WO2019031747A1 - Current power generating device for telescopically transferring nacelle and method for controlling current power generating device - Google Patents

Current power generating device for telescopically transferring nacelle and method for controlling current power generating device Download PDF

Info

Publication number
WO2019031747A1
WO2019031747A1 PCT/KR2018/008622 KR2018008622W WO2019031747A1 WO 2019031747 A1 WO2019031747 A1 WO 2019031747A1 KR 2018008622 W KR2018008622 W KR 2018008622W WO 2019031747 A1 WO2019031747 A1 WO 2019031747A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
nacelle
depth
unit
turbine rotor
Prior art date
Application number
PCT/KR2018/008622
Other languages
French (fr)
Korean (ko)
Inventor
김도엽
이강수
박병재
김현석
Original Assignee
한국해양과학기술원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국해양과학기술원 filed Critical 한국해양과학기술원
Publication of WO2019031747A1 publication Critical patent/WO2019031747A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B15/00Controlling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B13/00Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates
    • F03B13/12Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy
    • F03B13/26Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy using tide energy
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B17/00Other machines or engines
    • F03B17/06Other machines or engines using liquid flow with predominantly kinetic energy conversion, e.g. of swinging-flap type, "run-of-river", "ultra-low head"
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B17/00Other machines or engines
    • F03B17/06Other machines or engines using liquid flow with predominantly kinetic energy conversion, e.g. of swinging-flap type, "run-of-river", "ultra-low head"
    • F03B17/061Other machines or engines using liquid flow with predominantly kinetic energy conversion, e.g. of swinging-flap type, "run-of-river", "ultra-low head" with rotation axis substantially in flow direction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/30Energy from the sea, e.g. using wave energy or salinity gradient

Definitions

  • the present invention relates to a Current Power Generating Device (hereinafter, referred to as " current power generating device "), which determines an appropriate depth of a nugget including a turbine rotor and a generator by measuring a depth of a nugget, And a method of controlling an ocean current generator and an ocean current generator.
  • a Current Power Generating Device hereinafter, referred to as " current power generating device "
  • an airstream generator is fixed below the water surface, and the distance between the sea surface and the turbine is high during high tide since the height of the turbine is low so that the turbine is not exposed on the water surface during low tide.
  • the generation of an airstream generator is proportional to the third of the flow velocity, so it is essential that the flow is located at a fast flow rate for maximum power generation. Accordingly, the flow rate of the algae is the fastest at sea level and decreases with deeper water depth, so it is essential to develop the turbine using the highest flow rate near the sea level.
  • Patent Document 1 Korean Patent No. 10-1701935 (Jan. 25, 2017)
  • the distance from the water surface to the nucell is measured in real time according to the necessity, and it is confirmed whether the distance from the water surface to the nucell is included in the preset distance range.
  • the nucell position is moved up and down to utilize the maximum flow velocity And to provide a nucelle expansion-contraction type ocean current generator and an ocean current generator control method that allow a maximum power generation amount to be derived.
  • a water depth measuring unit for measuring water depth of the nugget to generate water depth data
  • a control unit for generating a control command for driving the driving unit to expand and contract the column fixing unit to move the nacelle up and down according to the water depth data.
  • a multi-stage pipe having a small diameter sequentially can be inserted and coupled with each other so that the pipe is expanded and contracted by the driving unit.
  • the multi-stage pipe is expanded and contracted by the expanding and contracting unit according to the driving of the driving unit composed of the motor or the actuator to move the nucelle in the vertical direction.
  • a tidal-lon- gitudinal depth estimator for predicting the depth of water using the difference data only for the annual tide interval to measure the depth of water, an echo sounder, or a water pressure planting.
  • the water depth measuring unit is constituted by the tide gauge water depth predicting unit
  • tidal trough water depth predictor comprises:
  • the height of the nose cell is adjusted by calculating the underwater titration height of the turbine rotor, and the difference between the turbine rotor power generation and the turbine rotor power is compared Output an error signal when it occurs, and correct the annual tidal difference only difference data and the appropriate depth information.
  • the depth measuring unit is constituted by the acoustic echo canceller
  • the acoustic echo canceller includes:
  • the height of the nose cell is adjusted by calculating the underwater titration height of the turbine rotor, and the difference between the turbine rotor power generation and the turbine rotor power is compared Output an error signal when it occurs, perform an inspection and maintenance of the echo sounder sensor, and correct the acoustic pulse return time.
  • the water depth measuring unit is configured by the water pressure water planting
  • the height of the nose cell is adjusted by calculating the underwater titration height of the turbine rotor, and the difference between the turbine rotor power generation and the turbine rotor power is compared Outputs an error signal when it occurs, performs the inspection and maintenance of the water pressure sensor, and corrects the water pressure sensor.
  • And may be configured to drive the driving unit using the residual power of the generator.
  • a power generator including a nacelle including a turbine rotor and a generator, a column fixing part configured to fix the nacelle and expanding and contracting, an expanding and contracting part for expanding and contracting the column fixing part, and a driving part providing driving force.
  • a water depth measuring unit provided at an upper side of the nacelle to measure water depth of the nacelle to generate water depth data;
  • a control unit for generating a control command for driving the driving unit to expand and contract the column fixing unit to move the nacelle up and down according to the water depth data, the method comprising:
  • G generating an error occurrence signal by determining that an error has occurred in the depth measuring unit when the difference between the power generation amount of the turbine rotor and the power generation amount of the theoretical turbine rotor exceeds a predetermined allowable value
  • the water depth measuring unit is constituted by the tide gauge water depth predicting unit
  • the depth measuring unit is constituted by the acoustic echo canceller
  • the water depth measuring unit is configured by the water pressure water planting
  • And may perform the inspection and maintenance of the water pressure planting according to the detected error signal, and may be configured to correct the sensor of the water pressure planting.
  • a power generator including a nacelle including a turbine rotor and a generator, a column fixing part configured to fix the nacelle and expanding and contracting, an expanding and contracting part for expanding and contracting the column fixing part, and a driving part providing driving force.
  • a water depth measuring unit provided at an upper side of the nacelle to measure water depth of the nacelle to generate water depth data;
  • a control unit for generating a control command for driving the driving unit to expand and contract the column fixing unit in order to move the nacelle up and down according to the water depth data, the method comprising the steps of: ,
  • G generating an error occurrence signal by determining that an error has occurred in the depth measuring unit when the difference between the power generation amount of the turbine rotor and the power generation amount of the theoretical turbine rotor exceeds a predetermined allowable value
  • the controller may extend the column fixing part to expose the nacelle on the sea surface for maintenance of the nacelle.
  • the water depth measuring part provided at the upper side of the nacelle including the turbine rotor and the generator generates water depth data by measuring the depth of water for movement of the nacelle.
  • the water depth is predicted by using the difference data A tidal tidal water depth predictor, an acoustic echo sounder, or a water pressure planting.
  • the nucelle can be moved up and down to adjust the nacelle to be positioned near the sea level, which is the largest part of the current, so that the maximum power generation using the maximum flow rate can be obtained.
  • the first to fourth stages coupled with the nose cell are moved up and down as the driving unit is driven.
  • the nose cell coupled to the first stage is also moved as the first to fourth stages are moved. At this time, Therefore, there is an effect of efficient use of electric power.
  • FIG. 1 is a schematic view of a nacelle expansion-contraction type electric current generator according to the present embodiment.
  • FIG. 2 is a flowchart illustrating a method of controlling a nucelle expansion shaft transport type airstream generator according to the present embodiment.
  • FIG. 3 is a flowchart illustrating a control method using a tidal trough water depth predicting unit of a nucelle expansion / contraction type ocean current generator according to the present embodiment.
  • FIG. 4 is a flowchart illustrating a control method using an acoustic echo canceller of a nucelle telescopic current generator according to an embodiment of the present invention.
  • FIG. 5 is a flowchart showing a control method using a water pressure water plant of the nucelle expansion and contraction type electric current generator according to the present embodiment.
  • FIG. 1 is a schematic view of a nacelle expansion-contraction type electric current generator according to the present embodiment.
  • the nucelle retractable-transfer-type current generator 1 includes a power generation unit (not shown), a water depth measurement unit 130, and a control unit 140.
  • the power generation portion includes a nocelle (10) and a column fixing portion (20).
  • the nacelle 10 includes a turbine rotor 110 and a generator 120.
  • the nacelle 10 is fixed to the upper end of the column fixing portion 20.
  • the column fixing portion 20 includes a first stage 210, a second stage 220, a third stage 230 and a fourth stage 240 ).
  • the column fixing section 20 includes a driving section 250 for stretching and contracting the multi-stage pipe and a stretchable and contractible section 260 for stretching and contracting the column fixing section 20 by the driving force of the driving section 250.
  • the first end 210 constituting the column fixing part 20 is constituted by being coupled with the nocelle 10.
  • the second stage 220 has a diameter larger than the diameter of the first stage 210 and is inserted and coupled to the outer periphery of the first stage 210 surrounding the first stage 210.
  • the third end 230 has a diameter larger than the diameter of the second end 220 and is inserted and coupled to the outer circumferential surface of the second end 220 surrounding the second end 220.
  • the fourth end 240 is connected to the driving unit 250 and has a diameter larger than the diameter of the third end 230.
  • the fourth end 240 surrounds the third end 230 and is inserted into the outer circumferential surface of the third end 230, Respectively.
  • the column fixing portion of the above-described structure is configured such that the expandable portion 260 is driven to extend and contract the first to fourth stages 210, 220, 230, and 240 in accordance with the driving of the driving portion 250, Direction.
  • the extensible portion 260 is connected to the driving portion 250 and includes a screw bolt 264 rotated by the driving portion 250 and a nut 262 fixed to the first end 210,
  • the first to fourth stages 210, 220, 230 and 204 are stretched and contracted while being rotated left and right according to the driving. For example, when the screw bolt 264 is rotated to the right according to the driving of the driving unit 250, the first to fourth stages 210, 220, 230, 240 are contracted and the screw bolt 264 are rotated to the left, the first to fourth stages 210, 220, 230, 240 are extended.
  • the stretchable and contractible portion 260 may be constituted by using a wire to stretch and shrink a multi-stage pipe, or may include a load portion that is contracted by its own load, or may be constituted by a hydraulic actuator that stretches and contracts a multi- have.
  • the method of stretching and shrinking the multi-stage pipe is a technology known to be able to be constructed using a telescopic system, as described in the official gazette of Registration Practice No. 0133564.
  • the water depth measuring unit 130 is provided at one side of the upper end of the nacelle 10 to measure water depth for moving the nacelle 10 to generate water depth data.
  • the water depth measuring unit 130 measures the water depth by using a tidal trough water depth predicting unit (not shown), an acoustic echo sounder (not shown), or a water pressure water depth estimating unit (Not shown).
  • the tidal tidal-body water depth estimator extracts real-time water depth data from the database storing the difference data only for the annual tide interval, and transmits the extracted data to the controller 140.
  • the acoustic echo canceller extracts the depth data through an acoustic pulse return time, which is the time until the ultrasonic wave (here, acoustic pulse) is emitted to the surface of the water, and then transmits it to the controller 140.
  • the water pressure planting extracts the water depth data using the water pressure, and then transmits the water depth data to the control unit 140.
  • the control unit 140 drives the driving unit 250 according to the depth data to generate a control command for moving the nacelle 10 up and down.
  • the control unit 140 controls the first to fourth stages 210, 220, 230, and 240 of the column fixing unit 20 to move up and down according to the driving of the driving unit 250.
  • the control unit 140 drives the driving unit 250 using the electric power generated by the generator 120.
  • the control unit 140 may drive the driving unit 250 using the residual power of the generator 120.
  • the control unit 140 calculates an average depth of water in the unit time from the depth data received from the tidal tidal water depth predictor and then adjusts the height of the nucelle by calculating the underwater titration height of the turbine rotor 110, When the difference between the generated amount of the rotor and the generated amount of the theoretical turbine rotor is compared, an error signal is output and the annual tidal difference data and the appropriate depth information are corrected.
  • the control unit 140 calculates the average depth of water in the unit time from the depth data received from the echo sounder, calculates the underwater titration height of the turbine rotor 110 to adjust the height of the nucelle, adjusts the turbine rotor power And outputs the error signal when the difference is generated, performs the inspection and maintenance of the sensor of the echo sounder, and corrects the acoustic pulse return time.
  • the control unit 140 calculates the average depth of water in the unit time from the depth data received from the water pressure planting and then adjusts the height of the nose cell by calculating the underwater titration height of the turbine rotor 110. After the height of the nose cell is adjusted, When the difference between the power generation amount and the theoretical turbine rotor generation amount is compared, an error signal is outputted, the inspection and maintenance of the water pressure water plant is performed, and the sensor of the water pollution water plant is corrected.
  • FIG. 2 is a flowchart illustrating a method of controlling a nucelle expansion shaft transport type airstream generator according to the present embodiment.
  • FIG. 2 shows a column fixing part 20 configured to fix the nacelle 10 including the turbine rotor 110 and the generator 120 and configured to expand and contract, a stretchable and contractible part 260 to extend and contract the column fixing part 20, (250);
  • a water depth measuring unit 130 provided at an upper end of the nacelle 10 to measure water depth for moving the nacelle 10 to generate water depth data;
  • a control unit (140) for generating a control command for driving the driving unit (250) to expand and contract the column fixing unit (20) in order to move the nacelle (10) up and down according to the water depth data.
  • Fig. 2 is a flowchart of a generator control method.
  • the water depth measuring unit 130 of the nucelle retractable current generator 1 generates sounding data using at least one of a tide gauge water depth estimator, an echo sounder, or a water pressure water plant (S10).
  • a tide gauge water depth estimator an echo sounder
  • S10 a water pressure water plant
  • the depth measuring unit 130 extracts depth data in real time based on the sounding data (S11).
  • the tidal tidal-water depth predicting unit predicts the depth of water by using a database storing difference data only for the tide interval, generates depth data, and transmits the data to the control unit 140.
  • the acoustic echo sounder generates sounding data through an acoustic pulse return time, which is the time from when the ultrasonic wave is emitted to the water surface to be reflected, and extracts water depth data, which is a distance from the water surface, based on the sounding data, do.
  • the water pressure is measured to generate the sounding data
  • the water depth data which is the distance from the water surface, is extracted based on the sounding data and transmitted to the control unit 140.
  • the control unit 140 receives the water depth data and averages the water depth data within the unit time to generate average water depth data (S12).
  • the control unit 140 generates average depth data by averaging the depth data within a unit time, for example, within one hour.
  • the control unit 140 calculates the height of the nacelle 10 according to the average depth data (S13).
  • the control unit 140 moves the nacelle 10 up and down at an appropriate depth according to the average depth data (S14). At this time, the control unit 140 may repeatedly perform the process of receiving the average depth data from the depth measuring unit 130 at a predetermined cycle and moving the nucelle 10 up and down at an appropriate depth according to the average depth data.
  • the controller 140 measures the power generation amount of the turbine rotor of the height-set nacelle 10 and compares it with the power generation amount of the theoretical turbine rotor stored in the database S15).
  • the control unit 140 determines whether the difference between the turbine rotor power generation amount and the theoretical turbine rotor power generation power exceeds a preset allowable value (S16).
  • control unit 140 determines that an error has occurred and generates an error generation signal (S17).
  • the control unit 140 transmits an error occurrence signal to an operating agency (management server-not shown) (S18). In this process, the control unit 140 expands the column fixing unit 20 to expose the nacelle 10 on the sea surface for maintenance of the nacelle 10.
  • control unit 140 determines that normal operation without error occurs (S19).
  • steps S10 to S19 are sequentially executed, it is only described by way of example of the technical idea of the present embodiment. As long as those skilled in the art to which this embodiment belongs, it is to be understood that the invention is not limited to the above-described embodiments, and that various changes and modifications may be made by executing the steps described in Fig. 2 or by executing at least one of steps S10 to S19 in parallel without departing from the essential characteristics. But is not limited thereto.
  • FIG. 3 is a flowchart illustrating a control method using a tidal trough water depth predicting unit of a nucelle expansion / contraction type ocean current generator according to the present embodiment.
  • the tidal-tidal-channel depth predictor uses a database that stores difference data only between tides (S20).
  • the tidal tidal-body water depth predicter extracts real-time water depth data from the database and transmits it to the controller 140 (S21).
  • the control unit 140 averages the depth data within the unit time to generate the average depth data (S22).
  • the controller 140 calculates the height of the nacelle 10 according to the average depth data (S23).
  • the control unit 140 measures an amount of electric power generated by the turbine rotor of the nacelle 10 having a predetermined height and compares the generated amount with the amount of electricity generated by the theoretical turbine rotor.
  • the control unit 140 determines whether the difference between the power generation amount of the turbine rotor and the power generation amount of the theoretical turbine rotor exceeds a preset allowable value (S25).
  • control unit 140 determines that an error has occurred and generates an error generation signal at step S26.
  • the control unit 140 transmits an error occurrence signal to an operating agency (management server-not shown) (S27).
  • the operating agency corrects the water depth data corresponding to the difference data only at the time of the tide exceeding the preset allowable value according to the error occurrence signal and transmits it to the control unit 140.
  • the control unit 140 updates the depth data corresponding to the corrected difference data only in the database to the database (S28).
  • control unit 140 uses the water depth data corresponding to the difference data of the tide interval as it is (S29).
  • steps S20 to S29 are sequentially executed.
  • this is merely an example of the technical idea of the present embodiment, and it is obvious to those skilled in the art that the present embodiment It is to be understood that various changes and modifications may be possible without departing from the spirit and scope of the invention as set forth in the appended claims. But is not limited thereto.
  • FIG. 4 is a flowchart illustrating a control method using an acoustic echo canceller of a nucelle telescopic current generator according to an embodiment of the present invention.
  • the acoustic echo canceller measures the acoustic pulse return time (S30).
  • the acoustic echo canceller measures the acoustic pulse return time, which is the time it takes for ultrasonic waves to be emitted to the surface and then reflected.
  • the acoustic echo canceller extracts the depth data in real time according to the acoustic pulse return time which is the sounding data and transmits it to the control unit 140 (S31).
  • the control unit 140 averages the depth data within the unit time to generate the average depth data (S32).
  • the control unit 140 calculates the height of the nacelle 10 according to the average depth data (S33).
  • the control unit 140 determines whether the distance from the calculated nocelle 10 to the water surface is within a predetermined distance range (S34).
  • the control unit 140 measures the acoustic pulse return time when the distance from the set nose cell 10 to the water surface exceeds the predetermined distance range.
  • the control unit 140 measures the amount of power generated by the turbine rotor of the nacelle 10 when the height of the nacelle 10 from the height of the nacelle 10 does not deviate from the preset distance range and compares it with the amount of power generated by the theoretical turbine rotor (S35).
  • the control unit 140 determines whether the difference between the power generation amount of the turbine rotor and the power generation amount of the theoretical turbine rotor exceeds a predetermined allowable value (S36).
  • control unit 140 determines that an error has occurred and generates an error generation signal (S37).
  • the control unit 140 transmits an error occurrence signal to an external operating entity (management server-not shown) (S38).
  • the operating agency determines whether or not the echo sounder is checked according to the error occurrence signal, and generates an inspection command.
  • the manager or management machine that manages the nacelle retractable current generators 1 checks and repairs the sensors of the echo sounder of the nacelle retractable current generators 1.
  • the sensor check and repair of such an echo sounder may be configured to be performed automatically by the control unit 140. [ When the repair is completed, the operator generates an error correction completion signal and transmits the error correction completion signal to the controller 140.
  • the control unit 140 receives an error correction completion signal from the operating agency (S39). After receiving the error correction completion signal, the control unit 140 measures the acoustic pulse return time.
  • control unit 140 uses the depth data corresponding to the sound pulse return time as it is (S40).
  • steps S30 to S40 are sequentially performed.
  • this is merely an example of the technical idea of the present embodiment, and it will be apparent to those skilled in the art that the present embodiment It will be understood that various changes and modifications may be made to the invention without departing from the essential characteristics thereof, or alternatively, by executing one or more of steps S30 to S40 in parallel, But is not limited thereto.
  • FIG. 5 is a flowchart showing a control method using a water pressure water plant of the nucelle expansion and contraction type electric current generator according to the present embodiment.
  • the water pressure is measured by the water pressure planting (S50).
  • the water pressure planting extracts the depth data in real time according to the hydraulic pressure which is the sounding data and transmits it to the control unit 140 (S51).
  • the controller 140 averages the depth data within the unit time to generate the average depth data (S52).
  • the control unit 140 calculates the height of the nacelle 10 according to the average depth data (S53).
  • the control unit 140 determines whether the distance from the nacelle 10 to the water surface is within a preset distance range (S54).
  • control unit 140 When the distance from the nacelle 10 to the water surface is out of the predetermined distance range, the control unit 140 enlarges and shrinks the column fixing unit 20 to move the nacelle 10 to a proper water depth position, Measure the water pressure.
  • the controller 140 measures the amount of power generated by the turbine rotor of the nacelle 10 and compares it with the amount of power generated by the theoretical turbine rotor previously stored in the database (S55 ).
  • the control unit 140 determines whether the difference between the power generation amount of the turbine rotor and the power generation amount of the theoretical turbine rotor exceeds a preset allowable value (S56).
  • control unit 140 determines that an error has occurred and generates an error generation signal (S57).
  • the control unit 140 transmits an error occurrence signal to an operating agency (management server-not shown) (S58).
  • the operating agency generates an inspection command by judging whether or not the water pressure planting is checked according to the error occurrence signal.
  • the manager or management machine that manages the nucelle retractable-current type electric current generator 1 checks the water pressure of the nucelle retractable-current type electric current generator 1 and performs the glass repair, Correct the sensor of the planting.
  • the checking and repair of the water pressure planting may be configured to be performed automatically by the control unit 140. [ When the repair is completed, the operator generates an error correction completion signal and transmits the error correction completion signal to the controller 140.
  • the water pressure planting receives the error correction completion signal from the control unit 140 (S59).
  • the water pressure measurement is performed after receiving the error correction completion signal.
  • control unit 140 uses the water depth data corresponding to the water pressure as it is (S60).
  • steps S50 to S60 are sequentially executed, it is only described as an example of the technical idea of the present embodiment. If a person skilled in the art to which this embodiment belongs, it will be understood that various changes and modifications may be made to the invention without departing from the essential characteristics thereof, such as by changing the order described in FIG. 5 or by executing one or more of steps S50 to S60 in parallel, But is not limited thereto.
  • the water depth measuring unit provided at the upper end of the nacelle including the turbine rotor and the generator generates depth data by measuring the depth of water for movement of the nacelle.
  • a tidal tidal water depth predicting unit for predicting the depth of water and an echo sounding unit or a water pressure watering unit.
  • the nose cell it is possible to derive the maximum power generation using the maximum flow rate by adjusting the nose cell to be located near the sea level, which is the part where the nose cell can move up and down and the intensity of the current is greatest.
  • first to fourth stages coupled with the nugget are moved up and down as the driving unit is driven, and the nose cell coupled to the first stage is moved as the first to fourth stages are moved. At this time, The power consumption is efficient.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Oceanography (AREA)
  • Other Liquid Machine Or Engine Such As Wave Power Use (AREA)

Abstract

The present invention relates to a current power generating device for telescopically transferring a nacelle and a method for controlling the current power generating device, which determines, through a water level measurement, a suitable water level of the nacelle including a turbine rotor and a power generator, and then vertically moves, according to the driving of a driving part, the nacelle by using a column fixing part coupled to the nacelle. The current power generating device for telescopically transferring the nacelle comprises: a power generating part comprising the nacelle including the turbine rotor and the power generator, the column fixing part fixing the nacelle and formed to be extended and contracted, a telescopic part extending and contracting the column fixing part, and the driving part providing driving force; a water level measuring part provided at one side of the upper end of the nacelle so as to measure the water level of the nacelle, thereby generating water level data; and a control part for generating a control command for the driving of the driving part so as to extend and contract the column fixing part in order to vertically move the nacelle according to the water level data.

Description

너셀 신축 이송형 해류발전기 및 해류발전기 제어 방법Control method of nucell retractable current generators and ocean current generators
본 발명은 해류발전기(Current Power Generating Device)에 관한 것으로, 수심측정을 통해 터빈로터 및 발전기를 포함하는 너셀의 적정 수심을 결정한 후 구동부의 구동에 따라 너셀이 결합된 기둥고정부를 이용하여 너셀을 상하 이동시키는 너셀 신축 이송형 해류발전기 및 해류발전기 제어 방법에 관한 것이다.The present invention relates to a Current Power Generating Device (hereinafter, referred to as " current power generating device "), which determines an appropriate depth of a nugget including a turbine rotor and a generator by measuring a depth of a nugget, And a method of controlling an ocean current generator and an ocean current generator.
일반적으로 해류발전기는 수면 아래 고정되어 설치되며, 간조 시에 터빈이 수면상에 노출되지 않도록 하기 위하여 터빈의 수중 높이를 낮게 결정하므로 만조 시에는 해수면과 터빈 사이의 거리가 멀다. Generally, an airstream generator is fixed below the water surface, and the distance between the sea surface and the turbine is high during high tide since the height of the turbine is low so that the turbine is not exposed on the water surface during low tide.
해류발전기 발전량은 유속의 3제곱에 비례하므로 최대 발전을 위해서 유속이 빠른 곳에 위치하는 것이 필수적이다. 이에 따라, 조류 유속은 해수면에서 가장 빠르며 수심이 깊어질수록 감소하므로 해수면 근처에서의 최고 유속을 이용한 터빈 발전이 필수적이다.The generation of an airstream generator is proportional to the third of the flow velocity, so it is essential that the flow is located at a fast flow rate for maximum power generation. Accordingly, the flow rate of the algae is the fastest at sea level and decreases with deeper water depth, so it is essential to develop the turbine using the highest flow rate near the sea level.
현재 해류발전기의 경우, 수면 아래 고정되어 설치되므로 수심 변화에 대응하지 못하는 구조로 최대 발전량을 구동하기 어려운 점이 있다. 단, 유지보수를 목적으로 하는 터빈 승하강 장치는 일부 존재하지만, 수심유지를 위한 승하강 개념 및 장치는 없다. 유지보수 목적의 승하강 장치는 고정 구조물이 해수면에 노출되어야 하므로 파도, 바람 등의 해양외력을 크게 받아 구조물이 대형화되어야 하고, 선박과의 충돌 위험성이 높으며 해양 공간 활용성이 떨어진다.At present, in the case of an ocean current generator, since it is fixed under the water surface, it is difficult to drive the maximum power generation amount due to the structure which can not cope with the change of the water depth. However, there are some turbine lifting and lowering devices for maintenance purposes, but there is no concept of lifting and lowering for maintaining the water depth. Since the fixed lifting and lowering device for maintenance purpose has to be exposed to the sea surface, the structure must be enlarged due to large external forces such as waves and winds, the risk of collision with the ship is high, and the utilization of the marine space is poor.
[선행기술문헌][Prior Art Literature]
(특허문헌 1) 한국 등록특허 제10-1701935(2017년01월25일)(Patent Document 1) Korean Patent No. 10-1701935 (Jan. 25, 2017)
따라서 수심 변화에 따라 높이가 변하여 수면과의 일정거리 유지 가능하여 항상 해수면 근처에 터빈로터가 위치하도록 하는 해류발전기가 필요하다.Therefore, it is necessary to have an ocean current generator that maintains a certain distance from the water surface due to the change of the height according to the water depth, so that the turbine rotor is always positioned near the sea surface.
본 발명은 상술한 필요성에 따라 실시간으로 수면에서부터 너셀까지의 거리를 측정하여 수면에서 너셀까지의 거리가 기 설정된 거리범위에 포함되는지 여부를 확인하고, 너셀의 위치를 상하 이동하여 최대 유속을 활용한 최대 발전량이 도출되도록 하는 너셀 신축 이송형 해류발전기 및 해류발전기 제어 방법의 제공하기 위한 것이다.According to the present invention, the distance from the water surface to the nucell is measured in real time according to the necessity, and it is confirmed whether the distance from the water surface to the nucell is included in the preset distance range. The nucell position is moved up and down to utilize the maximum flow velocity And to provide a nucelle expansion-contraction type ocean current generator and an ocean current generator control method that allow a maximum power generation amount to be derived.
너셀의 수심을 측정하여 수심데이터를 생성하는 수심측정부; 및A water depth measuring unit for measuring water depth of the nugget to generate water depth data; And
상기 수심데이터에 따라 상기 너셀을 상하 이동시키기 위해 상기 기둥고정부를 신축시키도록 상기 구동부의 구동을 위한 제어명령을 생성하는 제어부를 포함하여 구성되는 것을 특징으로 한다.And a control unit for generating a control command for driving the driving unit to expand and contract the column fixing unit to move the nacelle up and down according to the water depth data.
상기 기둥고정부는,The column-
순차적으로 작은 직경을 가지는 다단의 관이 상기 구동부에 의해 신축되도록 서로 삽입 결합 구성될 수 있다.A multi-stage pipe having a small diameter sequentially can be inserted and coupled with each other so that the pipe is expanded and contracted by the driving unit.
상기 기둥고정부는,The column-
모터 또는 엑츄에이터로 구성된 상기 구동부의 구동에 따라 상기 신축부에 의해 다단의 관이 신축되어 상기 너셀을 상하방향으로 이동시키도록 구성될 수 있다.And the multi-stage pipe is expanded and contracted by the expanding and contracting unit according to the driving of the driving unit composed of the motor or the actuator to move the nucelle in the vertical direction.
상기 수심측정부는,The depth-
상기 수심을 측정하기 위해 연간 조수간만의 차 데이터를 이용하여 수심을 예측하는 조석간만차 수심예측기, 음향측심기 또는 수압수심기 중 하나 이상을 포함하여 구성될 수 있다.A tidal-lon- gitudinal depth estimator for predicting the depth of water using the difference data only for the annual tide interval to measure the depth of water, an echo sounder, or a water pressure planting.
상기 수심측정부가 상기 조석간만차 수심예측기로 구성되는 경우,In the case where the water depth measuring unit is constituted by the tide gauge water depth predicting unit,
상기 조석간만차 수심예측기는,Wherein the tidal trough water depth predictor comprises:
데이터베이스에 기 저장된 상기 연간 조수간만의 차 데이터에 기반하여 수심데이터를 추출하여 상기 제어부로 전송하며,Extracts the depth data based on the difference data only for the annual tide interval previously stored in the database, and transmits the extracted depth data to the controller,
상기 제어부는,Wherein,
수신된 수심데이터로부터 단위시간 내 평균수심을 산출한 후 터빈로터의 수중 적정 높이를 산정하여 너셀의 높이를 조정하며, 너셀의 높이 조정 후 터빈로터의 발전량과 이론 터빈로터의 발전량을 비교하여 차이가 발생하는 경우 오류신호를 출력하고, 연간 조수간만차 데이터 및 적정 수심 정보를 보정하도록 구성될 수 있다.After calculating the average depth of water in the unit time from the received depth data, the height of the nose cell is adjusted by calculating the underwater titration height of the turbine rotor, and the difference between the turbine rotor power generation and the turbine rotor power is compared Output an error signal when it occurs, and correct the annual tidal difference only difference data and the appropriate depth information.
상기 수심측정부가 상기 음향측심기로 구성되는 경우,In the case where the depth measuring unit is constituted by the acoustic echo canceller,
상기 음향측심기는,The acoustic echo canceller includes:
음향 펄스 복귀 시간을 측정하여 수심데이터를 추출한 후 상기 제어부로 전송하며,Extracting the depth data by measuring the acoustic pulse return time, and transmitting the depth data to the controller,
상기 제어부는,Wherein,
수신된 수심데이터로부터 단위시간 내 평균수심을 산출한 후 터빈로터의 수중 적정 높이를 산정하여 너셀의 높이를 조정하며, 너셀의 높이 조정 후 터빈로터의 발전량과 이론 터빈로터의 발전량을 비교하여 차이가 발생하는 경우 오류신호를 출력하고, 음향측심기 센서의 점검 및 유지 보수를 수행하며, 음향 펄스 복귀 시간을 보정하도록 구성될 수 있다.After calculating the average depth of water in the unit time from the received depth data, the height of the nose cell is adjusted by calculating the underwater titration height of the turbine rotor, and the difference between the turbine rotor power generation and the turbine rotor power is compared Output an error signal when it occurs, perform an inspection and maintenance of the echo sounder sensor, and correct the acoustic pulse return time.
상기 수심측정부가 상기 수압수심기로 구성되는 경우,In the case where the water depth measuring unit is configured by the water pressure water planting,
상기 수압수심기는,The water-
수압을 이용하여 수심데이터를 추출한 후 상기 제어부로 전송하며,Extracts the water depth data using the water pressure, and transmits the water depth data to the control unit,
상기 제어부는,Wherein,
수신된 수심데이터로부터 단위시간 내 평균수심을 산출한 후 터빈로터의 수중 적정 높이를 산정하여 너셀의 높이를 조정하며, 너셀의 높이 조정 후 터빈로터의 발전량과 이론 터빈로터의 발전량을 비교하여 차이가 발생하는 경우 오류신호를 출력하고, 수압수심기 센서의 점검 및 유지보수를 수행하며, 상기 수압수심기 센서를 보정하도록 구성될 수 있다.After calculating the average depth of water in the unit time from the received depth data, the height of the nose cell is adjusted by calculating the underwater titration height of the turbine rotor, and the difference between the turbine rotor power generation and the turbine rotor power is compared Outputs an error signal when it occurs, performs the inspection and maintenance of the water pressure sensor, and corrects the water pressure sensor.
상기 제어부는,Wherein,
상기 발전기의 잔류 전력을 이용하여 상기 구동부를 구동하도록 구성될 수 있다.And may be configured to drive the driving unit using the residual power of the generator.
상술한 목적을 달성하기 위한 본 발명의 너셀 신축 이송형 해류발전기 제어 방법은,According to another aspect of the present invention, there is provided a method for controlling a nucelle expansion shunt type airstream generator,
터빈로터 및 발전기를 포함하는 너셀과 상기 너셀을 고정하며 신축되도록 구성되는 기둥고정부와 상기 기둥고정부를 신축시키는 신축부 및 구동력을 제공하는 구동부를 포함하는 발전부; 상기 너셀 상단 일측에 구비되어 상기 너셀의 수심을 측정하여 수심데이터를 생성하는 수심측정부; 및 상기 수심데이터에 따라 상기 너셀을 상하 이동시키기 위해 상기 기둥고정부를 신축시키도록 상기 구동부의 구동을 위한 제어명령을 생성하는 제어부;를 포함하는 해류발전기에 의한 해류발전기 제어 방법에 있어서,A power generator including a nacelle including a turbine rotor and a generator, a column fixing part configured to fix the nacelle and expanding and contracting, an expanding and contracting part for expanding and contracting the column fixing part, and a driving part providing driving force. A water depth measuring unit provided at an upper side of the nacelle to measure water depth of the nacelle to generate water depth data; And a control unit for generating a control command for driving the driving unit to expand and contract the column fixing unit to move the nacelle up and down according to the water depth data, the method comprising:
A) 상기 수심측정부가 조수간만의 차 데이터를 저장하는 데이터베이스를 이용하여 수심을 측정하는 조석간만차 수심예측기, 음향측심기 또는 수압수심기 중 하나 이상을 이용하여 측심 데이터를 생성하는 단계;A) generating the sounding data by using at least one of a tide diastolic water depth predicting unit, an echo sounder, or a water pressure watering plant for measuring depth of water using a database storing difference data only for the tide measuring unit tide number;
B) 상기 측심 데이터에 따라 실시간으로 상기 수심데이터를 추출하는 단계;B) extracting the water depth data in real time according to the sounding data;
C) 단위시간 내 상기 수심데이터를 평균하여 평균 수심데이터를 생성하는 단계;C) generating average depth data by averaging the depth data within a unit time;
D) 상기 평균 수심데이터에 따라 상기 너셀의 높이를 산출하여 상기 제어부로 전송하는 단계;D) calculating the height of the nucelle according to the average water depth data and transmitting the calculated height to the controller;
E) 상기 제어부에 의해 상기 평균수심데이터를 이용하여 적정 수심으로 상기 너셀을 상하 이동시키는 단계;E) moving the nacelle up and down at an appropriate water depth using the average water depth data by the controller;
F) 상기 제어부의 제어명령에 따라 높이가 설정된 상기 너셀의 터빈로터의 발전량을 계측하여 데이터베이스에 기 저장된 이론 터빈로터의 발전량과 비교하는 단계; F) measuring the power generation amount of the turbine rotor of the nose cell set in height according to the control command of the control unit, and comparing the generated power with the amount of power of the theoretical turbine rotor stored in the database;
G) 상기 터빈로터의 발전량과 상기 이론 터빈로터의 발전량의 차이가 기 설정된 허용값을 초과하는 경우, 상기 수심측정부에 오류가 발생한 것으로 판단하여 오류발생신호를 생성하는 단계; 및G) generating an error occurrence signal by determining that an error has occurred in the depth measuring unit when the difference between the power generation amount of the turbine rotor and the power generation amount of the theoretical turbine rotor exceeds a predetermined allowable value; And
H) 상기 오류발생신호를 상기 제어부로 전송하는 단계를 포함하여 구성될 수 있다.H) transmitting the error occurrence signal to the control unit.
상기 G단계는,In the step G,
상기 수심측정부가 상기 조석간만차 수심예측기로 구성되는 경우,In the case where the water depth measuring unit is constituted by the tide gauge water depth predicting unit,
상기 제어부는,Wherein,
상기 검출된 오류 신호에 따라 연간 조수간만차 데이터 및 적정 수심 정보를 보정하도록 구성될 수 있다.And to correct the difference data and the appropriate depth information only for the annual tide interval according to the detected error signal.
상기 G단계는,In the step G,
상기 수심측정부가 상기 음향측심기로 구성되는 경우,In the case where the depth measuring unit is constituted by the acoustic echo canceller,
상기 제어부는,Wherein,
상기 검출된 오류 신호에 따라 상기 음향측심기의 점검 및 유지보수를 수행하며, 음향 펄스 복귀 시간을 보정하도록 구성될 수 있다.And perform an inspection and maintenance of the acoustic echo canceller in accordance with the detected error signal, and to correct the acoustic pulse return time.
상기 G단계는,In the step G,
상기 수심측정부가 상기 수압수심기로 구성되는 경우,In the case where the water depth measuring unit is configured by the water pressure water planting,
상기 제어부는,Wherein,
상기 검출된 오류 신호에 따라 상기 수압수심기의 점검 및 유지보수를 수행하며, 상기 수압수심기의 센서를 보정하도록 구성될 수 있다.And may perform the inspection and maintenance of the water pressure planting according to the detected error signal, and may be configured to correct the sensor of the water pressure planting.
상술한 목적을 달성하기 위한 본 발명의 너셀 신축 이송형 해류발전기 설치 및 유지보수 방법은,According to another aspect of the present invention, there is provided a method of installing and maintaining a nucelle retractable-
터빈로터 및 발전기를 포함하는 너셀과 상기 너셀을 고정하며 신축되도록 구성되는 기둥고정부와 상기 기둥고정부를 신축시키는 신축부 및 구동력을 제공하는 구동부를 포함하는 발전부; 상기 너셀 상단 일측에 구비되어 상기 너셀의 수심을 측정하여 수심데이터를 생성하는 수심측정부; 및 상기 수심데이터에 따라 상기 너셀을 상하 이동시키기 위해 상기 기둥고정부를 신축시키도록 상기 구동부의 구동을 위한 제어명령을 생성하는 제어부;를 포함하는 해류발전기에 의한 해류발전기 설치 및 유지보수 방법에 있어서,A power generator including a nacelle including a turbine rotor and a generator, a column fixing part configured to fix the nacelle and expanding and contracting, an expanding and contracting part for expanding and contracting the column fixing part, and a driving part providing driving force. A water depth measuring unit provided at an upper side of the nacelle to measure water depth of the nacelle to generate water depth data; And a control unit for generating a control command for driving the driving unit to expand and contract the column fixing unit in order to move the nacelle up and down according to the water depth data, the method comprising the steps of: ,
A) 상기 수심측정부가 조수간만의 차 데이터를 저장하는 데이터베이스를 이용하여 수심을 측정하는 조석간만차 수심예측기, 음향측심기 또는 수압수심기 중 하나 이상을 이용하여 측심 데이터를 생성하는 단계;A) generating the sounding data by using at least one of a tide diastolic water depth predicting unit, an echo sounder, or a water pressure watering plant for measuring depth of water using a database storing difference data only for the tide measuring unit tide number;
B) 상기 측심 데이터에 따라 실시간으로 상기 수심데이터를 추출하는 단계;B) extracting the water depth data in real time according to the sounding data;
C) 단위시간 내 상기 수심데이터를 평균하여 평균 수심데이터를 생성하는 단계;C) generating average depth data by averaging the depth data within a unit time;
D) 상기 평균 수심데이터에 따라 상기 너셀의 높이를 산출하여 상기 제어부로 전송하는 단계;D) calculating the height of the nucelle according to the average water depth data and transmitting the calculated height to the controller;
E) 상기 제어부에 의해 상기 평균 수심데이터를 이용하여 적정 수심으로 상기 너셀을 상하 이동시키는 단계;E) moving the nacelle up and down at an appropriate water depth using the average water depth data by the controller;
F) 상기 제어부의 제어명령에 따라 높이가 설정된 상기 너셀의 터빈로터의 발전량을 계측하여 데이터베이스에 기 저장된 이론 터빈로터의 발전량과 비교하는 단계;F) measuring the power generation amount of the turbine rotor of the nose cell set in height according to the control command of the control unit, and comparing the generated power with the amount of power of the theoretical turbine rotor stored in the database;
G) 상기 터빈로터의 발전량과 상기 이론 터빈로터의 발전량의 차이가 기 설정된 허용값을 초과하는 경우, 상기 수심측정부에 오류가 발생한 것으로 판단하여 오류발생신호를 생성하는 단계;G) generating an error occurrence signal by determining that an error has occurred in the depth measuring unit when the difference between the power generation amount of the turbine rotor and the power generation amount of the theoretical turbine rotor exceeds a predetermined allowable value;
H) 상기 오류발생신호를 상기 제어부로 전송하는 단계; 및H) transmitting the error occurrence signal to the control unit; And
I) 상기 제어부가 상기 너셀의 유지보수를 위해 상기 기둥고정부를 신장시켜 상기 너셀을 해수면 위에 노출시키는 단계;를 포함하여 구성될 수 있다.I) The controller may extend the column fixing part to expose the nacelle on the sea surface for maintenance of the nacelle.
상기 A단계는,In the step A,
상기 측심데이터를 생성하는 단계 이전에, 상기 기둥고정부에 상기 너셀을 설치하기 위해, 상기 너셀이 장착되는 상기 기둥고정부의 상단부가 해수면 위에 노출되도록 상기 기둥고정부를 신장시키는 단계;를 더 포함하여 구성될 수 있다.And expanding the column fixing portion so that the upper end of the column fixing portion to which the nacelle is mounted is exposed on the sea surface so as to install the nacelle at the column fixing portion before the step of generating the sounding data .
터빈로터와 발전기를 포함하는 너셀 상단 일측에 구비된 수심측정부는 너셀의 이동을 위해 수심을 측정하여 수심데이터를 생성하는데, 이때 수심을 측정하기 위해 연간 조수간만의 차 데이터를 이용하여 수심을 예측하는 조석간만차 수심예측기, 음향측심기 또는 수압수심기 중 하나 이상을 포함하여 구성되어 수심 예측이 용이한 효과가 있다.The water depth measuring part provided at the upper side of the nacelle including the turbine rotor and the generator generates water depth data by measuring the depth of water for movement of the nacelle. In order to measure water depth, the water depth is predicted by using the difference data A tidal tidal water depth predictor, an acoustic echo sounder, or a water pressure planting.
너셀이 상하이동 가능하여 조류의 세기가 가장 큰 부분인 해수면 근처에 너셀이 위치하게 조정하여 최대 유속을 활용한 최대 발전량이 도출 가능한 효과가 있다.The nucelle can be moved up and down to adjust the nacelle to be positioned near the sea level, which is the largest part of the current, so that the maximum power generation using the maximum flow rate can be obtained.
너셀과 결합된 제1 내지 제4 단은 구동부가 구동됨에 따라 상하 이동되며, 제1단에 결합된 너셀도 제1 내지 제4 단이 이동됨에 따라 이동되는데, 이때 구동부는 발전기의 잔류 전력을 이용하여 구동되므로 전력 사용이 효율적인 효과가 있다.The first to fourth stages coupled with the nose cell are moved up and down as the driving unit is driven. The nose cell coupled to the first stage is also moved as the first to fourth stages are moved. At this time, Therefore, there is an effect of efficient use of electric power.
도 1은 본 실시예에 따른 너셀 신축 이송형 해류발전기를 개략적으로 나타낸 도면이다.FIG. 1 is a schematic view of a nacelle expansion-contraction type electric current generator according to the present embodiment.
도 2는 본 실시예에 따른 너셀 신축 이송형 해류발전기 제어 방법을 나타낸 순서도이다.FIG. 2 is a flowchart illustrating a method of controlling a nucelle expansion shaft transport type airstream generator according to the present embodiment.
도 3은 본 실시예에 따른 너셀 신축 이송형 해류발전기의 조석간만차 수심예측기를 이용한 제어 방법을 나타낸 순서도이다.FIG. 3 is a flowchart illustrating a control method using a tidal trough water depth predicting unit of a nucelle expansion / contraction type ocean current generator according to the present embodiment.
도 4는 본 실시예에 따른 너셀 신축 이송형 해류발전기의 음향측심기를 이용한 제어 방법을 나타낸 순서도이다.4 is a flowchart illustrating a control method using an acoustic echo canceller of a nucelle telescopic current generator according to an embodiment of the present invention.
도 5는 본 실시예에 따른 너셀 신축 이송형 해류발전기의 수압수심기를 이용한 제어 방법을 나타낸 순서도이다.FIG. 5 is a flowchart showing a control method using a water pressure water plant of the nucelle expansion and contraction type electric current generator according to the present embodiment.
하기에서 본 발명을 설명함에 있어서, 관련된 공지 기능 또는 구성에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명을 생략할 것이다.In the following description of the present invention, detailed description of known functions and configurations incorporated herein will be omitted when it may make the subject matter of the present invention rather unclear.
본 발명의 개념에 따른 실시 예는 다양한 변경을 가할 수 있고 여러 가지 형태를 가질 수 있으므로 특정 실시 예들을 도면에 예시하고 본 명세서 또는 출원서에 상세하게 설명하고자 한다. 그러나 이는 본 발명의 개념에 따른 실시 예를 특정한 개시 형태에 대해 한정하려는 것이 아니며, 본 발명은 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다. 또한, 본 명세서에서 단어 "예시적인"은 "예로서, 일례로서, 또는 예증으로서 역할을 한다."라는 것을 의미하기 위해 이용된다. "예시적"으로서 본 명세서에서 설명된 임의의 양태들은 다른 양태들에 비해 반드시 선호되거나 또는 유리하다는 것으로서 해석되어야 하는 것만은 아니다.The embodiments according to the concept of the present invention can be variously modified and can take various forms, so that specific embodiments are illustrated in the drawings and described in detail in the specification or the application. It is to be understood, however, that the intention is not to limit the embodiments according to the concepts of the invention to the specific forms of disclosure, and that the invention includes all modifications, equivalents and alternatives falling within the spirit and scope of the invention. Also, the word " exemplary " is used herein to mean " serving as an example, instance, or illustration. &Quot; Any aspect described herein as " exemplary " is not necessarily to be construed as preferred or advantageous over other aspects.
어떤 구성요소가 다른 구성요소에 "연결되어" 있다거나 "접속되어" 있다고 언급된 때에는, 그 다른 구성요소에 직접적으로 연결되어 있거나 또는 접속되어 있을 수도 있지만, 중간에 다른 구성요소가 존재할 수도 있다고 이해되어야 할 것이다. 반면에, 어떤 구성요소가 다른 구성요소에 "직접 연결되어" 있다거나 "직접 접속되어" 있다고 언급된 때에는, 중간에 다른 구성요소가 존재하지 않는 것으로 이해되어야 할 것이다. 구성요소들 간의 관계를 설명하는 다른 표현들, 즉 "~사이에"와 "바로 ~사이에" 또는 "~에 이웃하는"과 "~에 직접 이웃하는" 등도 마찬가지로 해석되어야 한다.It is to be understood that when an element is referred to as being "connected" or "connected" to another element, it may be directly connected or connected to the other element, . On the other hand, when an element is referred to as being "directly connected" or "directly connected" to another element, it should be understood that there are no other elements in between. Other expressions that describe the relationship between components, such as "between" and "between" or "neighboring to" and "directly adjacent to" should be interpreted as well.
본 명세서에서 사용한 용어는 단지 특정한 실시예를 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 명세서에서, "포함하다" 또는 "가지다" 등의 용어는 실시된 특징, 숫자, 단계, 동작, 구성요소, 부분품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부분품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.The terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting of the invention. The singular expressions include plural expressions unless the context clearly dictates otherwise. In this specification, the terms " comprises ", or " having ", and the like, are intended to specify the presence of stated features, integers, steps, operations, elements, , Steps, operations, components, parts, or combinations thereof, as a matter of principle.
이하, 본 발명의 실시예를 나타내는 첨부 도면을 참조하여 본 발명을 더욱 상세히 설명한다.Hereinafter, the present invention will be described in more detail with reference to the accompanying drawings showing embodiments of the present invention.
도 1은 본 실시예에 따른 너셀 신축 이송형 해류발전기를 개략적으로 나타낸 도면이다.FIG. 1 is a schematic view of a nacelle expansion-contraction type electric current generator according to the present embodiment.
너셀 신축 이송형 해류발전기(1)는 발전부(도면부호 미도시), 수심측정부(130) 및 제어부(140)를 포함한다.The nucelle retractable-transfer-type current generator 1 includes a power generation unit (not shown), a water depth measurement unit 130, and a control unit 140.
발전부는 너셀(10)과 기둥고정부(20)를 포함한다. 여기서, 너셀(10)은 터빈로터(110) 및 발전기(120)를 포함한다. The power generation portion includes a nocelle (10) and a column fixing portion (20). Here, the nacelle 10 includes a turbine rotor 110 and a generator 120.
너셀(10)은 기둥고정부(20)의 상단에 고정된다. The nacelle 10 is fixed to the upper end of the column fixing portion 20.
기둥고정부(20)는 신축되도록 결합되는 다단의 관으로 구성되며, 본 발명의 실시예의 경우 제1단(210), 제2단(220), 제3단(230) 및 제4단(240)을 포함한다. 또한, 기둥고정부(20)는 다단의 관을 신축시키는 구동부(250) 및 구동부(250)의 구동력에 의해 기둥고정부(20)를 신축시키는 신축부(260)를 포함한다. 상기 기둥고정부(20)를 구성하는 제1단(210)은 너셀(10)과 결합되어 구성된다. 제2단(220)은 제1단(210)의 직경보다 큰 직경을 가지며 제1단(210)을 둘러싸며 제1단(210)의 외주으로 삽입되어 결합된다. 제3단(230)은 제2단(220)의 직경보다 큰 직경을 가지며 제2단(220)을 둘러싸며 제2단(220)의 외주면으로 삽입되어 결합된다. 제4단(240)은 구동부(250)와 연결되어 제3단(230)의 직경보다 큰 직경을 가지며 제3단(230)을 둘러싸며 제3단(230)의 외주면으로 삽입되어 결합되어 바닥에 고정된다.In the embodiment of the present invention, the column fixing portion 20 includes a first stage 210, a second stage 220, a third stage 230 and a fourth stage 240 ). The column fixing section 20 includes a driving section 250 for stretching and contracting the multi-stage pipe and a stretchable and contractible section 260 for stretching and contracting the column fixing section 20 by the driving force of the driving section 250. The first end 210 constituting the column fixing part 20 is constituted by being coupled with the nocelle 10. The second stage 220 has a diameter larger than the diameter of the first stage 210 and is inserted and coupled to the outer periphery of the first stage 210 surrounding the first stage 210. The third end 230 has a diameter larger than the diameter of the second end 220 and is inserted and coupled to the outer circumferential surface of the second end 220 surrounding the second end 220. The fourth end 240 is connected to the driving unit 250 and has a diameter larger than the diameter of the third end 230. The fourth end 240 surrounds the third end 230 and is inserted into the outer circumferential surface of the third end 230, Respectively.
상술한 구성의 기둥고정부는 구동부(250)의 구동에 따라 신축부(260)가 구동되어 제1 내지 제4단(210, 220, 230, 240)을 신장 수축시키는 것에 의해 너셀(10)을 상하방향으로 이동시킨다.The column fixing portion of the above-described structure is configured such that the expandable portion 260 is driven to extend and contract the first to fourth stages 210, 220, 230, and 240 in accordance with the driving of the driving portion 250, Direction.
상기 신축부(260)는 구동부(250)와 연결되며, 구동부(250)에 의해 회전되는 스크류볼트(264)와 제1단(210)에 고정되는 너트(262)로 구성되어 구동부(250)의 구동에 따라 좌우로 회전하면서 제1 내지 제4단(210, 220, 230, 204)을 신장 수축시킨다. 예컨대, 신축부(260)는 구동부(250)의 구동에 따라 스크류볼트(264)가 오른쪽으로 회전되는 경우, 제1 내지 제4단(210, 220, 230, 240)이 수축되고, 스크류볼트(264)가 왼쪽으로 회전되는 경우, 제1 내지 제4단(210, 220, 230, 240)이 신장된다.The extensible portion 260 is connected to the driving portion 250 and includes a screw bolt 264 rotated by the driving portion 250 and a nut 262 fixed to the first end 210, The first to fourth stages 210, 220, 230 and 204 are stretched and contracted while being rotated left and right according to the driving. For example, when the screw bolt 264 is rotated to the right according to the driving of the driving unit 250, the first to fourth stages 210, 220, 230, 240 are contracted and the screw bolt 264 are rotated to the left, the first to fourth stages 210, 220, 230, 240 are extended.
여기서, 신축부(260)는 다단의 관을 신장 수축시키도록 와이어를 사용하여 구성되거나, 자체 하중에 의해 수축되도록 하는 하중부를 포함하여 구성되거나, 다단의 관을 신축시키는 유압식 엑츄에이터 등으로 구성될 수 있다. 상기 다단의 관을 신장 수축시키는 방법은 등록실용신안공보 0133564에 기재된 바와 같이, 텔레스코픽 방식을 이용하여 구성될 수 있는 것으로 자명하게 알려진 기술이다.Here, the stretchable and contractible portion 260 may be constituted by using a wire to stretch and shrink a multi-stage pipe, or may include a load portion that is contracted by its own load, or may be constituted by a hydraulic actuator that stretches and contracts a multi- have. The method of stretching and shrinking the multi-stage pipe is a technology known to be able to be constructed using a telescopic system, as described in the official gazette of Registration Practice No. 0133564. [
수심측정부(130)는 너셀(10) 상단 일측에 구비되어 너셀(10)을 이동시키기 위해 수심을 측정하여 수심데이터를 생성한다. 수심측정부(130)는 수심을 측정하기 위해 연간 조수간만의 차 데이터를 이용하여 수심을 예측하는 조석간만차 수심예측기(도면부호 미도시), 음향측심기(도면부호 미도시) 또는 수압수심기(도면부호 미도시) 중 하나 이상을 포함하여 구성된다.The water depth measuring unit 130 is provided at one side of the upper end of the nacelle 10 to measure water depth for moving the nacelle 10 to generate water depth data. The water depth measuring unit 130 measures the water depth by using a tidal trough water depth predicting unit (not shown), an acoustic echo sounder (not shown), or a water pressure water depth estimating unit (Not shown).
조석간만차 수심예측기는 연간 조수간만의 차 데이터를 저장하는 데이터베이스로부터 실시간 수심데이터를 추출하여 제어부(140)로 전송한다.The tidal tidal-body water depth estimator extracts real-time water depth data from the database storing the difference data only for the annual tide interval, and transmits the extracted data to the controller 140.
음향측심기는 초음파(여기서, 음향 펄스)를 수면으로 쏘아 보낸 뒤 그것이 반사되기까지의 시간인 음향 펄스 복귀 시간을 통해 수심데이터를 추출한 후 제어부(140)로 전송한다.The acoustic echo canceller extracts the depth data through an acoustic pulse return time, which is the time until the ultrasonic wave (here, acoustic pulse) is emitted to the surface of the water, and then transmits it to the controller 140.
수압수심기는 수압을 이용하여 수심데이터를 추출한 후 제어부(140)로 전송한다.The water pressure planting extracts the water depth data using the water pressure, and then transmits the water depth data to the control unit 140.
이하, 도 3 내지 도 5에서 수심측정부(130)의 조석간만차 수심예측기, 음향측심기, 수압수심기의 동작에 대해 순서도로 상세히 후술하도록 한다.Hereinafter, the operation of the tidal-gauge water depth estimator, the echo sounder, and the water pressure planting of the water depth measuring unit 130 will be described in detail with reference to the flowcharts in FIGS. 3 to 5.
제어부(140)는 수심데이터에 따라 구동부(250)를 구동시켜 너셀(10)을 상하 이동시키기 위한 제어명령을 생성한다. 제어부(140)는 구동부(250)의 구동에 따라 기둥고정부(20)의 제1 내지 제4단(210, 220, 230, 240)을 상하이동하도록 제어한다. 제어부(140)는 발전기(120)에서 생성한 전력을 이용하여 구동부(250)를 구동한다. 여기서, 제어부(140)는 발전기(120)의 잔류 전력을 이용하여 구동부(250)를 구동할 수 있다.The control unit 140 drives the driving unit 250 according to the depth data to generate a control command for moving the nacelle 10 up and down. The control unit 140 controls the first to fourth stages 210, 220, 230, and 240 of the column fixing unit 20 to move up and down according to the driving of the driving unit 250. The control unit 140 drives the driving unit 250 using the electric power generated by the generator 120. Here, the control unit 140 may drive the driving unit 250 using the residual power of the generator 120.
제어부(140)는 조석간만차 수심예측기로부터 수신한 수심데이터로부터 단위시간 내 평균수심을 산출한 후 터빈로터(110)의 수중 적정 높이를 산정하여 너셀의 높이를 조정하며, 너셀의 높이 조정 후 터빈로터의 발전량과 이론 터빈로터의 발전량을 비교하여 차이가 발생하는 경우 오류신호를 출력하고, 연간 조수간만차 데이터 및 적정 수심 정보를 보정하도록 구성된다.The control unit 140 calculates an average depth of water in the unit time from the depth data received from the tidal tidal water depth predictor and then adjusts the height of the nucelle by calculating the underwater titration height of the turbine rotor 110, When the difference between the generated amount of the rotor and the generated amount of the theoretical turbine rotor is compared, an error signal is output and the annual tidal difference data and the appropriate depth information are corrected.
제어부(140)는 음향측심기로부터 수신한 수심데이터로부터 단위시간 내 평균수심을 산출한 후 터빈로터(110)의 수중 적정 높이를 산정하여 너셀의 높이를 조정하며, 너셀의 높이 조정 후 터빈로터의 발전량과 이론 터빈로터의 발전량을 비교하여 차이가 발생하는 경우 오류신호를 출력하고, 음향측심기의 센서의 점검 및 유지 보수를 수행하며, 음향 펄스 복귀 시간을 보정하도록 구성된다.The control unit 140 calculates the average depth of water in the unit time from the depth data received from the echo sounder, calculates the underwater titration height of the turbine rotor 110 to adjust the height of the nucelle, adjusts the turbine rotor power And outputs the error signal when the difference is generated, performs the inspection and maintenance of the sensor of the echo sounder, and corrects the acoustic pulse return time.
제어부(140)는 수압수심기로부터 수신한 수심데이터로부터 단위시간 내 평균수심을 산출한 후 터빈로터(110)의 수중 적정 높이를 산정하여 너셀의 높이를 조정하며, 너셀의 높이 조정 후 터빈로터의 발전량과 이론 터빈로터의 발전량을 비교하여 차이가 발생하는 경우 오류신호를 출력하고, 수압수심기의 점검 및 유지보수를 수행하며, 수압수심기의 센서를 보정하도록 구성된다.The control unit 140 calculates the average depth of water in the unit time from the depth data received from the water pressure planting and then adjusts the height of the nose cell by calculating the underwater titration height of the turbine rotor 110. After the height of the nose cell is adjusted, When the difference between the power generation amount and the theoretical turbine rotor generation amount is compared, an error signal is outputted, the inspection and maintenance of the water pressure water plant is performed, and the sensor of the water pollution water plant is corrected.
도 2는 본 실시예에 따른 너셀 신축 이송형 해류발전기 제어 방법을 나타낸 순서도이다.FIG. 2 is a flowchart illustrating a method of controlling a nucelle expansion shaft transport type airstream generator according to the present embodiment.
도 2는 터빈로터(110) 및 발전기(120)를 포함하는 너셀(10)을 고정하며 신축되도록 구성되는 기둥고정부(20)와 기둥고정부(20)를 신축시키는 신축부(260) 및 구동부(250)를 포함하는 발전부; 너셀(10) 상단 일측에 구비되어 너셀(10)을 이동시키기 위해 수심을 측정하여 수심데이터를 생성하는 수심측정부(130); 및 수심데이터에 따라 너셀(10)을 상하 이동시키기 위해 기둥고정부(20)를 신축시키도록 구동부(250)의 구동을 위한 제어명령을 생성하는 제어부(140);를 포함하는 해류발전기에 의한 해류발전기 제어 방법에 대한 순서도이다.2 shows a column fixing part 20 configured to fix the nacelle 10 including the turbine rotor 110 and the generator 120 and configured to expand and contract, a stretchable and contractible part 260 to extend and contract the column fixing part 20, (250); A water depth measuring unit 130 provided at an upper end of the nacelle 10 to measure water depth for moving the nacelle 10 to generate water depth data; And a control unit (140) for generating a control command for driving the driving unit (250) to expand and contract the column fixing unit (20) in order to move the nacelle (10) up and down according to the water depth data. Fig. 2 is a flowchart of a generator control method. Fig.
너셀 신축 이송형 해류발전기(1)의 수심측정부(130)는 조석간만차 수심예측기, 음향측심기 또는 수압수심기 중 하나 이상을 이용하여 측심 데이터를 생성한다(S10). 측심데이터를 생성하는 단계(S10) 이전에, 기둥고정부(20)에 너셀(10)을 설치하는 경우, 너셀(10)이 장착되는 기둥고정부(10)의 상단부가 해수면 위에 노출되도록 기둥고정부(20)를 신장시키는 단계를 수행한다.The water depth measuring unit 130 of the nucelle retractable current generator 1 generates sounding data using at least one of a tide gauge water depth estimator, an echo sounder, or a water pressure water plant (S10). When the nocelle 10 is installed in the column fixing part 20 before the step of generating the sounding data, the upper end of the column fixing part 10 to which the nocelle 10 is mounted is exposed on the sea surface, The step of stretching the portion 20 is performed.
수심측정부(130)는 측심 데이터에 따라 실시간으로 수심데이터를 추출한다(S11). 조석간만차 수심예측기는 조수간만의 차 데이터를 저장하는 데이터베이스를 이용하여 수심을 예측하여 수심데이터를 생성하여 제어부(140)로 전송한다. 음향측심기는 초음파를 수면으로 쏘아 보낸 뒤 그것이 반사되기까지의 시간인 음향 펄스 복귀 시간을 통해 측심 데이터를 생성하고, 측심 데이터를 기반으로 수면으로부터의 거리인 수심데이터를 추출하여 제어부(140)로 전송한다. 수압수심기는 수압을 측정하여 측심 데이터를 생성하고, 측심 데이터를 기반으로 수면으로부터의 거리인 수심데이터를 추출하여 제어부(140)로 전송한다.The depth measuring unit 130 extracts depth data in real time based on the sounding data (S11). The tidal tidal-water depth predicting unit predicts the depth of water by using a database storing difference data only for the tide interval, generates depth data, and transmits the data to the control unit 140. The acoustic echo sounder generates sounding data through an acoustic pulse return time, which is the time from when the ultrasonic wave is emitted to the water surface to be reflected, and extracts water depth data, which is a distance from the water surface, based on the sounding data, do. In the water seeping planting, the water pressure is measured to generate the sounding data, and the water depth data, which is the distance from the water surface, is extracted based on the sounding data and transmitted to the control unit 140.
제어부(140)는 수심데이터를 수신하여 단위시간 내 수심데이터를 평균하여 평균 수심데이터를 생성한다(S12). 제어부(140)는 단위시간 내 예컨대, 한 시간 내 수심데이터를 평균하여 평균 수심데이터를 생성한다.The control unit 140 receives the water depth data and averages the water depth data within the unit time to generate average water depth data (S12). The control unit 140 generates average depth data by averaging the depth data within a unit time, for example, within one hour.
제어부(140)는 평균 수심데이터에 따라 너셀(10)의 높이를 산출한다(S13).The control unit 140 calculates the height of the nacelle 10 according to the average depth data (S13).
제어부(140)는 평균 수심데이터에 따라 적정 수심으로 너셀(10)을 상하 이동시킨다(S14). 이때 제어부(140)는 수심측정부(130)로부터 기 설정된 주기로 평균 수심데이터를 수신하고, 평균 수심데이터에 따라 적정 수심으로 너셀(10)을 상하 이동시키는 과정을 반복적으로 수행하도록 구성될 수 있다.The control unit 140 moves the nacelle 10 up and down at an appropriate depth according to the average depth data (S14). At this time, the control unit 140 may repeatedly perform the process of receiving the average depth data from the depth measuring unit 130 at a predetermined cycle and moving the nucelle 10 up and down at an appropriate depth according to the average depth data.
상술한 바와 같이 너셀의 수심 조정이 수행된 후 발전이 수행되면, 제어부(140)는 높이가 설정된 너셀(10)의 터빈로터의 발전량을 계측하여 데이터베이스에 기 저장된 이론 터빈로터의 발전량과 비교한다(S15).When the power generation is performed after the depth adjustment of the nacelle is performed as described above, the controller 140 measures the power generation amount of the turbine rotor of the height-set nacelle 10 and compares it with the power generation amount of the theoretical turbine rotor stored in the database S15).
제어부(140)는 터빈로터의 발전량과 이론 터빈로터의 발전량의 차이가 기 설정된 허용값을 초과하는지 여부를 판단한다(S16).The control unit 140 determines whether the difference between the turbine rotor power generation amount and the theoretical turbine rotor power generation power exceeds a preset allowable value (S16).
제어부(140)는 터빈로터의 발전량과 이론 터빈로터의 발전량의 차이가 기 설정된 허용값을 초과하는 경우, 오류가 발생한 것으로 판단하여 오류발생신호를 생성한다(S17).If the difference between the power generation amount of the turbine rotor and the power generation amount of the theoretical turbine rotor exceeds the predetermined allowable value, the control unit 140 determines that an error has occurred and generates an error generation signal (S17).
제어부(140)는 오류발생신호를 운영기관(관리서버-미도시)으로 전송한다(S18). 이 과정에서 제어부(140)는 너셀(10)의 유지보수를 위해 기둥고정부(20)를 신장시켜 너셀(10)을 해수면 위에 노출시킨다.The control unit 140 transmits an error occurrence signal to an operating agency (management server-not shown) (S18). In this process, the control unit 140 expands the column fixing unit 20 to expose the nacelle 10 on the sea surface for maintenance of the nacelle 10.
제어부(140)는 터빈로터의 발전량과 이론 터빈로터의 발전량의 차이가 기 설정된 허용값을 초과하지 않은 경우, 오류가 발생하지 않고 정상 작동하는 것으로 판단한다(S19).If the difference between the power generation amount of the turbine rotor and the power generation amount of the theoretical turbine rotor does not exceed the predetermined allowable value, the control unit 140 determines that normal operation without error occurs (S19).
도 2에서는 단계 S10 내지 단계 S19를 순차적으로 실행하는 것으로 기재하고 있으나, 이는 본 실시예의 기술 사상을 예시적으로 설명한 것에 불과한 것으로서, 본 실시예가 속하는 기술분야에서 통상의 지식을 가진 자라면 본 실시예의 본질적인 특성에서 벗어나지 않는 범위에서 도 2에 기재된 순서를 변경하여 실행하거나 단계 S10 내지 단계 S19 중 하나 이상의 단계를 병렬적으로 실행하는 것으로 다양하게 수정 및 변형하여 적용 가능할 것이므로, 도 2는 시계열적인 순서로 한정되는 것은 아니다.Although it is described in FIG. 2 that steps S10 to S19 are sequentially executed, it is only described by way of example of the technical idea of the present embodiment. As long as those skilled in the art to which this embodiment belongs, It is to be understood that the invention is not limited to the above-described embodiments, and that various changes and modifications may be made by executing the steps described in Fig. 2 or by executing at least one of steps S10 to S19 in parallel without departing from the essential characteristics. But is not limited thereto.
도 3은 본 실시예에 따른 너셀 신축 이송형 해류발전기의 조석간만차 수심예측기를 이용한 제어 방법을 나타낸 순서도이다.FIG. 3 is a flowchart illustrating a control method using a tidal trough water depth predicting unit of a nucelle expansion / contraction type ocean current generator according to the present embodiment.
조석간만차 수심예측기는 조수간만의 차 데이터를 저장하는 데이터베이스를 이용한다(S20). The tidal-tidal-channel depth predictor uses a database that stores difference data only between tides (S20).
조석간만차 수심예측기는 실시간 수심데이터를 데이터베이스로부터 추출하여 제어부(140)로 전송한다(S21).The tidal tidal-body water depth predicter extracts real-time water depth data from the database and transmits it to the controller 140 (S21).
제어부(140)는 단위시간 내 수심데이터를 평균하여 평균 수심데이터를 생성한다(S22).The control unit 140 averages the depth data within the unit time to generate the average depth data (S22).
제어부(140)는 평균 수심데이터에 따라 너셀(10)의 높이를 산출한다(S23).The controller 140 calculates the height of the nacelle 10 according to the average depth data (S23).
제어부(140)는 높이가 설정된 너셀(10)의 터빈로터의 발전량을 계측하여 데이터베이스에 기 저장된 이론 터빈로터의 발전량과 비교한다(S24).The control unit 140 measures an amount of electric power generated by the turbine rotor of the nacelle 10 having a predetermined height and compares the generated amount with the amount of electricity generated by the theoretical turbine rotor.
제어부(140)는 터빈로터의 발전량과 이론 터빈로터의 발전량의 차이가 기 설정된 허용값을 초과하는지 여부를 판단한다(S25).The control unit 140 determines whether the difference between the power generation amount of the turbine rotor and the power generation amount of the theoretical turbine rotor exceeds a preset allowable value (S25).
제어부(140)는 터빈로터의 발전량과 이론 터빈로터의 발전량의 차이가 기 설정된 허용값을 초과하는 경우, 오류가 발생한 것으로 판단하여 오류발생신호를 생성한다(S26).If the difference between the power generation amount of the turbine rotor and the power generation amount of the theoretical turbine rotor exceeds the predetermined allowable value, the control unit 140 determines that an error has occurred and generates an error generation signal at step S26.
제어부(140)는 오류발생신호를 운영기관(관리서버-미도시)으로 전송한다(S27). 운영기관은 오류발생신호에 따라 기 설정된 허용값을 초과한 시점의 조수간만의 차 데이터에 대응되는 수심데이터를 수정하여 제어부(140)로 전송한다.The control unit 140 transmits an error occurrence signal to an operating agency (management server-not shown) (S27). The operating agency corrects the water depth data corresponding to the difference data only at the time of the tide exceeding the preset allowable value according to the error occurrence signal and transmits it to the control unit 140. [
제어부(140)는 수정된 조수간만의 차 데이터에 대응되는 수심데이터를 데이터베이스에 업데이트한다(S28).The control unit 140 updates the depth data corresponding to the corrected difference data only in the database to the database (S28).
제어부(140)는 터빈로터의 발전량과 이론 터빈로터의 발전량의 차이가 기 설정된 허용값을 초과하지 않은 경우, 조수간만의 차 데이터에 대응되는 수심데이터를 그대로 사용한다(S29).If the difference between the power generation amount of the turbine rotor and the power generation amount of the theoretical turbine rotor does not exceed the preset allowable value, the control unit 140 uses the water depth data corresponding to the difference data of the tide interval as it is (S29).
도 3에서는 단계 S20 내지 단계 S29를 순차적으로 실행하는 것으로 기재하고 있으나, 이는 본 실시예의 기술 사상을 예시적으로 설명한 것에 불과한 것으로서, 본 실시예가 속하는 기술분야에서 통상의 지식을 가진 자라면 본 실시예의 본질적인 특성에서 벗어나지 않는 범위에서 도 3에 기재된 순서를 변경하여 실행하거나 단계 S20 내지 단계 S29 중 하나 이상의 단계를 병렬적으로 실행하는 것으로 다양하게 수정 및 변형하여 적용 가능할 것이므로, 도 3은 시계열적인 순서로 한정되는 것은 아니다.It is described in FIG. 3 that steps S20 to S29 are sequentially executed. However, this is merely an example of the technical idea of the present embodiment, and it is obvious to those skilled in the art that the present embodiment It is to be understood that various changes and modifications may be possible without departing from the spirit and scope of the invention as set forth in the appended claims. But is not limited thereto.
도 4는 본 실시예에 따른 너셀 신축 이송형 해류발전기의 음향측심기를 이용한 제어 방법을 나타낸 순서도이다.4 is a flowchart illustrating a control method using an acoustic echo canceller of a nucelle telescopic current generator according to an embodiment of the present invention.
음향측심기는 음향 펄스 복귀 시간을 측정한다(S30). 음향측심기는 초음파를 수면으로 쏘아 보낸 뒤 그것이 반사되기까지의 시간인 음향 펄스 복귀 시간을 측정한다.The acoustic echo canceller measures the acoustic pulse return time (S30). The acoustic echo canceller measures the acoustic pulse return time, which is the time it takes for ultrasonic waves to be emitted to the surface and then reflected.
음향측심기는 측심 데이터인 음향 펄스 복귀 시간에 따라 실시간으로 수심데이터를 추출하여 제어부(140)로 전송한다(S31).The acoustic echo canceller extracts the depth data in real time according to the acoustic pulse return time which is the sounding data and transmits it to the control unit 140 (S31).
제어부(140)는 단위시간 내 수심데이터를 평균하여 평균 수심데이터를 생성한다(S32).The control unit 140 averages the depth data within the unit time to generate the average depth data (S32).
제어부(140)는 평균 수심데이터에 따라 너셀(10)의 높이를 산출한다(S33).The control unit 140 calculates the height of the nacelle 10 according to the average depth data (S33).
제어부(140)는 산출된 너셀(10)에서 수면까지의 거리가 기 설정된 거리범위에 위치하는지 여부를 판단한다(S34).The control unit 140 determines whether the distance from the calculated nocelle 10 to the water surface is within a predetermined distance range (S34).
제어부(140)는 높이가 설정된 너셀(10)에서 수면까지의 거리가 기 설정된 거리범위를 벗어나는 경우, 다시 음향 펄스 복귀 시간을 측정한다.The control unit 140 measures the acoustic pulse return time when the distance from the set nose cell 10 to the water surface exceeds the predetermined distance range.
제어부(140)는 높이가 설정된 너셀(10)에서 수면까지의 거리가 기 설정된 거리범위를 벗어나지 않는 경우, 너셀(10)의 터빈로터의 발전량을 계측하여 데이터베이스에 기 저장된 이론 터빈로터의 발전량과 비교한다(S35).The control unit 140 measures the amount of power generated by the turbine rotor of the nacelle 10 when the height of the nacelle 10 from the height of the nacelle 10 does not deviate from the preset distance range and compares it with the amount of power generated by the theoretical turbine rotor (S35).
제어부(140)는 터빈로터의 발전량과 이론 터빈로터의 발전량의 차이가 기 설정된 허용값을 초과하는지 여부를 판단한다(S36).The control unit 140 determines whether the difference between the power generation amount of the turbine rotor and the power generation amount of the theoretical turbine rotor exceeds a predetermined allowable value (S36).
제어부(140)는 터빈로터의 발전량과 이론 터빈로터의 발전량의 차이가 기 설정된 허용값을 초과하는 경우, 오류가 발생한 것으로 판단하여 오류발생신호를 생성한다(S37).If the difference between the power generation amount of the turbine rotor and the power generation amount of the theoretical turbine rotor exceeds the preset allowable value, the control unit 140 determines that an error has occurred and generates an error generation signal (S37).
이후, 제어부(140)는 오류발생신호를 외부에 위치하는 운영기관(관리서버-미도시)으로 전송한다(S38). 운영기관은 오류발생신호에 따라 음향측심기의 점검여부를 판단하여 점검명령을 생성한다. 여기서, 점검명령이 생성되는 경우, 너셀 신축 이송형 해류발전기(1)를 관리하는 관리인 또는 관리기계가 너셀 신축 이송형 해류발전기(1)의 음향측심기의 센서를 점검하여 수리한다. 이러한 음향측심기의 센서 점검 및 수리는 제어부(140)에서 자동으로 수행되도록 구성될 수도 있다. 수리가 완료되는 경우, 운영기관은 오류수정 완료신호를 생성하여 제어부(140)로 전송한다.Thereafter, the control unit 140 transmits an error occurrence signal to an external operating entity (management server-not shown) (S38). The operating agency determines whether or not the echo sounder is checked according to the error occurrence signal, and generates an inspection command. Here, when the check command is generated, the manager or management machine that manages the nacelle retractable current generators 1 checks and repairs the sensors of the echo sounder of the nacelle retractable current generators 1. The sensor check and repair of such an echo sounder may be configured to be performed automatically by the control unit 140. [ When the repair is completed, the operator generates an error correction completion signal and transmits the error correction completion signal to the controller 140.
제어부(140)는 운영기관으로부터 오류수정 완료신호를 수신한다(S39). 제어부(140)는 오류수정 완료신호를 수신한 후, 음향 펄스 복귀 시간을 측정한다. The control unit 140 receives an error correction completion signal from the operating agency (S39). After receiving the error correction completion signal, the control unit 140 measures the acoustic pulse return time.
제어부(140)는 터빈로터의 발전량과 이론 터빈로터의 발전량의 차이가 기 설정된 허용값을 초과하지 않은 경우, 음향 펄스 복귀 시간에 대응되는 수심데이터를 그대로 사용한다(S40). If the difference between the power generation amount of the turbine rotor and the power generation amount of the theoretical turbine rotor does not exceed the predetermined allowable value, the control unit 140 uses the depth data corresponding to the sound pulse return time as it is (S40).
도 4에서는 단계 S30 내지 단계 S40을 순차적으로 실행하는 것으로 기재하고 있으나, 이는 본 실시예의 기술 사상을 예시적으로 설명한 것에 불과한 것으로서, 본 실시예가 속하는 기술분야에서 통상의 지식을 가진 자라면 본 실시예의 본질적인 특성에서 벗어나지 않는 범위에서 도 4에 기재된 순서를 변경하여 실행하거나 단계 S30 내지 단계 S40 중 하나 이상의 단계를 병렬적으로 실행하는 것으로 다양하게 수정 및 변형하여 적용 가능할 것이므로, 도 4는 시계열적인 순서로 한정되는 것은 아니다.4, steps S30 to S40 are sequentially performed. However, this is merely an example of the technical idea of the present embodiment, and it will be apparent to those skilled in the art that the present embodiment It will be understood that various changes and modifications may be made to the invention without departing from the essential characteristics thereof, or alternatively, by executing one or more of steps S30 to S40 in parallel, But is not limited thereto.
도 5는 본 실시예에 따른 너셀 신축 이송형 해류발전기의 수압수심기를 이용한 제어 방법을 나타낸 순서도이다.FIG. 5 is a flowchart showing a control method using a water pressure water plant of the nucelle expansion and contraction type electric current generator according to the present embodiment.
수압수심기는 수압을 측정한다(S50). The water pressure is measured by the water pressure planting (S50).
수압수심기는 측심 데이터인 수압에 따라 실시간으로 수심데이터를 추출하여 제어부(140)로 전송한다(S51).The water pressure planting extracts the depth data in real time according to the hydraulic pressure which is the sounding data and transmits it to the control unit 140 (S51).
제어부(140)는 단위시간 내 수심데이터를 평균하여 평균 수심데이터를 생성한다(S52).The controller 140 averages the depth data within the unit time to generate the average depth data (S52).
제어부(140)는 평균 수심데이터에 따라 너셀(10)의 높이를 산출한다(S53).The control unit 140 calculates the height of the nacelle 10 according to the average depth data (S53).
제어부(140)는 높이가 설정된 너셀(10)에서 수면까지의 거리가 기 설정된 거리범위에 위치하는지 여부를 판단한다(S54).The control unit 140 determines whether the distance from the nacelle 10 to the water surface is within a preset distance range (S54).
제어부(140)는 너셀(10)에서 수면까지의 거리가 기 설정된 거리범위를 벗어나는 경우, 기둥고정부(20)를 신축시켜 너셀(10)을 적정 수심의 위치로 이동시킨 후 수압수심기가 다시 수압을 측정하도록 한다.When the distance from the nacelle 10 to the water surface is out of the predetermined distance range, the control unit 140 enlarges and shrinks the column fixing unit 20 to move the nacelle 10 to a proper water depth position, Measure the water pressure.
제어부(140)는 너셀(10)에서 수면까지의 거리가 기 설정된 거리범위를 벗어나지 않는 경우, 너셀(10)의 터빈로터의 발전량을 계측하여 데이터베이스에 기 저장된 이론 터빈로터의 발전량과 비교한다(S55).If the distance from the nacelle 10 to the water surface does not deviate from the predetermined distance range, the controller 140 measures the amount of power generated by the turbine rotor of the nacelle 10 and compares it with the amount of power generated by the theoretical turbine rotor previously stored in the database (S55 ).
제어부(140)는 터빈로터의 발전량과 이론 터빈로터의 발전량의 차이가 기 설정된 허용값을 초과하는지 여부를 판단한다(S56).The control unit 140 determines whether the difference between the power generation amount of the turbine rotor and the power generation amount of the theoretical turbine rotor exceeds a preset allowable value (S56).
제어부(140)는 터빈로터의 발전량과 이론 터빈로터의 발전량의 차이가 기 설정된 허용값을 초과하는 경우, 오류가 발생한 것으로 판단하여 오류발생신호를 생성한다(S57).If the difference between the power generation amount of the turbine rotor and the power generation amount of the theoretical turbine rotor exceeds the preset allowable value, the control unit 140 determines that an error has occurred and generates an error generation signal (S57).
제어부(140)는 오류발생신호를 운영기관(관리서버-미도시)으로 전송한다(S58). 운영기관은 오류발생신호에 따라 수압수심기의 점검여부를 판단하여 점검명령을 생성한다. 여기서, 점검명령이 생성되는 경우, 너셀 신축 이송형 해류발전기(1)를 관리하는 관리인 또는 관리기계가 너셀 신축 이송형 해류발전기(1)의 수압수심기를 점검 및 유리보수를 수행하여, 수압수심기의 센서를 보정한다. 수압수심기의 점검 및 수리는 제어부(140)에 의해 자동으로 수행되도록 구성될 수 있다. 수리가 완료되는 경우, 운영기관은 오류수정 완료신호를 생성하여 제어부(140)로 전송한다.The control unit 140 transmits an error occurrence signal to an operating agency (management server-not shown) (S58). The operating agency generates an inspection command by judging whether or not the water pressure planting is checked according to the error occurrence signal. Here, when the inspection command is generated, the manager or management machine that manages the nucelle retractable-current type electric current generator 1 checks the water pressure of the nucelle retractable-current type electric current generator 1 and performs the glass repair, Correct the sensor of the planting. The checking and repair of the water pressure planting may be configured to be performed automatically by the control unit 140. [ When the repair is completed, the operator generates an error correction completion signal and transmits the error correction completion signal to the controller 140.
수압수심기는 제어부(140)로부터 오류수정 완료신호를 수신한다(S59). 수압수심기는 오류수정 완료신호를 수신한 후, 수압을 측정한다. The water pressure planting receives the error correction completion signal from the control unit 140 (S59). The water pressure measurement is performed after receiving the error correction completion signal.
제어부(140)는 터빈로터의 발전량과 이론 터빈로터의 발전량의 차이가 기 설정된 허용값을 초과하지 않은 경우, 수압에 대응되는 수심데이터를 그대로 사용한다(S60). If the difference between the power generation amount of the turbine rotor and the power generation amount of the theoretical turbine rotor does not exceed the predetermined allowable value, the control unit 140 uses the water depth data corresponding to the water pressure as it is (S60).
도 5에서는 단계 S50 내지 단계 S60을 순차적으로 실행하는 것으로 기재하고 있으나, 이는 본 실시예의 기술 사상을 예시적으로 설명한 것에 불과한 것으로서, 본 실시예가 속하는 기술분야에서 통상의 지식을 가진 자라면 본 실시예의 본질적인 특성에서 벗어나지 않는 범위에서 도 5에 기재된 순서를 변경하여 실행하거나 단계 S50 내지 단계 S60 중 하나 이상의 단계를 병렬적으로 실행하는 것으로 다양하게 수정 및 변형하여 적용 가능할 것이므로, 도 5는 시계열적인 순서로 한정되는 것은 아니다.Although it is described in FIG. 5 that steps S50 to S60 are sequentially executed, it is only described as an example of the technical idea of the present embodiment. If a person skilled in the art to which this embodiment belongs, It will be understood that various changes and modifications may be made to the invention without departing from the essential characteristics thereof, such as by changing the order described in FIG. 5 or by executing one or more of steps S50 to S60 in parallel, But is not limited thereto.
상기에서 설명한 본 발명의 기술적 사상은 바람직한 실시예에서 구체적으로 기술되었으나, 상기한 실시예는 그 설명을 위한 것이며 그 제한을 위한 것이 아님을 주의하여야 한다. 또한, 본 발명의 기술적 분야의 통상의 지식을 가진 자라면 본 발명의 기술적 사상의 범위 내에서 다양한 실시예가 가능함을 이해할 수 있을 것이다. 따라서 본 발명의 진정한 기술적 보호 범위는 첨부된 청구범위의 기술적 사상에 의해 정해져야 할 것이다.While the present invention has been particularly shown and described with reference to exemplary embodiments thereof, it is to be understood that the invention is not limited to the disclosed exemplary embodiments. It will be apparent to those skilled in the art that various modifications may be made without departing from the scope of the present invention. Accordingly, the true scope of the present invention should be determined by the technical idea of the appended claims.
본 발명에 따르면, 터빈로터와 발전기를 포함하는 너셀 상단 일측에 구비된 수심측정부는 너셀의 이동을 위해 수심을 측정하여 수심데이터를 생성하는데, 이때 수심을 측정하기 위해 연간 조수간만의 차 데이터를 이용하여 수심을 예측하는 조석간만차 수심예측기, 음향측심기 또는 수압수심기 중 하나 이상을 포함하여 구성되어 수심 예측이 용이하다.According to the present invention, the water depth measuring unit provided at the upper end of the nacelle including the turbine rotor and the generator generates depth data by measuring the depth of water for movement of the nacelle. In order to measure the water depth, A tidal tidal water depth predicting unit for predicting the depth of water, and an echo sounding unit or a water pressure watering unit.
또한, 너셀이 상하이동 가능하여 조류의 세기가 가장 큰 부분인 해수면 근처에 너셀이 위치하게 조정하여 최대 유속을 활용한 최대 발전량이 도출 가능하다.Also, it is possible to derive the maximum power generation using the maximum flow rate by adjusting the nose cell to be located near the sea level, which is the part where the nose cell can move up and down and the intensity of the current is greatest.
또한, 너셀과 결합된 제1 내지 제4 단은 구동부가 구동됨에 따라 상하 이동되며, 제1단에 결합된 너셀도 제1 내지 제4 단이 이동됨에 따라 이동되는데, 이때 구동부는 발전기의 잔류 전력을 이용하여 구동되므로 전력 사용이 효율적이다.In addition, the first to fourth stages coupled with the nugget are moved up and down as the driving unit is driven, and the nose cell coupled to the first stage is moved as the first to fourth stages are moved. At this time, The power consumption is efficient.

Claims (14)

  1. 터빈로터 및 발전기를 포함하는 너셀과 상기 너셀을 고정하며 신축되도록 구성되는 기둥고정부와 상기 기둥고정부를 신축시키는 신축부 및 구동력을 제공하는 구동부를 포함하는 발전부;A power generator including a nacelle including a turbine rotor and a generator, a column fixing part configured to fix the nacelle and expanding and contracting, an expanding and contracting part for expanding and contracting the column fixing part, and a driving part providing driving force.
    상기 너셀 상단 일측에 구비되어 상기 너셀의 수심을 측정하여 수심데이터를 생성하는 수심측정부; 및A water depth measuring unit provided at an upper side of the nacelle to measure water depth of the nacelle to generate water depth data; And
    상기 수심데이터에 따라 상기 너셀을 상하 이동시키기 위해 상기 기둥고정부를 신축시키도록 상기 구동부의 구동을 위한 제어명령을 생성하는 제어부를 포함하여 구성되는 것을 특징으로 하는 너셀 신축 이송형 해류발전기.And a control unit for generating a control command for driving the driving unit to expand and contract the column fixing unit to move the nacelle up and down according to the water depth data.
  2. 청구항 1에 있어서, 상기 기둥고정부는,[3] The apparatus according to claim 1,
    순차적으로 작은 직경을 가지는 다단의 관이 상기 구동부에 의해 신축되도록 서로 삽입 결합 구성되는 너셀 신축 이송형 해류 발전기.Wherein the multi-stage pipe having a small diameter is inserted and connected to each other so as to be expanded and contracted by the driving unit.
  3. 청구항 2에 있어서, 상기 기둥고정부는,[3] The apparatus according to claim 2,
    모터 또는 엑츄에이터로 구성된 상기 구동부의 구동에 따라 상기 신축부에 의해 상기 다단의 관이 신축되어 상기 너셀을 상하방향으로 이동시키도록 구성되는 너셀 신축 이송형 해류 발전기.Wherein the multi-stage pipe is expanded and contracted by the expanding and contracting unit according to driving of the driving unit composed of a motor or an actuator to move the nucelle in a vertical direction.
  4. 청구항 1에 있어서, 상기 수심측정부는,The apparatus according to claim 1,
    상기 수심을 측정하기 위해 연간 조수간만의 차 데이터를 이용하여 수심을 예측하는 조석간만차 수심예측기, 음향측심기 또는 수압수심기 중 하나 이상을 포함하여 구성되는 너셀 신축 이송형 해류발전기.A tidal tidal-body depth predicting unit for predicting the depth of water using the difference data only for the annual tide interval to measure the depth of water, an acoustic echo canceller, or a water pressure water planting.
  5. 청구항 4에 있어서,The method of claim 4,
    상기 수심측정부가 상기 조석간만차 수심예측기로 구성되는 경우,In the case where the water depth measuring unit is constituted by the tide gauge water depth predicting unit,
    상기 조석간만차 수심예측기는,Wherein the tidal trough water depth predictor comprises:
    데이터베이스에 기 저장된 상기 연간 조수간만의 차 데이터에 기반하여 수심데이터를 추출하여 상기 제어부로 전송하며,Extracts the depth data based on the difference data only for the annual tide interval previously stored in the database, and transmits the extracted depth data to the controller,
    상기 제어부는,Wherein,
    수신된 수심데이터로부터 단위시간 내 평균수심을 산출한 후 터빈로터의 수중 적정 높이를 산정하여 너셀의 높이를 조정하며, 너셀의 높이 조정 후 터빈로터의 발전량과 이론 터빈로터의 발전량을 비교하여 차이가 발생하는 경우 오류신호를 출력하고, 연간 조수간만차 데이터 및 적정 수심 정보를 보정하도록 구성되는 너셀 신축 이송형 해류발전기.After calculating the average depth of water in the unit time from the received depth data, the height of the nose cell is adjusted by calculating the underwater titration height of the turbine rotor, and the difference between the turbine rotor power generation and the turbine rotor power is compared And outputting an error signal when it occurs, and correcting the annual tidal difference only difference data and the appropriate depth information.
  6. 청구항 4에 있어서,The method of claim 4,
    상기 수심측정부가 상기 음향측심기로 구성되는 경우,In the case where the depth measuring unit is constituted by the acoustic echo canceller,
    상기 음향측심기는,The acoustic echo canceller includes:
    음향 펄스 복귀 시간을 측정하여 수심데이터를 추출한 후 상기 제어부로 전송하며,Extracting the depth data by measuring the acoustic pulse return time, and transmitting the depth data to the controller,
    상기 제어부는,Wherein,
    수신된 수심데이터로부터 단위시간 내 평균수심을 산출한 후 터빈로터의 수중 적정 높이를 산정하여 너셀의 높이를 조정하며, 너셀의 높이 조정 후 터빈로터의 발전량과 이론 터빈로터의 발전량을 비교하여 차이가 발생하는 경우 오류신호를 출력하고, 상기 음향측심기의 센서 점검 및 유지 보수를 수행하며, 음향 펄스 복귀 시간을 보정하도록 구성되는 너셀 신축 이송형 해류발전기. After calculating the average depth of water in the unit time from the received depth data, the height of the nose cell is adjusted by calculating the underwater titration height of the turbine rotor, and the difference between the turbine rotor power generation and the turbine rotor power is compared And outputting an error signal when it occurs, performing sensor maintenance and maintenance of the acoustic echo canceller, and correcting the acoustic pulse return time.
  7. 청구항 4에 있어서,The method of claim 4,
    상기 수심측정부가 상기 수압수심기로 구성되는 경우,In the case where the water depth measuring unit is configured by the water pressure water planting,
    상기 수압수심기는,The water-
    수압을 이용하여 수심데이터를 추출한 후 상기 제어부로 전송하며,Extracts the water depth data using the water pressure, and transmits the water depth data to the control unit,
    상기 제어부는,Wherein,
    수신된 수심데이터로부터 단위시간 내 평균수심을 산출한 후 터빈로터의 수중 적정 높이를 산정하여 너셀의 높이를 조정하며, 너셀의 높이 조정 후 터빈로터의 발전량과 이론 터빈로터의 발전량을 비교하여 차이가 발생하는 경우 오류신호를 출력하고, 상기 수압수심기의 점검 및 유지보수를 수행하며, 상기 수압수심기의 센서를 보정하도록 구성되는 너셀 신축 이송형 해류발전기.After calculating the average depth of water in the unit time from the received depth data, the height of the nose cell is adjusted by calculating the underwater titration height of the turbine rotor, and the difference between the turbine rotor power generation and the turbine rotor power is compared And outputting an error signal when it occurs, performing the maintenance and inspection of the water pressure water plant, and correcting the sensor of the water pressure water plant.
  8. 청구항 1에 있어서, 상기 제어부는,The apparatus of claim 1,
    상기 발전기의 잔류 전력을 이용하여 상기 구동부를 구동하는 것을 특징으로 하는 너셀 신축 이송형 해류발전기.Wherein the drive unit is driven using the residual power of the generator.
  9. 터빈로터 및 발전기를 포함하는 너셀과 상기 너셀을 고정하며 신축되도록 구성되는 기둥고정부와 상기 기둥고정부를 신축시키는 신축부 및 구동력을 제공하는 구동부를 포함하는 발전부; 상기 너셀 상단 일측에 구비되어 상기 너셀의 수심을 측정하여 수심데이터를 생성하는 수심측정부; 및 상기 수심데이터에 따라 상기 너셀을 상하 이동시키기 위해 상기 기둥고정부를 신축시키도록 상기 구동부의 구동을 위한 제어명령을 생성하는 제어부;를 포함하는 해류발전기에 의한 해류발전기 제어 방법에 있어서,A power generator including a nacelle including a turbine rotor and a generator, a column fixing part configured to fix the nacelle and expanding and contracting, an expanding and contracting part for expanding and contracting the column fixing part, and a driving part providing driving force. A water depth measuring unit provided at an upper side of the nacelle to measure water depth of the nacelle to generate water depth data; And a control unit for generating a control command for driving the driving unit to expand and contract the column fixing unit to move the nacelle up and down according to the water depth data, the method comprising:
    A) 상기 수심측정부가 조수간만의 차 데이터를 저장하는 데이터베이스를 이용하여 수심을 측정하는 조석간만차 수심예측기, 음향측심기 또는 수압수심기 중 하나 이상을 이용하여 측심 데이터를 생성하는 단계;A) generating the sounding data by using at least one of a tide diastolic water depth predicting unit, an echo sounder, or a water pressure watering plant for measuring depth of water using a database storing difference data only for the tide measuring unit tide number;
    B) 상기 측심 데이터에 따라 실시간으로 상기 수심데이터를 추출하는 단계;B) extracting the water depth data in real time according to the sounding data;
    C) 단위시간 내 상기 수심데이터를 평균하여 평균 수심데이터를 생성하는 단계;C) generating average depth data by averaging the depth data within a unit time;
    D) 상기 평균 수심데이터에 따라 상기 너셀의 높이를 산출하여 상기 제어부로 전송하는 단계;D) calculating the height of the nucelle according to the average water depth data and transmitting the calculated height to the controller;
    E) 상기 제어부에 의해 상기 평균 수심데이터를 이용하여 적정 수심으로 상기 너셀을 상하 이동시키는 단계;E) moving the nacelle up and down at an appropriate water depth using the average water depth data by the controller;
    F) 상기 제어부의 제어명령에 따라 높이가 설정된 상기 너셀의 터빈로터의 발전량을 계측하여 데이터베이스에 기 저장된 이론 터빈로터의 발전량과 비교하는 단계; F) measuring the power generation amount of the turbine rotor of the nose cell set in height according to the control command of the control unit, and comparing the generated power with the amount of power of the theoretical turbine rotor stored in the database;
    G) 상기 터빈로터의 발전량과 상기 이론 터빈로터의 발전량의 차이가 기 설정된 허용값을 초과하는 경우, 상기 수심측정부에 오류가 발생한 것으로 판단하여 오류발생신호를 생성하는 단계; 및G) generating an error occurrence signal by determining that an error has occurred in the depth measuring unit when the difference between the power generation amount of the turbine rotor and the power generation amount of the theoretical turbine rotor exceeds a predetermined allowable value; And
    H) 상기 오류발생신호를 상기 제어부로 전송하는 단계를 포함하는 것을 특징으로 하는 너셀 신축 이송형 해류발전기 제어 방법.H) transmitting the error signal to the control unit.
  10. 청구항 9에 있어서, 상기 G단계는,The method of claim 9,
    상기 수심측정부가 상기 조석간만차 수심예측기로 구성되는 경우,In the case where the water depth measuring unit is constituted by the tide gauge water depth predicting unit,
    상기 제어부는,Wherein,
    상기 검출된 오류 신호에 따라 연간 조수간만차 데이터 및 적정 수심 정보를 보정하도록 구성되는 너셀 신축 이송형 해류발전기 제어 방법.And corrects the difference data and the appropriate depth information only for the annual tide in accordance with the detected error signal.
  11. 청구항 9에 있어서, 상기 G단계는,The method of claim 9,
    상기 수심측정부가 상기 음향측심기로 구성되는 경우,In the case where the depth measuring unit is constituted by the acoustic echo canceller,
    상기 제어부는,Wherein,
    상기 검출된 오류 신호에 따라 상기 음향측심기의 센서 점검 및 유지보수를 수행하며, 음향 펄스 복귀 시간을 보정하도록 구성되는 너셀 신축 이송형 해류발전기 제어 방법.And performing a sensor check and maintenance of the acoustic echo canceller according to the detected error signal, and correcting the acoustic pulse return time.
  12. 청구항 9에 있어서, 상기 G단계는,The method of claim 9,
    상기 수심측정부가 상기 수압수심기로 구성되는 경우,In the case where the water depth measuring unit is configured by the water pressure water planting,
    상기 제어부는,Wherein,
    상기 검출된 오류 신호에 따라 상기 수압수심기 점검 및 유지보수를 수행하며, 상기 수압수심기의 센서를 보정하도록 구성되는 너셀 신축 이송형 해류발전기 제어 방법.And performing the water pressure planting inspection and maintenance according to the detected error signal to correct the sensor of the water pressure planting.
  13. 터빈로터 및 발전기를 포함하는 너셀과 상기 너셀을 고정하며 신축되도록 구성되는 기둥고정부와 상기 기둥고정부를 신축시키는 신축부 및 구동력을 제공하는 구동부를 포함하는 발전부; 상기 너셀 상단 일측에 구비되어 상기 너셀의 수심을 측정하여 수심데이터를 생성하는 수심측정부; 및 상기 수심데이터에 따라 상기 너셀을 상하 이동시키기 위해 상기 기둥고정부를 신축시키도록 상기 구동부의 구동을 위한 제어명령을 생성하는 제어부;를 포함하는 해류발전기에 의한 해류발전기 설치 및 유지보수 방법에 있어서,A power generator including a nacelle including a turbine rotor and a generator, a column fixing part configured to fix the nacelle and expanding and contracting, an expanding and contracting part for expanding and contracting the column fixing part, and a driving part providing driving force. A water depth measuring unit provided at an upper side of the nacelle to measure water depth of the nacelle to generate water depth data; And a control unit for generating a control command for driving the driving unit to expand and contract the column fixing unit in order to move the nacelle up and down according to the water depth data, the method comprising the steps of: ,
    A) 상기 수심측정부가 조수간만의 차 데이터를 저장하는 데이터베이스를 이용하여 수심을 측정하는 조석간만차 수심예측기, 음향측심기 또는 수압수심기 중 하나 이상을 이용하여 측심 데이터를 생성하는 단계;A) generating the sounding data by using at least one of a tide diastolic water depth predicting unit, an echo sounder, or a water pressure watering plant for measuring depth of water using a database storing difference data only for the tide measuring unit tide number;
    B) 상기 측심 데이터에 따라 실시간으로 상기 수심데이터를 추출하는 단계;B) extracting the water depth data in real time according to the sounding data;
    C) 단위시간 내 상기 수심데이터를 평균하여 평균 수심데이터를 생성하는 단계;C) generating average depth data by averaging the depth data within a unit time;
    D) 상기 평균 수심데이터에 따라 상기 너셀의 높이를 산출하여 상기 제어부로 전송하는 단계;D) calculating the height of the nucelle according to the average water depth data and transmitting the calculated height to the controller;
    E) 상기 제어부에 의해 상기 평균 수심데이터를 이용하여 적정 수심으로 상기 너셀을 상하 이동시키는 단계;E) moving the nacelle up and down at an appropriate water depth using the average water depth data by the controller;
    F) 상기 제어부의 제어명령에 따라 높이가 설정된 상기 너셀의 터빈로터의 발전량을 계측하여 데이터베이스에 기 저장된 이론 터빈로터의 발전량과 비교하는 단계;F) measuring the power generation amount of the turbine rotor of the nose cell set in height according to the control command of the control unit, and comparing the generated power with the amount of power of the theoretical turbine rotor stored in the database;
    G) 상기 터빈로터의 발전량과 상기 이론 터빈로터의 발전량의 차이가 기 설정된 허용값을 초과하는 경우, 상기 수심측정부에 오류가 발생한 것으로 판단하여 오류발생신호를 생성하는 단계;G) generating an error occurrence signal by determining that an error has occurred in the depth measuring unit when the difference between the power generation amount of the turbine rotor and the power generation amount of the theoretical turbine rotor exceeds a predetermined allowable value;
    H) 상기 오류발생신호를 상기 제어부로 전송하는 단계; 및H) transmitting the error occurrence signal to the control unit; And
    I) 상기 제어부가 상기 너셀의 유지보수를 위해 상기 기둥고정부를 신장시켜 상기 너셀을 해수면 위에 노출시키는 단계;를 포함하는 것을 특징으로 하는 너셀 신축 이송형 해류발전기의 설치 및 유지보수 방법.I) The control unit extends the column fixing unit to expose the nacelle on the sea surface for maintenance of the nacelle, and the method for installing and maintaining the nacelle expansion and contraction type airstream generator.
  14. 청구항 13에 있어서, 상기 A단계는,14. The method of claim 13,
    상기 측심데이터를 생성하는 단계 이전에, 상기 기둥고정부에 상기 너셀을 설치하기 위해, 상기 너셀이 장착되는 상기 기둥고정부의 상단부가 해수면 위에 노출되도록 상기 기둥고정부를 신장시키는 단계;를 더 포함하는 너셀 신축 이송형 해류발전기의 설치 및 유지보수 방법.And expanding the column fixing portion so that the upper end of the column fixing portion to which the nacelle is mounted is exposed on the sea surface so as to install the nacelle at the column fixing portion before the step of generating the sounding data A method of installing and maintaining a nucelle retractable current generator.
PCT/KR2018/008622 2017-08-10 2018-07-30 Current power generating device for telescopically transferring nacelle and method for controlling current power generating device WO2019031747A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2017-0101858 2017-08-10
KR1020170101858A KR101956746B1 (en) 2017-08-10 2017-08-10 Current Power Generating Device with Nacelle Stretching Transfer and The Control Method Thereof

Publications (1)

Publication Number Publication Date
WO2019031747A1 true WO2019031747A1 (en) 2019-02-14

Family

ID=65271654

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/008622 WO2019031747A1 (en) 2017-08-10 2018-07-30 Current power generating device for telescopically transferring nacelle and method for controlling current power generating device

Country Status (2)

Country Link
KR (1) KR101956746B1 (en)
WO (1) WO2019031747A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030024225A (en) * 2001-09-17 2003-03-26 양태열 Current Power Generation System
KR20060011634A (en) * 2004-07-30 2006-02-03 주식회사 하이닉스반도체 Semiconductor memory device for repairing error cell efficiently and method for fabricating the same
KR100936907B1 (en) * 2009-03-21 2010-01-20 (주)에이치. 에스 The tidal generator system
KR20100043445A (en) * 2008-10-20 2010-04-29 주식회사 포스코건설 Tidal current power plant having an air floating type support for supporting a turbine
JP2016200075A (en) * 2015-04-13 2016-12-01 株式会社Ihi Underwater power generating apparatus

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100681662B1 (en) * 2005-05-09 2007-02-09 주식회사 삼안 Generation control system of a tidal power station and method controlling thereof
KR101701935B1 (en) 2015-10-13 2017-02-02 인하대학교 산학협력단 Current Power Generating Device Applied to the Caisson Structures Fixing System

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030024225A (en) * 2001-09-17 2003-03-26 양태열 Current Power Generation System
KR20060011634A (en) * 2004-07-30 2006-02-03 주식회사 하이닉스반도체 Semiconductor memory device for repairing error cell efficiently and method for fabricating the same
KR20100043445A (en) * 2008-10-20 2010-04-29 주식회사 포스코건설 Tidal current power plant having an air floating type support for supporting a turbine
KR100936907B1 (en) * 2009-03-21 2010-01-20 (주)에이치. 에스 The tidal generator system
JP2016200075A (en) * 2015-04-13 2016-12-01 株式会社Ihi Underwater power generating apparatus

Also Published As

Publication number Publication date
KR20190017278A (en) 2019-02-20
KR101956746B1 (en) 2019-06-19

Similar Documents

Publication Publication Date Title
WO2013008986A1 (en) Offshore wind power generator, lifting jig for transferring the offshore wind power generator, and method and system for installing the offshore wind power generator using the lifting jig
US7900406B2 (en) Foundation apparatus for a wind turbine tower
WO2010071261A1 (en) Displayable wind turbine
WO2023003356A1 (en) Gantry crane real-time monitoring system
WO2020213955A1 (en) Method and system for initialization diagnosis of mobile robot
WO2014189283A1 (en) Resonance generating device for testing fatigue of blade that maximizes moving mass ratio and fatigue testing method using same
WO2018182098A1 (en) Underwater structure measuring system and underwater structure measuring method
WO2019031747A1 (en) Current power generating device for telescopically transferring nacelle and method for controlling current power generating device
CN107835785B (en) Tower positioning system
WO2017039195A1 (en) Large-space structure collapse sensing device, structure monitoring device, and method using same
WO2012043938A1 (en) System and method for controlling power flow
WO2017099335A1 (en) Method and system for maintaining wind power facility on basis of weather information
WO2021060772A1 (en) Machine learning-based photovoltaic power generation operation management system and management method
WO2020013619A1 (en) Substation asset management method and apparatus based on power system reliability index
WO2021256749A1 (en) Method and electronic device for estimating displacement of bridge
WO2023132458A1 (en) Offshore wind power generation farm management system using unmanned autonomous navigation vehicle
WO2018124467A1 (en) Motor control device and control method for motor control device
CN105516683A (en) Power transmission line patrolling method
WO2022225213A1 (en) Method for constructing underwater base structure
WO2016122105A1 (en) Method for replacing steam generator of two-loop type pressurized light water reactor
WO2023085525A1 (en) Apparatus for monitoring strength of hydration reaction material structure and strength monitoring method using same
WO2012036363A1 (en) Device for measuring a transmission line constant, and measurement method thereof
WO2013069854A1 (en) Fluid power generation system
KR20190038614A (en) A method for assembling components of a wind power plant
WO2023027384A1 (en) Wave power generator

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18844160

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18844160

Country of ref document: EP

Kind code of ref document: A1