WO2019037028A1 - 电压转换电路与电池充电器 - Google Patents

电压转换电路与电池充电器 Download PDF

Info

Publication number
WO2019037028A1
WO2019037028A1 PCT/CN2017/098820 CN2017098820W WO2019037028A1 WO 2019037028 A1 WO2019037028 A1 WO 2019037028A1 CN 2017098820 W CN2017098820 W CN 2017098820W WO 2019037028 A1 WO2019037028 A1 WO 2019037028A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductive
rectifying element
capacitor
switch
electrically connected
Prior art date
Application number
PCT/CN2017/098820
Other languages
English (en)
French (fr)
Inventor
张辉
宋安国
王帆
吴壬华
Original Assignee
深圳欣锐科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳欣锐科技股份有限公司 filed Critical 深圳欣锐科技股份有限公司
Priority to PCT/CN2017/098820 priority Critical patent/WO2019037028A1/zh
Priority to CN201780083413.2A priority patent/CN110178301B/zh
Publication of WO2019037028A1 publication Critical patent/WO2019037028A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/02Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from ac mains by converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/12Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/21Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/217Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M7/219Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only in a bridge configuration

Definitions

  • the invention relates to the technical field of voltage conversion, in particular to the field of battery chargers for converting AC to DC or DC to DC, and particularly to a voltage conversion circuit and a battery charger.
  • rechargeable electronic devices are often selected as the driving source for rechargeable electronic devices.
  • a charging circuit that charges the rechargeable battery is also born.
  • the charging circuit can only select the AC power source for charging, and cannot directly select the DC battery for charging, that is, it is impossible to collect the multi-phase AC (two-phase or three-phase AC, 220V/50Hz) and the single-phase DC power supply at the same time.
  • the function of the conversion, thereby causing inconvenience in the use of the charging circuit, and the user experience is poor.
  • the present invention provides a voltage conversion circuit that is convenient to use and has high user experience.
  • the present invention also provides a battery charger having the aforementioned voltage conversion circuit.
  • a voltage conversion circuit includes a first capacitor, a first conductive branch connected in parallel with each other, a second conductive branch and a third conductive branch, and a first output terminal and a second output terminal for outputting a driving voltage.
  • the voltage conversion circuit includes a first switch, a second switch, a third switch, a fourth switch, and a second capacitor, the first switch being electrically connected to an input end of the power signal of the second conductive branch, The second switch is electrically connected to the input end of the power signal of the third conductive branch, and the third switch is electrically connected to the second conductive branch and the first electrode end of the second capacitor, The fourth switch is electrically connected to the third conductive branch and the first electrode end, and the second electrode end of the second capacitor is electrically connected to the second output end, the first capacitor is electrically The connection is between the first output end and the second output end.
  • the voltage conversion circuit When the first switch and the second switch are in an electrically conductive state, and the third switch and the third When the four switches are in an electrical off state, the voltage conversion circuit is in a multi-phase input mode, and the first conductive branch, the second conductive branch, and the third conductive branch respectively receive three from the input end of the power signal. a phase power signal and converting the three-phase power signal into a driving voltage and outputting the driving voltage from the first output and the second output;
  • the voltage conversion circuit When the first switch and the second switch are in an electrical off state, and the third switch and the fourth switch are in an electrically conductive state, the voltage conversion circuit is in a single-phase input mode,
  • the first conductive branch receives a single-phase power signal from an input end of the power signal thereof, and is converted into the driving voltage via the first conductive branch, the second conductive branch, the third conductive branch, and the
  • the second capacitor and the first output and the second output form a conductive loop.
  • the first output terminal alternately passes through the second conductive branch and the third conductive
  • the branch is electrically coupled to the second capacitor to form a buck circuit to reduce the voltage of the first output to a threshold voltage.
  • the first output terminal alternately passes through the second conductive branch and the third conductive
  • the branch is electrically coupled to the second capacitor to form a boost circuit to boost the voltage of the first output to the threshold voltage.
  • the voltage conversion circuit further includes a first input end, a second input end, and a third input end for receiving the power supply signal
  • the first conductive branch includes a first conductive end, and the first storage end An inductor, a first rectifying component, and a second rectifying component, wherein the first conductive end is electrically connected to the first input end and one end of the first energy storage inductor, and the other end of the first energy storage inductor is electrically Connecting the first connecting end, the first rectifying element is electrically connected to the first connecting end and the first output end, and the second rectifying element is electrically connected to the first connecting end and the second output The first rectifying element and the second rectifying element are connected in series through the first connecting end.
  • the second conductive branch includes a second conductive end, a second energy storage inductor, a third rectifying element, and a fourth rectifying element, and the second conductive end is electrically connected to the first switch and the third switch.
  • the third rectifying element is electrically connected to the second connecting end and the first output end
  • the second energy storage inductor is electrically connected to the second conductive end and the second connecting end
  • the fourth rectifying element is electrically The second connecting end and the second output end are connected, and the third rectifying element and the fourth rectifying element are connected in series through the second connecting end.
  • the third conductive branch includes a third conductive end, a third energy storage inductor, a fifth rectifying element, and a sixth rectifying element, and the third conductive end is electrically connected to the a second switch and a fourth switch, the third energy storage inductor is electrically connected to the third conductive end and the third connection end, and the fifth rectifying element is electrically connected to the third connection end and the first The output end, the sixth rectifying element is electrically connected to the third connecting end and the second output end, and the fifth rectifying element and the sixth rectifying element are connected in series through the third connecting end.
  • the third rectifying element in the second conductive branch alternates with the fourth rectifying element
  • the first sub-time period and the second sub-time period are electrically connected, and the first output end passes the third rectifying element, the second energy storage inductor, the third switch, and the first
  • the second capacitor and the fourth rectifying element form a conductive loop, and store electrical energy of the first output terminal in the second capacitor, wherein the first sub-period is continuous with the second sub-period And adjacent time periods.
  • the fifth rectifying element and the sixth rectification in the third conductive branch The element is electrically connected to each other in a third sub-period and a fourth sub-period, wherein the first output passes through the fifth rectifying element, the third energy storage inductor, the fourth switch,
  • the second capacitor and the sixth rectifying element form a conductive loop, and store electrical energy of the first output in the second capacitor, wherein the third sub-period and the fourth sub-period It is a continuous and adjacent time period.
  • the voltage conversion circuit when the voltage conversion circuit is in the single-phase input mode and when the voltage of the first output terminal is less than the threshold voltage, corresponding to the second conductive branch;
  • the third rectifying element is in an off state
  • the fourth rectifying element is in an on state
  • the second capacitor, the third switch, the second energy storage inductor, and the The fourth rectifying element forms a conductive loop
  • the second capacitor transfers stored electrical energy to the second stored energy inductor
  • the third rectifying element is in an on state
  • the fourth rectifying element is in an off state
  • the first output terminal forms a conductive loop
  • the second capacitor and the second energy storage inductor transfer stored electrical energy to the first output end
  • the voltage conversion circuit when the voltage conversion circuit is in a single phase input mode and when the voltage of the first output terminal is less than a threshold voltage,
  • the fifth rectifying element is in an off state
  • the sixth rectifying element is in an on state
  • the second capacitor, the fourth switch, the third energy storage inductor, and the The sixth rectifying element forms a conductive loop
  • the second capacitor transfers stored electrical energy to the third stored energy inductor
  • the fifth rectifying element is in an on state
  • the sixth rectifying element is in an off state
  • the second capacitor, the fourth switch, the third energy storage inductor and a fifth
  • the rectifying element and the first output form a conductive loop
  • the second capacitor and the third tank inductor transfer stored electrical energy to the first output
  • the seventh sub-period is The eighth sub-period is a continuous and adjacent time period.
  • the first to sixth rectifying elements are power switching devices
  • the first and second switches are single pole double throw switches
  • the third and fourth switches are single pole double throw switches.
  • a battery charger includes the aforementioned voltage conversion circuit.
  • the voltage conversion circuit of the present invention allows the voltage conversion circuit to select a multi-phase AC power source or a single-phase DC power source as an input voltage according to the control of the first, second, third, and fourth switches. Thereby, the convenience of use of the voltage conversion circuit is effectively improved. Further, since only four switches and a second capacitor are used, the driving voltages outputted by the first and second output terminals are stored and filtered, so that the ripple current of the driving voltage is small and the stability is high, and the component volume is small. In turn, the overall volume of the voltage conversion circuit is small.
  • FIG. 1 is a circuit structural diagram of a voltage conversion circuit according to an embodiment of the present invention.
  • FIG. 2 is an operation timing diagram of the voltage conversion circuit shown in FIG. 1 in a first state of a single-phase input mode
  • FIG. 3 is a timing chart showing the operation of the voltage conversion circuit of FIG. 1 in the second state of the single-phase input mode.
  • FIG. 1 is a circuit structural diagram of a voltage conversion circuit according to an embodiment of the present invention.
  • the voltage conversion circuit 10 is configured to convert the received power signal into a driving voltage, and the power signal may be a three-phase AC signal or a single-phase DC signal, that is, the voltage conversion circuit 10 includes multiple Phase input mode and single phase input mode.
  • the voltage conversion circuit 10 can be directly applied to the battery charger 1.
  • the voltage conversion circuit 10 includes a first input terminal 10a for receiving a power supply signal, a second input terminal 10b, a third input terminal 10c, and a first output terminal 10i for outputting a driving voltage and a second output terminal 10j.
  • the first input terminal 10a, the second input terminal 10b, and the third input terminal 10c are configured to receive a three-phase AC power signal or a single-phase DC voltage signal.
  • the first output terminal 10i and the second output terminal 10j are used to output the driving voltage obtained after the conversion to the load RL.
  • the voltage conversion circuit 10 further includes a first conductive branch 101, a second conductive branch 102, and a third conductive branch 103 connected in parallel with each other for converting the power signal, and further includes a first capacitor C1, first The switch K1, the second switch K2, the third switch K3, the fourth switch K4, and the second capacitor C2.
  • the first capacitor C1 is electrically connected between the first output terminal 10i and the second output terminal 10j.
  • the first conductive branch 101 is electrically connected between the first input end 10a and the first output end 10i and the second output end 10j.
  • the second conductive branch 102 is electrically connected between the second input end 10b and the first output end 10i and the second output end 10j.
  • the third conductive branch 103 is electrically connected between the third input end 10c and the first output end 10i and the second output end 10j.
  • the first capacitor C1 is used for voltage-stabilizing filtering processing on the voltage outputted from the first conductive branch 10a, so that the waveform of the driving voltage outputted from the first output terminal 10i and the second output terminal output 10j is smooth.
  • the first switch K1 is electrically connected between the second input end 10b and the second conductive branch 102 for selectively electrically or electrically disconnecting the second input end 10b and the second conductive branch 102. .
  • the second switch K2 is electrically connected between the third input terminal 10c and the third conductive branch 103 for selectively electrically or electrically disconnecting the third input terminal 10c and the third conductive branch 103. .
  • the third switch K3 is electrically connected to the first electrode end of the second conductive branch 102 and the second capacitor C2 E1,
  • the fourth switch K4 is electrically connected to the first electrode end E1 of the third conductive branch 103 and the second capacitor C2, and the second electrode end E2 of the second capacitor C2 is electrically connected to the second output end 10j.
  • the third conductive terminal 103 is electrically connected to the third input terminal 10c, and the second capacitor C2 is electrically disconnected from the second conductive branch 102 and the third conductive branch 103.
  • the voltage conversion circuit is electrically connected.
  • the first, second, and third conductive branches 101, 102, 103 receive three-phase power signals from the first, second, and third input terminals 10a, 10b, and 10c, respectively,
  • the second and third conductive branches 101, 102, 103 cooperate to convert the three-phase power signal into the driving voltage, and the driving voltage is outputted from the first output terminal 10i and the second output terminal output 10j to the load RL.
  • the voltage conversion circuit 10 is a single-phase input mode, that is, a DC single-phase power signal is received from the first input terminal 10a only by the first conductive branch 101, and the DC single-phase power signal is converted into the The driving voltage is outputted from the first output terminal 10i and the second output terminal output 10j to the load RL.
  • the second capacitor C1, the first to fourth switches K1-K4, the second conductive branch 10b, and the third conductive branch 10c are for connecting the first connection between the first output terminal 10i and the second output terminal output 10j
  • the driving voltage outputted from the capacitor C1 is stored or discharged, so that the waveform of the driving voltage outputted from the first output terminal 10i and the second output terminal 10j of the first capacitor C1 is smooth.
  • the first conductive branch 101 includes a first conductive end 101a, a first energy storage inductor LS1, a first rectifying element SW1, and a second rectifying element SW2, wherein the first conductive end 101a is electrically connected to the first The first end of the first energy storage inductor LS1 is electrically connected to the first conductive end 101a, and the other end is electrically connected to the first connection end 101b.
  • the first rectifying element SW1 is electrically connected to the first connecting end 101b and the first output end 10i.
  • the second rectifying element SW2 is electrically connected to the first connecting end 101b and the second output end 10j.
  • the first rectifying element SW1 and the second rectifying element SW2 are connected in series between the first output end 10i and the second output end 10j via the first connecting end 101b.
  • the second conductive branch 102 includes a second conductive end 102a, a second energy storage inductor LS2, and a third rectifier element.
  • the second conductive end 102a is electrically connected to the first switch K1 and the third switch K3.
  • One end of the second energy storage inductor LS2 is electrically connected to the second conductive end 102a, and the other end is electrically connected to the second connection end 102b.
  • the third rectifying element SW3 is electrically connected to the second connecting end 102b and the first output end 10i.
  • the fourth rectifying element SW4 is electrically connected to the second connecting end 102b and the second output end 10j.
  • the third rectifying element SW3 and the fourth rectifying element SW4 are connected in series between the first output end 10i and the second output end 10j via the second connecting end 10b.
  • the third conductive branch 103 includes a third conductive end 103a, a third energy storage inductor LS3, a fifth rectifying element SW5, and a sixth rectifying element SW6.
  • the third conductive end 103a is electrically connected to the second switch K2 and the fourth switch K4.
  • One end of the third energy storage inductor LS3 is electrically connected to the third conductive end 103a, and the other end is electrically connected to the third connection end 103b.
  • the fifth rectifying element SW5 is electrically connected to the third connecting end 103b and the first output end 10i.
  • the sixth rectifying element SW6 is electrically connected to the third connecting end 103b and the second output end 10j.
  • the fifth rectifying element SW5 and the sixth rectifying element SW6 are connected in series between the first output end 10i and the second output end 10j through the third connecting end 103b.
  • the voltage conversion circuit 10 further includes a fourth input terminal 10d and a fourth conductive branch 104, the fourth conductive branch 104 and the first, second, and third conductive branches.
  • the roads 101, 102, 103 are connected in parallel with each other.
  • the fourth input terminal 10d is used to input a reference voltage (N).
  • the reference voltage is a ground voltage.
  • the fourth conductive branch 104 is used to provide a reference voltage for the voltage conversion circuit 10.
  • the fourth conductive branch 104 includes a seventh rectifying element SW7 and an eighth rectifying element SW8.
  • the seventh rectifying element SW7 and the eighth rectifying element SW8 are connected in series with each other, and the node between the seventh rectifying element SW7 and the eighth rectifying element SW8 is defined as a fourth connecting end 104b, and the fourth connecting end 104b
  • the electrical connection is directly connected to the fourth input terminal 10d for receiving the reference voltage.
  • the seventh rectifying element SW7 and the eighth rectifying element SW8 are connected in series between the first output end 10i and the first output end 10j.
  • the first switch K1 and the second switch K2 operate in synchronization, that is, an operation of turning on or off simultaneously.
  • the third switch K3 operates in synchronization with the fourth switch K4, that is, an operation of turning on or off simultaneously.
  • the first switch K1 and the second switch K2 can be implemented by a single pole double throw switch.
  • the third switch K3 and the fourth switch K4 can be implemented by a single pole double throw switch.
  • the first to eighth rectifying elements SW1-SW8 are power switching devices including, but not limited to, Metal-Oxide-Semiconductor Field-Effect Transistor (MOSFET) or Insulated Gate Bipolar Transistor (Insulated Gate Bipolar Transistor, IGBT), etc.
  • MOSFET Metal-Oxide-Semiconductor Field-Effect Transistor
  • IGBT Insulated Gate Bipolar Transistor
  • the drains of the first, third, fifth, and seventh rectifying elements SW1, SW3, SW5, and SW7 are electrically connected to each other, and the first output end 10i is electrically connected to the first output end 10i.
  • the sources of the third, fifth, and seventh rectifying elements SW1, SW3, SW5, and SW7 serve as conductive ends, and are electrically connected to the first, second, third, and fourth connecting ends 101b, 102b, 103b, and 104b, respectively.
  • the drains of the fourth, eighth, and eighth rectifying elements SW2, SW4, SW6, and SW8 are electrically connected, and are electrically connected to the first, second, third, and fourth connecting ends 101b, 102b, 103b, and 104b, respectively;
  • the gates of the first to eighth MOS transistors receive control signals for controlling electrical conduction and electrical cutoff of the first to eighth rectifying elements SW1 - SW8.
  • the first conductive branch 10a is used as the conductive branch for receiving the power signal, and the other two conductive branches are used as the first capacitor C1 for voltage regulation.
  • the auxiliary conductive branch that is, the auxiliary conductive branch of the second conductive branch 10b and the first conductive capacitor C1 of the third conductive branch 10c, but in other modified embodiments of the present invention, the second conductive branch The 10b or the third conductive branch 10c can also serve as a conductive branch for receiving the power signal, and the other two conductive branches serve as the auxiliary conductive branch of the first capacitor C1, that is, the first conductive branch 10a and the first The three conductive branches 10c, or the first conductive branch 10a and the second conductive branch 10b, serve as auxiliary conductive branches for the first capacitor C1 to be regulated.
  • FIG. 2 is an operation timing diagram of the voltage conversion circuit 10 shown in FIG. 1 in the first state of the single-phase input mode.
  • the voltage conversion circuit when the voltage conversion circuit is in the single-phase input mode, that is, only the first conductive branch 101 receives the DC single-phase power signal from the first input terminal 10a, and passes the first storage.
  • the inductor LS1 and the first rectifying element SW1 and the second rectifying element SW2 that are alternately in an on state convert the power signal into a driving voltage output from the first output terminal 10i and the second output terminal 10j.
  • the first output terminal 10i is a high voltage terminal and has a voltage Vo
  • the second output terminal 10j is a low voltage terminal
  • the low voltage terminal has a reference voltage of 0V.
  • the first capacitor C1 electrically connected to the first output terminal 10i alternately circulates through the second conductive branch 102 and the second capacitor C2 or
  • the third conductive branch 103 is electrically connected to the second capacitor C2 and constitutes a buck circuit (buck circuit), that is, the first output terminal 10i passes through the second conductive branch 102 during a period of time.
  • the second capacitor C2 is turned on and constitutes a step-down circuit, and then the first output terminal 10i is turned on by the third conductive branch 103 and the second capacitor C2 in the next adjacent period of time and constitutes a step-down circuit, thereby
  • the electric energy stored by the capacitor C1 is stored from the first output terminal 10i to the second capacitor C2, so that the voltage of the first output terminal 10i is lowered to the threshold voltage Vth, that is, the second conductive branch 102 and the third
  • the conductive branch 103 constitutes an energy storage circuit.
  • the first and second conductive branches 102, 103 constitute the buck circuit
  • the first period P1 and the third conductive branch in which the second conductive branch 102 included in one of the working periods is in an active state are in an active state.
  • the second cycle P2 in which the working state is 103 is taken as an example to describe the workflow.
  • the second conductive branch 102 is in an active state.
  • the third rectifying element SW3 and the fourth rectifying element SW4 in the second conductive branch 102 are alternately in an electrically conductive state.
  • the first sub-time period t1 the first output end 10i connected to the first capacitor C1, the third rectifying element SW3, the second energy storage inductor LS2, the third switch K3, the second capacitor C2, and the first capacitor
  • the second output terminal 10j connected to the C1 and the first capacitor C1 form a conductive loop, that is, for the circuit component, the conductive branch is: C1 ⁇ SW3 ⁇ LS2 ⁇ K3 ⁇ C2 ⁇ C1 constitutes a conductive loop, thereby The electrical energy of the first capacitor C electrically connected to the first output terminal 10i is stored in the second capacitor C2.
  • the second sub-time period t2, the second energy storage inductor LS2, the third switch K3, the second capacitor C2, and the fourth rectifying element SW4 form a conductive loop, that is, constitute a freewheeling branch, and for the circuit component, the freewheeling
  • the branch is: LS2 ⁇ K3 ⁇ C2 ⁇ SW4 ⁇ LS2, so that the energy in the second capacitor C2 is transferred to the second energy storage inductor LS2.
  • the third rectifying element SW3, the second energy storage inductor LS2, the third switch K3, the second capacitor C2, and the fourth rectifying element SW4 constitute a freewheeling path.
  • the third conductive branch 103 is in an operating state.
  • the second capacitor C2 forms a conductive loop, that is, for the circuit component, the conductive branch is: C1 ⁇ SW5 ⁇ LS2 ⁇ K4 ⁇ C2 ⁇ C1 to electrically connect the first output end 10i
  • the electrical energy of a capacitor C is stored in the second capacitor C2.
  • the fourth sub-time period t4, the third energy storage inductor LS3, the fourth switch K4, the second capacitor C2, and the sixth rectifying element SW6 form a conductive loop, that is, constitute a freewheeling branch, and for the circuit component, the freewheeling
  • the branch is: LS3 ⁇ K4 ⁇ C2 ⁇ SW6 ⁇ LS2 to transfer the energy in the second capacitor C2 to the third Energy storage inductor LS3.
  • the fifth rectifying element SW5, the third energy storage inductor LS3, the fourth switch K4, the second capacitor C2, and the sixth rectifying element SW6 constitutes a freewheeling channel.
  • the first period P1 and the second period P2 are continuous and uninterrupted in time.
  • the third opening SW3 and the fourth switch SW4 are complementary switches
  • the fifth switch SW5 and the sixth switch SW6 are complementary switches, and operate in a pulse width modulation (PWM) mode.
  • PWM pulse width modulation
  • FIG. 3 is an operation timing diagram of the voltage conversion circuit 10 shown in FIG. 1 in the second state of the single-phase input mode.
  • the third period P3 in which the second conductive branch 102 included in one of the working periods is in an active state is taken as an example to describe the workflow.
  • the first capacitor C1 electrically connected to the first output terminal 10i cycles alternately through the second conductive branch 102 and the second capacitor C2 or through the third conductive branch.
  • the circuit 103 is electrically connected to the second capacitor C2 and constitutes a Boost circuit, thereby returning the electrical energy stored by the second capacitor C2 and the second and third energy storage inductors LS2, LS3 to the first capacitor C1 and from the
  • the first output terminal 10i is output such that the voltage of the first output terminal 10i rises to the threshold voltage Vth, that is, the second conductive branch 102 and the third conductive branch 103 form a discharge circuit.
  • the third period P3 and the third conductive branch in which the second conductive branch 102 included in one of the working periods is in an active state are in an active state.
  • the fourth cycle P4 in which the working state is 103 is taken as an example to describe the workflow.
  • the second conductive branch 102 is in an operating state.
  • the third rectifying element SW3 is in an off state
  • the fourth rectifying element SW4 is in an on state.
  • the second capacitor C2, the third switch K3, the second energy storage inductor LS2, and the fourth rectifying element SW4 form a conductive loop, that is, for the circuit component, the conductive loop is: C2 ⁇ K3 ⁇ LS2 ⁇ SW4 ⁇ C2
  • the second capacitor C2 transfers the stored electrical energy to the second energy storage inductor LS2.
  • the third rectifying element SW3 is in an on state, and the fourth rectifying element SW4 is in an off state.
  • the second capacitor C2, the third switch K3, and the second energy storage inductor LS2 The third rectifying element SW3, the first output end 10i and the first capacitor C1 form a conductive loop, that is, for the circuit component, the conductive loop is: C2 ⁇ K3 ⁇ LS2 ⁇ SW3 ⁇ C1 ⁇ C2, and the second capacitor C2 and
  • the second energy storage inductor LS2 transfers the stored power to the first capacitor C1 electrically connected to the first output terminal 10i, thereby supplementing the power stored by the first capacitor C1, and boosting the voltage of the first output terminal 10i to the threshold voltage. Vth.
  • the third conductive branch 103 is in an operating state.
  • the fifth rectifying element SW5 is in an off state
  • the sixth rectifying element SW6 is in an on state.
  • the second capacitor C2, the fourth switch K4, the third energy storage inductor LS3, and the sixth rectifying element SW6 form a conductive loop, that is, for the circuit component, the conductive loop is: C2 ⁇ K4 ⁇ LS3 ⁇ SW6 ⁇ C2
  • the second capacitor C2 transfers the stored electrical energy to the third energy storage inductor LS3.
  • the fifth rectifying element SW5 is in an on state
  • the sixth rectifying element SW6 is in an off state.
  • the second capacitor C2, the fourth switch K4, the third energy storage inductor LS3, the fifth rectifying element SW5, the first output terminal 10i, and the first capacitor C1 form a conductive loop, that is, for the circuit component, the conductive loop
  • the second capacitor C2 and the third energy storage inductor LS3 transfer the stored electric energy to the first capacitor C1 electrically connected to the first output end 10i, Thereby, the electric energy stored by the first capacitor C1 is supplemented, and the voltage of the first output terminal 10i is raised to the threshold voltage Vth.
  • the third period P3 and the fourth period P4 are continuous and uninterrupted in time.
  • the fourth switch SW4 and the third switch SW3 are complementary switches
  • the sixth switch SW6 and the fifth switch SW5 are complementary switches, and are pulse width modulated (PWM). jobs.
  • the voltage conversion circuit 10 constitutes a three-phase four-bridge pulse width modulation rectifier circuit, that is, three hot-wire conductive branch inputs, and one zero-line conductive branch as a reference voltage input pulse width modulation rectifier circuit. .
  • the voltage ripple is small, and only a small capacitance is required for the energy storage rate, that is, the first capacitor C1 can better achieve energy storage and filtering effects.
  • the first capacitor C1 when there is only one phase input, such as the first conductive branch 10a as an input, the first capacitor C1 is difficult to support the power output due to insufficient energy storage, and the other two conductive branch branches that do not need to receive the power signal are used in the first
  • the capacitor C1 has sufficient energy to store the electric energy in the second capacitor C2, that is, when When the voltage difference between the first capacitor C1 is greater than the threshold voltage Vth, the electrical energy is stored in the second capacitor C2; and when the energy of the first capacitor C1 is low, the energy stored in the second capacitor C2 is released and supplemented to the first capacitor C1.
  • the electric energy stored in the second capacitor C2 is supplemented to the first capacitor C1, thereby maintaining the first output terminal 10i and the second output connected to the first capacitor C.
  • the driving voltage outputted by terminal 10j It can be seen that when four switching elements and one second capacitor are added, the first capacitor C1 is stored in the second capacitor C2 during the energy peak period, and the pre-stored energy is released during the energy trough of the first capacitor C1.
  • a capacitor C1 preferably maintains the driving voltage outputted by the first output terminal 10i and the second output terminal 10, and enables the first capacitor C to perform energy storage filtering and effectively reduce the ripple voltage of the driving voltage.
  • the ripple point of the driving voltage is made smaller and the stability is higher.
  • the voltage conversion circuit 10 controls the voltage conversion circuit 10 to select a multi-phase AC power source or a single-phase DC power source as input according to the control of the first switch K1, the second switch K2, the third switch K3, and the fourth switch K4.
  • the voltage thus effectively improves the usability of the voltage conversion circuit.
  • the first conductive branch 101 is selected as the single-phase DC power conversion by using the four switches K1-K4, and the second conductive branch 102 and the third conductive branch 103 can control the first output by the second capacitor C2.
  • the driving voltage outputted by the terminal 10i and the second output terminal 10j is adjusted, that is, the driving voltage is formed into a step-down circuit or a boosting circuit, and the component volume is small, so that the overall volume of the voltage conversion circuit 10 is small.
  • the description with reference to the terms “one embodiment”, “some embodiments”, “example”, “specific example” or “some examples” and the like means a specific feature described in connection with the embodiment or example, A structure, material or feature is included in at least one embodiment or example of the invention.
  • the schematic representation of the above terms does not necessarily mean the same embodiment or example.
  • the particular features, structures, materials, or characteristics described may be combined in a suitable manner in any one or more embodiments or examples.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Dc-Dc Converters (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

一种电压转换电路(10)与电池充电器(1)。电压转换电路包括将输入的电源信号进行转换的第一导电支路(101)、第二导电支路(102)与第三导电支路(103)以及第一电容(C1),还包括第一开关(K1)、第二开关(K2)、第三开关(K3)、第四开关(K4)及第二电容(C2)。第一、第二开关用于控制第二、第三导电电路是否进行电压信号的转换,第三、四开关用于控制是否将第二电容接入第二、三导电支路。当第一、二开关处于电性导通状态,第三、四开关处于电性截止状态时,电压转换电路处于多相输入模式,第一至第三导电支路配合将三相电源信号转换为驱动电压输出;当第一、二开关处于电性截止状态,第三、四开关处于电性导通状态时,电压转换电路处于单相输入模式,第一导电支路将电源信号转换为驱动电压输出。第一电容对转换后的电压进行滤波处理。

Description

电压转换电路与电池充电器 技术领域
本发明涉及电压转换技术领域,特别涉及应用于交流转换为直流或者直流转换直流的电池充电器领域,具体涉及一种电压转换电路及电池充电器。
背景技术
随着便携式电子装置在生产、生活中的广泛应用,便携式电子装置中大多选择可重复充电的充电电池作为其驱动源。那么,将充电电池进行充电的充电电路也随之应运而生。然而,目前充电电路仅能够选择交流电源进行充电,而无法直接选用直流蓄电池进行充电,也即是无法同时汇集多相交流电(两相或者三相交流电,220V/50Hz)与单相直流电源进行电压转换的功能,由此导致充电电路使用不方便,用户体验性较差。
发明内容
为解决前述技术问题,本发明提供一种使用方便且用户体验性较高的电压转换电路。
进一步地,本发明还提供具有前述电压转换电路的电池充电器。
一种电压转换电路,包括第一电容、相互并联的第一导电支路、第二导电支路与第三导电支路以及用于输出驱动电压的第一输出端、第二输出端。所述电压转换电路包括第一开关、第二开关、第三开关、第四开关以及第二电容,所述第一开关电性连接于所述第二导电支路的电源信号的输入端,所述第二开关电性连接于所述第三导电支路的电源信号的输入端,所述第三开关电性连接于所述第二导电支路与所述第二电容的第一电极端,所述第四开关电性连接于所述第三导电支路与所述第一电极端,所述第二电容的第二电极端电性连接所述第二输出端,所述第一电容电性连接于所述第一输出端与所述第二输出端之间。
当所述第一开关与所述第二开关处于电性导通状态,且所述第三开关与第 四开关处于电性截止状态时,所述电压转换电路处于多相输入模式,所述第一导电支路、第二导电支路和第三导电支路分别自所述电源信号的输入端接收三相电源信号并且将所述三相电源信号转换为驱动电压并且将所述驱动电压自所述第一输出端以及所述第二输出端输出;
当所述第一开关和所述第二开关处于电性截止状态,且所述第三开关和所述第四开关处于电性导通状态时,所述电压转换电路处于单相输入模式,所述第一导电支路自其电源信号的输入端接收单相电源信号经由所述第一导电支路转换为所述驱动电压,所述第二导电支路、所述第三导电支路、所述第二电容与所述第一输出端以及所述第二输出端输出构成导电回路。
较佳地,当所述电压转换电路处于单相输入模式且当所述第一输出端的电压大于阈值电压时,所述第一输出端交替通过所述第二导电支路和所述第三导电支路与所述第二电容导通以构成降压电路,以将所述第一输出端的电压降低至阈值电压。
较佳地,当所述电压转换电路处于单相输入模式且当所述第一输出端的电压小于阈值电压时,所述第一输出端交替通过所述第二导电支路和所述第三导电支路与所述第二电容导通以构成升压电路,以将所述第一输出端的电压提升至所述阈值电压。
较佳地,所述电压转换电路还包括用于接收所述电源信号的第一输入端、第二输入端以及第三输入端,所述第一导电支路包括第一导电端、第一储能电感、第一整流元件、第二整流元件,所述第一导电端电性连接于所述第一输入端与第一储能电感的一端,所述第一储能电感的另一端电性连接第一连接端,所述第一整流元件电性连接所述第一连接端与所述第一输出端,所述第二整流元件电性连接所述第一连接端与所述第二输出端,所述第一整流元件与第二整流元件通过所述第一连接端串联。所述第二导电支路包括第二导电端、第二储能电感、第三整流元件、第四整流元件,所述第二导电端电性连接于所述第一开关和第三开关,所述第三整流元件电性连接第二连接端与所述第一输出端,所述第二储能电感电性连接于所述第二导电端与第二连接端,所述第四整流元件电性连接所述第二连接端与所述第二输出端,所述第三整流元件与所述第四整流元件通过所述第二连接端串联。所述第三导电支路包括第三导电端,第三储能电感、第五整流元件以及第六整流元件,所述第三导电端电性连接于所述 第二开关和第四开关,所述第三储能电感电性连接所述第三导电端与第三连接端,所述第五整流元件电性连接所述第三连接端与所述第一输出端,所述第六整流元件电性连接所述第三连接端与所述第二输出端,所述第五整流元件与所述第六整流元件通过所述第三连接端串联。
较佳地,当所述电压转换电路处于单相输入模式且当所述第一输出端的电压大于阈值电压时,所述第二导电支路中的第三整流元件与所述第四整流元件交替在第一子时间段与第二子时间段处于电性导通状态,所述第一输出端通过所述第三整流元件、所述第二储能电感、所述第三开关、所述第二电容以及所述第四整流元件形成导电回路,并且将所述第一输出端的电能存储在所述第二电容中,其中,所述第一子时间段与所述第二子时间段为连续且相邻的时间段。
较佳地,当所述电压转换电路处于单相输入模式且当所述第一输出端的电压大于阈值电压时,所述第三导电支路中的所述第五整流元件与所述第六整流元件交替在第三子时间段与第四子时间段处于电性导通状态,所述第一输出端通过所述第五整流元件、所述第三储能电感、所述第四开关、所述第二电容以及所述第六整流元件形成导电回路,并且将所述第一输出端的电能存储在所述第二电容中,其中,所述第三子时间段与所述第四子时间段为连续且相邻的时间段。
较佳地,当所述电压转换电路处于单相输入模式且当所述第一输出端的电压小于阈值电压时,对应所述第二导电支路;
在第五子时间段,所述第三整流元件处于截止状态,所述第四整流元件处于导通状态,所述第二电容、所述第三开关、所述第二储能电感以及所述第四整流元件形成导电回路,且所述第二电容将存储电能转移至所述第二储能电感中;以及
在第六子时间段,所述第三整流元件处于导通状态,所述第四整流元件处于截止状态,所述第二电容、所述第三开关、所述第二储能电感、第三整流元件以及所述第一输出端形成导电回路,且所述第二电容与所述第二储能电感将存储的电能转移至所述第一输出端,其中,所述第五子时间段与所述第六子时间段为连续且相邻的时间段。
较佳地,当所述电压转换电路处于单相输入模式且当所述第一输出端的电压小于阈值电压时,
在第七子时间段,所述第五整流元件处于截止状态,所述第六整流元件处于导通状态,所述第二电容、所述第四开关、所述第三储能电感以及所述第六整流元件形成导电回路,且所述第二电容将存储电能转移至所述第三储能电感中;以及
在第八子时间段,所述第五整流元件处于导通状态,所述第六整流元件处于截止状态,所述第二电容、所述第四开关、所述第三储能电感、第五整流元件以及所述第一输出端形成导电回路,且所述第二电容与所述第三储能电感将存储的电能转移至所述第一输出端,其中,所述第七子时间段与所述第八子时间段为连续且相邻的时间段。
较佳地,所述第一-第六整流元件为功率开关器件,所述第一、二开关为单刀双掷开关,所述第三、四开为单刀双掷开关。
一种电池充电器,包括前述电压转换电路。
相较于现有技术,本发明中的电压转换电路通过第一、第二、第三、第四开关的控制使得电压转换电路可以依据需要选择多相交流电源或者单相直流电源作为输入电压,从而有效提高了电压转换电路使用便利性。进一步,由于仅仅采用四个开关以及第二电容能够使得第一、第二输出端输出的驱动电压进行储能滤波,使得驱动电压的纹波电流较小且稳定性较高,同时元件体积较小,进而使得电压转换电路的整体体积较小。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明一实施例中电压转换电路的电路结构图;
图2为图1所示电压转换电路处于单相输入模式第一种状态下的工作时序图;
图3为图1所示电压转换电路处于单相输入模式第二种状态下的工作时序图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有付出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
请参阅图1,其为本发明一实施例中电压转换电路的电路结构图。
如图1所示,电压转换电路10用于将接收的电源信号转换为驱动电压,所述电源信号可以是三相交流信号,也可以是单相直流信号,也即是电压转换电路10包括多相输入模式与单相输入模式。所述电压转换电路10可以直接应用于电池充电器1中。
具体地,电压转换电路10包括用于接收电源信号的第一输入端10a、第二输入端10b、第三输入端10c以及用于输出驱动电压的第一输出端10i以及第二输出端10j。其中,第一输入端10a、第二输入端10b、第三输入端10c用于接收三相交流电源信号或者单相的直流电压信号。所述第一输出端10i与第二输出端10j用于输出转换后获得的驱动电压至负载RL。
电压转换电路10还包括相互并联且用于将所述电源信号进行转换的第一导电支路101、第二导电支路102、第三导电支路103,以及还包括第一电容C1、第一开关K1、第二开关K2、第三开关K3、第四开关K4、第二电容C2。
第一电容C1电性连接于第一输出端10i与第二输出端10j之间。第一导电支路101电性连接于所述第一输入端10a与所述第一输出端10i、所述第二输出端10j之间。第二导电支路102电性连接于第二输入端10b与第一输出端10i、第二输出端10j之间。第三导电支路103电性连接于第三输入端10c与第一输出端10i、第二输出端10j之间。第一电容C1用于针对第一导电支路10a输出的电压进行稳压滤波处理,以自第一输出端10i与第二输出端输出10j输出的驱动电压的波形平稳。
第一开关K1电性连接于第二输入端10b与第二导电支路102之间,用于选择性地将第二输入端10b与第二导电支路102电性导通或者电性断开。
第二开关K2电性连接于第三输入端10c与第三导电支路103之间,用于选择性地将第三输入端10c与第三导电支路103电性导通或者电性断开。
第三开关K3电性连接于第二导电支路102与第二电容C2的第一电极端 E1,
第四开关K4电性连接于第三导电支路103与第二电容C2的第一电极端E1,第二电容C2的第二电极端E2电性连接第二输出端10j。
当第一开关K1与第二开关K2处于电性导通状态,且第三开关K3与第四开关K4处于电性截止状态时,也即是第二导电支路102与第二输入端10b电性导通,第三导电支路103与第三输入端10c电性导通,第二电容C2与所述第二导电支路102以及第三导电支路103电性断开时,电压转换电路10处于多相输入模式,第一、第二、第三导电支路101、102、103分别自第一、第二、第三输入端10a、10b以及10c接收三相电源信号,则第一、第二、第三导电支路101、102、103相互配合将三相电源信号转换为所述驱动电压,所述驱动电压自第一输出端10i与第二输出端输出10j输出至负载RL。
当第一开关K1与第二开关K2处于电性截止状态,且第三开关K3与第四开关K4处于电性导通状态时,也即是第二导电支路102与第二输入端10b电性断开,第三导电支路103与第三输入端10c电性断开,第二电容C2与第二导电支路102、第三导电支路103电性导通时,电压转换电路10处于单相输入模式,也即是仅由第一导电支路101自第一输入端10a接收直流单相电源信号,并且通过第一导电支路101将所述直流单相电源信号进行转换为所述驱动电压,所述驱动电压自第一输出端10i与第二输出端输出10j输出至负载RL。
第二电容C1、第一-第四开关K1-K4、第二导电支路10b以及第三导电支路10c用于将连接在第一输出端10i与第二输出端输出10j之间的第一电容C1输出的驱动电压进行储能或者释能,使得第一电容C1自第一输出端10i与第二输出端10j输出的驱动电压的波形平稳。
更为具体地,第一导电支路101包括第一导电端101a、第一储能电感LS1、第一整流元件SW1、第二整流元件SW2,其中,第一导电端101a电性连接于第一输入端10a,第一储能电感LS1一端电性连接第一导电端101a,另一端电性连接第一连接端101b。第一整流元件SW1电性连接第一连接端101b与第一输出端10i。第二整流元件SW2电性连接第一连接端101b与第二输出端10j。第一整流元件SW1与第二整流元件SW2通过第一连接端101b串联在第一输出端10i与第二输出端10j之间。
第二导电支路102包括第二导电端102a、第二储能电感LS2、第三整流元 件SW3、第四整流元件SW4。第二导电端102a电性连接于第一开关K1与第三开关K3。第二储能电感LS2一端电性连接第二导电端102a,另一端电性连接第二连接端102b。第三整流元件SW3电性连接第二连接端102b与第一输出端10i。第四整流元件SW4电性连接第二连接端102b与第二输出端10j。第三整流元件SW3与第四整流元件SW4通过第二连接端10b串联在第一输出端10i与第二输出端10j之间。
第三导电支路103包括第三导电端103a,第三储能电感LS3、第五整流元件SW5以及第六整流元件SW6。其中,第三导电端103a电性连接于第二开关K2与第四开关K4。第三储能电感LS3的一端电性连接第三导电端103a,另一端电性连接第三连接端103b。第五整流元件SW5电性连接第三连接端103b与第一输出端10i。第六整流元件SW6电性连接第三连接端103b与第二输出端10j。第五整流元件SW5与第六整流元件SW6通过所述第三连接端103b串联在第一输出端10i与第二输出端10j之间。在本发明的实施例中,所述电压转换电路10还包括第四输入端10d与第四导电支路104,所述第四导电支路104与所述第一、第二、第三导电支路101、102、103相互并联。其中,所述第四输入端10d用于输入参考电压(N)。本实施例中,参考电压为接地电压。所述第四导电支路104用于为电压转换电路10提供参考电压。
其中,所述第四导电支路104包括第七整流元件SW7以及第八整流元件SW8。其中,所述第七整流元件SW7与所述第八整流元件SW8相互串联,第七整流元件SW7与第八整流元件SW8之间的节点定义为第四连接端104b,所述第四连接端104b直接与第四输入端10d电性连接,用于接收参考电压。所述第七整流元件SW7与所述第八整流元件SW8串联在第一输出端10i与第一输出端10j之间。
本实施例中,所述第一开关K1与第二开关K2同步动作,也即是同时执行导通或者截止的动作。第三开关K3与第四开关K4同步动作,也即是同时执行导通或者截止的动作。较佳地,第一开关K1与第二开关K2可以采用单刀双掷开关实现。第三开关K3与第四开关K4可以采用单刀双掷开关实现。
第一至第八整流元件SW1-SW8为功率开关器件,所述功率开关器件包括但不限于金属氧化物半导体场效应晶体管(Metal-Oxide-Semiconductor Field-Effect Transistor,MOSFET)或者绝缘栅双极性晶体管(Insulated Gate  Bipolar Transistor,IGBT)等。其中,所述第一、第三、第五、第七整流元件SW1、SW3、SW5、SW7的漏极作为传导端,其均与所述第一输出端10i电性连接,所述第一、第三、第五、第七整流元件SW1、SW3、SW5、SW7的源极作为传导端,其分别与第一、第二、第三、第四连接端101b、102b、103b、104b电性连接;所述第二、第四、第六、第八整流元件SW2、SW4、SW6、SW8的源极作为传导端,其均与所述第二输出端10j电性连接,所述第二、第四、第六、第八整流元件SW2、SW4、SW6、SW8的漏极作为传导端,其分别于第一、第二、第三、第四连接端101b、102b、103b、104b电性连接;第一至第八MOS管的栅极则接收控制信号用于控制第一至第八整流元件SW1-SW8的电性导通与电性截止。
可以理解,虽然本实施例中,当电压转换电路10处于单相输入模式时,以第一导电支路10a作为接收电源信号的导电支路,另外两条导电支路作为第一电容C1稳压的辅助导电支路,也即是第二导电支路10b与第三导电支路10c第一电容C1稳压的辅助导电支路,但是,在本发明其他变更实施例中,第二导电支路10b或者第三导电支路10c也可以作为接收电源信号的导电支路,而另外两条导电支路作为第一电容C1稳压的辅助导电支路,也即是第一导电支路10a与第三导电支路10c,或者第一导电支路10a与第二导电支路10b,作为第一电容C1稳压的辅助导电支路。
请参阅图2,其为图1所示电压转换电路10处于单相输入模式第一种状态下的工作时序图。
结合图1与图2所示,当所述电压转换电路处于单相输入模式,也即是仅有第一导电支路101自第一输入端10a接收直流单相电源信号,并且通过第一储能电感LS1与交替处于导通状态的第一整流元件SW1与第二整流元件SW2,从而将电源信号转换为从第一输出端10i与第二输出端10j输出的驱动电压。本实施例中,第一输出端10i为高压端,具有电压Vo;第二输出端10j为低压端,所述低压端具有的电压为0V的参考电压。
且当所述第一输出端10i的电压Vo大于阈值电压Vth时,与第一输出端10i电性连接的第一电容C1交替循环地通过所述第二导电支路102与第二电容C2或者通过第三导电支路103与第二电容C2导通并构成降压电路(buck电路),也即是说在一个时间段第一输出端10i通过所述第二导电支路102与 第二电容C2导通并且构成降压电路,然后在相邻的下一个时间段第一输出端10i通过第三导电支路103与第二电容C2导通并且构成降压电路,从而将第一电容C1所存储的电能自所述第一输出端10i存储至所述第二电容C2,以使得第一输出端10i的电压降低至阈值电压Vth,也即是第二导电支路102与第三导电支路103构成储能回路。
本实施例中,在第一、第二导电支路102、103构成buck电路时,以其中一个工作周期内包括的第二导电支路102处于工作状态的第一周期P1与第三导电支路103处于工作状态的第二周期P2为例进行说明工作流程。
第一周期P1中,第二导电支路102处于工作状态。第二导电支路102中的第三整流元件SW3与第四整流元件SW4交替处于电性导通状态。
具体地,第一子时间段t1,与第一电容C1连接的第一输出端10i、第三整流元件SW3、第二储能电感LS2、第三开关K3、第二电容C2、与第一电容C1连接的第二输出端10j、第一电容C1形成导电回路,也即是针对电路元件而言,导电支路为:C1→SW3→LS2→K3→C2→C1构成导电回路,从而将所述与第一输出端10i电性连接的第一电容C的电能存储在所述第二电容C2中。
第二子时间段t2,第二储能电感LS2、第三开关K3、第二电容C2以及第四整流元件SW4形成导电回路,也即是构成续流支路,针对电路元件而言,续流支路为:LS2→K3→C2→SW4→LS2,从而将第二电容C2中能量传递至第二储能电感LS2中。
在第一时间段t1与第二时间段t2,第三整流元件SW3、第二储能电感LS2、第三开关K3、第二电容C2以及第四整流元件SW4构成续流通道。
第二周期P2中,第三导电支路103处于工作状态。
第三子时间段t3,与第一电容C1连接的第一输出端10i通过第五整流元件SW5、第三储能电感LS3、第四开关K4、与第一电容C1连接的第二输出端10j以及第二电容C2形成导电回路,也即是针对电路元件而言,导电支路为:C1→SW5→LS2→K4→C2→C1,以将所述与第一输出端10i电性连接的第一电容C的电能存储在所述第二电容C2中。
第四子时间段t4,第三储能电感LS3、第四开关K4、第二电容C2以及第六整流元件SW6形成导电回路,也即是构成续流支路,针对电路元件而言,续流支路为:LS3→K4→C2→SW6→LS2以将第二电容C2中能量传递至第三 储能电感LS3中。
在第三时间段t3与第四时间段t4,所述第五整流元件SW5、所述第三储能电感LS3、所述第四开关K4、所述第二电容C2以及所述第六整流元件SW6构成续流通道。
其中,本实施例中,第一周期P1与第二周期P2在时间上为连续且无间断的。另外,在第一周期P1与第二周期P2,第三开SW3与第四开关SW4为互补开关,第五开关SW5与第六开关SW6为互补开关,以脉宽调制(PWM)方式工作。
请参阅图3,其为图1所示电压转换电路10处于单相输入模式第二种状态下的工作时序图,。
本实施例中,在第一、第二导电支路102、103构成升压电路(Boost电路)时,以其中一个工作周期内包括的第二导电支路102处于工作状态的第三周期P3与第三导电支路103处于工作状态的第四周期P4为例进行说明工作流程。
当第一输出端10i的电压小于阈值电压Vth时,与第一输出端10i电性连接的第一电容C1循环交替通过所述第二导电支路102与第二电容C2或者通过第三导电支路103与第二电容C2导通并构成Boost电路,从而将所述第二电容C2以及第二、第三储能电感LS2、LS3所存储的电能返回至所述第一电容C1并自所述第一输出端10i输出,以使得所述第一输出端10i的电压升高至阈值电压Vth,也即是第二导电支路102与第三导电支路103构成释能回路。
本实施例中,在第一、第二导电支路102、103构成Boost电路时,以其中一个工作周期内包括的第二导电支路102处于工作状态的第三周期P3与第三导电支路103处于工作状态的第四周期P4为例进行说明工作流程。
第三周期P3中,所述第二导电支路102处于工作状态。
在第五子时间段t5,所述第三整流元件SW3处于截止状态,第四整流元件SW4处于导通状态。所述第二电容C2、第三开关K3、第二储能电感LS2以及第四整流元件SW4形成导电回路,也即是针对电路元件而言,导电回路为:C2→K3→LS2→SW4→C2,第二电容C2将存储电能转移至第二储能电感LS2。
在第六子时间段t6,所述第三整流元件SW3处于导通状态,第四整流元件SW4处于截止状态。所述第二电容C2、第三开关K3、第二储能电感LS2、 第三整流元件SW3、第一输出端10i以及第一电容C1形成导电回路,也即是针对电路元件而言,导电回路为:C2→K3→LS2→SW3→C1→C2,第二电容C2与第二储能电感LS2将存储的电能转移传输至与第一输出端10i电性连接的第一电容C1中,从而补充第一电容C1存储的电能,提升第一输出端10i的电压至阈值电压Vth。
第四周期P4中,所述第三导电支路103处于工作状态。
在第七子时间段t7,所述第五整流元件SW5处于截止状态,第六整流元件SW6处于导通状态。所述第二电容C2、第四开关K4、第三储能电感LS3以及第六整流元件SW6形成导电回路,也即是针对电路元件而言,导电回路为:C2→K4→LS3→SW6→C2,第二电容C2将存储的电能转移至所述第三储能电感LS3。
在第八子时间段t8,所述第五整流元件SW5处于导通状态,第六整流元件SW6处于截止状态。所述第二电容C2、第四开关K4、第三储能电感LS3、第五整流元件SW5、第一输出端10i以及第一电容C1形成导电回路,也即是针对电路元件而言,导电回路为:C2→K4→LS3→SW5→C1→C2,第二电容C2与第三储能电感LS3将存储的电能转移传输至与所述第一输出端10i电性连接的第一电容C1中,从而补充第一电容C1存储的电能,提升第一输出端10i的电压至阈值电压Vth。
可以理解,第三周期P3与第四周期P4在时间上为连续且无间断的。
本实施例中,在第三周期P3与第四周期P4,第四开关SW4与第三开SW3为互补开关,第六开关SW6与第五开关SW5为互补开关,以脉宽调制(PWM)方式工作。
相较于现有技术,电压转换电路10构成三相四桥臂脉宽调制整流电路,也即是三条火线导电支路输入,1条零线导电支路作为参考电压输入的脉宽调制整流电路。当电压转换电路10处于多相输入模式,电压纹波较小,仅需要较小的电容进行储能能率,也即是第一电容C1能够较佳地实现储能与滤波功效。
但是,当仅有一相输入时,例如第一导电支路10a作为输入时,第一电容C1由于储能不足难以支持功率输出,利用另外两条无需接收电源信号的导电支路支路在第一电容C1能量充足的阶段将电能存储于第二电容C2,也即是当 第一电容C1两端的电压差大于阈值电压Vth时将电能存储于第二电容C2;而在第一电容C1能量低较低时第二电容C2储存的电能释放出来补充给第一电容C1,也即是当第一电容C1两端的电压差小于阈值电压Vth时将第二电容C2中存储的电能补充给第一电容C1,从而维持与第一电容C连接的第一输出端10i以及第二输出端10j输出的驱动电压。可见,在增加四个开关元件以及一个第二电容,即可在第一电容C1处于能量高峰时段储能在第二电容C2,在第一电容C1能量低谷时段释放出预先存储的能量补充给第一电容C1,较佳地维持了第一输出端10i以及第二输出端10输出的驱动电压,并且使得第一电容C能够较佳地进行储能滤波还能够有效降低驱动电压的纹波电压,使得驱动电压的纹波点阿姨较小且稳定性较高。
同时,所述电压转换电路10通过第一开关K1、第二开关K2、第三开关K3以及第四开关K4的控制使得电压转换电路10可以依据需要选择多相交流电源或者单相直流电源作为输入电压,从而有效提高了电压转换电路的使用便利性。在利用四个开关K1-K4选择第一导电支路101作为单相直流电源转换,而配合一个第二电容C2能够控制第二导电支路102与第三导电支路103将所述第一输出端10i与第二输出端10j输出的驱动电压进行调整,也即是将驱动电压形成降压电路或者升压电路,元件体积较小,进而使得电压转换电路10的整体体积较小。在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含在本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或示例。而且,描述的具体特征、结构、材料或特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
可以理解,以上所揭露的仅为本发明的较佳实施例而已,当然不能以此来限定本发明之权利范围,本领域普通技术人员可以理解实现上述实施例的全部或部分流程,并依本发明权利要求所作的等同变化,仍属于发明所涵盖的范围。

Claims (10)

  1. 一种电压转换电路,包括第一电容、相互并联的第一导电支路、第二导电支路与第三导电支路以及用于输出驱动电压的第一输出端、第二输出端,其特征在于,所述电压转换电路包括第一开关、第二开关、第三开关、第四开关以及第二电容,所述第一开关电性连接于所述第二导电支路的电源信号的输入端,所述第二开关电性连接于所述第三导电支路的电源信号的输入端,所述第三开关电性连接于所述第二导电支路与所述第二电容的第一电极端,所述第四开关电性连接于所述第三导电支路与所述第一电极端,所述第二电容的第二电极端电性连接所述第二输出端,所述第一电容电性连接于所述第一输出端与所述第二输出端之间;
    当所述第一开关与所述第二开关处于电性导通状态,且所述第三开关与第四开关处于电性截止状态时,所述电压转换电路处于多相输入模式,所述第一导电支路、第二导电支路和第三导电支路分别自所述电源信号的输入端接收三相电源信号并且将所述三相电源信号转换为驱动电压并且将所述驱动电压自所述第一输出端以及所述第二输出端输出;
    当所述第一开关和所述第二开关处于电性截止状态,且所述第三开关和所述第四开关处于电性导通状态时,所述电压转换电路处于单相输入模式,所述第一导电支路自其电源信号的输入端接收单相电源信号经由所述第一导电支路转换为所述驱动电压,所述第二导电支路、所述第三导电支路、所述第二电容与所述第一输出端以及所述第二输出端输出构成导电回路。
  2. 根据权利要求1所述的电压转换电路,其特征在于,当所述电压转换电路处于单相输入模式且当所述第一输出端的电压大于阈值电压时,所述第一电容交替通过所述第二导电支路与所述第二电容或者通过所述第三导电支路与所述第二电容导通构成降压电路,以将所述第一电容所存储的电能自所述第一输出端存储至所述第二电容中。
  3. 根据权利要求1或者2所述的电压转换电路,其特征在于,当所述电压转换电路处于单相输入模式且当所述第一输出端的电压小于阈值电压时,所述第一电容交替通过所述第二导电支路与所述第二电容或者通过所述第三导电支路与所述第二电容导通以构成升压电路,以将所述第二电容中存储的电能返回到所述第一电容且自所述第一输出端输出。
  4. 根据权利要求3所述的电压转换电路,其特征在于,所述电压转换电路还包括用于接收所述电源信号的第一输入端、第二输入端以及第三输入端,所述第一导电支路包括第一导电端、第一储能电感、第一整流元件、第二整流元件,所述第一导电端电性连接于所述第一输入端与第一储能电感的一端,所述第一储能电感的另一端电性连接第一连接端,所述第一整流元件电性连接所述第一连接端与所述第一输出端,所述第二整流元件电性连接所述第一连接端与所述第二输出端,所述第一整流元件与第二整流元件通过所述第一连接端串联;
    所述第二导电支路包括第二导电端、第二储能电感、第三整流元件、第四整流元件,所述第二导电端电性连接于所述第一开关和第三开关,所述第三整流元件电性连接第二连接端与所述第一输出端,所述第二储能电感电性连接于所述第二导电端与第二连接端,所述第四整流元件电性连接所述第二连接端与所述第二输出端,所述第三整流元件与所述第四整流元件通过所述第二连接端串联;
    所述第三导电支路包括第三导电端,第三储能电感、第五整流元件以及第六整流元件,所述第三导电端电性连接于所述第二开关和第四开关,所述第三储能电感电性连接所述第三导电端与第三连接端,所述第五整流元件电性连接所述第三连接端与所述第一输出端,所述第六整流元件电性连接所述第三连接端与所述第二输出端,所述第五整流元件与所述第六整流元件通过所述第三连接端串联。
  5. 根据权利要求4所述的电压转换电路,其特征在于,当所述电压转换电路处于单相输入模式且当所述第一输出端的电压大于阈值电压时,所述第二导电支路中的第三整流元件与所述第四整流元件交替在第一子时间段与第二子时间段处于电性导通状态,所述第一输出端通过所述第三整流元件、所述第二储能电感、所述第三开关、所述第二电容以及所述第四整流元件形成导电回路,并且将所述第一输出端的电能存储在所述第二电容中,其中,所述第一子时间段与所述第二子时间段为连续且相邻的时间段。
  6. 根据权利要求5所述的电压转换电路,其特征在于,当所述电压转换电路处于单相输入模式且当所述第一输出端的电压大于阈值电压时,所述第三导电支路中的所述第五整流元件与所述第六整流元件交替在第三子时间段与第四子时间段处于电性导通状态,所述第一输出端通过所述第五整流元件、所 述第三储能电感、所述第四开关、所述第二电容以及所述第六整流元件形成导电回路,并且将所述第一输出端的电能存储在所述第二电容中,其中,所述第三子时间段与所述第四子时间段为连续且相邻的时间段。
  7. 根据权利要求4所述的电压转换电路,其特征在于,当所述电压转换电路处于单相输入模式且当所述第一输出端的电压小于阈值电压时,对应所述第二导电支路;
    在第五子时间段,所述第三整流元件处于截止状态,所述第四整流元件处于导通状态,所述第二电容、所述第三开关、所述第二储能电感以及所述第四整流元件形成导电回路,且所述第二电容将存储电能转移至所述第二储能电感中;以及
    在第六子时间段,所述第三整流元件处于导通状态,所述第四整流元件处于截止状态,所述第二电容、所述第三开关、所述第二储能电感、第三整流元件以及所述第一输出端形成导电回路,且所述第二电容与所述第二储能电感将存储的电能转移至所述第一输出端,其中,所述第五子时间段与所述第六子时间段为连续且相邻的时间段。
  8. 根据权利要求7所述的电压转换电路,其特征在于,当所述电压转换电路处于单相输入模式且当所述第一输出端的电压小于阈值电压时,
    在第七子时间段,所述第五整流元件处于截止状态,所述第六整流元件处于导通状态,所述第二电容、所述第四开关、所述第三储能电感以及所述第六整流元件形成导电回路,且所述第二电容将存储电能转移至所述第三储能电感中;以及
    在第八子时间段,所述第五整流元件处于导通状态,所述第六整流元件处于截止状态,所述第二电容、所述第四开关、所述第三储能电感、第五整流元件以及所述第一输出端形成导电回路,且所述第二电容与所述第三储能电感将存储的电能转移至所述第一输出端,其中,所述第七子时间段与所述第八子时间段为连续且相邻的时间段。
  9. 根据权利要求4所述的电压转换电路,其特征在于,所述第一-第六整流元件为功率开关器件,所述第一、二开关为单刀双掷开关,所述第三、四开为单刀双掷开关。
  10. 一种电池充电器,包括如权利要求1至9任意一项所述的电压转换电路。
PCT/CN2017/098820 2017-08-24 2017-08-24 电压转换电路与电池充电器 WO2019037028A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2017/098820 WO2019037028A1 (zh) 2017-08-24 2017-08-24 电压转换电路与电池充电器
CN201780083413.2A CN110178301B (zh) 2017-08-24 2017-08-24 电压转换电路与电池充电器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/098820 WO2019037028A1 (zh) 2017-08-24 2017-08-24 电压转换电路与电池充电器

Publications (1)

Publication Number Publication Date
WO2019037028A1 true WO2019037028A1 (zh) 2019-02-28

Family

ID=65439737

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/098820 WO2019037028A1 (zh) 2017-08-24 2017-08-24 电压转换电路与电池充电器

Country Status (2)

Country Link
CN (1) CN110178301B (zh)
WO (1) WO2019037028A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113300579A (zh) * 2020-02-24 2021-08-24 株洲中车时代电气股份有限公司 一种工程车的多源供电设备及***

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100237694A1 (en) * 2009-03-18 2010-09-23 Kabushiki Kaisha Toyota Chuo Kenkyusho Vehicle mounted converter
CN202142879U (zh) * 2011-06-07 2012-02-08 天宝电子(惠州)有限公司 一种电动汽车车载充电***
JP2013081301A (ja) * 2011-10-04 2013-05-02 Toyota Motor Corp マルチフェーズコンバータ
CN106208641A (zh) * 2016-09-18 2016-12-07 北京机械设备研究所 一种交直流复用的电路
CN207124568U (zh) * 2017-08-24 2018-03-20 深圳欣锐科技股份有限公司 电压转换电路与电池充电器

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201063545Y (zh) * 2007-04-10 2008-05-21 杨冬 单相三相电压两用高频逆变电焊机
WO2010101596A1 (en) * 2008-12-17 2010-09-10 Nelson Stud Welding, Inc Capacitor charge and discharge circuit for fastener welding
EP2476192A2 (en) * 2009-09-07 2012-07-18 Koninklijke Philips Electronics N.V. Electrical energy conversion circuit device
DE202010012993U1 (de) * 2010-11-25 2012-02-27 Sma Solar Technology Ag Mehrpunktwechselrichter-Schaltung
CN102130578A (zh) * 2011-01-11 2011-07-20 张太平 内含蓄电池反馈放电回路的直流电源
US9381592B2 (en) * 2012-07-23 2016-07-05 Illinois Tool Works Inc. Method and apparatus for providing welding type power

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100237694A1 (en) * 2009-03-18 2010-09-23 Kabushiki Kaisha Toyota Chuo Kenkyusho Vehicle mounted converter
CN202142879U (zh) * 2011-06-07 2012-02-08 天宝电子(惠州)有限公司 一种电动汽车车载充电***
JP2013081301A (ja) * 2011-10-04 2013-05-02 Toyota Motor Corp マルチフェーズコンバータ
CN106208641A (zh) * 2016-09-18 2016-12-07 北京机械设备研究所 一种交直流复用的电路
CN207124568U (zh) * 2017-08-24 2018-03-20 深圳欣锐科技股份有限公司 电压转换电路与电池充电器

Also Published As

Publication number Publication date
CN110178301A (zh) 2019-08-27
CN110178301B (zh) 2021-07-16

Similar Documents

Publication Publication Date Title
US11038424B2 (en) Direct current-direct current converter
US10756623B1 (en) Low loss power converter
JP5632191B2 (ja) 双方向dc/dcコンバータ
TWI475793B (zh) 使用具整流切換開關之z型轉換器將交流輸入電壓轉換為調整的直流輸出電壓的轉換器、電子裝置與方法
TW201304381A (zh) 電源電路及電源電路的控制方法
WO2011135012A2 (en) Direct current voltage conversion circuit
KR20120021219A (ko) 양방향 dc?dc 컨버터용 소프트 스타트 방법 및 장치
CN207124568U (zh) 电压转换电路与电池充电器
WO2021068751A1 (zh) 多输入功率变换器及其控制方法和包括其的不间断电源
WO2021068750A1 (zh) 多输入功率变换器及其控制方法和包括其的不间断电源
US10243455B2 (en) Bidirectional DC-DC converter
WO2012037941A2 (en) Method and device for current driven electric energy conversion
TW200929818A (en) A buck-boost converter
US11205969B2 (en) Inverter device configured to operate in a CCM and sequentially operate in buck and boost phases
KR101030776B1 (ko) 승압형 직류/직류 변환기
WO2019037028A1 (zh) 电压转换电路与电池充电器
TWI412221B (zh) High boost ratio converter
TWI693783B (zh) 具降壓及升壓功能之直流-直流轉換器
KR101303200B1 (ko) 스위치 레그를 갖는 h-브리지 기반 전력 변환 장치
CN109450252A (zh) 一种三轨电源生成装置
US11563377B2 (en) Hybrid power converters
CN112234816B (zh) 一种多模式的开关电容变换器及其电压转换方法
TWI381623B (zh) Step-up conversion circuit and step-up conversion device
TW201406038A (zh) 整流電路
Yu et al. Modeling, analysis and design of a dual-input ZVS DC/DC converter

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17922715

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17922715

Country of ref document: EP

Kind code of ref document: A1