the color of the image can also be regarded as a representation: the N-bit gray scale data of the brightest pixel of the color of the image (the pixel corresponding to the maximum brightness of the color) is represented by The degree to which the brightness is increased relative to the actual brightness of the brightest pixel of the color of the image (the pixel corresponding to the maximum brightness of the color), such as C2/C1, in other words, the color of the image
  • the brightness improvement index is the ratio of the brightness represented by the N-bit gray scale data of the brightest pixel of the color of the image to the actual brightness of the brightest pixel of the color of the image, such as C2/C1.
  • Step S10 modulating the reduced color light according to the N-bit gray scale data of the color of each pixel of the image of the image that is captured again during a modulation period of the image light of the color of the image, To form image light of the color of the image.
  • the N-bit grayscale data of the color of the image captured again is provided to the image modulation.
  • the data acquisition module 121 further provides a brightness improvement indicator of the color therein to the light source controller 123, the light source
  • the controller 123 adjusts the brightness of the color light emitted by the light source 124 on the basis of the preset standard brightness according to the brightness improvement index of the color, and the image modulation module 122 according to the color of the image.
  • the N-bit gray scale data modulates the reduced color light emitted by the light source 124 to obtain image light of the color of the image.
  • the color light 124 emits mixed color light (which may include each color light, such as white light), and the light source controller 123 is configured to adjust the mixed color light (such as white light).
  • the brightness of the image data of the image acquired by the data acquisition module 121 is the image data of the image obtained according to steps S3, S4, and S5, and the data acquisition module 121 displays the image captured again.
  • N-bit gray scale data of each color is supplied to the image modulation module 122 and the same brightness enhancement index (e.g., C2/C1) is supplied to the light source controller 123.
  • the light source controller 123 adjusts the brightness of the white light emitted by the light source on the basis of the preset standard brightness according to the same brightness improvement index, so that the light source 124 emits The brightness of each color light is C1/C2 times the preset standard brightness.
  • the image modulation module 122 respectively modulates the brightness emitted by the light source to a preset standard brightness according to the N-bit gray scale data of each color of the image captured again.
  • each color light obtains image light of each color of the image
  • the N-bit gray scale data of each color of the image taken again is compared with the image taken on the basis of the amount of light taken by the standard lens
  • the brightness of each color of the image (which can also be regarded as the actual brightness) is increased by C2/C1 times, and the brightness of each color light emitted by the light source 124 at this time is C1/C2 times the preset standard brightness, so that the image
  • the image light obtained by the modulation module 122 can be regarded as image light obtained by modulating each color light of the preset standard brightness according to N-bit gray scale data of each color of the image captured on the basis of the amount of light taken by the standard lens, Furthermore, the image modulation module 122 can accurately restore the image of the target scene captured by the image processing apparatus 11.
  • the data acquiring module 121 sets the standard in the standard. N-bit gray scale data of each color of the image taken on the basis of the lens intake light amount is supplied to the image modulation module 122 and the light is brightened An improvement indicator (such as 0 or 1) is provided to the light source controller 123. Further, in the step S9, the light source controller 123 controls the brightness of each color light in the white light emitted by the light source to the preset standard brightness according to the brightness improvement index.
  • the image modulation module 122 respectively modulates the brightness emitted by the light source according to the N-bit gray scale data of each color of the image captured on the basis of the amount of light taken by the standard lens.
  • Each color light of the preset standard brightness obtains image light of each color of the image, so that the image modulation module 122 can accurately restore the image of the target scene captured by the image processing apparatus 11.
  • Step S11 controlling the light source to emit the brightness of the color light to a preset standard brightness during a modulation period of the image light of the color of the image.
  • the light source controller 123 receives the brightness improvement indicator obtained by the data acquisition module 121, and controls the brightness of the color light emitted by the light source 124 according to the brightness improvement index indicating that the brightness is not improved. To preset standard brightness.
  • Step S12 in the modulation period of the image light of the color of the image, modulating the N-bit gray-scale data of the color of each pixel of the image captured on the basis of the amount of light taken by the standard mirror
  • the color light of the standard brightness is preset to form image light of the color of the image.
  • the image modulation module 122 modulates the preset standard brightness according to the N-bit gray scale data of the color of each pixel of the image captured on the basis of the amount of light taken by the standard mirror.
  • the color light is to form image light of the color of the image.
  • FIG. 4 is a schematic structural diagram of the light source 124 of an embodiment.
  • the light source 124 may include a white light source 1241 and a light splitting device 1242.
  • the light of each color may be obtained by splitting the white light emitted by the white light source 1241 by the light splitting device 1242.
  • the image modulation module 122 may include a spatial light modulator, wherein the spatial light modulator may be a DMD, an LCD, or an LCOS, but is not limited thereto, and may include a plurality of modulation units (such as a mirror unit or a liquid crystal pixel unit). Each modulation unit can correspondingly modulate image light of one pixel.
  • the number of the spatial modulators may be one, the one spatial modulator time-division modulates the corresponding color light to generate image light according to the corresponding N-bit image data, or the number of the spatial modulators may be two Or multiple, the two or more spatial modulators simultaneously or time-divisionally modulate the corresponding color light to generate image light according to the corresponding N-bit image data.
  • the image modulation module 122 may include spatial light modulators of respective colors, and each spatial light modulator modulates corresponding color light generation according to N-bit gray scale data of one color. Image light.
  • the display device 12 performs different processing on the received image data of the image according to different situations.
  • the image data of the image acquired by the data acquisition module 121 includes N of each color of each pixel of the image obtained by retaking the image according to steps S3, S4, and S5.
  • the grayscale data and the brightness improvement indicator of each color provides the brightness improvement indicator of each color to the light source controller 123, in the steps S8 and S9, the light source controller 123
  • the brightness of each color light emitted by the light source 124 is respectively controlled to be C1/C2 times of the preset standard brightness of each color according to the brightness improvement index of each color (that is, the brightness of each color light emitted by the light source 124 is relatively There is a decrease in the preset standard brightness).
  • the light source controller 123 may control the ratio of the brightness of each color light emitted by the light source 124 to the corresponding preset standard brightness, and the light source may be different.
  • the brightness of the first color light emitted by 124 may be C R1 /C R2 times of the preset standard brightness respectively; the brightness of the second color light emitted by the light source 124 may be C G1 /C G2 times of the preset standard brightness respectively.
  • the brightness of the third color light emitted by the light source 124 may be C B1 /C B2 times of the preset standard brightness, respectively, and the image modulation module 122 obtains the image of the re-photographed according to steps S3, S4 and S5 respectively.
  • the N-bit gray scale data of each color of each pixel modulates the corresponding color light to generate image light of each color.
  • the image data of the image acquired by the data acquiring module 121 includes each pixel of the image captured on the basis of the amount of light taken by the standard lens according to steps S6 and S7.
  • N-bit gray scale data of each color and brightness improvement index of each color (the brightness improvement index is characterized by no brightness improvement, which can be 0 or
  • the data acquisition module 121 provides the brightness improvement indicator of each color to the light source controller 1233.
  • the light source controller 123 is configured according to the brightness of each color.
  • the improvement indicator respectively controls the brightness of each color light emitted by the light source 124 to be a preset standard brightness of each color, and the image modulation module 122 determines each pixel of the image according to the amount of light taken by the standard lens.
  • the N-bit gray scale data of the color modulates the respective color lights of the preset standard brightness to generate image light of each color.
  • the image data of the image acquired by the data acquisition module 121 includes a partial color of each pixel of the image obtained by retaking the image according to steps S3, S4, and S5 (eg, The N-bit gray scale data of the first color and the second color: red and green) and the brightness improvement indicator of the partial color, and the image data of the image acquired by the data acquisition module 121 further includes the standard obtained according to steps S6 and S7.
  • the N-bit gray scale data of the other part of each pixel of the image for example, the third color: blue
  • the brightness improvement index of the partial color of the image taken on the basis of the amount of light taken by the lens (the brightness improvement index indicates no brightness increase) , which can be characterized by 0 or 1.).
  • the data obtaining module 121 provides the brightness improvement indicator of each color to the light source controller 123, and the light source controller 123 controls the light source 124 according to the brightness improvement index of the first color.
  • the brightness of the first color light is C R1 /C R2 times the preset standard brightness of the first color (ie, the brightness of the first color light emitted by the light source 124 is reduced relative to the preset standard brightness);
  • the light source controller 123 controls the brightness of the second color light emitted by the light source 124 to be C G1 /C G2 times the preset standard brightness of the second color according to the brightness improvement index of the first color (ie, the light source 124
  • the brightness of the emitted second color light is reduced relative to the preset standard brightness
  • the image modulation module 122 obtains N bits of the first color of each pixel of the image that is captured again according to steps S3, S4, and S5.
  • the gray scale data modulates the first color light to generate the image light of the first color, and the N-bit gray scale data of the second color of each pixel of the image obtained by the re-shooting according to steps S3, S4 and S5 to modulate the second color light generation Second color map Light.
  • the light source controller 123 controls the brightness of the third color light emitted by the light source 124 to be a preset standard brightness according to the brightness improvement index of the third color, and the image modulation module 122 is based on the standard lens intake.
  • the N-bit gray scale data of the third color of each pixel of the image captured on the basis of the light amount (such as the N-bit gray scale data of the third color obtained by the step S6) modulates the third of the preset standard brightness
  • the color light produces image light of a third color.
  • FIG. 5 is a schematic structural diagram of the light source 124 according to an embodiment.
  • 6 is a schematic structural view of the light source 124 of another embodiment.
  • the light source 124 includes a first light source 124a, a second light source 124b, and a third light source 124c.
  • the first light source 124a, the second light source 124b, and the third light source 124c each emit a kind
  • the first light source 124a, the second light source 124b, and the third light source 124c may be a laser of a first color, a laser of a second color, and a laser of a third color, respectively, by the light source controller 123 according to brightness enhancement.
  • the index controls the brightness of each color light emitted by the first light source 124a, the second light source 124b, and the third light source 124c to control the brightness of the respective color lights.
  • the image modulation module 122 may include a spatial light modulator, wherein the spatial light modulator may be a DMD, an LCD, or an LCOS, but is not limited thereto, and may include a plurality of modulation units (such as a mirror unit or a liquid crystal pixel unit). Each modulation unit can correspondingly modulate image light of one pixel.
  • the spatial light modulator may be a DMD, an LCD, or an LCOS, but is not limited thereto, and may include a plurality of modulation units (such as a mirror unit or a liquid crystal pixel unit). Each modulation unit can correspondingly modulate image light of one pixel.
  • the number of the spatial modulators may be one, and the one spatial modulator time-division modulates the corresponding color light to generate image light according to the corresponding N-bit image data, or The number of the spatial modulators may be two or more, and the two or more spatial modulators simultaneously or time-divisionally modulate the corresponding color light to generate image light according to the corresponding N-bit image data.
  • the image modulation module may include spatial light modulators of respective colors when the light sources 124 emit light of different colors at the same time, and each spatial light modulator modulates the corresponding color light according to a color N-bit gray scale data to generate image light. .
  • the light source 124 includes an excitation light source 1243 and a segmented color wheel 1244.
  • the excitation light source 1243 emits excitation light
  • the segmented color wheel 1244 is located at the excitation light source 1243.
  • the light path on which the excitation light is located is used to receive the excitation light and to sequentially emit the color light, and each color light emitted by the light source 124 is time-irradiated on the image modulation module 122.
  • the image modulation module 122 can include a spatial light modulator, the number of the spatial modulators can be one, two or more, and the two or more spatial modulators are time-separated according to the corresponding N bits.
  • Image data The respective color lights corresponding to the modulation generate image light.
  • FIG. 7 is a schematic structural diagram of the segmented color wheel 1244 shown in FIG.
  • the segmented color wheel 1244 may include a blue segmented region B, a red segmented region R, and a green segmented region G, and the blue segmented region B may be provided with a scattering material or a blue fluorescent material or (wherein The blue segmented region may be provided with a scattering material when the excitation light is blue light, and the blue segmented region B is provided with a blue fluorescent material when the excitation light is ultraviolet light), the red segmentation The region R is provided with a red fluorescent material, and the green segmented region G is provided with a green fluorescent material.
  • the segmented color wheel 1244 When the light source 124 is in operation, the segmented color wheel 1244 is rotated along a center of the circle such that the at least two segmented regions are time-divisionally located on the optical path of the excitation light, thereby generating time-series light of various colors (eg, sequentially issued) First color light, second color light, and third color light).
  • the light emitted by the segmented color wheel 1244 can be guided to the spatial light modulator via an optical relay element (not shown) such as a light collecting device, a collecting lens, etc., and details are not described herein. .
  • the specific content of steps S8, S9, S10, S11, and S12 of the display method of the display device 12 is substantially the same as the specific content of the steps of the second scenario, and the main difference between the two is that
  • the light source 124 emits mixed color light of at least two colors of the respective colors, and the mixed color light is split into light of the at least two colors;
  • the image modulation module 122 modulates light of a corresponding color of the at least two color lights according to the N-bit gray scale data of the at least two colors of each pixel of the image to form image light of a corresponding color of the image;
  • the light source controller 123 decreases the light source according to a minimum of the brightness improvement indexes corresponding to the at least two colors.
  • the brightness of the mixed color light is emitted such that the brightness of the light of the smallest color corresponding to the color of the mixed color light is correspondingly reduced according to the minimum based on the preset standard brightness of the color.
  • FIG. 8 is a schematic structural diagram of a light source used in the third scenario
  • FIG. 9 is a schematic diagram of a color wheel structure of the light source in FIG.
  • the light source 124 includes an excitation light source 1243, a color wheel 1244, and a beam splitting device 1245.
  • the excitation light source 1243 emits excitation light
  • the color wheel 1244 includes at least two segmented regions.
  • the two segments B, Y segments are periodically located on the optical path of the excitation light, and the segment region B receives the excitation light (blue excitation light) and emits the excitation Light as the third color light of the respective color lights, the segmented region Y has a fluorescent material (such as a yellow fluorescent material) and receives excitation light and generates fluorescence as the mixed color light (ie, the fourth color light)
  • the color mixing light is further split by the light splitting device 1245 into a first color light and a second color light.
  • the light source controller 123 is based on the brightness improvement indicators of the first and second colors.
  • the smaller one adjusts the brightness of the excitation light emitted by the excitation light source to control the brightness of the mixed color light emitted by the light source 124 such that the minimum of the color light corresponding to the color light is in the color
  • the default standard brightness based on the most The smaller one is correspondingly reduced.
  • step S10, S11 or S12 during the modulation period of the image, the image modulation module 122 modulates the at least two colors according to the N-bit gray scale data of the at least two colors of each pixel of the image. Light of a corresponding color in the light to form image light of a corresponding color of the image.
  • the step S10, S11 or S12 in the third scenario may be substantially the same as the step S10, S11 or S12 in the second scenario, but in a change
  • the display method may further include: a step of converting N-bit gray scale data of the sub-frame image data of the corresponding color of the larger of the two color brightness enhancement indicators, such as according to the smaller one of the first and second color colors
  • the N-bit gray-scale data of the sub-frame image data corresponding to the larger one of the brightness improvement indicators is converted into a gray-scale value, and the corresponding color light is modulated according to the converted N-bit gray-scale data to generate corresponding image light.
  • the number of spatial light modulators and the modulation timing of the image modulation module 122 need to be adapted to the timing of each color light emitted by the illumination module. .
  • the image modulation module 122 may include spatial light modulators (such as three spatial light modulators) that correspond one-to-one with the respective color lights, and the spatial light modulators of the respective colors may simultaneously perform image modulation, or the image modulation
  • the module 122 can include first and second spatial light modulators, wherein the first spatial light modulator modulates the first color light of the mixed color light during the first time period, and the second spatial light modulator modulates the mixed color light during the first time period The second color light, in addition, the first or second spatial light modulator further modulates the third color light for a second time period different from the first time period.
  • the spatial light modulator may be a DMD, an LCD or an LCOS but is not limited to the above.
  • FIG. 10 is a schematic structural diagram of a display device 12 of another light source 124 employed in the third scenario.
  • the light source 124 further includes an excitation light source 461, a color wheel 462, a light source controller 123, a diffuse reflection sheet 464, a beam splitter 465, a light homogenizing device 466, a supplemental light source 467, and a dichroic color patch. 468.
  • the beam splitter 465 includes a first region 4651 and a second region 4652.
  • the excitation light source 461 emits excitation light (such as blue excitation light), wherein a part of the excitation light is irradiated to the first region 4651, the first region.
  • the two regions 4652 direct (eg, transmit) the portion of the excitation light to the light homogenizing device 466, the homogenizing device 466 emitting the portion of the excitation light after the homogenization and as one of the colors of the respective colors Light (such as first color light), another portion of the excitation light is illuminated to the second region 4652, and the second region 4652 directs (eg, transmits) the other portion of the excitation light to the color
  • a coloring device 462 is provided with a fluorescent material (such as a yellow fluorescent material), and the fluorescent material receives the other portion of the excitation light to generate fluorescence as the mixed color light (such as yellow light), and the mixed color light is Color wheel guidance (such as reflection) to the An optical sheet 465, the beamsplitter 465 will
  • the excitation light may be blue excitation light, such as blue excitation, and the color wheel 462 may be provided with a yellow fluorescent material, and the mixed color light may be yellow light.
  • the first region 4651 may be located in a central region of the beam splitter 465 as a coating film that can reflect blue light.
  • the second region 4652 may be located at the periphery of the first region 4625 as a plating film that can transmit blue light and reflect yellow light.
  • the excitation light source 461 can include two light-emitting elements 4611, 4612 (such as two laser modules), respectively emitting the part of the excitation light and another part of the excitation light, and the light source controller 123 can The smaller one of the brightness improvement indicators corresponding to the at least two colors controls the light-emitting intensity of the two light-emitting elements 4611, 4612.
  • the supplemental light source 467 is configured to emit supplemental light, which is also directed to the image modulation module 122, the supplemental light having a component of one of the color-mixed lights, the light source controller 123 controls the brightness of the supplemental light emitted by the supplemental light source 467 according to a smaller one of the brightness improvement indicators corresponding to the at least two colors.
  • the dichroic patch 468 is disposed between the beam splitter 465 and the light homogenizing device 466, and the supplemental light source 467 emits the supplemental light to the dichroic patch 468, the dichroic patch 468
  • the supplemental light is reflected to the homogenizing device 466, and a portion of the excitation light and at least a portion of the light of the mixed color light are also transmitted through the dichroic color patch 468 to be directed to the homogenizing device 466.
  • the supplemental light may be a second color light, such as a red laser light, such that a portion of the second color light emitted by the light source 124 is partially contributed by the fluorescent material by the supplemental light, and the color mixture 124 emits a color mixture.
  • the second color light and the third color light in the light are adjustable to some extent and cannot be 100% modulated.
  • the supplemental light is a second color light, such as a red laser, but it can be understood that, in a modified embodiment, the supplemental light may also be a third color light, such as a green laser, or
  • the supplemental light may include two color lights of the second and third colors, such as a red laser and a green laser.
  • the image modulation module 122 can include a light with each color a corresponding spatial light modulator, wherein the spatial light modulators of the respective colors can simultaneously perform image modulation, wherein each color light emitted by the light homogenizing device 466 can further pass the colors through a light splitting device (not shown) Light is provided to the corresponding spatial light modulators of the respective colors.
  • the spatial light modulator may be a DMD, an LCD or an LCOS but is not limited to the above.
  • the image modulation module 122 may include a first spatial light modulator, a second spatial light modulator, and a third a spatial light modulator, a light splitting device (not shown) can split the color light emitted by the light homogenizing device 466 of the light source 124, and provide the first color light to the first spatial light modulator.
  • the first spatial light modulator being in accordance with a corresponding N
  • the bit gray scale data modulates the first color light to generate image light
  • the second spatial light modulator modulates the second color light of the mixed color light to generate image light according to the corresponding N-bit gray scale data
  • the third The spatial light modulator modulates the third color light of the mixed color light to generate image light according to the corresponding N-bit gray scale data.
  • the maximum brightness of a color of each pixel of an acquired image is less than a preset.
  • the lens 114 is controlled to increase the amount of light intake based on the amount of light taken by the standard lens, thereby obtaining the brightness of the color of each pixel of the image again, and the amount of light taken by the lens is increased.
  • the brightness of the color of each pixel of the image is increased again, so that the image acquired again can capture some darker image details that cannot be captured before the amount of light is increased, that is, some of the original Unrecorded details are recorded so that the image capture method and apparatus can capture more dark state details.
  • the light-emitting brightness of the light source can be adjusted according to the brightness improvement index, so that the light output of the light source can be accurately restored according to the N-bit gray-scale data converted by the improved image brightness.
  • the luminance value C3 of the luminance of the color of each pixel that acquires the image is mapped to the maximum grayscale value M that can be represented by the N-bit grayscale data, wherein 0 to the luminance value C3 are divided into corresponding M low to high Configuring M first luminance intervals of the grayscale values, and mapping the luminance values in each of the first luminance intervals to corresponding grayscale values, the luminance values C3 being less than or equal to Cmax and greater than or equal to the re-shooting
  • the maximum brightness C2 of the color of each pixel of the image, and further, the range of the first brightness interval may be relatively small, not only causing some dark portion details of the displayed image to be displayed, but also increasing the degree of detail of the displayed image.
  • the light-emitting brightness of the light source 124 can be adjusted to be small, the gray-scale value corresponding to the N-bit gray-scale data is relatively increased, and the modulation time when the image is modulated according to the N-bit gray-scale data can be long (for example, the ON of the DMD) The time is longer, thereby improving the phenomenon of generating more stray light caused by the shorter modulation time, thereby improving the contrast of the displayed image.
  • the image processing apparatus 11 increases the exposure time and/or adjusts the aperture to the advantage that darker image details can be captured. Because the exposure time is long, or the aperture becomes larger, some of the original unrecorded details will be recorded. Please refer to Table 1. For example, in the standard exposure time and standard aperture size, the brightness data in the range [0, 185.714285714285) is converted to grayscale value 0, so that the image details below 185.714285714285 nits are displayed as full. Black and nothing.
  • the exposure time is increased and the aperture is increased, the brightness of each pixel of the image is amplified, so that part of the brightness data below 185.714285714285 nits is amplified to exceed 185.714285714285 nits, thereby being converted or stored as 1 or Other grayscale values.
  • the corresponding image capturing method and display method are respectively designed for three different scenes, so that the display device 12 can more accurately restore the image processing device 11 to obtain the image, so that the image display effect is better.
  • the brightness of each color of the image can reach 100% global modulation shooting, and the color light emitted by the light source 124 can also achieve 100% global modulation, thereby improving the respective Image contrast and dynamic range of color.
  • the first scenario and the third scenario since the brightness of one color mainly for the image reaches 100% of the global modulation, and the color light emitted by the light source 124 reaches 100% global modulation can also improve the contrast and dynamic range of the one color image, and the contrast and dynamic range of the image processing and display device are high.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Optics & Photonics (AREA)
  • Projection Apparatus (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)

Abstract

一种图像处理装置(11)、显示装置(12)、图像拍摄与显示装置(10)及方法。图像处理装置(11)包括镜头(114)、亮度获取器(115)、存储器(113)、处理器(112)。亮度获取器(115)用于在标准镜头摄入光量的基础上获取一幅图像的各像素的一颜色的亮度。处理器(112)用于获取图像的各像素的各颜色的最大亮度,在最大亮度小于预设亮度时,处理器(112)控制镜头(114)在所述标准镜头摄入光量的基础上提高摄入光量;亮度获取器(115)还用于在提高镜头摄入光量的基础上再次获取该幅图像的各像素的所述颜色的亮度。处理器(112)还用于将亮度获取器(115)再次获得的该幅图像的各像素的所述颜色的亮度转换为N位灰阶数据及获取该幅图像的所述颜色的亮度提高指标。

Description

图像处理装置及方法、显示装置及方法、图像拍摄与显示装置及方法 技术领域
本发明涉及图像显示技术领域,尤其涉及一种图像处理装置及方法、显示装置及方法、图像拍摄与显示装置及方法。
背景技术
现有显示装置(如投影设备与投影***)一般包括光源、空间光调制器(如LCOS空间光调制器或DMD空间光调制器),所述光源射出光源光,所述空间光调制器依据图像数据对所述光源发出的光进行图像调制产生图像光,然而,现有显示装置可能存在对比度较低的情形,有必要改善。
发明内容
为解决现有显示装置对比度较低的问题,本发明提供一种对比度较高的图像处理装置及方法、显示装置及方法、图像拍摄与显示装置及方法。
一种图像处理装置,其包括包括拍摄装置、存储器、处理器,所述拍摄装置包括镜头及亮度获取器,其中,
所述亮度获取器用于在标准镜头摄入光量的基础上获取一幅图像的各像素的一颜色的亮度;
所述处理器用于获取所述图像的各像素的所述颜色的最大亮度C1,
在所述最大亮度C1小于预设亮度Cmax时,所述处理器控制所述镜头在所述标准镜头摄入光量的基础上提高摄入光量;
所述亮度获取器还用于在提高镜头摄入光量的基础上再次获取该幅图像的各像素的所述颜色的亮度,其中,所述再次获得的该幅图 像的各像素的所述颜色的最大亮度为C2,C1<C2<=Cmax;
所述处理器还用于将所述亮度获取器再次获得的该幅图像的各像素的所述颜色的亮度转换为N位灰阶数据,其中N位灰阶数据可表示M+1个灰阶值,其中所述处理器将所述再次获取该幅图像的各像素的所述颜色的亮度中亮度值C3映射为N位灰阶数据能表示的最大灰阶值,C2<=C3<=Cmax,所述处理器将0至所述亮度值C3内的亮度范围划分为M个第一亮度区间,且所述M个第一亮度区间从低至高分别对应由N位灰阶数据代表的最大灰阶值以下的M个由低至高排列的灰阶值,所述处理器将所述再次获取该幅图像的各像素的所述颜色的亮度中小于C3的任意亮度值Ci1映射为代表所述亮度值Ci1所属的第一亮度区域对应的灰阶值的N位灰阶数据;
所述处理器还用于获取该幅图像的所述颜色的亮度提高指标,其中该亮度提高指标表征提高镜头的摄入光量后所述亮度获取器感应到的该幅图像的所述颜色的亮度相对于所述标准镜头摄入光量基础上获取的该幅图像的所述颜色的亮度所提高的程度;
所述处理器还用于将再次拍摄的该幅图像的各像素的所述颜色的N位灰阶数据和所述亮度提高指标存储至所述存储器。
一种图像拍摄方法,其包括以下步骤:
在预设的镜头摄入光量的基础上,获取一幅图像的各像素的一颜色的最大亮度C1;
若所述C1小于预设亮度Cmax,则
提高镜头的摄入光量,使得感应到的该幅图像的各像素的所述颜色的亮度增加从而再次获取该幅图像的各像素的亮度,其中,该幅图像的所述颜色的最亮像素被感应到的亮度为C2,C1<C2<=Cmax;
存储该幅图像的所述颜色的图像数据:将感应到的该幅图像的各像素的所述颜色的亮度存储为N位灰阶数据,其中N位灰阶数据可表示M+1个灰阶值,所述感应到的该幅图像的各像素的所述颜色的亮度中亮度值C3映射为N位灰阶数据能表示的最大灰阶值,其中0至所述亮度值C3内的亮度范围划分为M个第一亮度区间,且所述M个第一亮 度区间从低至高分别对应由N位灰阶数据代表的最大灰阶值以下的M个由低至高排列的灰阶值,所述感应到的该幅图像的各像素的所述颜色的亮度中小于C3的任意亮度值Ci1映射为代表所述亮度值Ci1所属的第一亮度区域对应的灰阶值的N位灰阶数据,C2<=C3<=Cmax,以及
存储该幅图像的所述颜色的亮度提高指标,该亮度提高指标表征提高镜头的摄入光量后感应到的该幅图像的所述颜色的亮度相对于标准镜头摄入光量基础上获取的该幅图像的所述颜色的亮度所提高的程度。
一种图像显示装置,其包括数据获取模块、光源、光源控制器及图像调制模块,所述数据获取模块获取一幅图像的图像数据,该图像数据包含该幅图像的各像素的一颜色的N位灰阶数据,以及该幅图像的所述颜色的亮度提高指标,该幅图像的所述颜色的亮度提高指标表征:该幅图像的各像素的所述颜色的N位灰阶数据所表示的亮度相对于该幅图像的各像素的所述颜色的实际亮度所提高的程度,其中,一像素的所述颜色的实际亮度为在预设的标准条件下图像处理装置感应该幅图像对应的实体的亮度时所感应到的该像素的所述颜色的亮度;
在该幅图像的所述颜色的图像光的调制周期内,所述光源控制器在所述颜色的预设标准亮度的基础上按照所述颜色的亮度提高指标相应地减小所述光源出射所述颜色光的亮度;
所述图像调制模块根据该幅图像的各像素的所述颜色的N位灰阶数据调制所述颜色光,以形成该幅图像的所述颜色的图像光。
一种图像显示方法,其包括以下步骤:
获取一幅图像的图像数据,该图像数据包含该幅图像的各像素的一颜色的N位灰阶数据,以及该幅图像的所述颜色的亮度提高指标,该幅图像的所述颜色的亮度提高指标表征:该幅图像的各像素的所述颜色的N位灰阶数据所表示的亮度相对于该幅图像的各像素的所述颜色的实际亮度所提高的程度,其中,一像素的所述颜色的实际亮度为在预设的标准条件下感应该幅图像对应的实体的亮度时所感应到的该像素的所述颜色的亮度;
在该幅图像的所述颜色的图像光的调制周期内,调低光源的出射所述颜色光的亮度:在所述颜色的预设标准亮度的基础上按照所述颜色的亮度提高指标相应地减小所述光源出射所述颜色光的亮度;
根据该幅图像的各像素的所述颜色的N位灰阶数据调制所述颜色光,以形成该幅图像的所述颜色的图像光。
一种图像拍摄与显示装置,其包括镜头、亮度获取器、处理器、数据获取模块、光源、光源控制器及图像调制模块,其中所述镜头的摄入光量可调,
所述处理器在所述亮度获取器在标准镜头摄入光量的基础上获取的一幅图像的各像素的一颜色的最大亮度C1小于预设亮度Cmax时控制所述镜头在所述标准镜头摄入光量的基础上提高摄入光量,使得所述亮度获取器在提高镜头摄入光量的基础上再次获取该幅图像的各像素的一颜色的亮度,其中,所述再次获得的该幅图像的各像素的所述颜色的最大亮度为C2,C1<C2<=Cmax;
所述处理器还将所述亮度获取器再次获取该幅图像的各像素的一颜色的亮度存储为N位灰阶数据,其中N位灰阶数据可表示M+1个灰阶值,所述再次获取该幅图像的各像素的所述颜色的亮度中亮度值C3映射为N位灰阶数据能表示的最大灰阶值,其中0至所述亮度值C3内的亮度范围划分为M个第一亮度区间,且所述M个第一亮度区间从低至高分别对应由N位灰阶数据代表的最大灰阶值以下的M个由低至高排列的灰阶值,所述再次获取该幅图像的各像素的所述颜色的亮度中小于C3的任意亮度值Ci1映射为代表所述亮度值Ci1所属的第一亮度区域对应的灰阶值的N位灰阶数据,C2<=C3<=Cmax;
所述处理器还存储该幅图像的所述颜色的亮度提高指标,其中该亮度提高指标表征提高镜头的摄入光量后所述亮度获取器感应到的该幅图像的所述颜色的亮度相对于所述标准镜头摄入光量基础上获取的该幅图像的所述颜色的亮度所提高的程度,
所述数据获取模块获取该幅图像的各像素的所述颜色的N位灰阶数据,所述光源控制器获取该幅图像的亮度提高指标,
在该幅图像的所述颜色的图像光的调制周期内,所述光源控制器在所述颜色的预设标准亮度的基础上按照所述颜色的亮度提高指标相应地减小所述光源出射所述颜色光的亮度;所述图像调制模块根据该幅图像的各像素的所述颜色的N位灰阶数据调制所述颜色光,以形成该幅图像的所述颜色的图像光。
一种图像拍摄及显示方法,其包括以下步骤:
获取在标准镜头摄入光量的基础上拍摄一幅图像的各像素的一颜色的最大亮度C1;
在所述最大亮度C1小于预设亮度Cmax时,控制在所述标准镜头摄入光量的基础上提高镜头的摄入光量再次拍摄该幅图像的各像素的所述颜色的亮度,其中,所述再次拍摄的该幅图像的各像素的所述颜色的最大亮度为C2,C1<C2<=Cmax;
将所述再次拍摄的该幅图像的各像素的所述颜色的亮度转换为N位灰阶数据;其中N位灰阶数据可表示M+1个灰阶值,所述再次获取该幅图像的各像素的所述颜色的亮度中亮度值C3映射为N位灰阶数据能表示的最大灰阶值,其中0至所述亮度值C3内的亮度范围划分为M个第一亮度区间,且所述M个第一亮度区间从低至高分别对应由N位灰阶数据代表的最大灰阶值以下的M个由低至高排列的灰阶值,所述再次获取该幅图像的各像素的所述颜色的亮度中小于C3的任意亮度值Ci1映射为代表所述亮度值Ci1所属的第一亮度区域对应的灰阶值的N位灰阶数据,C2<=C3<=Cmax;及
存储该幅图像所述颜色的亮度提高指标,其中该亮度提高指标表征提高镜头的摄入光量后感应到的该幅图像的所述颜色的亮度相对于所述标准镜头摄入光量基础上获取的该幅图像的所述颜色的亮度所提高的程度;
获取该幅图像的图像数据,该图像数据包含该幅图像的各像素的所述颜色的N位灰阶数据以及该幅图像的所述颜色的亮度提高指标;
在该幅图像的所述颜色的图像光的调制周期内,调低光源的出射所述颜色光的亮度:在所述颜色的预设标准亮度的基础上按照所述颜 色的亮度提高指标相应地减小所述光源出射所述颜色光的亮度;及
根据该幅图像的各像素的所述颜色的N位灰阶数据调制所述颜色光,以形成该幅图像的所述颜色的图像光。
相较于现有技术,本发明图像处理装置及方法、显示装置及方法、图像拍摄与显示装置及方法中,在获取的一幅图像的各像素的一颜色的最大亮度小于预设亮度时,控制所述镜头在所述标准镜头摄入光量的基础上提高摄入光量,进而再次获得该幅图像的各像素的所述颜色的亮度,由于镜头的摄入光量提高了,所述再次获得的该幅图像的各像素的所述颜色的亮度提高了,使得再次获取的该幅图像的可以捕捉到未提高摄入光量前的无法捕捉到的一些较暗的图像细节,即原来的一些没有记录下来的细节会被记录到,从而所述图像拍摄方法及装置可以捕捉到更多的暗态细节。
进一步地,将所述再次拍摄的该幅图像的各像素的所述颜色的亮度转换为N位灰阶数据并存储该幅图像所述颜色的亮度提高指标,使得基于所述N位灰阶数据进行图像显示时,可以依据亮度提高指标调小光源的出光亮度,使得依据所述提高后的图像亮度转换的N位灰阶数据调制所述光源的出光可以准确还原图像。更进一步地,将所述亮度值C3映射为N位灰阶数据能表示的最大灰阶值M,其中0至所述亮度值C3划分为对应M个由低至高排列的灰阶值的M个第一亮度区间,且将每个第一亮度区间内亮度值映射为对应的灰阶值,所述亮度值C3小于等于Cmax且大于等于所述再次拍摄的该幅图像的各像素的所述颜色的最大亮度C2,进而,所述第一亮度区间的范围可以相对变小,不仅使得显示图像的一些暗部细节被展现,还能增加显示图像的细腻程度。此外,由于光源的出光亮度可以调小,所述N位灰阶数据对应的灰阶值相对也有提高,依据所述N位灰阶数据调制图像时的调制时间可以较长(如DMD的ON时间较长),从而改善调制时间较短造成的产生较多杂散光的现象,从而可以提高显示图像的对比度。
附图说明
图1是一种可提高对比度的显示装置的结构示意图。
图2是本发明图像拍摄与显示装置的方框结构示意图。
图3是图2所示图像拍摄与显示装置工作时的流程图
图4是针对第一种场景的一种实施例的图像拍摄与显示装置的光源的结构示意图。
图5是针对第二种场景的一种实施例的图像拍摄与显示装置的光源的结构示意图。
图6是针对第二种场景的另外一种实施例的图像拍摄与显示装置的光源的结构示意图。
图7是图6所示的色轮的结构示意图。
图8是针对第三种场景的图像拍摄与显示装置的采用的一种光源的结构示意图。
图9是图8的光源的色轮结构示意图。
图10是针对所述第三种场景采用的另一种光源的显示装置的结构示意图。
主要元件符号说明
图像拍摄与显示装置  10
拍摄装置            111
存储器              113
处理器              112
镜头                114
亮度获取器          115
数据获取模块        121
光源                124
光源控制器          123
图像调制模块        122
白光光源            1241
分光装置            1242、1245
第一光源           124a
第二光源           124b
第三光源           124c
激发光源           1243
色轮               1244、462
分段区域           B、R、G、Y
散射反射片         464
分光片             465
匀光装置           466
补充光源           467
二向色片           468
步骤               S1-S12
如下具体实施方式将结合上述附图进一步说明本发明。
具体实施方式
一般来说,人眼对亮度接受的适应范围很广,极限的话最暗可以感知0.0001尼特,最亮可以感知近100000尼特。在极亮和极暗的环境下,人眼的视力会下降。不影响视力的人眼亮度感知范围大约是0.01-1000尼特,人们在日常生活中常见且比较适应的亮度感知范围大约是0.0001-10000尼特。以不影响视力的人眼亮度感知范围为例,人眼可接受的最亮信号是最暗信号的100000倍。而正常单片的空间光调制器(如DMD)构成的图像调制模块的能调制的灰阶范围及其有限,以常见的8位灰阶信号为例,其能显示的灰阶不过255阶,对比度也很难超过2000:1。无论灰阶还是对比度,正常单片的空间光调制器构成的图像调制模块的能调制的范围都远低于人眼的感知范围。人们对显示图像的追求是希望能尽量接近人眼对自然环境的感知,高动态光照渲染(即HDR)技术被提出以提高显示装置(如投影装置)的动态范围。这里会有两个问题,单片空间光调制器的显示灰阶和对比度不够,以及拍摄设备的灰阶和对比度不够。
对于任何种类的空间光调制器,当某个像素是全黑时,由于种种原因,它都不可能输出的是亮度为零的一个像素,所以所有种类的空间光调制器都有一个自身的对比度。局限于各类空间光调制器的原理,其自身的显示灰阶和对比度很难大幅提高,远低于人眼可接受的动态范围。
经研究,一种HDR技术利用多片空间光调制器构成的光调制***来提高***灰阶和对比度,提升***的投影效果。请参阅图1,图1是一种可提高对比度的显示装置的结构示意图,其中标号1为光源,2为匀光中继透镜等构成的中继***,标号3为一片空间光调制器(如DMD或LCOS),标号4为另一个中继***,标号5为分光***,标号6为一片空间光调制器(如DMD)。可以理解,标号3与6所示的空间光调制器既可以是透射型也可以是反射型,图1中只示意了一种组合,并未把所有组合都示意出来。另外,标号5所示的分光***对DMD的空间光调制器可以包括TIR棱镜,对LCD或LCOS的空间光调制器可以包括偏振片。
如图1所示,若空间光调制器3的对比度是M:1,空间光调制器6的对比度是N:1的话。则整个***的对比度为M*N:1。这样,使用两片空间光调制器就使显示装置的对比度大大提高。如果两片空间光调制器都是正常8位灰阶,则***灰阶可达16位,6万多阶,***灰阶也大大提高。
然而,对于正常的图像处理装置(如相机、摄影机等摄影摄像设备),尤其数字拍摄设备同样没有高达16位的灰阶。一般的方法是在一帧图像的拍摄时间内拍下两幅照片,一幅曝光时间短,其包含所有亮部细节,一幅曝光时间长,其包含所有暗部细节。然后通过图像处理技术,把分别包含亮部细节和暗部细节的两幅低位灰阶图像合成成一幅同时包括亮部细节和暗部细节的高位灰阶图像。显示时,再通过算法把显示图像的信息分配到显示装置的两片空间光调制器上,最终显示出高动态范围的图像。
同样的显示图像,16灰阶图像虽然比8位灰阶图像拥有更高的动 态范围,但是数据量也极大的增加了,图像信号的数据量会极大增加,对图像信息的传输和存储都带来了困难。一个常见的缓解办法就是两片空间光调制器,一片用高分辨率,一片用低分辨率。低分辨率空间光调制器上的一个像素对应高分辨率空间光调制器上的多个像素。由于一般来说,相邻两个像素很少会呈现明暗差距极大的图像,所以可以通过这种方法得到与使用两片高对比度空间光调制器相类似的效果。通过降低一个空间光调制器的分辨率来降低图像的数据信息,缓解高数据量图像带来的存储和数据传输压力。
可见,采用上述采用两片空间光调制器及拍摄两幅曝光时间不同的照片的方式虽然可以提高***的对比度,但是由于数据量的增加也导致拍摄设备与显示设备存储和数据传输压力的增加,此外,采用两片空间光调制器还会增加成本。
针对以上问题,本发明提供一种带基色可调光源HDR技术的显示装置,其需要拍摄时对储存的图像信号进行处理,从而得到更高动态范围,更细腻显示效果的图像。
具体地,对于图像处理装置来说,需要图像处理装置根据每帧图像的明暗情况动态地增加曝光时长或调大光圈大小,从而调节每一帧图像的动态范围信号,以配合投影时可调光源的使用,扩大每一帧图像的动态范围。
进一步地,当光源的出光可调时,可以通过分析(如通过软件分析)每一幅(如每一帧)的投影图像,找出每一幅图像的最亮点(即该幅图像的各颜色的最大亮度)。一般大部分图像的最亮点都不会是***能够出射的最亮值。这意味着即使在一幅图像的最亮点,空间光调制器仍然需要减弱入射的光源光后再出射。如果光源可高频调整亮度的话,对于每一幅图像,光源都可以主动把亮度降低到帧图像的最亮点的亮度,通过调整图像调制模块(如空间光调制器)上每个像素的值来保持图像没有变化。通过动态调节光源的亮度,可以把空间光调制器的调制能力释放出来。
但是,在彩色显示的显示装置中,若光源出射的是混色光,分光 装置进一步将混色光分光成多种颜色的光,进一步的多个空间光调制器分别调制其中一种颜色的光,则,当一幅图像中某个像素的某一种基色的亮度很高,则光源不得不保持比较高的亮度。
更好的方法是光源分别出射独立的三基色光,每一基色光比例在一定程度上都可调,当一幅图像中某个像素的某一种基色的亮度很高时,光源可以把这种颜色的光保持比较高的亮度而其他颜色的光亮度比较低。这样就可以降低光源的整体亮度,提高***对比度。结合拍摄时拍摄设备根据每幅图像每种基色的明暗情况动态调节,和基色可调光源的使用,进一步扩大每一幅图像的动态范围。例如,对于激光器分时序照射三段式色轮构成从而分时序出射红、绿、蓝三色光的光源,即可以对每一基色光分别调节其出光亮度。其中,可以只采用一片空间光调制器分时序调制该三基色光。
具体地,本发明图像拍摄与显示装置包括图像处理装置与显示装置,且所述图像拍摄与显示装置的工作原理可以分以下三种场景进行描述。
第一种场景是:显示装置的光源为出射白光的光源,调制用的各颜色光(如各基色光)由白光分光而成,只能通过光源控制器调节光源从而调节白光的亮度大小,但各颜色光(如各基色光)的亮度大小不能单独调节。
在第一种场景中,图像处理装置在标准镜头摄入光量的基础上针对目标景物拍摄的一幅图像,并获知该幅图像的各颜色(如红绿蓝三基色)的最亮像素的亮度(最大亮度),设检测到的该幅图像的各颜色的最亮像素的亮度(及各像素的红绿蓝三基色的最大亮度)分别为CR1、CG1、CB1;则比较各颜色的比值CR1/Cmax1、CG1/Cmax2、CB1/Cmax3,取其中最大者。例如CR1/Cmax1最大,则图像处理装置在所述标准镜头摄入光量的基础上增加曝光时长和/或调大光圈,并针对同一目标景物再次拍摄并获取该幅图像的各像素的各颜色的亮度数据,使得依据再次拍摄的该幅图像的各像素的各颜色的亮度数据能感测到的各像素的红色的最大亮度达到Cmax1,也即再次拍摄的该幅图像的各像素的各 颜色的亮度数据相较于在标准镜头摄入光量的基础上拍摄的亮度数据提高了Cmax1/CR1,此时,感测到的红色最大亮度为Cmax1、绿色红色最大亮度为CG1*(Cmax1/CR1)、蓝色最大亮度为CB1*(Cmax1/CR1),记录所述亮度提高的比例(也成亮度提高指标)Cmax1/CR1。在显示装置,将白光光源的亮度调小的比例为CR1/Cmax1,即将白光光源的亮度调至原来的CR1/Cmax1(即标准白光亮度的CR1/Cmax1)。
第二种场景是:显示装置出射各颜色光(如三基色光),各颜色光可以单独调节光量大小。这种场景又分为多种情况,例如,时序出射各颜色光的光源;三个分别独立出射各颜色光的光源;一个白光光源出射白光,白光被分光成各颜色光,在每一颜色光的出射光路上设置一调节装置,分别调节各颜色光的光量大小。
在第二种场景中,当显示装置的光源的各颜色光的每一颜色光都是独立可调的情况下,在图像处理装置相应地可以对于一幅图像的每一种颜色的图像数据存储时进行亮度放大处理,并记录每一种颜色的放大比例。在显示装置,根据相应颜色的放大比例独立地调小每一颜色光的光量。
具体地,图像处理装置在标准镜头摄入光量的基础上针对目标景物拍摄的一幅图像的各颜色(如红绿蓝三基色)的最亮像素的亮度(最大亮度)分别为CR1、CG1、CB1;分别分析CR1是否小于Cmax1、CG1是否小于Cmax2、CB1是否小于Cmax3;并在分析结果为小于时,图像处理装置对应各颜色在所述标准镜头摄入光量的基础上分别调节光圈和曝光时长,使得依次感测到的红色最大亮度为Cmax1,感测到的绿色最大亮度为Cmax2,蓝色最大亮度为Cmax3,进一步的将亮度增强后的该幅图像的各像素的各基色亮度数据转换并存储为各颜色的图像数据的N位灰阶数据,以及记录各颜色的亮度增加的比例(也称为亮度提高指标,如Cmax1/CR1、Cmax2/CG1、Cmax3/CB1)。
进一步地,显示装置在获取到该幅图像的各颜色的图像数据时,按照各颜色亮度增加比例相应地减小各颜色光的出光亮度。例如,红色亮度增加比例为Cmax1/CR1,即曝光时长和光圈大小没有增加前,若 感应到的红色最大亮度为CR1,则增加时光时长和/或调大光圈后,感应到的红色最大亮度为CR1*(Cmax1/CR1)=Cmax1。则将光源的红光的出光亮度减小为原来CR1/Cmax1。若绿色亮度增加比例为Cmax2/CG1,即曝光时长和光圈大小没有增加前,若感应到的绿色最大亮度为CG1,则增加时光时长和/或调大光圈后,感应到的红色最大亮度为CG1*(Cmax2/CG1)=Cmax2。则将光源的绿光的出光亮度减小为原来CG1/Cmax2。若蓝色亮度增加比例为Cmax3/CB1,即曝光时长和光圈大小没有增加前,若感应到的蓝色最大亮度为CB1,则增加时光时长和/或调大光圈后,感应到的蓝色最大亮度为CB1*(Cmax3/CB1)=Cmax3。则将光源的红光的出光亮度减小为原来CB1/Cmax3。
第三种场景是:显示装置的光源为出射白光的光源,调制用的各颜色光包括同时出射的混色光(如两种颜色光的混色光:由黄色荧光粉产生的黄色光),只能通过光源控制器调节混色光的亮度大小,但混色光包含的两种颜色光不能单独控制调节。
具体地,图像处理装置可以采用与第二种场景中相同的方式相应地可以对于一幅图像的每一种颜色的图像数据存储时进行亮度放大处理,并记录每一种颜色的亮度放大比例。但是,所述第三种场景中,由于图像处理装置在对第一种颜色与第二种颜色的图像数据存储时的亮度放大比例可能不同,但是所述混色光包含的两种颜色光不能单独调节,因此,所述光源控制器只能依据第一种颜色的亮度放大比例与第二种颜色的亮度放大比例其中之一(如第一种颜色的亮度放大比例)调节所述光源发出的混色光的亮度,使得所述光源发出的混色光中其中一种颜色光(如第一颜色光)按照所述亮度放大比例对应调小,优选地,本实施方式中,在所述该图像的调制周期内所述光源出射所述第一种颜色与第二种颜色的混色光期间,所述光源控制器按照该第一种颜色与第二种颜色对应的亮度放大比例中的最小者(如第一种颜色的放大比例)减小所述光源出射所述混色光的亮度,从而使得所述混色光中所述最小者(如第一种颜色的亮度放大比例)对应颜色的光的亮度在该颜色的预设标准亮度的基础上按照该最小者(如第一种颜色 的亮度放大比例)相应地减小。进一步地,由于依据第一种颜色与第二种颜色对应的亮度放大比例中的最小者(如第一种颜色的亮度放大比例)调节所述光源发出的混色光,但所述第二种颜色的图像数据存储时的亮度放大比例可能与所述第一种颜色的图像数据存储时的亮度放大比例不同,因此在该图像的调制周期内所述光源出射所述第一种颜色与第二种颜色的混色光期间,可以进一步依据所述第一种颜色的亮度放大比例对所述图像处理装置存储的第二种颜色的图像数据进行亮度放大比例的转换,并针对转换后的第二种颜色的图像数据调制所述混色光中的第二颜色光产生图像光,从而对该幅图像进行准确的还原。
针对以上三种场景,在像素的实际亮度没有达到预设亮度时,图像处理装置增加曝光时长和/或调在光圈的好处是,可以捕捉到更暗的图像细节。因为曝光时间长了,或光圈变大了,原来的一些没有记录下来的细节会被记录到。另一方面,显示装置调小光源的出光亮度,首先,可以使得投影出来的不同幅图像的各像素的图像光的亮度的比例与各像素的实际亮度的比例大致是一致。由于在将亮度数据转换为灰阶值时,是将一个区间的亮度数据转换为一个灰阶值,因此不可能完全一致,但是趋势是相对应的。例如,对于任意两个像素,第一个像素的实际亮度比第二个像素的实际亮度大,则第一个像素的图像光的亮度不会比第二个像素的图像光的亮度小。其次,可以减小杂散光的强度,从而可以提高***的对比度。
以下结合附图进一步说明本发明。
请参阅图2,图2是本发明第一实施方式的图像拍摄与显示装置10的方框结构示意图。所述图像拍摄与显示装置10包括图像处理装置11及显示装置12。所述图像处理装置11可以拍摄一幅图像并输出该幅图像的图像数据,所述显示装置12接收该幅图像的图像数据并依据所述图像数据调制其光源发出的光线而产生图像光以显示图像。具体地,本实施方式中,所述图像处理装置11包括拍摄装置111、存储器113及处理器112,所述拍摄装置111包括镜头114及亮度获取器 115。所述显示装置12包括数据获取模块121、光源124、光源控制器123及图像调制模块122。
所述图像处理装置11可以包括但不限于相机、摄像机、摄像头、电脑、手机等电子装置。所述亮度获取器115可以包括图像传感器和转换电路,所述图像传感器用于侦测一幅图像的各像素的各颜色的亮度,所述转换电路可以模拟数字转换器,用于将所述图像传感器侦测到的亮度信号转换为数字信号以便于后续处理。可以理解,在变更实施方式中,所述存储器113及处理器112也可以集成于能够进行图像处理的图像处理装置中,如终端(如相机、摄像机、电脑、手机等)、服务器、网络平台、计算机设备等,其与拍摄装置111(如摄像头)进行通信以控制所述拍摄装置、对所述拍摄装置111输出的信号进行处理以及将处理后的图像数据传输至显示装置12。
请参阅图3,图3是所述图像拍摄与显示装置10工作时的图像拍摄及显示方法的流程图。具体地,所述图像处理装置11工作时,所述图像拍摄方法可以包括步骤S1-S7。
步骤S1,获取在标准镜头摄入光量的基础上拍摄的一幅图像的各像素的一颜色的最大亮度C1。具体地,所述步骤S1中,所述亮度获取器115在标准镜头摄入光量的基础上针对目标景物进行拍摄从而获取一幅图像的各像素的各颜色的亮度数据,可以理解,该幅图像的各像素的各颜色的亮度数据包括该幅图像的各颜色的最大亮度。所述亮度获取器115可以将该幅图像的各像素的各颜色的亮度数据传输至所述处理器112,所述处理器112可以依据该幅图像的各像素的各颜色的亮度数据获取所述图像的各像素的所述颜色的最大亮度C1。所述颜色可以包括红蓝绿任意一种基色。可以理解,所述处理器112可以依据该幅图像的各像素的各颜色的亮度数据获取所述图像的各像素的各颜色的最大亮度,如红色最大亮度CR1、绿色最大亮度CG1、蓝色最大亮度CB1
步骤S2,判断所述最大亮度C1是否小于预设亮度Cmax,当所述最大亮度C1小于预设亮度Cmax,执行步骤S3,若所述最大亮度C1 是否大于或等于预设亮度Cmax,则执行步骤S6。
具体地,在前述第一种场景中,即:显示装置12的光源124为出射白光的光源,调制用的各颜色光(如各基色光)由白光分光而成,只能通过光源控制器123调节光源124从而调节白光的光量大小,但各颜色光的光量大小不能单独调节,所述处理器112依据该幅图像的各像素的各颜色的亮度数据,获取该幅图像的各像素的各颜色的最大亮度(如红色最大亮度CR1、绿色最大亮度CG1、蓝色最大亮度CB1)并将所述各颜色的最大亮度与各颜色的预设亮度Cmax1、Cmax2及Cmax3比较,并在各颜色的最大亮度分别小于对应的预设亮度时(即CR1<Cmax1、CG1<Cmax2、CB1<Cmax1时)获知CR1/Cmax1、CG1/Cmax2、CB1/Cmax1中的最大者以及执行步骤S3;而在至少一颜色的最大亮度分别大于或等于对应的预设亮度时,执行步骤S6。
进一步地,在前述第二种场景及第三种场景中,即:显示装置12出射各颜色光(如各基色光),各颜色光可以单独调节光量大小,所述处理器112可以依据该幅图像的各像素的各颜色的亮度数据获取该幅图像的各像素的各颜色的最大亮度(如红色最大亮度CR1、绿色最大亮度CG1、蓝色最大亮度CB1)并将所述各颜色的最大亮度分别与各颜色对应的预设亮度Cmax1、Cmax2及Cmax3比较,从而判断每个颜色的所述最大亮度是否小于对应的预设亮度,即所述红色最大亮度CR1是否小于预设亮度Cmax1、所述绿色最大亮度CG1是否小于预设亮度Cmax2、所述蓝色最大亮度CB1是否小于预设亮度Cmax3。其中,当该幅图像的各像素的其中一颜色(所述颜色可以为红色、绿色、蓝色任意一颜色)的最大亮度C1小于对应预设值Cmax,则执行步骤S3,否则,执行步骤S6。
步骤S3,在所述最大亮度C1小于预设亮度Cmax时,获取在所述标准镜头摄入光量的基础上提高镜头的摄入光量再次拍摄的该幅图像的各像素的所述颜色的亮度,其中,所述再次拍摄的该幅图像的各像素的所述颜色的最大亮度为C2,C1<C2<=Cmax。
具体地,步骤S3中,在所述最大亮度C1小于预设亮度Cmax时, 所述处理器112控制所述镜头在所述标准镜头摄入光量的基础上提高摄入光量,使得所述亮度获取器115在提高的镜头摄入光量的基础上再次获取该幅图像的各像素的所述颜色的亮度。
其中,对于所述拍摄装置111来说,所述标准镜头摄入光量对应预设的标准曝光时长和预设的标准光圈大小,所述处理器112可以控制所述镜头114在所述预设的标准曝光时长的基础上增加曝光时长、或者所述预设的标准光圈大小的基础上调大光圈、或者在增加曝光时长与调大光圈,来提高所述镜头114的摄入光量。
可以理解,在前述第一种场景中,基于步骤S1获得的亮度数据,通过步骤S2判断该幅图像的各像素的各颜色的最大亮度(如红色最大亮度CR1、绿色最大亮度CG1、蓝色最大亮度CB1)分别小于对应的预设亮度时(即CR1<Cmax1、CG1<Cmax2、CB1<Cmax1时),所述处理器112控制所述镜头114在所述标准镜头摄入光量的基础上提高摄入光量,使得所述亮度获取器115在提高的镜头摄入光量的基础上再次获取针对同一目标景物感测的该幅图像的各像素的各颜色的亮度。
可以理解,在前述第二种场景及第三种场景中,所述步骤S3中,当其中一颜色(所述颜色可以为红色、绿色、蓝色任意一颜色)的最大亮度C1小于对应的预设亮度Cmax,所述处理器112控制所述镜头在所述标准镜头摄入光量的基础上提高摄入光量,所述亮度获取器115可以在提高的镜头摄入光量的基础上再次获取该幅图像的各像素的所述颜色的亮度数据,其中,所述摄入光量的提高幅度可以依据所述颜色的所述预设亮度与最大亮度之间的比值及/或差值,如所述比值及/或差值越大,所述提高幅度越大,由于镜头摄入光量的提高,所述再次拍摄的该幅图像的各像素的所述颜色的最大亮度为C2大于最大亮度C1,且控制所述最大亮度C2小于等于所述Cmax,即C1<C2<=Cmax,在一种实施例中,所述C2可以等于Cmax。可以理解,所述C2的值可以基于所述最大亮度C1与所述摄入光量的提高幅度确定,即由所述颜色的最大亮度与所述预设亮度之间的比值及/或差值确定。
可以理解,该第二中场景中,所述步骤S3中,当各颜色(如红绿 蓝三基色)的最大亮度均小于对应的预设亮度时,所述处理器112可以分别依据各颜色的最大亮度与所述预设亮度之间的比值及/或差值控制所述镜头114分别在所述标准镜头摄入光量的基础上提高摄入光量,可以理解,若各颜色的最大亮度与所述预设亮度之间的比值及/或差值不同,所述镜头114提高的摄入光量可以相应不同,所述亮度获取器在对应的提高的镜头摄入光量的基础上次分别获取该幅图像的各像素的各颜色的亮度数据,举例来说,若各颜色包括红绿蓝三基色,且各颜色(如红绿蓝三基色)的最大亮度均小于对应的预设亮度,所述处理器112可以依次(如分三次)依据各颜色的最大亮度与所述预设亮度之间的比值及/或差值控制所述镜头分别在所述标准镜头摄入光量的基础上提高摄入光量,所述亮度获取器114可以依次(如分三次)在各颜色的提高的镜头摄入光量的基础针对步骤S1中的同一目标景物获取该幅图像的各像素的各颜色的亮度数据。
进一步地,所述依次(如分三次)再次拍摄的该幅图像的各像素的各颜色的最大亮度(如红色最大亮度CR2、绿色最大亮度CG2、蓝色最大亮度CB2)可以不同,但是由于各颜色对应的镜头摄入光量均已提高,所述再次获取的该幅图像的各像素的各颜色的最大亮度(如红色最大亮度CR2、绿色最大亮度CG2、蓝色最大亮度CB2)分别大于步骤S1中的各颜色的最大亮度(如红色最大亮度CR2大于CR1、绿色最大亮度CG2大于CG1、蓝色最大亮度CB2大于CB1),并且所述再次获取的该幅图像的各像素的各颜色的最大亮度(如红色最大亮度CR2、绿色最大亮度CG2、蓝色最大亮度CB2)可以小于或者刚好等于各颜色的预设亮度(如Cmax1、Cmax2及Cmax3),即所述CR2小于等于Cmax1,所述CG2小于等于Cmax2,所述CB2小于等于Cmax3。
此外,可以理解,所述步骤S3中,当步骤S2中判断各颜色(如红绿蓝三基色)的部分颜色(如一个基色或者两个基色)的最大亮度均小于对应的预设亮度时,所述处理器112依次依据所述部分颜色的最大亮度与所述预设亮度之间的比值及/或差值控制所述镜头分别在所述标准镜头摄入光量的基础上提高摄入光量,使得所述亮度获取器 115在对应的提高镜头摄入光量的基础上次分别获取该幅图像的各像素的所述部分颜色的亮度数据。举例来说,当步骤S2中判断该幅图像的各像素的第一颜色(如红色)的最大亮度CR1小于预设亮度Cmax但各像素的第二颜色与第三颜色(如绿色、蓝色)的最大亮度CG1、CB1分别大于等于所述预设亮度Cmax2与Cmax3时,则针对第一颜色执行步骤S3,即所述处理器112控制所述镜头114在所述标准镜头摄入光量的基础上提高摄入光量,所述亮度获取器115在提高镜头摄入光量的基础上再次获取该幅图像的各像素的第一颜色的亮度数据,并且针对所述步骤S3获得的亮度数据执行步骤S4以及进一步执行步骤S5;针对第二颜色与第三颜色,将所述步骤S1中在所述标准镜头摄入光量获得的该幅图像的各像素的第二颜色与第三颜色(如绿色、蓝色)的亮度数据执行步骤S6及步骤S7。
步骤S4,将所述再次拍摄的该幅图像的各像素的所述颜色的亮度转换为N位灰阶数据;其中N位灰阶数据可表示M+1个灰阶值,所述再次获取该幅图像的各像素的所述颜色的亮度中亮度值C3映射为N位灰阶数据能表示的最大灰阶值M,其中0至所述亮度值C3内的亮度范围划分为M个第一亮度区间,且所述M个第一亮度区间从低至高分别对应由N位灰阶数据代表的最大灰阶值M以下的M个由低至高排列的灰阶值0,1,…M-1,所述再次获取该幅图像的各像素的所述颜色的亮度中小于亮度值C3的任意亮度值Ci1映射为代表所述亮度值Ci1所属的第一亮度区域对应的灰阶值的N位灰阶数据,C2<=C3<=Cmax。
具体地,在第一种场景中,所述处理器112将所述再次拍摄的该幅图像的各像素的各颜色的亮度分别转换为N位灰阶数据。可以理解,所述各颜色的N位灰阶数据均可表示M+1个灰阶值,其中所述N可以代表所述灰阶数据的二进制的位数,如3位、8位等,所述M代表所述N位灰阶数据可以代表的灰阶值的最大值,一般地,M+1=2N。举例来说,假设N等于3,即N为3位的二进制数据,3位的二进制数据可以代表的灰阶值数量为8个,即0至7共8个灰阶值,即M+1等于8,其中所述0至7个灰阶值可以分别由三位二进制数据000,001,010, 011,100,101,110,111表示。假设N等于8,即N为8位的二进制数据,8位的二进制数据可以代表的灰阶值数量为256个,即0至255共256个灰阶值,即M+1等于256,其中所述0至255个灰阶值可以分别由八位二进制数据分别表示,此处就不再一一列举具体256个八位二进制数据。
进一步地,在第一种场景中,对于所述再次拍摄的该幅图像的各像素的各颜色的亮度来说,所述处理器112将所述再次拍摄的该幅图像的各像素的各颜色的亮度中的亮度值为C3的亮度映射为N位灰阶数据能表示的最大灰阶值M,所述处理器112还将0至所述亮度值C3内的亮度范围平均划分为M个第一亮度区间[0,C3*1/M)、[C3*1/M,C3*2/M)、[C3*2/M,C3*3/M)、……、[C3*(j-1)/M,C3*j/M)、……、[C3*(M-1)/M,C3),其中j为大于等于1小于等于M的自然数,C2<=C3<=Cmax,且所述M个第一亮度区间从低至高分别对应由N位灰阶数据代表的最大灰阶值M以下的M个由低至高排列的灰阶值(如灰阶值0,1,…M-1),所述再次获取该幅图像的各像素的所述颜色的亮度中小于亮度值C3的任意亮度值Ci1映射为代表所述亮度值Ci1所属的第一亮度区域对应的灰阶值的N位灰阶数据,举例来说,当所述Ci1位于第一亮度区间[C3*(j-1)/M,C3*j/M),所述处理器将所述Ci1转换为代表灰阶值j-1的N位灰阶数据。在一种实施例中,所述亮度值C3可以等于所述亮度值C2。此外,可以理解,针对于再次拍摄的该幅图像的各像素的各颜色的亮度来说,各颜色的亮度值C3可以不同,如红色的亮度值、绿色的亮度值及蓝色的亮度值可以分别为CR3、CG3、CB3,其中CR2<=CR3<=Cmax1、CG2<=CG3<=Cmax2、CB2<=CB3<=Cmax3。通过所述步骤S3,该第一种场景中,所述再次拍摄的该幅图像的各像素的各颜色的亮度均转换为N位灰阶数据。
在第二种场景及第三种场景中,所述步骤S4中,所述处理器112将所述再次拍摄的该幅图像的各像素的各颜色或者部分颜色的亮度分别转换为N位灰阶数据。可以理解,所述各颜色的N位灰阶数据均可表示M+1个灰阶值,其中所述N可以代表所述灰阶数据的二进制的位 数,如3位、8位等,所述M代表所述N位灰阶数据可以代表的灰阶值的最大值,一般地,M+1=2N。举例来说,假设N等于3,即N为3位的二进制数据,3位的二进制数据可以代表的灰阶值数量为8个,即0至7共8个灰阶值,即M+1等于8,其中所述0至7个灰阶值可以分别由三位二进制数据000,001,010,011,100,101,110,111表示。假设N等于8,即N为8位的二进制数据,8位的二进制数据可以代表的灰阶值数量为256个,即0至255共256个灰阶值,即M+1等于256,其中所述0至255个灰阶值可以分别由八位二进制数据分别表示,此处就不再一一列举具体256个八位二进制数据。
在第二种场景及第三种场景中,所述步骤S4中,所述处理器112可以依次将所述再次拍摄的该幅图像的各像素的各颜色或者部分颜色的亮度分别转换为N位灰阶数据。对于所述再次拍摄的该幅图像的各像素的任意一颜色的亮度来说,所述处理器112将所述再次拍摄的该幅图像的各像素的所述颜色的亮度中的亮度值为C3的亮度映射为N位灰阶数据能表示的最大灰阶值M,所述处理器112还将0至所述亮度值C3内的亮度范围平均划分为M个第一亮度区间[0,C3*1/M)、[C3*1/M,C3*2/M)、[C3*2/M,C3*3/M)、……、[C3*(j-1)/M,C3*j/M)、……、[C3*(M-1)/M,C3),其中j为大于等于1小于等于M的自然数,C2<=C3<=Cmax,且所述M个第一亮度区间从低至高分别对应由N位灰阶数据代表的最大灰阶值M以下的M个由低至高排列的灰阶值(如灰阶值0,1,…M-1),所述再次获取该幅图像的各像素的所述颜色的亮度中小于亮度值C3的任意亮度值Ci1映射为代表所述亮度值Ci1所属的第一亮度区域对应的灰阶值的N位灰阶数据,举例来说,当所述Ci1位于第一亮度区间[C3*(j-1)/M,C3*j/M),所述处理器将所述Ci1转换为代表灰阶值j-1的N位灰阶数据。在一种实施例中,所述亮度值C3可以等于所述亮度值C2。此外,可以理解,针对于再次拍摄的该幅图像的各像素的各颜色或者部分颜色(不同的两个或三个)的亮度来说,各颜色或者部分颜色的亮度值C3可以不同,如红色亮度值、绿色亮度值及蓝色亮度值可以分别为CR3、CG3、CB3,其中 CR2<=CR3<=Cmax1、CG2<=CG3<=Cmax2、CB2<=CB3<=Cmax3。
步骤S5,存储该幅图像的所述颜色的亮度提高指标及所述再次拍摄的该幅图像的各像素的所述颜色的亮度转换的N位灰阶数据。其中,该亮度提高指标表征提高镜头的摄入光量后感应到的该幅图像的所述颜色的亮度相对于标准镜头摄入光量基础上获取的该幅图像的所述颜色的亮度所提高的程度。所述再次拍摄的该幅图像的各像素的所述颜色的亮度转换的N位灰阶数据为所述处理器112依照所述步骤S4获得,所述处理器112将所述再次拍摄的该幅图像的各像素的所述颜色的亮度转换的N位灰阶数据存储至所述存储器113中。
可以理解,所述步骤S5中,所述处理器112可以将该幅图像的各像素的各颜色或者部分颜色的N位灰阶数据和所述亮度提高指标存储至所述存储器113。所述亮度提高指标表征所述C2相对于所述C1所提高的程度,所述亮度提高指标可以通过C2/C1或(C2-C1)/C1表征,当所述C2=Cmax,所述亮度提高指标则为Cmax/C1或(Cmax-C1)/C1。进一步地,可以理解,各颜色的亮度提高指标可能不同,结合上述对步骤S3的描述可知,所述各颜色的亮度提高指标可以不同,如:红色亮度提高指标可以为CR2/CR1或(CR2-CR1)/CR2、绿色亮度提高指标可以为CG2/CG1或(CG2-CG1)/CG2、蓝色亮度提高指标可以为CB2/CB1或(CB2-CB1)/CB2,其中,当CR2=Cmax1、CG2=Cmax2、CB2=Cmax3,所述红色亮度提高指标可以分别为Cmax1/CR1或(Cmax1-CR1)/CR2、绿色亮度提高指标可以为Cmax2/CG1或(Cmax2-CG1)/CG2、蓝色亮度提高指标可以为Cmax3/CB1或(Cmax3-CB1)/CB2
进一步地,在第一种场景中,由于所述步骤S4中再次拍摄的该幅图像的各像素的各颜色的亮度均转换为N位灰阶数据,因此,所述步骤S5中,所述处理器112将所述再次拍摄的该幅图像的各像素的各颜色的N位灰阶数据均存储至所述存储器113中。进一步地,所述步骤S5中,所述处理器112还存储该幅图像的各像素的所述颜色的N位灰阶数据对应的亮度提高指标(即所述颜色的亮度提高指标),所述第一种场景中,该幅图像的各像素的各颜色对应同一个亮度提高指标, 所述同一个亮度提高指标为其中该幅图像的各像素的一颜色亮度提高指标,所述处理器112可以通过比较各颜色的比值CR1/Cmax1、CG1/Cmax2、CB1/Cmax3,取其中最大者对应颜色的亮度提高指标作为所述同一个亮度提高指标。可以理解,优选地,如前所述,各颜色的亮度提高指标不同时,如红色亮度提高指标为CR2/CR1或(CR2-CR1)/CR2、绿色亮度提高指标为CG2/CG1或(CG2-CG1)/CG2、蓝色亮度提高指标为CB2/CB1或(CB2-CB1)/CB2,其中,当CR2=Cmax1、CG2=Cmax2、CB2=Cmax3,所述红色亮度提高指标分别为Cmax1/CR1或(Cmax1-CR1)/CR2、绿色亮度提高指标为Cmax2/CG1或(Cmax2-CG1)/CG2、蓝色亮度提高指标为Cmax3/CB1或(Cmax3-CB1)/CB2,且各颜色的比值CR1/Cmax1、CG1/Cmax2、CB1/Cmax3中较大者为CR1/Cmax1时,取其中最大者CR1/Cmax1的颜色R对应的亮度提高指标(如CR2/CR1或(CR2-CR1)/CR2;Cmax1/CR1或(Cmax1-CR1)/CR2)作为所述同一个亮度提高指标。进一步地,所述再次拍摄的该幅图像的各像素的各颜色的N位灰阶数据与所述同一个亮度提高指标构成该幅图像的图像数据(如一帧图像数据),即该幅图像的图像数据其包括每个颜色的N位灰阶数据的子帧图像数据及所述同一个亮度提高指标。
在第二种场景及第三种场景中,由于所述步骤S4中再次拍摄的该幅图像的各像素的各颜色或部分颜色的亮度均转换为N位灰阶数据,因此,所述步骤S5中,所述处理器112将所述再次拍摄的该幅图像的各像素的各颜色或部分颜色的N位灰阶数据均存储至所述存储器中。进一步地,所述步骤S5中,所述处理器112将该幅图像的各像素的各颜色或部分颜色的N位灰阶数据及对应的亮度提高指标(即所述颜色的亮度提高指标)存储至所述存储器113中,其中,该幅图像的各像素的每个颜色的N位灰阶数据及对应的亮度提高指标可以构成每个颜色的子帧图像数据,即该幅图像的每个颜色的子帧图像数据包括该幅图像的各像素的每个颜色的N位灰阶数据及该子帧图像数据对应的亮度提高指标。换句话说,在步骤S5中,所述处理器112将该幅图像的各像素的各颜色或部分颜色的N位灰阶数据及该子帧图像数据对应的亮度提高指标存储至所述存储器中,即将该幅图像的各像素的各颜色 或部分颜色的子帧图像数据存储至所述存储器113中。其中,可以理解,第二种场景及第三种场景中,所述各颜色或部分颜色的亮度提高指标可以不同,如:红色亮度提高指标可以为CR2/CR1或(CR2-CR1)/CR2、绿色亮度提高指标可以为CG2/CG1或(CG2-CG1)/CG2、蓝色亮度提高指标可以为CB2/CB1或(CB2-CB1)/CB2,其中,当CR2=Cmax1、CG2=Cmax2、CB2=Cmax3,所述红色亮度提高指标可以分别为Cmax1/CR1或(Cmax1-CR1)/CR2、绿色亮度提高指标可以为Cmax2/CG1或(Cmax2-CG1)/CG2、蓝色亮度提高指标可以为Cmax3/CB1或(Cmax3-CB1)/CB2
步骤S6,在所述最大亮度C1大于等于预设亮度Cmax时,将在标准镜头摄入光量的基础上拍摄的该幅图像的各像素的所述颜色的亮度转换为N位灰阶数据;大于等于所述亮度值Cmax的亮度值映射为N位灰阶数据能表示的最大灰阶值M,其中0至所述亮度值Cmax内的亮度范围划分为M个第二亮度区间,且所述M个第二亮度区间从低至高分别对应由N位灰阶数据代表的最大灰阶值以下的M个由低至高排列的灰阶值,该幅图像的各像素的所述颜色的小于Cmax的任意亮度值Ci2映射为代表所述亮度值Ci2所属的第二亮度区域对应的灰阶值的N位灰阶数据。
可以理解,在第一场景中,依据步骤S1与S2,所述在标准镜头摄入光量的基础上拍摄该幅图像的各像素的各颜色的最大亮度中至少一个最大亮度大于或等于其对应的预设亮度,所述处理器112执行步骤S6,将所述在标准镜头摄入光量的基础上拍摄该幅图像的各像素的各颜色的亮度数据均转换为N位灰阶数据。具体地,对于最大亮度大于等于对应预设亮度的该幅图像的各像素的所述颜色(如第一颜色:红色)的亮度数据来说,所述处理器112按照如下规则将每个像素的所述颜色的亮度存储为对应的N位灰阶数据:大于等于所述亮度值Cmax(如Cmax1)的亮度值映射为N位灰阶数据能表示的最大灰阶值M,其中0至所述亮度值Cmax(如Cmax1)内的亮度范围划分为M个第二亮度区间[0,Cmax*1/M)、[Cmax*1/M,Cmax*2/M)、[Cmax*2/M,Cmax*3/M)、……、[Cmax*(j-1)/M,Cmax*j/M)、……、[Cmax*(M-1)/M, Cmax),j为大于等于1小于等于M的自然数,且所述M个第二亮度区间从低至高分别对应由N位灰阶数据代表的最大灰阶值以下的M个由低至高排列的灰阶值(如灰阶值0,1,…M-1),该幅图像的各像素的所述颜色的小于Cmax的任意亮度值Ci2映射为代表所述亮度值Ci2所属的第二亮度区域对应的灰阶值的N位灰阶数据。
进一步地,第一种场景中,所述步骤S6中,对于最大亮度小于等于对应预设亮度的该幅图像的各像素的所述颜色(如第二颜色:绿色)的亮度数据来说,按照如下规则将每个像素的所述颜色的亮度存储为对应的N位灰阶数据:将0至所述亮度值Cmax(如Cmax2)内的亮度范围划分为M个第二亮度区间[0,Cmax*1/M)、[Cmax*1/M,Cmax*2/M)、[Cmax*2/M,Cmax*3/M)、……、[Cmax*(j-1)/M,Cmax*j/M)、……、[Cmax*(M-1)/M,Cmax),j为大于等于1小于等于M的自然数,且所述M个第二亮度区间从低至高分别对应由N位灰阶数据代表的最大灰阶值以下的M个由低至高排列的灰阶值(如灰阶值0,1,…M-1),该幅图像的各像素的所述颜色的小于Cmax2的任意亮度值Ci2映射为代表所述亮度值Ci2所属的第二亮度区域对应的灰阶值的N位灰阶数据。
可以理解,在第二种场景及第三种场景中,依据步骤S1与S2,所述在标准镜头摄入光量的基础上拍摄该幅图像的各像素的各颜色或部分颜色的最大亮度大于等于对应的预设亮度,所述处理器112执行步骤S6,将所述在标准镜头摄入光量的基础上拍摄该幅图像的各像素的各颜色或部分颜色的亮度转换为N位灰阶数据。具体地,所述处理器112将所述亮度获取器在标准镜头摄入光量的基础上拍摄的该幅图像的各像素的各颜色或部分颜色的亮度转换为N位灰阶数据的方法如下:
所述处理器112将大于等于所述亮度值Cmax的亮度值映射为N位灰阶数据能表示的最大灰阶值M,其中0至所述亮度值Cmax内的亮度范围平均划分为M个第二亮度区间[0,Cmax*1/M)、[Cmax*1/M,Cmax*2/M)、[Cmax*2/M,Cmax*3/M)、……、[Cmax*(j-1)/M,Cmax*j/M)、……、[Cmax*(M-1)/M,Cmax),其中j为大于等于1小 于等于M的自然数,且所述M个第二亮度区间从低至高分别对应由N位灰阶数据代表的最大灰阶值以下的M个由低至高排列的灰阶值(如灰阶值0,1,…M-1),在标准镜头摄入光量的基础上拍摄的该幅图像的各像素的所述颜色的小于Cmax的任意亮度值Ci2映射为代表所述亮度值Ci2所属的第二亮度区域对应的灰阶值的N位灰阶数据,举例来说,当所述Ci2位于第二亮度区间[Cmax*(j-1)/M,Cmax*j/M),所述处理器将所述Ci2转换为代表灰阶值j-1的N位灰阶数据。可以理解,针对所述在标准镜头摄入光量的基础上拍摄的该幅图像的各像素的各颜色或部分颜色的亮度来说,各颜色的预设亮度可以不同,如红色预设亮度、绿色预设亮度及蓝色预设亮度可以分别为Cmax1、Cmax2、Cmax3。
所述步骤S7,存储在标准镜头摄入光量的基础上拍摄的该幅图像的各像素的所述颜色的亮度转换的N位灰阶数据及该幅图像对应的所述颜色的亮度提高指标,即在所述最大亮度C1大于等于预设亮度Cmax时的该幅图像所述颜色的亮度提高指标,且在所述最大亮度C1大于等于预设亮度Cmax时该幅图像所述颜色的亮度提高指标表征该幅图像的各像素的所述颜色的N位灰阶数据所表示的亮度相对于该幅图像的各像素的所述颜色的实际亮度没有提高,具体地,所述亮度提高指标可以通过1或0来表征。
进一步地,在第一种场景中,所述步骤S7中,所述处理器112可以将步骤S6中获得的该幅图像的各像素的各颜色的N位灰阶数据和所述同一个亮度提高指标存储至所述存储器113,即将所述在标准镜头摄入光量的基础上拍摄的该幅图像的各像素的各颜色的亮度转换的N位灰阶数据和所述同一个亮度提高指标存储至所述存储器。其中,所述在标准镜头摄入光量的基础上拍摄的该幅图像的各像素的各颜色的亮度转换的N位灰阶数据和所述同一个亮度提高指标构成该幅图像的图像数据(如一帧图像数据),所述在标准镜头摄入光量的基础上拍摄的该幅图像的各像素的每个颜色的亮度转换的N位灰阶数据及所述同一个亮度提高指标构成该幅图像的每个颜色的子帧图像数据。
在第二种场景及第三种场景中,所述处理器112可以将步骤S6中获得的该幅图像的各像素的各颜色或部分颜色的N位灰阶数据和对应的亮度提高指标存储至所述存储器113,即将所述在标准镜头摄入光量的基础上拍摄的该幅图像的各像素的各颜色或部分颜色的亮度转换的N位灰阶数据和各颜色或部分颜色对应的亮度提高指标存储至所述存储器113。其中,所述在标准镜头摄入光量的基础上拍摄的该幅图像的各像素的各颜色或部分颜色中任意一颜色的亮度转换的N位灰阶数据及对应的亮度提高指标构成该幅图像的所述颜色的子帧图像数据,即所述处理器112存储在标准镜头摄入光量的基础上拍摄的该幅图像的各颜色或部分颜色的子帧图像数据。
进一步地,通过上述可知,针对第一种场景,所述图像处理装置11拍摄目标景物的一幅图像时,所述处理器112最终在所述存储器中存储的是依据步骤S3、S4、S5获得再次拍摄的该幅图像的图像数据(如一帧图像数据,包括各颜色的子帧图像数据及各颜色对应的亮度提高指标)与依据步骤S6、S7获得的在标准镜头摄入光量的基础上拍摄的该幅图像的图像数据(如一帧图像数据,包括各颜色的子帧图像数据及各颜色对应的亮度提高指标,此时亮度提高指标为0或1)其中之一。所述图像处理装置11可以将所述再次拍摄的该幅图像的图像数据或在标准镜头摄入光量的基础上拍摄的该幅图像的图像数据输出至所述显示装置,使得所述显示装置12依据该幅图像的图像数据进行图像显示。
进一步地,通过上述可知,针对第二种场景及第三种场景,所述图像处理装置11拍摄目标景物的一幅图像时,所述处理器112最终在所述存储器113中存储的图像数据可以分为至少三种情况。
第一种情况,所述处理器112最终在所述存储器113中存储的图像数据是依据步骤S3、S4、S5获得再次拍摄的该幅图像的各颜色的图像数据(如一帧图像数据,包括各颜色或部分颜色的子帧图像数据及各颜色的亮度提高指标),此时,所述处理器112未通过所述步骤S6及S7存储数据,所述处理器112可以将依据步骤S3、S4、S5获得再 次拍摄的该幅图像的各颜色的图像数据输出至所述显示装置12,使得所述显示装置12依据该幅图像的图像数据进行图像显示。
第二种情况,所述处理器112最终在所述存储器113中存储的图像数据是依据步骤S6、S7获得的在标准镜头摄入光量的基础上拍摄的该幅图像的各颜色的图像数据(包括各颜色的子帧图像数据及各颜色的亮度提高指标,此时,所述各颜色的亮度提高指标为0或1),所述依据步骤S6、S7获得的在标准镜头摄入光量的基础上拍摄的该幅图像的各颜色的图像数据可以被所述处理器112提供至所述显示装置12,使得所述显示装置12依据该幅图像的各颜色的图像数据进行图像显示。
第三种情况,所述处理器112最终在所述存储器113中存储的图像数据包括依据步骤S3、S4、S5获得再次拍摄的该幅图像的部分颜色的图像数据(如包括部分颜色的子帧图像数据及部分颜色的亮度提高指标)及依据步骤S6、S7获得的在标准镜头摄入光量的基础上拍摄的该幅图像的部分颜色的图像数据(包括部分颜色的子帧图像数据及部分颜色的亮度提高指标,此时,所述部分颜色的亮度提高指标为0或1),所述依据步骤S3、S4、S5获得再次拍摄的该幅图像的部分颜色的图像数据与依据步骤S6、S7获得的在标准镜头摄入光量的基础上拍摄的该幅图像的部分颜色的图像数构成该幅图像的图像数据(如一帧图像数据),所述处理器112将该幅图像的图像数据输出至所述显示装置,,得所述显示装置依据该幅图像的图像数据进行图像显示。
为便于理解,以下以N为3,M等于8为例,并结合图3对所述图像处理装置11针对目标景物的拍摄并存储一幅图像的图像数据的进行示例性说明。
假设所述颜色(如第一颜色,红色)的预设亮度为1300,所述亮度获取器115在标准镜头摄入光量针对目标景物拍摄的一幅图像的各像素的所述颜色的最大亮度C1为800,由于最大亮度800小于所述预设亮度1300,所述处理器112依据所述步骤S3在调大镜头摄入光量后控制所述亮度获取器115针对同一目标景物再次拍摄以获取该幅图 像的各像素的所述颜色的亮度,设所述再次拍摄的该幅图像的各像素的所述颜色的最大亮度C2为1300,设所述亮度值C3也等于1300,所述处理器112执行步骤S4,将所述再次拍摄的该幅图像的各像素的所述颜色的亮度按照如下规则存储为N位灰阶数据:其中,亮度大于等于所述预设亮度1300的亮度数据存储为最大灰阶值(即灰阶值7,其对应的三位二进制数据为111),小于所述预设亮度1300的亮度按照其所述的第一亮度区间存储为对应的灰阶值(如灰阶值0-6),其中最大灰阶值以下的M个灰阶值(0至6)对应的M(如7)个亮度区间及N位灰阶数据的关系如下表1所示:
Figure PCTCN2017114738-appb-000001
表1为最大亮度Cx大于等于Cmax时,M个亮度区间、M个灰阶值、及N位灰阶数据的对应示意表
可以理解,在上述示例中,所述颜色的亮度提高指标可以通过C2/C1(如1300/800)或(C2-C1)/C1(如(1300-800)/800)表征。
假设所述颜色(如第一颜色,红色)的预设亮度为1300,所述亮度获取器115在标准镜头摄入光量针对目标景物拍摄的一幅图像的各像素的所述颜色的最大亮度C1为1300,由于最大亮度1300小于所述预设亮度1300,所述处理器112依据所述步骤S6将所述在标准镜头摄入光量的该幅图像的各像素的所述颜色的亮度按照如下规则存储为N位灰阶数据:其中,亮度大于等于所述预设亮度1300的亮度数据存储为最大灰阶值(即灰阶值7,其对应的三位二进制数据为111),小 于所述预设亮度1300的亮度按照其所述的第一亮度区间存储为对应的灰阶值(如灰阶值0-6),其中最大灰阶值以下的M个灰阶值(0至6)对应的M(如7)个亮度区间及N位灰阶数据的关系如上述表1所示,可以理解,所述颜色的亮度提高指标可以通过1或0表征。
需要说明的是,在第一种场景中,假设所述第一颜色(如红色)的预设亮度为1300,所述第二颜色的预设亮度也为1300,所述亮度获取器在标准镜头摄入光量针对目标景物拍摄的一幅图像的各像素的第一颜色的最大亮度CR1为1000,但该幅图像的各像素的第二颜色的最大亮度CG1为800,所述处理器112依据所述步骤S3在调大镜头摄入光量后控制所述亮度获取器针对同一目标景物再次拍摄以获取该幅图像的各像素的各颜色的亮度,设所述再次拍摄的该幅图像的各像素的第一颜色的最大亮度CR2为1300,第二颜色的最大亮度CG2则为800*1300/1000,设所述亮度值CR3与CG3也等于1300,则所述处理器112执行步骤S4,将所述再次拍摄的该幅图像的各像素的所述颜色的亮度按照如下规则存储为N位灰阶数据:其中,亮度大于等于所述预设亮度1300的亮度数据存储为最大灰阶值(即灰阶值7,其对应的三位二进制数据为111),小于所述预设亮度1300的亮度按照其所述的第一亮度区间存储为对应的灰阶值(如灰阶值0-6),其中最大灰阶值以下的M个灰阶值(0至6)对应的M(如7)个亮度区间及N位灰阶数据的关系如表1所示,所述颜色的亮度提高指标可以通过1300/1000或(1300-1000)/1000表征。
需要说明的是,在第一种场景中,假设所述第一颜色(如红色)的预设亮度为1300,所述第二颜色的预设亮度也为1300,所述亮度获取器115在标准镜头摄入光量针对目标景物拍摄的一幅图像的各像素的第一颜色的最大亮度CR1为1300,但该幅图像的各像素的第二颜色的最大亮度CG1为800,所述处理器112依据所述步骤S6将所述在标准镜头摄入光量的该幅图像的各像素的所述颜色的亮度按照如下规则存储为N位灰阶数据:其中,亮度大于等于所述预设亮度1300的亮度数据存储为最大灰阶值(即灰阶值7,其对应的三位二进制数据为111), 小于所述预设亮度1300的亮度按照其所述的第一亮度区间存储为对应的灰阶值(如灰阶值0-6),其中最大灰阶值以下的M个灰阶值(0至6)对应的M(如7)个亮度区间及N位灰阶数据的关系如上述表1所示,可以理解,所述颜色的亮度提高指标可以通过1或0表征。
请再次参阅图3,所述显示装置12工作时,所述显示方法可以包括以下步骤。
步骤S8,获取一幅图像的图像数据,该图像数据包含该幅图像的各像素的一颜色的N位灰阶数据,以及该幅图像的所述颜色的亮度提高指标,该幅图像的所述颜色的亮度提高指标表征:该幅图像的各像素的所述颜色的N位灰阶数据所表示的亮度相对于该幅图像的各像素的所述颜色的实际亮度所提高的程度,其中,一像素的所述颜色的实际亮度可以视为在预设的标准条件下(如所述标准镜头摄入光量的基础上所述亮度获取器)感应该幅图像对应的实体的亮度时(即拍摄该幅图像时)所感应到的该像素的所述颜色的亮度。
可以理解,所述步骤S8中,所述数据获取模块121可以获取该幅图像的图像数据,具体地,所述数据获取模块121可以接收所述图像处理装置的处理器输出的该幅图像的图像数据,依据上述图像处理装置11的图像拍摄方法的介绍可知,若该图像数据包含依据步骤S3、S4、S5获得该幅图像的各像素的一颜色的N位灰阶数据,则针对该幅图像的各像素的所述颜色的N位灰阶数据执行步骤S9及S10,若该图像数据包含依据步骤S6、S7获得该幅图像的各像素的一颜色的N位灰阶数据,则针对该幅图像的各像素的所述颜色的N位灰阶数据执行步骤S11及S12。
具体来说,针对第一种场景,所述数据获取模块121自所述图像处理装置11的处理器112接收依据步骤S3、S4、S5获得该幅图像的图像数据或者接收依据步骤S6、S7获取的该幅图像的图像数据。若该幅图像的图像数据是依据步骤S3、S4、S5获得的,则执行步骤S9及S10;若该幅图像的图像数据是依据步骤S6、S7获得的,则执行步骤S11及S12。
针对第二种场景的上述三种不同情况,所述数据获取模块121依据不同的情况对接收到的该幅图像的图像数据作不同的处理。具体地,在第一种情况下,执行步骤S9及S10,在第二种情况下,执行步骤S11及S12,在第三种情况下,对于所述依据步骤S3、S4、S5获得再次拍摄的该幅图像的部分颜色的图像数据执行步骤S9及S10,而对于依据步骤S6、S7获得的在标准镜头摄入光量的基础上拍摄的该幅图像的部分颜色的图像数据执行步骤S11及S12。
步骤S9,在该幅图像的所述颜色的图像光的调制周期内,调低光源的出射所述颜色光的亮度:在所述颜色的预设标准亮度的基础上按照所述颜色的亮度提高指标相应地减小所述光源出射的所述颜色光的亮度。
其中,所述光源控制器123在预设标准亮度的基础上按照所述亮度提高指标反比例地减小所述光源124出射的所述颜色光的亮度,如所述亮度提高指标为C2/C1,则所述光源控制器123控制的所述光源123出射的所述颜色光的亮度为预设标准亮度的C1/C2倍。
可以理解,该幅图像的所述颜色的亮度提高指标也可以视为表征:该幅图像的所述颜色的最亮像素(对应所述颜色的最大亮度的像素)的N位灰阶数据所表示的亮度相对于该幅图像的所述颜色的最亮像素(对应所述颜色的最大亮度的像素)的实际亮度所提高的程度,如C2/C1,换句话说,该幅图像的所述颜色的亮度提高指标为:该幅图像的所述颜色的最亮像素的N位灰阶数据所表示的亮度与该幅图像的所述颜色的最亮像素的实际亮度的比,如C2/C1。
步骤S10,在该幅图像的所述颜色的图像光的调制周期内,依据再次拍摄的该幅图像的各像素的所述颜色的N位灰阶数据调制所述减小的所述颜色光,以形成该幅图像的所述颜色的图像光。
所述步骤S8、S9及S10中,所述数据获取模块121获取该幅图像的图像数据后,将其中的再次拍摄的该幅图像的所述颜色的N位灰阶数据提供至所述图像调制模块122,所述数据获取模块121还将其中的所述颜色的亮度提高指标提供至所述光源控制器123,所述光源 控制器123依据所述颜色的亮度提高指标在所述预设标准亮度的基础上调小所述光源124出射的所述颜色光的亮度,所述图像调制模块122则依据该幅图像的所述颜色的N位灰阶数据调制所述光源124发出的调小后的所述颜色光从而获得该幅图像的所述颜色的图像光。
具体地,针对第一种场景,所述步骤S8,所述光源124发出的混色光(可以包括各颜色光,如白光),所述光源控制器123用于调节所述混色光(如白光)的亮度,当所述数据获取模块121获取的该幅图像的图像数据为依据步骤S3、S4、S5获得该幅图像的图像数据时,所述数据获取模块121将所述再次拍摄的该幅图像的各颜色的N位灰阶数据提供至所述图像调制模块122以及将所述同一个亮度提高指标(如C2/C1)提供至所述光源控制器123。进一步地,所述步骤S9中,所述光源控制器123依据所述同一个亮度提高指标在所述预设标准亮度的基础上调小所述光源发出的白光的亮度,使得所述光源124发出的各颜色光的亮度为预设标准亮度的C1/C2倍。更进一步地,所述步骤S10中,所述图像调制模块122依据所述再次拍摄的该幅图像的各颜色的N位灰阶数据分别调制所述光源发出的亮度为预设标准亮度的C1/C2倍的各颜色光获得该幅图像的各颜色的图像光,由于所述再次拍摄的该幅图像的各颜色的N位灰阶数据相较于在标准镜头摄入光量基础上拍摄的该幅图像的各颜色的亮度(也可以看做实际亮度)提高了C2/C1倍,而所述光源124此时发出的各颜色光的亮度为预设标准亮度的C1/C2倍,使得所述图像调制模块122获得的图像光刚好可以视为依据在标准镜头摄入光量基础上拍摄的该幅图像的各颜色的N位灰阶数据调制所述预设标准亮度的各颜色光获得的图像光,进而所述图像调制模块122可以准确还原所述图像处理装置11拍摄的目标景物的该幅图像。
进一步地,第一种场景中,当所述数据获取模块121获取的该幅图像的图像数据为依据步骤S6、S7获得该幅图像的图像数据时,所述数据获取模块121将所述在标准镜头摄入光量基础上拍摄的该幅图像的各颜色的N位灰阶数据提供至所述图像调制模块122以及将所述亮 度提高指标(如0或1)提供至所述光源控制器123。进一步地,所述步骤S9中,所述光源控制器123依据所述亮度提高指标控制所述光源发出的白光中的各颜色光的亮度至所述预设标准亮度。更进一步地,所述步骤S10中,所述图像调制模块122依据所述在标准镜头摄入光量基础上拍摄的该幅图像的各颜色的N位灰阶数据分别调制所述光源发出的亮度为预设标准亮度的各颜色光获得该幅图像的各颜色的图像光,使得所述图像调制模块122可以准确还原所述图像处理装置11拍摄的目标景物的该幅图像。
步骤S11,在该幅图像的所述颜色的图像光的调制周期内,控制光源发出所述颜色光的亮度为预设标准亮度。具体地,所述步骤S11中,所述光源控制器123接收所述数据获取模块121获得的亮度提高指标,依据表征亮度没有提高的亮度提高指标控制所述光源124发出的所述颜色光的亮度为预设标准亮度。
步骤S12,在该幅图像的所述颜色的图像光的调制周期内,依据在标准镜摄入光量的基础上拍摄的该幅图像的各像素的所述颜色的N位灰阶数据调制所述预设标准亮度的所述颜色光,以形成该幅图像的所述颜色的图像光。
所述步骤S12中,所述图像调制模块122依据所述在标准镜摄入光量的基础上拍摄的该幅图像的各像素的所述颜色的N位灰阶数据调制所述预设标准亮度的所述颜色光,以形成该幅图像的所述颜色的图像光。
更进一步地,可以理解,如前所述,针对第一种场景,在一种实施例中,请参阅图4,图4是一种实施例的所述光源124的结构示意图。所述光源124可以包括白光光源1241及分光装置1242,所述各颜色光可通过所述分光装置1242对所述白光光源1241发出的白光进行分光获得。所述图像调制模块122可以包括空间光调制器,其中,所述空间光调制器可以为DMD、LCD或LCOS但不限于上述,其可以包括多个调制单元(如反射镜单元或液晶像素单元),每个调制单元可以对应调制一个像素的图像光。当所述分光装置发出的各颜色光为时序 光,所述空间调制器的数量可以为一个,所述一个空间调制器分时依据对应的N位图像数据调制对应的各颜色光产生图像光,或者所述空间调制器的数量可以为两个或多个,所述两个或多个空间调制器同时或分时依据对应的N位图像数据调制对应的各颜色光产生图像光。当所述分光装置1242同时发出的各颜色光,所述图像调制模块122可以包括各颜色的空间光调制器,每一空间光调制器依据一颜色的N位灰阶数据调制对应的颜色光产生图像光。
具体地,针对第二种场景的三种不同情况,所述显示装置12依据不同的情况对接收到的该幅图像的图像数据作不同的处理。在第一种情况下,所述步骤S8中,所述数据获取模块121获取的该幅图像的图像数据包括依据步骤S3、S4及S5获得再次拍摄的该幅图像的各像素的各颜色的N位灰阶数据及各颜色的亮度提高指标,所述数据获取模块121将所述各颜色的亮度提高指标提供至所述光源控制器123,所述步骤S8及S9中,所述光源控制器123依据所述各颜色的亮度提高指标分别控制所述光源124发出的各颜色光的亮度分别为各颜色的预设标准亮度的C1/C2倍(即所述光源124发出的各颜色光的亮度相对于预设标准亮度的有减小)。其中,由于各颜色的亮度提高指标可能不同,因此所述光源控制器123控制所述光源124发出的各颜色光的亮度与对应的预设标准亮度的比例也可能不同,具体地,所述光源124发出的第一颜色光的亮度可以分别为预设标准亮度的CR1/CR2倍;所述光源124发出的第二颜色光的亮度可以分别为预设标准亮度的CG1/CG2倍;所述光源124发出的第三颜色光的亮度可以分别为预设标准亮度的CB1/CB2倍,所述图像调制模块122分别依据步骤S3、S4及S5获得再次拍摄的该幅图像的各像素的各颜色的N位灰阶数据调制对应颜色光产生各颜色的图像光。
在第二种情况下,所述步骤S8中,所述数据获取模块121获取的该幅图像的图像数据包括依据步骤S6、S7获得在标准镜头摄入光量基础上拍摄的该幅图像的各像素的各颜色的N位灰阶数据及各颜色的亮度提高指标(所述亮度提高指标表征没有亮度提高,其可以用0或 1来表征),所述数据获取模块121将所述各颜色的亮度提高指标提供至所述光源控制器1233,所述步骤S11及S12中,所述光源控制器123依据所述各颜色的亮度提高指标分别控制所述光源124发出的各颜色光的亮度分别为各颜色的预设标准亮度,所述图像调制模块122依据在标准镜头摄入光量基础上拍摄的该幅图像的各像素的各颜色的N位灰阶数据调制所述预设标准亮度的各颜色光产生各颜色的图像光。
在第三种情况下,所述步骤S8中,所述数据获取模块121获取的该幅图像的图像数据包括依据步骤S3、S4及S5获得再次拍摄的该幅图像的各像素的部分颜色(如第一颜色及第二颜色:红色及绿色)的N位灰阶数据及部分颜色的亮度提高指标,所述数据获取模块121获取的该幅图像的图像数据还包括依据步骤S6、S7获得在标准镜头摄入光量基础上拍摄的该幅图像的各像素的另外部分颜色(如第三颜色:蓝色)的N位灰阶数据及部分颜色的亮度提高指标(所述亮度提高指标表征没有亮度提高,其可以用0或1来表征)。具体地,所述数据获取模块121将所述各颜色的亮度提高指标提供至所述光源控制器123,所述光源控制器123依据所述第一颜色的亮度提高指标控制所述光源124发出的第一颜色光的亮度为第一颜色的预设标准亮度的CR1/CR2倍(即所述光源124发出的第一颜色光的亮度相对于预设标准亮度的有减小);所述光源控制器123依据所述第一颜色的亮度提高指标控制所述光源124发出的第二颜色光的亮度分别为第二颜色的预设标准亮度的CG1/CG2倍(即所述光源124发出的第二颜色光的亮度相对于预设标准亮度的有减小),所述图像调制模块122依据步骤S3、S4及S5获得再次拍摄的该幅图像的各像素的第一颜色的N位灰阶数据调制第一颜色光产生第一颜色的图像光、以及依据步骤S3、S4及S5获得再次拍摄的该幅图像的各像素的第二颜色的N位灰阶数据调制第二颜色光产生第二颜色的图像光。进一步地,所述光源控制器123依据所述第三颜色的亮度提高指标控制所述光源124发出的第三颜色光的亮度为预设标准亮度,所述图像调制模块122依据在标准镜头摄入光量基础上拍摄的该幅图像的各像素的第三颜色的N位灰阶数据(如通过所述步 骤S6获得的第三颜色的N位灰阶数据)调制所述预设标准亮度的第三颜色光产生第三颜色的图像光。
可以理解,如前所述,针对第二种场景的各种情况,在一种实施例中,请参阅图5及图6,图5是一种实施例的所述光源124的结构示意图,图6是另外一种实施例的所述光源124的结构示意图。
在图5所示的实施例中,所述光源124包括第一光源124a、第二光源124b及第三光源124c,所述第一光源124a、第二光源124b及第三光源124c各发出一种颜色光,所述第一光源124a、第二光源124b及第三光源124c可以分别为第一颜色的激光器、第二颜色的激光器及第三颜色的激光器,通过所述光源控制器123依据亮度提高指标控制所述第一光源124a、第二光源124b及第三光源124c发出的各颜色光的亮度从而控制所述各颜色光的亮度。所述图像调制模块122可以包括空间光调制器,其中,所述空间光调制器可以为DMD、LCD或LCOS但不限于上述,其可以包括多个调制单元(如反射镜单元或液晶像素单元),每个调制单元可以对应调制一个像素的图像光。当所述光源发出的各颜色光为时序光,所述空间调制器的数量可以为一个,所述一个空间调制器分时依据对应的N位图像数据调制对应的各颜色光产生图像光,或者所述空间调制器的数量可以为两个或多个,所述两个或多个空间调制器同时或分时依据对应的N位图像数据调制对应的各颜色光产生图像光。当所述光源124同时发出的各颜色光,所述图像调制模块可以包括各颜色的空间光调制器,每一空间光调制器依据一颜色的N位灰阶数据调制对应的颜色光产生图像光。
在图6所示的实施例中,所述光源124包括激发光源1243及分段式色轮1244,所述激发光源1243发出激发光,所述分段式色轮1244位于所述激发光源1243发出的激发光所在的光路上、且用于接收所述激发光并时序发出所述各颜色光,所述光源124发出的各颜色光是时序照射在所述图像调制模块122上的。可以理解,所述图像调制模块122可以包括空间光调制器,所述空间调制器的数量可以为一个、两个或多个,所述两个或多个空间调制器分时依据对应的N位图像数据 调制对应的各颜色光产生图像光。
可以理解,所述分段式色轮1244包括至少两个分段区域,请参阅图7,图7是图6所示的分段式色轮1244的结构示意图。所述分段式色轮1244可以包括蓝色分段区域B、红色分段区域R、绿色分段区域G,所述蓝色分段区域B可以设置有散射材料或者蓝色荧光材料或(其中,所述激发光为蓝色光时所述蓝色分段区域设置散射材料即可,所述激发光为紫外光时所述蓝色分段区域B设置蓝色荧光材料),所述红色分段区域R设置有红色荧光材料,所述绿色分段区域G设置有绿色荧光材料。所述光源124工作时,所述分段式色轮1244沿圆心转动,使得所述至少两个分段区域分时位于所述激发光的光路上,从而产生时序的各颜色光(如顺序发出第一颜色光、第二颜色光及第三颜色光)。具体地,可以理解,所述分段式色轮1244发出的光可以经由匀光装置、收集透镜等光学中继元件(图未示)被引导至所述空间光调制器,此处不再赘述。
进一步地,针对第三种场景,所述显示装置12的显示方法的步骤S8、S9、S10、S11及S12的具体内容与第二种场景的步骤的具体内容基本相同,二者的主要差别在于,所述第三种场景中,在该图像的调制周期内,所述光源124出射所述各颜色中至少两种颜色的混色光,且该混色光被分光成该至少两种颜色的光;所述图像调制模块122根据该幅图像的各像素的该至少两种颜色的N位灰阶数据调制该至少两种颜色光中相应颜色的光,以形成该幅图像的相应颜色的图像光;在所述该图像的调制周期内所述光源出射所述至少两种颜色的混色光期间,所述光源控制器123按照该至少两种颜色对应的亮度提高指标中的最小者减小所述光源出射所述混色光的亮度,从而使得所述混色光中所述最小者对应颜色的光的亮度在该颜色的预设标准亮度的基础上按照该最小者相应地减小。以下结合图8对所述显示装置12在第三种场景下的显示方法与第二种场景下的显示方法的差别处进行简要介绍。
请参阅图8及图9,图8是针对所述第三种场景采用的一种光源的结构示意图,图9是图8的光源的色轮结构示意图。
图8及图9所示的实施例中,所述光源124包括激发光源1243、色轮1244、分光装置1245,所述激发光源1243发出激发光,所述色轮1244包括至少两个分段区域B、Y,所述两个分段B、Y区段分时周期性位于所述激发光的光路上,所述分段区域B接收所述激发光(蓝色激发光)并发出所述激发光作为所述各颜色光中的第三颜色光,所述分段区域Y具有荧光材料(如黄色荧光材料)且接收激发光并产生荧光作为所述混色光(即所述第四颜色光),所述混色光进一步被分光装置1245分光为第一颜色光与第二颜色光,所述步骤S9中,所述光源控制器123基于所述第一与第二两种颜色的亮度提高指标中的较小者调小所述激发光源发出的激发光的亮度,从而来控制所述光源124发出的混色光的亮度,从而使得所述混色光中所述最小者对应颜色光的亮度在该颜色的预设标准亮度的基础上按照该最小者相应地减小。
进一步地,步骤S10、S11或S12中,在该图像的调制周期内,所述图像调制模块122根据该幅图像的各像素的该至少两种颜色的N位灰阶数据调制该至少两种颜色光中相应颜色的光,以形成该幅图像的相应颜色的图像光。其中,可以理解,在一种实施例中,所述第三种场景中的步骤S10、S11或S12中可以与第二种场景中的步骤S10、S11或S12均基本相同,但是在一种变更实施例中,为使得所述第一与第二两种颜色的亮度提高指标中的较大者对应的颜色的图像被准确的还原,所述显示方法还可以包括:对所述第一与第二两种颜色的亮度提高指标中的较大者对应的颜色的子帧图像数据的N位灰阶数据进行转换的步骤,如依据所述较小者对所述第一与第二两种颜色的亮度提高指标中的较大者对应的颜色的子帧图像数据的N位灰阶数据进行灰阶值的转换,并依据转换后的N位灰阶数据调制对应的颜色光产生对应的图像光。举例来说,若第一与第二两种颜色的亮度提高指标分别为CR2/CR1=1300/1000与CG2/CG1=1300/800,则依据所述CR2/CR1=1300/1000调节所述混色光的亮度使得所述混色光中第一颜色光的亮度为预设标准亮度的CR1/CR2=1000/1300倍,此外,对所述第二种颜色的N位灰阶数据进行灰阶值的转换,假设所述第二种颜色的N 位灰阶数据的灰阶值为A,则所述转换后的灰阶值为原灰阶值A的CR1/CR2=1000/1300倍,即转换后的灰阶值为A*1000/1300。
此外,可以理解,所述图8及图9所示的实施例中,所述图像调制模块122的空间光调制器的数量以及调制时序需与所述发光模块发出的各颜色光的时序相适应。所述图像调制模块122可以包括与各颜色光一一对应的空间光调制器(如三个空间光调制器),所述各颜色的空间光调制器可以同时进行图像调制,或者所述图像调制模块122可以包括第一、第二两个空间光调制器,其中第一空间光调制器在第一时段调制混色光中的第一颜色光,第二空间光调制器在第一时段调制混色光中的第二颜色光,此外,所述第一或第二空间光调制器还在不同于第一时段的第二时段调制第三颜色光。其中,所述空间光调制器可以为DMD、LCD或LCOS但不限于上述。
请参阅图10,图10是针对所述第三种场景采用的另一种光源124的显示装置12的结构示意图。图10所示的实施例中,所述光源124还包括激发光源461、色轮462、光源控制器123、散射反射片464、分光片465、匀光装置466、补充光源467及二向色片468。所述分光片465包括第一区域4651及第二区域4652,所述激发光源461发出激发光(如蓝色激发光),其中一部分激发光照射至所述第一区域4651,所述第一区域4651将所述一部分激发光引导(如反射)至所述散射反射片464,所述散射反射片464将所述一部分激发光进行散射并反射至所述分光片465,所述分光片465的第二区域4652将所述一部分激发光引导(如透射)至所述匀光装置466,所述匀光装置466发出匀光后的所述一部分激发光并作为所述各颜色光中的一种颜色光(如第一颜色光),所述激发光中的另一部分激发光照射至所述第二区域4652,所述第二区域4652将所述另一部分激发光引导(如透射)至所述色轮,所述色轮462上设置有荧光材料(如黄色荧光材料),所述荧光材料接收所述另一部分激发光产生荧光作为所述混色光(如黄色光),所述混色光被所述色轮引导(如反射)至所述分光片465,所述分光片465还将所述混色光引导(如反射)至所述匀光装置466,所述匀 光装置466发出匀光后的混色光。其中,所述激发光可以为蓝色激发光,如蓝色激发,所述色轮462上可以设置黄色荧光材料,所述混色光可以为黄色光。所述第一区域4651可以位于所述分光片465的中央区域,为可以反射蓝光的镀膜。所述第二区域4652可以位于所述第一区域4625的***,为可以透射蓝光并反射黄光的镀膜。
可以理解,所述激发光源461可以包括两个发光元件4611、4612(如两个激光器模组),分别发出所述一部分激发光与另一部分激发光,进而所述光源控制器123可以依据所述至少两种颜色对应的亮度提高指标中较小的一个亮度提高指标控制所述两个发光元件4611、4612的发光强度。
进一步地,所述补充光源467用于发出补充光,所述补充光也被引导至所述图像调制模块122,所述补充光具有混色光中其中一种颜色光的成分,所述光源控制器123依据所述至少两种颜色对应的亮度提高指标中较小的一个亮度提高指标控制所述补充光源467发出的所述补充光的亮度。所述二向色片468设置于所述分光片465与所述匀光装置466之间,所述补充光源467发出所述补充光至所述二向色片468,所述二向色片468将所述补充光反射至所述匀光装置466,所述一部分激发光与所述混色光的至少部分光还经由所述二向色片468透射后被引导至所述匀光装置466。
本实施方式中,所述补充光可以是第二颜色光,如红色激光,从而所述光源124发出的第二颜色光一部分由荧光材料贡献一部分由补充光贡献,进而所述光源124发出的混色光中的第二颜色光与第三颜色光在一定程度上可调,并不能100%调制。可以理解,本实施方式中,所述补充光是第二颜色光,如红色激光,但是可以理解,在变更实施方式中,所述补充光也可以是第三颜色光,如绿色激光,或者所述补充光可以包括第二及第三颜色两种颜色光,如红色激光与绿色激光。
进一步地,可以理解,图10所示的实施例中,所述图像调制模块122的空间光调制器的数量以及调制时序需与所述发光模块发出的各颜色光的时序相适应。所述图像调制模块122可以包括与各颜色光一 一对应的空间光调制器,所述各颜色的空间光调制器可以同时进行图像调制,其中所述匀光装置466发出的各颜色光可以进一步通过分光装置(图未示)将所述各颜色光分别提供到对应的各颜色的空间光调制器。其中,所述空间光调制器可以为DMD、LCD或LCOS但不限于上述。
举例来说,所述各颜色光包括第一颜色光、第二颜色光及第三颜色光时,所述图像调制模块122可以包括第一空间光调制器、第二空间光调制器及第三空间光调制器,分光装置(图未示)可以将所述光源124的匀光装置466发出的各颜色光进行分光,并将所述第一颜色光提供至所述第一空间光调制器,将所述第二颜色光提供到所述第二空间光调制器,以及将所述第三颜色光提供到所述第三空间光调制器,所述第一空间光调制器在依据对应的N位灰阶数据调制所述第一颜色光产生图像光,所述第二空间光调制器依据对应的N位灰阶数据调制所述混色光中的第二颜色光产生图像光,所述第三空间光调制器依据对应的N位灰阶数据调制所述混色光中的第三颜色光产生图像光。
相较于现有技术,本发明图像处理装置11及方法、显示装置12及方法、图像拍摄与显示装置10及方法中,在获取的一幅图像的各像素的一颜色的最大亮度小于预设亮度时,控制所述镜头114在所述标准镜头摄入光量的基础上提高摄入光量,进而再次获得该幅图像的各像素的所述颜色的亮度,由于镜头的摄入光量提高了,所述再次该幅图像的各像素的所述颜色的亮度提高了,使得再次获取的该幅图像的可以捕捉到未提高摄入光量前的无法捕捉到的一些较暗的图像细节,即原来的一些没有记录下来的细节会被记录到,从而所述图像拍摄方法及装置可以捕捉到更多的暗态细节。
进一步地,将所述再次拍摄的该幅图像的各像素的所述颜色的亮度转换为N位灰阶数据并存储该幅图像所述颜色的亮度提高指标,使得基于所述N位灰阶数据进行图像显示时,可以依据亮度提高指标调小光源的出光亮度,使得依据所述提高后的图像亮度转换的N位灰阶数据调制所述光源的出光可以准确还原图像。更进一步地,将所述再 次获取该幅图像的各像素的所述颜色的亮度中亮度值C3映射为N位灰阶数据能表示的最大灰阶值M,其中0至所述亮度值C3划分为对应M个由低至高排列的灰阶值的M个第一亮度区间,且将每个第一亮度区间内亮度值映射为对应的灰阶值,所述亮度值C3小于等于Cmax且大于等于所述再次拍摄的该幅图像的各像素的所述颜色的最大亮度C2,进而,所述第一亮度区间的范围可以相对变小,不仅使得显示图像的一些暗部细节被展现,还能增加显示图像的细腻程度。此外,由于光源124的出光亮度可以调小,所述N位灰阶数据对应的灰阶值相对也有提高,依据所述N位灰阶数据调制图像时的调制时间可以较长(如DMD的ON时间较长),从而改善调制时间较短造成的产生较多杂散光的现象,从而可以提高显示图像的对比度。
更进一步地,在像素的最大亮度没有达到预设亮度时,图像处理装置11增加曝光时长和/或调在光圈的好处是,可以捕捉到更暗的图像细节。因为曝光时间长了,或光圈变大了,原来的一些没有记录下来的细节会被记录到。请参阅表1,举例来说,在标准曝光时长和标准光圈大小下,[0,185.714285714285)范围内的亮度数据都被转换为灰阶值0,从而亮度为185.714285714285尼特以下的图像细节都显示为全黑而变得都没有。而增加曝光时长和/调大光圈后,图像各像素被感应到的亮度会被放大,从而原来185.714285714285尼特以下的一部分亮度数据会被放大得超过185.714285714285尼特,从而被转换或存储为1或者其它灰阶值。
此外,针对三种不同的场景分别设计对应的图像拍摄方法与显示方法,可以使得所述显示装置12能够更准确的还原图像处理装置11获得该幅图像,使得图像显示效果较佳。
特别是,针对第二种场景,该幅图像的各颜色的亮度可以达到100%的全域调制拍摄,同时所述光源124发出的各颜色光也可以达到100%的全域调制,从而提高所述各颜色的图像对比度及动态范围。针对第一种场景与第三种场景,由于主要针对该幅图像的一种颜色的亮度达到100%的全域调制拍摄,以及对所述光源124发出的一种颜色光达到 100%的全域调制,也可以提高所述一种颜色图像的对比度及动态范围,所述图像处理及显示装置的对比度及动态范围较高。
以上所述仅为本发明的实施例,并非因此限制本发明的专利范围,凡是利用本发明说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本发明的专利保护范围内。

Claims (23)

  1. 一种图像处理装置,其特征在于,所述图像处理装置包括拍摄装置、存储器、处理器,所述拍摄装置包括镜头及亮度获取器,其中,
    所述亮度获取器用于在标准镜头摄入光量的基础上获取一幅图像的各像素的一颜色的亮度;
    所述处理器用于获取所述图像的各像素的所述颜色的最大亮度C1,
    在所述最大亮度C1小于预设亮度Cmax时,所述处理器控制所述镜头在所述标准镜头摄入光量的基础上提高摄入光量;
    所述亮度获取器还用于在提高镜头摄入光量的基础上再次获取该幅图像的各像素的所述颜色的亮度,其中,所述再次获得的该幅图像的各像素的所述颜色的最大亮度为C2,C1<C2<=Cmax;
    所述处理器还用于将所述亮度获取器再次获得的该幅图像的各像素的所述颜色的亮度转换为N位灰阶数据,其中N位灰阶数据可表示M+1个灰阶值,其中所述处理器将所述再次获取该幅图像的各像素的所述颜色的亮度中亮度值C3映射为N位灰阶数据能表示的最大灰阶值,C2<=C3<=Cmax,所述处理器将0至所述亮度值C3内的亮度范围划分为M个第一亮度区间,且所述M个第一亮度区间从低至高分别对应由N位灰阶数据代表的最大灰阶值以下的M个由低至高排列的灰阶值,所述处理器将所述再次获取该幅图像的各像素的所述颜色的亮度中小于C3的任意亮度值Ci1映射为代表所述亮度值Ci1所属的第一亮度区域对应的灰阶值的N位灰阶数据;
    所述处理器还用于获取该幅图像的所述颜色的亮度提高指标,其中该亮度提高指标表征提高镜头的摄入光量后所述亮度获取器感应到的该幅图像的所述颜色的亮度相对于所述标准镜头摄入光量基础上获取的该幅图像的所述颜色的亮度所提高的程度;
    所述处理器还用于将再次拍摄的该幅图像的各像素的所述颜色的N位灰阶数据和所述亮度提高指标存储至所述存储器。
  2. 根据权利要求1所述的图像处理装置,其特征在于,所述C2 等于所述Cmax。
  3. 根据权利要求1所述的图像处理装置,其特征在于,所述标准镜头摄入光量对应预设的标准曝光时长和预设的标准光圈大小;
    所述处理器控制所述镜头在所述预设的标准曝光时长的基础上增加曝光时长;和/或在所述预设的标准光圈大小的基础上调大光圈,来提高所述镜头的摄入光量。
  4. 根据权利要求1所述的图像处理装置,其特征在于,所述亮度提高指标表征所述C2相对于所述C1所提高的程度。
  5. 根据权利要求1所述的图像处理装置,其特征在于,C2=C3,所述亮度提高指标等于C2/C1或(C2-C1)/C1。
  6. 根据权利要求1所述的图像处理装置,其特征在于,所述M个由低至高排列的灰阶值从低至高各自对应的第一亮度区间分别为[0,C3*1/M)、[C3*1/M,C3*2/M)、[C3*2/M,C3*3/M)、……、[C3*(j-1)/M,C3*j/M)、……、[C3*(M-1)/M,C3),其中j为大于等于1小于等于M的自然数。
  7. 根据权利要求1所述的图像处理装置,其特征在于,在所述最大亮度C1大于等于预设亮度Cmax时,所述处理器将所述亮度获取器在标准镜头摄入光量的基础上拍摄的该幅图像的各像素的所述颜色的亮度存储为N位灰阶数据;大于等于所述亮度值Cmax的亮度值映射为N位灰阶数据能表示的最大灰阶值,其中0至所述亮度值Cmax内的亮度范围划分为M个第二亮度区间,且所述M个第二亮度区间从低至高分别对应由N位灰阶数据代表的最大灰阶值以下的M个由低至高排列的灰阶值,所述在标准镜头摄入光量的基础上拍摄的该幅图像的各像素的所述颜色的小于Cmax的任意亮度值Ci2映射为代表所述亮度值Ci2所属的第二亮度区域对应的灰阶值的N位灰阶数据;所述处理器还存储在所述最大亮度C1大于等于预设亮度Cmax时的该幅图像所述颜色的亮度提高指标,其中在所述最大亮度C1大于等于预设亮度Cmax时,该幅图像所述颜色的亮度提高指标表征该幅图像的各像素的所述颜色的N位灰阶数据所表示的亮度相对于该幅图像的各像素的所述颜 色的实际亮度没有提高。
  8. 根据权利要求7所述的图像处理装置,其特征在于,其中,所述M个由低至高排列的灰阶值从低至高各自对应的亮度的第二区间分别为[0,Cmax*1/M)、[Cmax*1/M,Cmax*2/M)、[Cmax*2/M,Cmax*3/M)、……、[Cmax*(j-1)/M,Cmax*j/M)、……、[Cmax*(M-1)/M,Cmax),其中j为大于等于1小于等于M的自然数。
  9. 一种图像拍摄方法,其包括以下步骤:
    在预设的镜头摄入光量的基础上,获取一幅图像的各像素的一颜色的最大亮度C1;
    若所述C1小于预设亮度Cmax,则
    提高镜头的摄入光量,使得感应到的该幅图像的各像素的所述颜色的亮度增加从而再次获取该幅图像的各像素的亮度,其中,该幅图像的所述颜色的最亮像素被感应到的亮度为C2,C1<C2<=Cmax;
    存储该幅图像的所述颜色的图像数据:将感应到的该幅图像的各像素的所述颜色的亮度存储为N位灰阶数据,其中N位灰阶数据可表示M+1个灰阶值,所述感应到的该幅图像的各像素的所述颜色的亮度中亮度值C3映射为N位灰阶数据能表示的最大灰阶值,其中0至所述亮度值C3内的亮度范围划分为M个第一亮度区间,且所述M个第一亮度区间从低至高分别对应由N位灰阶数据代表的最大灰阶值以下的M个由低至高排列的灰阶值,所述感应到的该幅图像的各像素的所述颜色的亮度中小于C3的任意亮度值Ci1映射为代表所述亮度值Ci1所属的第一亮度区域对应的灰阶值的N位灰阶数据,C2<=C3<=Cmax,以及
    存储该幅图像的所述颜色的亮度提高指标,该亮度提高指标表征提高镜头的摄入光量后感应到的该幅图像的所述颜色的亮度相对于标准镜头摄入光量基础上获取的该幅图像的所述颜色的亮度所提高的程度。
  10. 一种图像显示装置,其特征在于,包括数据获取模块、光源、光源控制器及图像调制模块,所述数据获取模块获取一幅图像的图像数据,该图像数据包含该幅图像的各像素的一颜色的N位灰阶数据, 以及该幅图像的所述颜色的亮度提高指标,该幅图像的所述颜色的亮度提高指标表征:该幅图像的各像素的所述颜色的N位灰阶数据所表示的亮度相对于该幅图像的各像素的所述颜色的实际亮度所提高的程度,其中,一像素的所述颜色的实际亮度为在预设的标准条件下图像处理装置感应该幅图像对应的实体的亮度时所感应到的该像素的所述颜色的亮度;
    在该幅图像的所述颜色的图像光的调制周期内,所述光源控制器在所述颜色的预设标准亮度的基础上按照所述颜色的亮度提高指标相应地减小所述光源出射所述颜色光的亮度;
    所述图像调制模块根据该幅图像的各像素的所述颜色的N位灰阶数据调制所述颜色光,以形成该幅图像的所述颜色的图像光。
  11. 根据权利要求10所述的图像显示装置,其特征在于,所述光源控制器在预设标准亮度的基础上按照所述亮度提高指标反比例地减小所述光源所述颜色光的亮度。
  12. 根据权利要求10所述的图像显示装置,其特征在于,该幅图像的所述颜色的亮度提高指标表征:该幅图像的所述颜色的最亮像素的N位灰阶数据所表示的亮度相对于该幅图像的所述颜色的最亮像素的实际亮度所提高的程度。
  13. 根据权利要求12所述的图像显示装置,其特征在于,该幅图像的所述颜色的亮度提高指标为:该幅图像的所述颜色的最亮像素的N位灰阶数据所表示的亮度与该幅图像的所述颜色的最亮像素的实际亮度的比。
  14. 根据权利要求10所述的图像显示装置,其特征在于,该幅图像的图像数据包括各像素的两种或两种以上颜色的N位灰阶数据,以及该幅图像的各颜色的亮度提高指标;
    所述光源分时序出射各颜色光,在该幅图像的各颜色的图像光的调制周期内,所述光源分别出射相应颜色光;
    在该幅图像的各颜色的图像光的调制周期内,所述光源控制器在相应颜色的预设标准亮度的基础上按照相应颜色的亮度提高指标相应 地减小所述光源出射相应颜色光的亮度,所述图像调制模块根据该幅图像的各像素的相应颜色的N位灰阶数据调制相应颜色光,以形成该幅图像的相应颜色的图像光。
  15. 根据权利要求10所述的图像显示装置,其特征在于,该幅图像的图像数据包括各像素的两种或两种以上颜色的N位灰阶数据,以及该幅图像的各颜色的亮度提高指标;
    在该图像的调制周期内,所述光源出射所述各颜色中至少两种颜色的混色光,且该混色光被分光成该至少两种颜色的光;
    所述图像调制模块根据该幅图像的各像素的该至少两种颜色的N位灰阶数据调制该至少两种颜色光中相应颜色的光,以形成该幅图像的相应颜色的图像光;
    在所述该图像的调制周期内所述光源出射所述至少两种颜色的混色光期间,所述光源控制器按照该至少两种颜色对应的亮度提高指标中的最小者减小所述光源出射所述混色光的亮度,从而使得所述混色光中所述最小者对应颜色的光的亮度在该颜色的预设标准亮度的基础上按照该最小者相应地减小。
  16. 一种图像显示方法,其包括以下步骤:
    获取一幅图像的图像数据,该图像数据包含该幅图像的各像素的一颜色的N位灰阶数据,以及该幅图像的所述颜色的亮度提高指标,该幅图像的所述颜色的亮度提高指标表征:该幅图像的各像素的所述颜色的N位灰阶数据所表示的亮度相对于该幅图像的各像素的所述颜色的实际亮度所提高的程度,其中,一像素的所述颜色的实际亮度为在预设的标准条件下感应该幅图像对应的实体的亮度时所感应到的该像素的所述颜色的亮度;
    在该幅图像的所述颜色的图像光的调制周期内,调低光源的出射所述颜色光的亮度:在所述颜色的预设标准亮度的基础上按照所述颜色的亮度提高指标相应地减小所述光源出射所述颜色光的亮度;
    根据该幅图像的各像素的所述颜色的N位灰阶数据调制所述颜色光,以形成该幅图像的所述颜色的图像光。
  17. 根据权利要求16所述的图像显示方法,其特征在于,所述调低光源的出射所述颜色光的亮度的步骤包括:在预设标准亮度的基础上按照所述亮度提高指标反比例地减小所述光源所述颜色光的亮度。
  18. 根据权利要求16所述的图像显示方法,其特征在于,该幅图像的所述颜色的亮度提高指标表征:该幅图像的所述颜色的最亮像素的N位灰阶数据所表示的亮度相对于该幅图像的所述颜色的最亮像素的实际亮度所提高的程度。
  19. 根据权利要求18所述的图像显示方法,其特征在于,该幅图像的所述颜色的亮度提高指标为:该幅图像的所述颜色的最亮像素的N位灰阶数据所表示的亮度与该幅图像的所述颜色的最亮像素的实际亮度的比。
  20. 根据权利要求16所述的图像显示方法,其特征在于,该幅图像的图像数据包括各像素的两种或两种以上颜色的N位灰阶数据,以及该幅图像的各颜色的亮度提高指标;
    所述光源分时序出射各颜色光,在该幅图像的各颜色的图像光的调制周期内,所述光源分别出射相应颜色光;
    以及在该幅图像的各颜色的图像光的调制周期内,在相应颜色的预设标准亮度的基础上按照相应颜色的亮度提高指标相应地减小所述光源出射相应颜色光的亮度,以及根据该幅图像的各像素的相应颜色的N位灰阶数据调制相应颜色光,以形成该幅图像的相应颜色的图像光。
  21. 根据权利要求16所述的图像显示方法,其特征在于,该幅图像的图像数据包括各像素的两种或两种以上颜色的N位灰阶数据,以及该幅图像的各颜色的亮度提高指标;
    在该图像的调制周期内,所述光源出射所述各颜色中至少两种颜色的混色光,且该混色光被分光成该至少两种颜色的光;
    根据该幅图像的各像素的该至少两种颜色的N位灰阶数据调制该至少两种颜色光中相应颜色的光,以形成该幅图像的相应颜色的图像光;
    在所述该图像的调制周期内所述光源出射所述至少两种颜色的混色光期间,按照该至少两种颜色对应的亮度提高指标中的最小者减小所述光源出射所述混色光的亮度,从而使得所述混色光中所述最小者对应颜色的光的亮度在该颜色的预设标准亮度的基础上按照该最小者相应地减小。
  22. 一种图像拍摄与显示装置,其特征在于,包括镜头、亮度获取器、处理器、数据获取模块、光源、光源控制器及图像调制模块,其中所述镜头的摄入光量可调,
    所述处理器在所述亮度获取器在标准镜头摄入光量的基础上获取的一幅图像的各像素的一颜色的最大亮度C1小于预设亮度Cmax时控制所述镜头在所述标准镜头摄入光量的基础上提高摄入光量,使得所述亮度获取器在提高镜头摄入光量的基础上再次获取该幅图像的各像素的一颜色的亮度,其中,所述再次获得的该幅图像的各像素的所述颜色的最大亮度为C2,C1<C2<=Cmax;
    所述处理器还将所述亮度获取器再次获取该幅图像的各像素的一颜色的亮度存储为N位灰阶数据,其中N位灰阶数据可表示M+1个灰阶值,所述再次获取该幅图像的各像素的所述颜色的亮度中亮度值C3映射为N位灰阶数据能表示的最大灰阶值,其中0至所述亮度值C3内的亮度范围划分为M个第一亮度区间,且所述M个第一亮度区间从低至高分别对应由N位灰阶数据代表的最大灰阶值以下的M个由低至高排列的灰阶值,所述再次获取该幅图像的各像素的所述颜色的亮度中小于C3的任意亮度值Ci1映射为代表所述亮度值Ci1所属的第一亮度区域对应的灰阶值的N位灰阶数据,C2<=C3<=Cmax;
    所述处理器还存储该幅图像的所述颜色的亮度提高指标,其中该亮度提高指标表征提高镜头的摄入光量后所述亮度获取器感应到的该幅图像的所述颜色的亮度相对于所述标准镜头摄入光量基础上获取的该幅图像的所述颜色的亮度所提高的程度,
    所述数据获取模块获取该幅图像的各像素的所述颜色的N位灰阶数据,所述光源控制器获取该幅图像的亮度提高指标,
    在该幅图像的所述颜色的图像光的调制周期内,所述光源控制器在所述颜色的预设标准亮度的基础上按照所述颜色的亮度提高指标相应地减小所述光源出射所述颜色光的亮度;所述图像调制模块根据该幅图像的各像素的所述颜色的N位灰阶数据调制所述颜色光,以形成该幅图像的所述颜色的图像光。
  23. 一种图像拍摄及显示方法,其包括以下步骤:
    获取在标准镜头摄入光量的基础上拍摄一幅图像的各像素的一颜色的最大亮度C1;
    在所述最大亮度C1小于预设亮度Cmax时,控制在所述标准镜头摄入光量的基础上提高镜头的摄入光量再次拍摄该幅图像的各像素的所述颜色的亮度,其中,所述再次拍摄的该幅图像的各像素的所述颜色的最大亮度为C2,C1<C2<=Cmax;
    将所述再次拍摄的该幅图像的各像素的所述颜色的亮度转换为N位灰阶数据;其中N位灰阶数据可表示M+1个灰阶值,所述再次获取该幅图像的各像素的所述颜色的亮度中亮度值C3映射为N位灰阶数据能表示的最大灰阶值,其中0至所述亮度值C3内的亮度范围划分为M个第一亮度区间,且所述M个第一亮度区间从低至高分别对应由N位灰阶数据代表的最大灰阶值以下的M个由低至高排列的灰阶值,所述再次获取该幅图像的各像素的所述颜色的亮度中小于C3的任意亮度值Ci1映射为代表所述亮度值Ci1所属的第一亮度区域对应的灰阶值的N位灰阶数据,C2<=C3<=Cmax;及
    存储该幅图像所述颜色的亮度提高指标,其中该亮度提高指标表征提高镜头的摄入光量后感应到的该幅图像的所述颜色的亮度相对于所述标准镜头摄入光量基础上获取的该幅图像的所述颜色的亮度所提高的程度;
    获取该幅图像的图像数据,该图像数据包含该幅图像的各像素的所述颜色的N位灰阶数据以及该幅图像的所述颜色的亮度提高指标;
    在该幅图像的所述颜色的图像光的调制周期内,调低光源的出射所述颜色光的亮度:在所述颜色的预设标准亮度的基础上按照所述颜 色的亮度提高指标相应地减小所述光源出射所述颜色光的亮度;及
    根据该幅图像的各像素的所述颜色的N位灰阶数据调制所述颜色光,以形成该幅图像的所述颜色的图像光。
PCT/CN2017/114738 2017-08-31 2017-12-06 图像处理装置及方法、显示装置及方法、图像拍摄与显示装置及方法 WO2019041621A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710776151.XA CN109426055B (zh) 2017-08-31 2017-08-31 投影***
CN201710776151.X 2017-08-31

Publications (1)

Publication Number Publication Date
WO2019041621A1 true WO2019041621A1 (zh) 2019-03-07

Family

ID=65504947

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/114738 WO2019041621A1 (zh) 2017-08-31 2017-12-06 图像处理装置及方法、显示装置及方法、图像拍摄与显示装置及方法

Country Status (2)

Country Link
CN (1) CN109426055B (zh)
WO (1) WO2019041621A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113542701A (zh) * 2020-04-20 2021-10-22 青岛海信激光显示股份有限公司 投影显示方法及投影设备

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1815350A (zh) * 2005-02-04 2006-08-09 精工爱普生株式会社 投影机和曝光调整方法
CN101600120A (zh) * 2008-06-04 2009-12-09 绎立锐光科技开发(深圳)有限公司 降低功耗的图像显示方法及装置
CN104584526A (zh) * 2012-08-16 2015-04-29 富士胶片株式会社 图像文件生成装置及显示装置
CN105991980A (zh) * 2015-02-06 2016-10-05 深圳市绎立锐光科技开发有限公司 投影***及其控制方法
WO2016158490A1 (ja) * 2015-03-31 2016-10-06 株式会社メガチップス 投影システム、プロジェクター装置、撮像装置、および、プログラム
JP2017055346A (ja) * 2015-09-11 2017-03-16 株式会社リコー 投影システム、画像処理装置およびプログラム

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101256341B (zh) * 1996-08-19 2012-10-24 精工爱普生株式会社 投影式显示装置
JP3920762B2 (ja) * 2002-11-27 2007-05-30 株式会社リコー 画像表示装置
JP2006145933A (ja) * 2004-11-22 2006-06-08 Ricoh Co Ltd 表示装置および画像処理装置および画像処理・表示システム
KR100834415B1 (ko) * 2006-04-12 2008-06-04 한국과학기술원 마이크로렌즈를 이용한 디스플레이 장치
CN106647214B (zh) * 2017-03-17 2019-02-12 京东方科技集团股份有限公司 空间光调制器的寻址方法、全息显示装置及其控制方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1815350A (zh) * 2005-02-04 2006-08-09 精工爱普生株式会社 投影机和曝光调整方法
CN101600120A (zh) * 2008-06-04 2009-12-09 绎立锐光科技开发(深圳)有限公司 降低功耗的图像显示方法及装置
CN104584526A (zh) * 2012-08-16 2015-04-29 富士胶片株式会社 图像文件生成装置及显示装置
CN105991980A (zh) * 2015-02-06 2016-10-05 深圳市绎立锐光科技开发有限公司 投影***及其控制方法
WO2016158490A1 (ja) * 2015-03-31 2016-10-06 株式会社メガチップス 投影システム、プロジェクター装置、撮像装置、および、プログラム
JP2017055346A (ja) * 2015-09-11 2017-03-16 株式会社リコー 投影システム、画像処理装置およびプログラム

Also Published As

Publication number Publication date
CN109426055A (zh) 2019-03-05
CN109426055B (zh) 2021-04-06

Similar Documents

Publication Publication Date Title
US8287130B2 (en) Projector and method for controlling projector
US11102460B2 (en) Image processing apparatus, display apparatus, and image processing and display apparatus and method
CN1841487B (zh) 图像显示装置及图像显示方法
US20110019914A1 (en) Method and illumination device for optical contrast enhancement
CN100418370C (zh) 多投影显示器和投影单元
TW200417812A (en) Adaptive image display
US20180160082A1 (en) Image processing apparatus and image processing method
CN107409192A (zh) 图像显示设备、图像显示方法、信息处理设备、信息处理方法和程序
WO2018192130A1 (zh) 投影***及投影方法
CN109120859B (zh) 一种影像数据处理装置及拍摄设备、显示***
JP2005215475A (ja) プロジェクタ
JPH0764522A (ja) マルチディスプレイ装置の自動調整システム
JP6119155B2 (ja) 調光制御装置、画像表示装置、調光制御方法及びプログラム
US6837582B2 (en) Image adjuster of projector and image adjusting method of image display
US20190014234A1 (en) Display device, image processing apparatus, control methods thereof, and display system
US20180205919A1 (en) Projector device and method for correcting color in projector device
WO2019041621A1 (zh) 图像处理装置及方法、显示装置及方法、图像拍摄与显示装置及方法
CN109429010B (zh) 图像处理装置及方法、显示装置及方法、图像拍摄与显示装置及方法
TW200529171A (en) Light propagation characteristic control apparatus, optical display apparatus, light propagation characteristic control program, optical display apparatus control program, light propagation characteristic control method and optical display apparatus…
JPH11341501A (ja) 電子写真撮像装置、電子写真撮像方法、電子写真撮像制御プログラムを記録した媒体
US20230020363A1 (en) Projection apparatus, projection method, and computer-readable storage medium
JPWO2017033369A1 (ja) 画像表示装置、画像表示方法、及びプログラム
JP2007241193A (ja) 画像表示制御装置、プロジェクタおよびその制御方法
US10670947B2 (en) Image projection apparatus that projects superimposed images
CN111275774A (zh) 一种显微镜下图像的获取方法和电子设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17923603

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17923603

Country of ref document: EP

Kind code of ref document: A1