WO2019039239A1 - Nanomaterial complex and method for manufacturing same - Google Patents

Nanomaterial complex and method for manufacturing same Download PDF

Info

Publication number
WO2019039239A1
WO2019039239A1 PCT/JP2018/029278 JP2018029278W WO2019039239A1 WO 2019039239 A1 WO2019039239 A1 WO 2019039239A1 JP 2018029278 W JP2018029278 W JP 2018029278W WO 2019039239 A1 WO2019039239 A1 WO 2019039239A1
Authority
WO
WIPO (PCT)
Prior art keywords
nanomaterial
polyethylene glycol
polyoxyethylene
glycol derivative
type
Prior art date
Application number
PCT/JP2018/029278
Other languages
French (fr)
Japanese (ja)
Inventor
斐之 野々口
壯 河合
Original Assignee
国立大学法人 奈良先端科学技術大学院大学
タツタ電線株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人 奈良先端科学技術大学院大学, タツタ電線株式会社 filed Critical 国立大学法人 奈良先端科学技術大学院大学
Priority to CN201880042492.7A priority Critical patent/CN110809828A/en
Priority to KR1020197031347A priority patent/KR102489604B1/en
Publication of WO2019039239A1 publication Critical patent/WO2019039239A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/80Constructional details
    • H10N10/85Thermoelectric active materials
    • H10N10/851Thermoelectric active materials comprising inorganic compositions
    • H10N10/855Thermoelectric active materials comprising inorganic compositions comprising compounds containing boron, carbon, oxygen or nitrogen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L71/00Compositions of polyethers obtained by reactions forming an ether link in the main chain; Compositions of derivatives of such polymers
    • C08L71/02Polyalkylene oxides
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/80Constructional details
    • H10N10/85Thermoelectric active materials
    • H10N10/856Thermoelectric active materials comprising organic compositions

Definitions

  • the present invention relates to a nanomaterial composite and a method for producing the same.
  • thermoelectric conversion devices field effect transistors
  • sensors integrated circuits
  • rectifying devices solar cells
  • catalysts electroluminescence
  • thermoelectric conversion element is an element used for thermoelectric generation.
  • power is generated by utilizing the potential difference generated in a substance due to a temperature difference.
  • FIG. 1 is a schematic view showing an example of a bipolar thermoelectric conversion device including an n-type material and a p-type material.
  • efficient power generation can be achieved by connecting n-type material and p-type material in series.
  • Patent Document 1 discloses a thermoelectric conversion material containing a conductive polymer and a thermal excitation assist agent.
  • Patent Document 2 discloses a thermoelectric conversion material containing carbon nanotubes and a conjugated polymer.
  • Non-Patent Document 1 describes a conductive film using poly (3,4-ethylenedioxythiophene) (PEDOT).
  • Non-Patent Document 2 describes a composite material using a composite of PEDOT and poly (styrenesulfonic acid) (PEDOT: PSS) or meso-tetra (4-carboxyphenyl) porphine (TCPP) and a carbon nanotube. ing.
  • the carbon nanotubes utilized in the techniques described in Patent Document 2 and Non-Patent Document 2 are mainly p-type materials. Thus, nanomaterials often exhibit p-type conductivity. Therefore, a technology for converting p-type material into n-type material is required.
  • Non-Patent Document 3 stable due to the instability of the chemical bonding inherently possessed by n-type organic materials or n-type carbon materials or their additives It is technical common sense in the art that it is difficult to obtain n-type materials. Under such circumstances, the present inventors have developed, for example, the technology described in Patent Document 3 as a technology for converting a p-type material into an n-type material.
  • One aspect of the present invention is made in view of the above-mentioned subject, and the object is to provide a cheap nanomaterial composite which has the outstanding thermoelectric property and thermal stability.
  • thermoelectric characteristics and heat by using a polyethylene glycol derivative having a specific structure, a metal cation, and an n-type nanomaterial. It has been found that an inexpensive nanomaterial composite having stability can be provided, and the present invention has been completed.
  • the present invention includes the inventions described in the following [1] to [11].
  • [1] containing a polyethylene glycol derivative, a metal cation, and an n-type nanomaterial, A nanomaterial complex characterized in that the polyethylene glycol derivative has a chain structure represented by the following formula (1): -(CH 2 CH 2 O) n- (1)
  • n is an integer of 4 or more.
  • [2] The nanomaterial composite according to [1], wherein the polyethylene glycol derivative has a hydrophobic group.
  • the nonionic surfactant is at least one selected from the group consisting of polyoxyethylene / polyoxypropylene block polymer, polyoxyethylene sorbitan fatty acid ester, polyoxyethylene alkylphenyl ether, and polyoxyethylene alkyl ether
  • the n-type nanomaterial includes at least one selected from the group consisting of nanoparticles, nanotubes, nanowires, nanorods and nanosheets, any one of [1] to [4] The nanomaterial composite as described in.
  • An ink comprising the nanomaterial composite according to any one of [1] to [5] and a solvent.
  • the nonionic surfactant is at least one selected from the group consisting of polyoxyethylene / polyoxypropylene block polymer, polyoxyethylene sorbitan fatty acid ester, polyoxyethylene alkylphenyl ether, and polyoxyethylene alkyl ether [9]
  • the n-type nanomaterial includes at least one selected from the group consisting of nanoparticles, nanotubes, nanowires, nanorods and nanosheets, any one of [7] to [10] The manufacturing method of the nanomaterial composite as described in-.
  • an inexpensive nanomaterial having excellent thermoelectric properties and thermal stability by using a polyethylene glycol derivative having a specific structure, a metal cation and an n-type nanomaterial An effect of providing a complex is exhibited.
  • FIG. 1 It is a schematic diagram showing an example of a bipolar thermoelectric conversion element provided with n type material and p type material. It is a figure which shows the measurement result of an absorption spectrum in the Example of this application.
  • A is a figure which shows the measurement result of the Seebeck coefficient in Example 1, and conductivity.
  • B is a figure which shows the calculation result of the output factor in Example 1.
  • FIG. It is a figure which shows the calculation result of an output factor, the measurement result of the conductivity and the Seebeck coefficient in the Example of this application.
  • the index includes an output factor (power factor).
  • the output factor is determined by the following equation (i).
  • PF ⁇ 2 ⁇ (i)
  • PF is a power factor
  • is a Seebeck coefficient
  • is conductivity.
  • the output factor is 100 .mu.W / mK 2 or more at 310K, more preferably 200 ⁇ W / mK 2 or more, further preferably 400 W / mK 2 or more.
  • the output factor of the nanomaterial composite is 100 ⁇ W / mK 2 or more at 310 K, because it is equal to or greater than that of the conventional p-type nanomaterial composite. In order to obtain such a high-power n-type nanomaterial composite, it is conceivable to improve either the Seebeck coefficient or the conductivity, or both.
  • the Seebeck coefficient refers to the ratio of the open circuit voltage to the temperature difference between the high-temperature junction and the low-temperature junction of a circuit exhibiting the Seebeck effect (from "McGrow Hill Technical Term Third Edition").
  • the Seebeck coefficient can be measured, for example, using a Seebeck effect measurement apparatus (manufactured by MMR Technologies) or a thermoelectric conversion characteristic evaluation apparatus (manufactured by Advance Riko, ZEM-3) used in the examples described later.
  • the larger the Seebeck coefficient absolute value the larger the thermoelectromotive force.
  • the sign of the Seebeck coefficient can be an indicator of whether the carbon nanotube or the like has p-type conductivity or n-type conductivity. Specifically, when the Seebeck coefficient shows a positive value, it can be said that it has p-type conductivity. On the other hand, when the Seebeck coefficient shows a negative value, it can be said that it has n-type conductivity.
  • the Seebeck coefficient is preferably ⁇ 20 ⁇ V / K or less, more preferably ⁇ 30 ⁇ V / K or less, and still more preferably ⁇ 40 ⁇ V / K or less.
  • the Seebeck coefficient of the nanomaterial composite is more preferably ⁇ 250 to ⁇ 20 ⁇ V / K.
  • the conductivity can be determined, for example, by using a resistivity meter (Loresta GP, manufactured by Mitsubishi Chemical Analytech Co., Ltd.) or a four-probe method using a thermoelectric conversion characteristic evaluation device (ZEM-3, manufactured by Advance Riko) used in the examples described later. It can be measured by
  • the conductivity is preferably 1000 S / cm or more, more preferably 1500 S / cm or more, and still more preferably 2000 S / cm or more. If the conductivity is 1000 S / cm or more, it is preferable because the nanomaterial composite has a high output.
  • a nanomaterial composite (hereinafter, also referred to as the present nanomaterial composite) according to an embodiment of the present invention includes a polyethylene glycol derivative, a metal cation, and an n-type nanomaterial, and the polyethylene glycol derivative has the following formula It is characterized by having a chain structure represented by (1). -(CH 2 CH 2 O) n- (1) In formula (1), n is an integer of 4 or more.
  • the polyethylene glycol derivative has a chain structure represented by the formula (1) (hereinafter sometimes referred to as "PEG chain”).
  • PEG chain a chain structure represented by the formula (1) (hereinafter sometimes referred to as "PEG chain”).
  • the PEG chain moiety in the polyethylene glycol derivative coordinates to a metal cation to form a complex.
  • the complex of the polyethylene glycol derivative and the metal cation forms a structure similar to the complex of polyethylene glycol having a cyclic structure (for example, crown ether) and the metal cation.
  • the metal salt (NaX) and a polyethylene glycol derivative in which n is 6 are dispersed in a solution
  • the metal cation (Na + (sodium ion)) and n are 6
  • the PEG chain is considered to form a complex such that the metal cation and the noncovalent bond on the oxygen of the PEG chain coordinate, and the PEG chain surrounds the metal cation.
  • the structure of this complex is considered to be similar to that of the complex formed by coordination bonding of crown ether (eg, 15-crown-5) and sodium ion.
  • the polyethylene glycol derivative can solvate metal cations through non-covalent electron pairs on the oxygen of the PEG chain.
  • the anion which is a counter ion is shielded from the positive charge by the bulky polyethylene glycol derivative, it is unstable and has high reactivity. It is thought that the reduction reaction by anions, that is, the electron injection to the nanomaterial is performed by utilizing this, and the nanomaterial becomes n-type.
  • the method for converting the nanomaterial into n-type is not limited to the electron injection into the nanomaterial.
  • the n-type nanomaterial is in a state in which the negative charge is delocalized and is a soft base.
  • the complex is a soft acid in which the positive charge is delocalized.
  • Soft bases can be stabilized by the action of a soft acid. Therefore, the present nanomaterial composite exhibits stable n-type conductivity by causing a complex of a polyethylene glycol derivative and a metal cation to act on the n-type nanomaterial.
  • the definitions of soft acids and bases are based on HSAB theory (R. G. Pearson, J. Am. Chem. Soc. 85 (22), 3533-3539, 1963).
  • the present nanomaterial composite may optionally contain substances other than polyethylene glycol derivatives, metal cations and n-type nanomaterials. Such a substance is not particularly limited as long as it does not inhibit the effect of the complex.
  • the present nanomaterial complex contains a polyethylene glycol derivative.
  • the polyethylene glycol derivative is characterized by having a chain structure represented by the following formula (1), -(CH 2 CH 2 O) n- (1) In formula (1), n is an integer of 4 or more.
  • polyethylene glycol derivative refers to a compound having at least a PEG chain represented by the formula (1) and further having various terminal groups regardless of the hydrophobic group and the hydrophilic group. Intended.
  • the end of the formula (1) may be a hydrogen atom or a hydroxyl group.
  • the polyethylene glycol derivative may have one or more PEG chains.
  • the polyethylene glycol derivative may be linear or branched. However, the polyethylene glycol derivative is not cyclic (ie, except for the crown ether).
  • n is an integer of 4 or more, as described above, the polyethylene glycol derivative and the metal cation form a complex such that the PEG chain surrounds the metal cation, thereby shielding the positive charge it can.
  • the polyethylene glycol derivative is not particularly limited as long as it has a chain structure represented by the formula (1) in which n is 4 or more.
  • the polyethylene glycol derivative preferably has a hydrophobic group.
  • the polyethylene glycol derivative is preferably amphiphilic by having a hydrophobic group, and is easily dispersed in a solvent such as water and an organic solvent.
  • hydrophobic groups include saturated or unsaturated cyclic hydrocarbon groups, acyclic hydrocarbon groups (which may be linear or branched), aromatic groups, halogen groups, etc. It can be mentioned.
  • the polyethylene glycol derivative preferably has a hydrophobic group at a part of the end group of the formula (1).
  • the hydrophobic group is an alkyl group, an alkylene group, a phenylene group, or a polypropylene oxide chain (PPO chain) It may be
  • the polyethylene glycol derivative is preferably a nonionic surfactant. If the polyethylene glycol derivative is a nonionic surfactant, it is preferable because it is easily dispersed in a solvent such as water. In addition, if the polyethylene glycol derivative is a non-ionic surfactant, it is preferable because it does not ionize in the solvent and the electronic state of the n-type nanomaterial is less affected.
  • nonionic surfactant examples include polyoxyethylene fatty acid ester, polyoxyethylene resin acid ester, polyoxyethylene fatty acid diester, polyoxyethylene dialkyl phenyl ether, polyoxyethylene alkylamine, polyoxyethylene fatty acid amide, Polyoxyethylene fatty acid bisphenyl ether, polyoxyethylene benzyl phenyl ether, polyoxyethylene castor oil, polyoxyethylene hydrogenated castor oil, polyoxyethylene ⁇ polyoxypropylene block polymer, polyoxyethylene sorbitan fatty acid ester, polyoxyethylene alkylphenyl phenyl ether Ether, and polyoxyethylene alkyl ether etc. are mentioned.
  • polyoxyethylene / polyoxypropylene block polymer polyoxyethylene sorbitan fatty acid ester, polyoxyethylene alkylphenyl ether, and polyoxyethylene Alkyl ethers are preferred.
  • polyoxyethylene / polyoxypropylene block polymers examples include polyoxyethylene (196) polyoxypropylene (67) glycol (for example, product name: Pluronic (registered trademark) F 127), polyoxyethylene (160) polyoxypropylene (30) Glycol (for example, product name: Pluronic (registered trademark) F-68), polyoxyethylene (300) polyoxypropylene (55) glycol (for example, product name: Pluronic (registered trademark) F-108), etc.
  • Pluronic (registered trademark) surfactants can be mentioned.
  • polyoxyethylene sorbitan fatty acid ester examples include polyoxyethylene sorbitan mono-laurate (for example, product name: Tween (registered trademark) 20), polyoxyethylene sorbitan mono-palmitate (for example, product name: tween (registered trademark)) 40), polyoxyethylene sorbitan mono-stearate (for example, product name: Tween (registered trademark) 60), polyoxyethylene sorbitan mono-oleate (for example, product name: Tween (registered trademark) 80), polyoxyethylene sorbitan Examples include Tween (registered trademark) surfactants such as trioleate (for example, product name: Tween (registered trademark) 85).
  • Tween (registered trademark) surfactants such as trioleate (for example, product name: Tween (registered trademark) 85).
  • polyoxyethylene alkyl phenyl ether examples include polyoxyethylene (10) octyl phenyl ether (for example, product name: Triton (registered trademark) X-100), polyoxyethylene (40) isooctyl phenyl ether (for example, product Name: Triton®-based surfactant such as Triton® X-405); poly (oxyethylene) p-octylphenyl ether (for example, product name: Nonidet® P-40); octyl Examples include phenyl polyethylene glycol (eg, product name: Igepal (registered trademark) CA-630).
  • polyoxyethylene alkyl ether examples include polyoxyethylene (23) lauryl ether (for example, product name: Brij (registered trademark) 35), polyoxyethylene (20) cetyl ether (for example, product name: Brij (registered trademark) ) 58), polyoxyethylene (20) stearyl ether (for example, product name: Brij (registered trademark) 78), polyoxyethylene (10) oleyl ether (for example, product name: Brij (registered trademark) 97), polyoxy acid Ethylene (10) cetyl ether (for example, product name: Brij (registered trademark) 56), polyoxyethylene (10) stearyl ether (for example, product name: Brij (registered trademark) 76), polyoxyethylene (20) oleyl ether (For example, product name: Brij (registered trademark) 98), Polyoxyethylene (100) stearyl ether (e.g., product name: Brij (R) S100) such Brij (registered trademark) surfact
  • Pluronic F127, Pluronic F-68, Pluronic F-108, TWEEN 80 from the viewpoint of being cheap and easily available. More preferred are commercial products such as Triton® X-100 and Brij® S100.
  • the present nanomaterial composite contains a metal cation.
  • metal cations typical metal ions (alkali metal ions and alkaline earth metal ions), transition metal ions and the like can be mentioned.
  • the metal cation may be, for example, lithium ion, sodium ion, potassium ion, rubidium ion, cesium ion, francium ion, beryllium ion, magnesium ion, calcium ion, strontium ion, barium ion, radium ion, scandium ion, etc. Good.
  • sodium ion, potassium ion, rubidium ion and cesium ion are preferable from the viewpoint of easy availability.
  • nanomaterial means a material having at least one dimension in the nanoscale (eg, 100 nm or less).
  • the nanomaterial is, for example, a carbon nanotube or the like.
  • the method of making the nanomaterial into n-type is not particularly limited, and examples thereof include a method of causing the nanomaterial to act on an n-type dopant (for example, a specific anion). More specifically, the process (ii) mentioned later is mentioned.
  • the nanomaterial may be a low dimensional nanomaterial.
  • low dimension intends a dimension smaller than three dimensions. That is, as used herein, “low dimensional” intends zero dimensional, one dimensional, or two dimensional. And in this specification, a “low dimensional nanomaterial” intends the nanomaterial which can substantially define a three-dimensional structure in "low dimension.”
  • Zero-dimensional nanomaterials examples include nanoparticles (quantum dots).
  • One-dimensional nanomaterials include, for example, nanotubes, nanowires and nanorods.
  • Examples of two-dimensional nanomaterials include nanosheets.
  • the nanomaterial preferably includes at least one selected from the group consisting of nanoparticles, nanotubes, nanowires, nanorods and nanosheets.
  • the n-type nanomaterial may include at least one or more selected from the group consisting of carbon, a semiconductor, a metalloid and a metal.
  • the n-type nanomaterial may be at least one nanomaterial selected from the group consisting of carbon, a semiconductor, a metalloid and a metal. From the viewpoint of light weight and flexibility derived from carbon-carbon bonds, the nanomaterial is preferably a nanomaterial composed of carbon.
  • Examples of carbon-based nanomaterials include carbon nanotubes and graphene (ie, carbon-based nanosheets). In the present specification, a carbon nanotube may be referred to as "CNT".
  • iron silicide sodium cobaltate, antimony telluride and the like
  • metalloid include tellurium, boron, germanium, arsenic, antimony, selenium and graphite.
  • metal include gold, silver, copper, platinum and nickel.
  • the nanotubes and the nanosheets may have a single-layered or multi-layered (bi-, tri-, tetra-, or multi-layered) structure.
  • the n-type nanomaterial may be single-walled carbon nanotubes or multi-walled carbon nanotubes.
  • the present nanomaterial composite has various applications and uses as a thermoelectric conversion device and the like.
  • the thermoelectric conversion device is flexible, it can be closely attached to a complicated three-dimensional surface such as a human body and piping, and it is preferable because body temperature and waste heat can be efficiently used.
  • the n-type nanomaterial is a single layer carbon
  • they are nanotubes.
  • the n-type nanomaterial may be shaped into a desired shape.
  • the present nanomaterial composite may include a film in which nanomaterials are accumulated.
  • the "film” is also referred to as a sheet or a film.
  • the film may for example have a thickness of 0.1 ⁇ m to 1000 ⁇ m.
  • the density of the film is not particularly limited, but may be 0.05 to 1.0 g / cm 3 or 0.1 to 0.5 g / cm 3 .
  • the film has a non-woven structure so that the nanomaterials are intertwined with each other. Therefore, the film is lightweight and flexible.
  • An ink according to an embodiment of the present invention (hereinafter also referred to as the present ink) is characterized by containing a nanomaterial complex and a solvent.
  • the nanomaterial composite may or may not be formed into a desired shape (for example, a film).
  • the ink can be produced, for example, by dispersing the formed nanomaterial composite in a solvent. If the nanomaterial composite is not shaped, an ink can be made, for example, by dispersing the nanomaterial composite in a solvent.
  • Step (i) ie, a step of bringing a polyethylene glycol derivative and a metal cation into contact with an n-type nanomaterial
  • step (i) and step (ii) as described later in the method for producing a nanomaterial composite
  • the nanomaterial composite itself produced by performing both i.e., the step of n-forming the nanomaterial
  • the concentration of the nanomaterial complex in the ink is preferably 0.1 to 1000 mM, more preferably 10 to 100 mM.
  • the concentration of the nanomaterial complex in the ink can be calculated from the mass of carbon nanotubes in the ink, for example, when the nanomaterial is a carbon nanotube, the atomic weight of carbon is 12.
  • the solvent may be appropriately selected from those suitable for use as an ink, and examples thereof include water and organic solvents.
  • organic solvents include toluene, o-dichlorobenzene, tetrahydrofuran and chloroform.
  • water is preferable from the viewpoint of easy handling, relative safety, good dispersibility of the nanomaterial composite, and use in various applications.
  • the ink may optionally contain substances other than the nanomaterial composite and the solvent. Such a substance is not particularly limited as long as it does not impair the thermoelectric properties of the nanomaterial composite.
  • the ink is used, for example, by being applied on a substrate.
  • a substrate such as glass, transparent ceramics, metal, plastic film or the like can be used.
  • the thickness of the substrate is not particularly limited, but is preferably 1 ⁇ m to 1000 ⁇ m.
  • the method of applying the ink on the substrate is not particularly limited, but spin coating, extrusion die coating, blade coating, bar coating, screen printing, stencil printing, roll coating, curtain coating, spray coating, dip coating, ink jet printing and Known coating methods such as dispensing can be used.
  • thermoelectric conversion device capable of efficiently generating power of various shapes.
  • thermoelectric conversion device which has flexibility and is reduced in size and weight.
  • a method of producing a nanomaterial composite according to an embodiment of the present invention includes the step of contacting an n-type nanomaterial with a polyethylene glycol derivative and a metal cation,
  • the derivative is characterized by having a chain structure represented by the following formula (1).
  • n is an integer of 4 or more.
  • step (i) the step of bringing the polyethylene glycol derivative and the metal cation into contact with the n-type nanomaterial is referred to as step (i).
  • the method is not particularly limited as long as the n-type nanomaterial can be brought into contact with a polyethylene glycol derivative and a metal cation.
  • a method of contacting the nanomaterial with a solution containing the polyethylene glycol derivative and the metal cation is preferable.
  • a method in which the nanomaterial is impregnated with the solution, or a method in which the nanomaterial is brought into contact with the solution by shear-dispersing the nanomaterial in the solution is preferable.
  • the solvent in the solution may be water or an organic solvent.
  • the solvent is preferably an organic solvent, more preferably methanol, ethanol, propanol, butanol, acetonitrile, N, N-dimethylformamide, dimethylsulfoxide or N-methylpyrrolidone.
  • the propanol includes 1-propanol and 2-propanol. Examples of butanol include 1-butanol and 2-butanol.
  • the concentration of polyethylene glycol derivative and metal cation ion in the solution may be any concentration, preferably 1 to 1000 mM, more preferably 10 to 100 mM.
  • a method of impregnating a solution with a nanomaterial for example, a method of immersing a nanomaterial (for example, a film) formed into a desired shape as described later in a solution is mentioned.
  • a method of carrying out the shear dispersion of the nanomaterial in a solution the method of disperse
  • the homogenizing apparatus is not particularly limited as long as it is an apparatus capable of uniformly dispersing nanomaterials in a solution, and, for example, known means such as a stirring homogenizer or an ultrasonic homogenizer can be used.
  • the operating conditions of the homogenizing device are not particularly limited as long as the nanomaterial can be dispersed in the solution.
  • the solution containing the nanomaterial is treated at a stirring speed (rotational speed) of 20000 rpm for 10 minutes at room temperature (23.degree. C.). It can be dispersed in it.
  • the immersion time is not particularly limited, but is preferably 10 to 600 minutes, more preferably 100 to 600 minutes, and 200 to 600 minutes. Is more preferred.
  • the process of n-type-izing a nanomaterial to a process (ii) may be included before a process (i).
  • the method for converting the nanomaterial into n-type is not particularly limited, and examples thereof include a method of causing a specific anion to act on the nanomaterial.
  • Step (ii) may be performed simultaneously with step (i).
  • the nanomaterial is brought into contact with a solution in which a metal salt that generates an anion and a metal cation when dissolved in a solvent and a polyethylene glycol derivative are dissolved.
  • the solution preferably contains a metal cation and a polyethylene glycol derivative in a molar ratio of 1: 1.
  • the anion changes the carrier of the nanomaterial from holes to electrons. This changes the Seebeck coefficient of the nanomaterial and negatively charges the nanomaterial.
  • anions OH -, CH 3 O - , CH 3 CH 3 O -, i-PrO -, t-BuO -, SH -, CH 3 S -, C 2 H 5 S -, CN -, I -, Br -, Cl -, BH 4 -, and CH 3 COO - is preferably at least one selected from the group consisting of, OH - and CH 3 O - and more preferably at least one of . According to the anion, the Seebeck coefficient of the nanomaterial can be efficiently changed.
  • the anion acts as a dopant for making the nanomaterial n-type.
  • the anion is presumed to interact with the nanomaterial to be doped or to induce a chemical reaction based on its non-covalent electron pair.
  • the Lewis basicity, intermolecular force and dissociativeness of the dopant are important in the efficiency of doping.
  • Lewis basic is intended to have the property of donating an electron pair.
  • the strongly Lewis basic dopant is considered to have a greater effect on the change in the Seebeck coefficient.
  • the intermolecular force of the dopant is also considered to be related to the adsorptivity of the dopant to the nanomaterial.
  • the intermolecular force of the dopant includes, for example, hydrogen bond, CH- ⁇ interaction, and ⁇ - ⁇ interaction.
  • anions giving weak hydrogen bonds are preferable.
  • the anion that gives a weak hydrogen bond for example, OH ⁇ , CH 3 O ⁇ , CH 3 CH 2 O ⁇ , i-PrO ⁇ and t-BuO ⁇ can be mentioned.
  • the anion is preferably an anion that imparts a ⁇ - ⁇ interaction. Examples of anions that give ⁇ - ⁇ interactions include, for example, CH 3 COO ⁇ .
  • the present manufacturing method may include the step of accumulating the nanomaterial and forming a film before or after step (i). That is, the step (iii) may be a step of forming the nanomaterial into a desired shape (for example, a film) before the step (i), and the nanomaterial obtained by the step (i) is desired It may be a step of forming into a shape.
  • Examples of the method of forming the film include, but not limited to, a method of forming a film by dispersing the nanomaterial in a solvent and filtering the resulting dispersion on a membrane filter. Specifically, the dispersion of the nanomaterial is subjected to suction filtration using a membrane filter with 0.1 to 2 ⁇ m pores, and the membrane remaining on the membrane filter is treated at 50 to 150 ° C. for 1 to 24 hours. By drying under reduced pressure, a film can be formed. Alternatively, the film may be formed by centrifuging the dispersion of the nanomaterial and filtering the supernatant on a membrane filter.
  • the solvent for dispersing the nanomaterial may be water or an organic solvent.
  • the solvent is preferably an organic solvent, more preferably o-dichlorobenzene, bromobenzene, 1-chloronaphthalene, 2-chloronaphthalene or cyclohexanone. These solvents can efficiently disperse the nanomaterial.
  • the same method as the method of dispersing the nanomaterial in a solution using the homogenizing device in the above-mentioned step (i) can be used.
  • the obtained dispersion is centrifuged at 10,000 rpm for 30 minutes using a centrifuge (Kubota Corporation, product name: table top cooling centrifuge 5500), and the volume is increased to about 70% by volume. Qing was recovered.
  • the supernatant is filtered and dried using a membrane filter (0.2 ⁇ m pore, manufactured by Merck Millipore, product name: Omnipore membrane filter JGWP02500), and the CNT film deposited on the filter is a PET film (Teijin Film Solutions Co., Ltd. Product name: Teijin (registered trademark) Tetron (registered trademark) film G2) What was placed on it was used as a measurement sample.
  • thermoelectric characteristics (A) Conductivity The conductivity of the measurement samples obtained in Examples and Comparative Examples described later was measured by the 4-probe method using a thermoelectric conversion characteristic evaluation device (advanced Riko Co., product name: ZEM-3). It was measured. The measurement temperature was 310 K (37 ° C.).
  • (B) Seebeck coefficient The Seebeck coefficient of the measurement sample obtained in the examples and comparative examples described later was measured using a thermoelectric conversion characteristic evaluation device (advanced Riko Co., product name: ZEM-3). The measurement temperature was 310 K (37 ° C.).
  • PF ⁇ 2 ⁇ (i) [Comparison of thermoelectric characteristics]
  • Example 1 Standard concentration (0.1 mM, 0.25 mM, 0.5 mM, 1 mM, 2.5 mM, 5 mM, 10 mM, 50 mM, 100 mM) of 5 mg of CNT (manufactured by Meijo Nano Carbon Co., product name: EC-2.0)
  • the resultant solution was dispersed in an aqueous solution of potassium carbonate (K 2 CO 3 , manufactured by Wako Pure Chemical Industries, Ltd.) and 1% by weight of Pluronic® F 127 (manufactured by BASF) by ultrasonic irradiation for 10 minutes.
  • K 2 CO 3 potassium carbonate
  • Pluronic® F 127 manufactured by BASF
  • an ultrasonic homogenizer manufactured by Qsonica, Q125 was used. Subsequently, the obtained dispersion is centrifuged at 10,000 rpm for 30 minutes using a centrifuge (Kubota Co., Ltd., tabletop cooling centrifuge 5500), and the supernatant of about 70% by volume is recovered. did. The supernatant is filtered and dried using a membrane filter (0.2 ⁇ m pore, manufactured by Merck Millipore, product name: Omnipore membrane filter JGWP02500), and the CNT film deposited on the filter is a PET film (Teijin Film Solutions Co., Ltd. Product name: Teijin (registered trademark) Tetron (registered trademark) film G2) What was placed on it was used as a measurement sample. The concentration of the nanomaterial complex in the dispersion was about 20 mM.
  • the measurement results of the conductivity and the Seebeck coefficient are shown in FIG. 3 (A), and the calculation results of the output factor are shown in FIG. 3 (B).
  • the horizontal axis of (A) and (B) of FIG. 3 shows the potassium carbonate concentration (C (mM)) to be used.
  • specific numerical values of the conductivity, the Seebeck coefficient and the output factor are shown in Table 1 for each measurement sample.
  • thermoelectric characteristics changed continuously as the concentration of potassium carbonate used was changed. That is, in one embodiment of the present invention, the thermoelectric characteristics can be controlled by changing the addition amount of the metal salt.
  • Example 2 In Example 1, 100 mM potassium carbonate (K 2 CO 3 , manufactured by Wako Pure Chemical Industries, Ltd.) was used, and Pluronic® F108 (manufactured by BASF Corp.) was used instead of Pluronic® F127. A measurement sample was produced in the same manner as in Example 1.
  • Example 3 In Example 1, 100 mM potassium carbonate (K 2 CO 3 , manufactured by Wako Pure Chemical Industries, Ltd.) was used, and Brij (registered trademark) S100 (manufactured by Croda) was used instead of Pluronic (registered trademark) F127. A measurement sample was produced in the same manner as in Example 1.
  • Example 4 Dispersion of 5 mg of CNT in an aqueous solution of 100 mM potassium carbonate (K 2 CO 3 , Wako Pure Chemical Industries, Ltd.) and 1% by weight of Pluronic® F 127 (BASF) by ultrasonication for 10 minutes I did.
  • an ultrasonic homogenizer manufactured by Qsonica, Q125 was used.
  • the obtained dispersion is filtered and dried using a membrane filter (0.2 ⁇ m pore, manufactured by Merck Millipore, Omnipore membrane filter JGWP02500), and the CNT film deposited on the filter is a PET film (manufactured by Teijin Film Solutions Ltd.) Product name: What was placed on Teijin (registered trademark) Tetron (registered trademark) film G2) was used as a measurement sample.
  • a membrane filter 0.2 ⁇ m pore, manufactured by Merck Millipore, Omnipore membrane filter JGWP02500
  • Example 1 Comparative Example 1 In Example 1, the concentration of potassium carbonate (K 2 CO 3 , manufactured by Wako Pure Chemical Industries, Ltd.) is 100 mM, and 18-crown-6-ether (manufactured by Sigma Aldrich) is used instead of Pluronic® F127. As a result, even when ultrasonic irradiation was performed, the CNTs could not be dispersed in the solution, and a dispersion could not be obtained.
  • K 2 CO 3 manufactured by Wako Pure Chemical Industries, Ltd.
  • 18-crown-6-ether manufactured by Sigma Aldrich
  • Example 1 The measurement results of the conductivity and the Seebeck coefficient and the calculation results of the output factor are shown in Table 2 for each measurement sample.
  • Example 1 in Table 2 the data about the measurement sample produced using 100 mM potassium carbonate (K 2 CO 3 , manufactured by Wako Pure Chemical Industries, Ltd.) in Example 1 are shown.
  • the measurement results of the conductivity and the Seebeck coefficient and the calculation results of the output factor are shown in FIG. 4 for each measurement sample.
  • the present invention is applicable to a wide variety of industries such as thermoelectric power generation systems, medical power supplies, security power supplies, and aerospace applications.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Inorganic Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Biophysics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Ceramic Products (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

Provided is a less expensive nanomaterial complex which has excellent thermoelectric properties and high heat stability. The nanomaterial complex, which comprises a polyethylene glycol derivative, a metal cation and an n-type nanomaterial, is characterized in that the polyethylene glycol derivative has a chain structure represented by formula (1): -(CH2CH2O)n- (1) [wherein n is an integer of 4 or greater].

Description

ナノ材料複合体およびその製造方法Nanomaterial composite and method for producing the same
 本発明は、ナノ材料複合体およびその製造方法に関する。 The present invention relates to a nanomaterial composite and a method for producing the same.
 近年、熱電変換素子、電界効果トランジスタ、センサー、集積回路、整流素子、太陽電池、触媒、およびエレクトロルミネッセンス等の分野で、柔軟性を備えた素子、または、小型軽量化された素子を構成するためにナノ材料の利用が注目されている。 In recent years, in order to configure a device with flexibility or a smaller and lighter device in the fields of thermoelectric conversion devices, field effect transistors, sensors, integrated circuits, rectifying devices, solar cells, catalysts, and electroluminescence, etc. The use of nanomaterials has attracted attention.
 通常、前記分野では、p型導電性を示す材料(p型材料)およびn型導電性を示す材料(n型材料)の両方を備えた双極型素子を用いることが好ましい。例えば、熱電変換素子は、熱電発電に用いられる素子である。熱電発電では、温度差によって物質内に生じる電位差を利用することにより、発電を行う。具体的に、図1に、n型材料とp型材料とを備えた双極型熱電変換デバイスの一例を示した概略図を示す。双極型熱電変換デバイスであれば、n型材料とp型材料とを直列につなぐことにより、効率的に発電することができる。 Generally, in the field described above, it is preferable to use a bipolar element provided with both a material exhibiting p-type conductivity (p-type material) and a material exhibiting n-type conductivity (n-type material). For example, a thermoelectric conversion element is an element used for thermoelectric generation. In thermoelectric generation, power is generated by utilizing the potential difference generated in a substance due to a temperature difference. Specifically, FIG. 1 is a schematic view showing an example of a bipolar thermoelectric conversion device including an n-type material and a p-type material. In the case of a bipolar thermoelectric conversion device, efficient power generation can be achieved by connecting n-type material and p-type material in series.
 ところで、特許文献1には、導電性高分子と熱励起アシスト剤とを含有する熱電変換材料が開示されている。また、特許文献2には、カーボンナノチューブおよび共役高分子を含有する熱電変換材料が開示されている。 Patent Document 1 discloses a thermoelectric conversion material containing a conductive polymer and a thermal excitation assist agent. Patent Document 2 discloses a thermoelectric conversion material containing carbon nanotubes and a conjugated polymer.
 さらに、非特許文献1には、ポリ(3,4-エチレンジオキシチオフェン)(PEDOT)を利用した導電性フィルムが記載されている。非特許文献2には、PEDOTおよびポリ(スチレンスルホン酸)の複合体(PEDOT:PSS)またはメソ-テトラ(4-カルボキシフェニル)ポルフィン(TCPP)と、カーボンナノチューブとを利用した複合材料が記載されている。特許文献2および非特許文献2に記載の技術において利用されているカーボンナノチューブは、主にp型材料である。このようにナノ材料はp型導電性を示すことが多い。そのため、p型材料を、n型材料に変換する技術が求められている。 Further, Non-Patent Document 1 describes a conductive film using poly (3,4-ethylenedioxythiophene) (PEDOT). Non-Patent Document 2 describes a composite material using a composite of PEDOT and poly (styrenesulfonic acid) (PEDOT: PSS) or meso-tetra (4-carboxyphenyl) porphine (TCPP) and a carbon nanotube. ing. The carbon nanotubes utilized in the techniques described in Patent Document 2 and Non-Patent Document 2 are mainly p-type materials. Thus, nanomaterials often exhibit p-type conductivity. Therefore, a technology for converting p-type material into n-type material is required.
 しかし、n型材料に関しては、非特許文献3に記載のように、n型有機系材料もしくはn型カーボン系材料、またはその添加剤が本質的に有する化学結合の不安定性に起因し、安定したn型材料を得ることは困難であるということが当該分野の技術常識であった。そのような状況の中で、本発明者らは、p型材料をn型材料へ変換する技術として、例えば、特許文献3に記載の技術を開発している。 However, with regard to n-type materials, as described in Non-Patent Document 3, stable due to the instability of the chemical bonding inherently possessed by n-type organic materials or n-type carbon materials or their additives It is technical common sense in the art that it is difficult to obtain n-type materials. Under such circumstances, the present inventors have developed, for example, the technology described in Patent Document 3 as a technology for converting a p-type material into an n-type material.
国際公開第2013/047730号(2013年4月4日公開)International Publication No. 2013/047730 (Apr. 4, 2013) 国際公開第2013/065631号(2013年5月10日公開)International Publication No. 2013/065631 (May 10, 2013) 国際公開第2015/198980号(2015年12月30日公開)International Publication No. 2015/198980 (December 30, 2015)
 しかしながら、前記p型材料に匹敵する出力を示すn型材料を実現するという観点からは、上述の従来技術には更なる改善の余地があった。また、特許文献3に記載の発明は、高価な材料(具体的にはクラウンエーテル)を用いる必要があるため、n型材料の量産に向けて原料価格の低減が課題であった。 However, from the viewpoint of realizing an n-type material exhibiting an output comparable to the p-type material, the above-mentioned prior art has room for further improvement. Further, in the invention described in Patent Document 3, since it is necessary to use an expensive material (specifically, crown ether), it is an object to reduce the raw material cost toward mass production of n-type material.
 本発明の一態様は、前記の課題に鑑みてなされたものであり、その目的は、優れた熱電特性および熱安定性を有する安価なナノ材料複合体を提供することである。 One aspect of the present invention is made in view of the above-mentioned subject, and the object is to provide a cheap nanomaterial composite which has the outstanding thermoelectric property and thermal stability.
 本発明者らは前記課題を解決するために鋭意検討した結果、特定の構造を有しているポリエチレングリコール誘導体と、金属カチオンと、n型ナノ材料とを用いることにより、優れた熱電特性および熱安定性を有する安価なナノ材料複合体を提供できることを見出し、本発明を完成させるに至った。 As a result of intensive studies to solve the above problems, the present inventors have found excellent thermoelectric characteristics and heat by using a polyethylene glycol derivative having a specific structure, a metal cation, and an n-type nanomaterial. It has been found that an inexpensive nanomaterial composite having stability can be provided, and the present invention has been completed.
 即ち、本発明は、以下の〔1〕~〔11〕に記載の発明を含む。
〔1〕ポリエチレングリコール誘導体と、金属カチオンと、n型ナノ材料とを含み、
 前記ポリエチレングリコール誘導体は、下記式(1)で表される鎖状構造を有することを特徴とするナノ材料複合体:
-(CHCHO)-    ・・・(1)
 式(1)中、nは4以上の整数である。
〔2〕前記ポリエチレングリコール誘導体は疎水基を有することを特徴とする、〔1〕に記載のナノ材料複合体。
〔3〕前記ポリエチレングリコール誘導体は非イオン系界面活性剤であることを特徴とする、〔1〕または〔2〕に記載のナノ材料複合体。
〔4〕前記非イオン系界面活性剤は、ポリオキシエチレン・ポリオキシプロピレンブロックポリマー、ポリオキシエチレンソルビタン脂肪酸エステル、ポリオキシエチレンアルキルフェニルエーテル、およびポリオキシエチレンアルキルエーテルからなる群より選択される少なくとも1つであることを特徴とする、〔3〕に記載のナノ材料複合体。
〔5〕前記n型ナノ材料は、ナノ粒子、ナノチューブ、ナノワイヤ、ナノロッドおよびナノシートからなる群より選択される少なくとも1つを含むことを特徴とする、〔1〕~〔4〕のいずれか一つに記載のナノ材料複合体。
〔6〕〔1〕~〔5〕のいずれか一つに記載のナノ材料複合体と溶媒とを含むことを特徴とするインク。
〔7〕n型ナノ材料に、ポリエチレングリコール誘導体と、金属カチオンとを接触させる工程を含み、前記ポリエチレングリコール誘導体は、下記式(1)で表される鎖状構造を有することを特徴とするナノ材料複合体の製造方法:
-(CHCHO)-    ・・・(1)
 式(1)中、nは4以上の整数である。
〔8〕前記ポリエチレングリコール誘導体は疎水基を有することを特徴とする、〔7〕に記載のナノ材料複合体の製造方法。
〔9〕前記ポリエチレングリコール誘導体は非イオン系界面活性剤であることを特徴とする、〔7〕または〔8〕に記載のナノ材料複合体の製造方法。
〔10〕前記非イオン系界面活性剤は、ポリオキシエチレン・ポリオキシプロピレンブロックポリマー、ポリオキシエチレンソルビタン脂肪酸エステル、ポリオキシエチレンアルキルフェニルエーテル、およびポリオキシエチレンアルキルエーテルからなる群より選択される少なくとも1つであることを特徴とする、〔9〕に記載のナノ材料複合体の製造方法。
〔11〕前記n型ナノ材料は、ナノ粒子、ナノチューブ、ナノワイヤ、ナノロッドおよびナノシートからなる群より選択される少なくとも1つを含むことを特徴とする、〔7〕~〔10〕のいずれか一つに記載のナノ材料複合体の製造方法。
That is, the present invention includes the inventions described in the following [1] to [11].
[1] containing a polyethylene glycol derivative, a metal cation, and an n-type nanomaterial,
A nanomaterial complex characterized in that the polyethylene glycol derivative has a chain structure represented by the following formula (1):
-(CH 2 CH 2 O) n- (1)
In formula (1), n is an integer of 4 or more.
[2] The nanomaterial composite according to [1], wherein the polyethylene glycol derivative has a hydrophobic group.
[3] The nanomaterial composite according to [1] or [2], wherein the polyethylene glycol derivative is a nonionic surfactant.
[4] The nonionic surfactant is at least one selected from the group consisting of polyoxyethylene / polyoxypropylene block polymer, polyoxyethylene sorbitan fatty acid ester, polyoxyethylene alkylphenyl ether, and polyoxyethylene alkyl ether The nanomaterial composite according to [3], which is characterized by being one.
[5] The n-type nanomaterial includes at least one selected from the group consisting of nanoparticles, nanotubes, nanowires, nanorods and nanosheets, any one of [1] to [4] The nanomaterial composite as described in.
[6] An ink comprising the nanomaterial composite according to any one of [1] to [5] and a solvent.
[7] A step of contacting a polyethylene glycol derivative with a metal cation in an n-type nanomaterial, wherein the polyethylene glycol derivative has a chain structure represented by the following formula (1): Method of manufacturing material composite:
-(CH 2 CH 2 O) n- (1)
In formula (1), n is an integer of 4 or more.
[8] The method for producing a nanomaterial composite according to [7], wherein the polyethylene glycol derivative has a hydrophobic group.
[9] The method for producing a nanomaterial composite according to [7] or [8], wherein the polyethylene glycol derivative is a nonionic surfactant.
[10] The nonionic surfactant is at least one selected from the group consisting of polyoxyethylene / polyoxypropylene block polymer, polyoxyethylene sorbitan fatty acid ester, polyoxyethylene alkylphenyl ether, and polyoxyethylene alkyl ether [9] The method for producing a nanomaterial composite according to [9], which is characterized in that
[11] The n-type nanomaterial includes at least one selected from the group consisting of nanoparticles, nanotubes, nanowires, nanorods and nanosheets, any one of [7] to [10] The manufacturing method of the nanomaterial composite as described in-.
 本発明の一態様によれば、特定の構造を有しているポリエチレングリコール誘導体と、金属カチオンと、n型ナノ材料とを用いることにより、優れた熱電特性および熱安定性を有する安価なナノ材料複合体を提供できるという効果を奏する。 According to one aspect of the present invention, an inexpensive nanomaterial having excellent thermoelectric properties and thermal stability by using a polyethylene glycol derivative having a specific structure, a metal cation and an n-type nanomaterial An effect of providing a complex is exhibited.
n型材料とp型材料とを備える双極型熱電変換素子の一例を示した模式図である。It is a schematic diagram showing an example of a bipolar thermoelectric conversion element provided with n type material and p type material. 本願の実施例における、吸収スペクトルの測定結果を示す図である。It is a figure which shows the measurement result of an absorption spectrum in the Example of this application. (A)は、実施例1におけるゼーベック係数および導電率の測定結果を示す図である。(B)は、実施例1における出力因子の算出結果を示す図である。(A) is a figure which shows the measurement result of the Seebeck coefficient in Example 1, and conductivity. (B) is a figure which shows the calculation result of the output factor in Example 1. [FIG. 本願の実施例における、導電率およびゼーベック係数の測定結果、出力因子の算出結果を示す図である。It is a figure which shows the calculation result of an output factor, the measurement result of the conductivity and the Seebeck coefficient in the Example of this application.
 以下、本発明の実施の形態の一例について詳細に説明するが、本発明は、これらに限定されない。なお、本明細書において特記しない限り、数値範囲を表す「A~B」は、「A以上、B以下」を意味する。 Hereinafter, although an example of an embodiment of the present invention is described in detail, the present invention is not limited to these. In the present specification, unless otherwise specified, “A to B” representing a numerical range means “A or more and B or less”.
 〔1.ナノ材料複合体の熱電特性に関する指標〕
 まず、ナノ材料複合体の熱電特性に関する指標について説明する。当該指標としては出力因子(パワーファクター)が挙げられる。出力因子は、以下の式(i)によって求められる。
[1. Index on Thermoelectric Properties of Nanomaterial Composite]
First, an index related to the thermoelectric characteristics of the nanomaterial composite will be described. The index includes an output factor (power factor). The output factor is determined by the following equation (i).
 PF=ασ        (i)
 式(i)中、PFは出力因子、αはゼーベック係数、σは導電率を示す。ナノ材料複合体においては、例えば、出力因子が310Kにて100μW/mK以上であることが好ましく、200μW/mK以上であることがより好ましく、400μW/mK以上であることがさらに好ましい。ナノ材料複合体の出力因子が310Kにて100μW/mK以上であれば、従来のp型ナノ材料複合体と同等またはそれを上回る値であるため、好ましい。このような高出力のn型ナノ材料複合体を得るためには、ゼーベック係数または導電率のいずれか一方、もしくはその両方を向上させることが考えられる。
PF = α 2 σ (i)
In Formula (i), PF is a power factor, α is a Seebeck coefficient, and σ is conductivity. In nanomaterials complexes, for example, it is preferable that the output factor is 100 .mu.W / mK 2 or more at 310K, more preferably 200μW / mK 2 or more, further preferably 400 W / mK 2 or more. It is preferable that the output factor of the nanomaterial composite is 100 μW / mK 2 or more at 310 K, because it is equal to or greater than that of the conventional p-type nanomaterial composite. In order to obtain such a high-power n-type nanomaterial composite, it is conceivable to improve either the Seebeck coefficient or the conductivity, or both.
 ゼーベック係数とは、ゼーベック効果を示す回路の、高温接合点と低温接合点との間の温度差に対する、開放回路電圧の比をいう(「マグローヒル科学技術用語大辞典 第3版」より)。ゼーベック係数は、例えば、ゼーベック効果測定装置(MMR Technologies社製)または後述する実施例で用いた熱電変換特性評価装置(アドバンス理工社製、ZEM-3)等を用いて測定することができる。ゼーベック係数の絶対値が大きいほど、熱起電力が大きいことを表す。 The Seebeck coefficient refers to the ratio of the open circuit voltage to the temperature difference between the high-temperature junction and the low-temperature junction of a circuit exhibiting the Seebeck effect (from "McGrow Hill Technical Term Third Edition"). The Seebeck coefficient can be measured, for example, using a Seebeck effect measurement apparatus (manufactured by MMR Technologies) or a thermoelectric conversion characteristic evaluation apparatus (manufactured by Advance Riko, ZEM-3) used in the examples described later. The larger the Seebeck coefficient absolute value, the larger the thermoelectromotive force.
 また、ゼーベック係数の符号は、カーボンナノチューブ等がp型導電性を有しているか、n型導電性を有しているかの指標となり得る。具体的には、ゼーベック係数が正の値を示す場合は、p型導電性を有しているといえる。これに対して、ゼーベック係数が負の値を示す場合は、n型導電性を有しているといえる。 In addition, the sign of the Seebeck coefficient can be an indicator of whether the carbon nanotube or the like has p-type conductivity or n-type conductivity. Specifically, when the Seebeck coefficient shows a positive value, it can be said that it has p-type conductivity. On the other hand, when the Seebeck coefficient shows a negative value, it can be said that it has n-type conductivity.
 ナノ材料複合体においては、ゼーベック係数が-20μV/K以下であることが好ましく、-30μV/K以下であることがより好ましく、-40μV/K以下であることがさらに好ましい。ただし、低温熱源などの微小エネルギーを用いて発電を行う場合においては、熱起電力の増大とともに導電率の増大により、昇圧回路に要求されるインピーダンスの抑制を必要とする場合もある。この場合は、ナノ材料複合体のゼーベック係数が-250~-20μV/Kであることがより好ましい。 In the nanomaterial composite, the Seebeck coefficient is preferably −20 μV / K or less, more preferably −30 μV / K or less, and still more preferably −40 μV / K or less. However, in the case of generating power using minute energy such as a low temperature heat source, it may be necessary to suppress the impedance required for the booster circuit due to the increase of the conductivity along with the increase of the thermoelectromotive force. In this case, the Seebeck coefficient of the nanomaterial composite is more preferably −250 to −20 μV / K.
 導電率は、例えば、抵抗率計(三菱化学アナリテック社製、ロレスタGP)または後述する実施例で用いた熱電変換特性評価装置(アドバンス理工社製、ZEM-3)を用いた4探針法により測定することができる。 The conductivity can be determined, for example, by using a resistivity meter (Loresta GP, manufactured by Mitsubishi Chemical Analytech Co., Ltd.) or a four-probe method using a thermoelectric conversion characteristic evaluation device (ZEM-3, manufactured by Advance Riko) used in the examples described later. It can be measured by
 ナノ材料複合体においては、導電率が1000S/cm以上であることが好ましく、1500S/cm以上であることがより好ましく、2000S/cm以上であることがさらに好ましい。導電率が1000S/cm以上であれば、ナノ材料複合体が高出力であるため、好ましい。 In the nanomaterial composite, the conductivity is preferably 1000 S / cm or more, more preferably 1500 S / cm or more, and still more preferably 2000 S / cm or more. If the conductivity is 1000 S / cm or more, it is preferable because the nanomaterial composite has a high output.
 〔2.ナノ材料複合体〕
 本発明の一実施形態に係るナノ材料複合体(以下、本ナノ材料複合体とも称する)は、ポリエチレングリコール誘導体と、金属カチオンと、n型ナノ材料とを含み、前記ポリエチレングリコール誘導体は、下記式(1)で表される鎖状構造を有することを特徴とする。
-(CHCHO)-    ・・・(1)
 式(1)中、nは4以上の整数である。
[2. Nanomaterial composite]
A nanomaterial composite (hereinafter, also referred to as the present nanomaterial composite) according to an embodiment of the present invention includes a polyethylene glycol derivative, a metal cation, and an n-type nanomaterial, and the polyethylene glycol derivative has the following formula It is characterized by having a chain structure represented by (1).
-(CH 2 CH 2 O) n- (1)
In formula (1), n is an integer of 4 or more.
 前記ポリエチレングリコール誘導体は、前記式(1)で表される鎖状構造を有している(以下、「PEG鎖」と称することもある)。ポリエチレングリコール誘導体中のPEG鎖部分が金属カチオンに配位結合し、錯体を形成する。このとき、ポリエチレングリコール誘導体と金属カチオンとの錯体は、環状構造を有しているポリエチレングリコール(例えばクラウンエーテル)と金属カチオンとの錯体に類似する構造を形成すると考えられる。例えば、下記(I)のように、金属塩(NaX)とnが6であるポリエチレングリコール誘導体とを溶液中に分散させた場合、金属カチオン(Na(ナトリウムイオン))とnが6であるPEG鎖とは、金属カチオンとPEG鎖の酸素上の非共有結合とが配位結合し、金属カチオンの周囲をPEG鎖が取り囲むように錯体を形成すると考えられる。この錯体の構造は、クラウンエーテル(例えば15-クラウン-5)とナトリウムイオンとが配位結合することによって形成された錯体の構造に類似すると考えられる。 The polyethylene glycol derivative has a chain structure represented by the formula (1) (hereinafter sometimes referred to as "PEG chain"). The PEG chain moiety in the polyethylene glycol derivative coordinates to a metal cation to form a complex. At this time, it is considered that the complex of the polyethylene glycol derivative and the metal cation forms a structure similar to the complex of polyethylene glycol having a cyclic structure (for example, crown ether) and the metal cation. For example, as in the following (I), when a metal salt (NaX) and a polyethylene glycol derivative in which n is 6 are dispersed in a solution, the metal cation (Na + (sodium ion)) and n are 6 The PEG chain is considered to form a complex such that the metal cation and the noncovalent bond on the oxygen of the PEG chain coordinate, and the PEG chain surrounds the metal cation. The structure of this complex is considered to be similar to that of the complex formed by coordination bonding of crown ether (eg, 15-crown-5) and sodium ion.
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
 前記ポリエチレングリコール誘導体は、前記PEG鎖の酸素上の非共有電子対を通じて金属カチオンを溶媒和できる。このとき、対イオンであるアニオンはかさ高いポリエチレングリコール誘導体により正電荷と遮蔽されているため不安定であり、反応性が高い。このことを利用して、アニオンによる還元反応、すなわち、ナノ材料への電子注入が行われ、ナノ材料がn型化すると考えられる。なお、後述するように、ナノ材料をn型化する方法は、ナノ材料への電子注入に限定されない。 The polyethylene glycol derivative can solvate metal cations through non-covalent electron pairs on the oxygen of the PEG chain. At this time, since the anion which is a counter ion is shielded from the positive charge by the bulky polyethylene glycol derivative, it is unstable and has high reactivity. It is thought that the reduction reaction by anions, that is, the electron injection to the nanomaterial is performed by utilizing this, and the nanomaterial becomes n-type. In addition, as described later, the method for converting the nanomaterial into n-type is not limited to the electron injection into the nanomaterial.
 前記n型ナノ材料は、負の電荷が非局在化した状態となっており、軟らかい塩基(soft base)となっている。一方、前記錯体は、正の電荷が非局在化した軟らかい酸(soft acid)となっている。軟らかい塩基に対しては、軟らかい酸を作用させることで安定化することができる。そのため、本ナノ材料複合体は、ポリエチレングリコール誘導体と金属カチオンとの錯体をn型ナノ材料に作用させることにより、安定したn型導電性を示す。なお、軟らかい酸および塩基の定義は、HSAB理論に基づく(R. G. Pearson, J. Am. Chem. Soc. 85 (22), 3533-3539, 1963)。 The n-type nanomaterial is in a state in which the negative charge is delocalized and is a soft base. On the other hand, the complex is a soft acid in which the positive charge is delocalized. Soft bases can be stabilized by the action of a soft acid. Therefore, the present nanomaterial composite exhibits stable n-type conductivity by causing a complex of a polyethylene glycol derivative and a metal cation to act on the n-type nanomaterial. The definitions of soft acids and bases are based on HSAB theory (R. G. Pearson, J. Am. Chem. Soc. 85 (22), 3533-3539, 1963).
 本ナノ材料複合体は、必要に応じて、ポリエチレングリコール誘導体、金属カチオンおよびn型ナノ材料以外の物質を含んでいてもよい。このような物質としては、錯体による前記効果を阻害しないものであれば特に限定されない。 The present nanomaterial composite may optionally contain substances other than polyethylene glycol derivatives, metal cations and n-type nanomaterials. Such a substance is not particularly limited as long as it does not inhibit the effect of the complex.
 <2-1.ポリエチレングリコール誘導体>
 本ナノ材料複合体は、ポリエチレングリコール誘導体を含んでいる。当該ポリエチレングリコール誘導体は、下記式(1)で表される鎖状構造を有することを特徴とし、
-(CHCHO)-    ・・・(1)
 式(1)中、nは4以上の整数である。
<2-1. Polyethylene glycol derivative>
The present nanomaterial complex contains a polyethylene glycol derivative. The polyethylene glycol derivative is characterized by having a chain structure represented by the following formula (1),
-(CH 2 CH 2 O) n- (1)
In formula (1), n is an integer of 4 or more.
 なお、本明細書において、「ポリエチレングリコール誘導体」との表現は、少なくとも式(1)で表されるPEG鎖を有し、疎水基および親水基を問わず、種々の末端基をさらに有する化合物を意図する。式(1)の末端は、水素原子または水酸基であってもよい。ポリエチレングリコール誘導体は、PEG鎖を1つ有していても、複数有していてもよい。また、ポリエチレングリコール誘導体は、鎖状であっても分枝状であってもよい。ただし、ポリエチレングリコール誘導体は、環状ではない(すなわち、クラウンエーテルを除く)。 In the present specification, the expression "polyethylene glycol derivative" refers to a compound having at least a PEG chain represented by the formula (1) and further having various terminal groups regardless of the hydrophobic group and the hydrophilic group. Intended. The end of the formula (1) may be a hydrogen atom or a hydroxyl group. The polyethylene glycol derivative may have one or more PEG chains. Furthermore, the polyethylene glycol derivative may be linear or branched. However, the polyethylene glycol derivative is not cyclic (ie, except for the crown ether).
 式(1)中、nが4以上の整数であれば、前述のように前記ポリエチレングリコール誘導体と金属カチオンとは、金属カチオンの周囲をPEG鎖が取り囲むように錯体を形成し、正電荷を遮蔽できる。 In the formula (1), when n is an integer of 4 or more, as described above, the polyethylene glycol derivative and the metal cation form a complex such that the PEG chain surrounds the metal cation, thereby shielding the positive charge it can.
 前記ポリエチレングリコール誘導体としては、nが4以上の前記式(1)で表される鎖状構造を有していればよく、特に限定されない。例えば、ポリオキシエチレンアルキルエーテル硫酸塩、ポリオキシエチレンベンジルフェニルエーテル硫酸塩、ポリオキシエチレンフェニルエーテル硫酸塩、ポリオキシエチレンアルキルエーテルリン酸塩、ポリオキシエチレンベンジルフェニルエーテルリン酸塩、ポリオキシエチレンフェニルエーテルリン酸塩、ポリオキシエチレンアルキルエーテルスルホン酸塩、ポリオキシエチレンベンジルフェニルエーテルスルホン酸塩、ポリオキシエチレンフェニルエーテルスルホン酸塩、ポリオキシエチレン脂肪酸エステル、ポリオキシエチレン樹脂酸エステル、ポリオキシエチレン脂肪酸ジエステル、ポリオキシエチレンジアルキルフェニルエーテル、ポリオキシエチレンアルキルアミン、ポリオキシエチレン脂肪酸アミド、ポリオキシエチレン脂肪酸ビスフェニルエーテル、ポリオキシエチレンベンジルフェニルエーテル、ポリオキシエチレンヒマシ油、ポリオキシエチレン硬化ヒマシ油、ポリオキシエチレン・ポリオキシプロピレンブロックポリマー、ポリオキシエチレンソルビタン脂肪酸エステル、ポリオキシエチレンアルキルフェニルエーテル、およびポリオキシエチレンアルキルエーテル等が挙げられる。 The polyethylene glycol derivative is not particularly limited as long as it has a chain structure represented by the formula (1) in which n is 4 or more. For example, polyoxyethylene alkyl ether sulfate, polyoxyethylene benzyl phenyl ether sulfate, polyoxyethylene phenyl ether sulfate, polyoxyethylene alkyl ether phosphate, polyoxyethylene benzyl phenyl ether phosphate, polyoxyethylene phenyl Ether phosphate, polyoxyethylene alkyl ether sulfonate, polyoxyethylene benzyl phenyl ether sulfonate, polyoxyethylene phenyl ether sulfonate, polyoxyethylene fatty acid ester, polyoxyethylene resin acid ester, polyoxyethylene fatty acid Diester, polyoxyethylene dialkyl phenyl ether, polyoxyethylene alkylamine, polyoxyethylene fatty acid amide, polyoxyethylene Fatty acid bisphenyl ether, polyoxyethylene benzyl phenyl ether, polyoxyethylene castor oil, polyoxyethylene hydrogenated castor oil, polyoxyethylene / polyoxypropylene block polymer, polyoxyethylene sorbitan fatty acid ester, polyoxyethylene alkylphenyl ether, and Polyoxyethylene alkyl ether etc. are mentioned.
 前記ポリエチレングリコール誘導体は、疎水基を有していることが好ましい。前記ポリエチレングリコール誘導体が疎水基を有していることで、両親媒性を示し、水および有機溶媒等の溶媒に分散しやすいため好ましい。疎水基の例としては、飽和または不飽和の、環式炭化水素基、非環式炭化水素基(鎖状であっても分枝状であってもよい)、芳香族基;ハロゲン基等が挙げられる。また、前記ポリエチレングリコール誘導体は、式(1)の末端基の一部に疎水基を有することが好ましく、例えば、疎水基は、アルキル基、アルキレン基、フェニレン基、またはポリプロピレンオキシド鎖(PPO鎖)であってもよい。 The polyethylene glycol derivative preferably has a hydrophobic group. The polyethylene glycol derivative is preferably amphiphilic by having a hydrophobic group, and is easily dispersed in a solvent such as water and an organic solvent. Examples of hydrophobic groups include saturated or unsaturated cyclic hydrocarbon groups, acyclic hydrocarbon groups (which may be linear or branched), aromatic groups, halogen groups, etc. It can be mentioned. The polyethylene glycol derivative preferably has a hydrophobic group at a part of the end group of the formula (1). For example, the hydrophobic group is an alkyl group, an alkylene group, a phenylene group, or a polypropylene oxide chain (PPO chain) It may be
 また、前記ポリエチレングリコール誘導体は、非イオン系界面活性剤であることが好ましい。ポリエチレングリコール誘導体が非イオン系界面活性剤であれば、水等の溶媒に分散しやすいため好ましい。また、ポリエチレングリコール誘導体が非イオン系界面活性剤であれば、溶媒中でイオン化しないためn型ナノ材料の電子状態に影響が少ないため好ましい。上記非イオン系界面活性剤の例としては、ポリオキシエチレン脂肪酸エステル、ポリオキシエチレン樹脂酸エステル、ポリオキシエチレン脂肪酸ジエステル、ポリオキシエチレンジアルキルフェニルエーテル、ポリオキシエチレンアルキルアミン、ポリオキシエチレン脂肪酸アミド、ポリオキシエチレン脂肪酸ビスフェニルエーテル、ポリオキシエチレンベンジルフェニルエーテル、ポリオキシエチレンヒマシ油、ポリオキシエチレン硬化ヒマシ油、ポリオキシエチレン・ポリオキシプロピレンブロックポリマー、ポリオキシエチレンソルビタン脂肪酸エステル、ポリオキシエチレンアルキルフェニルエーテル、およびポリオキシエチレンアルキルエーテル等が挙げられる。 The polyethylene glycol derivative is preferably a nonionic surfactant. If the polyethylene glycol derivative is a nonionic surfactant, it is preferable because it is easily dispersed in a solvent such as water. In addition, if the polyethylene glycol derivative is a non-ionic surfactant, it is preferable because it does not ionize in the solvent and the electronic state of the n-type nanomaterial is less affected. Examples of the nonionic surfactant include polyoxyethylene fatty acid ester, polyoxyethylene resin acid ester, polyoxyethylene fatty acid diester, polyoxyethylene dialkyl phenyl ether, polyoxyethylene alkylamine, polyoxyethylene fatty acid amide, Polyoxyethylene fatty acid bisphenyl ether, polyoxyethylene benzyl phenyl ether, polyoxyethylene castor oil, polyoxyethylene hydrogenated castor oil, polyoxyethylene · polyoxypropylene block polymer, polyoxyethylene sorbitan fatty acid ester, polyoxyethylene alkylphenyl phenyl ether Ether, and polyoxyethylene alkyl ether etc. are mentioned.
 上記非イオン系界面活性剤としては、安価で手に入れることができるという観点から、ポリオキシエチレン・ポリオキシプロピレンブロックポリマー、ポリオキシエチレンソルビタン脂肪酸エステル、ポリオキシエチレンアルキルフェニルエーテル、およびポリオキシエチレンアルキルエーテルが好ましい。 From the viewpoint of being available at low cost as the above nonionic surfactant, polyoxyethylene / polyoxypropylene block polymer, polyoxyethylene sorbitan fatty acid ester, polyoxyethylene alkylphenyl ether, and polyoxyethylene Alkyl ethers are preferred.
 ポリオキシエチレン・ポリオキシプロピレンブロックポリマーの例としては、ポリオキシエチレン(196)ポリオキシプロピレン(67)グリコール(例えば、製品名:Pluronic(登録商標)F127)、ポリオキシエチレン(160)ポリオキシプロピレン(30)グリコール(例えば、製品名:Pluronic(登録商標)F-68)、ポリオキシエチレン(300)ポリオキシプロピレン(55)グリコール(例えば、製品名:Pluronic(登録商標)F-108)等のPluronic(登録商標)系界面活性剤が挙げられる。 Examples of polyoxyethylene / polyoxypropylene block polymers include polyoxyethylene (196) polyoxypropylene (67) glycol (for example, product name: Pluronic (registered trademark) F 127), polyoxyethylene (160) polyoxypropylene (30) Glycol (for example, product name: Pluronic (registered trademark) F-68), polyoxyethylene (300) polyoxypropylene (55) glycol (for example, product name: Pluronic (registered trademark) F-108), etc. Pluronic (registered trademark) surfactants can be mentioned.
 ポリオキシエチレンソルビタン脂肪酸エステルの例としては、ポリオキシエチレンソルビタンモノ-ラウレート(例えば、製品名:Tween(登録商標)20)、ポリオキシエチレンソルビタンモノ-パルミテート(例えば、製品名:Tween(登録商標)40)、ポリオキシエチレンソルビタンモノ-ステアレート(例えば、製品名:Tween(登録商標)60)、ポリオキシエチレンソルビタンモノ-オレエート(例えば、製品名:Tween(登録商標)80)、ポリオキシエチレンソルビタントリオレアート(例えば、製品名:Tween(登録商標)85)等のTween(登録商標)系界面活性剤が挙げられる。 Examples of polyoxyethylene sorbitan fatty acid ester include polyoxyethylene sorbitan mono-laurate (for example, product name: Tween (registered trademark) 20), polyoxyethylene sorbitan mono-palmitate (for example, product name: tween (registered trademark)) 40), polyoxyethylene sorbitan mono-stearate (for example, product name: Tween (registered trademark) 60), polyoxyethylene sorbitan mono-oleate (for example, product name: Tween (registered trademark) 80), polyoxyethylene sorbitan Examples include Tween (registered trademark) surfactants such as trioleate (for example, product name: Tween (registered trademark) 85).
 ポリオキシエチレンアルキルフェニルエーテルの例としては、ポリオキシエチレン(10)オクチルフェニルエーテル(例えば、製品名:Triton(登録商標) X-100)、ポリオキシエチレン(40)イソオクチルフェニルエーテル(例えば、製品名:Triton(登録商標) X-405)等のTriton(登録商標)系界面活性剤;ポリ(オキシエチレン)p-オクチルフェニルエーテル(例えば、製品名:Nonidet(登録商標)P-40);オクチルフェニルポリエチレングリコール(例えば、製品名:Igepal(登録商標)CA-630)が挙げられる。 Examples of polyoxyethylene alkyl phenyl ether include polyoxyethylene (10) octyl phenyl ether (for example, product name: Triton (registered trademark) X-100), polyoxyethylene (40) isooctyl phenyl ether (for example, product Name: Triton®-based surfactant such as Triton® X-405); poly (oxyethylene) p-octylphenyl ether (for example, product name: Nonidet® P-40); octyl Examples include phenyl polyethylene glycol (eg, product name: Igepal (registered trademark) CA-630).
 ポリオキシエチレンアルキルエーテルの例としては、ポリオキシエチレン(23)ラウリルエーテル(例えば、製品名:Brij(登録商標)35)、ポリオキシエチレン(20)セチルエーテル(例えば、製品名:Brij(登録商標)58)、ポリオキシエチレン(20)ステアリルエーテル(例えば、製品名:Brij(登録商標)78)、ポリオキシエチレン(10)オレイルエーテル(例えば、製品名:Brij(登録商標)97)、ポリオキシエチレン(10)セチルエーテル(例えば、製品名:Brij(登録商標)56)、ポリオキシエチレン(10)ステアリルエーテル(例えば、製品名:Brij(登録商標)76)、ポリオキシエチレン(20)オレイルエーテル(例えば、製品名:Brij(登録商標)98)、ポリオキシエチレン(100)ステアリルエーテル(例えば、製品名:Brij(登録商標)S100)等のBrij(登録商標)系界面活性剤が挙げられる。 Examples of polyoxyethylene alkyl ether include polyoxyethylene (23) lauryl ether (for example, product name: Brij (registered trademark) 35), polyoxyethylene (20) cetyl ether (for example, product name: Brij (registered trademark) ) 58), polyoxyethylene (20) stearyl ether (for example, product name: Brij (registered trademark) 78), polyoxyethylene (10) oleyl ether (for example, product name: Brij (registered trademark) 97), polyoxy acid Ethylene (10) cetyl ether (for example, product name: Brij (registered trademark) 56), polyoxyethylene (10) stearyl ether (for example, product name: Brij (registered trademark) 76), polyoxyethylene (20) oleyl ether (For example, product name: Brij (registered trademark) 98), Polyoxyethylene (100) stearyl ether (e.g., product name: Brij (R) S100) such Brij (registered trademark) surfactants.
 前記非イオン系界面活性剤としては、安くて入手しやすいという観点から、Pluronic(登録商標)F127、Pluronic(登録商標)F-68、Pluronic(登録商標)F-108、TWEEN(登録商標)80、Triton(登録商標)X-100およびBrij(登録商標)S100等の市販品がさらに好ましい。 As the non-ionic surfactant, Pluronic F127, Pluronic F-68, Pluronic F-108, TWEEN 80 from the viewpoint of being cheap and easily available. More preferred are commercial products such as Triton® X-100 and Brij® S100.
 <2-2.金属カチオン>
 本ナノ材料複合体は、金属カチオンを含んでいる。
<2-2. Metal cation>
The present nanomaterial composite contains a metal cation.
 金属カチオンとしては、典型金属イオン(アルカリ金属イオンおよびアルカリ土類金属イオン)および遷移金属イオン等が挙げられる。前記金属カチオンは、例えば、リチウムイオン、ナトリウムイオン、カリウムイオン、ルビジウムイオン、セシウムイオン、フランシウムイオン、ベリリウムイオン、マグネシウムイオン、カルシウムイオン、ストロンチウムイオン、バリウムイオン、ラジウムイオンおよびスカンジウムイオン等であってもよい。 As metal cations, typical metal ions (alkali metal ions and alkaline earth metal ions), transition metal ions and the like can be mentioned. The metal cation may be, for example, lithium ion, sodium ion, potassium ion, rubidium ion, cesium ion, francium ion, beryllium ion, magnesium ion, calcium ion, strontium ion, barium ion, radium ion, scandium ion, etc. Good.
 上述した金属カチオンの中でも、入手が容易であるとの観点からは、ナトリウムイオン、カリウムイオン、ルビジウムイオンおよびセシウムイオンが好ましい。 Among the metal cations described above, sodium ion, potassium ion, rubidium ion and cesium ion are preferable from the viewpoint of easy availability.
 <2-3.n型ナノ材料>
 本ナノ材料複合体は、n型ナノ材料、すなわちn型化されたナノ材料を含んでいる。本明細書において、「ナノ材料」とは、少なくとも1つの方向の寸法がナノスケール(例えば100nm以下)の物質を意味する。前記ナノ材料は、例えばカーボンナノチューブ等である。
<2-3. n-type nanomaterial>
The present nanomaterial composite includes n-type nanomaterials, ie, n-typed nanomaterials. As used herein, “nanomaterial” means a material having at least one dimension in the nanoscale (eg, 100 nm or less). The nanomaterial is, for example, a carbon nanotube or the like.
 ナノ材料をn型化する方法は特に限定されず、例えば、ナノ材料にn型ドーパント(例えば、特定のアニオン)を作用させる方法が挙げられる。より具体的には、後述する工程(ii)が挙げられる。 The method of making the nanomaterial into n-type is not particularly limited, and examples thereof include a method of causing the nanomaterial to act on an n-type dopant (for example, a specific anion). More specifically, the process (ii) mentioned later is mentioned.
 前記ナノ材料は、低次元ナノ材料であってもよい。本明細書において、「低次元」とは、3次元よりも小さい次元を意図する。すなわち、本明細書において、「低次元」とは、0次元、1次元、または2次元を意図する。そして、本明細書において、「低次元ナノ材料」とは、「低次元」にて立体構造を略規定し得るナノ材料を意図する。 The nanomaterial may be a low dimensional nanomaterial. As used herein, "low dimension" intends a dimension smaller than three dimensions. That is, as used herein, "low dimensional" intends zero dimensional, one dimensional, or two dimensional. And in this specification, a "low dimensional nanomaterial" intends the nanomaterial which can substantially define a three-dimensional structure in "low dimension."
 0次元のナノ材料としては、例えば、ナノ粒子(量子ドット)が挙げられる。1次元のナノ材料としては、例えば、ナノチューブ、ナノワイヤおよびナノロッドが挙げられる。2次元のナノ材料としては、例えばナノシートが挙げられる。前記ナノ材料は、ナノ粒子、ナノチューブ、ナノワイヤ、ナノロッドおよびナノシートからなる群より選択される少なくとも1つを含むことが好ましい。 Examples of zero-dimensional nanomaterials include nanoparticles (quantum dots). One-dimensional nanomaterials include, for example, nanotubes, nanowires and nanorods. Examples of two-dimensional nanomaterials include nanosheets. The nanomaterial preferably includes at least one selected from the group consisting of nanoparticles, nanotubes, nanowires, nanorods and nanosheets.
 前記n型ナノ材料は、炭素、半導体、半金属および金属からなる群より選択される少なくとも1つ以上を含んでいてもよい。前記n型ナノ材料は、炭素、半導体、半金属および金属からなる群より選択される少なくとも1つ以上からなるナノ材料であってもよい。軽量であることおよび炭素-炭素結合に由来する柔軟性の観点からは、前記ナノ材料は、炭素からなるナノ材料であることが好ましい。炭素からなるナノ材料としては、例えば、カーボンナノチューブおよびグラフェン(すなわち、炭素からなるナノシート)等が挙げられる。本明細書においては、カーボンナノチューブを「CNT」と称する場合もある。 The n-type nanomaterial may include at least one or more selected from the group consisting of carbon, a semiconductor, a metalloid and a metal. The n-type nanomaterial may be at least one nanomaterial selected from the group consisting of carbon, a semiconductor, a metalloid and a metal. From the viewpoint of light weight and flexibility derived from carbon-carbon bonds, the nanomaterial is preferably a nanomaterial composed of carbon. Examples of carbon-based nanomaterials include carbon nanotubes and graphene (ie, carbon-based nanosheets). In the present specification, a carbon nanotube may be referred to as "CNT".
 半導体としては、例えば、ケイ素化鉄、コバルト酸ナトリウムおよびテルル化アンチモン等が挙げられる。半金属としては、例えば、テルル、ホウ素、ゲルマニウム、ヒ素、アンチモン、セレンおよびグラファイト等が挙げられる。金属としては、例えば、金、銀、銅、白金およびニッケル等が挙げられる。 As the semiconductor, for example, iron silicide, sodium cobaltate, antimony telluride and the like can be mentioned. Examples of the metalloid include tellurium, boron, germanium, arsenic, antimony, selenium and graphite. Examples of the metal include gold, silver, copper, platinum and nickel.
 前記ナノチューブおよび前記ナノシートは、単層、または多層(二層、三層、四層、またはそれよりも多層)の構造を有していてもよい。例えば、前記n型ナノ材料は、単層カーボンナノチューブまたは多層カーボンナノチューブであってもよい。 The nanotubes and the nanosheets may have a single-layered or multi-layered (bi-, tri-, tetra-, or multi-layered) structure. For example, the n-type nanomaterial may be single-walled carbon nanotubes or multi-walled carbon nanotubes.
 本ナノ材料複合体は、熱電変換デバイス等として、様々な応用および用途が考えられる。ここで、熱電変換デバイスに柔軟性があれば、人体および配管等の複雑な三次元表面に密着させることができ、体温および廃熱等を効率的に利用できるため好ましい。熱電変換デバイスの柔軟性を増すため、本ナノ材料複合体に優れた機械的特性(引張強度、ヤング率および弾性率など)を付与するという観点からは、前記n型ナノ材料は、単層カーボンナノチューブであることが好ましい。 The present nanomaterial composite has various applications and uses as a thermoelectric conversion device and the like. Here, if the thermoelectric conversion device is flexible, it can be closely attached to a complicated three-dimensional surface such as a human body and piping, and it is preferable because body temperature and waste heat can be efficiently used. From the viewpoint of imparting excellent mechanical properties (such as tensile strength, Young's modulus and elastic modulus) to the present nanomaterial composite in order to increase the flexibility of the thermoelectric conversion device, the n-type nanomaterial is a single layer carbon Preferably, they are nanotubes.
 本ナノ材料複合体において、前記n型ナノ材料は、所望の形状に成形されていてもよい。例えば、本ナノ材料複合体は、ナノ材料が集積したフィルムを含んでいてもよい。ここで、前記「フィルム」は、シートまたは膜とも言い換えられる。フィルムは、例えば、0.1μm~1000μmの厚みであってもよい。フィルムの密度は特に限定されないが、0.05~1.0g/cmであってもよく、0.1~0.5g/cmであってもよい。前記フィルムは、ナノ材料同士が互いに絡み合うように不織布状の構造を形成している。そのため、前記フィルムは軽量であり、且つ、柔軟性を有している。 In the present nanomaterial composite, the n-type nanomaterial may be shaped into a desired shape. For example, the present nanomaterial composite may include a film in which nanomaterials are accumulated. Here, the "film" is also referred to as a sheet or a film. The film may for example have a thickness of 0.1 μm to 1000 μm. The density of the film is not particularly limited, but may be 0.05 to 1.0 g / cm 3 or 0.1 to 0.5 g / cm 3 . The film has a non-woven structure so that the nanomaterials are intertwined with each other. Therefore, the film is lightweight and flexible.
 <2-4.インク>
 本発明の一実施形態に係るインク(以下、本インクとも称する)は、ナノ材料複合体と溶媒とを含むことを特徴とする。
<2-4. Ink>
An ink according to an embodiment of the present invention (hereinafter also referred to as the present ink) is characterized by containing a nanomaterial complex and a solvent.
 前記ナノ材料複合体は、所望の形状(例えばフィルム)に成形されていてもよく、成形されていなくてもよい。ナノ材料複合体が成形されている場合は、例えば、成形されたナノ材料複合体を溶媒に分散させることによって、インクを作製することができる。ナノ材料複合体が成形されていない場合は、例えば、ナノ材料複合体を溶媒中に分散させることによって、インクを作製することができる。また、〔3.ナノ材料複合体の製造方法〕において後述するように、工程(i)(すなわち、n型ナノ材料に、ポリエチレングリコール誘導体と、金属カチオンとを接触させる工程)または工程(i)と工程(ii)(すなわち、ナノ材料をn型化する工程)との両方を行うことで作製されたナノ材料複合体自体を、インクとして用いてもよい。 The nanomaterial composite may or may not be formed into a desired shape (for example, a film). When the nanomaterial composite is formed, the ink can be produced, for example, by dispersing the formed nanomaterial composite in a solvent. If the nanomaterial composite is not shaped, an ink can be made, for example, by dispersing the nanomaterial composite in a solvent. Also, [3. Step (i) (ie, a step of bringing a polyethylene glycol derivative and a metal cation into contact with an n-type nanomaterial) or step (i) and step (ii), as described later in the method for producing a nanomaterial composite] The nanomaterial composite itself produced by performing both (i.e., the step of n-forming the nanomaterial) may be used as the ink.
 インク中のナノ材料複合体の濃度は、0.1~1000mMであることが好ましく、10~100mMであることがより好ましい。なお、インク中のナノ材料複合体の濃度は、例えば、ナノ材料がカーボンナノチューブの場合は、炭素の原子量を12として、インク中のカーボンナノチューブの質量から算出できる。 The concentration of the nanomaterial complex in the ink is preferably 0.1 to 1000 mM, more preferably 10 to 100 mM. The concentration of the nanomaterial complex in the ink can be calculated from the mass of carbon nanotubes in the ink, for example, when the nanomaterial is a carbon nanotube, the atomic weight of carbon is 12.
 前記溶媒は、インクとして使用する上で適したものの中から適宜選択されればよく、水および有機溶媒等が挙げられる。有機溶媒の例としては、トルエン、o-ジクロロベンゼン、テトラヒドロフランおよびクロロホルムが挙げられる。前記溶媒としては、取扱いが容易であり、比較的安全で、ナノ材料複合体の分散性が良好であり、かつ種々の用途に用いることができるという観点から水が好ましい。 The solvent may be appropriately selected from those suitable for use as an ink, and examples thereof include water and organic solvents. Examples of organic solvents include toluene, o-dichlorobenzene, tetrahydrofuran and chloroform. As the solvent, water is preferable from the viewpoint of easy handling, relative safety, good dispersibility of the nanomaterial composite, and use in various applications.
 本インクは、必要に応じて、ナノ材料複合体および溶媒以外の物質を含んでいてもよい。このような物質としては、ナノ材料複合体の熱電特性を損なわないものであれば特に限定されない。 The ink may optionally contain substances other than the nanomaterial composite and the solvent. Such a substance is not particularly limited as long as it does not impair the thermoelectric properties of the nanomaterial composite.
 本インクは、例えば、基板上に塗布されることにより使用される。 The ink is used, for example, by being applied on a substrate.
 前記基板としては、ガラス、透明セラミックス、金属、プラスチックフィルム等の基板を用いることができる。 As the substrate, a substrate such as glass, transparent ceramics, metal, plastic film or the like can be used.
 前記基板の厚さは、特に限定されないが、1μm~1000μmが好ましい。 The thickness of the substrate is not particularly limited, but is preferably 1 μm to 1000 μm.
 インクを基板上に塗布する方法としては、特に限定されないが、スピンコート、エクストルージョンダイコート、ブレードコート、バーコート、スクリーン印刷、ステンシル印刷、ロールコート、カーテンコート、スプレーコート、ディップコート、インクジェット印刷およびディスペンス等の公知の塗布方法を用いることができる。 The method of applying the ink on the substrate is not particularly limited, but spin coating, extrusion die coating, blade coating, bar coating, screen printing, stencil printing, roll coating, curtain coating, spray coating, dip coating, ink jet printing and Known coating methods such as dispensing can be used.
 また、インクを基板上に塗布する際、インクの塗布に適した各種装置を用いることができ、特に限定されない。 Moreover, when apply | coating ink on a board | substrate, the various apparatuses suitable for application | coating of ink can be used, It does not specifically limit.
 本インクによって、種々の形状の効率的に発電ができる熱電変換デバイスを設計することが可能となる。また、柔軟性を備え、かつ小型軽量化された熱電変換デバイスを実現できる。 This ink makes it possible to design a thermoelectric conversion device capable of efficiently generating power of various shapes. In addition, it is possible to realize a thermoelectric conversion device which has flexibility and is reduced in size and weight.
 〔3.ナノ材料複合体の製造方法〕
 本発明の一実施形態に係るナノ材料複合体の製造方法(以下、本製造方法とも称する)は、n型ナノ材料に、ポリエチレングリコール誘導体と、金属カチオンとを接触させる工程を含み、前記ポリエチレングリコール誘導体は、下記式(1)で表される鎖状構造を有することを特徴とする。
-(CHCHO)-    ・・・(1)
 式(1)中、nは4以上の整数である。
[3. Method of producing nanomaterial composite]
A method of producing a nanomaterial composite according to an embodiment of the present invention (hereinafter, also referred to as the present production method) includes the step of contacting an n-type nanomaterial with a polyethylene glycol derivative and a metal cation, The derivative is characterized by having a chain structure represented by the following formula (1).
-(CH 2 CH 2 O) n- (1)
In formula (1), n is an integer of 4 or more.
 なお、〔2.ナノ材料複合体〕にて既に説明した事項について、以下では説明を省略し、適宜、上述の記載を援用する。 In addition, [2. Description of the matters already described in the nanomaterial composite] is omitted below, and the above description is incorporated as appropriate.
 以下、n型ナノ材料に、ポリエチレングリコール誘導体と、金属カチオンとを接触させる工程を工程(i)と記載する。 Hereinafter, the step of bringing the polyethylene glycol derivative and the metal cation into contact with the n-type nanomaterial is referred to as step (i).
 前記工程(i)では、n型ナノ材料に、ポリエチレングリコール誘導体と、金属カチオンとを接触させることができればよく、その方法は特に限定されない。n型ナノ材料と、ポリエチレングリコール誘導体と、金属カチオンとを十分に接触させる観点から、ポリエチレングリコール誘導体および金属カチオンを含む溶液をナノ材料に接触させる方法が好ましい。具体的には、溶液をナノ材料に含浸させる方法、または、溶液中にナノ材料をせん断分散させることによって、ナノ材料と溶液とを接触させる方法が好ましい。 In the step (i), the method is not particularly limited as long as the n-type nanomaterial can be brought into contact with a polyethylene glycol derivative and a metal cation. From the viewpoint of sufficiently contacting the n-type nanomaterial, the polyethylene glycol derivative, and the metal cation, a method of contacting the nanomaterial with a solution containing the polyethylene glycol derivative and the metal cation is preferable. Specifically, a method in which the nanomaterial is impregnated with the solution, or a method in which the nanomaterial is brought into contact with the solution by shear-dispersing the nanomaterial in the solution is preferable.
 前記溶液における溶媒は、水であってもよく有機溶媒であってもよい。当該溶媒は、好ましくは有機溶媒であり、より好ましくはメタノール、エタノール、プロパノール、ブタノール、アセトニトリル、N,N-ジメチルホルムアミド、ジメチルスルホキシドまたはN-メチルピロリドンである。プロパノールとしては、1-プロパノールおよび2-プロパノールが挙げられる。ブタノールとしては、1-ブタノールおよび2-ブタノールが挙げられる。 The solvent in the solution may be water or an organic solvent. The solvent is preferably an organic solvent, more preferably methanol, ethanol, propanol, butanol, acetonitrile, N, N-dimethylformamide, dimethylsulfoxide or N-methylpyrrolidone. The propanol includes 1-propanol and 2-propanol. Examples of butanol include 1-butanol and 2-butanol.
 溶液中のポリエチレングリコール誘導体および金属カチオンのイオンの濃度は、任意の濃度であってよく、1~1000mMが好ましく、10~100mMがより好ましい。 The concentration of polyethylene glycol derivative and metal cation ion in the solution may be any concentration, preferably 1 to 1000 mM, more preferably 10 to 100 mM.
 溶液をナノ材料に含浸させる方法としては、例えば、後述のように所望の形状に成形したナノ材料(例えばフィルム)を溶液に浸漬させる方法が挙げられる。また、溶液中にナノ材料をせん断分散させる方法としては、例えば、均質化装置を用いてナノ材料を溶液中に分散させる方法が挙げられる。 As a method of impregnating a solution with a nanomaterial, for example, a method of immersing a nanomaterial (for example, a film) formed into a desired shape as described later in a solution is mentioned. Moreover, as a method of carrying out the shear dispersion of the nanomaterial in a solution, the method of disperse | distributing a nanomaterial in a solution using a homogenization apparatus is mentioned, for example.
 前記均質化装置としては、ナノ材料を溶液中で均質に分散させることができる装置であれば特に限定されないが、例えば、撹拌ホモジナイザーまたは超音波ホモジナイザー等の公知の手段を用いることができる。 The homogenizing apparatus is not particularly limited as long as it is an apparatus capable of uniformly dispersing nanomaterials in a solution, and, for example, known means such as a stirring homogenizer or an ultrasonic homogenizer can be used.
 均質化装置の運転条件としては、ナノ材料を溶液中に分散させることができる条件であれば特に限定されない。例えば、均質化装置として、撹拌ホモジナイザーを用いる場合は、ナノ材料を加えた溶液を、撹拌速度(回転数)20000rpmにて、室温(23℃)にて10分間処理することによって、ナノ材料を溶液中に分散させることができる。 The operating conditions of the homogenizing device are not particularly limited as long as the nanomaterial can be dispersed in the solution. For example, in the case of using a stirring homogenizer as the homogenizing device, the solution containing the nanomaterial is treated at a stirring speed (rotational speed) of 20000 rpm for 10 minutes at room temperature (23.degree. C.). It can be dispersed in it.
 また、成形済のナノ材料を溶液に浸漬させる場合、浸漬させる時間は特に限定されないが、10~600分であることが好ましく、100~600分であることがより好ましく、200~600分であることがさらに好ましい。 In addition, when the formed nanomaterial is immersed in the solution, the immersion time is not particularly limited, but is preferably 10 to 600 minutes, more preferably 100 to 600 minutes, and 200 to 600 minutes. Is more preferred.
 なお、工程(i)の前に、工程(ii)ナノ材料をn型化する工程が含まれていてもよい。ナノ材料をn型化する方法は特に限定されず、例えば、ナノ材料に特定のアニオンを作用させる方法が挙げられる。 In addition, the process of n-type-izing a nanomaterial to a process (ii) may be included before a process (i). The method for converting the nanomaterial into n-type is not particularly limited, and examples thereof include a method of causing a specific anion to act on the nanomaterial.
 工程(ii)は工程(i)と同時に行われてもよい。この場合、例えば、溶媒に溶解した際にアニオンと金属カチオンとを生じる金属塩と、ポリエチレングリコール誘導体とを溶解させた溶液にナノ材料を接触させる。錯体を効率的に形成させるという観点からは、前記溶液は、金属カチオンとポリエチレングリコール誘導体とを、そのモル比が1:1になるように含んでいることが好ましい。 Step (ii) may be performed simultaneously with step (i). In this case, for example, the nanomaterial is brought into contact with a solution in which a metal salt that generates an anion and a metal cation when dissolved in a solvent and a polyethylene glycol derivative are dissolved. From the viewpoint of efficiently forming a complex, the solution preferably contains a metal cation and a polyethylene glycol derivative in a molar ratio of 1: 1.
 前記アニオンは、ナノ材料のキャリアを正孔から電子へと変化させる。これによって、ナノ材料のゼーベック係数が変化するとともに、ナノ材料は負に帯電する。 The anion changes the carrier of the nanomaterial from holes to electrons. This changes the Seebeck coefficient of the nanomaterial and negatively charges the nanomaterial.
 アニオンの例としては、ヒドロキシイオン(OH)、アルコキシイオン(CH、CHCH、i-PrOおよびt-BuO等)、チオイオン(SH、並びにCHおよびC等のアルキルチオイオン等)、シアヌルイオン(CN)、I、Br、Cl、BH 、カルボキシイオン(CHCOO等)、CO 2-、HCO 、NO 、BF 、ClO 、TfO、並びにTos等が挙げられる。なかでも、アニオンは、OH、CH、CHCH、i-PrO、t-BuO、SH、CH、C、CN、I、Br、Cl、BH 、およびCHCOOからなる群より選択される少なくとも1つであることが好ましく、OHおよびCHのうち少なくとも一方であることがより好ましい。前記アニオンによれば、効率よくナノ材料のゼーベック係数を変化させることができる。 Examples of anionic, hydroxy ion (OH -), alkoxy ion (CH 3 O -, CH 3 CH 2 O -, i-PrO - and t-BuO -, etc.), Chioion (SH -, and CH 3 S - and C 2 H 5 S - or the like of the alkyl thio ion), Shianuruion (CN -), I -, Br -, Cl -, BH 4 -, carboxymethyl ion (CH 3 COO -, etc.), CO 3 2-, HCO 3 , NO 3 , BF 4 , ClO 4 , TfO , and Tos − and the like. Among them, anions, OH -, CH 3 O - , CH 3 CH 3 O -, i-PrO -, t-BuO -, SH -, CH 3 S -, C 2 H 5 S -, CN -, I -, Br -, Cl -, BH 4 -, and CH 3 COO - is preferably at least one selected from the group consisting of, OH - and CH 3 O - and more preferably at least one of . According to the anion, the Seebeck coefficient of the nanomaterial can be efficiently changed.
 アニオンがナノ材料をn型化するドーパントとして作用する理由の一つとしては、アニオンが非共有電子対を有していることが考えられる。アニオンは、その非共有電子対に基づいて、ドーピングの対象となるナノ材料と相互作用するか、または化学反応を誘起すると推測される。また、ドーピングの効率においては、ドーパントのルイス塩基性、分子間力および解離性が重要であると考えられる。 One of the reasons why the anion acts as a dopant for making the nanomaterial n-type is considered that the anion has a noncovalent electron pair. The anion is presumed to interact with the nanomaterial to be doped or to induce a chemical reaction based on its non-covalent electron pair. In addition, it is considered that the Lewis basicity, intermolecular force and dissociativeness of the dopant are important in the efficiency of doping.
 本明細書において、「ルイス塩基性」とは、電子対を供与する性質を意図している。ルイス塩基性の強いドーパントは、ゼーベック係数の変化に対して、より大きな影響を与えると考えられる。 As used herein, "Lewis basic" is intended to have the property of donating an electron pair. The strongly Lewis basic dopant is considered to have a greater effect on the change in the Seebeck coefficient.
 また、ドーパントの分子間力も、ナノ材料に対するドーパントの吸着性に関連していると考えられる。ドーパントの分子間力としては、例えば、水素結合、CH-π相互作用およびπ-π相互作用等が挙げられる。前記アニオンのなかでも、弱い水素結合を与えるアニオンが好ましい。弱い水素結合を与えるアニオンとしては、例えば、OH、CH、CHCH、i-PrOおよびt-BuOが挙げられる。また、アニオンは、π-π相互作用を与えるアニオンであることが好ましい。π-π相互作用を与えるアニオンの例としては、例えば、CHCOOが挙げられる。 The intermolecular force of the dopant is also considered to be related to the adsorptivity of the dopant to the nanomaterial. The intermolecular force of the dopant includes, for example, hydrogen bond, CH-π interaction, and π-π interaction. Among the above anions, anions giving weak hydrogen bonds are preferable. As the anion that gives a weak hydrogen bond, for example, OH , CH 3 O , CH 3 CH 2 O , i-PrO and t-BuO can be mentioned. In addition, the anion is preferably an anion that imparts a π-π interaction. Examples of anions that give π-π interactions include, for example, CH 3 COO .
 本製造方法は、工程(i)の前または後に工程(iii)ナノ材料を集積させてフィルムを成形する工程を含んでいてもよい。すなわち、工程(iii)は、前記工程(i)の前にナノ材料を所望の形状(例えばフィルム)に成形する工程であってもよく、前記工程(i)によって得られたナノ材料を所望の形状に成形する工程であってもよい。 The present manufacturing method may include the step of accumulating the nanomaterial and forming a film before or after step (i). That is, the step (iii) may be a step of forming the nanomaterial into a desired shape (for example, a film) before the step (i), and the nanomaterial obtained by the step (i) is desired It may be a step of forming into a shape.
 フィルムを成形する方法の例としては、特に限定されないが、例えば、溶媒中にナノ材料を分散させ、得られた分散液をメンブレンフィルター上で濾過することによってフィルムを成形する方法が挙げられる。具体的には、ナノ材料の分散液を、0.1~2μm孔のメンブレンフィルターを用いて吸引濾過を行い、メンブレンフィルター上に残った膜を、50~150℃にて、1~24時間、減圧乾燥させることにより、フィルムを成形することができる。また、ナノ材料の分散液を遠心分離し、その上澄みをメンブレンフィルター上で濾過することによってフィルムを成形してもよい。 Examples of the method of forming the film include, but not limited to, a method of forming a film by dispersing the nanomaterial in a solvent and filtering the resulting dispersion on a membrane filter. Specifically, the dispersion of the nanomaterial is subjected to suction filtration using a membrane filter with 0.1 to 2 μm pores, and the membrane remaining on the membrane filter is treated at 50 to 150 ° C. for 1 to 24 hours. By drying under reduced pressure, a film can be formed. Alternatively, the film may be formed by centrifuging the dispersion of the nanomaterial and filtering the supernatant on a membrane filter.
 ナノ材料を分散させる溶媒は、水であってもよく有機溶媒であってもよい。当該溶媒は、好ましくは有機溶媒であり、より好ましくはo-ジクロロベンゼン、ブロモベンゼン、1-クロロナフタレン、2-クロロナフタレンまたはシクロヘキサノンである。これらの溶媒であれば、ナノ材料を効率的に分散させることができる。 The solvent for dispersing the nanomaterial may be water or an organic solvent. The solvent is preferably an organic solvent, more preferably o-dichlorobenzene, bromobenzene, 1-chloronaphthalene, 2-chloronaphthalene or cyclohexanone. These solvents can efficiently disperse the nanomaterial.
 ナノ材料を分散させる方法としては、上述の工程(i)における均質化装置を用いてナノ材料を溶液中に分散させる方法と同様の方法を用いることができる。 As a method of dispersing the nanomaterial, the same method as the method of dispersing the nanomaterial in a solution using the homogenizing device in the above-mentioned step (i) can be used.
 本発明は上述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。 The present invention is not limited to the above-described embodiments, and various modifications can be made within the scope of the claims, and embodiments obtained by appropriately combining the technical means disclosed in the different embodiments. Is also included in the technical scope of the present invention.
 以下、実施例および比較例に基づいて本発明をより詳細に説明するが、本発明は以下の実施例に限定されるものではない。 Hereinafter, the present invention will be described in more detail based on examples and comparative examples, but the present invention is not limited to the following examples.
 〔電子状態の同定〕
 ポリエチレングリコール誘導体を用いることによって、ナノ材料をn型化できるかどうかを確認するため、フーリエ変換赤外分光光度計(ブルカーオプティクス社製、製品名:HYPERION2000)を用いて測定試料の吸光度を測定することにより、ナノ材料の電子状態の同定を行った。
[Identification of electronic state]
Measure the absorbance of the measurement sample using a Fourier transform infrared spectrophotometer (manufactured by Bruker Optics, product name: HYPERION 2000) to confirm whether the nanomaterial can be n-typed by using a polyethylene glycol derivative Identification of the electronic state of the nanomaterial.
 5mgのCNT(名城ナノカーボン社製、製品名:EC-2.0)を、規定濃度(1mM、10mM、100mM)の炭酸カリウム(KCO、和光純薬工業社製)と1重量%のPluronic(登録商標)F127(BASF社製)との水溶液へ10分間の超音波照射により分散させた。分散には、超音波ホモジナイザー(Qsonica社製、Q125)を用いた。続いて、得られた分散液に対して、遠心分離機(久保田商事、製品名:テーブルトップ冷却遠心機5500)を用いて10000rpm、30分間の遠心分離を行い、70体積%程度の量の上清を回収した。当該上清をメンブレンフィルター(0.2μmポア、メルクミリポア社製、製品名:オムニポアメンブレンフィルター JGWP02500)を用いて濾過および乾燥した後、フィルター上に堆積したCNT膜をPETフィルム(帝人フィルムソリューション社製、製品名:テイジン(登録商標)テトロン(登録商標)フィルムG2)上に載せたものを測定試料とした。 5 mg of CNT (made by Meijo Nano Carbon Co., Ltd., product name: EC-2.0), 1 wt% of potassium carbonate (K 2 CO 3 , manufactured by Wako Pure Chemical Industries, Ltd.) at a prescribed concentration (1 mM, 10 mM, 100 mM) The resultant solution was dispersed in an aqueous solution of Pluronic.RTM. F127 (manufactured by BASF) by ultrasonic irradiation for 10 minutes. For dispersion, an ultrasonic homogenizer (manufactured by Qsonica, Q125) was used. Subsequently, the obtained dispersion is centrifuged at 10,000 rpm for 30 minutes using a centrifuge (Kubota Corporation, product name: table top cooling centrifuge 5500), and the volume is increased to about 70% by volume. Qing was recovered. The supernatant is filtered and dried using a membrane filter (0.2 μm pore, manufactured by Merck Millipore, product name: Omnipore membrane filter JGWP02500), and the CNT film deposited on the filter is a PET film (Teijin Film Solutions Co., Ltd. Product name: Teijin (registered trademark) Tetron (registered trademark) film G2) What was placed on it was used as a measurement sample.
 測定結果を図2に示す。図2に示すように、用いる炭酸カリウム(すなわち、金属カチオンおよびアニオン)の濃度を上げるにつれて、S11のバンドギャップ吸収の減少が観察された。これは、伝導帯への電子注入、つまりCNTのn型化を示唆している。また、炭酸カリウム(すなわち、金属カチオンおよびアニオン)の濃度を上げるにつれてS22の吸収スペクトルが消失していることから、特許文献3に記載のようなクラウンエーテルを用いたドーピングの場合と同等の電子移動が起きていることがわかった。 The measurement results are shown in FIG. As shown in FIG. 2, a decrease in band gap absorption of S 11 was observed as the concentration of potassium carbonate used (ie, metal cations and anions) was increased. This suggests electron injection into the conduction band, that is, n-type conversion of CNTs. Further, potassium carbonate (i.e., metal cations and anions) from the absorption spectrum of S 22 is lost as increasing the concentration of the same in the case of doping with crown ethers as described in Patent Document 3 electronic It turned out that a move was taking place.
 〔熱電特性の評価〕
 (a)導電率
 後述の実施例および比較例にて得られた測定試料について、熱電変換特性評価装置(アドバンス理工社製、製品名:ZEM-3)を用いた4探針法によって導電率を測定した。測定温度は310K(37℃)であった。
[Evaluation of thermoelectric characteristics]
(A) Conductivity The conductivity of the measurement samples obtained in Examples and Comparative Examples described later was measured by the 4-probe method using a thermoelectric conversion characteristic evaluation device (advanced Riko Co., product name: ZEM-3). It was measured. The measurement temperature was 310 K (37 ° C.).
 (b)ゼーベック係数
 後述の実施例および比較例にて得られた測定試料のゼーベック係数を、熱電変換特性評価装置(アドバンス理工社製、製品名:ZEM-3)を用いて測定した。測定温度は310K(37℃)であった。
(B) Seebeck coefficient The Seebeck coefficient of the measurement sample obtained in the examples and comparative examples described later was measured using a thermoelectric conversion characteristic evaluation device (advanced Riko Co., product name: ZEM-3). The measurement temperature was 310 K (37 ° C.).
 (c)出力因子
 後述の実施例および比較例にて得られた測定試料について、上述の方法で得られた導電率σおよびゼーベック係数αを用いて、下記式(i)により出力因子PFを算出した。
(C) Output factor The output factor PF is calculated by the following equation (i) using the conductivity σ and the Seebeck coefficient α obtained by the above method for the measurement samples obtained in the following examples and comparative examples. did.
 PF=ασ        (i)
 〔熱電特性の比較〕
 <実施例1>
 5mgのCNT(名城ナノカーボン社製、製品名:EC-2.0)を、規定濃度(0.1mM、0.25mM、0.5mM、1mM、2.5mM、5mM、10mM、50mM、100mM)の炭酸カリウム(KCO、和光純薬工業社製)と1重量%のPluronic(登録商標)F127(BASF社製)との水溶液へ10分間の超音波照射により分散させた。分散には、超音波ホモジナイザー(Qsonica社製、Q125)を用いた。続いて、得られた分散液に対して、遠心分離機(久保田商事、テーブルトップ冷却遠心機5500)を用いて10000rpm、30分間の遠心分離を行い、70体積%程度の量の上清を回収した。当該上清をメンブレンフィルター(0.2μmポア、メルクミリポア社製、製品名:オムニポアメンブレンフィルター JGWP02500)を用いて濾過および乾燥した後、フィルター上に堆積したCNT膜をPETフィルム(帝人フィルムソリューション社製、製品名:テイジン(登録商標)テトロン(登録商標)フィルムG2)上に載せたものを測定試料とした。なお、分散液中のナノ材料複合体の濃度は、約20mMであった。
PF = α 2 σ (i)
[Comparison of thermoelectric characteristics]
Example 1
Standard concentration (0.1 mM, 0.25 mM, 0.5 mM, 1 mM, 2.5 mM, 5 mM, 10 mM, 50 mM, 100 mM) of 5 mg of CNT (manufactured by Meijo Nano Carbon Co., product name: EC-2.0) The resultant solution was dispersed in an aqueous solution of potassium carbonate (K 2 CO 3 , manufactured by Wako Pure Chemical Industries, Ltd.) and 1% by weight of Pluronic® F 127 (manufactured by BASF) by ultrasonic irradiation for 10 minutes. For dispersion, an ultrasonic homogenizer (manufactured by Qsonica, Q125) was used. Subsequently, the obtained dispersion is centrifuged at 10,000 rpm for 30 minutes using a centrifuge (Kubota Co., Ltd., tabletop cooling centrifuge 5500), and the supernatant of about 70% by volume is recovered. did. The supernatant is filtered and dried using a membrane filter (0.2 μm pore, manufactured by Merck Millipore, product name: Omnipore membrane filter JGWP02500), and the CNT film deposited on the filter is a PET film (Teijin Film Solutions Co., Ltd. Product name: Teijin (registered trademark) Tetron (registered trademark) film G2) What was placed on it was used as a measurement sample. The concentration of the nanomaterial complex in the dispersion was about 20 mM.
 各測定試料について、導電率およびゼーベック係数の測定結果を図3の(A)に、出力因子の算出結果を図3の(B)にそれぞれ示す。なお、図3の(A)および(B)の横軸は、用いる炭酸カリウム濃度(C(mM))を示す。また、各測定試料について、導電率、ゼーベック係数および出力因子の具体的な数値を表1に示す。 For each measurement sample, the measurement results of the conductivity and the Seebeck coefficient are shown in FIG. 3 (A), and the calculation results of the output factor are shown in FIG. 3 (B). In addition, the horizontal axis of (A) and (B) of FIG. 3 shows the potassium carbonate concentration (C (mM)) to be used. Further, specific numerical values of the conductivity, the Seebeck coefficient and the output factor are shown in Table 1 for each measurement sample.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 図3の(A)および(B)、表1に示すように、用いる炭酸カリウムの濃度を変化させるに伴い、熱電特性が連続的に変化することがわかった。つまり、本発明の一実施形態においては、金属塩の添加量を変えることで、熱電特性をコントロールすることができる。 As shown in (A) and (B) of FIG. 3 and Table 1, it was found that the thermoelectric characteristics changed continuously as the concentration of potassium carbonate used was changed. That is, in one embodiment of the present invention, the thermoelectric characteristics can be controlled by changing the addition amount of the metal salt.
 <実施例2>
 実施例1において、100mMの炭酸カリウム(KCO、和光純薬工業社製)を用い、Pluronic(登録商標)F127の代わりにPluronic(登録商標)F108(BASF社製)を用いた以外は実施例1と同様に測定試料を作製した。
Example 2
In Example 1, 100 mM potassium carbonate (K 2 CO 3 , manufactured by Wako Pure Chemical Industries, Ltd.) was used, and Pluronic® F108 (manufactured by BASF Corp.) was used instead of Pluronic® F127. A measurement sample was produced in the same manner as in Example 1.
 <実施例3>
 実施例1において、100mMの炭酸カリウム(KCO、和光純薬工業社製)を用い、Pluronic(登録商標)F127の代わりにBrij(登録商標)S100(クローダ社製)を用いた以外は実施例1と同様に測定試料を作製した。
Example 3
In Example 1, 100 mM potassium carbonate (K 2 CO 3 , manufactured by Wako Pure Chemical Industries, Ltd.) was used, and Brij (registered trademark) S100 (manufactured by Croda) was used instead of Pluronic (registered trademark) F127. A measurement sample was produced in the same manner as in Example 1.
 <実施例4>
 5mgのCNTを、100mMの炭酸カリウム(KCO、和光純薬工業社製)と1重量%のPluronic(登録商標)F127(BASF社製)との水溶液へ10分間の超音波照射により分散させた。分散には、超音波ホモジナイザー(Qsonica社製、Q125)を用いた。得られた分散液をメンブレンフィルター(0.2μmポア、メルクミリポア社製、オムニポアメンブレンフィルター JGWP02500)を用いて濾過および乾燥した後、フィルター上に堆積したCNT膜をPETフィルム(帝人フィルムソリューション社製、製品名:テイジン(登録商標)テトロン(登録商標)フィルムG2)上に載せたものを測定試料とした。
Example 4
Dispersion of 5 mg of CNT in an aqueous solution of 100 mM potassium carbonate (K 2 CO 3 , Wako Pure Chemical Industries, Ltd.) and 1% by weight of Pluronic® F 127 (BASF) by ultrasonication for 10 minutes I did. For dispersion, an ultrasonic homogenizer (manufactured by Qsonica, Q125) was used. The obtained dispersion is filtered and dried using a membrane filter (0.2 μm pore, manufactured by Merck Millipore, Omnipore membrane filter JGWP02500), and the CNT film deposited on the filter is a PET film (manufactured by Teijin Film Solutions Ltd.) Product name: What was placed on Teijin (registered trademark) Tetron (registered trademark) film G2) was used as a measurement sample.
 <比較例1>
 実施例1において、炭酸カリウム(KCO、和光純薬工業社製)の濃度を100mMとし、Pluronic(登録商標)F127の代わりに18-クラウン-6-エーテル(シグマアルドリッチ社製)を用いたところ、超音波照射を行った場合であってもCNTを溶液中に分散させることができず、分散液を得ることができなかった。
Comparative Example 1
In Example 1, the concentration of potassium carbonate (K 2 CO 3 , manufactured by Wako Pure Chemical Industries, Ltd.) is 100 mM, and 18-crown-6-ether (manufactured by Sigma Aldrich) is used instead of Pluronic® F127. As a result, even when ultrasonic irradiation was performed, the CNTs could not be dispersed in the solution, and a dispersion could not be obtained.
 <結果>
 各測定試料について、導電率およびゼーベック係数の測定結果、出力因子の算出結果を表2に示す。なお、表2中の実施例1では、実施例1において100mMの炭酸カリウム(KCO、和光純薬工業社製)を用いて作製した測定試料についてのデータを示す。
<Result>
The measurement results of the conductivity and the Seebeck coefficient and the calculation results of the output factor are shown in Table 2 for each measurement sample. In addition, in Example 1 in Table 2, the data about the measurement sample produced using 100 mM potassium carbonate (K 2 CO 3 , manufactured by Wako Pure Chemical Industries, Ltd.) in Example 1 are shown.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 表2より、実施例1~4のいずれにおいても、優れた熱電特性を有していることがわかった。すなわち、実施例1~4の導電率はいずれも1000s/cmを超え、ゼーベック係数はいずれも-20μV/K以下であり、出力因子はいずれも100μW/mKを超えた。 From Table 2, it was found that all of Examples 1 to 4 had excellent thermoelectric characteristics. That is, the conductivity of each of Examples 1 to 4 exceeded 1000 s / cm, the Seebeck coefficient of each was −20 μV / K or less, and the output factor of each exceeded 100 μW / mK 2 .
 〔熱安定性の評価〕
 実施例1で得られた測定試料(炭酸カリウム(KCO、和光純薬工業社製)の濃度が100mMの場合)について、100℃の電気炉の中で所定の時間(30分、1時間、2時間、3時間、72時間、120時間、168時間、240時間、288時間、336時間、408時間)熱処理した後、各測定試料について、導電率およびゼーベック係数を測定した。
[Evaluation of thermal stability]
For the measurement sample (potassium carbonate (K 2 CO 3 , Wako Pure Chemical Industries, Ltd.) concentration is 100 mM) obtained in Example 1, predetermined time (30 minutes, 1 hour) in an electric furnace at 100 ° C. After heat treatment for 2, 3, 3, 72, 120, 168, 240, 288, 336, 408 hours), the conductivity and the Seebeck coefficient were measured for each measurement sample.
 各測定試料について、導電率およびゼーベック係数の測定結果、出力因子の算出結果を図4に示す。 The measurement results of the conductivity and the Seebeck coefficient and the calculation results of the output factor are shown in FIG. 4 for each measurement sample.
 図4からわかるように、100℃の電気炉の中で400時間測定試料を熱処理した後であっても、測定試料の導電率およびゼーベック係数は変化することなく、一定の値を保っていた。 As can be seen from FIG. 4, even after heat treatment of the measurement sample in an electric furnace at 100 ° C. for 400 hours, the conductivity and the Seebeck coefficient of the measurement sample did not change, and maintained constant values.
 本発明は、熱電発電システム、医療用電源、セキュリティ用電源、航空・宇宙用途等の種々広範な産業において利用可能である。 The present invention is applicable to a wide variety of industries such as thermoelectric power generation systems, medical power supplies, security power supplies, and aerospace applications.

Claims (11)

  1.  ポリエチレングリコール誘導体と、金属カチオンと、n型ナノ材料とを含み、
     前記ポリエチレングリコール誘導体は、下記式(1)で表される鎖状構造を有することを特徴とするナノ材料複合体:
    -(CHCHO)-    ・・・(1)
     式(1)中、nは4以上の整数である。
    Containing polyethylene glycol derivatives, metal cations and n-type nanomaterials,
    A nanomaterial complex characterized in that the polyethylene glycol derivative has a chain structure represented by the following formula (1):
    -(CH 2 CH 2 O) n- (1)
    In formula (1), n is an integer of 4 or more.
  2.  前記ポリエチレングリコール誘導体は疎水基を有することを特徴とする、請求項1に記載のナノ材料複合体。 The nanomaterial composite according to claim 1, wherein the polyethylene glycol derivative has a hydrophobic group.
  3.  前記ポリエチレングリコール誘導体は非イオン系界面活性剤であることを特徴とする、請求項1または2に記載のナノ材料複合体。 The nanomaterial composite according to claim 1, wherein the polyethylene glycol derivative is a non-ionic surfactant.
  4.  前記非イオン系界面活性剤は、ポリオキシエチレン・ポリオキシプロピレンブロックポリマー、ポリオキシエチレンソルビタン脂肪酸エステル、ポリオキシエチレンアルキルフェニルエーテル、およびポリオキシエチレンアルキルエーテルからなる群より選択される少なくとも1つであることを特徴とする、請求項3に記載のナノ材料複合体。 The nonionic surfactant is at least one selected from the group consisting of polyoxyethylene / polyoxypropylene block polymer, polyoxyethylene sorbitan fatty acid ester, polyoxyethylene alkylphenyl ether, and polyoxyethylene alkyl ether The nanomaterial composite according to claim 3, characterized in that
  5.  前記n型ナノ材料は、ナノ粒子、ナノチューブ、ナノワイヤ、ナノロッドおよびナノシートからなる群より選択される少なくとも1つを含むことを特徴とする、請求項1~4のいずれか一項に記載のナノ材料複合体。 The nanomaterial according to any one of claims 1 to 4, wherein the n-type nanomaterial comprises at least one selected from the group consisting of nanoparticles, nanotubes, nanowires, nanorods and nanosheets. Complex.
  6.  請求項1~5のいずれか一項に記載のナノ材料複合体と溶媒とを含むことを特徴とするインク。 An ink comprising the nanomaterial composite according to any one of claims 1 to 5 and a solvent.
  7.  n型ナノ材料に、ポリエチレングリコール誘導体と、金属カチオンとを接触させる工程を含み、
     前記ポリエチレングリコール誘導体は、下記式(1)で表される鎖状構造を有することを特徴とするナノ材料複合体の製造方法:
    -(CHCHO)-    ・・・(1)
     式(1)中、nは4以上の整数である。
    contacting the n-type nanomaterial with a polyethylene glycol derivative and a metal cation,
    The method for producing a nanomaterial composite, wherein the polyethylene glycol derivative has a chain structure represented by the following formula (1):
    -(CH 2 CH 2 O) n- (1)
    In formula (1), n is an integer of 4 or more.
  8.  前記ポリエチレングリコール誘導体は疎水基を有することを特徴とする、請求項7に記載のナノ材料複合体の製造方法。 The method for producing a nanomaterial composite according to claim 7, wherein the polyethylene glycol derivative has a hydrophobic group.
  9.  前記ポリエチレングリコール誘導体は非イオン系界面活性剤であることを特徴とする、請求項7または8に記載のナノ材料複合体の製造方法。 The method for producing a nanomaterial composite according to claim 7 or 8, wherein the polyethylene glycol derivative is a nonionic surfactant.
  10.  前記非イオン系界面活性剤は、ポリオキシエチレン・ポリオキシプロピレンブロックポリマー、ポリオキシエチレンソルビタン脂肪酸エステル、ポリオキシエチレンアルキルフェニルエーテル、およびポリオキシエチレンアルキルエーテルからなる群より選択される少なくとも1つであることを特徴とする、請求項9に記載のナノ材料複合体の製造方法。 The nonionic surfactant is at least one selected from the group consisting of polyoxyethylene / polyoxypropylene block polymer, polyoxyethylene sorbitan fatty acid ester, polyoxyethylene alkylphenyl ether, and polyoxyethylene alkyl ether The manufacturing method of the nanomaterial composite according to claim 9, characterized in that
  11.  前記n型ナノ材料は、ナノ粒子、ナノチューブ、ナノワイヤ、ナノロッドおよびナノシートからなる群より選択される少なくとも1つを含むことを特徴とする、請求項7~10のいずれか一項に記載のナノ材料複合体の製造方法。 The nanomaterial according to any one of claims 7 to 10, wherein the n-type nanomaterial comprises at least one selected from the group consisting of nanoparticles, nanotubes, nanowires, nanorods and nanosheets. Method of manufacturing a complex.
PCT/JP2018/029278 2017-08-25 2018-08-03 Nanomaterial complex and method for manufacturing same WO2019039239A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201880042492.7A CN110809828A (en) 2017-08-25 2018-08-03 Nanomaterial composites and methods of making the same
KR1020197031347A KR102489604B1 (en) 2017-08-25 2018-08-03 Nanomaterial composite and manufacturing method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017162817A JP6562403B2 (en) 2017-08-25 2017-08-25 Nanomaterial composite and method for producing the same
JP2017-162817 2017-08-25

Publications (1)

Publication Number Publication Date
WO2019039239A1 true WO2019039239A1 (en) 2019-02-28

Family

ID=65439970

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/029278 WO2019039239A1 (en) 2017-08-25 2018-08-03 Nanomaterial complex and method for manufacturing same

Country Status (5)

Country Link
JP (1) JP6562403B2 (en)
KR (1) KR102489604B1 (en)
CN (1) CN110809828A (en)
TW (1) TWI796351B (en)
WO (1) WO2019039239A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112461291A (en) * 2020-11-11 2021-03-09 大连海事大学 Modularization concatenation formula is from energy supply device and marine biosensor system

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113659064A (en) * 2020-05-12 2021-11-16 华为技术有限公司 Thermoelectric device and thermoelectric apparatus

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011102322A1 (en) * 2010-02-16 2011-08-25 独立行政法人産業技術総合研究所 Method of separating swcnts, separating device, and micelle dispersion solution containing swcnts
JP2017112319A (en) * 2015-12-18 2017-06-22 富士フイルム株式会社 Production method of dispersion composition, and production method of thermoelectric conversion layer
WO2017110589A1 (en) * 2015-12-25 2017-06-29 富士フイルム株式会社 Thermoelectric conversion device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2763200A4 (en) 2011-09-28 2015-06-03 Fujifilm Corp Thermoelectric conversion material and thermoelectric conversion element
JP5789580B2 (en) 2011-10-31 2015-10-07 富士フイルム株式会社 Thermoelectric conversion material and thermoelectric conversion element
KR101965041B1 (en) 2014-06-26 2019-04-02 고쿠리츠다이가쿠호징 나라 센탄카가쿠기쥬츠 다이가쿠인 다이가쿠 Nanomaterial dopant composition composite, dopant composition, and method for manufacturing nanomaterial dopant composition composite

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011102322A1 (en) * 2010-02-16 2011-08-25 独立行政法人産業技術総合研究所 Method of separating swcnts, separating device, and micelle dispersion solution containing swcnts
JP2017112319A (en) * 2015-12-18 2017-06-22 富士フイルム株式会社 Production method of dispersion composition, and production method of thermoelectric conversion layer
WO2017110589A1 (en) * 2015-12-25 2017-06-29 富士フイルム株式会社 Thermoelectric conversion device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112461291A (en) * 2020-11-11 2021-03-09 大连海事大学 Modularization concatenation formula is from energy supply device and marine biosensor system

Also Published As

Publication number Publication date
KR20200040696A (en) 2020-04-20
KR102489604B1 (en) 2023-01-16
JP2019041028A (en) 2019-03-14
TW201912570A (en) 2019-04-01
CN110809828A (en) 2020-02-18
TWI796351B (en) 2023-03-21
JP6562403B2 (en) 2019-08-21

Similar Documents

Publication Publication Date Title
Yao et al. Enhanced thermoelectric performance of single-walled carbon nanotubes/polyaniline hybrid nanocomposites
JP6340077B2 (en) Method for producing nanomaterial-dopant composition composite, nanomaterial-dopant composition composite, and dopant composition
Wan et al. Focusing on energy and optoelectronic applications: a journey for graphene and graphene oxide at large scale
Huang et al. Effective work function modulation of graphene/carbon nanotube composite films as transparent cathodes for organic optoelectronics
JP6197235B2 (en) Method for producing nanomaterial-dopant composition composite, nanomaterial-dopant composition composite, and dopant composition
Reddy et al. Organic conjugated polymer-based functional nanohybrids: synthesis methods, mechanisms and its applications in electrochemical energy storage supercapacitors and solar cells
TWI711577B (en) N-type conductive material and manufacturing method
Wei et al. Free-standing p-Type SWCNT/MXene composite films with low thermal conductivity and enhanced thermoelectric performance
Wei et al. Facile preparations of layer-like and honeycomb-like films of poly (3, 4-ethylenedioxythiophene)/carbon nanotube composites for thermoelectric application
JP2016157942A (en) Method for manufacturing carbon-nanotube/dopant composite complex and carbon-nanotube/dopant composite complex
Adekoya et al. Structure-property relationship and nascent applications of thermoelectric PEDOT: PSS/carbon composites: A review
Hata et al. Surfactant-wrapped n-type organic thermoelectric carbon nanotubes for long-term air stability and power characteristics
KR102489604B1 (en) Nanomaterial composite and manufacturing method thereof
JP7054103B2 (en) Nanomaterial complex and its manufacturing method
JP7221496B2 (en) Carbon nanotube composite and manufacturing method thereof
Kim et al. A facile preparation route of n-type carbon buckypaper and its enhanced thermoelectric performance
Yin et al. Improved thermoelectric performance of flexible film based on polypyrrole/silver nanocomposites
JP6744406B2 (en) N-type semiconductor layer, thermoelectric conversion layer, thermoelectric conversion element, thermoelectric conversion module, and composition for forming n-type semiconductor layer
JP2019197895A (en) Nanomaterial composite and method for producing the same
JP2015012261A (en) Thermoelectric conversion element
JP6994731B2 (en) Nanomaterial complex and its manufacturing method
WO2018142748A1 (en) Nanomaterial composite, thermoelectric conversion module, and production method for nanomaterial composite
JP6698565B2 (en) Thermoelectric conversion layer, thermoelectric conversion element, thermoelectric conversion module
Jorge et al. Evaluation of thermoelectric properties of hybrid polyaniline nanocomposites incorporated with graphene oxide and zinc oxide with different morphologies
Wang et al. Vacuum filtration method towards flexible thermoelectric films

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18847938

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18847938

Country of ref document: EP

Kind code of ref document: A1