WO2019039439A1 - Dctn1タンパク質とretタンパク質との融合タンパク質 - Google Patents

Dctn1タンパク質とretタンパク質との融合タンパク質 Download PDF

Info

Publication number
WO2019039439A1
WO2019039439A1 PCT/JP2018/030688 JP2018030688W WO2019039439A1 WO 2019039439 A1 WO2019039439 A1 WO 2019039439A1 JP 2018030688 W JP2018030688 W JP 2018030688W WO 2019039439 A1 WO2019039439 A1 WO 2019039439A1
Authority
WO
WIPO (PCT)
Prior art keywords
seq
ret
polynucleotide
polypeptide
protein
Prior art date
Application number
PCT/JP2018/030688
Other languages
English (en)
French (fr)
Inventor
晃平 林
圭司 石田
Original Assignee
大鵬薬品工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to KR1020207007893A priority Critical patent/KR20200038528A/ko
Application filed by 大鵬薬品工業株式会社 filed Critical 大鵬薬品工業株式会社
Priority to MX2020002002A priority patent/MX2020002002A/es
Priority to JP2019537622A priority patent/JP7033143B2/ja
Priority to US16/640,955 priority patent/US20200190154A1/en
Priority to SG11202001212SA priority patent/SG11202001212SA/en
Priority to EP18849160.9A priority patent/EP3674325A4/en
Priority to BR112020003006-6A priority patent/BR112020003006A2/pt
Priority to CA3073375A priority patent/CA3073375A1/en
Priority to CN201880054583.2A priority patent/CN111032696B/zh
Priority to RU2020111214A priority patent/RU2813996C2/ru
Priority to AU2018322286A priority patent/AU2018322286B2/en
Publication of WO2019039439A1 publication Critical patent/WO2019039439A1/ja
Priority to PH12020500269A priority patent/PH12020500269A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/574Immunoassay; Biospecific binding assay; Materials therefor for cancer
    • G01N33/57407Specifically defined cancers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/46Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates
    • C07K14/47Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/82Translation products from oncogenes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/32Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against translation products of oncogenes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K19/00Hybrid peptides, i.e. peptides covalently bound to nucleic acids, or non-covalently bound protein-protein complexes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/12Transferases (2.) transferring phosphorus containing groups, e.g. kinases (2.7)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/02Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving viable microorganisms
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6806Preparing nucleic acids for analysis, e.g. for polymerase chain reaction [PCR] assay
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6813Hybridisation assays
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6883Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material
    • C12Q1/6886Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material for cancer
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/15Medicinal preparations ; Physical properties thereof, e.g. dissolubility
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/435Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • A61K31/47Quinolines; Isoquinolines
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/495Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
    • A61K31/505Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim
    • A61K31/517Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim ortho- or peri-condensed with carbocyclic ring systems, e.g. quinazoline, perimidine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/495Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
    • A61K31/505Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim
    • A61K31/519Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim ortho- or peri-condensed with heterocyclic rings
    • A61K31/52Purines, e.g. adenine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/535Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with at least one nitrogen and one oxygen as the ring hetero atoms, e.g. 1,2-oxazines
    • A61K31/53751,4-Oxazines, e.g. morpholine
    • A61K31/53771,4-Oxazines, e.g. morpholine not condensed and containing further heterocyclic rings, e.g. timolol
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K45/00Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
    • A61K45/06Mixtures of active ingredients without chemical characterisation, e.g. antiphlogistics and cardiaca
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • C07K2319/40Fusion polypeptide containing a tag for immunodetection, or an epitope for immunisation
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/113Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
    • C12N15/1135Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing against oncogenes or tumor suppressor genes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/10Type of nucleic acid
    • C12N2310/14Type of nucleic acid interfering N.A.
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/158Expression markers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2800/00Detection or diagnosis of diseases
    • G01N2800/52Predicting or monitoring the response to treatment, e.g. for selection of therapy based on assay results in personalised medicine; Prognosis

Definitions

  • the present invention relates to a polypeptide which is a fusion protein of a DCTN1 protein and a RET protein, a polynucleotide encoding the polypeptide, a method of detecting the polypeptide or the polynucleotide, a compound targeting the polypeptide or the polynucleotide, The present invention relates to a method of screening a compound.
  • Cancer is the leading cause of death in Japan, and there is a need to improve its treatment. Although the number of thyroid cancer sufferers is increasing, in many cases the progression is slow and in the early stage appropriate treatment is shown with high survival rates. On the other hand, early diagnosis is essential for proper treatment because there are almost no subjective symptoms.
  • Thyroid cancer can be divided into papillary carcinoma, follicular carcinoma, medullary carcinoma, anaplastic carcinoma and malignant lymphoma according to tissue types.
  • Papillary carcinoma accounts for about 80% of thyroid carcinomas, and it is known that undifferentiated carcinoma has a low frequency but a very poor prognosis (Non-patent Document 1).
  • mutant gene mutant protein
  • fusion gene fusion protein
  • the present invention provides a novel polypeptide which is a fusion protein containing at least a part of RET protein, or a polynucleotide encoding the polypeptide, a method of detecting the polypeptide or the polynucleotide, a target of the polypeptide or the polynucleotide It is an object of the present invention to provide a compound, and a method of screening the compound.
  • the present inventors have found that, in cells derived from thyroid cancer patients, a novel polypeptide in which a portion of the DCTN1 protein and a portion of the RET protein are fused Identified a polynucleotide encoding
  • the present inventors have found a method for detecting a polynucleotide or polypeptide of the present invention in cancer cells, and a method for screening a compound that suppresses the expression of the polynucleotide or the expression and / or activity of the polypeptide.
  • a fusion protein having a combination of the N-terminal part of the DCTN1 protein and the C-terminal part of the RET protein is naturally generated in the cell, and the fusion gene of the DCTN1 and RET is a cancer driver
  • the present inventors have found a pharmaceutical composition containing as an active ingredient a RET-inhibiting compound for treating a cancer patient expressing the polypeptide and / or polynucleotide, and has completed the present invention.
  • the present invention provides the following aspects.
  • Item 1 A polypeptide in which the N-terminal part of the DCTN1 protein and the C-terminal part of the RET protein are fused.
  • Item 2. The polypeptide according to item 1 selected from the following (a) to (c):
  • SEQ ID NO: 2 SEQ ID NO: 4, SEQ ID NO: 6, SEQ ID NO: 8, SEQ ID NO: 10, SEQ ID NO: 12, SEQ ID NO: 14, SEQ ID NO: 16, SEQ ID NO: 18, SEQ ID NO: 20, SEQ ID NO: 22, or SEQ ID NO: 24.
  • SEQ ID NO: 2 SEQ ID NO: 4, SEQ ID NO: 6, SEQ ID NO: 8, SEQ ID NO: 10, SEQ ID NO: 12, SEQ ID NO: 14, SEQ ID NO: 16, SEQ ID NO: 18, SEQ ID NO: 20, SEQ ID NO: 22, or SEQ ID NO: 24.
  • a polypeptide comprising an amino acid sequence in which one or several amino acids are substituted, deleted or added in the amino acid sequence shown by 24.
  • SEQ ID NO: 2 SEQ ID NO: 4, SEQ ID NO: 6, SEQ ID NO: 8, SEQ ID NO: 10, SEQ ID NO: 12, SEQ ID NO: 14, SEQ ID NO: 16, SEQ ID NO: 18, SEQ ID NO: 20, SEQ ID NO: 22, or SEQ ID NO: 24.
  • Item 3 A polynucleotide encoding the polypeptide according to item 1 or 2.
  • SEQ ID NO: 2 SEQ ID NO: 4, SEQ ID NO: 6, SEQ ID NO: 8, SEQ ID NO: 10, SEQ ID NO: 12, SEQ ID NO: 14, SEQ ID NO: 16, SEQ ID NO: 18, SEQ ID NO: 20, SEQ ID NO: 22, or SEQ ID NO:
  • SEQ ID NO: 2 SEQ ID NO: 4, SEQ ID NO: 6, SEQ ID NO: 8, SEQ ID NO: 10, SEQ ID NO: 12, SEQ ID NO: 14, SEQ ID NO: 16, SEQ ID NO: 18, SEQ ID NO: 20, SEQ ID NO: 22, or SEQ ID NO:
  • SEQ ID NO: 2 SEQ ID NO: 4, SEQ ID NO: 6, SEQ ID NO: 8, SEQ ID NO: 10, SEQ ID NO: 12, SEQ ID NO: 14, SEQ ID NO: 16, SEQ ID NO: 18, SEQ ID NO: 20, SEQ ID NO: 22, or SEQ ID NO: 24.
  • SEQ ID NO: 1 SEQ ID NO: 3, SEQ ID NO: 5, SEQ ID NO: 7, SEQ ID NO: 9, SEQ ID NO: 11, SEQ ID NO: 13, SEQ ID NO: 15, SEQ ID NO: 17, SEQ ID NO: 19, SEQ ID NO: 21 or SEQ ID NO: A polynucleotide consisting of the nucleotide sequence shown by 23
  • SEQ ID NO: 1 SEQ ID NO: 3, SEQ ID NO: 5, SEQ ID NO: 7, SEQ ID NO: 9, SEQ ID NO: 11, SEQ ID NO: 13, SEQ ID NO: 15, SEQ ID NO: 17, SEQ ID NO: 19, SEQ ID NO: 21 or SEQ ID NO:
  • SEQ ID NO: 1 SEQ ID NO: 3, SEQ ID NO: 5, SEQ ID NO: 7, SEQ ID NO: 9, SEQ ID NO: 11, SEQ ID NO: 13, SEQ ID NO: 15, SEQ ID NO: 17, SEQ ID NO: 19, SEQ ID NO: 21 or SEQ ID NO A polynucleotide having 90% or more identity to the nucleotide sequence shown in 23
  • Item 6. An expression vector comprising the polynucleotide according to any one of Items 3 to 5.
  • Item 7. A cell into which the polynucleotide according to any one of Items 3 to 5 has been introduced.
  • Item 8. An antibody which specifically binds to the polypeptide according to item 1 or 2.
  • Item 9 A method of detecting the presence of the polypeptide according to item 1 or 2 in a sample.
  • Item 10 A primer or a probe for detecting the presence of the polynucleotide according to any one of Items 3 to 5 in a sample, wherein the primer or the probe is selected from the following (j) to (l): .
  • (J) A polynucleotide that is at least one probe selected from the group consisting of a probe that hybridizes to a polynucleotide encoding a DCTN1 protein and a probe that hybridizes to a polynucleotide that encodes a RET protein.
  • (K) A polynucleotide that is a probe that hybridizes to a fusion point of a polynucleotide encoding a DCTN1 protein and a polynucleotide encoding a RET protein.
  • (L) A polynucleotide which is a set of a sense primer and an antisense primer designed to sandwich a fusion point of a polynucleotide encoding a DCTN1 protein and a polynucleotide encoding a RET protein.
  • Item 11 A method for detecting the presence of the polynucleotide according to any one of Items 3 to 5 in a sample.
  • Item 12. In the detection method according to Item 9 or 11, a patient from which the sample is derived when the presence of the polypeptide according to Item 1 or the polynucleotide according to any of Items 3 to 5 is detected in the sample. How to determine that you have cancer.
  • a pharmaceutical composition for treating cancer which is a fusion gene positive between a DCTN gene and a RET gene and / or a fusion protein positive between a DCTN protein and a RET protein, comprising a compound that inhibits RET as an active ingredient.
  • Item 14 A compound which suppresses the expression and / or activity of the polypeptide according to item 1 or 2 or the expression of the polynucleotide according to any of items 3 to 5 comprising the following steps (1) and (2) is screened: Method.
  • step (1) measuring whether expression and / or activity of the polypeptide according to item 1 or 2 or expression of the polynucleotide according to any of items 3 to 5 is suppressed in the step (1), or A step of measuring whether or not the proliferation of the cells described in the above step (1) is suppressed.
  • Item 15 A method comprising using the polypeptide according to item 1 or 2 or the polynucleotide according to any one of items 3 to 5 as an indicator as to whether chemotherapy using a compound that inhibits RET is effective or not.
  • the polypeptide according to item 1 or 2 is detected from the sample by the detection method according to 9, and / or from the sample according to the detection method according to item 11, A method of determining that chemotherapy using a compound that inhibits RET is effective when detecting the presence of a nucleotide.
  • Item 16 For detecting a cancer comprising at least one selected from the group consisting of a polypeptide in which an N-terminal portion of a DCTN1 protein and a C-terminal portion of a RET protein are fused, and a polynucleotide encoding the polypeptide Biomarker.
  • a cancer treatment method comprising a step of applying a chemotherapy using a compound that inhibits RET to a cancer patient with a fusion gene positive between a DCTN1 gene and a RET gene and / or a fusion protein positive between a DCTN1 protein and a RET protein.
  • Item 18 Detecting the presence of the polypeptide of Item 1 or 2 and / or detecting the presence of the polynucleotide of any of Items 3 to 5 in a sample derived from a subject, and Item 1 or Using a compound that inhibits RET in the subject when the presence of the polypeptide according to 2 is detected and / or the presence of the polynucleotide according to any of items 3 to 5 is detected
  • a method of treating cancer comprising the step of performing a chemotherapy.
  • Item 19 A compound that inhibits RET, for treating a cancer patient of a fusion gene positive of a DCTN1 gene and a RET gene and / or a fusion protein of a DCTN1 protein and a RET protein.
  • Item 20 Use of a compound that inhibits RET for producing a pharmaceutical composition for treating cancer for treating a cancer patient of fusion gene positive of DCTN1 gene and RET gene and / or fusion protein of DCTN1 protein and RET protein positive .
  • Item 21 A means for detecting the presence of a polypeptide according to item 1 or 2 in a sample and / or a means for detecting the presence of a polynucleotide according to any of items 3 to 5 in a sample, which inhibits RET Method for determining whether or not chemotherapy using a compound is effective.
  • Item 22 A combination of anti-DCTN1 antibody and anti-RET antibody for detecting the presence of the polynucleotide according to any one of Items 3 to 5.
  • Item 23 An antibody according to item 8, a combination of antibodies according to item 22, or a combination of antibodies according to item 22, for producing a detection agent for detecting the presence of the polypeptide according to item 1 or 2 or the polynucleotide according to any of items 3 to 5.
  • Item 11 Use of the primer or the probe according to Item 10.
  • the polynucleotide and / or polypeptide of the present invention is specifically expressed in cancer cells.
  • the polynucleotide, the polypeptide of the present invention and cells expressing the polynucleotide and / or the polypeptide are screened for a compound that suppresses the expression of the polynucleotide of the present invention or the expression and / or activity of the polypeptide. It can be used in the method.
  • the polynucleotide and / or the polypeptide of the present invention as an index, detection of a fusion gene positive target of a DCTN1 gene and a RET gene and / or a fusion protein positive target of a DCTN1 protein and a RET protein is performed. It is possible.
  • a compound that inhibits RET is useful as a fusion gene positive for the DCTN1 gene and the RET gene and / or as a fusion protein positive cancer therapeutic pharmaceutical composition for the DCTN1 protein and the RET protein.
  • the present invention relates to a novel polynucleotide or polypeptide, a method of detecting the polynucleotide or polypeptide, a compound targeted to the polynucleotide or polypeptide, and a method of screening the compound.
  • the present invention provides a polypeptide in which the N-terminal portion of the DCTN1 protein and the C-terminal portion of the RET protein are fused (hereinafter also referred to as “the polypeptide of the present invention”).
  • the present invention also provides a polynucleotide encoding the polypeptide (hereinafter also referred to as “the polynucleotide of the present invention”).
  • the "DCTN1 (Dynactin Subunit 1) protein” is a 150 kDa Dynein-associated polypeptide protein or a protein also referred to as DAP-150 protein, and includes human or non-human mammalian DCTN1 protein, and preferably Human DCTN1 protein. It is a protein encoded by a gene located at 2p13.1 in human.
  • the "DCTN1 protein” includes the isoform which is a splice variant thereof, and if it is of human origin, for example, an amino acid represented by GenPept accession numbers NP_004073, NP_075408, NP_001128512, NP_001128513, NP_001177765, or NP_001177766. Included are polypeptides consisting of sequences. Furthermore, more specifically, for example, a polypeptide consisting of the amino acid sequence shown by SEQ ID NO: 25, SEQ ID NO: 26, SEQ ID NO: 27, SEQ ID NO: 28, SEQ ID NO: 29 or SEQ ID NO: 30 can be mentioned.
  • the N-terminal part of the DCTN1 protein is a polypeptide comprising a part or all of the coiled coil domain at the N-terminal side of the DCTN protein, preferably at the N-terminal side of the DCTN1 protein It is a polypeptide comprising all of the coiled coil domain.
  • RET protein is a protein also referred to as Ret Proto-Oncogene protein, RET Receptor Tyrosine kinase protein, or Rearranged During Transfection protein, and includes human or non-human mammalian RET protein, preferably human RET protein. It is a protein encoded by a gene located at 10 q 11.2 in human.
  • "RET protein” includes isoforms that are splice variants thereof, and if it is of human origin, for example, a polypeptide consisting of the amino acid sequence represented by GenPept Accession No. NP_066124 or NP_065681 is mentioned .
  • examples include polypeptides consisting of the amino acid sequence shown in SEQ ID NO: 31 or SEQ ID NO: 32.
  • the "C-terminal portion of RET protein” is a polypeptide comprising a kinase domain at the C-terminal side of the RET protein.
  • the “polypeptide in which the N-terminal portion of the DCTN1 protein and the C-terminal portion of the RET protein are fused” of the present invention comprises a part or all of the coiled coil domain at the N-terminal side of the DCTN protein
  • a polypeptide in which a polypeptide and a polypeptide comprising a kinase domain at the C-terminal side of the RET protein are fused preferably a polypeptide comprising all of the coiled coil domain at the N-terminal side of the DCTN protein
  • a polypeptide in which a polypeptide comprising a kinase domain at the C-terminal side of the RET protein is fused is a polypeptide selected from the following (a) to (c):
  • these polypeptides have kinase activity and / or cell proliferation effect.
  • SEQ ID NO: 2 SEQ ID NO: 4, SEQ ID NO: 6, SEQ ID NO: 8, SEQ ID NO: 10, SEQ ID NO: 12, SEQ ID NO: 14, SEQ ID NO: 16, SEQ ID NO: 18, SEQ ID NO: 20, SEQ ID NO: 22, or SEQ ID NO: 24.
  • SEQ ID NO: 2 SEQ ID NO: 4, SEQ ID NO: 6, SEQ ID NO: 8, SEQ ID NO: 10, SEQ ID NO: 12, SEQ ID NO: 14, SEQ ID NO: 16, SEQ ID NO: 18, SEQ ID NO: 20, SEQ ID NO: 22, or SEQ ID NO: 24.
  • a polypeptide comprising an amino acid sequence in which one or several amino acids are substituted, deleted or added in the amino acid sequence shown by 24.
  • SEQ ID NO: 2 SEQ ID NO: 4, SEQ ID NO: 6, SEQ ID NO: 8, SEQ ID NO: 10, SEQ ID NO: 12, SEQ ID NO: 14, SEQ ID NO: 16, SEQ ID NO: 18, SEQ ID NO: 20, SEQ ID NO: 22, or SEQ ID NO: 24.
  • polypeptide selected from the following (a) to (c). It is preferred that these polypeptides have kinase activity or cell proliferation effect.
  • (B) A polypeptide comprising an amino acid sequence in which one or several amino acids are substituted, deleted or added in the amino acid sequence shown by SEQ ID NO: 18.
  • the “polypeptide in which the N-terminal part of the DCTN1 protein and the C-terminal part of the RET protein are fused” of the present invention comprises SEQ ID NO: 2, SEQ ID NO: 4, SEQ ID NO: 6, SEQ ID NO: 8, SEQ ID NO: 10, In the amino acid sequence shown by SEQ ID NO: 12, SEQ ID NO: 14, SEQ ID NO: 18, SEQ ID NO: 20, SEQ ID NO: 22 or SEQ ID NO: 24, one or several amino acids are substituted, deleted or added.
  • the polypeptide (above (b)) consisting of the amino acid sequence is included.
  • the polypeptide in which the N-terminal part of the DCTN1 protein consisting of such amino acid sequence and the C-terminal part of the RET protein are fused is, for example, SEQ ID NO: 2, SEQ ID NO: 4, SEQ ID NO: 6, SEQ ID NO: 8, sequence SEQ ID NO: 12, SEQ ID NO: 14, SEQ ID NO: 16, SEQ ID NO: 18, SEQ ID NO: 20, SEQ ID NO: 22 or SEQ ID NO: 24 N-terminal part of DCTN protein and C protein of RET protein Included are isoforms of the polypeptide fused to the terminal portion. It is preferred that these polypeptides have kinase activity or cell proliferation effect.
  • the several amino acids to be deleted, substituted or added are, for example, preferably 1 to 10, more preferably 1 to 5 amino acids.
  • the above addition also includes the addition of one to several amino acids at the N-terminus or C-terminus, or the addition of one to several amino acids at both ends.
  • polypeptide in which the amino acid of the polypeptide is substituted is, for example, 804, which is the gatekeeper site of a RET protein having an amino acid sequence represented by GenPept Accession No. NP_066124 (SEQ ID NO: 31) or NP_065681 (SEQ ID NO: 32).
  • amino acid other than the gatekeeper site is 768th (1289th in SEQ ID NO: 2 and SEQ ID NO: 4; 1155th in SEQ ID NO: 6 and SEQ ID NO: 8; 1264 in SEQ ID NO: 10 and SEQ ID NO: 12; SEQ ID NO: 14 and A polypeptide in which glutamic acid at SEQ ID NO: 16 is 1150th, SEQ ID NO: 18 and SEQ ID NO: 20 is SEQ ID NO: 22 and SEQ ID NO: 22 is SEQ ID NO: 22), SEQ ID NO: 2 and SEQ ID NO: 4 In SEQ ID NO: 6 and SEQ ID NO: 8 at 1270, in SEQ ID NO: 10 and SEQ ID NO: 12 at 1379, in SEQ ID NO 14 and SEQ ID NO: 1265, in SEQ ID NO 18 and SEQ ID NO: 1362 in SEQ ID NO: 22 and 1397 in SEQ ID NO: 24) (SEQ ID NO: 2 and SEQ ID NO: 4 at position 1405; SEQ ID NO: 6 and
  • SEQ ID NO: 6 and SEQ ID NO: 8 for 1278th, SEQ ID NO: 10 and SEQ ID NO: 12 for 1387th, SEQ ID NO 14 and SEQ ID NO: 16th for 1273, SEQ ID NO 18 and SEQ ID NO 20 for 1370th, It is 1405th in number 22 and sequence number 24 Or a polypeptide in which serine in the a is substituted for alanine or leucine, or 918th (1439th in SEQ ID NO: 2 and SEQ ID NO: 4; 1305 in SEQ ID NO: 6 and SEQ ID NO: 8; 1414 in SEQ ID NO: 12) SEQ ID NO: 14 and SEQ ID NO: 16 include polypeptides in which methionine at position 1300 is substituted for threonine in SEQ ID NO: 18 and SEQ ID NO: 20 for sequence 1397 and SEQ ID NO: 22 and SEQ ID NO: 24) I will not.
  • the polypeptide in which the N-terminal part of the DCTN1 protein of the present invention and the C-terminal part of the RET protein are fused is SEQ ID NO: 2, SEQ ID NO: 4, SEQ ID NO: 6, SEQ ID NO: 8, SEQ ID NO: 10,
  • SEQ ID NO: 12 SEQ ID NO: 14, SEQ ID NO: 18, SEQ ID NO: 20, SEQ ID NO: 22 or SEQ ID NO: 24 is properly aligned
  • a polypeptide consisting of an amino acid sequence having 90% or more identity to one of the amino acid sequences shown in ((c) above) is encompassed. It is preferred that these polypeptides have kinase activity or cell proliferation effect.
  • SEQ ID NO: 2 SEQ ID NO: 4, SEQ ID NO: 6, SEQ ID NO: 8, SEQ ID NO: 10, SEQ ID NO: 12, SEQ ID NO: 14, SEQ ID NO: 16, SEQ ID NO: 18, SEQ ID NO: 20, SEQ ID NO: 22, or SEQ ID NO:
  • the identity to the amino acid sequence shown by 24 is preferably 90% or more, more preferably 95% or more, and still more preferably 98% or more.
  • the identity of the amino acid sequence can be calculated by a commonly used method.
  • the polypeptide of the present invention may have an amino acid constituting a protein tag, in addition to the amino acid sequence constituting the polypeptide of the present invention.
  • tags well known to those skilled in the art, such as tags for improving expression efficiency and tags for improving purification efficiency, can be used, including His tag, Myc tag, FLAG tag and the like.
  • the polynucleotide of the present invention is a polynucleotide encoding a polypeptide in which the N-terminal portion of the DCTN1 protein and the C-terminal portion of the RET protein are fused, preferably the following (d) to (i): It is a polynucleotide of choice.
  • These polynucleotides are preferably polynucleotides encoding polypeptides having kinase activity or cell proliferation effect.
  • SEQ ID NO: 2 SEQ ID NO: 4, SEQ ID NO: 6, SEQ ID NO: 8, SEQ ID NO: 10, SEQ ID NO: 12, SEQ ID NO: 14, SEQ ID NO: 16, SEQ ID NO: 18, SEQ ID NO: 20, SEQ ID NO: 22, or SEQ ID NO:
  • SEQ ID NO: 2 SEQ ID NO: 4, SEQ ID NO: 6, SEQ ID NO: 8, SEQ ID NO: 10, SEQ ID NO: 12, SEQ ID NO: 14, SEQ ID NO: 16, SEQ ID NO: 18, SEQ ID NO: 20, SEQ ID NO: 22, or SEQ ID NO:
  • SEQ ID NO: 2 SEQ ID NO: 4, SEQ ID NO: 6, SEQ ID NO: 8, SEQ ID NO: 10, SEQ ID NO: 12, SEQ ID NO: 14, SEQ ID NO: 16, SEQ ID NO: 18, SEQ ID NO: 20, SEQ ID NO: 22, or SEQ ID NO: 24.
  • SEQ ID NO: 1 SEQ ID NO: 3, SEQ ID NO: 5, SEQ ID NO: 7, SEQ ID NO: 9, SEQ ID NO: 11, SEQ ID NO: 13, SEQ ID NO: 15, SEQ ID NO: 17, SEQ ID NO: 19, SEQ ID NO: 21 or SEQ ID NO: A polynucleotide consisting of the nucleotide sequence shown by 23
  • SEQ ID NO: 1 SEQ ID NO: 3, SEQ ID NO: 5, SEQ ID NO: 7, SEQ ID NO: 9, SEQ ID NO: 11, SEQ ID NO: 13, SEQ ID NO: 15, SEQ ID NO: 17, SEQ ID NO: 19, SEQ ID NO: 21 or SEQ ID NO:
  • SEQ ID NO: 1 SEQ ID NO: 3, SEQ ID NO: 5, SEQ ID NO: 7, SEQ ID NO: 9, SEQ ID NO: 11, SEQ ID NO: 13, SEQ ID NO: 15, SEQ ID NO: 17, SEQ ID NO: 19, SEQ ID NO: 21 or SEQ ID NO A polynucleotide having 90% or more identity to the nucleotide sequence shown in 23
  • polynucleotide is selected from the following (d) to (i). These polynucleotides are preferably polynucleotides encoding polypeptides having kinase activity or cell proliferation effect.
  • (E) A polynucleotide encoding a polypeptide consisting of an amino acid sequence in which one or several amino acids are substituted, deleted or added in the amino acid sequence shown by SEQ ID NO: 18.
  • (F) A polynucleotide encoding a polypeptide consisting of an amino acid sequence having an identity of 90% or more with the amino acid sequence shown by SEQ ID NO: 18.
  • (G) A polynucleotide consisting of the base sequence shown in SEQ ID NO: 17.
  • the polynucleotide of the present invention includes not only double-stranded DNA but also various single-stranded DNAs and RNAs such as the sense strand and the antisense strand constituting it.
  • the antisense strand can be used as a probe or the like.
  • DNA includes, for example, cDNA and genomic DNA as obtained by cloning, chemical synthesis techniques or a combination thereof.
  • a nucleotide sequence such as a non-translation region (UTR) may be added to the polynucleotide of the present invention.
  • stringent conditions include, for example, the conditions described in Molecular Cloning: A Laboratory Manual (Second Edition, J. Sambrook et. Al, 1989). That is, a solution containing 6 ⁇ SSC (composition of 1 ⁇ SSC: 0.15 M sodium chloride, 0.015 M sodium citrate, pH 7.0), 0.5% SDS, 5 ⁇ denhardt and 100 mg / mL herring sperm DNA The conditions under which the probe is incubated at 65 ° C. for 8 to 16 hours and hybridized are mentioned.
  • SEQ ID NO: 1 SEQ ID NO: 3, SEQ ID NO: 5, SEQ ID NO: 7, SEQ ID NO: 9, SEQ ID NO: 11, SEQ ID NO: 13, SEQ ID NO: 15, SEQ ID NO: 17, SEQ ID NO: 19, SEQ ID NO: 21 or SEQ ID NO: 23
  • the identity with the base sequence represented by is preferably 90% or more, more preferably 95% or more, still more preferably 98% or more.
  • the identity of the base sequence can be calculated by a commonly used method.
  • having a kinase activity of “having a kinase activity or a cell proliferation effect” means having an activity as an enzyme that phosphorylates tyrosine.
  • having the cell proliferation effect of “having the kinase activity or the cell proliferation effect” means that the polynucleotide and / or the polypeptide of the present invention is introduced into the cells, as compared to the cells that have not been introduced. It is an effect to improve the proliferation ability of the introduced cells.
  • Such an effect may be confirmed, for example, when a polynucleotide and / or a polypeptide is introduced into a cell line that proliferates in a cytokine-dependent manner and that it has a cell proliferation effect when proliferating in a cytokine-independent manner. it can.
  • the polynucleotide of the present invention can be prepared, for example, by using a cDNA library or a genomic DNA library prepared from thyroid cancer or the like carrying a fusion gene of the DCTN1 gene and the RET gene, using one of the nucleotide sequences of the polynucleotide of the present invention. It can be extracted using a primer that specifically hybridizes with a part. Such a primer may be of any sequence and length as long as it specifically hybridizes to at least a part of the polynucleotide of the present invention or its antisense strand. There is also a method of artificially synthesizing a polynucleotide (Nat. Methods, 11: 499-507, 2014).
  • the expression vector of the present invention contains the polynucleotide of the present invention, and is not particularly limited as long as the polypeptide of the present invention is expressed.
  • an expression vector obtained by inserting the polynucleotide of the present invention into a known expression vector appropriately selected depending on the host to be used can be mentioned.
  • the host is not particularly limited as long as it is a viable living cell that can be transformed, for example, bacteria such as E. coli and Bacillus subtilis, fungi such as yeast and filamentous fungi, insect cells such as Sf9 cells, insects such as silkworm, Animal cells, plants or plant-derived cells can be mentioned.
  • bacteria such as E. coli and Bacillus subtilis
  • fungi such as yeast and filamentous fungi
  • insect cells such as Sf9 cells
  • insects such as silkworm
  • the vector for inserting the polynucleotide of the present invention is not particularly limited as long as it can be replicated in the host, and can be appropriately selected depending on the type of host to be introduced, the introduction method, and the like.
  • Examples include plasmid DNA, phage DNA, and viral vectors.
  • vector DNA used for construction of expression vectors widely available and easily available ones are used. For example, pUC19 (Takara Bio), pTV118N (Takara Bio), pMAMneo (Clontech), pGEX (GE Healthcare), pET160 (Invitrogen), pDEST (Invitrogen), pIEx (Merck Millipore), pBacPAK (Clontech) can be mentioned.
  • virus vector for example, baculovirus vector, retrovirus vector, lentivirus vector such as human immunodeficiency virus (HIV), adenovirus vector, adeno-associated virus vector (AAV vector), herpes virus, vaccinia virus, DNA viruses such as pox virus, polio virus, synbis virus, Sendai virus, simian virus -40 (SV-40) and RNA viruses are included.
  • HIV human immunodeficiency virus
  • AAV vector adeno-associated virus vector
  • herpes virus vaccinia virus
  • DNA viruses such as pox virus, polio virus, synbis virus, Sendai virus, simian virus -40 (SV-40) and RNA viruses are included.
  • the host can be transformed using the expression vector by protoplast method, competent cell method, electroporation method or the like.
  • the resulting transformant may be cultured under appropriate conditions using a medium containing assimilable carbon sources, nitrogen sources, metal salts, vitamins and the like.
  • Examples of cells into which the polynucleotide of the present invention has been introduced include cells transformed with the above-mentioned expression vector of the present invention, and cells into which the polynucleotide of the present invention has been introduced by genome editing. Examples of cells that can be used here include the above-mentioned host cells.
  • a method for confirming whether a cell is a cell transformed with an expression vector for example, a method for detecting a polypeptide of the present invention or a method for detecting a polynucleotide of the present invention can be mentioned.
  • a “cell into which the polynucleotide of the present invention has been introduced by genome editing” is preferably a cell having a gene in which the DCTN gene and the RET gene each present alone are fused by genome editing, and more preferably each is present alone It is a cell having a gene in which the DCTN1 gene and the exon 27 of the DCTN1 of the RET gene and the exon 12 of the RET gene are fused by genome editing.
  • Such cells can be usually produced by conventional methods, for example, Cell Rep. , 9 (4), pp 1219-1227 (2014), Nat. Commun. , 5, 3728 (2014).
  • a method for confirming whether the cell is a cell into which the polynucleotide of the present invention has been introduced by genome editing for example, a method for detecting the polypeptide of the present invention or a method for detecting the polynucleotide of the present invention Can be mentioned.
  • the polypeptide of the present invention can be obtained from a culture solution and / or cells obtained by culturing cells transformed with the expression vector of the present invention under appropriate conditions using a medium suitable for cell culture, It can be obtained by collecting and purifying a protein by a general method.
  • the polypeptide of the present invention may be an expression vector having the polynucleotide of the present invention, or a template RNA or template DNA encoding the polynucleotide of the present invention in a cell-free protein synthesis system (eg, a cell extract derived from a human cell line) , Extract from rabbit reticulocyte extract, wheat germ extract, E. coli extract), and from the reaction solution obtained by incubation under appropriate conditions, the protein is collected and purified by a general method. , Can get.
  • the antibody that specifically binds to the polypeptide of the present invention includes an antibody that specifically binds to the fusion point of the N-terminal portion of the DCTN protein and the C-terminal portion of the RET protein.
  • the antibody means an antibody that specifically binds to the fusion point of the N-terminal part of the DCTN1 protein and the C-terminal part of the RET protein, but does not bind to either wild-type DCTN1 or wild-type RET protein.
  • the “fusion point” at “the fusion point of the N-terminal portion of the DCTN protein and the C-terminal portion of the RET protein” refers to a polypeptide derived from the N-terminal portion of the DCTN protein and a poly derived from the C-terminal portion of the RET protein. It means a point fused with the peptide.
  • the fusion point in SEQ ID NO: 2 is a polypeptide having an amino acid sequence derived from the N-terminal portion of DCTN1 at 1-1233rd position in SEQ ID NO: 2, and the amino acid sequence derived from the C-terminal portion of RET 1234-1635 in SEQ ID NO: 2 It is the point where the polypeptide which it has is fused.
  • the fusion point in SEQ ID NO: 4 is a polypeptide having an amino acid sequence derived from the N-terminal portion of DCTN1 at 1-1233rd position in SEQ ID NO: 4 and an amino acid sequence derived from the C-terminal portion of RET at 1234-1593th in SEQ ID NO: 4 It is the point where the polypeptide which it has is fused.
  • the fusion point in SEQ ID NO: 6 is a polypeptide having an amino acid sequence derived from the N-terminal portion of DCTN1 at positions 1-1099 in SEQ ID NO: 6 and the amino acid sequence derived from the C-terminal portion of RET 1100-1501 in SEQ ID NO: 6 It is the point where the polypeptide which it has is fused.
  • the fusion point in SEQ ID NO: 8 is a polypeptide having an amino acid sequence derived from the N-terminal portion of DCTN1 at positions 1-1099 in SEQ ID NO: 8 and the amino acid sequence derived from the C-terminal portion of RET 1100-1459 in SEQ ID NO: 8 It is the point where the polypeptide which it has is fused.
  • the fusion point in SEQ ID NO: 10 is a polypeptide having an amino acid sequence derived from the N-terminal portion of DCTN1 at positions 1-1208 in SEQ ID NO: 10 and the amino acid sequence derived from the C-terminal portion of RET in positions 1209-1610 in SEQ ID NO: 10 It is the point where the polypeptide which it has is fused.
  • the fusion point in SEQ ID NO: 12 is a polypeptide having an amino acid sequence derived from the N-terminal portion of DCTN1 at positions 1-1208 in SEQ ID NO: 12 and an amino acid sequence derived from the C-terminal portion of RET in positions 1209 to 1568 in SEQ ID NO: 12 It is the point where the polypeptide which it has is fused.
  • the fusion point in SEQ ID NO: 14 is a polypeptide having an amino acid sequence derived from the N-terminal portion of DCTN1 at position 1-1094 in SEQ ID NO: 14 and the amino acid sequence derived from the C-terminal portion of RET at positions 1095-1496 in SEQ ID NO: 14 It is the point where the polypeptide which it has is fused.
  • the fusion point in SEQ ID NO: 16 is a polypeptide having an amino acid sequence derived from the N-terminal portion of DCTN1 at positions 1-1094 in SEQ ID NO: 16 and the amino acid sequence derived from the C-terminal portion of RET in positions 1095-1454 in SEQ ID NO: 16 It is the point where the polypeptide which it has is fused.
  • the fusion point in SEQ ID NO: 18 is a polypeptide having an amino acid sequence derived from the N-terminal portion of DCTN1 at position 1-1191 in SEQ ID NO: 18 and an amino acid sequence derived from the C-terminal portion of RET in positions 1192 to 1593 in SEQ ID NO: 18 It is the point where the polypeptide which it has is fused.
  • the fusion point in SEQ ID NO: 20 is a polypeptide having an amino acid sequence derived from the N-terminal portion of DCTN1 at position 1-1191 in SEQ ID NO: 20 and an amino acid sequence derived from the C-terminal portion of RET at positions 1192-1551 in SEQ ID NO: 20 It is the point where the polypeptide which it has is fused.
  • the fusion point in SEQ ID NO: 22 is a polypeptide having an amino acid sequence derived from the N-terminal portion of DCTN1 in 1-122 in SEQ ID NO: 22 and an amino acid sequence derived from the C-terminal portion in RET in 1227-1628 in SEQ ID NO: 22 It is the point where the polypeptide which it has is fused.
  • the fusion point in SEQ ID NO: 24 is a polypeptide having an amino acid sequence derived from the N-terminal portion of DCTN1 at position 1-1226 in SEQ ID NO: 24 and an amino acid sequence derived from the C-terminal portion of RET in positions 1227-1586 in SEQ ID NO: 24 It is the point where the polypeptide which it has is fused.
  • the antibody examples include immunoglobulin (IgA, IgD, IgE, IgG, IgM, IgY, etc.), Fab fragment, F (ab ') 2 fragment, single chain antibody fragment (scFv), single domain antibody, Diabody etc. Nat. Rev. Immunol., 6: 343-357, 2006), which include human antibodies, humanized antibodies, chimeric antibodies, mouse antibodies, llama antibodies, monoclonal antibodies such as chicken antibodies, etc. or polyclonal antibodies. It is not limited to these.
  • the antibody can be produced using various known methods, and the production method is not particularly limited.
  • an immune animal is inoculated with a polypeptide of the present invention, a polypeptide fragment containing a fusion point of N-terminal part of DCTN1 protein and C-terminal part of RET protein, etc. to activate the animal's immune system.
  • serum of the animal is collected and obtained as a polyclonal antibody, or a method of obtaining a monoclonal antibody by a hybridoma method, phage display method or the like.
  • a method of screening a compound that suppresses the expression and / or activity of the polypeptide of the present invention or the expression of the polynucleotide of the present invention can be performed by a method comprising the following steps (1) and (2).
  • the screening method of the present invention is (1) A step of contacting a test compound with cells expressing the polypeptide of the present invention, or the polypeptide and / or the polynucleotide of the present invention.
  • the method includes the following steps (1) and (2).
  • a method of screening a compound that suppresses the expression and / or activity of the polypeptide of the present invention or the expression of the polynucleotide of the present invention can be performed by a method comprising the following steps (1) to (3): it can.
  • the screening method of the present invention is (1) A step of contacting a test compound with cells expressing the polypeptide of the present invention, or the polypeptide and / or the polynucleotide of the present invention.
  • step (2) when the expression and / or activity of the polypeptide of the present invention or the expression of the polynucleotide of the present invention is suppressed, or the proliferation of the cells according to the step (1) is suppressed. Determining that the test compound suppresses the expression and / or activity of the polypeptide of the present invention or the expression of the polynucleotide of the present invention. Can be performed by a method including
  • the method includes the following steps (1) to (3).
  • step (2) when the cell growth described in the step (1) is suppressed, the test compound expresses the expression and / or activity of the polypeptide of the present invention or the expression of the polynucleotide of the present invention Determining to suppress.
  • a cell expressing the polypeptide and / or polynucleotide of the present invention is a cell transformed with the expression vector of the present invention, a cell into which the polynucleotide of the present invention has been introduced by genome editing, a polypeptide of the present invention And / or primary culture cells expressing a polynucleotide, a cell line expressing a polypeptide and / or a polynucleotide of the present invention, and a cancer expressing the polypeptide and / or polynucleotide of the present invention Examples include cells derived from patients.
  • a method for confirming whether the cell is a cell expressing the polypeptide and / or polynucleotide of the present invention for example, a method for detecting the polypeptide of the present invention or detection of the polynucleotide of the present invention Methods to do this.
  • the expression and / or activity of the polypeptide of the present invention or the expression of the polynucleotide of the present invention is suppressed means, for example, after the test compound is brought into contact with a cell expressing the polypeptide and / or polynucleotide of the present invention, the expression amount of the polypeptide or polynucleotide of the present invention in the cell
  • the poly of the present invention in cells contacted with the test compound as compared to cells not contacted with the test compound.
  • the expression level of the peptide or polynucleotide is statistically significantly decreased, the expression of the polypeptide or polynucleotide of the present invention is suppressed It can be determined that.
  • the expression and / or activity of the polypeptide of the present invention or the expression of the polynucleotide of the present invention is suppressed means, for example, Percentage of tyrosine phosphorylation when the test compound is contacted with the polypeptide of the present invention or cells expressing the polypeptide of the present invention, as compared with the case where the test compound is not contacted. It can be judged that the activity of the polypeptide of the present invention is suppressed when S. is statistically significantly reduced.
  • cell proliferation was statistically significantly suppressed when the test compound was brought into contact with cells expressing the polypeptide of the present invention as compared with the case where the test compound was not brought into contact. At that time, it can be judged that the activity of the polypeptide of the present invention is suppressed.
  • phosphorylation of tyrosine means not only phosphorylation of tyrosine of RET protein (including RET protein fused to other proteins), but also phosphorylation of tyrosine of protein on RET downstream signal included.
  • proteins on RET downstream signals include STAT, AKT, and ERK.
  • it is a phosphorylation of tyrosine of RET protein (including RET protein fused to other proteins).
  • the “proportion of phosphorylation of tyrosine” can be measured, for example, by western blotting, immunoprecipitation, immunohistochemistry, ELISA, flow cytometry using a phosphorylated RET specific antibody.
  • the “sample” means not only a biological sample (for example, cells, tissues, organs, body fluid (blood, lymph, etc.), digestive fluid, urine) but also nucleic acid extracts (genomic DNA) obtained from these biological samples It also includes extracts, mRNA extracts, cDNA preparations prepared from mRNA extracts, cRNA preparations, etc.) and protein extracts.
  • the sample may be subjected to formalin fixation treatment, alcohol fixation treatment, freezing treatment or paraffin embedding treatment.
  • collected from the biological body can be used.
  • it is a sample derived from a cancer patient, more preferably a sample containing tumor cells.
  • the method of collecting the biological sample can be appropriately selected according to the type of the biological sample.
  • the invention includes a method of detecting the presence of a polypeptide of the invention in a sample.
  • the method of detecting the presence of the polypeptide of the present invention in a sample comprises ELISA, Western blotting or immunohistochemical staining using an antibody that specifically binds to the polypeptide of the present invention, Or a method of detection by a commonly used detection method such as FRET (Fluorescence Resonance Energy Transfer) method using an antibody that specifically binds to the DCTN protein and an antibody that specifically binds to the RET protein.
  • FRET Fluorescence Resonance Energy Transfer
  • the antibody that specifically binds to the DCTN1 protein and an antibody that specifically binds to the RET protein the antibody that binds to the N-terminal portion from the fusion point of the DCTN protein binds to the C-terminal portion from the fusion point of the RET protein
  • Antibodies are preferred, and these antibodies can be commercially available or can be produced by generally known methods.
  • the means for detecting the presence of the polypeptide of the present invention is not particularly limited, for example, a combination of an antibody that specifically binds to the DCTN1 protein and an antibody that specifically binds to the RET protein; Examples include antibodies that specifically bind to a polypeptide.
  • the invention includes primers or probes for detecting the presence of a polynucleotide of the invention in a sample.
  • means for detecting the presence of the polypeptide of the present invention are not particularly limited, and examples thereof include primers or probes for detecting the presence of the polynucleotide of the present invention.
  • (K) A polynucleotide that is a probe that hybridizes to a fusion point of a polynucleotide encoding a DCTN1 protein and a polynucleotide encoding a RET protein.
  • (L) A polynucleotide which is a set of a sense primer and an antisense primer designed to sandwich a fusion point of a polynucleotide encoding a DCTN1 protein and a polynucleotide encoding a RET protein. Can be mentioned.
  • the “fusion point” at “the fusion point of the polynucleotide encoding the DCTN1 protein and the polynucleotide encoding the RET protein” is a polynucleotide encoding the DCTN1 protein and a polynucleotide encoding the RET protein. It means a fused point.
  • the fusion point in SEQ ID NO: 1 is a polynucleotide having a nucleotide sequence derived from a polynucleotide encoding a DCTN1 at positions 1-3699 of SEQ ID NO: 1 and a polynucleotide derived from a polynucleotide encoding a RET at position 3700-4905 in SEQ ID NO: 1. It is a point where the polynucleotide having the sequence is fused.
  • the fusion point in SEQ ID NO: 3 is a polynucleotide having a nucleotide sequence derived from a polynucleotide encoding a DCTN1 at positions 1-3699 of SEQ ID NO: 3 and a polynucleotide derived from a polynucleotide encoding a RET at positions 3700-4779 in SEQ ID NO: 3 It is a point where the polynucleotide having the sequence is fused.
  • the fusion point in SEQ ID NO: 5 is a polynucleotide having a nucleotide sequence derived from a polynucleotide encoding a DCTN1 at the 1-3297th position in SEQ ID NO: 5 and a polynucleotide derived from a polynucleotide encoding a RET in the 3298-4503th position in SEQ ID NO: 5 It is a point where the polynucleotide having the sequence is fused.
  • the fusion point in SEQ ID NO: 7 is a polynucleotide having a nucleotide sequence derived from a polynucleotide encoding a DCTN1 at positions 1-3297 of SEQ ID NO: 7 and a polynucleotide derived from a polynucleotide encoding a RET in positions 3298-4377 in SEQ ID NO: 7 It is a point where the polynucleotide having the sequence is fused.
  • the fusion point in SEQ ID NO: 9 is a polynucleotide having a nucleotide sequence derived from a polynucleotide encoding a DCTN1 at positions 1-3624 in SEQ ID NO: 9 and a polynucleotide derived from a polynucleotide encoding a RET in positions 3625-4830 in SEQ ID NO: 9. It is a point where the polynucleotide having the sequence is fused.
  • the fusion point in SEQ ID NO: 11 is a polynucleotide having a nucleotide sequence derived from a polynucleotide encoding a DCTN1 at positions 1-3624 in SEQ ID NO: 11 and a polynucleotide derived from a polynucleotide encoding a RET in positions 3625-4704 in SEQ ID NO: 11 It is a point where the polynucleotide having the sequence is fused.
  • the fusion point in SEQ ID NO: 13 is a polynucleotide having a nucleotide sequence derived from a polynucleotide encoding a DCTN1 at positions 1-3282 in SEQ ID NO: 13 and a polynucleotide derived from a polynucleotide encoding a RET in the positions 3283-4488 in SEQ ID NO: 13 It is a point where the polynucleotide having the sequence is fused.
  • the fusion point in SEQ ID NO: 15 is a polynucleotide having a nucleotide sequence derived from a polynucleotide encoding a DCTN1 at positions 1-3282 in SEQ ID NO: 15 and a nucleotide derived from a polynucleotide encoding a RET in the positions 3283-4362 in SEQ ID NO: 15 It is a point where the polynucleotide having the sequence is fused.
  • the fusion point in SEQ ID NO: 17 is a polynucleotide having a nucleotide sequence derived from a polynucleotide encoding a DCTN1 at positions 1-3573 in SEQ ID NO: 17 and a polynucleotide derived from a polynucleotide encoding a RET in the positions 3574-4779 in SEQ ID NO: 17 It is a point where the polynucleotide having the sequence is fused.
  • the fusion point in SEQ ID NO: 19 is a polynucleotide having a nucleotide sequence derived from a polynucleotide encoding a DCTN1 at positions 1-3573 in SEQ ID NO: 19 and a polynucleotide derived from a polynucleotide encoding a RET in positions 3574-4653 in SEQ ID NO: 19 It is a point where the polynucleotide having the sequence is fused.
  • the fusion point in SEQ ID NO: 21 is a polynucleotide having a nucleotide sequence derived from a polynucleotide encoding a DCTN1 at positions 1-3678 in SEQ ID NO: 21 and a polynucleotide derived from a polynucleotide encoding a RET in positions 3679-4884 in SEQ ID NO: 21. It is a point where the polynucleotide having the sequence is fused.
  • the fusion point in SEQ ID NO: 23 is a polynucleotide having a nucleotide sequence derived from a polynucleotide encoding a DCTN1 at positions 1-3678 in SEQ ID NO: 23 and a polynucleotide derived from a polynucleotide encoding a RET in positions 3679-4758 in SEQ ID NO: 23 It is a point where the polynucleotide having the sequence is fused.
  • a primer or a probe is prepared by a commonly known method as a polynucleotide which specifically hybridizes with the polynucleotide of the present invention based on the sequence information of the polynucleotide of the present invention.
  • the number of bases of the primer or probe is 10 to 50 bases, preferably 15 to 50 bases, more preferably 18 to 35 bases.
  • the primer or probe does not have to be completely complementary as long as it specifically hybridizes to the polynucleotide of the present invention.
  • Such primers or probes have an identity of 70% or more, preferably 80% or more, more preferably 90% or more, more preferably 95% or more, more preferably 98% or more, as compared to the corresponding base sequence. It is a polynucleotide.
  • the primer or probe of the present invention is preferably a polynucleotide represented by (i) SEQ ID NO: 69, (ii) SEQ ID NO: 70, or (iii) SEQ ID NO: 71, more preferably (iv) SEQ ID NO: 69 And a polynucleotide which is a set of a sense primer and an antisense primer represented by SEQ ID NO: 70, more preferably (v) a sense primer represented by SEQ ID NO: 69, SEQ ID NO: 70 and SEQ ID NO: 71, an antisense primer And a polynucleotide which is a set of probes.
  • the invention includes a method of detecting the presence of a polynucleotide of the invention in a sample.
  • the method for detecting the presence of the polynucleotide of the present invention in a sample includes Northern blotting, Southern blotting, RT-PCR, real-time PCR, digital PCR, DNA microarray, in situ hybridization It is a method of detection by a conventional detection method such as a method or sequence analysis method.
  • the method of detecting the presence of the polynucleotide of the present invention in a sample also includes a method for detecting the presence of a polynucleotide of a RET fusion gene containing the polynucleotide of the present invention.
  • a PCR product amplified by the 5 ′ RACE method using a primer that hybridizes to a polynucleotide encoding RET protein eg, a primer that hybridizes to a sequence on the 3 ′ side after the RET kinase domain
  • a primer that hybridizes to a sequence on the 3 ′ side after the RET kinase domain eg, a primer that hybridizes to a sequence on the 3 ′ side after the RET kinase domain
  • the method for detecting the presence of the polynucleotide of the present invention in a sample preferably comprises the step of detecting the polynucleotide of the present invention using the primer or probe of the present invention. It is a method of detecting the presence of the polynucleotide of the invention.
  • the present invention includes a pharmaceutical composition for treating cancer which is a fusion gene positive between the DCTN1 gene and the RET gene or a fusion protein positive between the DCTN1 protein and the RET protein, comprising a compound that inhibits RET as an active ingredient.
  • fusion gene positive cancer of DCTN1 gene and RET gene in “fusion cancer of fusion gene of DCTN1 gene and RET gene and / or fusion protein of DCTN1 protein and RET protein positive” means It is a cancer in which the polynucleotide of the invention is expressed, preferably a cancer in which the polynucleotide of the invention is detected using a method for detecting the presence of the polynucleotide of the invention.
  • the term “cancer that is positive for the fusion protein of the DCTN1 protein and RET protein” in “fusion cancer that is positive for the fusion gene of the DCTN1 gene and RET gene or fusion protein of the DCTN1 protein and RET protein” is A cancer in which the polypeptide of the invention is expressed, preferably a cancer in which the polypeptide of the present invention is detected using a method for detecting the presence of the polypeptide of the present invention.
  • the active ingredient in the pharmaceutical composition for treating cancer of the present invention is a compound which inhibits RET, more preferably a compound which suppresses the expression and / or activity of the polypeptide of the present invention or the expression of the polynucleotide of the present invention It is.
  • the compound selected by the screening method of the present invention can be used as an active ingredient.
  • known RET-inhibiting compounds can be used as an active ingredient in the pharmaceutical composition of the present invention.
  • any compound that can inhibit the expression and / or activity of RET may be a compound that inhibits the expression and / or activity of other tyrosine kinases, and more preferably the activity of RET It may be a compound that can be inhibited and that inhibits the expression and / or activity of other tyrosine kinases.
  • a compound that inhibits fusion of the DCTN1 gene and the RET gene and / or the fusion protein positive between the DCTN1 protein and the RET protein is a compound that inhibits RET, more preferably vandetanib.
  • Cabozantinib, lenvatinib, a fused pyrimidine compound represented by the general formula (1) described in WO 2017/043550 or a fused pyrimidine compound represented by the general formula (1) described in WO 2017/146116 More preferably, vandetanib, cabozantinib, lenvatinib, Example compounds described in WO 2017/043550, or Example compounds 1 to 20 described in WO 2017/146116. And more preferably vandetanib, cabozantinib, lenvatinib, 4-amino-1- (tert-butyl) -N- (5-methyl-1H-pyrazol-3-yl) -1H-pyrazolo [3,4-d].
  • “capable of inhibiting the expression of RET” means, for example, a cell expressing a RET polypeptide and / or polynucleotide.
  • siRNA examples include CACAUGUCAUCAAAUUGUATT (SEQ ID NO: 74), GGUAUGUAACAAACUCUATT (SEQ ID NO: 75), GCUUGUCCCGAAGAUGUUUATT (SEQ ID NO: 76), preferably CACAUGUCAUCAAAUUGUATT (SEQ ID NO: 74) or GGAUUGAACAAACACUCUATT (SEQ ID NO: 75).
  • “capable of inhibiting the activity of RET” can be determined, for example, by using tyrosine phosphorylation as an indicator.
  • tyrosine phosphorylation As a method of measuring the phosphorylation of tyrosine, for example, the method described in Test Example 1 of WO 2017/043550 is mentioned.
  • cells expressing a RET polypeptide and / or polynucleotide can be used to judge that "the activity of RET can be inhibited" using the cell growth inhibitory effect as an index.
  • the cell growth inhibitory effect include the methods described in Test Example 3 and Test Example 4 of WO 2017/043550.
  • the cancer targeted by the pharmaceutical composition of the present invention is not particularly limited as long as it expresses the polynucleotide and / or polypeptide of the present invention, and for example, head and neck cancer, thyroid cancer, digestive organ cancer (esophageal cancer, Gastric cancer, duodenal cancer, liver cancer, biliary tract cancer (such as gallbladder and cholangiocarcinoma), pancreatic cancer, small intestine cancer, colon cancer (such as colorectal cancer, colon cancer, rectal cancer), digestive tract interstitial tumor, etc., lung cancer Small cell lung cancer, small cell lung cancer), breast cancer, ovarian cancer, uterine cancer (cervical cancer, endometrial cancer etc.), renal cancer, bladder cancer, prostate cancer, skin cancer etc., preferably thyroid cancer or lung cancer (Non-small cell lung cancer, small cell lung cancer).
  • the cancer includes not only the primary site but also cancer that has metastasized to other organs (such as liver).
  • a preparation containing a compound that suppresses the expression and / or activity of the polypeptide of the present invention or the expression of the polynucleotide of the present invention as an active ingredient comprises a pharmaceutical carrier and is a pharmaceutical composition according to various administration forms. It can be manufactured.
  • the forms include, for example, oral agents, injections, suppositories, ointments and patches. Each of these dosage forms can be prepared by conventional formulation methods known to those skilled in the art.
  • the pharmaceutical carrier various organic or inorganic carrier substances commonly used as pharmaceutical materials are used, and in solid preparations, excipients, binders, disintegrants, lubricants, coating agents, etc., solvents in liquid preparations, solubilizing agents It is formulated as a suspending agent, tonicity agent, pH adjuster / buffer, soothing agent, etc.
  • formulation additives such as preservatives, antioxidants, coloring agents, flavoring agents, stabilizers and the like can also be used, if necessary.
  • the compound of the present invention is added with an excipient, if necessary, an excipient, a binder, a disintegrant, a lubricant, a coloring agent, a flavoring agent, etc.
  • an excipient if necessary, an excipient, a binder, a disintegrant, a lubricant, a coloring agent, a flavoring agent, etc.
  • a pH regulator, buffer, stabilizer, flavoring agent, etc. may be added to the compound of the present invention to produce an internal solution, syrup, elixir etc. by a conventional method. it can.
  • a pH regulator / buffer, a stabilizer, a tonicity agent, a local anesthetic and the like are added to the compound of the present invention, and subcutaneous, intramuscular and intravenous injections are prepared by a conventional method. It can be manufactured.
  • the presence of the polypeptide of the present invention or the polynucleotide of the present invention in a sample was detected.
  • methods of determining cancer are included. Examples of cancers that can be determined by the present invention include those listed as cancers targeted by the pharmaceutical composition of the present invention. As described above, cancer can be determined by using the polypeptide or polynucleotide of the present invention. Therefore, the polypeptide and polynucleotide of the present invention can also be used as a biomarker for detecting cancer.
  • chemotherapy using a polypeptide of the present invention or a polynucleotide of the present invention and a compound that suppresses the expression and / or activity of the polypeptide of the present invention or the expression of the polynucleotide of the present invention is effective
  • the polypeptide of the present invention is detected from the sample by the detection method of the present invention and / or from the sample by the detection method of the present invention
  • Included is a method of determining that chemotherapy using a compound that suppresses the expression and / or activity of the polypeptide of the present invention or the expression of the polynucleotide of the present invention is effective when the presence of the polynucleotide is detected.
  • the screening method of the present invention when the polypeptide of the present invention is detected from the sample by the detection method of and / or the presence of the polynucleotide of the present invention is detected from the sample by the detection method of the present invention Included are methods of determining that chemotherapy using a compound obtained by the method is effective.
  • cDNA was synthesized by the following method using SuperScript VILO cDNA Synthesis Kit (invitorgen). 500 ng of total RNA was prepared with RNAse free water to a volume of 14 ⁇ L, and 4 ⁇ L of 5 ⁇ VILO Reaction Mix and 2 ⁇ L of 10 ⁇ SuperScript Enzyme Mix were added and mixed. The mixture was incubated at 25 ° C. for 10 minutes and then at 42 ° C. for 60 minutes. Finally, the reaction was terminated by incubation at 85 ° C. for 5 minutes to obtain cDNA.
  • KOD-Plus-Neo (TOYOBO) was used to amplify a DCTN1-RET fusion gene in the following manner. 2 ⁇ l of cDNA, 5 ⁇ l of 10 ⁇ PCR Buffer for KOD-Plus-Neo, 5 ⁇ l of 2 mM dNTPs, 3 ⁇ l of 25 mM MgSO 4 , 1 ⁇ l of KOD-Plus- Neo, 1.5 ⁇ l of Primer 1 (10 ⁇ M), 1.5 ⁇ l of Primer 2 PCR was carried out by mixing (10 ⁇ M) and 31 ⁇ L of double distilled water (DDW).
  • DDW double distilled water
  • the resulting PCR product is then diluted 100-fold and 2 ⁇ L of the diluted PCR product, 5 ⁇ L of 10 ⁇ PCR Buffer for KOD-Plus-Neo, 5 ⁇ L of 2 mM dNTPs, 3 ⁇ L of 25 mM MgSO 4 , 1 ⁇ L of KOD-Plus- Neo, 1.5 ⁇ L of Primer 3 (10 ⁇ M), 1.5 ⁇ L of Primer 4 (10 ⁇ M) and 31 ⁇ L of DDW were mixed, and nested PCR was performed.
  • the Nested PCR product was separated by electrophoresis using a 1% agarose gel (Nakarai), and the PCR product was purified from the gel using QIAquick Gel Extraction Kit (Qiagen).
  • PUC18 DNA (Takara Bio) digested with restriction enzyme SmaI (NEB), purified PCR product, T4 DNA ligase (NEB) and T4 DNA Ligase Reaction Buffer (NEB) were mixed and incubated overnight at 16 ° C.
  • the ligation product was treated with SmaI (NEB), and transformation into competent cells was performed in the following manner. 50 ⁇ L of E. coli.
  • the Ligation product treated with SmaI was added to E. coli DH5 ⁇ Competent Cells (Takara Bio) and allowed to stand on ice for 30 minutes. After that, heat shock was applied at 42 ° C. for 30 seconds, and left on ice for 2 minutes.
  • the DCTN1-RET fusion gene comprises the exon12 to exon20 of RET variant 2 (GenBank accession number: NM_020975) downstream of the 3 'side of exon1 to exon27 of DCTN variant 5 (GenBank accession number: NM_001190836). It was a fused gene (SEQ ID NO: 17).
  • Example 2 Detection of DCTN1-RET Fusion Gene Using SuperScript VILO cDNA Synthesis Kit (invitorgen) from human normal thyroid tissue-derived RNA purchased from Asterand Bioscience and human thyroid cancer tissue-derived RNA obtained in 1-1 above.
  • CDNA was synthesized by the following method. 280 ng of total RNA was prepared with RNAse free water to a volume of 14 ⁇ L, and 4 ⁇ L of 5 ⁇ VILO Reaction Mix and 2 ⁇ L of 10 ⁇ SuperScript Enzyme Mix were added and mixed. The mixture was incubated at 25 ° C. for 10 minutes and then at 42 ° C. for 60 minutes. Finally, the reaction was incubated at 85 ° C. for 5 minutes to stop the reaction.
  • Primer37 (SEQ ID NO: 69) as a sense primer for detecting a DCTN-RET fusion gene and Primer38 (SEQ ID NO: 3) as an antisense primer for detecting a DCTN-RET fusion gene.
  • Primer39 (SEQ ID NO: 71) was designed as a probe for detecting a DCTN1-RET fusion gene (the probe is a TaqMan MGB probe, and the fluorescent dye is FAM (Thermo Fisher Scientific)).
  • the obtained cDNA is diluted 10-fold, and 1.1 ⁇ L is used as a template, 11 ⁇ L of ddPCR Supermix for probe (Bio-Rad), 2 ⁇ L of Primer 37 (10 ⁇ M), 2 ⁇ L of Primer 38 (10 ⁇ M), 0.6 ⁇ L of Primer 39 ( 10 ⁇ M), 20 ⁇ HEX assay (PrimePCR ddPCR Expression Probe Assay: GAPDH, Human, Bio-Rad) for detecting 1.1 ⁇ L of GAPDH was mixed, and droplets were produced with Automated Droplet Generator (Bio-Rad). PCR was performed using the prepared droplets, and droplets of DCTN1-RET and GAPDH positive were counted by Droplet Reader (Bio-Rad). The results are shown in FIG. 1 and FIG.
  • KOD-Plus-Neo (TOYOBO) was used to amplify a DCTN1-RET fusion gene in the following manner. 2 ⁇ l of cDNA, 5 ⁇ l of 10 ⁇ PCR Buffer for KOD-Plus-Neo, 5 ⁇ l of 2 mM dNTPs, 3 ⁇ l of 25 mM MgSO 4 , 1 ⁇ l of KOD-Plus- Neo, 1.5 ⁇ l of Primer 1 (10 ⁇ M), 1.5 ⁇ l of Primer 2 PCR was performed by mixing (10 ⁇ M) and 31 ⁇ L of DDW.
  • the resulting PCR product is then diluted 100-fold and 2 ⁇ L of the diluted PCR product, 5 ⁇ L of 10 ⁇ PCR Buffer for KOD-Plus-Neo, 5 ⁇ L of 2 mM dNTPs, 3 ⁇ L of 25 mM MgSO 4 , 1 ⁇ L of KOD-Plus- Neo, 1.5 ⁇ L of Primer 3 (10 ⁇ M), 1.5 ⁇ L of Primer 4 (10 ⁇ M) and 31 ⁇ L of DDW were mixed, and nested PCR was performed. Nested PCR products were separated by electrophoresis using 1% agarose gel (Nakarai) and photographed. The results are shown in FIG.
  • the DCTN1-RET fusion gene was detected in the cDNA synthesized from RNA from human thyroid cancer tissue, whereas it was synthesized from human normal thyroid tissue-derived RNA In the resulting cDNA, the DCTN1-RET fusion gene was not detected. From the above results, it was shown that the DCTN1-RET fusion gene is useful as a cancer biomarker.
  • Prime Star Max DNA Polymerase (TaKaRa) was used to amplify a DCTN1-RET fusion gene by the following method. PCR was performed by mixing 1 ⁇ L of cDNA, 25 ⁇ L of 2 ⁇ Prime STAR Max DNA Polymerase, 1 ⁇ L of Primer 40 (10 ⁇ M), 1 ⁇ L of Primer 41 (10 ⁇ M), and 22 ⁇ L of double distilled water (DDW). The resulting PCR products were separated by electrophoresis using a 1% agarose gel (Nakarai), and the PCR products were purified from the gel using GFX PCR DNA and Gel Band Purification Kit (GE Healthcare).
  • the purified PCR product obtained was incorporated into Gateway pDONR221 Vector by the following method using Gateway BP Clonase II Enzyme mix (ThermoFisher) to prepare an entry vector.
  • Gateway BP Clonase II Enzyme mix ThermoFisher
  • 5.0 ⁇ L of the purified PCR product, 3.5 ⁇ L of pDONR221 (85 ng / ⁇ L), 4.0 ⁇ L of BP Clonase II EnzymeMix, 7.5 ⁇ L of TE were mixed, and incubated at 25 ° C. for 90 minutes. After incubation, 1 ⁇ L of proteinase K (2 mg / mL) was added, and the entry vector was obtained by incubating at 37 ° C. for 10 minutes.
  • the obtained entry vector was treated with 50 ⁇ L of E. coli.
  • the cells were added to E. coli DH5 ⁇ Competent Cells (Takara Bio) and allowed to stand on ice for 30 minutes. After that, heat shock was applied at 37 ° C. for 20 seconds, and left on ice for 2 minutes.
  • SOC medium Tekara Bio
  • shake culture was performed at 37 ° C. for 1 hour, the culture solution was applied to a kanamycin-containing LB agar medium plate and allowed to stand overnight at 37 ° C. E. coli colonies were suspended in kanamycin-containing LB medium and shake cultured overnight at 37 ° C.
  • the plasmid DNA into which the DCTN-RET fusion gene was incorporated was purified from the grown E. coli using a DNA automatic separator GENE PREP STAR PI-480 (Kurabo).
  • the DCTN1-RET fusion gene was incorporated into the pJTI Fast DEST vector by the following method, and used as an expression vector.
  • 150 ng of entry vector clone, 1 ⁇ L of pJTI Fast DEST vector (150 ng / ⁇ L), 2 ⁇ L of LR Clonase II Enzyme mix, and TE buffer were mixed to make a total volume of 10 ⁇ L and incubated at 25 ° C. for 90 minutes. After incubation, 1 ⁇ L of proteinase K (2 mg / mL) was added and incubated at 37 ° C.
  • DCTN1-RET fusion gene expression vector incorporating the DCTN1-RET fusion gene .
  • the obtained DCTN1-RET fusion gene expression vector was treated with 50 ⁇ L of E. coli.
  • the cells were added to E. coli DH5 ⁇ Competent Cells (Takara Bio) and allowed to stand on ice for 30 minutes. After that, heat shock was applied at 37 ° C. for 20 seconds, and left on ice for 2 minutes. After SOC medium (Takara Bio) was added and shake cultured at 37 ° C. for 1 hour, the culture solution was applied to an ampicillin-containing LB agar plate and allowed to stand overnight at 37 ° C. E.
  • coli colonies were suspended in LB medium containing ampicillin and cultured with shaking overnight at 37 ° C.
  • a plasmid DNA (DCTN1-RET fusion gene expression vector) into which a DCTN1-RET fusion gene had been incorporated from E. coli grown was purified using a plasmid plus Maxi kit (QIAGEN).
  • Example 4 Establishment of DCTN1-RET Fusion Gene Expressing Cells ⁇ 4-1 Establishment of Cells>
  • Mouse fetal fibroblasts NIH / 3T3 cells (American Type Culture Collection) were selected as host cells for establishment of DCTN1-RET fusion gene-expressing cells, and expression incorporating the DCTN1-RET fusion gene prepared above By transfection of the vector, cells expressing the DCTN1-RET fusion gene were established. The detailed method was implemented as shown below.
  • NIH / 3T3 cells were cultured in D-MEM (high glucose) (containing L-glutamine, phenol red, sodium pyruvate, 1500 mg / L sodium bicarbonate) (WAKO) for normal culture (two-dimensional culture).
  • NIH / 3T3 cells were seeded at 1.5 ⁇ 10 5 cells / 2 mL in a 6-well plate (IWAKI) and incubated overnight at 37 ° C., 5% CO 2 . After adding 6 times the amount of ViaFect Transfection Reagent of the mixture to a mixture containing 1.5 ⁇ g of the DCTN1-RET fusion gene expression vector and 1.5 ⁇ g of the pJTI phiC31 integrase vector, the total volume will be 300 ⁇ L.
  • NBCS Newborn Calf Serum
  • a transfection solution was made by adding Opti-MEM and incubating for 5 minutes at room temperature. 300 ⁇ L of culture medium was removed from the wells in which NIH / 3T3 cells were seeded, 300 ⁇ L of the transfection solution prepared above was added, and the mixture was incubated overnight at 37 ° C., 5% CO 2 . The next day, the medium was changed to remove the transfection solution. When replacing the medium, hygromycin B (Nacalai Tesque) was added to the new medium to 500 ⁇ g / mL. Hygromycin B eliminated cells into which the DCTN1-RET fusion gene transfer expression vector had not been introduced. After transfection, culture was performed until the cells proliferated while changing the medium about twice a week.
  • DCTN1-RET fusion gene-expressing NIH / 3T3 cells Twenty-two days after transfection, cells were harvested with trypsin and single cell cloning was performed by the following method. The number of collected cells was measured, and the medium was added to 1 cell / 200 ⁇ L. Cells were seeded at 200 ⁇ l / well in a 96-well plate (ThermoFisher). After the seeding, daily observation was performed, and cells grown from a single cell were obtained and used as cells expressing DCTN1-RET fusion gene (DCTN1-RET fusion gene-expressing NIH / 3T3 cells).
  • Sample Buffer Solution with Reducing Reagent (6x) for SDS-PAGE (Nacalai Tesque) is added to a constant concentration protein sample, and the protein is denatured by incubating at 95 ° C for 5 minutes, and a sample for Western blotting I got As a sample for negative control, a parent strain NIH / 3T3 cell was used, and a sample for western blotting was obtained in the same manner. The expression of protein was confirmed by the method described below using the above sample. The proteins were separated by SDS-PAGE electrophoresis (30 minutes at 200 V) using 4-15% acrylamide gel (BIO-RAD) and 1 ⁇ Tris / Glycine / SDS Buffer.
  • the protein was transferred to the PVDF membrane using Trans-Blot Turb RTA Midi PVDF Transfer Kit (BIO-RAD) and Transblot Turbo Transfer System (BIO-RAD), and the PVDF membrane was immersed in Blocking One-P for 1 hour.
  • Primary antibody Phospho-Ret (Tyr905) Antibody (CST), Ret (C31 B4) Rabbit mAb (CST) and Anti-Dctn1 Antibody (ATLAS ANTIBODIES) in a solution diluted with TBS-T so that Blocking One-P is 10% ) was diluted to a concentration of 1/1000, the PVDF membrane was immersed, and incubated overnight at 4 ° C.
  • the PVDF membrane After washing with TBS-T, the PVDF membrane is immersed in a secondary antibody diluent diluted with TBS-T so that the concentration of Anti-rabbit IgG and HRP-linked Antibody (CST) becomes 1/2000. Incubated for 1 hour at room temperature. After washing with TBS-T, protein detection was performed using SuperSignal West Dura Extended Duration Substrate (ThermoFisher) and a Lumino Image Analyzer Amersham Imager 600 (GE Healthcare). The molecular weight of the detection protein was confirmed by Precision Plus proteinoid standard (BIORAD). As a result, as shown in FIG.
  • FCeM series Preparation kit (Nissan Chemical Industries, Ltd.) and D-MEM (high glucose) (L-glutamine, phenol red, sodium pyruvate, containing 1500 mg / L sodium bicarbonate) (WAKO) to perform three-dimensional culture And Newborn Calf Serum (NBCS) (GIBCO) were used to prepare a culture medium for three-dimensional culture.
  • the cells are suspended in the prepared three-dimensional culture medium to 1000 cells / 90 ⁇ L and seeded at 90 ⁇ L / well in 96 Well Clear Black Round Bottom, Spheroid Microplate (Corning), 37 ° C., 5% It was incubated in CO 2.
  • the amount of luminescence (counts per second: cps) using Intracellular ATP luminescence detection reagent Celltiter-Glo 2.0 Reagent (Progema) and luminometer (EnSpire, PerkinElmer) the day after seeding (Day 1) and 8 days after seeding (Day 8) was used as an indicator of the number of viable cells.
  • Example 6 Confirming Tumorigenicity of DCH1-RET Fusion Gene Expressing NIH / 3T3 Cells In Vivo Transplantation using nude mice to confirm in vivo tumorigenicity of DCTN-RET fusion gene expressing NIH / 3T3 cells I did an experiment. In addition, it is generally known that the parent strain NIH / 3T3 cells do not proliferate in nude mice subcutaneously, and by implanting the DCTN1-RET fusion gene-expressing NIH / 3T3 cells subcutaneously in nude mice, It can be confirmed whether the DCTN1-RET fusion gene contributes to tumorigenicity, that is, it is an oncogene.
  • nude mice As a recipient animal, nude mice (BALB / cAJcl-nu / nu, CLEA Japan, Inc.) were used.
  • the DCTN1-RET fusion gene-expressing NIH / 3T3 cells are recovered with trypsin, suspended in PBS to a final concentration of 1 ⁇ 10 8 cells / mL, and the same amount of Matrigel basement membrane matrix (Corning) is added, 5
  • the long diameter and the short diameter of the tumor were measured one by one on day 10, 13 and 17 after transplantation using an electronic caliper (Mitutoyo), and the tumor volume was calculated using the following equation.
  • Tumor volume (mm 3 ) (long diameter, mm) ⁇ (short diameter, mm) ⁇ (short diameter, mm) / 2
  • the measurement results of the tumor volume are shown in FIG.
  • the DCTN1-RET fusion gene-expressing NIH / 3T3 cells implanted subcutaneously in nude mice form a tumor and proliferate well, and the in vivo DCTN1-RET fusion gene is an oncogene.
  • the DCTN1-RET fusion gene-expressing NIH / 3T3 cells implanted subcutaneously in nude mice form a tumor and proliferate well, and the in vivo DCTN1-RET fusion gene is an oncogene.
  • Example 7 Confirmation of suppression of the DCTN1-RET fusion protein by siRNA using DCTN1-RET fusion gene expressing NIH / 3T3 cells and confirmation of cell growth inhibitory effect The effect of siRNA treatment on the DCTN1-RET fusion gene expressing NIH / 3T3 cells was confirmed .
  • the siRNAs used were three RET siRNAs shown in Table 5 below and Silencer Select Negative Control # 1 siRNA (Ambion) as a negative control.
  • the three RET siRNAs are all siRNAs targeting human RET, but RET siRNA 1 and RET siRNA 2 contain sequences that bind to the RET portion in the DCTN 1-RET fusion gene, and RET siRNA 3 is a DCTN 1-RET It does not contain sequences that bind within the fusion gene. That is, it was assumed that RET siRNA 1 and RET siRNA 2 suppress the expression of the DCTN 1 -RET fusion gene, but RET siRNA 3 does not suppress the expression of the DCTN 1 -RET fusion gene. The method of the experiment using siRNA was described below.
  • a DCTN1-RET fusion gene-expressing NIH / 3T3 cell was cultured at 37 ° C., 5% CO 2 using a medium for two-dimensional culture. The day before the siRNA treatment, each cell was seeded at 3 ⁇ 10 5 cells / 2 mL in a 6-well plate (IWAKI) and incubated overnight at 37 ° C., 5% CO 2 .
  • the siRNA solution was prepared by mixing 12 ⁇ L of each siRNA prepared beforehand to 20 ⁇ M with water, 4 ⁇ L of Lipofectamin RNAiMAX Transfection Reagent (ThermoFisher) and 384 ⁇ L of Opti-MEM, and incubating for 15 minutes at room temperature.
  • Three-dimensional culture was performed in the same manner as in Example 5 above, and the number of viable cells was measured in the same manner as in Example 5 on the day of seeding (Day 0) and 4 days after sowing (Day 4).
  • the proliferation rate in each cell was calculated from the measurement result on Day 0 and the measurement result on Day 4.
  • the number of cells in Day 4 was 4 compared to the number of cells in Day 0.
  • the cells treated with RET siRNA 1 and RET siRNA 2 showed about 2.0 and 2.4 times proliferation, whereas their proliferation rates were significantly reduced.
  • Example 8 Cell growth inhibitory effect using DCTN1-RET fusion gene-expressing NIH / 3T3 cells.
  • An in vitro cell proliferation test was performed on DCTN-RET fusion gene-expressing NIH / 3T3 cells. Three-dimensional culture and seeding were performed in the same manner as in Example 5 above. After seeding, the plate was incubated overnight at 37 ° C., 5% CO 2 (Day 0).
  • Cabozatininib, vandetanib, alectinib, lenvatinib, fused pyrimidine compounds (Compound 1 to 9; shown in Table 6), which are reported to inhibit RET, are dissolved in dimethylsulfoxide to a concentration of 10 mmol / L and further for three-dimensional culture The medium was used for dilution so that the final concentrations of these compounds would be 1000, 333, 111, 37.0, 12.3, 4.12, 1.37, and 0.457 nmol / L, respectively. The above was added to each well of the plate seeded with the above cells (0.01 mL each) (Day 1), and incubated at 37 ° C., 5% CO 2 for 7 days.
  • the above RET inhibitor may be useful as a therapeutic agent for cancer in which the DCTN-RET fusion gene is detected.
  • screening of a compound that suppresses DCTN1-RET can be performed by using NITN / 3 RET3 cells expressing the DCTN1-RET fusion gene.
  • Example 9 Phosphorylation inhibition of RET using DCTN1-RET fusion gene-expressing cells
  • the following describes whether phosphorylation of RET in cells expressing DCTN-RET fusion gene expression is inhibited by existing drugs that have been reported to inhibit RET.
  • a DCTN1-RET fusion gene-expressing NIH / 3T3 cell was cultured at 37 ° C., 5% CO 2 using a medium for two-dimensional culture. The day before drug treatment, each cell was seeded at 3 ⁇ 10 5 cells / 2 mL in a 6-well plate (IWAKI) and incubated overnight at 37 ° C., 5% CO 2 .
  • the drug that significantly reduces the phosphorylated RET level is a compound that can suppress the growth of the DCTN1-RET fusion gene-expressing NIH / 3T3 cells, and a therapeutic agent for cancer in which the DCTN-RET fusion gene is detected It was suggested that it might be useful. In addition, it was suggested that screening of RET inhibitors is possible by using phosphorylated RET levels of DCTN1-RET fusion gene-expressing NIH / 3T3 cells.
  • SEQ ID NO: 1 shows the base sequence of a polynucleotide encoding a fusion peptide of DCTN1 variant 1 (v1) [part of SEQ ID NO: 25] and RET variant 2 (v2) [part of SEQ ID NO: 31].
  • SEQ ID NO: 2 shows the amino acid sequence of a fusion peptide of DCTN1 v1 and RET v2.
  • SEQ ID NO: 3 shows the base sequence of a polynucleotide encoding a fusion peptide of DCTN1 v1 and RET variant 4 (v4) [part of SEQ ID NO: 32].
  • SEQ ID NO: 4 shows the amino acid sequence of a fusion peptide of DCTN1 v1 and RET v4.
  • SEQ ID NO: 5 shows the base sequence of a polynucleotide encoding a fusion peptide of DCTN variant 2 (v2) [part of SEQ ID NO: 26] and RET v2.
  • SEQ ID NO: 6 shows the amino acid sequence of the fusion peptide of DCTN1 v2 and RET v2.
  • SEQ ID NO: 7 shows the nucleotide sequence of a polynucleotide encoding a fusion peptide of DCTN1 v2 and RET v4.
  • SEQ ID NO: 8 shows the amino acid sequence of a fusion peptide of DCTN1 v2 and RET v4.
  • SEQ ID NO: 9 shows the base sequence of a polynucleotide encoding a fusion peptide of DCTN variant 3 (v3) [part of SEQ ID NO: 27] and RET v2.
  • SEQ ID NO: 10 shows the amino acid sequence of a fusion peptide of DCTN1 v3 and RET v2.
  • SEQ ID NO: 11 shows the nucleotide sequence of a polynucleotide encoding a fusion peptide of DCTN1 v3 and RET v4.
  • SEQ ID NO: 12 shows the amino acid sequence of a fusion peptide of DCTN1 v3 and RET v4.
  • SEQ ID NO: 13 shows the nucleotide sequence of a polynucleotide encoding a fusion peptide of DCTN variant 4 (v 4) [part of SEQ ID NO: 28] and RET v2.
  • SEQ ID NO: 14 shows the amino acid sequence of a fusion peptide of DCTN1 v4 and RET v2.
  • SEQ ID NO: 15 shows the nucleotide sequence of a polynucleotide encoding a fusion peptide of DCTN1 v4 and RET v4.
  • SEQ ID NO: 16 shows the amino acid sequence of a fusion peptide of DCTN1 v4 and RET v4.
  • SEQ ID NO: 17 shows the base sequence of a polynucleotide encoding a fusion peptide of DCTN variant 5 (v5) [part of SEQ ID NO: 29] and RET v2.
  • SEQ ID NO: 18 shows the amino acid sequence of a fusion peptide of DCTN1 v5 and RET v2.
  • SEQ ID NO: 19 shows the nucleotide sequence of a polynucleotide encoding a fusion peptide of DCTN1 v5 and RET v4.
  • SEQ ID NO: 20 shows the amino acid sequence of a fusion peptide of DCTN1 v5 and RET v4.
  • SEQ ID NO: 21 shows the nucleotide sequence of a polynucleotide encoding a fusion peptide of DCTN1 v6 and RET v2.
  • SEQ ID NO: 22 shows the amino acid sequence of a fusion peptide of DCTN1 v6 and RET v2.
  • SEQ ID NO: 23 shows the nucleotide sequence of a polynucleotide encoding a fusion peptide of DCTN1 v6 and RET v4.
  • SEQ ID NO: 24 shows the amino acid sequence of a fusion peptide of DCTN1 v6 and RET v4.
  • SEQ ID NO: 33 shows the nucleotide sequence of a primer.
  • SEQ ID NO: 34 shows the nucleotide sequence of a primer.
  • SEQ ID NO: 35 shows the nucleotide sequence of a primer.
  • SEQ ID NO: 36 shows the nucleotide sequence of a primer.
  • SEQ ID NO: 37 shows the nucleotide sequence of a primer.
  • SEQ ID NO: 38 shows the nucleotide sequence of a primer.
  • SEQ ID NO: 39 shows the nucleotide sequence of a primer.
  • SEQ ID NO: 40 shows the nucleotide sequence of a primer.
  • SEQ ID NO: 41 shows the nucleotide sequence of a primer.
  • SEQ ID NO: 42 shows the nucleotide sequence of a primer.
  • SEQ ID NO: 43 shows the nucleotide sequence of a primer.
  • SEQ ID NO: 44 shows the nucleotide sequence of a primer.
  • SEQ ID NO: 45 shows the nucleotide sequence of a primer.
  • SEQ ID NO: 46 shows the nucleotide sequence of a primer.
  • SEQ ID NO: 47 shows the nucleotide sequence of a primer.
  • SEQ ID NO: 48 shows the nucleotide sequence of a primer.
  • SEQ ID NO: 49 shows the nucleotide sequence of a primer.
  • SEQ ID NO: 50 shows the nucleotide sequence of a primer.
  • SEQ ID NO: 51 shows the nucleotide sequence of a primer.
  • SEQ ID NO: 52 shows the nucleotide sequence of a primer.
  • SEQ ID NO: 53 shows the nucleotide sequence of a primer.
  • SEQ ID NO: 54 shows the nucleotide sequence of a primer.
  • SEQ ID NO: 55 shows the nucleotide sequence of a primer.
  • SEQ ID NO: 56 shows the nucleotide sequence of a primer.
  • SEQ ID NO: 57 shows the nucleotide sequence of a primer.
  • SEQ ID NO: 58 shows the nucleotide sequence of a primer.
  • SEQ ID NO: 59 shows the nucleotide sequence of a primer.
  • SEQ ID NO: 60 shows the nucleotide sequence of a primer.
  • SEQ ID NO: 61 shows the nucleotide sequence of a primer.
  • SEQ ID NO: 62 shows the nucleotide sequence of a primer.
  • SEQ ID NO: 63 shows the nucleotide sequence of a primer.
  • SEQ ID NO: 64 shows the nucleotide sequence of a primer.
  • SEQ ID NO: 65 shows the nucleotide sequence of a primer.
  • SEQ ID NO: 66 shows the nucleotide sequence of a primer.
  • SEQ ID NO: 67 shows the nucleotide sequence of a primer.
  • SEQ ID NO: 68 shows the nucleotide sequence of a primer.
  • SEQ ID NO: 69 shows the nucleotide sequence of a primer.
  • SEQ ID NO: 70 shows the nucleotide sequence of a primer.
  • SEQ ID NO: 71 shows the nucleotide sequence of a primer.
  • SEQ ID NO: 72 shows the nucleotide sequence of a primer.
  • SEQ ID NO: 73 shows the nucleotide sequence of a primer.
  • SEQ ID NO: 74 shows the nucleotide sequence of RET siRNA.
  • SEQ ID NO: 75 shows the nucleotide sequence of RET siRNA.
  • SEQ ID NO: 76 shows the nucleotide sequence of RET siRNA.
  • SEQ ID NO: 77 shows the nucleotide sequence of RET siRNA.

Abstract

DCTN1タンパク質の一部とRETタンパク質の一部とが融合した新規なポリペプチド、上記ポリペプチドをコードするポリヌクレオチド、上記ポリヌクレオチド又はポリペプチドの検出方法、上記ポリヌクレオチドの発現又はポリペプチドの発現及び/又は活性を抑制する化合物をスクリーニングする方法、及びRETを阻害する化合物を有効成分とする医薬組成物。

Description

DCTN1タンパク質とRETタンパク質との融合タンパク質
 本発明は、DCTN1タンパク質とRETタンパク質との融合タンパク質であるポリペプチド、当該ポリペプチドをコードするポリヌクレオチド、当該ポリペプチド又はポリヌクレオチドの検出方法、当該ポリペプチド又はポリヌクレオチドを標的とした化合物、当該化合物をスクリーニングする方法に関する。
 がんは日本における死因第一位の疾患であり、その治療法の改善が求められている。甲状腺がんの罹患者数は増加しているが、多くの症例で進行が遅く初期段階に適切な治療をすることで高い生存率を示す。一方で自覚症状がほとんど無いため適切な治療には早期の診断が不可欠である。
 甲状腺がんは組織型により乳頭がん、濾胞がん、髄様がん、未分化がん、悪性リンパ腫に分けられる。乳頭がんは甲状腺がんの80%程度を占めており、また未分化がんは低頻度であるが予後が非常に悪いことが知られている(非特許文献1)。
 乳頭がんにおいて、大部分ががん遺伝子の活性化によって発生することが知られておりBRAF変異遺伝子(50~60%)、RAS変異遺伝子(10~20%)、RET融合遺伝子(5~10%)等の遺伝子異常が相互排他的に生じることが明らかとなってきている。また非小細胞肺がんにおいても、RET融合遺伝子が1~2%の頻度でEGFR変異遺伝子等の他のドライバー変異遺伝子と相互排他的に存在することが報告されている(非特許文献2~5)。
 進行した甲状腺がんにおいては薬物治療が主体となり、種々のマルチキナーゼ阻害剤が承認されているが、ドライバー変異遺伝子特異的に効果を示す薬剤は未だ承認されていない。一方、肺がんにおいてはRET融合遺伝子陽性の患者でのRETを阻害することで効果を示すことが報告されており(非特許文献6)、甲状腺がんにおいても変異遺伝子や融合遺伝子といった薬剤効果の指標となりうる遺伝子異常を同定する必要がある。
 がんにおいて、ドライバーとなる変異遺伝子(変異タンパク質)や融合遺伝子(融合タンパク質)などを同定することは、がんの性質を明らかにするとともに、これら変異遺伝子や融合遺伝子を標的とした新しいがん治療薬や検査方法の開発に大きく寄与するため、強く望まれている。
 しかしながら、がんの発生のドライバーとなり得る変異遺伝子や融合遺伝子等は十分に解明されておらず、薬剤の治療効果に関連し得る遺伝子異常を同定することは非常に有意義である。
Cancer,115(16),pp3801-7(2009) Oncogene,22(29),pp4578-80(2003) Cell,159(3),pp676-90(2014) Cancer Discov.,3(6),pp630-5(2013) Nature,511(7511),pp543-50(2014) Lancet Respir Med.,5(1),pp42-50(2017)
 本発明は、RETタンパク質の少なくとも一部を含む融合タンパク質である新規なポリペプチド、又は当該ポリペプチドをコードするポリヌクレオチド、当該ポリペプチド又はポリヌクレオチドの検出方法、当該ポリペプチド又はポリヌクレオチドを標的とした化合物、当該化合物をスクリーニングする方法を提供することを課題とする。
 本発明者らは、上記の課題を解決すべく鋭意検討した結果、甲状腺がん患者由来の細胞において、DCTN1タンパク質の一部とRETタンパク質の一部とが融合した新規なポリペプチド及び当該ポリペプチドをコードするポリヌクレオチドを同定した。また、がん細胞における本発明のポリヌクレオチド又はポリペプチドの検出方法、前記ポリヌクレオチドの発現又はポリペプチドの発現及び/又は活性を抑制する化合物をスクリーニングする方法を見出した。多種多様にあるタンパク質のうち、DCTN1タンパク質のN末端部分と、RETタンパク質のC末端部分との組合せを有する融合タンパク質が細胞内で自然に発生すること、さらにDCTN1とRETとの融合遺伝子が癌ドライバーとして働くため、上記融合タンパク質が、がん診断に有効であることは新規の知見でありかつ従来技術から予想し得ない事項である。さらに当該ポリペプチド及び/又はポリヌクレオチドを発現している癌患者を治療するためのRETを阻害する化合物を有効成分とする医薬組成物を見出し、本発明を完成するに至った。
 すなわち、本発明は、以下の態様を提供するものである。
 項1.DCTN1タンパク質のN末端部分と、RETタンパク質のC末端部分とが融合しているポリペプチド。
 項2.以下の(a)~(c)から選択される項1記載のポリペプチド。
 (a)配列番号2、配列番号4、配列番号6、配列番号8、配列番号10、配列番号12、配列番号14、配列番号16、配列番号18、配列番号20、配列番号22、又は配列番号24で示されるアミノ酸配列からなるポリペプチド。
 (b)配列番号2、配列番号4、配列番号6、配列番号8、配列番号10、配列番号12、配列番号14、配列番号16、配列番号18、配列番号20、配列番号22、又は配列番号24で示されるアミノ酸配列において、1個若しくは数個のアミノ酸が置換、欠失、又は付加されたアミノ酸配列からなるポリペプチド。
 (c)配列番号2、配列番号4、配列番号6、配列番号8、配列番号10、配列番号12、配列番号14、配列番号16、配列番号18、配列番号20、配列番号22、又は配列番号24で示されるアミノ酸配列と90%以上の同一性を有するアミノ酸配列からなるポリペプチド。
 項3.項1又は2記載のポリペプチドをコードするポリヌクレオチド。
 項4.以下の(d)~(f)から選択される項3記載のポリヌクレオチド。
 (d)配列番号2、配列番号4、配列番号6、配列番号8、配列番号10、配列番号12、配列番号14、配列番号16、配列番号18、配列番号20、配列番号22、又は配列番号24で示されるアミノ酸配列からなるポリペプチドをコードするポリヌクレオチド。
 (e)配列番号2、配列番号4、配列番号6、配列番号8、配列番号10、配列番号12、配列番号14、配列番号16、配列番号18、配列番号20、配列番号22、又は配列番号24で示されるアミノ酸配列において、1個若しくは数個のアミノ酸が置換、欠失、又は付加されたアミノ酸配列からなるポリペプチドをコードするポリヌクレオチド。
 (f)配列番号2、配列番号4、配列番号6、配列番号8、配列番号10、配列番号12、配列番号14、配列番号16、配列番号18、配列番号20、配列番号22、又は配列番号24で示されるアミノ酸配列と90%以上の同一性を有するアミノ酸配列からなるポリペプチドをコードするポリヌクレオチド。
 項5.以下の(g)~(i)から選択される項3記載のポリヌクレオチド。
 (g)配列番号1、配列番号3、配列番号5、配列番号7、配列番号9、配列番号11、配列番号13、配列番号15、配列番号17、配列番号19、配列番号21、又は配列番号23で示される塩基配列からなるポリヌクレオチド。
 (h)配列番号1、配列番号3、配列番号5、配列番号7、配列番号9、配列番号11、配列番号13、配列番号15、配列番号17、配列番号19、配列番号21、又は配列番号23で示される塩基配列と相補的な塩基配列からなるポリヌクレオチドとストリンジェントな条件下でハイブリダイズするポリヌクレオチド。
 (i)配列番号1、配列番号3、配列番号5、配列番号7、配列番号9、配列番号11、配列番号13、配列番号15、配列番号17、配列番号19、配列番号21、又は配列番号23で示される塩基配列と90%以上の同一性を有するポリヌクレオチド。
 項6.項3から5のいずれかに記載のポリヌクレオチドを含む発現ベクター。
 項7.項3から5のいずれかに記載のポリヌクレオチドを導入した細胞。
 項8.項1又は2記載のポリペプチドに特異的に結合する抗体。
 項9.試料中の、項1又は2記載のポリペプチドの存在を検出する方法。
 項10.試料中の、項3から5のいずれかに記載のポリヌクレオチドの存在を検出するためのプライマー又はプローブであって、当該プライマー又はプローブが以下の(j)~(l)から選択されるポリヌクレオチド。
 (j)DCTN1タンパク質をコードするポリヌクレオチドにハイブリダイズするプローブ及びRETタンパク質をコードするポリヌクレオチドにハイブリダイズするプローブからなる群から選択される少なくとも1つのプローブであるポリヌクレオチド。
 (k)DCTN1タンパク質をコードするポリヌクレオチドとRETタンパク質をコードするポリヌクレオチドとの融合点にハイブリダイズするプローブであるポリヌクレオチド。
 (l)DCTN1タンパク質をコードするポリヌクレオチドとRETタンパク質をコードするポリヌクレオチドとの融合点を挟み込むように設計されたセンスプライマーとアンチセンスプライマーのセットであるポリヌクレオチド。
 項11.試料中の、項3から5のいずれかに記載のポリヌクレオチドの存在を検出する方法。
 項12.項9又は11記載の検出方法において、試料中の、項1若しくは2記載のポリペプチド又は項3から5のいずれかに記載のポリヌクレオチドの存在を検出した場合に、試料の由来となる患者が癌であると判定する方法。
 項13.RETを阻害する化合物を有効成分とする、DCTN1遺伝子とRET遺伝子との融合遺伝子陽性及び/又はDCTN1タンパク質とRETタンパク質との融合タンパク質陽性の癌治療用医薬組成物。
 項14.以下の(1)及び(2)の工程を含む項1又は2記載のポリペプチドの発現及び/又は活性、又は項3から5のいずれかに記載のポリヌクレオチドの発現を抑制する化合物をスクリーニングする方法。
 (1)項1又は2記載のポリペプチド、項1若しくは2記載のポリペプチド又は項3から5のいずれかに記載のポリヌクレオチドを発現している細胞、又は項7記載の細胞に試験化合物を接触する工程。
 (2)上記工程(1)において、項1又は2記載のポリペプチドの発現及び/又は活性、又は項3から5のいずれかに記載のポリヌクレオチドの発現が抑制されるか測定する工程、又は上記工程(1)記載の細胞の増殖が抑制されるか測定する工程。
 項15.項1若しくは2記載のポリペプチド又は項3から5のいずれかに記載のポリヌクレオチドを、RETを阻害する化合物を用いた化学療法が有効であるか否かの指標とする方法であって、項9記載の検出方法により、試料中から、項1若しくは2記載のポリペプチドを検出した場合、及び/又は項11記載の検出方法により、試料中から、項3から5のいずれかに記載のポリヌクレオチドの存在を検出した場合に、RETを阻害する化合物を用いた化学療法が有効であると判定する方法。
 項16.DCTN1タンパク質のN末端部分と、RETタンパク質のC末端部分とが融合しているポリペプチド、及び当該ポリペプチドをコードするポリヌクレオチドからなる群より選択される少なくとも1種からなる癌を検出するためのバイオマーカー。
 項17.DCTN1遺伝子とRET遺伝子との融合遺伝子陽性及び/又はDCTN1タンパク質とRETタンパク質との融合タンパク質陽性の癌患者に、RETを阻害する化合物を用いた化学療法を行う工程を含む、癌の治療方法。
 項18.被験者由来の試料中から、項1又は2記載のポリペプチドの存在を検出すること及び/又は項3から5のいずれかに記載のポリヌクレオチドの存在を検出することを行う工程、ならびに
項1又は2記載のポリペプチドの存在が検出されるか、かつ/又は項3から5のいずれかに記載のポリヌクレオチドの存在が検出された場合に、当該被験者に対し、RETを阻害する化合物を用いた化学療法を行う工程を含む、癌の治療方法。
 項19.DCTN1遺伝子とRET遺伝子との融合遺伝子陽性及び/又はDCTN1タンパク質とRETタンパク質との融合タンパク質陽性の癌患者を治療するための、RETを阻害する化合物。
 項20.DCTN1遺伝子とRET遺伝子との融合遺伝子陽性及び/又はDCTN1タンパク質とRETタンパク質との融合タンパク質陽性の癌患者を治療するための癌治療用医薬組成物を製造するための、RETを阻害する化合物の使用。 
 項21.試料中の項1又は2記載のポリペプチドの存在を検出するための手段及び/又は試料中の項3から5のいずれかに記載のポリヌクレオチドの存在を検出するための手段の、RETを阻害する化合物を用いた化学療法が有効であるか否かの判定薬の製造方法。
 項22.項3から5のいずれかに記載のポリヌクレオチドの存在を検出するための抗DCTN1抗体及び抗RET抗体の組み合わせ。
 項23.項1若しくは2記載のポリペプチド又は項3から5のいずれかに記載のポリヌクレオチドの存在を検出するための検出薬を製造するための、項8記載の抗体、項22記載の抗体の組み合わせ又は項10記載のプライマー若しくはプローブの使用。
 本発明によれば、本発明のポリヌクレオチド及び/又はポリペプチドはがん細胞で特異的に発現していることが示された。また、本発明のポリヌクレオチド、ポリペプチド及び当該ポリヌクレオチド及び/又はポリペプチドを発現している細胞は、本発明のポリヌクレオチドの発現又はポリペプチドの発現及び/又は活性を抑制する化合物をスクリーニングする方法に用いることができる。また、本発明のポリヌクレオチド及び/又はポリペプチドの存在を指標にすることにより、DCTN1遺伝子とRET遺伝子との融合遺伝子陽性対象及び/又はDCTN1タンパク質とRETタンパク質との融合タンパク質陽性対象の検出を行うことが可能である。また、RETを阻害する化合物は、DCTN1遺伝子とRET遺伝子との融合遺伝子陽性及び/又はDCTN1タンパク質とRETタンパク質との融合タンパク質陽性の癌治療用医薬組成物として有用である。
Droplet Digital PCR(ddPCR)を用いた甲状腺がん組織中のDCTN1-RET融合遺伝子及びGAPDHの発現確認 Droplet Digital PCR(ddPCR)を用いた正常甲状腺組織中のDCTN1-RET融合遺伝子及びGAPDHの発現確認 正常甲状腺組織及び甲状腺がん組織中のDCTN1-RET融合遺伝子全長の発現確認 DCTN1-RET融合遺伝子発現NIH/3T3細胞におけるDCTN1-RET融合タンパク質の発現確認。a)抗リン酸化RET抗体を用いたDCTN1-RET融合タンパク質の検出、b)抗RET抗体を用いたDCTN1-RET融合タンパク質の検出、c)抗DCTN1抗体を用いたDCTN1-RET融合タンパク質の検出。 DCTN1-RET融合遺伝子発現NIH/3T3細胞の3次元培養における増殖確認。N=3、平均+SD。 in vivoにおけるDCTN1-RET融合遺伝子発現NIH/3T3細胞の造腫瘍性確認 DCTN1-RET融合遺伝子発現NIH/3T3細胞におけるRET siRNAによるリン酸化RETの発現抑制の確認 RET siRNAによるDCTN1-RET融合遺伝子発現NIH/3T3細胞の増殖抑制効果の確認 DCTN1-RET融合遺伝子発現NIH/3T3細胞におけるRETを阻害する化合物によるリン酸化RETの発現抑制の確認
 本発明は、新規なポリヌクレオチド又はポリペプチド、当該ポリヌクレオチド又はポリペプチドの検出方法、当該ポリヌクレオチド又はポリペプチドを標的とした化合物、当該化合物をスクリーニングする方法に関する。
 本発明は、DCTN1タンパク質のN末端部分と、RETタンパク質のC末端部分とが融合しているポリペプチド(以下、「本発明のポリペプチド」とも称する)を提供する。また、本発明は、当該ポリペプチドをコードするポリヌクレオチド(以下、「本発明のポリヌクレオチド」とも称する)を提供する。
 本発明にかかる「DCTN1(Dynactin Subunit 1)タンパク質」は、150 kDa Dynein-associated polypeptideタンパク質、又はDAP-150タンパク質とも称されるタンパク質であり、ヒト又は非ヒト哺乳動物のDCTN1タンパク質を含み、好ましくはヒトDCTN1タンパク質である。ヒトにおいて2p13.1に座乗している遺伝子にコードされているタンパク質である。本発明において、「DCTN1タンパク質」は、そのスプライスバリアントであるアイソフォームを含み、ヒト由来のものであれば、例えば、GenPeptアクセッション番号NP_004073、NP_075408、NP_001128512、NP_001128513、NP_001177765、又はNP_001177766で示されるアミノ酸配列からなるポリペプチドが挙げられる。また、より具体的には、例えば、配列番号25、配列番号26、配列番号27、配列番号28、配列番号29、又は配列番号30で示されるアミノ酸配列からなるポリペプチドが挙げられる。さらに、本発明において、「DCTN1タンパク質のN末端部分」とは、前記DCTN1タンパク質のN末端側にあるコイルドコイルドメインの一部又は全部を含むポリペプチドであり、好ましくはDCTN1タンパク質のN末端側にあるコイルドコイルドメインの全部を含むポリペプチドである。
 本発明にかかる「RETタンパク質」は、Ret Proto-Oncogeneタンパク質、RET Receptor Tyrosine kinaseタンパク質、又はRearranged During Transfectionタンパク質とも称されるタンパク質であり、ヒト又は非ヒト哺乳動物のRETタンパク質を含み、好ましくはヒトRETタンパク質である。ヒトにおいて10q11.2に座乗している遺伝子にコードされているタンパク質である。本発明において、「RETタンパク質」は、そのスプライスバリアントであるアイソフォームを含み、ヒト由来のものであれば、例えば、GenPeptアクセッション番号NP_066124、又はNP_065681で示されるアミノ酸配列からなるポリペプチドが挙げられる。また、より具体的には、例えば、配列番号31、又は配列番号32で示されるアミノ酸配列からなるポリペプチドが挙げられる。さらに、本発明において、「RETタンパク質のC末端部分」とは、前記RETタンパク質のC末端側にあるキナーゼドメインを含むポリペプチドである。
 また、本発明の「DCTN1タンパク質のN末端部分と、RETタンパク質のC末端部分とが融合しているポリペプチド」としては、前記DCTN1タンパク質のN末端側にあるコイルドコイルドメインの一部又は全部を含むポリペプチドと、前記RETタンパク質のC末端側にあるキナーゼドメインを含むポリペプチドとが融合しているポリペプチドであり、好ましくは前記DCTN1タンパク質のN末端側にあるコイルドコイルドメインの全部を含むポリペプチドと、前記RETタンパク質のC末端側にあるキナーゼドメインを含むポリペプチドとが融合しているポリペプチドであり、より好ましくは以下の(a)~(c)から選択されるポリペプチドである。これらのポリペプチドはキナーゼ活性及び/又は細胞増殖効果を有することが好ましい。
 (a)配列番号2、配列番号4、配列番号6、配列番号8、配列番号10、配列番号12、配列番号14、配列番号16、配列番号18、配列番号20、配列番号22、又は配列番号24で示されるアミノ酸配列からなるポリペプチド。
 (b)配列番号2、配列番号4、配列番号6、配列番号8、配列番号10、配列番号12、配列番号14、配列番号16、配列番号18、配列番号20、配列番号22、又は配列番号24で示されるアミノ酸配列において、1個若しくは数個のアミノ酸が置換、欠失、又は付加されたアミノ酸配列からなるポリペプチド。
 (c)配列番号2、配列番号4、配列番号6、配列番号8、配列番号10、配列番号12、配列番号14、配列番号16、配列番号18、配列番号20、配列番号22、又は配列番号24で示されるアミノ酸配列と90%以上の同一性を有するアミノ酸配列からなるポリペプチド。
 より好ましくは以下の(a)~(c)から選択されるポリペプチドである。これらのポリペプチドはキナーゼ活性又は細胞増殖効果を有することが好ましい。
 (a)配列番号18で示されるアミノ酸配列からなるポリペプチド。
 (b)配列番号18で示されるアミノ酸配列において、1個若しくは数個のアミノ酸が置換、欠失、又は付加されたアミノ酸配列からなるポリペプチド。
 (c)配列番号18で示されるアミノ酸配列と90%以上の同一性を有するアミノ酸配列からなるポリペプチド。
 本発明の「DCTN1タンパク質のN末端部分と、RETタンパク質のC末端部分とが融合しているポリペプチド」には、配列番号2、配列番号4、配列番号6、配列番号8、配列番号10、配列番号12、配列番号14、配列番号16、配列番号18、配列番号20、配列番号22、又は配列番号24で示されるアミノ酸配列において、1個若しくは数個のアミノ酸が置換、欠失又は付加されたアミノ酸配列からなるポリペプチド(前記(b))が包含される。このようなアミノ酸配列からなるDCTN1タンパク質のN末端部分と、RETタンパク質のC末端部分とが融合しているポリペプチドとしては、例えば配列番号2、配列番号4、配列番号6、配列番号8、配列番号10、配列番号12、配列番号14、配列番号16、配列番号18、配列番号20、配列番号22、又は配列番号24で示されるアミノ酸配列を有するDCTN1タンパク質のN末端部分と、RETタンパク質のC末端部分とが融合しているポリペプチドのアイソフォームが挙げられる。これらのポリペプチドはキナーゼ活性又は細胞増殖効果を有することが好ましい。ここで、欠失、置換又は付加される数個のアミノ酸とは、例えば1~10個が好ましく、より好ましくは1~5個のアミノ酸である。また、上記の付加には、N末端若しくはC末端への1~数個のアミノ酸の付加、又は両末端への1~数個のアミノ酸の付加が含まれる。
 前記ポリペプチドのアミノ酸が置換したポリペプチドとしては、例えば、GenPeptアクセッション番号:NP_066124(配列番号31)又はNP_065681(配列番号32)で示されるアミノ酸配列を有するRETタンパク質のゲートキーパー部位である804番目(配列番号2及び配列番号4では1325番目、配列番号6及び配列番号8では1191番目、配列番号10及び配列番号12では1300番目、配列番号14及び配列番号16では1186番目、配列番号18及び配列番号20では1283番目、配列番号22及び配列番号24では1318番目)のバリンがロイシン、メチオニン、若しくはグルタミン酸に置換したポリペプチド、又は806番目(配列番号2及び配列番号4では1327番目、配列番号6及び配列番号8では1193番目、配列番号10及び配列番号12では1302番目、配列番号14及び配列番号16では1188番目、配列番号18及び配列番号20では1285番目、配列番号22及び配列番号24では1320番目)のチロシンがシステイン、グルタミン酸、セリン、ヒスチジン、若しくはアスパラギンに置換したポリペプチドが挙げられる。
 また、ゲートキーパー部位以外のアミノ酸である768番目(配列番号2及び配列番号4では1289番目、配列番号6及び配列番号8では1155番目、配列番号10及び配列番号12では1264番目、配列番号14及び配列番号16では1150番目、配列番号18及び配列番号20では1247番目、配列番号22及び配列番号24では1282番目)のグルタミン酸がアスパラギン酸に置換したポリペプチド、883番目(配列番号2及び配列番号4では1404番目、配列番号6及び配列番号8では1270番目、配列番号10及び配列番号12では1379番目、配列番号14及び配列番号16では1265番目、配列番号18及び配列番号20では1362番目、配列番号22及び配列番号24では1397番目)のアラニンがフェニルアラニン、若しくはセリンに置換したポリペプチド、884番目(配列番号2及び配列番号4では1405番目、配列番号6及び配列番号8では1271番目、配列番号10及び配列番号12では1380番目、配列番号14及び配列番号16では1266番目、配列番号18及び配列番号20では1363番目、配列番号22及び配列番号24では1398番目)のグルタミン酸がバリンに置換したポリペプチド、891番目(配列番号2及び配列番号4では1412番目、配列番号6及び配列番号8では1278番目、配列番号10及び配列番号12では1387番目、配列番号14及び配列番号16では1273番目、配列番号18及び配列番号20では1370番目、配列番号22及び配列番号24では1405番目)のセリンがアラニン、若しくはロイシンに置換したポリペプチド、又は918番目(配列番号2及び配列番号4では1439番目、配列番号6及び配列番号8では1305番目、配列番号10及び配列番号12では1414番目、配列番号14及び配列番号16では1300番目、配列番号18及び配列番号20では1397番目、配列番号22及び配列番号24では1432番目)のメチオニンがスレオニンに置換したポリペプチドが挙げられるが、これらに限定されない。
 また、本発明のDCTN1タンパク質のN末端部分と、RETタンパク質のC末端部分とが融合しているポリペプチドには、配列番号2、配列番号4、配列番号6、配列番号8、配列番号10、配列番号12、配列番号14、配列番号16、配列番号18、配列番号20、配列番号22、又は配列番号24で示されるアミノ酸配列において相当する配列を適切にアライメントした時、前記配列番号のいずれかで示されるアミノ酸配列の1つと90%以上の同一性を有するアミノ酸配列からなるポリペプチド(前記(c))が包含される。これらのポリペプチドはキナーゼ活性又は細胞増殖効果を有することが好ましい。
 ここで、配列番号2、配列番号4、配列番号6、配列番号8、配列番号10、配列番号12、配列番号14、配列番号16、配列番号18、配列番号20、配列番号22、又は配列番号24で示されるアミノ酸配列との同一性は、好ましくは90%以上であり、より好ましくは95%以上であり、さらに好ましくは98%以上である。当該アミノ酸配列の同一性は、通常慣用の方法で計算することができる。
 本発明のポリペプチドは、本発明にかかるポリペプチドを構成するアミノ酸配列以外に、タンパク質タグを構成するアミノ酸を有していてもよい。タグの例としては、発現効率を向上させるタグや、精製効率を向上させるタグ等、当業者に周知のタグを使用することができ、Hisタグ、Mycタグ、FLAGタグ等が挙げられる。
 本発明のポリヌクレオチドは、前記DCTN1タンパク質のN末端部分と、RETタンパク質のC末端部分とが融合しているポリペプチドをコードするポリヌクレオチドであり、好ましくは以下の(d)~(i)から選択されるポリヌクレオチドである。これらのポリヌクレオチドは、キナーゼ活性又は細胞増殖効果を有するポリペプチドをコードするポリヌクレオチドであることが好ましい。
 (d)配列番号2、配列番号4、配列番号6、配列番号8、配列番号10、配列番号12、配列番号14、配列番号16、配列番号18、配列番号20、配列番号22、又は配列番号24で示されるアミノ酸配列からなるポリペプチドをコードするポリヌクレオチド。
 (e)配列番号2、配列番号4、配列番号6、配列番号8、配列番号10、配列番号12、配列番号14、配列番号16、配列番号18、配列番号20、配列番号22、又は配列番号24で示されるアミノ酸配列において、1個若しくは数個のアミノ酸が置換、欠失、又は付加されたアミノ酸配列からなるポリペプチドをコードするポリヌクレオチド。
 (f)配列番号2、配列番号4、配列番号6、配列番号8、配列番号10、配列番号12、配列番号14、配列番号16、配列番号18、配列番号20、配列番号22、又は配列番号24で示されるアミノ酸配列と90%以上の同一性を有するアミノ酸配列からなるポリペプチドをコードするポリヌクレオチド。
 (g)配列番号1、配列番号3、配列番号5、配列番号7、配列番号9、配列番号11、配列番号13、配列番号15、配列番号17、配列番号19、配列番号21、又は配列番号23で示される塩基配列からなるポリヌクレオチド。
 (h)配列番号1、配列番号3、配列番号5、配列番号7、配列番号9、配列番号11、配列番号13、配列番号15、配列番号17、配列番号19、配列番号21、又は配列番号23で示される塩基配列と相補的な塩基配列からなるポリヌクレオチドとストリンジェントな条件下でハイブリダイズするポリヌクレオチド。
 (i)配列番号1、配列番号3、配列番号5、配列番号7、配列番号9、配列番号11、配列番号13、配列番号15、配列番号17、配列番号19、配列番号21、又は配列番号23で示される塩基配列と90%以上の同一性を有するポリヌクレオチド。
 より好ましくは以下の(d)~(i)から選択されるポリヌクレオチドである。これらのポリヌクレオチドは、キナーゼ活性又は細胞増殖効果を有するポリペプチドをコードするポリヌクレオチドであることが好ましい。
 (d)配列番号18で示されるアミノ酸配列からなるポリペプチドをコードするポリヌクレオチド。
 (e)配列番号18で示されるアミノ酸配列において、1個若しくは数個のアミノ酸が置換、欠失、又は付加されたアミノ酸配列からなるポリペプチドをコードするポリヌクレオチド。
 (f)配列番号18で示されるアミノ酸配列と90%以上の同一性を有するアミノ酸配列からなるポリペプチドをコードするポリヌクレオチド。
 (g)配列番号17で示される塩基配列からなるポリヌクレオチド。
 (h)配列番号17で示される塩基配列と相補的な塩基配列からなるポリヌクレオチドとストリンジェントな条件下でハイブリダイズするポリヌクレオチド。
 (i)配列番号17で示される塩基配列と90%以上の同一性を有するポリヌクレオチド。
 本発明のポリヌクレオチドは、2本鎖DNAのみならず、それを構成するセンス鎖及びアンチセンス鎖といった各種1本鎖DNAやRNAをも包含する。アンチセンス鎖は、プローブ等として利用可能である。DNAには、例えばクローニングや化学合成技術又はそれらの組み合わせで得られるようなcDNAやゲノムDNAが含まれる。さらに、本発明にかかるポリヌクレオチドに対し、本発明にかかるポリペプチドをコードする塩基配列以外に、非翻訳領域(UTR)の配列などの塩基配列が付加していてもよい。
 ここで、ストリンジェントな条件とは、例えばMolecular Cloning:A Laboratory Manual (Second Edition, J.Sambrook et.al,1989)に記載の条件が挙げられる。すなわち、6×SSC(1×SSCの組成:0.15M塩化ナトリウム、0.015Mクエン酸ナトリウム、pH7.0)、0.5%SDS、5×デンハート及び100mg/mLニシン***DNAを含む溶液にプローブとともに65℃で8~16時間恒温し、ハイブリダイズさせる条件等が挙げられる。
 また、配列番号1、配列番号3、配列番号5、配列番号7、配列番号9、配列番号11、配列番号13、配列番号15、配列番号17、配列番号19、配列番号21、又は配列番号23で示される塩基配列との同一性は、好ましくは90%以上、より好ましくは95%以上、さらに好ましくは98%以上である。当該塩基配列の同一性は、通常慣用の方法で計算することができる。
 本明細書中において、「キナーゼ活性又は細胞増殖効果を有する」の「キナーゼ活性を有する」とは、チロシンをリン酸化する酵素としての活性を有することを意味する。また、「キナーゼ活性又は細胞増殖効果を有する」の「細胞増殖効果を有する」とは、本発明のポリヌクレオチド及び/又はポリペプチドを細胞に導入することにより、導入していない細胞に比べて、導入した細胞の増殖能が向上する効果である。このような効果は、例えば、サイトカイン依存的に増殖する細胞株にポリヌクレオチド及び/又はポリペプチドを導入した際に、サイトカイン非依存的に増殖した際に、細胞増殖効果を有すると確認することができる。
 本発明のポリヌクレオチドは、例えば、DCTN1遺伝子とRET遺伝子との融合遺伝子を保持する甲状腺がん等から調整したcDNAライブラリーやゲノムDNAライブラリーを用いて、本発明のポリヌクレオチドの塩基配列の一部と特異的にハイブリダイズするプライマーを用いて、抽出することができる。このようなプライマーとしては、本発明にかかるポリヌクレオチド又はそのアンチセンス鎖の少なくとも一部に特異的にハイブリダイズするプライマーであれば、いかなる配列および長さのものを用いてもよい。また人工的にポリヌクレオチドを合成する方法が挙げられる(Nat.Methods,11:499-507,2014)。
 本発明の発現ベクターは、本発明のポリヌクレオチドを含み、本発明のポリペプチドを発現させる限り、特に限定されるものではない。例えば、用いる宿主に応じて適宜選択した公知の発現ベクターに、本発明のポリヌクレオチドを挿入することにより得られる発現ベクターを挙げることができる。
 宿主としては、形質転換が可能な生細胞であれば特に限定されず、例えば、大腸菌、枯草菌等の細菌、酵母や糸状菌等の真菌類、Sf9細胞等の昆虫細胞、カイコ等の昆虫、動物細胞、植物又は植物由来細胞が挙げられる。
 本発明のポリヌクレオチドを挿入するためのベクターは、宿主中で複製可能なものであれば特に限定されず、導入する宿主の種類、導入方法等に応じて適宜選択できる。例えば、プラスミドDNA、ファージDNA、ウイルスベクターが挙げられる。発現ベクターの構築に用いられるベクターDNAは、広く普及した入手の容易なものが用いられる。例えば、pUC19(タカラバイオ)、pTV118N(タカラバイオ)、pMAMneo(クロンテック)、pGEX(GEヘルスケア)、pET160(Invitrogen)、pDEST(Invitrogen)、pIEx(メルクミリポア)、pBacPAK(クロンテック)が挙げられる。また、ウイルスベクターとしては、例えば、バキュロウイルスベクター、レトロウイルスベクター、ヒト免疫不全症ウイルス(HIV)等のレンチウイルスベクター、アデノウイルスベクター、アデノ随伴ウイルスベクター(AAVベクター)、ヘルペスウイルス、ワクシニアウイルス、ポックスウイルス、ポリオウイルス、シンビスウイルス、センダイウイルス、シミアンウイルス-40(SV-40)等のDNAウイルスやRNAウイルスが挙げられる。
 当該発現ベクターを用いて宿主を形質転換するには、プロトプラスト法、コンピテントセル法、エレクトロポレーション法等を用いて行うことができる。得られた形質転換体は、資化しうる炭素源、窒素源、金属塩、ビタミン等を含む培地を用いて適当な条件下で培養すればよい。
 本発明のポリヌクレオチドを導入した細胞は、例えば、前記の本発明の発現ベクターで形質転換された細胞、ゲノム編集により本発明のポリヌクレオチドを導入した細胞が挙げられる。ここで使用できる細胞としては、前記の宿主細胞が挙げられる。細胞が、発現ベクターで形質転換された細胞であるか確認する方法としては、例えば、本発明のポリペプチドを検出するための方法、又は本発明のポリヌクレオチドを検出するための方法が挙げられる。
 「ゲノム編集により本発明のポリヌクレオチドを導入した細胞」として、好ましくは各々単独で存在するDCTN1遺伝子とRET遺伝子をゲノム編集により融合させた遺伝子を有する細胞であり、より好ましくは各々単独で存在するDCTN1遺伝子とRET遺伝子のDCTN1のexon27とRETのexon12をゲノム編集により融合させた遺伝子を有する細胞である。このような細胞は通常慣用の方法で作製可能であり、例えば、Cell Rep.,9(4),pp1219-1227(2014)、Nat.Commun.,5,3728(2014)に記載の方法が挙げられる。細胞が、ゲノム編集により本発明のポリヌクレオチドを導入した細胞であるか確認する方法としては、例えば、本発明のポリペプチドを検出するための方法、又は本発明のポリヌクレオチドを検出するための方法が挙げられる。
 本発明のポリペプチドは、本発明の発現ベクターで形質転換された細胞を、細胞培養に適した培地を用いて、適当な条件下で培養することにより得られた培養液及び/又は細胞から、一般的な方法によってタンパク質の採取、精製を行うことにより、得ることができる。また、本発明のポリペプチドは、本発明のポリヌクレオチドを有する発現ベクター又は、本発明のポリヌクレオチドをコードする鋳型RNA若しくは鋳型DNAを無細胞タンパク質合成系(例えば、ヒト細胞株由来の細胞抽出液、ウサギ網状赤血球抽出液、小麦胚芽抽出液、大腸菌抽出液)に導入し、適当な条件下でインキュベーションすることにより得られた反応液から、一般的な方法によってタンパク質の採取、精製を行うことにより、得ることができる。
 本発明において、本発明のポリペプチドに特異的に結合する抗体は、DCTN1タンパク質のN末端部分とRETタンパク質のC末端部分の融合点に特異的に結合する抗体が挙げられる。当該抗体は、DCTN1タンパク質のN末端部分とRETタンパク質のC末端部分の融合点に特異的に結合するが、野生型のDCTN1、又は野生型のRETタンパク質のいずれにも結合しない抗体を意味する。
 本発明において、「DCTN1タンパク質のN末端部分とRETタンパク質のC末端部分の融合点」における「融合点」とは、DCTN1タンパク質のN末端部分由来のポリペプチドとRETタンパク質のC末端部分由来のポリペプチドとが融合した点を意味する。配列番号2における融合点は、配列番号2における1-1233番目のDCTN1のN末端部分由来のアミノ酸配列を有するポリペプチドと配列番号2における1234-1635番目のRETのC末端部分由来のアミノ酸配列を有するポリペプチドが融合した点である。配列番号4における融合点は、配列番号4における1-1233番目のDCTN1のN末端部分由来のアミノ酸配列を有するポリペプチドと配列番号4における1234-1593番目のRETのC末端部分由来のアミノ酸配列を有するポリペプチドが融合した点である。配列番号6における融合点は、配列番号6における1-1099番目のDCTN1のN末端部分由来のアミノ酸配列を有するポリペプチドと配列番号6における1100-1501番目のRETのC末端部分由来のアミノ酸配列を有するポリペプチドが融合した点である。配列番号8における融合点は、配列番号8における1-1099番目のDCTN1のN末端部分由来のアミノ酸配列を有するポリペプチドと配列番号8における1100-1459番目のRETのC末端部分由来のアミノ酸配列を有するポリペプチドが融合した点である。配列番号10における融合点は、配列番号10における1-1208番目のDCTN1のN末端部分由来のアミノ酸配列を有するポリペプチドと配列番号10における1209-1610番目のRETのC末端部分由来のアミノ酸配列を有するポリペプチドが融合した点である。配列番号12における融合点は、配列番号12における1-1208番目のDCTN1のN末端部分由来のアミノ酸配列を有するポリペプチドと配列番号12における1209-1568番目のRETのC末端部分由来のアミノ酸配列を有するポリペプチドが融合した点である。配列番号14における融合点は、配列番号14における1-1094番目のDCTN1のN末端部分由来のアミノ酸配列を有するポリペプチドと配列番号14における1095-1496番目のRETのC末端部分由来のアミノ酸配列を有するポリペプチドが融合した点である。配列番号16における融合点は、配列番号16における1-1094番目のDCTN1のN末端部分由来のアミノ酸配列を有するポリペプチドと配列番号16における1095-1454番目のRETのC末端部分由来のアミノ酸配列を有するポリペプチドが融合した点である。配列番号18における融合点は、配列番号18における1-1191番目のDCTN1のN末端部分由来のアミノ酸配列を有するポリペプチドと配列番号18における1192-1593番目のRETのC末端部分由来のアミノ酸配列を有するポリペプチドが融合した点である。配列番号20における融合点は、配列番号20における1-1191番目のDCTN1のN末端部分由来のアミノ酸配列を有するポリペプチドと配列番号20における1192-1551番目のRETのC末端部分由来のアミノ酸配列を有するポリペプチドが融合した点である。配列番号22における融合点は、配列番号22における1-1226番目のDCTN1のN末端部分由来のアミノ酸配列を有するポリペプチドと配列番号22における1227-1628番目のRETのC末端部分由来のアミノ酸配列を有するポリペプチドが融合した点である。配列番号24における融合点は、配列番号24における1-1226番目のDCTN1のN末端部分由来のアミノ酸配列を有するポリペプチドと配列番号24における1227-1586番目のRETのC末端部分由来のアミノ酸配列を有するポリペプチドが融合した点である。
 前記抗体は、例えば、免疫グロブリン(IgA、IgD、IgE、IgG、IgM、IgY等)、Fabフラグメント、F(ab')2フラグメント、一本鎖抗体フラグメント(scFv)、シングルドメイン抗体、Diabody等(Nat.Rev.Immunol.,6:343-357,2006)が挙げられ、これらはヒト抗体、ヒト化抗体、キメラ抗体、マウス抗体、ラマ抗体、ニワトリ抗体等のモノクローナル抗体又はポリクローナル抗体が挙げられるがこれらに限定されるものではない。
 前記抗体は、種々の公知の方法を用いて作製することができ、作製方法は特に限定されるものではない。かかる公知の手法としては、当該発明のポリペプチド、DCTN1タンパク質のN末端部分とRETタンパク質のC末端部分の融合点を含むポリペプチド断片等を免疫動物に接種し、当該動物の免疫系を活性化させた後、当該動物の血清を回収し、ポリクローナル抗体として得る方法、又はハイブリドーマ法、ファージディスプレイ法等によりモノクローナル抗体を得る方法等が挙げられる。
 本発明のポリペプチドの発現及び/又は活性、又は本発明のポリヌクレオチドの発現を抑制する化合物をスクリーニングする方法は、以下の(1)及び(2)の工程を含む方法により行うことができる。
 すなわち、本発明のスクリーニング方法は、
 (1)本発明のポリペプチド、又は本発明のポリペプチド及び/又はポリヌクレオチドを発現している細胞に試験化合物を接触する工程。
 (2)上記工程(1)において、本発明のポリペプチドの発現及び/又は活性、又は本発明のポリヌクレオチドの発現が抑制されるか測定する工程、又は上記工程(1)記載の細胞の増殖が抑制されるか測定する工程。
を含む方法により行うことができる。
 より好ましくは、以下の(1)及び(2)の工程を含む方法である。
 (1)本発明のポリペプチド及び/又はポリヌクレオチドを発現している細胞に試験化合物を接触する工程。
 (2)上記工程(1)記載の細胞の増殖が抑制されるか測定する工程。
 また、本発明のポリペプチドの発現及び/又は活性、又は本発明のポリヌクレオチドの発現を抑制する化合物をスクリーニングする方法は、以下の(1)から(3)の工程を含む方法により行うことができる。
 すなわち、本発明のスクリーニング方法は、
 (1)本発明のポリペプチド、又は本発明のポリペプチド及び/又はポリヌクレオチドを発現している細胞に試験化合物を接触する工程。
 (2)上記工程(1)において、本発明のポリペプチドの発現及び/又は活性、又は本発明のポリヌクレオチドの発現が抑制されるか測定する工程、又は上記工程(1)記載の細胞の増殖が抑制されるか測定する工程。
 (3)上記工程(2)において、本発明のポリペプチドの発現及び/又は活性、又は本発明のポリヌクレオチドの発現が抑制された場合、又は上記工程(1)記載の細胞の増殖が抑制された場合、試験化合物が本発明のポリペプチドの発現及び/又は活性、又は本発明のポリヌクレオチドの発現を抑制すると判定する工程。
を含む方法により行うことができる。
 より好ましくは、以下の(1)から(3)の工程を含む方法である。
 (1)本発明のポリペプチド及び/又はポリヌクレオチドを発現している細胞に試験化合物を接触する工程。
 (2)上記工程(1)記載の細胞の増殖が抑制されるか測定する工程。
 (3)上記工程(2)において、上記工程(1)記載の細胞の増殖が抑制された場合、試験化合物が本発明のポリペプチドの発現及び/又は活性、又は本発明のポリヌクレオチドの発現を抑制すると判定する工程。
 「本発明のポリペプチド及び/又はポリヌクレオチドを発現している細胞」は、本発明の発現ベクターで形質転換された細胞、ゲノム編集により本発明のポリヌクレオチドを導入した細胞、本発明のポリペプチド及び/又はポリヌクレオチドを発現している初代培養細胞、本発明のポリペプチド及び/又はポリヌクレオチドを発現している株化細胞、本発明のポリペプチド及び/又はポリヌクレオチドを発現しているがん患者由来の細胞等が挙げられる。細胞が、本発明のポリペプチド及び/又はポリヌクレオチドを発現している細胞であるか確認する方法としては、例えば、本発明のポリペプチドを検出するための方法、又は本発明のポリヌクレオチドを検出するための方法が挙げられる。
 本発明において、「本発明のポリペプチドの発現及び/又は活性、又は本発明のポリヌクレオチドの発現が抑制される」の中で、「本発明のポリペプチドの発現、又は本発明のポリヌクレオチドの発現が抑制される」とは、例えば、本発明のポリペプチド及び/又はポリヌクレオチドを発現している細胞に試験化合物を接触させた後、当該細胞における本発明のポリペプチド又はポリヌクレオチドの発現量を、本発明のポリペプチド又はポリヌクレオチドの存在を検出する方法を用いて評価した際に、試験化合物を接触させていない細胞と比較して、試験化合物を接触させた細胞において、本発明のポリペプチド又はポリヌクレオチドの発現量が統計学上有意に低下した際に、本発明のポリペプチド又はポリヌクレオチドの発現が抑制されたと判断することができる。
 また、「本発明のポリペプチドの発現及び/又は活性、又は本発明のポリヌクレオチドの発現が抑制される」の中で、「本発明のポリペプチドの活性が抑制される」とは、例えば、本発明のポリペプチド、又は本発明のポリペプチドを発現している細胞を用いて、試験化合物を接触させていない場合と比較して、試験化合物を接触させた場合に、チロシンのリン酸化の割合が統計学上有意に低下した際に、本発明のポリペプチドの活性が抑制されたと判断することができる。
 また、本発明のポリペプチドを発現している細胞を用いて、試験化合物を接触させていない場合と比較して、試験化合物を接触させた場合に、細胞増殖が統計学上有意に抑制された際に、本発明のポリペプチドの活性が抑制されたと判断することができる。
 本発明において、「チロシンのリン酸化」とは、RETタンパク質(他のタンパク質と融合しているRETタンパク質も含む)のチロシンのリン酸化のみならず、RET下流シグナル上のタンパク質のチロシンのリン酸化も含まれる。RET下流シグナル上のタンパク質としては、例えば、STAT、AKT、ERKが挙げられる。好ましくは、RETタンパク質(他のタンパク質と融合しているRETタンパク質も含む)のチロシンのリン酸化である。
 また、「チロシンのリン酸化の割合」は、例えば、リン酸化RET特異的抗体を用いて、ウエスタンブロッティング、免疫沈降、免疫組織化学、ELISA、フローサイトメトリーにより測定可能である。
 本発明において「試料」とは、生体試料(例えば、細胞、組織、臓器、体液(血液、リンパ液等)、消化液、尿)のみならず、これらの生体試料から得られる核酸抽出物(ゲノムDNA抽出物、mRNA抽出物、mRNA抽出物から調製されたcDNA調製物やcRNA調製物等)やタンパク質抽出物も含む。また、前記試料は、ホルマリン固定処理、アルコール固定処理、凍結処理又はパラフィン包埋処理が施してあるものでもよい。前記生体試料としては、生体から採取したものを使用することができる。好ましくはがん患者由来の試料であり、より好ましくは腫瘍細胞を含む試料である。また、生体試料の採取方法は、生体試料の種類に応じて適宜選択することができる。
 本発明には、試料中の、本発明のポリペプチドの存在を検出する方法が含まれる。
 本発明において、試料中の、本発明のポリペプチドの存在を検出する方法は、本発明のポリペプチドに特異的に結合する抗体を用いたELISA法、ウエスタンブロッティング法、若しくは免疫組織化学染色法、又はDCTN1タンパク質に特異的に結合する抗体及びRETタンパク質に特異的に結合する抗体を用いたFRET(Fluorescence Reasonance Energy Transfer)法など、通常慣用の検出法により検出する方法が挙げられる。好ましくは、本発明のポリペプチドに特異的に結合する抗体を用いたELISA法、ウエスタンブロッティング法、又は免疫組織化学染色法である。
 DCTN1タンパク質に特異的に結合する抗体及びRETタンパク質に特異的に結合する抗体としては、DCTN1タンパク質の前記融合点よりN末端部分に結合する抗体及びRETタンパク質の前記融合点よりC末端部分に結合する抗体が好ましく、これらの抗体は、市販品を使用すること、又は通常公知の方法で作製することが可能である。
 本発明において、試料中の、本発明のポリペプチドの存在を検出する方法として、好ましくは本発明のポリペプチドに特異的に結合する抗体又はDCTN1タンパク質に特異的に結合する抗体及びRETタンパク質に特異的に結合する抗体を用いて本発明のポリペプチドを検出する工程を含むことを特徴とする、本発明のポリペプチドの存在を検出する方法であり、より好ましくは本発明のポリペプチドに特異的に結合する抗体を用いて本発明のポリペプチドを検出する工程を含むことを特徴とする、本発明のポリペプチドの存在を検出する方法である。従って、本発明のポリペプチドの存在を検出するための手段としては、特に限定されないが、例えば、DCTN1タンパク質に特異的に結合する抗体及びRETタンパク質に特異的に結合する抗体の組合せ;本発明のポリペプチドに特異的に結合する抗体等が挙げられる。
 本発明には、試料中の、本発明のポリヌクレオチドの存在を検出するためのプライマー又はプローブが含まれる。本発明において、本発明のポリペプチドの存在を検出するための手段としては、特に限定されないが、例えば、本発明のポリヌクレオチドの存在を検出するためのプライマー又はプローブ等が挙げられる。
 当該プライマー又はプローブとしては、(j)~(l)から選択されるポリヌクレオチド;
 (j)DCTN1タンパク質をコードするポリヌクレオチドにハイブリダイズするプローブ及びRETタンパク質をコードするポリヌクレオチドにハイブリダイズするプローブからなる群から選択される少なくとも1つのプローブであるポリヌクレオチド。
 (k)DCTN1タンパク質をコードするポリヌクレオチドとRETタンパク質をコードするポリヌクレオチドとの融合点にハイブリダイズするプローブであるポリヌクレオチド。
 (l)DCTN1タンパク質をコードするポリヌクレオチドとRETタンパク質をコードするポリヌクレオチドとの融合点を挟み込むように設計されたセンスプライマーとアンチセンスプライマーのセットであるポリヌクレオチド。
が挙げられる。
 本発明において、「DCTN1タンパク質をコードするポリヌクレオチドとRETタンパク質をコードするポリヌクレオチドとの融合点」における「融合点」とは、DCTN1タンパク質をコードするポリヌクレオチドとRETタンパク質をコードするポリヌクレオチドとが融合した点を意味する。配列番号1における融合点は、配列番号1における1-3699番目のDCTN1をコードするポリヌクレオチド由来の塩基配列を有するポリヌクレオチドと配列番号1における3700-4905番目のRETをコードするポリヌクレオチド由来の塩基配列を有するポリヌクレオチドが融合した点である。配列番号3における融合点は、配列番号3における1-3699番目のDCTN1をコードするポリヌクレオチド由来の塩基配列を有するポリヌクレオチドと配列番号3における3700-4779番目のRETをコードするポリヌクレオチド由来の塩基配列を有するポリヌクレオチドが融合した点である。配列番号5における融合点は、配列番号5における1-3297番目のDCTN1をコードするポリヌクレオチド由来の塩基配列を有するポリヌクレオチドと配列番号5における3298-4503番目のRETをコードするポリヌクレオチド由来の塩基配列を有するポリヌクレオチドが融合した点である。配列番号7における融合点は、配列番号7における1-3297番目のDCTN1をコードするポリヌクレオチド由来の塩基配列を有するポリヌクレオチドと配列番号7における3298-4377番目のRETをコードするポリヌクレオチド由来の塩基配列を有するポリヌクレオチドが融合した点である。配列番号9における融合点は、配列番号9における1-3624番目のDCTN1をコードするポリヌクレオチド由来の塩基配列を有するポリヌクレオチドと配列番号9における3625-4830番目のRETをコードするポリヌクレオチド由来の塩基配列を有するポリヌクレオチドが融合した点である。配列番号11における融合点は、配列番号11における1-3624番目のDCTN1をコードするポリヌクレオチド由来の塩基配列を有するポリヌクレオチドと配列番号11における3625-4704番目のRETをコードするポリヌクレオチド由来の塩基配列を有するポリヌクレオチドが融合した点である。配列番号13における融合点は、配列番号13における1-3282番目のDCTN1をコードするポリヌクレオチド由来の塩基配列を有するポリヌクレオチドと配列番号13における3283-4488番目のRETをコードするポリヌクレオチド由来の塩基配列を有するポリヌクレオチドが融合した点である。配列番号15における融合点は、配列番号15における1-3282番目のDCTN1をコードするポリヌクレオチド由来の塩基配列を有するポリヌクレオチドと配列番号15における3283-4362番目のRETをコードするポリヌクレオチド由来の塩基配列を有するポリヌクレオチドが融合した点である。配列番号17における融合点は、配列番号17における1-3573番目のDCTN1をコードするポリヌクレオチド由来の塩基配列を有するポリヌクレオチドと配列番号17における3574-4779番目のRETをコードするポリヌクレオチド由来の塩基配列を有するポリヌクレオチドが融合した点である。配列番号19における融合点は、配列番号19における1-3573番目のDCTN1をコードするポリヌクレオチド由来の塩基配列を有するポリヌクレオチドと配列番号19における3574-4653番目のRETをコードするポリヌクレオチド由来の塩基配列を有するポリヌクレオチドが融合した点である。配列番号21における融合点は、配列番号21における1-3678番目のDCTN1をコードするポリヌクレオチド由来の塩基配列を有するポリヌクレオチドと配列番号21における3679-4884番目のRETをコードするポリヌクレオチド由来の塩基配列を有するポリヌクレオチドが融合した点である。配列番号23における融合点は、配列番号23における1-3678番目のDCTN1をコードするポリヌクレオチド由来の塩基配列を有するポリヌクレオチドと配列番号23における3679-4758番目のRETをコードするポリヌクレオチド由来の塩基配列を有するポリヌクレオチドが融合した点である。
 本発明において、プライマー又はプローブは、本発明のポリヌクレオチドの配列情報に基づき、本発明のポリヌクレオチドと特異的にハイブリダイズするポリヌクレオチドとして、通常公知の手法により作製される。当該プライマー又はプローブの塩基数は、10~50塩基、好ましくは15~50塩基、より好ましくは18~35塩基である。
 当該プライマー又はプローブは、本発明のポリヌクレオチドと特異的にハイブリダイズするものであれば、完全に相補的である必要は無い。かかるプライマー又はプローブは、対応する塩基配列と比較して、70%以上、好ましくは80%以上、より好ましくは90%以上、より好ましくは95%以上、より好ましくは98%以上の同一性を有するポリヌクレオチドである。
 本発明のプライマー又はプローブとしては、好ましくは(i)配列番号69、(ii)配列番号70、又は(iii)配列番号71で表されるポリヌクレオチドであり、より好ましくは(iv)配列番号69と配列番号70で表されるセンスプライマーとアンチセンスプライマーのセットであるポリヌクレオチドであり、より好ましくは(v)配列番号69、配列番号70及び配列番号71で表されるセンスプライマー、アンチセンスプライマー及びプローブのセットであるポリヌクレオチドである。
 本発明には、試料中の、本発明のポリヌクレオチドの存在を検出する方法が含まれる。
 本発明において、試料中の、本発明のポリヌクレオチドの存在を検出する方法は、ノーザンブロッティング法、サザンブロッティング法、RT-PCR法、リアルタイムPCR法、デジタルPCR法、DNAマイクロアレイ法、in situハイブリダイゼーション法、シークエンス解析法など、通常慣用の検出法により検出する方法である。
 本発明において、試料中の、本発明のポリヌクレオチドの存在を検出する方法には、本発明のポリヌクレオチドを含むRET融合遺伝子のポリヌクレオチドの存在を検出するための方法も含まれる。当該方法としては、RETタンパク質をコードするポリヌクレオチドにハイブリダイズするプライマー(例えば、RETキナーゼドメイン以降の3'側の配列にハイブリダイズするプライマー)を用いて、5'RACE法により増幅させたPCR産物をシークエンス解析する方法等が挙げられる。
 本発明において、試料中の、本発明のポリヌクレオチドの存在を検出する方法として、好ましくは本発明のプライマー又はプローブを用いて本発明のポリヌクレオチドを検出する工程を含むことを特徴とする、本発明のポリヌクレオチドの存在を検出する方法である。
 本発明には、RETを阻害する化合物を有効成分とする、DCTN1遺伝子とRET遺伝子との融合遺伝子陽性又はDCTN1タンパク質とRETタンパク質との融合タンパク質陽性の癌治療用医薬組成物が包含される。
 より好ましくは、本発明のポリペプチドの発現及び/又は活性、又は本発明のポリヌクレオチドの発現を抑制する化合物を有効成分とする、DCTN1遺伝子とRET遺伝子との融合遺伝子陽性又はDCTN1タンパク質とRETタンパク質との融合タンパク質陽性の癌治療用医薬組成物が包含される。
 本発明において、「DCTN1遺伝子とRET遺伝子との融合遺伝子陽性及び/又はDCTN1タンパク質とRETタンパク質との融合タンパク質陽性の癌」における「DCTN1遺伝子とRET遺伝子との融合遺伝子陽性の癌」とは、本発明のポリヌクレオチドが発現している癌であり、好ましくは本発明のポリヌクレオチドの存在を検出する方法を用いて、本発明のポリヌクレオチドが検出された癌である。
 また、本発明において、「DCTN1遺伝子とRET遺伝子との融合遺伝子陽性又はDCTN1タンパク質とRETタンパク質との融合タンパク質陽性の癌」における「DCTN1タンパク質とRETタンパク質との融合タンパク質陽性の癌」とは、本発明のポリペプチドが発現している癌であり、好ましくは本発明のポリペプチドの存在を検出する方法を用いて、本発明のポリペプチドが検出された癌である。
 本発明の癌治療用医薬組成物における有効成分としては、RETを阻害する化合物であり、より好ましくは本発明のポリペプチドの発現及び/又は活性、又は本発明のポリヌクレオチドの発現を抑制する化合物である。また、本発明のスクリーニング方法により選択した化合物を有効成分として用いることができる。例えば、公知のRETを阻害する化合物を本発明の医薬組成物における有効成分として用いることができる。RETを阻害する化合物としては、RETの発現及び/又は活性を阻害できる化合物であれば、他のチロシンキナーゼの発現及び/又は活性を阻害する化合物であってもよく、より好ましくはRETの活性を阻害できる化合物であり、他のチロシンキナーゼの発現及び/又は活性を阻害する化合物であってもよい。このような化合物として、例えば、バンデタニブ、ソラフェニブ、スニチニブ、モテサニブ、カボザンチニブ、レンバチニブ、国際公開第2016/127074号パンフレット、国際公開第2017/043550号パンフレット、国際公開第2017/011776号パンフレット、国際公開第2017/146116号パンフレットに記載の化合物が挙げられる。
DCTN1遺伝子とRET遺伝子との融合遺伝子陽性及び/又はDCTN1タンパク質とRETタンパク質との融合タンパク質陽性の癌治療用医薬組成物の有効性分としては、RETを阻害する化合物であり、より好ましくはバンデタニブ、カボザンチニブ、レンバチニブ、国際公開第2017/043550号パンフレットに記載の一般式(1)で示される縮合ピリミジン化合物又は国際公開第2017/146116号パンフレットに記載の一般式(1)で示される縮合ピリミジン化合物であり、より好ましくは、バンデタニブ、カボザンチニブ、レンバチニブ、国際公開第2017/043550号パンフレットに記載の実施例化合物1から90又は国際公開第2017/146116号パンフレットに記載の実施例化合物1から207であり、さらに好ましくはバンデタニブ、カボザンチニブ、レンバチニブ、4-アミノ-1-(tert-ブチル)-N-(5-メチル-1H-ピラゾール-3-イル)-1H-ピラゾロ[3,4-d]ピリミジン-3-カルボキサミド、4-アミノ-7-(tert-ブチル)-N-(5-メチル-1H-ピラゾール-3-イル)-7H-ピロロ[2,3-d]ピリミジン-5-カルボキサミド、4-アミノ-7-(1-フルオロ-2-メチルプロパン-2-イル)―N-(5-メチル-1H-ピラゾール-3-イル)-7H-ピロロ[2,3-d]ピリミジン-5-カルボキサミド、4-アミノ-N-(5-メチル-1H-ピラゾール-3-イル)―7-(1―メチルシクロプロピル)-7H-ピロロ[2,3-d]ピリミジン-5-カルボキサミド、4-アミノ-7-(2-シクロプロピルプロパン-2-イル)-N-(5-メチル-1H-ピラゾール-3-イル)-7H-ピロロ[2,3-d]ピリミジン-5-カルボキサミド、4-アミノ-N-[4-(メトキシメチル)フェニル]-7-(1-メチルシクロプロピル)-6-(3-モルホリノプロ-1-ピン-1-イル)-7H-ピロロ[2,3-d]ピリミジン-5-カルボキサミド、4-アミノ-N-[4-(メトキシメチル)フェニル]-7-(1-メチルシクロプロピル)-6-((テトラヒドロ-2H-ピラン-4-イル)エチニル)-7H-ピロロ[2,3-d]ピリミジン-5-カルボキサミド、(R)-4-アミノ-N-[4-(メトキシメチル)フェニル]-7-(1-メチルシクロプロピル)-6-((テトラヒドロフラン-2-イル)メトキシ)-7H-ピロロ[2,3-d]ピリミジン-5-カルボキサミド又は4-アミノ-N-[4-(メトキシメチル)フェニル]-6-((1-メチル-1H-ピラゾール-4-イル)エチニル)-7-(1-メチルシクロプロピル)-7H-ピロロ[2,3-d]ピリミジン-5-カルボキサミドであり、特に好ましくは4-アミノ-1-(tert-ブチル)-N-(5-メチル-1H-ピラゾール-3-イル)-1H-ピラゾロ[3,4-d]ピリミジン-3-カルボキサミド、4-アミノ-7-(tert-ブチル)-N-(5-メチル-1H-ピラゾール-3-イル)-7H-ピロロ[2,3-d]ピリミジン-5-カルボキサミド、4-アミノ-7-(1-フルオロ-2-メチルプロパン-2-イル)―N-(5-メチル-1H-ピラゾール-3-イル)-7H-ピロロ[2,3-d]ピリミジン-5-カルボキサミド、4-アミノ-N-(5-メチル-1H-ピラゾール-3-イル)―7-(1―メチルシクロプロピル)-7H-ピロロ[2,3-d]ピリミジン-5-カルボキサミド、4-アミノ-7-(2-シクロプロピルプロパン-2-イル)-N-(5-メチル-1H-ピラゾール-3-イル)-7H-ピロロ[2,3-d]ピリミジン-5-カルボキサミド、4-アミノ-N-[4-(メトキシメチル)フェニル]-7-(1-メチルシクロプロピル)-6-(3-モルホリノプロ-1-ピン-1-イル)-7H-ピロロ[2,3-d]ピリミジン-5-カルボキサミド、4-アミノ-N-[4-(メトキシメチル)フェニル]-7-(1-メチルシクロプロピル)-6-((テトラヒドロ-2H-ピラン-4-イル)エチニル)-7H-ピロロ[2,3-d]ピリミジン-5-カルボキサミド、(R)-4-アミノ-N-[4-(メトキシメチル)フェニル]-7-(1-メチルシクロプロピル)-6-((テトラヒドロフラン-2-イル)メトキシ)-7H-ピロロ[2,3-d]ピリミジン-5-カルボキサミド又は4-アミノ-N-[4-(メトキシメチル)フェニル]-6-((1-メチル-1H-ピラゾール-4-イル)エチニル)-7-(1-メチルシクロプロピル)-7H-ピロロ[2,3-d]ピリミジン-5-カルボキサミドである。
 本発明において、「RETの発現及び/又は活性を阻害できる化合物」の中で、「RETの発現を阻害できる」とは、例えば、RETのポリペプチド及び/又はポリヌクレオチドを発現している細胞に試験化合物を接触させた後、当該細胞におけるRETのポリペプチド又はポリヌクレオチドの発現量を検出した際に、試験化合物を接触させていない細胞と比較して、試験化合物を接触させた細胞において、RETのポリペプチド又はポリヌクレオチドの発現量が低下した際に、RETの発現が抑制されたと判断することができる。このような化合物としては、前記のような化合物、siRNA、miRNA、核酸(DNA、RNA)アプタマーなどが挙げられる。siRNAとしては、例えば、CACAUGUCAUCAAAUUGUATT(配列番号74)、GGAUUGAAAACAAACUCUATT(配列番号75)、GCUUGUCCCGAGAUGUUUATT(配列番号76)が挙げられ、好ましくは、CACAUGUCAUCAAAUUGUATT(配列番号74)又はGGAUUGAAAACAAACUCUATT(配列番号75)である。
 また、「RETの発現及び/又は活性を阻害できる化合物」の中で、「RETの活性を阻害できる」とは、例えば、チロシンのリン酸化を指標に判断することができる。チロシンのリン酸化を測定する方法としては、例えば、国際公開第2017/043550号パンフレットの試験例1に記載の方法が挙げられる。
 また、RETのポリペプチド及び/又はポリヌクレオチドを発現している細胞を用いて、細胞増殖抑制効果を指標として、「RETの活性を阻害できる」と判断することができる。細胞増殖抑制効果は、例えば、国際公開第2017/043550号パンフレットの試験例3及び試験例4に記載の方法が挙げられる。
 本発明の医薬組成物の対象となる癌は、本発明のポリヌクレオチド及び/又はポリペプチドを発現している限り特に制限されないが、例えば、頭頚部癌、甲状腺癌、消化器癌(食道癌、胃癌、十二指腸癌、肝臓癌、胆道癌(胆嚢・胆管癌など)、膵臓癌、小腸癌、大腸癌(結腸直腸癌、結腸癌、直腸癌など)、消化管間質腫瘍など)、肺癌(非小細胞肺癌、小細胞肺癌)、乳癌、卵巣癌、子宮癌(子宮頚癌、子宮体癌など)、腎癌、膀胱癌、前立腺癌、皮膚癌等が挙げられ、好ましくは甲状腺癌、又は肺癌(非小細胞肺癌、小細胞肺癌)である。なお、ここで癌には、原発巣のみならず、他の臓器(肝臓など)に転移した癌をも含む。
 本発明のポリペプチドの発現及び/又は活性、又は本発明のポリヌクレオチドの発現を抑制する化合物を有効成分とする製剤は、薬学的担体を配合し、種々の投与形態に応じた医薬組成物として製造することができる。当該形態としては、例えば、経口剤、注射剤、坐剤、軟膏剤、貼付剤が挙げられる。これらの投与形態は、各々当業者に公知慣用の製剤方法により製造できる。
 薬学的担体としては、製剤素材として慣用の各種有機或いは無機担体物質が用いられ、固形製剤における賦形剤、結合剤、崩壊剤、滑沢剤、コーティング剤等、液状製剤における溶剤、溶解補助剤、懸濁化剤、等張化剤、pH調節剤・緩衝剤、無痛化剤等として配合される。また、必要に応じて防腐剤、抗酸化剤、着色剤、矯味・矯臭剤、安定化剤等の製剤添加物を用いることもできる。
 経口用固形製剤を調製する場合は、本発明化合物に賦形剤、必要に応じて賦形剤、結合剤、崩壊剤、滑沢剤、着色剤、矯味・矯臭剤等を加えた後、常法により錠剤、被覆錠剤、顆粒剤、散剤、カプセル剤等を製造することができる。
 経口用液体製剤を調製する場合は、本発明化合物にpH調節剤・緩衝剤、安定化剤、矯味・矯臭剤等を加えて常法により内服液剤、シロップ剤、エリキシル剤等を製造することができる。
 注射剤を調製する場合は、本発明化合物にpH調節剤・緩衝剤、安定化剤、等張化剤、局所麻酔剤等を添加し、常法により皮下、筋肉内及び静脈内用注射剤を製造することができる。
 本発明には、本発明のポリペプチドを検出するための方法又は本発明のポリヌクレオチドを検出するための方法において、試料中の、本発明のポリペプチド又は本発明のポリヌクレオチドの存在を検出した場合に、癌であると判定する方法が包含される。本発明により判定し得る癌としては、本発明の医薬組成物の対象となる癌として列挙したもの等が挙げられる。上記のように、本発明のポリペプチド又はポリヌクレオチドを用いることにより、癌の判定をすることができる。従って、本発明のポリペプチド、ポリヌクレオチドは、癌を検出するためのバイオマーカーとして用いることもできる。
 本発明のポリペプチド又は本発明のポリヌクレオチドを、RETを阻害する化合物を用いた化学療法が有効であるか否かの指標とする方法であって、本発明の検出方法により、試料中から、本発明のポリペプチドを検出した場合、及び/又は本発明の検出方法により、試料中から、本発明のポリヌクレオチドの存在を検出した場合に、RETを阻害する化合物を用いた化学療法が有効であると判定する方法が包含される。
 より好ましくは、本発明のポリペプチド又は本発明のポリヌクレオチドを、本発明のポリペプチドの発現及び/又は活性、又は本発明のポリヌクレオチドの発現を抑制する化合物を用いた化学療法が有効であるか否かの指標とする方法であって、本発明の検出方法により、試料中から、本発明のポリペプチドを検出した場合、及び/又は本発明の検出方法により、試料中から、本発明のポリヌクレオチドの存在を検出した場合に、本発明のポリペプチドの発現及び/又は活性、又は本発明のポリヌクレオチドの発現を抑制する化合物を用いた化学療法が有効であると判定する方法が包含される。
 より好ましくは、本発明のポリペプチド又は本発明のポリヌクレオチドを、本発明のスクリーニング方法で得られた化合物を用いた化学療法が有効であるか否かの指標とする方法であって、本発明の検出方法により、試料中から、本発明のポリペプチドを検出した場合、及び/又は本発明の検出方法により、試料中から、本発明のポリヌクレオチドの存在を検出した場合に、本発明のスクリーニング方法で得られた化合物を用いた化学療法が有効であると判定する方法が包含される。
 以下、実施例により本発明を具体的に説明するが、本発明はこれらの実施例により限定されるものではない。
実施例1 DCTN1遺伝子とRET遺伝子との融合遺伝子(DCTN1-RET融合遺伝子)の取得
<1-1 臨床検体由来RNAの抽出>
 Asterand Bioscienceより購入したヒト甲状腺がん組織から、RNeasy Mini Kit(Qiagen)を用いて以下の方法によりRNAを抽出した。甲状腺がん組織にBuffer RLTを600μL加え、QIAshredderスピンカラムにアプライした後遠心し (16,000 rpm、2分、室温)、濾液を回収した。回収した濾液に同量の70%エタノール水溶液を加え混和した後に、RNeasy Miniカラムにアプライし遠心した(10,000 rpm、15秒、室温)。RNeasy Miniカラムに700μLのBuffer RW1を添加し遠心した (10,000 rpm、15秒、室温)。さらに500μLのbuffer RPEを加え遠心した(10,000 rpm、15秒、室温)。同様に再度500μLのbuffer RPEを加え遠心した (10,000 rpm、2分、室温)。再度RNeasy Miniカラムを遠心(16,000 rpm、1分、室温)し、持ち越したbufferを取り除いた。RNeasy MiniカラムにRNase free waterを40μLアプライした後、遠心(10,000 rpm、1分、室温)し、濾液をtotal RNAとして回収した。
 <1-2 臨床検体由来cDNAの作製>
 上記1-1で得られたtotal RNAから、SuperScript VILO cDNA Synthesis Kit(invitorgen)を用いて、以下の方法によりcDNAを合成した。500ngのtotal RNAを容量が14μLになるようにRNAse free waterで調製し、4μLの5× VILO Reaction Mix及び2μLの10× SuperScript Enzyme Mixを加え混和した。25℃で10分間保温しその後42℃で60分保温した。反応を停止させるために最後に85℃で5分間インキュベートし、cDNAを得た。
 <1-3 クローニングベクターの作製及び精製>
 DCTN1-RET融合遺伝子を増幅させるため、表1に示すように、センスプライマーとしてPrimer1(配列番号33)とアンチセンスプライマーとしてPrimer2(配列番号34)、さらにnested PCRに用いるセンスプライマーとしてPrimer3(配列番号35)とアンチセンスプライマーとしてPrimer4(配列番号36)を設計した。
Figure JPOXMLDOC01-appb-T000001
 これらのプライマーを用いて上記1-2で合成したcDNAをテンプレートとして、KOD -Plus- Neo(TOYOBO)を使用し以下の方法でDCTN1-RET融合遺伝子を増幅させた。2μLのcDNA、5μLの10× PCR Buffer for KOD -Plus- Neo、5μLの2mM dNTPs、3μLの25mM MgSO4、1μLのKOD -Plus- Neo、1.5μLのPrimer1(10μM)、1.5μLのPrimer2(10μM)、及び31μLのdouble distilled water(DDW)を混和し、PCRを行った。次いで得られたPCR産物を100倍に希釈し、2μLの希釈したPCR産物、5μLの10× PCR Buffer for KOD -Plus- Neo、5μLの2mM dNTPs、3μLの25mM MgSO4、1μLのKOD -Plus- Neo、1.5μLのPrimer3(10μM)、1.5μLのPrimer4(10μM)及び31μLのDDWを混和し、nested PCRを行った。
 Nested PCR産物を1%アガロースゲル(ナカライ)を用いた電気泳動により分離し、QIAquick Gel Extraction Kit(Qiagen)を用いて、ゲルからPCR産物を精製した。
 制限酵素SmaI(NEB)で切断したpUC18 DNA(タカラバイオ)と精製したPCR産物とT4 DNA ligase(NEB)とT4 DNA Ligase Reaction Buffer(NEB)を混和し、一晩16℃でインキュベートした。Ligation産物をSmaI(NEB)で処理し、以下の方法でコンピテント細胞へのtransformationを行った。50μLのE.coli DH5α Competent Cells(タカラバイオ)にSmaI処理をしたLigation産物を加え30分氷上で静置した。その後42℃で30秒間ヒートショックを加え、2分間氷上で静置した。SOC培地(タカラバイオ)を加え、37℃で1時間振盪培養した後、アンピシリン含有LB寒天培地プレート(UNITECH)に培養液を塗布し、37℃で一晩静置した。大腸菌コロニーをアンピシリン含有LB培地(InvivoGen)に懸濁し37℃で一晩振盪培養した。増殖した大腸菌からQIAquick Spin Miniprep Kit(Qiagen)を用いて、添付のプロコールに準じてDCTN1-RET融合遺伝子が組み込まれたプラスミドDNAを精製した。
 <1-4 配列の決定>
 上記1-3で得られたプラスミドDNAをテンプレートにして、表2に示したシークエンス用プライマーPrimer5からPrimer36を用い、BigDye Terminator v3.1 Cycle Sequencing Kitを用いシークエンス反応を行い、Applied Biosystems 3730xl DNA Analyzerを用いてシークエンス解析を実施した。シークエンス解析の結果、DCTN1-RET融合遺伝子は、DCTN1 variant 5(GenBankアクセッション番号:NM_001190836)のexon1~exon27の3'側の下流にRET variant 2(GenBankアクセッション番号:NM_020975)のexon12~exon20が融合した遺伝子(配列番号17)であった。
Figure JPOXMLDOC01-appb-T000002
 実施例2 DCTN1-RET融合遺伝子の検出
 Asterand Bioscienceより購入したヒト正常甲状腺組織由来RNAと前記1-1で得られたヒト甲状腺がん組織由来RNAからSuperScript VILO cDNA Synthesis Kit(invitorgen)を用いて、以下の方法によりcDNAを合成した。280ngのTotal RNAを 容量が14μLになるようにRNAse free waterで調製し、5× VILO Reaction Mixを4μL、10× SuperScript Enzyme Mixを2μLそれぞれ加え混和した。25℃で10分間保温しその後42℃で60分保温した。反応を停止させるために最後に85℃で5分間インキュベートした。
 DCTN1-RET融合遺伝子の検出のために、表3に示すように、DCTN-RET融合遺伝子検出用センスプライマーとしてPrimer37(配列番号69)とDCTN-RET融合遺伝子検出用アンチセンスプライマーとしてPrimer38(配列番号70)、DCTN1-RET融合遺伝子検出用プローブ(プローブはTaqMan MGBプローブ、蛍光色素はFAM(Thermo Fisher Scientific))としてPrimer39(配列番号71)を設計した。
Figure JPOXMLDOC01-appb-T000003
 得られたcDNAを10倍希釈し1.1μLをテンプレートとして使用し、11μLのddPCR Supermix for probe(Bio-Rad)、2μLのPrimer37(10μM)、2μLのPrimer38(10μM)、0.6μLのPrimer39(10μM)、1.1μLのGAPDHを検出する20× HEX assay(PrimePCR ddPCR Expression Probe Assay:GAPDH,Human、Bio-Rad)を混和させて、Automated Droplet Generator(Bio-Rad)でドロップレットを作製した。作製したドロップレットを用いてPCRを行い、Droplet Reader(Bio-Rad)にてDCTN1-RET及びGAPDH陽性のドロップレットをカウントした。結果を図1及び図2に示す。
 また、上記で合成したcDNAをテンプレートとして、KOD -Plus- Neo(TOYOBO)を使用し以下の方法でDCTN1-RET融合遺伝子を増幅させた。2μLのcDNA、5μLの10× PCR Buffer for KOD -Plus- Neo、5μLの2mM dNTPs、3μLの25mM MgSO4、1μLのKOD -Plus- Neo、1.5μLのPrimer1(10μM)、1.5μLのPrimer2(10μM)、及び31μLのDDWを混和し、PCRを行った。次いで得られたPCR産物を100倍に希釈し、2μLの希釈したPCR産物、5μLの10× PCR Buffer for KOD -Plus- Neo、5μLの2mM dNTPs、3μLの25mM MgSO4、1μLのKOD -Plus- Neo、1.5μLのPrimer3(10μM)、1.5μLのPrimer4(10μM)及び31μLのDDWを混和し、nested PCRを行った。Nested PCR産物を1%アガロースゲル(ナカライ)を用いた電気泳動により分離し撮影を行った。結果を図3に示す。
 図1、図2及び図3に示したように、ヒト甲状腺がん組織由来のRNAから合成したcDNAにおいては、DCTN1-RET融合遺伝子が検出されたのに対し、ヒト正常甲状腺組織由来RNAから合成したcDNAにおいては、DCTN1-RET融合遺伝子が検出されなかった。以上の結果から、DCTN1-RET融合遺伝子はがんバイオマーカーとして有用であることが示された。
 実施例3 DCTN1-RET融合遺伝子の発現ベクターの構築
 発現ベクター構築のため、表4に示すように、センスプライマーとしてPrimer40(配列番号72)とアンチセンスプライマーとしてPrimer41(配列番号73)を設計した。
Figure JPOXMLDOC01-appb-T000004
 これらのプライマーを用いて上記1-2で合成したcDNAをテンプレートとして、Prime STAR Max DNA Polymerase(TaKaRa)を使用し以下の方法でDCTN1-RET融合遺伝子を増幅させた。1μLのcDNA、25μLの2× Prime STAR Max DNA Polymerase、1μLのPrimer40(10μM)、1μLのPrimer41(10μM)、及び22μLのdouble distilled water(DDW)を混和し、PCRを行った。得られたPCR産物を1%アガロースゲル(ナカライ)を用いた電気泳動により分離し、GFX PCR DNA and Gel Band Purification Kit(GE Healthcare)を用いて、ゲルからPCR産物を精製した。次いで得られた精製PCR産物をGateway BP Clonase II Enzyme mix(ThermoFisher)を使用し以下の方法でGateway pDONR221 Vectorに組み込み、エントリーベクターを作製した。具体的には、5.0μLの精製PCR産物、3.5μLのpDONR221(85ng/μL)、4.0μLのBP Clonase II EnzymeMix、7.5μLのTEを混和し、25℃で90分間インキュベートした。インキュベート後にProteinase K(2mg/mL)を1μL添加し、37℃にて10分間インキュベートすることによりエントリーベクターを得た。
 得られたエントリーベクターを50μLのE.coli DH5α Competent Cells(タカラバイオ)に加え30分氷上で静置した。その後37℃で20秒間ヒートショックを加え、2分間氷上で静置した。SOC培地(タカラバイオ)を加え、37℃で1時間振盪培養した後、カナマイシン含有LB寒天培地プレートに培養液を塗布し、37℃で一晩静置した。大腸菌コロニーをカナマイシン含有LB培地に懸濁し、37℃で一晩振盪培養した。増殖した大腸菌からDCTN1-RET融合遺伝子が組み込まれたプラスミドDNA(エントリーベクタークローン)をDNA自動分離装置 GENE PREP STAR PI-480(クラボウ)にて精製した。
 得られたプラスミドとGateway LR Clonase II Enzyme mix(ThermoFisher)を用いて、以下の方法で、pJTI Fast DESTベクターにDCTN1-RET融合遺伝子を組み込み、発現ベクターとした。150ngのエントリーベクタークローン、1μLのpJTI Fast DESTベクター(150ng/μL)、2μLのLR Clonase II Enzyme mix、およびTE bufferを混和して、全量を10μLとし、25℃で90分間インキュベートした。インキュベート後にProteinase K(2mg/mL)を1μL添加し、37℃にて10分間インキュベートすることにより、DCTN1-RET融合遺伝子が組み込まれたpJTI Fast DESTベクター(DCTN1-RET融合遺伝子発現ベクター)を得た。得られたDCTN1-RET融合遺伝子発現ベクターを50μLのE.coli DH5α Competent Cells(タカラバイオ)に加え30分氷上で静置した。その後37℃で20秒間ヒートショックを加え、2分間氷上で静置した。SOC培地(タカラバイオ)を加え、37℃で1時間振盪培養した後、アンピシリン含有LB寒天培地プレートに培養液を塗布し、37℃で一晩静置した。大腸菌コロニーをアンピシリン含有LB培地に懸濁し37℃で一晩振盪培養した。増殖した大腸菌からDCTN1-RET融合遺伝子が組み込まれたプラスミドDNA(DCTN1-RET融合遺伝子発現ベクター)をplasmid plus Maxi kit(QIAGEN)を使用し、精製した。
 実施例4 DCTN1-RET融合遺伝子発現細胞の樹立
 <4-1 細胞の樹立>
 DCTN1-RET融合遺伝子発現細胞の樹立のための宿主細胞として、マウス胎児線維芽細胞NIH/3T3細胞(American Type Culture Collection)を選択し、上記にて作製したDCTN1-RET融合遺伝子が組み込まれた発現ベクターをトランスフェクションすることにより、DCTN1-RET融合遺伝子発現細胞を樹立した。詳細な方法は以下に示すとおりに実施した。NIH/3T3細胞は、通常の培養(2次元培養)のために、D-MEM(高グルコース)(L-グルタミン、フェノールレッド、ピルビン酸ナトリウム、1500mg/L炭酸水素ナトリウム含有)(WAKO)に10%となるようにNewborn Calf Serum(NBCS)(GIBCO)を添加したものを2次元培養用の培地として使用し、37℃、5%CO2にて培養したものを使用した。トランスフェクションを行う前日に、NIH/3T3細胞を1.5×105cells/2mLにて、6well plate(IWAKI)に播種し、37℃、5%CO2にて、一晩インキュベートした。1.5μgのDCTN1-RET融合遺伝子発現ベクター、1.5μgのpJTI phiC31 integrase vectorを混合した混合液に、その混合液の6倍量のViaFect Transfection Reagentを添加した後、全量が300μLとなるようにOpti-MEMを添加し、室温にて5分間インキュベートすることによりトランスフェクション溶液を作製した。NIH/3T3細胞が播種されているwellから培地を300μL除去し、上記で作製したトランスフェクション溶液を300μL添加し、37℃、5%CO2にて、一晩インキュベートした。翌日、トランスフェクション溶液を除去するために、培地を交換した。培地を交換する際に、新しい培地には、ハイグロマイシンB(ナカライテスク)を500μg/mLとなるように添加した。ハイグロマイシンBにより、DCTN1-RET融合遺伝子導入発現ベクターが導入されていない細胞を除去した。
 トランスフェクション後、1週間に2回程度の培地交換をしながら、細胞が増殖するまで、培養を行った。トランスフェクション22日後に、細胞をトリプシンにて回収し、以下の方法にてシングルセルクローニングを行った。回収した細胞の細胞数を測定し、1cell/200μLとなるように培地を添加した。96well Plate(ThermoFisher)に200μL/1wellとなるように細胞を播種した。播種後、日々観察を行い、シングルセルから増殖してきた細胞を取得し、DCTN1-RET融合遺伝子発現細胞(DCTN1-RET融合遺伝子発現NIH/3T3細胞)とした。
 <4-2 目的タンパク質の発現確認>
得られたDCTN1-RET融合遺伝子発現NIH/3T3細胞におけるDCTN1-RET融合タンパク質の発現を、ウエスタンブロット法にて確認した。すなわち、培養フラスコから培地を除去し、PBSにて1度洗浄した。培養フラスコ内にPhosphatase inhibitor(ロシュ)とProtease inhibitor(ロシュ)を含有したSample Diluent Concentrate 2(R&D SYSTEMS)を添加し、スクレイパーにて細胞溶解液を回収した。回収した細胞溶解液から遠心分離により、タンパク質サンプルを得た。タンパク質サンプルは、タンパク質定量を行い、タンパク質濃度を一定にした。一定濃度のタンパク質サンプルに対して、Sample Buffer Solution with Reducing Reagent(6x) for SDS-PAGE(ナカライテスク)を加え、95℃にて5分間インキュベートすることにより、タンパク質を変性させ、ウエスタンブロッティング用のサンプルを得た。なお、ネガティブコントロール用のサンプルとして、親株であるNIH/3T3細胞を用いて、同様の方法にてウエスタンブロティング用のサンプルを得た。上記サンプルを用いて、以下に示す方法にて、タンパク質の発現を確認した。4-15パーセント Acrylamide gel(BIO―RAD)および1× Tris/Glycine/SDS Bufferを用いて、SDS-PAGE電気泳動(200Vで30分)にて、タンパク質を分離した。Trans-Blot Turb RTA Midi PVDF Transfer Kit(BIO―RAD)とTransblot Turbo 転写システム(BIO―RAD)を用いてPVDF膜にタンパク質を転写し、PVDF膜をBlocking One-Pに1時間浸漬した。Blocking One-Pが10%となるようにTBS-Tで希釈した溶液で一次抗体(Phospho-Ret (Tyr905) Antibody(CST)、Ret (C31B4) Rabbit mAb(CST)及びAnti-Dctn1 Antibody(ATLAS ANTIBODIES))を1/1000濃度になるように希釈し、PVDF膜を浸漬させ、4℃にて一晩インキュベートした。TBS-Tにて洗浄後、Anti-rabbit IgG,HRP-linked Antibody(CST)を1/2000濃度になるようにTBS-Tにて希釈した2次抗体希釈液にて、PVDF膜を浸漬させ、室温にて1時間インキュベートした。TBS-Tにて洗浄後、SuperSignal West Dura Extended Duration Substrate(ThermoFisher)及びルミノ・イメージアナライザー Amersham Imager 600(GEヘルスケア)を用いてタンパク質の検出を行った。なお、検出タンパク質の分子量は、プレシジョン Plusプロテイ カレイドスコープスタンダード(BIORAD)により確認した。
その結果、図4a)及びb)に示すように、抗pRET抗体と抗RET抗体を用いたところ内在性のRET(150及び175kDa)は検出されなかった。一方、DCTN1-RET融合遺伝子発現NIH/3T3細胞においてのみ、175kDa付近にDCTN1-RET融合タンパク質と推測されるバンドが確認できた。
また、図4c)に示すように抗DCTN1抗体を用いたところ、150kDa付近に内在性のDCTN1が検出された。一方、DCTN1-RET融合遺伝子発現NIH/3T3細胞においてのみ、内在性の150kDaのDCTN1のバンドの上の175kDa付近にバンドが検出された。すなわち、DCTN1-RET融合遺伝子発現NIH/3T3細胞においてのみ、RETに対する抗体及びDCTN1に対する抗体の両方で175kDa付近のバンドが検出されたことから、作成したDCTN1-RET融合遺伝子発現NIH/3T3細胞では、DCTN1とRETが融合したタンパク質が発現していることが明らかとなった。
 実施例5 DCTN1-RET融合遺伝子発現NIH/3T3細胞の3次元培養による増殖確認
 NIH/3T3細胞は、2次元培養条件では良好な増殖を示すが、3次元培養条件では、ほとんど増殖しない。一方で、NIH/3T3細胞に癌遺伝子を発現させることにより、3次元培養条件でも増殖することが知られている。その性質を利用し、DCTN1-RET融合遺伝子が癌遺伝子であるかの確認を行った。37℃、5%CO2にて、2次元培養で培養したDCTN1-RET融合遺伝子発現NIH/3T3細胞及びNIH/3T3細胞をトリプシンにて回収し、細胞数を測定した。3次元培養を行うために、FCeM series Preparation kit(日産化学工業株式会社)とD-MEM(高グルコース)(L-グルタミン、フェノールレッド、ピルビン酸ナトリウム、1500mg/L炭酸水素ナトリウム含有)(WAKO)とNewborn Calf Serum(NBCS)(GIBCO)を用いて、3次元培養用の培地を作製した。作製した3次元培養用の培地に、細胞を1000cells/90μLとなるように懸濁し、96 Well Clear Black Round Bottom、Spheroid Microplate(Corning)に90μL/1wellとなるように播種し、37℃、5%CO2にてインキュベートした。播種翌日(Day1)及び播種8日後(Day8)に細胞内ATP発光検出試薬であるCelltiter-Glo 2.0Reagent(Progema)及びルミノメーター(EnSpire, PerkinElmer)を用いて発光量(counts per second:cps)を測定し、生細胞数の指標とした。Day1での測定結果とDay8での測定結果から各細胞の増殖率を算出した(N=3)。
その結果、図5に示すように、NIH/3T3細胞では、Day8の細胞数はDay1の細胞数と比較して2.4倍であったのに対して、DCTN1-RET融合遺伝子発現NIH/3T3細胞では、20.9倍であった。また、NIH/3T3細胞は、3次元培養において細胞の凝集塊は形成されないが、DCTN1-RET融合遺伝子発現NIH/3T3細胞では、3次元培養により細胞の凝集塊が形成されていることが確認された。
すなわち、DCTN1-RET融合遺伝子を導入することにより、細胞の増殖が亢進したことが明らかとなり、DCTN1-RET融合遺伝子が癌遺伝子であることが示唆された。
 実施例6 DCTN1-RET融合遺伝子発現NIH/3T3細胞のin vivoにおける造腫瘍性確認
 DCTN1-RET融合遺伝子発現NIH/3T3細胞のin vivoにおける造腫瘍性を確認するために、ヌードマウスを用いた移植実験を行った。なお、親株であるNIH/3T3細胞は、ヌードマウスの皮下では増殖しないことが、一般的に知られており、DCTN1-RET融合遺伝子発現NIH/3T3細胞をヌードマウスの皮下に移植することにより、DCTN1-RET融合遺伝子が造腫瘍性に寄与するか、すなわち癌遺伝子であるかの確認ができる。被移植動物としては、ヌードマウス(BALB/cAJcl-nu/nu、日本クレア)を用いた。DCTN1-RET融合遺伝子発現NIH/3T3細胞をトリプシンにて回収し、最終的に1×108cells/mLとなるようにPBSに懸濁し、同量のマトリゲル基底膜マトリックス(Corning)を加え、5×107cells/mLにしたものを移植用細胞液とした。25G注射針と1mLシリンジを用いて、移植用細胞液をヌードマウス(N=10)の右側胸部の皮下に0.1mLずつ移植した。電子ノギス(ミツトヨ)を用い、移植後、10、13、17日目に、1匹ずつ腫瘍の長径及び短径を測定し、以下の式を用いて腫瘍体積を算出した。
腫瘍体積(mm3)=(長径、mm)×(短径、mm)×(短径、mm)/2
 腫瘍体積の測定結果を図6に示す。その結果、ヌードマウスの皮下に移植されたDCTN1-RET融合遺伝子発現NIH/3T3細胞は、腫瘍を形成し、良好に増殖することが確認され、in vivo実験においてもDCTN1-RET融合遺伝子が癌遺伝子であることが示唆された。
 実施例7 DCTN1-RET融合遺伝子発現NIH/3T3細胞を用いたsiRNAによるDCTN1-RET融合タンパク質の抑制と細胞増殖抑制効果の確認
 DCTN1-RET融合遺伝子発現NIH/3T3細胞に対するsiRNA処理による影響を確認した。用いたsiRNAは、下記の表5に示した3種類のRET siRNAとネガティブコントロールとしてSilencer Select Negative Control #1 siRNA(Ambion)を使用した。なお、3種類のRET siRNAは、いずれもヒトRETを標的とするsiRNAであるが、RET siRNA1及びRET siRNA2はDCTN1-RET融合遺伝子内のRET部分に結合する配列を含み、RET siRNA3はDCTN1-RET融合遺伝子内に結合する配列を含まない。すなわち、RET siRNA1及びRET siRNA2はDCTN1-RET融合遺伝子の発現を抑制するが、RET siRNA3はDCTN1-RET融合遺伝子の発現を抑制しないことが想定された。以下にsiRNAを用いた実験の方法について記載した。
Figure JPOXMLDOC01-appb-T000005
 DCTN1-RET融合遺伝子発現NIH/3T3細胞は、2次元培養用の培地を使用し、37℃、5%CO2にて培養したものを使用した。siRNA処理を行う前日に、各細胞を3×105cells/2mLにて、6well plate(IWAKI)に播種し、37℃、5%CO2にて、一晩インキュベートした。事前に水を用いて20μMに調製した各siRNAを12μL、4μLのLipofectamin RNAiMAX Transfection Reagent(ThermoFisher)及び384μLのOpti-MEMを混合し、室温にて15分インキュベートすることによりsiRNA溶液を作製した。各細胞が播種されているwellにsiRNA溶液を400μL添加し、37℃、5%CO2にて、一晩インキュベートした。
翌日、一部は、タンパク質発現解析用にサンプリングを行い、一部については、細胞増殖確認用に再播種を行った。タンパク質発現解析用のサンプリング及びタンパク質発現解析は、一次抗体として、Phospho-Ret (Tyr905) Antibody(CST)、Ret (C31B4) Rabbit mAb(CST)及びGAPDH (D16H11) XP Rabbit mAb(CST)を用いた以外は、上記<4-2 目的タンパク質の発現確認>と同様の方法で実施した。その結果、図7に示すように、siRNA処理していない細胞(無処理)に比べ、ネガティブコントロールsiRNA(NC)を処理した細胞において、DCTN1-RET融合タンパク質の発現は抑制されていないことが確認できた。一方、RET siRNA1及びRET siRNA2を処理した場合、DCTN1-RET融合遺伝子発現NIH/3T3細胞のDCTN1-RET融合タンパク質の発現が抑制されることが確認され、RET siRNA3では抑制されないことが明らかとなった。
次に細胞増殖抑制効果の確認のために、無処理又はsiRNA処理されたwellからトリプシンにより細胞を回収し、細胞数を測定した。上記実施例5と同様の方法で3次元培養を行い、播種当日(Day0)及び播種4日後(Day4)に実施例5と同様の方法で生細胞数を測定した。Day0での測定結果とDay4での測定結果から各細胞における増殖率を算出した。
その結果、図8に示すように、siRNAを処理していない細胞(無処理)及びネガティブコントロールsiRNA(NC)を処理した細胞では、Day4の細胞数は、Day0の細胞数と比較して、4.9倍及び3.6倍であったのに対して、RET siRNA1及びRET siRNA2で処理した細胞では、2.0倍及び2.4倍程度の増殖であり、顕著に増殖率が低下した。一方、RET siRNA3はで処理した細胞では、3.7倍の増殖であり、ネガティブコントロールsiRNAと同程度の増殖率であり、増殖率の低下は見られなかった。これらの結果から、DCTN1-RET融合遺伝子発現NIH/3T3細胞の増殖は、siRNAによってRETの発現を阻害した場合にも抑制されることが明らかとなった。
 実施例8 DCTN1-RET融合遺伝子発現NIH/3T3細胞を用いた細胞増殖抑制効果
 DCTN1-RET融合遺伝子発現NIH/3T3細胞に対するin vitro細胞増殖試験を行った。上記実施例5と同様の方法で、3次元培養及び播種を行った。播種後37℃、5%CO2にて一晩インキュベートした(Day0)。RETを阻害すると報告されているカボザンチニブ、バンデタニブ、アレクチニブ、レンバチニブ、縮合ピリミジン化合物(Compound1から9;表6に示す)をジメチルスルホキシドにて10 mmol/Lの濃度に溶解し、さらに3次元培養用の培地を用いて、これらの化合物の最終濃度がそれぞれ1000、333、111、37.0、12.3、4.12、1.37、0.457nmol/Lになるように希釈を行った。これを先に述べた細胞が播種されたプレートの各Wellに0.01mLずつ加え(Day1)、37℃、5%CO2にて7日間インキュベートした。培養後(Day8)、全てのWellに細胞内ATP発光検出試薬であるCelltiter-Glo 2.0Reagent(Progema)を添加し、ルミノメーター(EnSpire、PerkinElmer)を用いて発光量(counts per second:cps)を測定した。Tday8とCday1の値の大きさに応じて、以下の式より化合物の各濃度におけるDay1からの増殖率を算出し、細胞増殖を50%抑制する被験化合物の濃度(GI50(nM))を求めた。
1)Tday8≧Cday1の場合
増殖率(%)=(Tday8-Cday1)/(Cday8-Cday1)×100
T:被験化合物を添加したWellのcps
C:被験化合物を添加しなかったWellのcps
Day1:被験化合物を添加した日
Day8:評価日
2)Tday8<Cday1の場合
増殖率(%)=(Tday8-Cday1)/(Cday1)×100
T:被験化合物を添加したWellのcps
C:被験化合物を添加しなかったWellのcps
Day1:被験化合物を添加した日
Day8:評価日
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-I000007
 その結果、表7に示すように、カボザンチニブ、バンデタニブ、レンバチニブ及び縮合ピリミジン化合物(Compound1から9)において、DCTN1-RET融合遺伝子発現NIH/3T3細胞の増殖が抑制された。
Figure JPOXMLDOC01-appb-T000008
 以上の結果から、上記のRET阻害剤は、DCTN1-RET融合遺伝子が検出されたがんに対する治療薬として有用である可能性が示唆された。また、DCTN1-RET融合遺伝子発現NIH/3T3細胞を用いることで、DCTN1-RETを抑制する化合物のスクリーニングが可能であることが示唆された。
 実施例9 DCTN1-RET融合遺伝子発現細胞を用いたRETのリン酸化阻害
 DCTN1-RET融合遺伝子発現細胞におけるRETのリン酸化が、RETを阻害すると報告されている既存の薬剤で阻害されるかについて以下の方法にて検討した。
 DCTN1-RET融合遺伝子発現NIH/3T3細胞は、2次元培養用の培地を使用し、37℃、5%CO2にて培養したものを使用した。薬剤処理を行う前日に、各細胞を3×105cells/2mLにて、6well plate(IWAKI)に播種し、37℃、5%CO2にて、一晩インキュベートした。カボザンチニブ、バンデタニブ、アレクチニブ、レンバチニブをジメチルスルホキシドにて10mmol/Lの濃度に溶解し、さらにPBSを用いて、これらの化合物の最終濃度がそれぞれ1000、100、10nmol/Lになるように希釈を行った。これを先に述べた細胞が播種されたプレートの各Wellに20μLずつ加え(Day1)、37℃、5%CO2にて1時間インキュベートした。インキュベート後、上記実施例7に記載されている方法と同様の方法でタンパク質発現解析用のサンプリングを行い、タンパク質発現解析を実施した。
 その結果、図9に示すように、DCTN1-RET融合遺伝子発現NIH/3T3細胞のリン酸化RETレベルがカボザンチニブ及びレンバチニブにより顕著に減少することが確認された。また、上記と同様の方法で、縮合ピリミジン化合物を用いて、RETのリン酸化阻害を評価した結果、縮合ピリミジン化合物においてもRETのリン酸化が顕著に減少することが確認できた。
以上の結果から、リン酸化RETレベルを顕著に減少させる薬剤は、DCTN1-RET融合遺伝子発現NIH/3T3細胞の増殖を抑制できる化合物であり、DCTN1-RET融合遺伝子が検出されたがんに対する治療薬として有用である可能性が示唆された。また、DCTN1-RET融合遺伝子発現NIH/3T3細胞のリン酸化RETレベルを用いることでRET阻害剤のスクリーニングが可能であることが示唆された。
配列番号1は、DCTN1 variant 1(v1)[配列番号25の一部]とRET variant 2(v2)[配列番号31の一部]との融合ペプチドをコードするポリヌクレオチドの塩基配列を示す。
配列番号2は、DCTN1 v1とRET v2との融合ペプチドのアミノ酸配列を示す。
配列番号3は、DCTN1 v1とRET variant 4(v4)[配列番号32の一部]との融合ペプチドをコードするポリヌクレオチドの塩基配列を示す。
配列番号4は、DCTN1 v1とRET v4との融合ペプチドのアミノ酸配列を示す。
配列番号5は、DCTN1 variant 2(v2)[配列番号26の一部]とRET v2との融合ペプチドをコードするポリヌクレオチドの塩基配列を示す。
配列番号6は、DCTN1 v2とRET v2との融合ペプチドのアミノ酸配列を示す。
配列番号7は、DCTN1 v2とRET v4との融合ペプチドをコードするポリヌクレオチドの塩基配列を示す。
配列番号8は、DCTN1 v2とRET v4との融合ペプチドのアミノ酸配列を示す。
配列番号9は、DCTN1 variant 3(v3)[配列番号27の一部]とRET v2との融合ペプチドをコードするポリヌクレオチドの塩基配列を示す。
配列番号10は、DCTN1 v3とRET v2との融合ペプチドのアミノ酸配列を示す。
配列番号11は、DCTN1 v3とRET v4との融合ペプチドをコードするポリヌクレオチドの塩基配列を示す。
配列番号12は、DCTN1 v3とRET v4との融合ペプチドのアミノ酸配列を示す。
配列番号13は、DCTN1 variant 4(v4)[配列番号28の一部]とRET v2との融合ペプチドをコードするポリヌクレオチドの塩基配列を示す。
配列番号14は、DCTN1 v4とRET v2との融合ペプチドのアミノ酸配列を示す。
配列番号15は、DCTN1 v4とRET v4との融合ペプチドをコードするポリヌクレオチドの塩基配列を示す。
配列番号16は、DCTN1 v4とRET v4との融合ペプチドのアミノ酸配列を示す。
配列番号17は、DCTN1 variant 5(v5)[配列番号29の一部]とRET v2との融合ペプチドをコードするポリヌクレオチドの塩基配列を示す。
配列番号18は、DCTN1 v5とRET v2との融合ペプチドのアミノ酸配列を示す。
配列番号19は、DCTN1 v5とRET v4との融合ペプチドをコードするポリヌクレオチドの塩基配列を示す。
配列番号20は、DCTN1 v5とRET v4との融合ペプチドのアミノ酸配列を示す。
配列番号21は、DCTN1 v6とRET v2との融合ペプチドをコードするポリヌクレオチドの塩基配列を示す。
配列番号22は、DCTN1 v6とRET v2との融合ペプチドのアミノ酸配列を示す。
配列番号23は、DCTN1 v6とRET v4との融合ペプチドをコードするポリヌクレオチドの塩基配列を示す。
配列番号24は、DCTN1 v6とRET v4との融合ペプチドのアミノ酸配列を示す。
配列番号33は、プライマーの塩基配列を示す。
配列番号34は、プライマーの塩基配列を示す。
配列番号35は、プライマーの塩基配列を示す。
配列番号36は、プライマーの塩基配列を示す。
配列番号37は、プライマーの塩基配列を示す。
配列番号38は、プライマーの塩基配列を示す。
配列番号39は、プライマーの塩基配列を示す。
配列番号40は、プライマーの塩基配列を示す。
配列番号41は、プライマーの塩基配列を示す。
配列番号42は、プライマーの塩基配列を示す。
配列番号43は、プライマーの塩基配列を示す。
配列番号44は、プライマーの塩基配列を示す。
配列番号45は、プライマーの塩基配列を示す。
配列番号46は、プライマーの塩基配列を示す。
配列番号47は、プライマーの塩基配列を示す。
配列番号48は、プライマーの塩基配列を示す。
配列番号49は、プライマーの塩基配列を示す。
配列番号50は、プライマーの塩基配列を示す。
配列番号51は、プライマーの塩基配列を示す。
配列番号52は、プライマーの塩基配列を示す。
配列番号53は、プライマーの塩基配列を示す。
配列番号54は、プライマーの塩基配列を示す。
配列番号55は、プライマーの塩基配列を示す。
配列番号56は、プライマーの塩基配列を示す。
配列番号57は、プライマーの塩基配列を示す。
配列番号58は、プライマーの塩基配列を示す。
配列番号59は、プライマーの塩基配列を示す。
配列番号60は、プライマーの塩基配列を示す。
配列番号61は、プライマーの塩基配列を示す。
配列番号62は、プライマーの塩基配列を示す。
配列番号63は、プライマーの塩基配列を示す。
配列番号64は、プライマーの塩基配列を示す。
配列番号65は、プライマーの塩基配列を示す。
配列番号66は、プライマーの塩基配列を示す。
配列番号67は、プライマーの塩基配列を示す。
配列番号68は、プライマーの塩基配列を示す。
配列番号69は、プライマーの塩基配列を示す。
配列番号70は、プライマーの塩基配列を示す。
配列番号71は、プライマーの塩基配列を示す。
配列番号72は、プライマーの塩基配列を示す。
配列番号73は、プライマーの塩基配列を示す。
配列番号74は、RET siRNAの塩基配列を示す。
配列番号75は、RET siRNAの塩基配列を示す。
配列番号76は、RET siRNAの塩基配列を示す。
配列番号77は、RET siRNAの塩基配列を示す。

Claims (23)

  1.  DCTN1タンパク質のN末端部分と、RETタンパク質のC末端部分とが融合しているポリペプチド。
  2.  以下の(a)~(c)から選択される請求項1記載のポリペプチド。
     (a)配列番号2、配列番号4、配列番号6、配列番号8、配列番号10、配列番号12、配列番号14、配列番号16、配列番号18、配列番号20、配列番号22、又は配列番号24で示されるアミノ酸配列からなるポリペプチド。
     (b)配列番号2、配列番号4、配列番号6、配列番号8、配列番号10、配列番号12、配列番号14、配列番号16、配列番号18、配列番号20、配列番号22、又は配列番号24で示されるアミノ酸配列において、1個若しくは数個のアミノ酸が置換、欠失、又は付加されたアミノ酸配列からなるポリペプチド。
     (c)配列番号2、配列番号4、配列番号6、配列番号8、配列番号10、配列番号12、配列番号14、配列番号16、配列番号18、配列番号20、配列番号22、又は配列番号24で示されるアミノ酸配列と90%以上の同一性を有するアミノ酸配列からなるポリペプチド。
  3.  請求項1又は2記載のポリペプチドをコードするポリヌクレオチド。
  4.  以下の(d)~(f)から選択される請求項3記載のポリヌクレオチド。
     (d)配列番号2、配列番号4、配列番号6、配列番号8、配列番号10、配列番号12、配列番号14、配列番号16、配列番号18、配列番号20、配列番号22、又は配列番号24で示されるアミノ酸配列からなるポリペプチドをコードするポリヌクレオチド。
     (e)配列番号2、配列番号4、配列番号6、配列番号8、配列番号10、配列番号12、配列番号14、配列番号16、配列番号18、配列番号20、配列番号22、又は配列番号24で示されるアミノ酸配列において、1個若しくは数個のアミノ酸が置換、欠失、又は付加されたアミノ酸配列からなるポリペプチドをコードするポリヌクレオチド。 (f)配列番号2、配列番号4、配列番号6、配列番号8、配列番号10、配列番号12、配列番号14、配列番号16、配列番号18、配列番号20、配列番号22、又は配列番号24で示されるアミノ酸配列と90%以上の同一性を有するアミノ酸配列からなるポリペプチドをコードするポリヌクレオチド。
  5.  以下の(g)~(i)から選択される請求項3記載のポリヌクレオチド。
     (g)配列番号1、配列番号3、配列番号5、配列番号7、配列番号9、配列番号11、配列番号13、配列番号15、配列番号17、配列番号19、配列番号21、又は配列番号23で示される塩基配列からなるポリヌクレオチド。
     (h)配列番号1、配列番号3、配列番号5、配列番号7、配列番号9、配列番号11、配列番号13、配列番号15、配列番号17、配列番号19、配列番号21、又は配列番号23で示される塩基配列と相補的な塩基配列からなるポリヌクレオチドとストリンジェントな条件下でハイブリダイズするポリヌクレオチド。
     (i)配列番号1、配列番号3、配列番号5、配列番号7、配列番号9、配列番号11、配列番号13、配列番号15、配列番号17、配列番号19、配列番号21、又は配列番号23で示される塩基配列と90%以上の同一性を有するポリヌクレオチド。
  6.  請求項3から5のいずれかに記載のポリヌクレオチドを含む発現ベクター。
  7.  請求項3から5のいずれかに記載のポリヌクレオチドを導入した細胞。
  8.  請求項1又は2記載のポリペプチドに特異的に結合する抗体。
  9.  試料中の、請求項1又は2記載のポリペプチドの存在を検出する方法。
  10.  試料中の、請求項3から5のいずれかに記載のポリヌクレオチドの存在を検出するためのプライマー又はプローブであって、当該プライマー又はプローブが以下の(j)~(l)から選択されるポリヌクレオチド。
     (j)DCTN1タンパク質をコードするポリヌクレオチドにハイブリダイズするプローブ及びRETタンパク質をコードするポリヌクレオチドにハイブリダイズするプローブからなる群から選択される少なくとも1つのプローブであるポリヌクレオチド。
     (k)DCTN1タンパク質をコードするポリヌクレオチドとRETタンパク質をコードするポリヌクレオチドとの融合点にハイブリダイズするプローブであるポリヌクレオチド。
     (l)DCTN1タンパク質をコードするポリヌクレオチドとRETタンパク質をコードするポリヌクレオチドとの融合点を挟み込むように設計されたセンスプライマーとアンチセンスプライマーのセットであるポリヌクレオチド。
  11.  試料中の、請求項3から5のいずれかに記載のポリヌクレオチドの存在を検出する方法。
  12.  請求項9又は11記載の検出方法において、試料中の、請求項1若しくは2記載のポリペプチド又は請求項3から5のいずれかに記載のポリヌクレオチドの存在を検出した場合に、試料の由来となる患者が癌であると判定する方法。
  13.  RETを阻害する化合物を有効成分とする、DCTN1遺伝子とRET遺伝子との融合遺伝子陽性及び/又はDCTN1タンパク質とRETタンパク質との融合タンパク質陽性の癌治療用医薬組成物。
  14.  以下の(1)及び(2)の工程を含む請求項1又は2記載のポリペプチドの発現及び/又は活性、又は請求項3から5のいずれかに記載のポリヌクレオチドの発現を抑制する化合物をスクリーニングする方法。
     (1)請求項1又は2記載のポリペプチド、請求項1若しくは2記載のポリペプチド又は請求項3から5のいずれかに記載のポリヌクレオチドを発現している細胞、又は請求項7の細胞に試験化合物を接触する工程。
     (2)上記工程(1)において、請求項1又は2記載のポリペプチドの発現及び/又は活性、又は請求項3から5のいずれかに記載のポリヌクレオチドの発現が抑制されるか測定する工程、又は上記工程(1)記載の細胞の増殖が抑制されるか測定する工程。
  15.  請求項1若しくは2記載のポリペプチド又は請求項3から5のいずれかに記載のポリヌクレオチドを、RETを阻害する化合物を用いた化学療法が有効であるか否かの指標とする方法であって、請求項9記載の検出方法により、試料中から、請求項1若しくは2記載のポリペプチドを検出した場合、及び/又は請求項11記載の検出方法により、試料中から、請求項3から5のいずれかに記載のポリヌクレオチドの存在を検出した場合に、RETを阻害する化合物を用いた化学療法が有効であると判定する方法。
  16.  DCTN1タンパク質のN末端部分と、RETタンパク質のC末端部分とが融合しているポリペプチド、及び当該ポリペプチドをコードするポリヌクレオチドからなる群より選択される少なくとも1種からなる癌を検出するためのバイオマーカー。
  17.  DCTN1遺伝子とRET遺伝子との融合遺伝子陽性及び/又はDCTN1タンパク質とRETタンパク質との融合タンパク質陽性の癌患者に、RETを阻害する化合物を用いた化学療法を行う工程を含む、癌の治療方法。
  18. 被験者由来の試料中から、請求項1又は2記載のポリペプチドの存在を検出すること及び/又は請求項3から5のいずれかに記載のポリヌクレオチドの存在を検出することを行う工程、ならびに
    請求項1又は2記載のポリペプチドの存在が検出されるか、かつ/又は請求項3から5のいずれかに記載のポリヌクレオチドの存在が検出された場合に、当該被験者に対し、RETを阻害する化合物を用いた化学療法を行う工程を含む、癌の治療方法。
  19.  DCTN1遺伝子とRET遺伝子との融合遺伝子陽性及び/又はDCTN1タンパク質とRETタンパク質との融合タンパク質陽性の癌患者を治療するための、RETを阻害する化合物。
  20.  DCTN1遺伝子とRET遺伝子との融合遺伝子陽性及び/又はDCTN1タンパク質とRETタンパク質との融合タンパク質陽性の癌患者を治療するための癌治療用医薬組成物を製造するための、RETを阻害する化合物の使用。
  21. 試料中の請求項1又は2記載のポリペプチドの存在を検出するための手段及び/又は試料中の請求項3から5のいずれかに記載のポリヌクレオチドの存在を検出するための手段の、RETを阻害する化合物を用いた化学療法が有効であるか否かの判定薬の製造方法。
  22.  請求項3から5のいずれかに記載のポリヌクレオチドの存在を検出するための抗DCTN1抗体及び抗RET抗体の組み合わせ。
  23.  請求項1若しくは2記載のポリペプチド又は請求項3から5のいずれかに記載のポリヌクレオチドの存在を検出するための検出薬を製造するための、請求項8記載の抗体、請求項22記載の抗体の組み合わせ又は請求項10記載のプライマー若しくはプローブの使用。
PCT/JP2018/030688 2017-08-21 2018-08-20 Dctn1タンパク質とretタンパク質との融合タンパク質 WO2019039439A1 (ja)

Priority Applications (12)

Application Number Priority Date Filing Date Title
EP18849160.9A EP3674325A4 (en) 2017-08-21 2018-08-20 HYBRID PROTEIN OF DCTN1 AND RET PROTEIN
MX2020002002A MX2020002002A (es) 2017-08-21 2018-08-20 Proteina de fusion de proteina dctn1 con proteina ret.
JP2019537622A JP7033143B2 (ja) 2017-08-21 2018-08-20 Dctn1タンパク質とretタンパク質との融合タンパク質
US16/640,955 US20200190154A1 (en) 2017-08-21 2018-08-20 Fusion protein of dctn1 protein with ret protein
SG11202001212SA SG11202001212SA (en) 2017-08-21 2018-08-20 Fusion protein of dctn1 protein with ret protein
KR1020207007893A KR20200038528A (ko) 2017-08-21 2018-08-20 Dctn1 단백질과 ret 단백질과의 융합 단백질
BR112020003006-6A BR112020003006A2 (pt) 2017-08-21 2018-08-20 proteína de fusão da proteína dctn1 com a proteína ret
RU2020111214A RU2813996C2 (ru) 2017-08-21 2018-08-20 Слитый белок из белка dctn1 с белком ret
CN201880054583.2A CN111032696B (zh) 2017-08-21 2018-08-20 Dctn1蛋白质与ret蛋白质的融合蛋白
CA3073375A CA3073375A1 (en) 2017-08-21 2018-08-20 Fusion protein of dctn1 protein with ret protein
AU2018322286A AU2018322286B2 (en) 2017-08-21 2018-08-20 Fusion protein of DCTN1 protein with RET protein
PH12020500269A PH12020500269A1 (en) 2017-08-21 2020-02-05 Fusion protein of dctn1 protein with ret protein

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-158796 2017-08-21
JP2017158796 2017-08-21

Publications (1)

Publication Number Publication Date
WO2019039439A1 true WO2019039439A1 (ja) 2019-02-28

Family

ID=65439881

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/030688 WO2019039439A1 (ja) 2017-08-21 2018-08-20 Dctn1タンパク質とretタンパク質との融合タンパク質

Country Status (14)

Country Link
US (1) US20200190154A1 (ja)
EP (1) EP3674325A4 (ja)
JP (1) JP7033143B2 (ja)
KR (1) KR20200038528A (ja)
CN (1) CN111032696B (ja)
AU (1) AU2018322286B2 (ja)
BR (1) BR112020003006A2 (ja)
CA (1) CA3073375A1 (ja)
MA (1) MA49988A (ja)
MX (1) MX2020002002A (ja)
PH (1) PH12020500269A1 (ja)
SG (1) SG11202001212SA (ja)
TW (1) TW201915027A (ja)
WO (1) WO2019039439A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2024500628A (ja) * 2020-11-20 2024-01-10 ヘルシン ヘルスケア ソシエテ アノニム 腫瘍治療のための4-アミノ-n-[4-(メトキシメチル)フェニル]-7-(1-メチルシクロプロピル)-6-(3-モルホリノプロパ-1-イン-1-イル)-7h-ピロロ[2,3-d]ピリミジン-5-カルボキサミドの使用法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013059740A1 (en) * 2011-10-21 2013-04-25 Foundation Medicine, Inc. Novel alk and ntrk1 fusion molecules and uses thereof
WO2014130975A1 (en) * 2013-02-22 2014-08-28 Bastian Boris C Fusion polynucleotides and fusion polypeptides associated with cancer and particularly melanoma and their uses as therapeutic and diagnostic targets
WO2016127074A1 (en) 2015-02-06 2016-08-11 Blueprint Medicines Corporation 2-(pyridin-3-yl)-pyrimidine derivatives as ret inhibitors
WO2017011776A1 (en) 2015-07-16 2017-01-19 Array Biopharma, Inc. Substituted pyrazolo[1,5-a]pyridine compounds as ret kinase inhibitors
WO2017043550A1 (ja) 2015-09-08 2017-03-16 大鵬薬品工業株式会社 縮合ピリミジン化合物又はその塩
WO2017146116A1 (ja) 2016-02-23 2017-08-31 大鵬薬品工業株式会社 新規縮合ピリミジン化合物又はその塩

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100478355C (zh) * 2002-08-07 2009-04-15 上海新世界基因技术开发有限公司 具有促进小鼠nih/3t3细胞转化功能的新的人蛋白及其编码序列
CN103764676A (zh) * 2011-08-04 2014-04-30 日本国立癌症研究中心 Kif5b基因和ret基因的融合基因、以及以该融合基因为目标的判断癌症治疗有效性的方法
US10023855B2 (en) * 2011-10-31 2018-07-17 Macrogen, Inc. Fusion protein comprising C-terminal domain of RET protein and use thereof as a diagnosing marker
JP6723929B2 (ja) * 2014-01-31 2020-07-15 スウィフト バイオサイエンシズ, インク.Swift Biosciences, Inc. Dna基質を処理するための改善された方法
EP3929305B1 (en) * 2015-12-01 2023-11-08 LGC Clinical Diagnostics, Inc. Multiplex cellular reference materials

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013059740A1 (en) * 2011-10-21 2013-04-25 Foundation Medicine, Inc. Novel alk and ntrk1 fusion molecules and uses thereof
WO2014130975A1 (en) * 2013-02-22 2014-08-28 Bastian Boris C Fusion polynucleotides and fusion polypeptides associated with cancer and particularly melanoma and their uses as therapeutic and diagnostic targets
WO2016127074A1 (en) 2015-02-06 2016-08-11 Blueprint Medicines Corporation 2-(pyridin-3-yl)-pyrimidine derivatives as ret inhibitors
WO2017011776A1 (en) 2015-07-16 2017-01-19 Array Biopharma, Inc. Substituted pyrazolo[1,5-a]pyridine compounds as ret kinase inhibitors
WO2017043550A1 (ja) 2015-09-08 2017-03-16 大鵬薬品工業株式会社 縮合ピリミジン化合物又はその塩
WO2017146116A1 (ja) 2016-02-23 2017-08-31 大鵬薬品工業株式会社 新規縮合ピリミジン化合物又はその塩

Non-Patent Citations (16)

* Cited by examiner, † Cited by third party
Title
"GenBank", Database accession no. NM_001190836
"GenPept", Database accession no. NP_001177766
CANCER DISCOV., vol. 3, no. 6, 2013, pages 630 - 5
CANCER, vol. 115, no. 16, 2009, pages 3801 - 7
CELL REP., vol. 9, no. 4, 2014, pages 1219 - 1227
CELL, vol. 159, no. 3, 2014, pages 676 - 90
J. SAMBROOK ET AL.: "Molecular Cloning: A Laboratory Manual", 1989
LANCET RESPIR MED., vol. 5, no. 1, 2017, pages 42 - 50
NAT. COMMUN., vol. 5, 2014, pages 3728
NAT. METHODS, vol. 11, 2014, pages 499 - 507
NAT. REV. IMMUNOL., vol. 6, 2006, pages 343 - 357
NATURE, vol. 511, no. 7511, 2014, pages 543 - 50
ONCOGENE, vol. 22, no. 29, 2003, pages 4578 - 80
VAUGHAN, K. T. ET AL.: "Cytoplasmic Dynein Binds Dynactin through a Direct Interaction between the Intermediate Chains and pl50 Glued", THE JOURNAL OF CELL BIOLOGY, vol. 131, no. 6, 1 December 1995 (1995-12-01), pages 1507 - 1516, XP055579472 *
WANG, X. ET AL.: "Fusion of dynactin 1 to anaplastic lymphoma kinase in inflammatory myofibroblastic tumor", HUMAN PATHOLOGY, vol. 43, 2012, pages 2047 - 2052, XP055064469, DOI: 10.1016/j.humpath.2012.02.014 *
YOH, K. ET AL.: "Vandetanib in patients with previously treated RET-rearranged advanced non-small- cell lung cancer (LURET):an open-label, multicentre phase 2 trial", LANCET RESPIRATRY MEDICINE, vol. 5, no. 1, 1 January 2017 (2017-01-01), pages 42 - 50, XP009519239, ISSN: 2213-2600, DOI: 10.1016/S2213-2600(16)30322-8 *

Also Published As

Publication number Publication date
KR20200038528A (ko) 2020-04-13
MX2020002002A (es) 2020-07-20
CN111032696A (zh) 2020-04-17
MA49988A (fr) 2020-07-01
CN111032696B (zh) 2023-11-03
SG11202001212SA (en) 2020-03-30
AU2018322286A1 (en) 2020-04-02
BR112020003006A2 (pt) 2020-08-11
JPWO2019039439A1 (ja) 2020-08-13
CA3073375A1 (en) 2019-02-28
TW201915027A (zh) 2019-04-16
RU2020111214A (ru) 2021-09-24
RU2020111214A3 (ja) 2021-12-17
EP3674325A1 (en) 2020-07-01
PH12020500269A1 (en) 2020-09-21
US20200190154A1 (en) 2020-06-18
JP7033143B2 (ja) 2022-03-09
EP3674325A4 (en) 2021-11-03
AU2018322286B2 (en) 2022-03-10

Similar Documents

Publication Publication Date Title
US20220213219A1 (en) Bruton's Tyrosine Kinase as Anti-Cancer Drug Target
US20150057335A1 (en) Novel fusion genes identified in lung cancer
Skoda et al. Cancer stem cell markers in pediatric sarcomas: Sox2 is associated with tumorigenicity in immunodeficient mice
JP2006500946A (ja) 精巣精上皮腫の診断方法
US8513212B2 (en) Bruton's tyrosine kinase as anti-cancer drug target
CN101528926A (zh) 过表达reg4或kiaa0101的癌症的治疗或预防
US20200355672A1 (en) Inhibitor of the Expression of Cancer-Promoting Factors, Screening Method for Active Ingredient Thereof, Expression Cassette Useful in said Method, Diagnostic Drug, and Diagnostic Method
CN110172462B (zh) 一种对肿瘤的发生和发展具有促进作用的基因及其表达产物和应用
CN107249636B (zh) 以ckap4作为靶分子的抗肿瘤剂
US20160319253A1 (en) Novel fusion genes as factors responsible for gastric cancer
JP7033143B2 (ja) Dctn1タンパク質とretタンパク質との融合タンパク質
WO2011129427A9 (ja) 癌の診断剤および治療剤
KR20130102990A (ko) 항암면역우회암의 표시인자 및 무력화 표적으로서의 api5의 용도
RU2813996C2 (ru) Слитый белок из белка dctn1 с белком ret
KR101612356B1 (ko) Hoxb5의 유방암 진단 및 치료 용도
WO2022244807A1 (ja) Ltk融合遺伝子
CA2773614A1 (en) Method of treating cancer by inhibiting trim59 expression or activity
Dai et al. SOCS2 affects the proliferation, migration, and invasion of nasopharyngeal carcinoma cells via regulating EphA1.
WO2014034798A1 (ja) 癌の検出方法、診断薬および診断キット並びに癌治療用医薬組成物
KR101796091B1 (ko) 카복실 말단 조절 단백질을 포함하는 두경부암 진단용 바이오 마커 조성물
JP2013147464A (ja) 医薬組成物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18849160

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019537622

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 3073375

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112020003006

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 20207007893

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2018849160

Country of ref document: EP

Effective date: 20200323

ENP Entry into the national phase

Ref document number: 2018322286

Country of ref document: AU

Date of ref document: 20180820

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 112020003006

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20200212