WO2023085525A1 - Apparatus for monitoring strength of hydration reaction material structure and strength monitoring method using same - Google Patents

Apparatus for monitoring strength of hydration reaction material structure and strength monitoring method using same Download PDF

Info

Publication number
WO2023085525A1
WO2023085525A1 PCT/KR2022/002978 KR2022002978W WO2023085525A1 WO 2023085525 A1 WO2023085525 A1 WO 2023085525A1 KR 2022002978 W KR2022002978 W KR 2022002978W WO 2023085525 A1 WO2023085525 A1 WO 2023085525A1
Authority
WO
WIPO (PCT)
Prior art keywords
impedance
sensor
electrical signal
piezoelectric sensor
strength
Prior art date
Application number
PCT/KR2022/002978
Other languages
French (fr)
Korean (ko)
Inventor
김준수
Original Assignee
에코엔텍 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 에코엔텍 주식회사 filed Critical 에코엔텍 주식회사
Publication of WO2023085525A1 publication Critical patent/WO2023085525A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/12Analysing solids by measuring frequency or resonance of acoustic waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/22Details, e.g. general constructional or apparatus details
    • G01N29/24Probes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/34Generating the ultrasonic, sonic or infrasonic waves, e.g. electronic circuits specially adapted therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/36Detecting the response signal, e.g. electronic circuits specially adapted therefor
    • G01N29/42Detecting the response signal, e.g. electronic circuits specially adapted therefor by frequency filtering or by tuning to resonant frequency
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/44Processing the detected response signal, e.g. electronic circuits specially adapted therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/40Investigating hardness or rebound hardness
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/38Concrete; Lime; Mortar; Gypsum; Bricks; Ceramics; Glass
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/38Concrete; Lime; Mortar; Gypsum; Bricks; Ceramics; Glass
    • G01N33/383Concrete or cement
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/01Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/13Receivers
    • GPHYSICS
    • G08SIGNALLING
    • G08CTRANSMISSION SYSTEMS FOR MEASURED VALUES, CONTROL OR SIMILAR SIGNALS
    • G08C17/00Arrangements for transmitting signals characterised by the use of a wireless electrical link
    • G08C17/02Arrangements for transmitting signals characterised by the use of a wireless electrical link using a radio link

Definitions

  • the present invention relates to a strength monitoring device of a reaction of hydration material structure and a strength monitoring method using the same, and more specifically, a piezoelectric sensor is provided inside the sensor device and buried together with the hydration reaction material structure It relates to a device for monitoring the strength of a hydration reactant material structure capable of preventing damage and transmitting and receiving alternating current electrical signals to and from the hydration reactant material structure in multiple directions through a transmission member, and a strength monitoring method using the same.
  • hydration reactants are widely used as the most common and generalized main structural materials, and research on performance improvement and stable quality control is being actively conducted.
  • strength is a basic factor in evaluating the stability of a structure. Securing the required or required strength and maintaining homogeneity are essential to securing the stability of the structure itself, and it is a basic factor that can evaluate various other properties. It becomes a standard.
  • the strength of these hydration reactants is the most important for quality control, but since the quality control of hydration reactants is mainly based on the strength of 28 days of standard curing, there is a temporal difference between the construction speed and the strength evaluation period. Therefore, the quality test results of already hardened hydration reactants cannot be quickly reflected in the construction work. processing becomes difficult.
  • the hydration reactant curing intensity estimation method uses a method using integrated temperature or a method using a Schmidt hammer. This is not directly measuring the inside of the hydration reactant structure, but it is difficult to accurately estimate the intensity and it is difficult to estimate the intensity in real time, and there are other problems in that measurement is difficult when the accessibility of the measurement point is difficult.
  • the ground improved by a construction method such as deep cement mixing (DCM) and the hydration-reactive material structure constructed by pouring ready-mixed concrete gradually develop strength due to the hydration reaction of cement, its component. That is, since the intensity value changes with time, there is a limit to accurately knowing the intensity without taking a sample.
  • DCM deep cement mixing
  • the strength of the structure can be indirectly estimated by manufacturing a specimen (an object made to a certain standard and used for material testing) at the time of construction such as pouring ready-mixed concrete and conducting a strength test, but the direct strength of the structure cannot be known. Accordingly, since the strength of the structure is measured by obtaining the limit of linear deformation from the relational curve between force and strain, in the case of an actual structure, it is not easy to find out the strength without deformation. Therefore, although physical characteristics such as strength and modulus of elasticity of a structure can be estimated by using ultrasonic waves or elastic waves or by non-destructive methods such as GPR, it is difficult to apply these methods in a low-strength state at the beginning of the hydration reaction.
  • the strength evaluation of the hydration reactant structure using a conventional piezoelectric sensor was measured by attaching it to the surface of the hydration reactant structure, and it was difficult to confirm the strength inside the actual hydration reactant structure by reflecting only the surface properties of the hydration reactant structure. .
  • the piezoelectric sensor is damaged due to the impact of being embedded with the hydration reactant, the impact received by the accumulation of the hydration reactant on the upper side, and deformation during curing of the hydration reactant, making it difficult to measure the strength.
  • Korean Patent Registration No. 10-1225234 "Strength expression monitoring system and method of concrete structure" is described.
  • the present invention has been proposed to improve such conventional problems, and a piezoelectric sensor is provided inside the sensor device to prevent damage when buried together with the hydration reactant structure, and transmits an alternating current electrical signal through a transmission member to the hydration reaction. It is an object of the present invention to provide a device for monitoring the strength of a structure of a hydration reactant capable of transmitting and receiving material structures in multiple directions and a method for monitoring the strength using the same.
  • an apparatus for monitoring the strength of a hydration reactant structure is embedded in a hydration reactant material structure to transmit an alternating current electrical signal to the hydration reactant structure and change by the hydration reactant structure. It may include a sensor device receiving resonance frequency and impedance, and a strength measuring device connected to the sensor device to measure the strength of the hydration reactant material structure.
  • the sensor device may include a sensor housing embedded in the hydration-reactive material structure so as not to be damaged; A piezoelectric sensor installed inside the sensor housing to receive an alternating current electrical signal, transmit it to the hydration reactant material structure, and receive the resonant frequency and impedance changed by the hydration reactant material structure, and the piezoelectric sensor is attached to the resonant frequency and It may include a transmission member that allows impedance to be transmitted to the hydration reactant structure.
  • the sensor housing is composed of a disk-shaped head portion and a column-shaped body portion, and an upper sensor housing connected to the outer surface of the body portion so that the transmission member is spirally wrapped, and an upper side opened so that the upper sensor housing is inserted. It may include a lower sensor housing formed in a cylindrical shape and having a coupling groove formed on an inner circumferential surface through which the transmission member is inserted and coupled by rotation of the upper sensor housing.
  • the intensity measuring device includes an AC electrical signal generator for generating an AC electrical signal of a specific waveform having a frequency of a predetermined frequency band; Controls the AC electrical signal generation unit to generate an AC electrical signal of a specific waveform having a frequency of a predetermined frequency band, applies the generated AC electrical signal to the piezoelectric sensor, and based on the AC electrical signal applied to the piezoelectric sensor It may include a control module unit that calculates strength data by measuring a change in physical pressure applied to the piezoelectric sensor and a power supply unit that supplies necessary power to the control module unit.
  • the hydration reactant structure strength monitoring device includes a temperature sensor installed on an outer surface of the sensor device or the strength measuring device to detect ambient temperature; a wired/wireless communication module unit provided in the sensor device or intensity measurement device to transmit the intensity data to an external upper processing device;
  • the display unit for displaying the intensity data and the sensor device or intensity measuring device may further include a GPS module unit for transmitting location information of the piezoelectric sensor to an external upper processing device.
  • control module unit includes an AC electrical signal controller for controlling the AC electrical signal generated by the AC electrical signal generator to be applied to the piezoelectric sensor; a frequency-impedance detector detecting a change in impedance and resonance frequency of the piezoelectric sensor according to the frequency of an AC electrical signal applied to the piezoelectric sensor; a pressure change measurement unit for measuring a change in physical pressure applied to the piezoelectric sensor based on a change in impedance and a resonant frequency of the piezoelectric sensor detected by the frequency-impedance detector;
  • a frequency-impedance correction unit for minimizing a measurement error by correcting the detected resonant frequency and impedance value based on the temperature detected by the temperature sensor; a signal amplification unit amplifying the magnitude of an electrical signal according to a change in the resonant frequency and impedance of the piezoelectric sensor; a low-
  • the AC electrical signal is composed of periodic waves, and the periodic waves are characterized in that they include at least one of a sine wave, a square wave, a triangular wave, and a sawtooth wave.
  • the sensor device may further include a spherical frame that is installed to surround the outside of the sensor housing and absorbs an impact applied from the outside when the hydration reactant is poured.
  • the transmission member is a central pillar; It is formed to be spaced apart at a predetermined interval along the longitudinal direction of the central column, and is connected in the vertical direction with the outer surface of a plurality of transmission discs and a plurality of transmission discs whose circumferences gradually decrease in the vertical direction with respect to the middle part,
  • the sensor housing includes a transmission piece having a transmission groove into which the transmission disk is inserted, and the sensor housing is formed in a spherical shape with a hollow inside to accommodate the transmission member, and an insertion groove is provided on an inner surface thereof to allow the transmission piece to be inserted and coupled thereto. characterized by the formation of
  • the sensor device is characterized in that a weight is provided on the lower surface of the sensor housing so that it is buried in the forward direction without tilting when pouring together with the hydration reactant.
  • a sensor device composed of a sensor housing embedded in a hydration reactant material structure according to an embodiment of the present invention and coupled to a transmission member to which a piezoelectric sensor is attached, and a sensor device connected to the sensor device to measure the strength of the hydration reactant material structure
  • the frequency-impedance detecting step is based on the signal amplifying step of amplifying an electrical signal according to the change in the resonant frequency and impedance of the piezoelectric sensor and the temperature detected by the temperature sensor provided in the hydration-reactive material structure strength monitoring device.
  • the pressure change measuring step removes an alternating current electrical signal from the electrical signal that has passed through the signal amplification step through a low-pass filter, , a low-pass filter step of passing only the electric signal according to the resonant frequency and impedance change of the piezoelectric sensor;
  • a strength calculation step of measuring pressure change data which is a change in physical pressure applied to the piezoelectric sensor, and calculating and calculating strength data based on the pressure change data.
  • a piezoelectric sensor is provided inside the sensor device to prevent damage when buried together with the hydration material structure.
  • an impact applied from the outside can be absorbed through the spherical frame.
  • a weight may be provided and buried in a forward direction.
  • FIG. 1 is a block diagram of an apparatus for monitoring the strength of a hydration reactant structure according to an embodiment of the present invention.
  • FIG. 2 is a projection perspective view of a sensor device in the device for monitoring the strength of a hydration reactant structure according to a first embodiment of the present invention.
  • Figure 3 is an exploded perspective view showing a state in which some parts of Figure 2 are cut away.
  • FIG. 4 is a perspective view illustrating a state in which wires are included in FIG. 2;
  • Figures 5 (a) and (b) are exemplary views showing a state in which Figure 2 is embedded in the hydration reactant structure.
  • Figure 6 is a perspective view showing a state further including a spherical frame in Figure 2;
  • Figure 7 is an exploded perspective view of Figure 6;
  • FIG. 8 is a projection perspective view of a sensor device in the device for monitoring the strength of a hydration reactant structure according to a second embodiment of the present invention.
  • Figure 9 (a) and (b) is an exploded perspective view of Figure 8;
  • FIG. 10 (a) and (b) are exemplary views showing a fastening rod in which the transmission member of FIG. 8 is formed.
  • FIG. 11 (a) and (b) are exemplary diagrams showing a state in which a weight is provided in a sensor device in the strength monitoring device for a hydration reactant structure according to an embodiment of the present invention.
  • FIG. 12 is a block diagram showing the configuration of a control module unit in the device for monitoring the strength of a hydration reactant structure according to an embodiment of the present invention.
  • FIG. 13 is a flowchart sequentially illustrating a strength monitoring method using a hydration reactant structure strength monitoring device according to an embodiment of the present invention.
  • FIG. 14 is a flow chart sequentially illustrating frequency-impedance detection steps in FIG. 13;
  • FIG. 15 is a flow chart sequentially showing pressure change measurement steps in FIG. 13;
  • first and second are terms used to describe various components, and are not limited in meaning per se, and are used only for the purpose of distinguishing one component from another.
  • connection or contact between components is directly connected between components or connected through other components in the middle also belongs to the scope of the present invention.
  • FIG. 1 is a block diagram of an apparatus for monitoring the strength of a structure of a hydration reactant according to an embodiment of the present invention
  • FIG. 2 is a perspective view of a sensor device in the apparatus for monitoring the strength of a structure of a hydration reactant according to an embodiment of the present invention
  • 3 is an exploded perspective view showing a state in which some parts of FIG. 2 are cut away
  • FIG. 4 is a projection perspective view showing a state in which wires are included in FIG. 2
  • FIG. 5 (a) and (b) are FIG. 2
  • It is an exemplary view showing a state in which the hydration reactant material is embedded in the structure
  • FIG. 6 is a perspective view showing a state in which a spherical frame is further included in FIG. 2
  • FIG. 7 is an exploded perspective view of FIG. 6 .
  • an apparatus for monitoring the strength of a hydration material structure may include a sensor device 1 and a strength measuring device 2.
  • the sensor device 1 is embedded in the hydration reactant material structure M and transmits an AC electrical signal to the hydration reactant material structure M, and the resonant frequency and Impedance can be transmitted.
  • the hydration reactant structure M may be a concrete structure constructed by pouring ready-mixed concrete or a ground improved by a construction method such as deep cement mixing (DCM).
  • DCM deep cement mixing
  • the sensor device 1 may include a sensor housing 10 , a piezoelectric sensor 11 and a transmission member 12 .
  • a sensor housing 10 a piezoelectric sensor 11 and a transmission member 12 .
  • the sensor housing 10 may have a configuration such that the sensor device 1 or/and the intensity measuring device 2 is embedded in the hydration reactant material structure M without being damaged.
  • the sensor housing 10 When the sensor housing 10 is placed together with the hydration reactant, it is desirable to have strength to withstand impact and the weight of the hydration reactant piled up on the upper side, and to have a weight that does not sink to the lower side after being buried, but is not limited thereto.
  • the sensor housing 10 may be made of a material that is not deformed by heat generated during curing of the hydration reactant and does not react with the hydration reactant.
  • the piezoelectric sensor 11 is installed inside the sensor housing 10 to receive an alternating current electrical signal, transmit it to the hydration reactant material structure M, and receive the resonant frequency and impedance changed by the hydration reactant material structure M. there is.
  • a plurality of piezoelectric sensors 11 may be attached to the transmission member 12, and when formed in two, they may be formed at both ends.
  • the piezoelectric sensor 11 may be divided into a piezoelectric sensor 11 receiving an AC electrical signal and a piezoelectric sensor 11 receiving a changed resonant frequency and impedance.
  • the piezoelectric sensor 11 is not limited thereto, and an AC electric signal may be applied or a changed resonant frequency and impedance may be received.
  • the AC electrical signal is composed of periodic waves
  • the periodic waves may include one or more of a sine wave, a square wave, a triangle wave, and a sawtooh wave.
  • a piezoelectric sensor 11 is attached to the transfer member 12 so that the resonant frequency and impedance are transmitted to the hydration reactant structure M.
  • the transmission member 12 receives an alternating current electrical signal from the piezoelectric sensor 11 and transmits it to the sensor housing 10, and receives the returned resonant frequency and impedance from the sensor housing 10 and transmits the changed resonance frequency and impedance to the piezoelectric sensor 11. It is preferably formed of a material.
  • the strength measuring device 2 may be built into the sensor device 1 or connected by wire/wireless to measure the strength of the hydration reactant structure M.
  • the strength measuring device 2 may include an AC electrical signal generator 20, a control module unit 21, and a power supply unit 22.
  • the control module unit 21 will be described in detail with reference to FIG. 12.
  • the AC electrical signal generator 20 may generate an AC electrical signal of a specific waveform having a frequency of a predetermined frequency band. Specifically, the AC electrical signal generator 20 may generate an AC electrical signal composed of periodic waves including at least one of a sine wave, a square wave, a triangular wave, and a sawtooth wave.
  • the control module unit 21 controls the AC electrical signal generator 20 to generate an AC electrical signal of a specific waveform having a frequency of a predetermined frequency band, and applies the generated AC electrical signal to the piezoelectric sensor 11, Strength data may be calculated by measuring a change in physical pressure applied to the piezoelectric sensor 11 based on the AC electrical signal applied to the piezoelectric sensor 11 .
  • the power supply unit 22 may supply necessary power to the control module unit 21 .
  • the power supply unit 22 may be composed of a replaceable battery or a rechargeable battery. It is preferable that the power supply unit 22 supplies power to the control module unit 21 for a period exceeding 28 days in consideration of the quality control of the hydration reactant, which is generally performed based on the strength of 28 days of standard curing. , but not limited thereto.
  • the strength measuring device 2 may have a connection portion composed of a connection port electrically connected to the piezoelectric sensor 11 of the sensor device 1 or a connection cable.
  • the strength measuring device 2 is preferably accommodated inside the sensor housing 10 of the sensor device 1 and connected closely to the piezoelectric sensor 11, but is not limited thereto. Specifically, the strength measuring device 2 may be provided with a separate device housing (not shown) that accommodates the above configuration and protects them.
  • the device housing is made so that the above components are mounted therein, and can be manufactured in a small size with a handle for mobility and portability, and is partially opened or divided for maintenance of internal components. It can be.
  • the sensor housing 10 of the sensor device 1 includes an upper sensor housing 100 and a lower sensor housing 101. ) may be included.
  • the upper sensor housing 100 is composed of a head part 1000 of various shapes including a disc shape and a body part 1001 of various shapes including a column shape, and the transmission member 12 is formed on the outer surface of the body part 1001. ) can be connected to wrap in a spiral.
  • the lower sensor housing 101 may be formed in a cylindrical shape with an open upper side into which the upper sensor housing 100 is inserted.
  • a coupling groove 1010 may be formed on an inner circumferential surface of the lower sensor housing 101 .
  • the coupling groove 1010 may be formed in a spiral shape so that the transmission member 12 is inserted and coupled by rotation of the upper sensor housing 100 .
  • the transmission member 12 is formed in a bar shape, and may be formed in a spiral shape along the outer circumferential surface of the body portion 1001 of the upper sensor housing 100.
  • the transmission member 12 is preferably formed to have a width to which the piezoelectric sensor 11 can be attached to the upper and lower surfaces.
  • the transmission member 12 may be formed with a strength that can be fitted into the coupling groove 1010 of the lower sensor housing 101 .
  • the sensor device 1 wirelessly receives an alternating current electrical signal, but as shown in FIG. It is installed through and can receive alternating current electrical signals through wire.
  • the wire E may be accommodated in the body portion 1001 of the upper sensor housing 100 and connected to the piezoelectric sensor 11 .
  • the sensor device 1 may be installed in the hydration reactant structure M in a completely buried state, and as shown in FIG. 5 (b), The upper sensor housing 100 may be installed on the hydration reactant material structure M in an exposed state.
  • the sensor device 1 in which the signal is unstable or an abnormality is detected separates the upper sensor housing 100 from the lower sensor housing 101 to check the state, It can be reinstalled after repair.
  • the sensor device 1 may further include a spherical frame 13 .
  • the spherical frame 13 is installed to surround the outside of the sensor housing 10 and can absorb impact applied from the outside when poured together with the hydration reactant.
  • the spherical frame 13 may be formed such that a pair of hemispherical frames are formed and combined.
  • the spherical frame 13 may have a seating portion 130 in the center of which the upper and lower surfaces of the sensor device 1 can be inserted and seated.
  • the seat portion 130 has a groove formed on the outer surface of the sensor device 1 to be inserted and coupled thereto, so that the sensor device 1 can be stably coupled to the spherical frame 13 .
  • the spherical frame 13 may be coupled by forming holes and protrusions in the hemispherical frame, respectively, and may further include a separate fastening means to prevent loosening.
  • FIG. 8 is a projection perspective view of a sensor device in the device for monitoring the strength of a hydration reactant structure according to a second embodiment of the present invention
  • FIG. 9 (a) and (b) are exploded perspective views of FIG. 8
  • FIG. 10 (a) ) and (b) are exemplary views showing a fastening rod in which the transmission member of FIG. 8 is formed.
  • the sensor housing 10 and the transmission member 12 of the sensor device 1 may be formed in different shapes. there is.
  • the sensor device 1 in the hydration reactant structure strength monitoring device according to the second embodiment of the present invention is the first embodiment of the present invention described above. It can be said that it is substantially the same as the sensor device 1 in the hydration reactant structure strength monitoring device according to.
  • the sensor housing 10 may be formed in various shapes, including a spherical shape with a hollow inside, to accommodate the transmission member 12 .
  • An insertion groove 102 may be formed on an inner surface of the sensor housing 10 so that the transmission piece 122 of the transmission member 12 is inserted and coupled thereto.
  • the sensor housing 10 may be formed in a shape in which a pair of hemispheres are coupled.
  • the transmission member 12 may include a central pillar 120, a transmission disk 121 and a transmission groove 1220.
  • the central pillar 120 may be formed in various shapes, including a pillar shape formed to have a length in the vertical direction.
  • the central pillar 120 may have a side cross section formed in various shapes such as a circular shape, a square shape, a hexagon shape, and the like, but most preferably may have a cylindrical shape. However, it is not limited thereto.
  • the transmission disc 121 is formed in multiple pieces along the longitudinal direction of the central pillar 120, and may be formed to be spaced apart at regular intervals.
  • the transfer disk 121 may be formed such that the size of the circumference gradually decreases in the vertical direction based on the middle portion. Accordingly, the transmission disc 121 may be formed to have a sphere shape when viewed with the naked eye.
  • the transmission piece 122 may be connected to the outer surface of the plurality of transmission disks 121 in the vertical direction.
  • the transmission piece 122 may have a transmission groove 1220 formed at a position corresponding to the transmission disk 121 along the inner surface so that the transmission disk 121 is inserted.
  • the upper and lower ends of the transmission piece 122 are bent inward so that they are in contact with the upper surface of the uppermost transmission disc 121 and the lower surface of the lowermost transmission disc 121, so that they can be more firmly coupled. .
  • the transmission piece 122 transmits an alternating current electrical signal to the sensor housing 10 and the hydration reactant structure M according to the number installed on the transmission member 12, and returns the changed resonance frequency and impedance to the sensor housing 10 ), and the ability to transmit it to the piezoelectric sensor 11 can be improved.
  • the hydration reactant structure M may receive an AC electrical signal and transmit the changed resonant frequency and impedance depending on the constituent material, size, etc.
  • the sensor device 1 increases the number of transmission pieces 122 to signal the electrical signal. It is possible to strengthen the ability to send and receive.
  • the transmission member 12 may install a plurality of transmission pieces 122 in a state in which the central pillar 120 and the transmission disc 121 are coupled. At this time, the insertion groove 102 formed inside the sensor housing 10 may be formed in a corresponding number.
  • the delivery disc 121 can display the location where the delivery piece 122 is installed in a color, groove, etc., so that the user can easily install the delivery piece 122.
  • 11(a) and (b) are exemplary diagrams showing a state in which weights are provided in the sensor device in the device for monitoring the strength of a hydration reactant structure according to an embodiment of the present invention.
  • the sensor device 1 is equipped with a weight W on the lower surface of the sensor housing 10 so that it can be buried in the forward direction without tilting when placed together with the hydration reactant.
  • a plurality of weights W may be installed in the sensor device 1 by adjusting the number in consideration of the composition of the hydration reactant and the weight of the sensor device 1.
  • the sensor device 1 may be formed of a weight frame 14 to install the weight W on the lower surface.
  • the counterweight frame 14 may be formed in plurality in a bar structure in a form in which the sensor housing 10 is bent to accommodate the weight W on the lower surface thereof.
  • the weight frame 14 may be bent at the middle portion so that a plurality of weight weights (W) are accommodated.
  • the sensor device 1 when the sensor device 1 is buried together with the hydration reactant, it is installed in the forward direction without tilting, and an error due to the directionality of the electrical signal is prevented so that an accurate electrical signal can be transmitted to and received from the piezoelectric sensor 11. .
  • the apparatus for monitoring the strength of a hydration reactant structure of the present invention may further include a temperature sensor, a wired/wireless communication module unit, a display unit, and a GPS module unit.
  • the temperature sensor may be installed on the outer surface of the sensor device 1 or the intensity measuring device 2 to detect ambient temperature.
  • the piezoelectric sensor 11 has a property in which the resonant frequency and impedance change minutely according to the temperature. The heat generated during the curing process of the hydration reactant or the hydration reactant according to the external temperature change after the curing is completed. The change in temperature causes a change in the resonance frequency and impedance of the piezoelectric sensor 11 regardless of the pressure of the hydration reactant.
  • the change in resonance frequency and impedance of the piezoelectric sensor 11 caused by the temperature change of the hydration reactant is misrecognized as a change in the pressure of the hydration reactant, or causes a measurement error in measuring the pressure of the hydration reactant. There are issues that can be made.
  • the temperature sensor be located at the closest distance to the piezoelectric sensor 11 so that the temperature around the piezoelectric sensor 11 is measured when measuring the resonance frequency and impedance of the piezoelectric sensor 11, but it is limited to this. I don't.
  • the wired/wireless communication module unit may be provided in the sensor device or the intensity measurement device to transmit intensity data to an internal device or an external device such as a server or an upper processing device.
  • the wired/wireless communication module unit may transmit pressure change data obtained by measuring a change in physical pressure applied to the piezoelectric sensor based on a digital signal of a resonant frequency and impedance change of the piezoelectric sensor to an external upper processing device. Accordingly, the external upper processing device may derive the intensity based on the transmitted pressure change data.
  • the external upper processing device may be provided in various forms such as a computer, server, and cloud, and all processing devices used in the technical field of the present invention may be used.
  • the display unit may display strength data so that the user can directly check the strength with the naked eye.
  • the display unit may use any device capable of transmitting high-visibility intensity data.
  • the GPS module unit is provided in the sensor device 1 or the strength measuring device 2, and may transmit location information of the piezoelectric sensor 11 to an external upper processing device.
  • control module unit 21 includes an AC electrical signal control unit 210, a frequency-impedance detection unit 211, a pressure change measurement unit 212, a frequency-impedance correction unit 213, a signal amplification unit ( 214), a low-pass filter unit 215, an analog-to-digital converter unit 216, and an intensity calculation unit 217.
  • the AC electrical signal controller 210 may control the AC electrical signal generated by the AC electrical signal generator 20 to be applied to the piezoelectric sensor 11 .
  • the AC electrical signal is composed of periodic waves
  • the periodic waves may include one or more of a sine wave, a square wave, a triangle wave, and a sawtooh wave.
  • a sine wave having a frequency band from a low frequency to a high frequency is used.
  • the AC electrical signal controller 210 may control the frequency and generation time of the AC electrical signal according to the frequency characteristics of the piezoelectric sensor. For example, the AC electrical signal controller 210 may control the AC electrical signal generator 20 to generate a sine wave of 5 KHz to 100 KHz for 1 second.
  • the frequency-impedance detection unit 211 may detect a change in the resonance frequency and impedance of the piezoelectric sensor 11 according to the frequency of the AC electrical signal applied to the piezoelectric sensor.
  • the pressure change measurement unit 212 may measure a change in physical pressure applied to the piezoelectric sensor 11 based on the change in impedance and resonance frequency of the piezoelectric sensor 11 detected by the frequency-impedance detector 211. .
  • the frequency-impedance correction unit 213 detects the resonance frequency value and impedance based on the temperature detected by the temperature sensor. At least one of the values may be corrected to minimize the measurement error.
  • the frequency-impedance correction unit 213 can obtain the corrected resonant frequency and the corrected impedance through Equations 1 and 2 below.
  • f corrected resonance frequency
  • z corrected impedance
  • f1 measured resonance frequency
  • z1 measured impedance
  • A temperature characteristic coefficient of piezoelectric sensor 1
  • C temperature characteristic coefficient of piezoelectric sensor 3
  • B temperature characteristic coefficient of piezoelectric sensor 2
  • D temperature characteristic coefficient of piezoelectric sensor 4
  • Tc measured current temperature
  • Tref reference temperature
  • A, B, C, D and Tref are temperature characteristic tests for piezoelectric sensors constant value obtained through
  • A, B, C, D, and Tref are different depending on the piezoelectric sensor used, and may be data obtained through a temperature characteristic experiment for the piezoelectric sensor.
  • the correction of the resonant frequency and impedance is based on the fact that a change in the temperature of the hydration reactant due to a change in external air temperature causes a change in the resonant frequency and impedance of the piezoelectric sensor regardless of the pressure of the hydration reactant.
  • the signal amplifying unit 214 may amplify the magnitude of the electrical signal according to the change in the resonant frequency and impedance of the piezoelectric sensor 11 .
  • the low pass filter unit 215 removes the AC electrical signal generated by the AC electrical signal generator 20 among the electrical signals output from the signal amplifier 214 through a low pass filter, and the piezoelectric sensor 11 ) can pass only electrical signals according to the resonant frequency and impedance change.
  • the analog-to-digital converter unit 216 may convert an analog electrical signal according to a change in the resonant frequency and impedance of the piezoelectric sensor 11 filtered through the low-pass filter unit 215 into a digital signal and output the converted digital signal.
  • the strength calculation unit 217 measures pressure change data, which is a change in physical pressure applied to the piezoelectric sensor 11, based on the digital signal of the resonant frequency and impedance change of the piezoelectric sensor 11, and based on the pressure change data Strength data can be calculated and calculated.
  • the resonant frequency In the state where there is no intensity change, the resonant frequency has a constant value.
  • a resonant frequency value shifts, and this shift value is different for each material (substance). That is, it is not possible to extract the strength using the absolute value, and the strength test is performed using a sample initially extracted from the structure, and the resonance frequency at the same age is corresponded 1:1 to the corresponding strength value. Based on the relationship between the value and the frequency value, the intensity according to the change in the peak frequency (resonance frequency) to be measured later is calculated. In other words, the strength of the same material can be measured based on the reference value.
  • a strength test method for the sample a compressive strength test using a universal testing machine (UTM), a Marshall test method, a non-destructive test method using ultrasonic waves, and the like can be utilized.
  • FIG. 13 is a flow chart sequentially illustrating a strength monitoring method using a hydration reactant structure strength monitoring device according to an embodiment of the present invention
  • FIG. 14 is a flowchart sequentially showing frequency-impedance detection steps in FIG. 13
  • FIG. 15 is 13 is a flow chart sequentially showing pressure change measurement steps.
  • the sensor housing 10 is embedded in the hydration reactant structure and the transmission member 12 to which the piezoelectric sensor 11 is attached is coupled.
  • a hydration-reactive material structure using a hydration-reactive material structure strength monitoring device including a configured sensor device 1 and a strength measuring device 2 connected to the sensor device 1 to measure the strength of the hydration-reactive material structure M How to monitor the strength of
  • the strength monitoring method using the hydration reactant structure strength monitoring device of the present invention includes generating an AC electrical signal (S10), applying an AC electrical signal (S20), and receiving a frequency-impedance (S30). ), a frequency-impedance detection step (S40), and a pressure change measurement step (S50).
  • the AC electrical signal generating step (S10) is a step of generating an AC electrical signal of a specific waveform having a frequency of a predetermined frequency band.
  • the AC electrical signal is composed of periodic waves, and the periodic waves may include one or more of a sine wave, a square wave, a triangle wave, and a sawtooh wave. Most preferably, a sine wave having a frequency band from a low frequency to a high frequency is used.
  • the AC electrical signal generating step (S10) consists of sequentially generating an AC electrical signal within a predetermined time. Specifically, the frequency and generation time of the AC electrical signal generated in the AC electrical signal generating step (S10) are determined according to the frequency characteristics of the associated piezoelectric sensor 11. For example, the AC electrical signal generating step (S10) consists of generating a sine wave of 5KHz to 100KHz for 1 second.
  • the AC electrical signal generating step (S10) is a step of generating an AC electrical signal by the AC electrical signal generating unit 20 provided in the intensity measuring device 2.
  • the AC electrical signal applying step (S20) is a step of controlling the generated AC electrical signal and applying it to the piezoelectric sensor 11 for a predetermined time.
  • an AC electrical signal set according to the frequency characteristics of the piezoelectric sensor 11 is received from the AC electrical signal generating unit 20 through the control module unit 21 provided in the intensity measuring device 2. This is the stage of generating and applying.
  • the AC electrical signal applied to the piezoelectric sensor 11 is transmitted to the hydration reactant material structure M through the transmission member 12 and the sensor housing 10, and the hydration reactant material structure M It is a step of receiving the resonant frequency and impedance changed by ).
  • the frequency-impedance detection step (S40) is a step of detecting an electrical signal generated by a change in impedance and resonance frequency of the piezoelectric sensor 11 according to the frequency of the AC electrical signal applied to the piezoelectric sensor 11.
  • the frequency-impedance detection step (S40) is a step of detecting the resonance frequency and impedance generated by the piezoelectric sensor by the frequency of the AC electric signal applied in the AC electric signal application step (S20).
  • the resonant frequency may be a natural resonant frequency
  • the impedance may be a resonant frequency and an impedance value.
  • the frequency-impedance detection step (S40) may include a signal amplification step (S41) and a frequency-impedance correction step (S42).
  • the signal amplification step (S41) is a step of amplifying the electrical signal according to the change in the resonant frequency and impedance of the piezoelectric sensor 11.
  • the resonant frequency and impedance of the piezoelectric sensor 11 change according to the change in the frequency of the AC electrical signal applied to the piezoelectric sensor 11, and this change is converted into a fine electrical signal.
  • It is a step of amplifying the size of the signal through the signal amplifier 214 to amplify the size of the measurable signal.
  • the frequency-impedance correction step (S42) is a step of minimizing a measurement error by correcting the detected resonant frequency and impedance value based on the temperature detected by the temperature sensor provided in the hydration reactant structure strength monitoring device.
  • the frequency-impedance correction step (S42) is a step of obtaining a corrected resonant frequency and impedance through Equations 1 and 2 below.
  • f corrected resonance frequency
  • z corrected impedance
  • f1 measured resonance frequency
  • z1 measured impedance
  • A temperature characteristic coefficient of piezoelectric sensor 1
  • C temperature characteristic coefficient of piezoelectric sensor 3
  • B temperature characteristic coefficient of piezoelectric sensor 2
  • D temperature characteristic coefficient of piezoelectric sensor 4
  • Tc measured current temperature
  • Tref reference temperature
  • A, B, C, D and Tref are temperature characteristic tests for piezoelectric sensors constant value obtained through
  • A, B, C, D, and Tref are different depending on the piezoelectric sensor used, and may be data obtained through a temperature characteristic test for the piezoelectric sensor 11.
  • intensity may be calculated through additional correction.
  • An additional correction method may be the strength calculation through an empirical formula for ordinary concrete. According to the hydration reaction, the strength of the material gradually increases, and then converges to a certain strength at the same time that the hydration reaction ends after a considerable period of time. In the case of general concrete, the strength can be calculated by the following empirical formula (Equation 3).
  • additional correction can be performed by supplementing the correction values (correction resonance frequency and correction impedance values) obtained through Equations 1 and 2 using Equation 3.
  • another type of additional correction method may be strength calculation using calculated values and test result values.
  • the calculated value is an empirical formula according to the basic frequency pattern change, and the strength is calculated according to the passage of time, and the test result value may be the strength value at the time when the strength test result comes out.
  • Other types of additional correction methods can add up to a difference of ⁇ test result value - calculated value ⁇ .
  • test result value which is the result of the strength test 25 hours after the start of curing the hydration reactant
  • the correction values obtained through Equations 1 and 2 can be further corrected by confirming the strength value in and adding the difference by ⁇ test result value - calculated value ⁇ .
  • the pressure change measuring step (S50) is a step of measuring an intensity electrical signal according to a change in physical pressure applied to the piezoelectric sensor 11 based on the detected change in resonance frequency and impedance of the piezoelectric sensor 11.
  • the pressure change measurement step (S50) may include a low-pass filter step (S51), an analog-to-digital converter step (S52), and an intensity calculation step (S53).
  • the low-pass filter step (S51) is a step of removing the AC electrical signal from the electrical signal that has passed through the signal amplification step (S41) through a low-pass filter, and passing only the electrical signal according to the change in the resonance frequency and impedance of the piezoelectric sensor 11.
  • the electric signal that has passed through the signal amplification step (S41) is mixed with the AC electric signal generated by the AC electric signal generator 20 and the electric signal according to the change in the resonant frequency and impedance of the piezoelectric sensor 11, and the low-pass filter Through this, only the electrical signal according to the change in the resonant frequency and impedance of the piezoelectric sensor 11 can be extracted.
  • the analog-to-digital converter step (S52) is a step of converting the analog electrical signal according to the change in resonance frequency and impedance of the piezoelectric sensor 11 filtered through the low-pass filter step (S51) into a digital signal and outputting the converted signal.
  • pressure change data which is a change in physical pressure applied to the piezoelectric sensor 11, is measured based on the digital signal of the resonance frequency and impedance change of the piezoelectric sensor 11, and based on the pressure change data This is the step of calculating and calculating intensity data.
  • the pressure change measuring step (S50) is transmitted to an external upper processing device through a wired/wireless communication module included in the intensity monitoring device so that the upper processing device calculates the intensity data based on the pressure change data, or the intensity calculation unit ( 217) may be a step of transmitting intensity data calculated as pressure change data to an external upper processing device through a wired/wireless communication module unit.
  • the external upper processing device may be provided in various forms such as a computer, server, and cloud, and all processing devices used in the technical field of the present invention may be used.
  • the present invention relates to a strength monitoring device of a hydration reactant structure and a strength monitoring method using the same, and can be used for a hydration reaction of concrete.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Pathology (AREA)
  • Immunology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Ceramic Engineering (AREA)
  • Medicinal Chemistry (AREA)
  • Food Science & Technology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Signal Processing (AREA)
  • Acoustics & Sound (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
  • Measuring Fluid Pressure (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Abstract

The present invention relates to an apparatus for monitoring the strength of a hydration reaction material structure and a strength monitoring method using same and, more particularly, to an apparatus for monitoring the strength of a hydration reaction material structure and a strength monitoring method using same, wherein a piezoelectric sensor is provided inside a sensor device to prevent damage when buried together with the hydration reaction material structure, and AC electrical signals can be transmitted to and received from the hydration reaction material structure in multiple directions through a transmission member.

Description

수화반응물질 구조체의 강도 모니터링 장치 및 이를 이용한 강도 모니터링 방법Strength monitoring device of hydration reactant structure and strength monitoring method using the same
본 발명은 수화반응(水和反應,reaction of hydration)물질 구조체의 강도 모니터링 장치 및 이를 이용한 강도 모니터링 방법에 관한 것으로, 더욱 자세하게는 압전센서가 센서장치의 내부에 마련되어 수화반응물질 구조체와 함께 매립 시 파손되는 것을 방지하고, 전달부재를 통해 교류전기신호를 수화반응물질 구조체에 다방향으로 전달하고 전달받을 수 있는 수화반응물질 구조체의 강도 모니터링 장치 및 이를 이용한 강도 모니터링 방법에 관한 것이다.The present invention relates to a strength monitoring device of a reaction of hydration material structure and a strength monitoring method using the same, and more specifically, a piezoelectric sensor is provided inside the sensor device and buried together with the hydration reaction material structure It relates to a device for monitoring the strength of a hydration reactant material structure capable of preventing damage and transmitting and receiving alternating current electrical signals to and from the hydration reactant material structure in multiple directions through a transmission member, and a strength monitoring method using the same.
최근 들어 우리나라는 물론 세계 각국마다 경제 산업발전을 위한 사회기반시설의 확충으로 사회 공공핵심 구조들이 늘어나고 있으며, 이러한 건설 규모는 계속 대형화되고 있다.In recent years, social and public core structures are increasing due to the expansion of social infrastructure for economic and industrial development in countries around the world as well as in Korea, and the scale of such construction continues to increase.
건축생산에 있어 수화반응물질은 가장 일반적이며 보편화된 주요 구조재로 폭넓게 사용되고 있으며, 성능의 향상 및 안정적인 품질관리에 대한 연구가 활발하게 진행되고 있다. 특히 수화반응물질 구조체에 있어서 강도는 구조체의 안정성을 평가하는 기본적인 요소로서 필요로 또는 요구되는 강도를 확보하고 균질성을 유지하는 것은 구조체 자체의 안정성을 확보하는데 필수적이며 다른 여러 가지 성질을 평가할 수 있는 기본적인 기준이 된다.In building production, hydration reactants are widely used as the most common and generalized main structural materials, and research on performance improvement and stable quality control is being actively conducted. In particular, in the structure of a hydration reactant, strength is a basic factor in evaluating the stability of a structure. Securing the required or required strength and maintaining homogeneity are essential to securing the stability of the structure itself, and it is a basic factor that can evaluate various other properties. It becomes a standard.
이러한 수화반응물질의 강도는 품질관리상 가장 중요하게 다루어지고 있으나, 수화반응물질의 품질관리는 주로 표준양생한 재령 28일 강도를 기준으로 하고 있기 때문에 공사의 진행속도와 강도평가시기 사이에는 시간적 차이가 생기므로 이미 경화한 수화반응물질의 품질시험 결과는 공사에 신속하게 반영할 수 없으며, 소요의 강도가 과부족일 경우 안전의 문제뿐만이 아니라 경제적·행정적 손실을 부담해야 하는 등 강도상의 문제가 발생할 때에는 처리가 곤란하게 된다.The strength of these hydration reactants is the most important for quality control, but since the quality control of hydration reactants is mainly based on the strength of 28 days of standard curing, there is a temporal difference between the construction speed and the strength evaluation period. Therefore, the quality test results of already hardened hydration reactants cannot be quickly reflected in the construction work. processing becomes difficult.
수화반응물질 양생 강도 추정 기법은 적산온도를 이용한 방법이나 슈미트 해머를 이용한 방법을 사용한다. 이는 수화반응물질 구조체 내부를 직접적으로 측정하는 것이 아니라 정확한 강도 추정이 어렵고 실시간으로 강도 추정을 하기 어려운 문제점이 있으며, 계측 지점의 접근성이 어려운 경우 측정에 어려움이 있는 다른 문제점이 있다.The hydration reactant curing intensity estimation method uses a method using integrated temperature or a method using a Schmidt hammer. This is not directly measuring the inside of the hydration reactant structure, but it is difficult to accurately estimate the intensity and it is difficult to estimate the intensity in real time, and there are other problems in that measurement is difficult when the accessibility of the measurement point is difficult.
또한, 적산온도를 이용하는 방법 이외에도, 기존 현장 타설 수화반응물질의 발현 강도 평가와 관련한 대부분의 연구는 전기 화학적 촉진법, 그리고 각종 비파괴 시험법 등을 대상으로 하고 있다.In addition to the method using the integrated temperature, most studies related to the evaluation of the expression strength of the existing in-situ hydration reactants are aimed at the electrochemical acceleration method and various nondestructive test methods.
또한, 수학적인 모델링에 의해 제안된 이론식 뿐만 아니라, 실제 실험을 수행하거나 경험에 근거한 식의 형태로도 제안되고 있는데, 이러한 평가방법은 고가의 장비가 필요하거나 제안된 식 자체가 복잡하여 실무에서 크게 활용되지 못하는 실정이다.In addition, not only theoretical formulas proposed by mathematical modeling, but also actual experiments or empirical formulas are proposed. These evaluation methods require expensive equipment or the proposed formula itself is complex, so it is greatly in practice. It is not currently in use.
다시 말해서, 심층혼합공법(Deep cement mixing, DCM) 등의 공법에 의해 개량된 지반과 레미콘 타설에 의해 시공되는 수화반응물질 구조체는 그 구성물인 시멘트의 수화반응에 의해 강도가 서서히 발현된다. 즉, 시간에 따라 강도값이 변하므로 샘플을 취하지 않고서는 정확히 그 강도를 알 수 없는 한계가 있다.In other words, the ground improved by a construction method such as deep cement mixing (DCM) and the hydration-reactive material structure constructed by pouring ready-mixed concrete gradually develop strength due to the hydration reaction of cement, its component. That is, since the intensity value changes with time, there is a limit to accurately knowing the intensity without taking a sample.
레미콘 타설 등 시공 당시 공시체(供試體,일정한 규격으로 만들어 재질시험에 사용되는 물체)를 제작하고, 강도시험을 함으로써 간접적으로 구조체의 강도를 추정할 수 있으나, 해당 구조체의 직접적인 강도를 알 수는 없고, 이에 따라 구조체의 강도는 힘과 변형의 관계곡선으로부터 선형변형의 한계치를 구함으로써 측정하게 되므로, 실제 구조체의 경우, 변형을 주지 않은 상태에서 강도를 알아낸다는 것이 쉽지 않은 한계가 있다. 따라서, 초음파 또는 탄성파를 이용하거나, GPR 등 비파괴 방법에 의해 구조체 등의 강도, 탄성계수 등의 물리적 특징을 추정할 수 있으나, 수화반응 초기의 저강도 상태에서는 이들 방법을 적용하기 어려운 실정이다.The strength of the structure can be indirectly estimated by manufacturing a specimen (an object made to a certain standard and used for material testing) at the time of construction such as pouring ready-mixed concrete and conducting a strength test, but the direct strength of the structure cannot be known. Accordingly, since the strength of the structure is measured by obtaining the limit of linear deformation from the relational curve between force and strain, in the case of an actual structure, it is not easy to find out the strength without deformation. Therefore, although physical characteristics such as strength and modulus of elasticity of a structure can be estimated by using ultrasonic waves or elastic waves or by non-destructive methods such as GPR, it is difficult to apply these methods in a low-strength state at the beginning of the hydration reaction.
한편, 종래의 압전센서를 이용한 수화반응물질 구조체의 강도 평가는 수화반응물질 구조체의 표면에 부착하여 측정하여 수화반응물질 구조체의 표면의 성질만 반영하여 실제 수화반응물질 구조체 내부의 강도를 확인하기 어려웠다. 또한, 수화반응물질 구조체에 매립될 경우, 압전센서는 수화반응물질 함께 매립되는 충격, 상측에 수화반응물질이 쌓여 받는 충격, 수화반응물질 양생 중 변형 등으로 인해 파손되어 강도 측정을 수행하기 힘들다. On the other hand, the strength evaluation of the hydration reactant structure using a conventional piezoelectric sensor was measured by attaching it to the surface of the hydration reactant structure, and it was difficult to confirm the strength inside the actual hydration reactant structure by reflecting only the surface properties of the hydration reactant structure. . In addition, when embedded in the structure of the hydration reactant, the piezoelectric sensor is damaged due to the impact of being embedded with the hydration reactant, the impact received by the accumulation of the hydration reactant on the upper side, and deformation during curing of the hydration reactant, making it difficult to measure the strength.
이에 따라 현장 타설 수화반응물질 구조체의 강도발현 평가를 고려한 효율적인 실시간 상시 계측 모니터링을 통하여 이상 거동을 감지하고, 적절한 조치를 취함으로써 시설물 붕괴를 미연에 방지할 수 있으며, 수화반응물질 구조체에 매립 시 외부 충격으로부터 보호하여 압전센서가 정상 작동될 수 있는 기술이 필요하다.Accordingly, it is possible to prevent the collapse of the facility in advance by detecting abnormal behavior through efficient real-time constant measurement and monitoring in consideration of the evaluation of the strength development of the on-site hydration reactant structure and taking appropriate measures, and when buried in the hydration reactant structure, external A technology is needed to protect the piezoelectric sensor from impact so that it can operate normally.
종래기술로는 대한민국 등록특허공보 제 10-1225234호 “콘크리트 구조체의 강도발현 모니터링 시스템 및 그 방법”이 기재되어 있다.As a prior art, Korean Patent Registration No. 10-1225234 "Strength expression monitoring system and method of concrete structure" is described.
따라서 본 발명은 이와 같은 종래의 문제점을 개선하기 위해 제안된 것으로, 압전센서가 센서장치의 내부에 마련되어 수화반응물질 구조체와 함께 매립 시 파손되는 것을 방지하고, 전달부재를 통해 교류전기신호를 수화반응물질 구조체에 다방향으로 전달하고 전달받을 수 있는 수화반응물질 구조체의 강도 모니터링 장치 및 이를 이용한 강도 모니터링 방법을 제공하는데 목적이 있다.Therefore, the present invention has been proposed to improve such conventional problems, and a piezoelectric sensor is provided inside the sensor device to prevent damage when buried together with the hydration reactant structure, and transmits an alternating current electrical signal through a transmission member to the hydration reaction. It is an object of the present invention to provide a device for monitoring the strength of a structure of a hydration reactant capable of transmitting and receiving material structures in multiple directions and a method for monitoring the strength using the same.
상기 과제를 해결하기 위하여, 본 발명의 실시예에 따른 수화반응물질 구조체의 강도 모니터링 장치는 수화반응물질 구조체에 매립되어 상기 수화반응물질 구조체에 교류전기신호를 전달하고 상기 수화반응물질 구조체에 의해 변화된 공진주파수 및 임피던스를 전달받는 센서장치 및 상기 센서장치와 연결되어 상기 수화반응물질 구조체의 강도를 측정하는 강도측정장치를 포함할 수 있다. In order to solve the above problems, an apparatus for monitoring the strength of a hydration reactant structure according to an embodiment of the present invention is embedded in a hydration reactant material structure to transmit an alternating current electrical signal to the hydration reactant structure and change by the hydration reactant structure. It may include a sensor device receiving resonance frequency and impedance, and a strength measuring device connected to the sensor device to measure the strength of the hydration reactant material structure.
또한, 상기 센서장치는 상기 수화반응물질 구조체에 파손되지 않게 매립되는 센서 하우징; 상기 센서 하우징 내부에 설치되어 교류전기신호를 전달받아 상기 수화반응물질 구조체에 전달하고, 상기 수화반응물질 구조체에 의해 변화된 공진주파수 및 임피던스를 전달받는 압전센서 및 상기 압전센서가 부착되어 상기 공진주파수 및 임피던스가 상기 수화반응물질 구조체에 전달되도록 하는 전달부재를 포함할 수 있다.In addition, the sensor device may include a sensor housing embedded in the hydration-reactive material structure so as not to be damaged; A piezoelectric sensor installed inside the sensor housing to receive an alternating current electrical signal, transmit it to the hydration reactant material structure, and receive the resonant frequency and impedance changed by the hydration reactant material structure, and the piezoelectric sensor is attached to the resonant frequency and It may include a transmission member that allows impedance to be transmitted to the hydration reactant structure.
또한, 상기 센서 하우징은 원판 형태의 머리부 및 기둥 형태의 몸통부로 구성되되, 상기 몸통부의 외면에 상기 전달부재가 나선형으로 감싸도록 연결되는 상부 센서 하우징 및 상기 상부 센서 하우징이 삽입되도록 상측이 개방된 원통 형태로 형성되되, 내주면에 상기 상부 센서 하우징의 회전에 의해 상기 전달부재가 삽입되어 결합되도록 하는 결합홈이 형성된 하부 센서 하우징을 포함할 수 있다.In addition, the sensor housing is composed of a disk-shaped head portion and a column-shaped body portion, and an upper sensor housing connected to the outer surface of the body portion so that the transmission member is spirally wrapped, and an upper side opened so that the upper sensor housing is inserted. It may include a lower sensor housing formed in a cylindrical shape and having a coupling groove formed on an inner circumferential surface through which the transmission member is inserted and coupled by rotation of the upper sensor housing.
또한, 상기 강도측정장치는 소정 주파수 대역의 주파수를 갖는 특정 파형의 교류전기신호를 발생시키는 교류전기신호 발생부; 상기 교류전기신호 발생부에서 소정 주파수 대역의 주파수를 갖는 특정 파형의 교류전기신호가 발생되도록 제어하고, 발생된 교류전기신호를 상기 압전센서에 인가하며, 상기 압전센서로 인가된 교류전기신호에 기반하여 상기 압전센서에 가해진 물리적인 압력의 변화를 측정하여 강도데이터를 산출하는 제어모듈부 및 상기 제어모듈부에 필요 전력을 공급하는 전원부를 포함할 수 있다.In addition, the intensity measuring device includes an AC electrical signal generator for generating an AC electrical signal of a specific waveform having a frequency of a predetermined frequency band; Controls the AC electrical signal generation unit to generate an AC electrical signal of a specific waveform having a frequency of a predetermined frequency band, applies the generated AC electrical signal to the piezoelectric sensor, and based on the AC electrical signal applied to the piezoelectric sensor It may include a control module unit that calculates strength data by measuring a change in physical pressure applied to the piezoelectric sensor and a power supply unit that supplies necessary power to the control module unit.
또한 상기 수화반응물질 구조체 강도 모니터링 장치는 상기 센서장치 또는 강도측정장치의 외면에 설치되어 주변 온도를 검출하는 온도센서; 상기 강도데이터를 외부의 상위 처리장치로 전송하도록 상기 센서장치 또는 강도측정장치에 구비되는 유무선 통신 모듈부; 상기 강도데이터를 표시하는 디스플레이부 및 상기 센서장치 또는 강도측정장치에 구비되며, 상기 압전센서의 위치 정보를 외부의 상위 처리장치로 전송하는 GPS 모듈부를 더 포함할 수 있다.In addition, the hydration reactant structure strength monitoring device includes a temperature sensor installed on an outer surface of the sensor device or the strength measuring device to detect ambient temperature; a wired/wireless communication module unit provided in the sensor device or intensity measurement device to transmit the intensity data to an external upper processing device; The display unit for displaying the intensity data and the sensor device or intensity measuring device may further include a GPS module unit for transmitting location information of the piezoelectric sensor to an external upper processing device.
또한, 상기 제어모듈부는 상기 교류전기신호 발생부에서 발생되는 교류전기신호를 제어하여 상기 압전센서로 인가되도록 하는 교류전기신호 제어부; 상기 압전센서로 가해지는 교류전기신호의 주파수에 따른 상기 압전센서의 공진주파수와 임피던스의 변화를 검출하는 주파수-임피던스 검출부; 상기 주파수-임피던스 검출부에서 검출된 상기 압전센서의 공진주파수와 임피던스의 변화에 기반하여 상기 압전센서에 가해진 물리적인 압력의 변화를 측정하는 압력변화 측정부; 상기 주파수-임피던스 검출부에서 압전센서의 공진주파수와 임피던스를 검출할 때, 상기 온도 센서에 의해 검출된 온도에 기반하여 검출된 공진주파수와 임피던스 값을 보정하여 측정 오차를 최소화하는 주파수-임피던스 보정부; 상기 압전센서의 공진주파수와 임피던스의 변화에 따른 전기신호의 크기를 증폭시키는 신호 증폭부; 상기 신호 증폭부로부터 출력되는 나오는 전기신호 중 상기 교류전기신호 발생부에서 발생한 교류전기신호는 제거하고, 상기 압전센서의 공진주파수와 임피던스 변화에 따른 전기신호만을 통과시키는 저역 필터부; 상기 저역 필터부를 통해 필터링되어 출력되는 상기 압전센서의 공진주파수와 임피던스 변화에 따른 아날로그 전기신호를 디지털 신호로 변환시켜 출력하는 아날로그-디지털 컨버터부 및 상기 압전센서의 공진주파수와 임피던스 변화의 디지털 신호에 기반하여 상기 압전센서에 가해진 물리적인 압력의 변화인 압력변화 데이터를 측정하고, 상기 압력변화 데이터를 기초로 강도데이터를 계산하고 산출하는 강도 산출부를 포함할 수 있다.In addition, the control module unit includes an AC electrical signal controller for controlling the AC electrical signal generated by the AC electrical signal generator to be applied to the piezoelectric sensor; a frequency-impedance detector detecting a change in impedance and resonance frequency of the piezoelectric sensor according to the frequency of an AC electrical signal applied to the piezoelectric sensor; a pressure change measurement unit for measuring a change in physical pressure applied to the piezoelectric sensor based on a change in impedance and a resonant frequency of the piezoelectric sensor detected by the frequency-impedance detector; When the frequency-impedance detecting unit detects the resonant frequency and impedance of the piezoelectric sensor, a frequency-impedance correction unit for minimizing a measurement error by correcting the detected resonant frequency and impedance value based on the temperature detected by the temperature sensor; a signal amplification unit amplifying the magnitude of an electrical signal according to a change in the resonant frequency and impedance of the piezoelectric sensor; a low-pass filter unit that removes the AC electrical signal generated from the AC electrical signal generator among the electrical signals output from the signal amplifying unit and passes only the electrical signal according to the resonant frequency and impedance change of the piezoelectric sensor; An analog-to-digital converter unit that converts an analog electrical signal according to a change in resonance frequency and impedance of the piezoelectric sensor filtered through the low-pass filter unit into a digital signal and outputs the digital signal of the change in resonance frequency and impedance of the piezoelectric sensor and a strength calculator configured to measure pressure change data, which is a change in physical pressure applied to the piezoelectric sensor, and to calculate and calculate strength data based on the pressure change data.
또한, 상기 교류전기신호는 주기파로 구성되며, 상기 주기파는 사인파, 사각파, 삼각파 및 톱니파 중 하나이상을 포함하는 것을 특징으로 한다. In addition, the AC electrical signal is composed of periodic waves, and the periodic waves are characterized in that they include at least one of a sine wave, a square wave, a triangular wave, and a sawtooth wave.
또한, 상기 센서장치는 상기 센서 하우징의 외측을 감싸듯이 설치되어 수화반응물질과 함께 타설될 때, 외부로부터 가해지는 충격을 흡수하는 구형 프레임을 더 포함할 수 있다.In addition, the sensor device may further include a spherical frame that is installed to surround the outside of the sensor housing and absorbs an impact applied from the outside when the hydration reactant is poured.
또한, 상기 전달부재는 중심기둥; 상기 중심기둥의 길이방향을 따라 일정간격 이격되도록 형성되되, 중단부를 기준으로 상하방향으로 원주의 크기가 점차적으로 작아지는 다수 개의 전달원판 및 다수 개의 상기 전달원판의 외측면과 상하방향으로 연결되되, 상기 전달원판이 삽입되도록 전달홈이 구비된 전달편을 포함하고, 상기 센서 하우징은 상기 전달부재가 수용되도록 내부가 중공상태인 구형태로 형성되되, 내면에 상기 전달편이 삽입되어 결합되도록 삽입홈이 형성되는 것을 특징으로 한다. In addition, the transmission member is a central pillar; It is formed to be spaced apart at a predetermined interval along the longitudinal direction of the central column, and is connected in the vertical direction with the outer surface of a plurality of transmission discs and a plurality of transmission discs whose circumferences gradually decrease in the vertical direction with respect to the middle part, The sensor housing includes a transmission piece having a transmission groove into which the transmission disk is inserted, and the sensor housing is formed in a spherical shape with a hollow inside to accommodate the transmission member, and an insertion groove is provided on an inner surface thereof to allow the transmission piece to be inserted and coupled thereto. characterized by the formation of
또한, 상기 센서장치는 상기 센서 하우징의 하단면에 무게추가 구비되어 수화반응물질과 함께 타설시 기울어지지 않고 정방향으로 매립되는 것을 특징으로 한다. In addition, the sensor device is characterized in that a weight is provided on the lower surface of the sensor housing so that it is buried in the forward direction without tilting when pouring together with the hydration reactant.
한편, 본 발명의 실시예에 따른 수화반응물질 구조체에 매립되되, 압전센서가 부착된 전달부재가 결합된 센서 하우징으로 구성된 센서장치 및 상기 센서장치와 연결되어 상기 수화반응물질 구조체의 강도를 측정하는 강도측정장치를 포함하는 수화반응물질 구조체 강도 모니터링 장치를 이용하여 수화반응물질 구조체의 강도를 모니터링하는 방법에 있어서, 소정 주파수 대역의 주파수를 갖는 특정 파형의 교류전기신호를 발생시키는 교류전기신호 발생 단계; 상기 발생된 교류전기신호를 제어하여 일정 시간 동안 상기 압전센서로 인가하는 교류전기신호 인가 단계; 상기 압전센서에 인가된 교류전기신호를 상기 전달부재 및 센서 하우징을 통해 상기 수화반응물질 구조체에 전달하고 상기 수화반응물질 구조체에 의해 변화된 공진주파수 및 임피던스를 전달받는 주파수-임피던스 수신 단계; 상기 압전센서로 가해지는 상기 교류전기신호의 주파수에 따른 상기 압전센서의 공진주파수와 임피던스의 변화에 따른 전기신호를 검출하는 주파수-임피던스 검출 단계 및 상기 검출된 상기 압전센서의 공진주파수와 임피던스의 변화에 기반하여 상기 압전센서에 가해진 물리적인 압력의 변화에 따른 강도전기신호로 측정하는 압력변화 측정 단계를 포함할 수 있다.On the other hand, a sensor device composed of a sensor housing embedded in a hydration reactant material structure according to an embodiment of the present invention and coupled to a transmission member to which a piezoelectric sensor is attached, and a sensor device connected to the sensor device to measure the strength of the hydration reactant material structure A method for monitoring the strength of a hydration reactant structure using a strength monitoring device including a strength measuring device, comprising the step of generating an AC electrical signal of a specific waveform having a frequency of a predetermined frequency band. ; an AC electrical signal applying step of controlling the generated AC electrical signal and applying it to the piezoelectric sensor for a predetermined period of time; a frequency-impedance receiving step of transmitting the alternating current electrical signal applied to the piezoelectric sensor to the hydration reactant material structure through the transmission member and the sensor housing and receiving the resonant frequency and impedance changed by the hydration reactant material structure; A frequency-impedance detection step of detecting an electrical signal according to a change in the resonant frequency and impedance of the piezoelectric sensor according to the frequency of the AC electrical signal applied to the piezoelectric sensor, and the detected change in the resonant frequency and impedance of the piezoelectric sensor It may include a pressure change measuring step of measuring an intensity electrical signal according to a change in physical pressure applied to the piezoelectric sensor based on the piezoelectric sensor.
또한, 상기 주파수-임피던스 검출 단계는 상기 압전센서의 공진주파수와 임피던스의 변화에 따른 전기신호를 증폭시키는 신호 증폭 단계 및 상기 수화반응물질 구조체 강도 모니터링 장치에 구비된 온도센서에 의해 검출된 온도에 기반하여 검출된 공진주파수와 임피던스 값을 보정하여 측정 오차를 최소화하는 주파수-임피던스 보정 단계를 포함하고, 상기 압력변화 측정 단계는 저역 필터를 통해 상기 신호 증폭 단계를 거친 전기신호에서 교류전기신호를 제거하고, 상기 압전센서의 공진주파수와 임피던스 변화에 따른 전기신호만을 통과시키는 저역 필터 단계; 상기 저역 필터 단계를 통해 필터링되어 출력되는 상기 압전센서의 공진주파수와 임피던스 변화에 따른 아날로그 전기신호를 디지털 신호로 변환시켜 출력하는 아날로그-디지털 컨버터 단계 및 상기 압전센서의 공진주파수와 임피던스 변화의 디지털 신호에 기반하여 상기 압전센서에 가해진 물리적인 압력의 변화인 압력변화 데이터를 측정하고, 상기 압력변화 데이터를 기초로 강도데이터를 계산하고 산출하는 강도 산출 단계를 포함할 수 있다.In addition, the frequency-impedance detecting step is based on the signal amplifying step of amplifying an electrical signal according to the change in the resonant frequency and impedance of the piezoelectric sensor and the temperature detected by the temperature sensor provided in the hydration-reactive material structure strength monitoring device. and a frequency-impedance correction step of minimizing a measurement error by correcting the detected resonant frequency and impedance value, and the pressure change measuring step removes an alternating current electrical signal from the electrical signal that has passed through the signal amplification step through a low-pass filter, , a low-pass filter step of passing only the electric signal according to the resonant frequency and impedance change of the piezoelectric sensor; An analog-to-digital converter step of converting an analog electrical signal according to a change in resonance frequency and impedance of the piezoelectric sensor filtered through the low-pass filter step into a digital signal and outputting the digital signal of the change in resonance frequency and impedance of the piezoelectric sensor A strength calculation step of measuring pressure change data, which is a change in physical pressure applied to the piezoelectric sensor, and calculating and calculating strength data based on the pressure change data.
본 발명의 실시 예에 따른 수화반응물질 구조체의 강도 모니터링 장치 및 이를 이용한 강도 모니터링 방법은 압전센서가 센서장치의 내부에 마련되어 수화반응물질 구조체와 함께 매립 시 파손되는 것을 방지할 수 있다.In the apparatus for monitoring the strength of a hydration material structure and the strength monitoring method using the same according to an embodiment of the present invention, a piezoelectric sensor is provided inside the sensor device to prevent damage when buried together with the hydration material structure.
또한, 전달부재를 통해 교류전기신호를 수화반응물질 구조체에 다방향으로 전달하고 전달받을 수 있다.In addition, it is possible to transmit and receive alternating current electrical signals to and from the hydration reactant material structure in multiple directions through the transmission member.
또한, 압전센서의 임피던스 특성을 이용하여 구조체의 강도를 신뢰성 있게 측정하고 지속적인 모니터링을 제공할 수 있는 효과가 있다.In addition, there is an effect of reliably measuring the strength of the structure and providing continuous monitoring using the impedance characteristics of the piezoelectric sensor.
또한, 소형으로 제작할 수 있어 휴대성과 이동성을 확보할 수 있고, 이에 따라 장소에 구애받지 않고 용이하게 강도를 측정할 수 있는 효과가 있다.In addition, since it can be manufactured in a small size, it is possible to secure portability and mobility, and accordingly, there is an effect that the strength can be easily measured regardless of location.
또한, 구형 프레임을 통해 외부로부터 가해지는 충격을 흡수할 수 있다.In addition, an impact applied from the outside can be absorbed through the spherical frame.
또한, 무게추가 구비되어 정방향으로 매립될 수 있다. In addition, a weight may be provided and buried in a forward direction.
또한, 위에서 언급된 본 발명의 실시 예에 따른 효과는 기재된 내용에만 한정되지 않고, 명세서 및 도면으로부터 예측 가능한 모든 효과를 더 포함할 수 있다.In addition, the effects according to the embodiments of the present invention mentioned above are not limited to the described contents, and may further include all effects predictable from the specification and drawings.
도 1은 본 발명의 실시예에 따른 수화반응물질 구조체 강도 모니터링 장치의 블록도.1 is a block diagram of an apparatus for monitoring the strength of a hydration reactant structure according to an embodiment of the present invention.
도 2는 본 발명의 제1 실시예에 따른 수화반응물질 구조체 강도 모니터링 장치에서 센서장치의 투영사시도.2 is a projection perspective view of a sensor device in the device for monitoring the strength of a hydration reactant structure according to a first embodiment of the present invention.
도 3은 도 2의 일부 부품을 절개한 모습을 도시한 분리사시도.Figure 3 is an exploded perspective view showing a state in which some parts of Figure 2 are cut away.
도 4는 도 2에 전선이 포함된 모습을 도시한 투영사시도.FIG. 4 is a perspective view illustrating a state in which wires are included in FIG. 2;
도 5의 (a) 및 (b)는 도 2가 수화반응물질 구조체에 매립된 모습을 도시한 예시도.Figures 5 (a) and (b) are exemplary views showing a state in which Figure 2 is embedded in the hydration reactant structure.
도 6은 도 2에 구형 프레임을 더 포함하는 모습을 도시한 사시도.Figure 6 is a perspective view showing a state further including a spherical frame in Figure 2;
도 7은 도 6의 분리사시도.Figure 7 is an exploded perspective view of Figure 6;
도 8은 본 발명의 제2 실시예에 따른 수화반응물질 구조체 강도 모니터링 장치에서 센서장치의 투영사시도.8 is a projection perspective view of a sensor device in the device for monitoring the strength of a hydration reactant structure according to a second embodiment of the present invention.
도 9의 (a) 및 (b)는 도 8의 분리사시도.Figure 9 (a) and (b) is an exploded perspective view of Figure 8;
도 10의 (a) 및 (b)는 도 8의 전달부재가 형성되는 체결로드를 도시한 예시도.10 (a) and (b) are exemplary views showing a fastening rod in which the transmission member of FIG. 8 is formed.
도 11의 (a) 및 (b)는 본 발명의 실시예에 따른 수화반응물질 구조체 강도 모니터링 장치에서 센서장치에 무게추가 구비된 모습을 도시한 예시도.11 (a) and (b) are exemplary diagrams showing a state in which a weight is provided in a sensor device in the strength monitoring device for a hydration reactant structure according to an embodiment of the present invention.
도 12는 본 발명의 실시예에 따른 수화반응물질 구조체 강도 모니터링 장치에서 제어모듈부의 구성을 도시한 블록도.12 is a block diagram showing the configuration of a control module unit in the device for monitoring the strength of a hydration reactant structure according to an embodiment of the present invention.
도 13은 본 발명의 실시예에 따른 수화반응물질 구조체 강도 모니터링 장치를 이용한 강도 모니터링 방법을 순차적으로 나타낸 흐름도.13 is a flowchart sequentially illustrating a strength monitoring method using a hydration reactant structure strength monitoring device according to an embodiment of the present invention.
도 14는 도 13에서 주파수-임피던스 검출단계를 순차적으로 나타낸 흐름도.14 is a flow chart sequentially illustrating frequency-impedance detection steps in FIG. 13;
도 15는 도 13에서 압력변화 측정 단계를 순차적으로 나타낸 흐름도.15 is a flow chart sequentially showing pressure change measurement steps in FIG. 13;
이하, 도면을 참조한 본 발명의 설명은 특정한 실시 형태에 대해 한정되지 않으며, 다양한 변환을 가할 수 있고 여러 가지 실시예를 가질 수 있다. 또한, 이하에서 설명하는 내용은 본 발명의 사상 및 기술 범위에 포함되는 모든 변환, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다.Hereinafter, the description of the present invention with reference to the drawings is not limited to specific embodiments, and various transformations may be applied and various embodiments may be applied. In addition, the content described below should be understood to include all conversions, equivalents, or substitutes included in the spirit and scope of the present invention.
이하의 설명에서 제1, 제2 등의 용어는 다양한 구성요소들을 설명하는데 사용되는 용어로서, 그 자체에 의미가 한정되지 아니하며, 하나의 구성요소를 다른 구성요소로부터 구별하는 목적으로만 사용된다.In the following description, terms such as first and second are terms used to describe various components, and are not limited in meaning per se, and are used only for the purpose of distinguishing one component from another.
본 명세서 전체에 걸쳐 사용되는 동일한 참조번호는 동일한 구성요소를 나타낸다.Like reference numbers used throughout this specification indicate like elements.
본 발명에서 사용되는 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 또한, 이하에서 기재되는 "포함하다", "구비하다" 또는 "가지다" 등의 용어는 명세서상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것이 존재함을 지정하려는 것으로 해석되어야 하며, 하나 또는 그 이상의 다른 특징들이나, 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.Singular expressions used in the present invention include plural expressions unless the context clearly dictates otherwise. In addition, terms such as "include", "include" or "have" described below are intended to designate that features, numbers, steps, operations, components, parts, or combinations thereof described in the specification exist. should be construed, and understood not to preclude the possibility of the presence or addition of one or more other features, numbers, steps, operations, components, parts, or combinations thereof.
본 발명에서, 구성간의 연결 또는 접촉 되었다는 표현은 구성간의 직접적인 연결 또는 중간에 다른 구성들을 통해 연결이 되는 것도 본 발명의 범위에 속한다.In the present invention, the expression that the connection or contact between components is directly connected between components or connected through other components in the middle also belongs to the scope of the present invention.
이하, 본 발명의 실시예를 첨부한 도 1 내지 도 15를 참조하여 상세히 설명하기로 한다.Hereinafter, an embodiment of the present invention will be described in detail with reference to FIGS. 1 to 15 attached.
도 1은 본 발명의 실시예에 따른 수화반응물질 구조체 강도 모니터링 장치의 블록도이고, 도 2는 본 발명의 제1 실시예에 따른 수화반응물질 구조체 강도 모니터링 장치에서 센서장치의 투영사시도이고, 도 3은 도 2의 일부 부품을 절개한 모습을 도시한 분리사시도이고, 도 4는 도 2에 전선이 포함된 모습을 도시한 투영사시도이고, 도 5의 (a) 및 (b)는 도 2가 수화반응물질 구조체에 매립된 모습을 도시한 예시도이고, 도 6은 도 2에 구형 프레임을 더 포함하는 모습을 도시한 사시도이고, 도 7은 도 6의 분리사시도이다. 1 is a block diagram of an apparatus for monitoring the strength of a structure of a hydration reactant according to an embodiment of the present invention, and FIG. 2 is a perspective view of a sensor device in the apparatus for monitoring the strength of a structure of a hydration reactant according to an embodiment of the present invention. 3 is an exploded perspective view showing a state in which some parts of FIG. 2 are cut away, FIG. 4 is a projection perspective view showing a state in which wires are included in FIG. 2, and FIG. 5 (a) and (b) are FIG. 2 It is an exemplary view showing a state in which the hydration reactant material is embedded in the structure, FIG. 6 is a perspective view showing a state in which a spherical frame is further included in FIG. 2 , and FIG. 7 is an exploded perspective view of FIG. 6 .
도 1을 참조하면, 본 발명의 실시예에 따른 수화반응물질 구조체 강도 모니터링 장치는 센서장치(1) 및 강도측정장치(2)를 포함할 수 있다. Referring to FIG. 1 , an apparatus for monitoring the strength of a hydration material structure according to an embodiment of the present invention may include a sensor device 1 and a strength measuring device 2.
센서장치(1)는 도 5에 나타난 바와 같이, 수화반응물질 구조체(M)에 매립되어 수화반응물질 구조체(M)에 교류전기신호를 전달하고 수화반응물질 구조체(M)에 의해 변화된 공진주파수 및 임피던스를 전달받을 수 있다. As shown in FIG. 5, the sensor device 1 is embedded in the hydration reactant material structure M and transmits an AC electrical signal to the hydration reactant material structure M, and the resonant frequency and Impedance can be transmitted.
여기서, 수화반응물질 구조체(M)는 레미콘 타설에 의해 시공되는 콘크리트 구조물 또는 심층혼합공법(Deep cement mixing, DCM) 등의 공법으로 개량된 지반일 수 있다. Here, the hydration reactant structure M may be a concrete structure constructed by pouring ready-mixed concrete or a ground improved by a construction method such as deep cement mixing (DCM).
센서장치(1)는 센서 하우징(10), 압전센서(11) 및 전달부재(12)를 포함할 수 있다. 먼저 센서장치(1)의 각 구성의 역할을 간략하게 설명한 뒤 도 2 내지 도 7을 통해 상세하게 설명하고자 한다. The sensor device 1 may include a sensor housing 10 , a piezoelectric sensor 11 and a transmission member 12 . First, the role of each component of the sensor device 1 will be briefly described and then described in detail with reference to FIGS. 2 to 7 .
센서 하우징(10)은 센서장치(1) 또는/및 강도측정장치(2)가 수화반응물질 구조체(M)에 파손되지 않게 매립되도록 하는 구성일 수 있다. 센서 하우징(10)은 수화반응물질과 함께 타설 시, 충격과 상측에서 쌓이는 수화반응물질의 무게를 견디는 강도를 가지며, 매립된 뒤, 하측으로 가라앉지 않는 무게를 가지는 것이 바람직하나, 이에 한정하지는 않는다. 또한 센서 하우징(10)은 수화반응물질이 양생하는 동안 발생하는 열에 변형되지 않고 수화반응물질과 반응하지 않는 재질로 구성될 수 있다. The sensor housing 10 may have a configuration such that the sensor device 1 or/and the intensity measuring device 2 is embedded in the hydration reactant material structure M without being damaged. When the sensor housing 10 is placed together with the hydration reactant, it is desirable to have strength to withstand impact and the weight of the hydration reactant piled up on the upper side, and to have a weight that does not sink to the lower side after being buried, but is not limited thereto. . In addition, the sensor housing 10 may be made of a material that is not deformed by heat generated during curing of the hydration reactant and does not react with the hydration reactant.
압전센서(11)는 센서 하우징(10) 내부에 설치되어 교류전기신호를 전달받아 수화반응물질 구조체(M)에 전달하고, 수화반응물질 구조체(M)에 의해 변화된 공진주파수 및 임피던스를 전달받을 수 있다. 압전센서(11)는 전달부재(12)에 다수개로 부착될 수 있으며, 2개로 형성될 경우 양 끝단에 형성될 수 있다. 또한, 압전센서(11)는 교류전기신호을 인가받는 압전센서(11)와 변화된 공진주파수 및 임피던스를 전달받는 압전센서(11)로 나뉘어 설치될 수 있다. 그러나 이에 한정하지 않고 한 압전센서(11)에서 교류전기신호를 인가받거나 변화된 공진주파수 및 임피던스를 전달받을 수 있다. The piezoelectric sensor 11 is installed inside the sensor housing 10 to receive an alternating current electrical signal, transmit it to the hydration reactant material structure M, and receive the resonant frequency and impedance changed by the hydration reactant material structure M. there is. A plurality of piezoelectric sensors 11 may be attached to the transmission member 12, and when formed in two, they may be formed at both ends. In addition, the piezoelectric sensor 11 may be divided into a piezoelectric sensor 11 receiving an AC electrical signal and a piezoelectric sensor 11 receiving a changed resonant frequency and impedance. However, the piezoelectric sensor 11 is not limited thereto, and an AC electric signal may be applied or a changed resonant frequency and impedance may be received.
여기서, 교류전기신호는 주기파로 구성되며, 주기파는 사인파(Sine wave), 사각파(Square wave), 삼각파(Triangle wave) 및 톱니파(Sawtooh wave) 중 하나이상을 포함할 수 있다. Here, the AC electrical signal is composed of periodic waves, and the periodic waves may include one or more of a sine wave, a square wave, a triangle wave, and a sawtooh wave.
전달부재(12)는 압전센서(11)가 부착되어 공진주파수 및 임피던스가 수화반응물질 구조체(M)에 전달되도록 할 수 있다. 전달부재(12)는 압전센서(11)로부터 교류전기신호를 전달받아 센서 하우징(10)에 전달하고 되돌아온 변화된 공진주파수 및 임피던스를 센서 하우징(10)으로부터 전달받아 압전센서(11)에 전달할 수 있는 재질로 형성되는 것이 바람직하다. A piezoelectric sensor 11 is attached to the transfer member 12 so that the resonant frequency and impedance are transmitted to the hydration reactant structure M. The transmission member 12 receives an alternating current electrical signal from the piezoelectric sensor 11 and transmits it to the sensor housing 10, and receives the returned resonant frequency and impedance from the sensor housing 10 and transmits the changed resonance frequency and impedance to the piezoelectric sensor 11. It is preferably formed of a material.
한편, 강도측정장치(2)는 센서장치(1)에 내장 또는 유선/무선 연결되어 수화반응물질 구조체(M)의 강도를 측정할 수 있다. 이를 위해 도 1에 도시한 바와 같이, 강도측정장치(2)는 교류전기신호 발생부(20), 제어모듈부(21) 및 전원부(22)를 포함할 수 있다. 먼저, 강도측정장치(2)의 각 구성의 역할을 설명한 뒤, 제어모듈부(21)는 도 12를 통해 상세하게 설명하고자 한다.On the other hand, the strength measuring device 2 may be built into the sensor device 1 or connected by wire/wireless to measure the strength of the hydration reactant structure M. To this end, as shown in FIG. 1, the strength measuring device 2 may include an AC electrical signal generator 20, a control module unit 21, and a power supply unit 22. First, after explaining the role of each component of the strength measuring device 2, the control module unit 21 will be described in detail with reference to FIG. 12.
교류전기신호 발생부(20)는 소정 주파수 대역의 주파수를 갖는 특정 파형의 교류전기신호를 발생시킬 수 있다. 구체적으로, 교류전기신호 발생부(20)는 사인파, 사각파, 삼각파 및 톱니파 중 하나이상을 포함하는 주기파로 구성된 교류전기신호를 발생시킬 수 있다. The AC electrical signal generator 20 may generate an AC electrical signal of a specific waveform having a frequency of a predetermined frequency band. Specifically, the AC electrical signal generator 20 may generate an AC electrical signal composed of periodic waves including at least one of a sine wave, a square wave, a triangular wave, and a sawtooth wave.
제어모듈부(21)는 교류전기신호 발생부(20)에서 소정 주파수 대역의 주파수를 갖는 특정 파형의 교류전기신호가 발생되도록 제어하고, 발생된 교류전기신호를 압전센서(11)에 인가하며, 압전센서(11)로 인가된 교류전기신호에 기반하여 압전센서(11)에 가해진 물리적인 압력의 변화를 측정하여 강도데이터를 산출할 수 있다. The control module unit 21 controls the AC electrical signal generator 20 to generate an AC electrical signal of a specific waveform having a frequency of a predetermined frequency band, and applies the generated AC electrical signal to the piezoelectric sensor 11, Strength data may be calculated by measuring a change in physical pressure applied to the piezoelectric sensor 11 based on the AC electrical signal applied to the piezoelectric sensor 11 .
전원부(22)는 제어모듈부(21)에 필요 전력을 공급할 수 있다. 전원부(22)는 교체형 배터리 또는 충전형 배터리로 구성될 수 있다. 전원부(22)는 일반적으로 표준양생한 재령 28일 강도를 기준으로 수행되는 수화반응물질의 품질관리를 고려하여, 28일을 상회하는 기간 동안 제어모듈부(21)에 전력을 공급하는 것이 바람직하나, 이에 한정하지는 않는다. The power supply unit 22 may supply necessary power to the control module unit 21 . The power supply unit 22 may be composed of a replaceable battery or a rechargeable battery. It is preferable that the power supply unit 22 supplies power to the control module unit 21 for a period exceeding 28 days in consideration of the quality control of the hydration reactant, which is generally performed based on the strength of 28 days of standard curing. , but not limited thereto.
또한, 강도측정장치(2)는 센서장치(1)의 압전센서(11)에 전기적으로 접속되는 접속 포트 또는 접속 케이블로 구성되는 접속부를 구비할 수 있다. In addition, the strength measuring device 2 may have a connection portion composed of a connection port electrically connected to the piezoelectric sensor 11 of the sensor device 1 or a connection cable.
강도측정장치(2)는 센서장치(1)의 센서 하우징(10)의 내부에 수용되어 압전센서(11)와 근접하게 연결되는 것이 바람직하나, 이에 한정하지는 않는다. 구체적으로 강도측정장치(2)는 상기와 같은 구성을 수용하여 이들을 보호하는 별도의 장치 하우징(미도시)이 구비될 수 있다. The strength measuring device 2 is preferably accommodated inside the sensor housing 10 of the sensor device 1 and connected closely to the piezoelectric sensor 11, but is not limited thereto. Specifically, the strength measuring device 2 may be provided with a separate device housing (not shown) that accommodates the above configuration and protects them.
여기서, 장치 하우징은 내부에 상기한 구성부들이 장착되도록 이루어지고, 이동성과 휴대성을 위하여 손잡이부를 갖고 소형으로 제작될 수 있으며, 내부의 구성부들의 유지보수를 위하여 일부가 개폐되거나, 분할되어 구성될 수 있다. Here, the device housing is made so that the above components are mounted therein, and can be manufactured in a small size with a handle for mobility and portability, and is partially opened or divided for maintenance of internal components. It can be.
도 2 내지 도 5를 참조하면, 본 발명의 제1 실시예에 따른 수화반응물질 구조체 강도 모니터링 장치에서 센서장치(1)의 센서 하우징(10)은 상부 센서 하우징(100) 및 하부 센서 하우징(101)을 포함할 수 있다.2 to 5, in the device for monitoring the strength of a hydration reactant structure according to the first embodiment of the present invention, the sensor housing 10 of the sensor device 1 includes an upper sensor housing 100 and a lower sensor housing 101. ) may be included.
상부 센서 하우징(100)은 원판 형태를 포함하는 다양한 형태의 머리부(1000) 및 기둥 형태를 포함하는 다양한 형태의 몸통부(1001)로 구성되되, 몸통부(1001)의 외면에 전달부재(12)가 나선형으로 감싸도록 연결될 수 있다. The upper sensor housing 100 is composed of a head part 1000 of various shapes including a disc shape and a body part 1001 of various shapes including a column shape, and the transmission member 12 is formed on the outer surface of the body part 1001. ) can be connected to wrap in a spiral.
하부 센서 하우징(101)은 상부 센서 하우징(100)이 삽입되도록 상측이 개방된 원통 형태로 형성될 수 있다. 하부 센서 하우징(101)은 내주면에 결합홈(1010)이 형성될 수 있다. 결합홈(1010)은 상부 센서 하우징(100)의 회전에 의해 전달부재(12)가 삽입되어 결합되도록 하는 나선형으로 형성될 수 있다. The lower sensor housing 101 may be formed in a cylindrical shape with an open upper side into which the upper sensor housing 100 is inserted. A coupling groove 1010 may be formed on an inner circumferential surface of the lower sensor housing 101 . The coupling groove 1010 may be formed in a spiral shape so that the transmission member 12 is inserted and coupled by rotation of the upper sensor housing 100 .
여기서, 전달부재(12)는 바형태로 형성되되, 상부 센서 하우징(100)의 몸통부(1001)의 외주면을 따라 나선형으로 형성될 수 있다. 전달부재(12)는 상하면에는 압전센서(11)가 부착될 수 있는 너비를 가지도록 형성되는 것이 바람직하다. 또한 전달부재(12)는 하부 센서 하우징(101)의 결합홈(1010)에 끼워질 수 있는 강도로 형성될 수 있다.Here, the transmission member 12 is formed in a bar shape, and may be formed in a spiral shape along the outer circumferential surface of the body portion 1001 of the upper sensor housing 100. The transmission member 12 is preferably formed to have a width to which the piezoelectric sensor 11 can be attached to the upper and lower surfaces. In addition, the transmission member 12 may be formed with a strength that can be fitted into the coupling groove 1010 of the lower sensor housing 101 .
또한, 본 발명의 제1 실시예에 따른 센서장치(1)는 교류전기신호를 무선으로 받는 것이 바람직하나, 도 4에 도시한 바와 같이 전선(E)이 상부 센서 하우징(100)을 상하방향으로 관통하여 설치되어 유선으로 교류전기신호를 인가 받을 수 있다. 이때, 전선(E)은 상부 센서 하우징(100)의 몸통부(1001)에 수용되어 압전센서(11)로 연결될 수 있다. In addition, it is preferable that the sensor device 1 according to the first embodiment of the present invention wirelessly receives an alternating current electrical signal, but as shown in FIG. It is installed through and can receive alternating current electrical signals through wire. At this time, the wire E may be accommodated in the body portion 1001 of the upper sensor housing 100 and connected to the piezoelectric sensor 11 .
또한, 센서장치(1)는 도 5의 (a)에 도시한 바와 같이, 완전히 매립된 상태로 수화반응물질 구조체(M)에 설치될 수 있고, 도 5의 (b)에 도시한 바와 같이, 상부 센서 하우징(100)이 노출된 상태로 수화반응물질 구조체(M)에 설치될 수 있다. In addition, as shown in FIG. 5 (a), the sensor device 1 may be installed in the hydration reactant structure M in a completely buried state, and as shown in FIG. 5 (b), The upper sensor housing 100 may be installed on the hydration reactant material structure M in an exposed state.
여기서, 센서장치(1)의 상부가 노출되어 설치된 경우, 신호가 불안정하거나 이상이 발견된 센서장치(1)는 상부 센서 하우징(100)을 하부 센서 하우징(101)으로부터 분리하여 상태를 확인하거나, 수리 후 재설치될 수 있다. Here, when the upper part of the sensor device 1 is exposed and installed, the sensor device 1 in which the signal is unstable or an abnormality is detected separates the upper sensor housing 100 from the lower sensor housing 101 to check the state, It can be reinstalled after repair.
또한, 도 6 내지 7를 참조하면, 센서장치(1)는 구형 프레임(13)을 더 포함할 수 있다. 구형 프레임(13)은 센서 하우징(10)의 외측을 감싸듯이 설치되어 수화반응물질과 함께 타설될 때, 외부로부터 가해지는 충격을 흡수할 수 있다. Also, referring to FIGS. 6 and 7 , the sensor device 1 may further include a spherical frame 13 . The spherical frame 13 is installed to surround the outside of the sensor housing 10 and can absorb impact applied from the outside when poured together with the hydration reactant.
구형 프레임(13)은 반구형태의 프레임이 한쌍으로 형성되어 결합되도록 형성될 수 있다. 구형 프레임(13)은 중심부에 센서장치(1)의 상하면이 삽입되어 안착할 수 있는 안착부(130)가 형성될 수 있다. 안착부(130)는 외면에 센서장치(1)가 삽입되어 결합할 수 있는 홈이 형성되어 센서장치(1)가 안정적으로 구형 프레임(13)에 결합되도록 할 수 있다. The spherical frame 13 may be formed such that a pair of hemispherical frames are formed and combined. The spherical frame 13 may have a seating portion 130 in the center of which the upper and lower surfaces of the sensor device 1 can be inserted and seated. The seat portion 130 has a groove formed on the outer surface of the sensor device 1 to be inserted and coupled thereto, so that the sensor device 1 can be stably coupled to the spherical frame 13 .
또한 구형 프레임(13)은 반구형태의 프레임이 각각 홀과 돌기가 형성되어 결합될 수 있고, 풀림을 방지하기 위해 별도의 체결수단이 더 구비될 수 있다. In addition, the spherical frame 13 may be coupled by forming holes and protrusions in the hemispherical frame, respectively, and may further include a separate fastening means to prevent loosening.
도 8은 본 발명의 제2 실시예에 따른 수화반응물질 구조체 강도 모니터링 장치에서 센서장치의 투영사시도이고, 도 9의 (a) 및 (b)는 도 8의 분리사시도이고, 도 10의 (a) 및 (b)는 도 8의 전달부재가 형성되는 체결로드를 도시한 예시도이다. 8 is a projection perspective view of a sensor device in the device for monitoring the strength of a hydration reactant structure according to a second embodiment of the present invention, FIG. 9 (a) and (b) are exploded perspective views of FIG. 8, and FIG. 10 (a) ) and (b) are exemplary views showing a fastening rod in which the transmission member of FIG. 8 is formed.
도 8 내지 도 10을 참조하면, 본 발명의 제2 실시예에 따른 수화반응물질 구조체 강도 모니터링 장치에서 센서장치(1)의 센서 하우징(10) 및 전달부재(12)가 다른 형태로 형성될 수 있다. 8 to 10, in the device for monitoring the strength of a hydration reactant structure according to the second embodiment of the present invention, the sensor housing 10 and the transmission member 12 of the sensor device 1 may be formed in different shapes. there is.
여기서, 센서 하우징(10) 및 전달부재(12)를 제외하고, 본 발명의 제2 실시예에 따른 수화반응물질 구조체 강도 모니터링 장치에서 센서장치(1)는 상기에서 설명한 본 발명의 제1 실시예에 따른 수화반응물질 구조체 강도 모니터링 장치에서 센서장치(1)와 실질적으로 동일하다고 할 수 있다. Here, except for the sensor housing 10 and the transmission member 12, the sensor device 1 in the hydration reactant structure strength monitoring device according to the second embodiment of the present invention is the first embodiment of the present invention described above. It can be said that it is substantially the same as the sensor device 1 in the hydration reactant structure strength monitoring device according to.
따라서, 센서 하우징(10) 및 전달부재(12)에 대해서만 자세하게 설명하기로 한다. Therefore, only the sensor housing 10 and the transmission member 12 will be described in detail.
센서 하우징(10)은 내부가 중공상태인 구형태를 포함하여 여러 모양 형태로 형성되어 전달부재(12)를 수용할 수 있다. 센서 하우징(10)은 내면에 전달부재(12)의 전달편(122)이 삽입되어 결합되도록 삽입홈(102)이 형성될 수 있다. 또한, 센서 하우징(10)은 한 쌍의 반구가 결합되는 형태로 형성될 수 있다. The sensor housing 10 may be formed in various shapes, including a spherical shape with a hollow inside, to accommodate the transmission member 12 . An insertion groove 102 may be formed on an inner surface of the sensor housing 10 so that the transmission piece 122 of the transmission member 12 is inserted and coupled thereto. Also, the sensor housing 10 may be formed in a shape in which a pair of hemispheres are coupled.
전달부재(12)는 중심기둥(120), 전달원판(121) 및 전달홈(1220)을 포함할 수 있다.The transmission member 12 may include a central pillar 120, a transmission disk 121 and a transmission groove 1220.
중심기둥(120)은 수직방향으로 길이를 가지도록 형성된 기둥형태를 포함하여 다양한 형태로 형성될 수 있다. 중심기둥(120)은 측단면이 원형, 사각형, 육각형 등 다양한 형태로 형성될 수 있으나, 가장 바람직하게는 원기둥 형태가 될 수 있다. 그러나 이에 한정하지는 않는다. The central pillar 120 may be formed in various shapes, including a pillar shape formed to have a length in the vertical direction. The central pillar 120 may have a side cross section formed in various shapes such as a circular shape, a square shape, a hexagon shape, and the like, but most preferably may have a cylindrical shape. However, it is not limited thereto.
전달원판(121)은 중심기둥(120)의 길이방향을 따라 다수 개로 형성되되, 일정간격 이격되도록 형성될 수 있다. 전달원판(121)은 중단부를 기준으로 상하방향으로 원주의 크기가 점차적으로 작아지도록 형성될 수 있다. 이에 전달원판(121)은 육안으로 보았을 때 구의 형태가 되도록 형성될 수 있다. The transmission disc 121 is formed in multiple pieces along the longitudinal direction of the central pillar 120, and may be formed to be spaced apart at regular intervals. The transfer disk 121 may be formed such that the size of the circumference gradually decreases in the vertical direction based on the middle portion. Accordingly, the transmission disc 121 may be formed to have a sphere shape when viewed with the naked eye.
전달편(122)은 다수 개의 전달원판(121)의 외측면과 상하방향으로 연결될 수 있다. 전달편(122)은 전달원판(121)이 삽입되도록 내면을 따라 전달원판(121)과 대응되는 위치에 전달홈(1220)이 형성될 수 있다. 또한, 전달편(122)은 상단과 하단이 내측으로 절곡되어 있어 가장 상측에 있는 전달원판(121)의 상면과 가장 하측에 있는 전달원판(121)의 하면에 접하고 있어 더욱 견고하게 결합할 수 있다.The transmission piece 122 may be connected to the outer surface of the plurality of transmission disks 121 in the vertical direction. The transmission piece 122 may have a transmission groove 1220 formed at a position corresponding to the transmission disk 121 along the inner surface so that the transmission disk 121 is inserted. In addition, the upper and lower ends of the transmission piece 122 are bent inward so that they are in contact with the upper surface of the uppermost transmission disc 121 and the lower surface of the lowermost transmission disc 121, so that they can be more firmly coupled. .
또한, 전달편(122)은 전달부재(12)에 설치되는 개수에 따라 교류전기신호를 센서 하우징(10) 및 수화반응물질 구조체(M)에 전달하고 되돌아온 변화된 공진주파수 및 임피던스를 센서 하우징(10)으로부터 전달받아 압전센서(11)로 전달하는 능력이 향상될 수 있다. In addition, the transmission piece 122 transmits an alternating current electrical signal to the sensor housing 10 and the hydration reactant structure M according to the number installed on the transmission member 12, and returns the changed resonance frequency and impedance to the sensor housing 10 ), and the ability to transmit it to the piezoelectric sensor 11 can be improved.
수화반응물질 구조체(M)는 구성물질, 크기 등에 따라 교류전기신호를 전달받고 변화된 공진주파수 및 임피던스를 전달하는 것이 다를 수 있으므로, 센서장치(1)는 전달편(122)의 개수를 늘려 전기신호를 주고받는 기능을 강화할 수 있다. Since the hydration reactant structure M may receive an AC electrical signal and transmit the changed resonant frequency and impedance depending on the constituent material, size, etc., the sensor device 1 increases the number of transmission pieces 122 to signal the electrical signal. It is possible to strengthen the ability to send and receive.
구체적으로, 도 10에 도시한 바와 같이, 전달부재(12)는 중심기둥(120)과 전달원판(121)이 결합된 상태에서 전달편(122)을 다수개 설치할 수 있다. 이때, 센서 하우징(10) 내부에 형성된 삽입홈(102)은 이와 대응되는 개수로 형성될 수 있다. Specifically, as shown in FIG. 10, the transmission member 12 may install a plurality of transmission pieces 122 in a state in which the central pillar 120 and the transmission disc 121 are coupled. At this time, the insertion groove 102 formed inside the sensor housing 10 may be formed in a corresponding number.
또한, 전달원판(121)은 전달편(122)이 설치되는 위치가 색상, 홈 등으로 표시되어 사용자로 하여금 전달편(122)을 쉽게 설치할 수 있도록 할 수 있다.In addition, the delivery disc 121 can display the location where the delivery piece 122 is installed in a color, groove, etc., so that the user can easily install the delivery piece 122.
도 11의 (a) 및 (b)는 본 발명의 실시예에 따른 수화반응물질 구조체 강도 모니터링 장치에서 센서장치에 무게추가 구비된 모습을 도시한 예시도이다.11(a) and (b) are exemplary diagrams showing a state in which weights are provided in the sensor device in the device for monitoring the strength of a hydration reactant structure according to an embodiment of the present invention.
도 11을 참조하면, 센서장치(1)는 센서 하우징(10)의 하단면에 무게추(W)가 구비되어 수화반응물질과 함께 타설시 기울어지지 않고 정방향으로 매립될 수 있다. Referring to FIG. 11 , the sensor device 1 is equipped with a weight W on the lower surface of the sensor housing 10 so that it can be buried in the forward direction without tilting when placed together with the hydration reactant.
무게추(W)는 다수 개로 구비되어 수화반응물질의 구성물, 센서장치(1)의 무게 등을 고려하여 개수를 조절하여 센서장치(1)에 설치될 수 있다. A plurality of weights W may be installed in the sensor device 1 by adjusting the number in consideration of the composition of the hydration reactant and the weight of the sensor device 1.
또한, 센서장치(1)는 하단면에 무게추(W)를 설치하기 위해 무게추 프레임(14) 형성될 수 있다. 무게추 프레임(14)은 센서 하우징(10)이 하단면에 무게추(W)가 수용되도록 절곡된 형태의 바구조로 다수개로 형성될 수 있다. 또한, 무게추 프레임(14)은 다수 개의 무게추(W)가 수용되도록 절곡이 중단부에도 형성될 수 있다. In addition, the sensor device 1 may be formed of a weight frame 14 to install the weight W on the lower surface. The counterweight frame 14 may be formed in plurality in a bar structure in a form in which the sensor housing 10 is bent to accommodate the weight W on the lower surface thereof. In addition, the weight frame 14 may be bent at the middle portion so that a plurality of weight weights (W) are accommodated.
이에, 센서장치(1)는 수화반응물질과 함께 매립될 시, 기울어지지 않고 정방향으로 설치되며 전기신호의 방향성에 따른 오차를 방지하여 정확한 전기신호를 압전센서(11)에 전달하고 전달받을 수 있다. Therefore, when the sensor device 1 is buried together with the hydration reactant, it is installed in the forward direction without tilting, and an error due to the directionality of the electrical signal is prevented so that an accurate electrical signal can be transmitted to and received from the piezoelectric sensor 11. .
또한, 본 발명의 수화반응물질 구조체 강도 모니터링 장치는 온도센서, 유무선 통신 모듈부, 디스플레이부 및 GPS 모듈부를 더 포함할 수 있다.In addition, the apparatus for monitoring the strength of a hydration reactant structure of the present invention may further include a temperature sensor, a wired/wireless communication module unit, a display unit, and a GPS module unit.
온도센서는 센서장치(1) 또는 강도측정장치(2)의 외면에 설치되어 주변 온도를 검출할 수 있다. 일반적으로, 압전센서(11)는 온도에 따라 공진주파수와 임피던스가 미세하게 변화는 성질이 있는데, 수화반응물질의 양생과정에서 발생하는 열이나, 양생이 완료된 이후에 외부기온 변화에 따른 수화반응물질의 온도의 변화는 수화반응물질의 압력과 무관하게 압전센서(11)의 공진주파수와 임피던스가 변화를 발생시키게 된다. 이와 같은 수화반응물질의 온도의 변화에 의해 발생되는 압전센서(11)의 공진주파수와 임피던스의 변화는 수화반응물질의 압력의 변화로 잘못 인식되거나, 수화반응물질의 압력측정에 있어서 측정 오차를 발생시킬 수 있는 문제가 있다. The temperature sensor may be installed on the outer surface of the sensor device 1 or the intensity measuring device 2 to detect ambient temperature. In general, the piezoelectric sensor 11 has a property in which the resonant frequency and impedance change minutely according to the temperature. The heat generated during the curing process of the hydration reactant or the hydration reactant according to the external temperature change after the curing is completed. The change in temperature causes a change in the resonance frequency and impedance of the piezoelectric sensor 11 regardless of the pressure of the hydration reactant. The change in resonance frequency and impedance of the piezoelectric sensor 11 caused by the temperature change of the hydration reactant is misrecognized as a change in the pressure of the hydration reactant, or causes a measurement error in measuring the pressure of the hydration reactant. There are issues that can be made.
이에, 온도센서는 압전센서(11)가 최대한 근접한 거리에 위치하여, 압전센서(11)의 공진주파수와 임피던스를 측정할 때 압전센서(11) 주변의 온도를 측정하도록 하는 것이 바람직하나, 이에 한정하지는 않는다. Therefore, it is preferable that the temperature sensor be located at the closest distance to the piezoelectric sensor 11 so that the temperature around the piezoelectric sensor 11 is measured when measuring the resonance frequency and impedance of the piezoelectric sensor 11, but it is limited to this. I don't.
유무선 통신 모듈부는 강도데이터를 내부장치 또는 서버 등 외부 장치 또는상위 처리장치로 전송하도록 센서장치 또는 강도측정장치에 구비될 수 있다. The wired/wireless communication module unit may be provided in the sensor device or the intensity measurement device to transmit intensity data to an internal device or an external device such as a server or an upper processing device.
유무선 통신 모듈부는 압전센서의 공진주파수와 임피던스 변화의 디지털 신호에 기반하여 압전센서에 가해진 물리적인 압력의 변화를 측정한 압력변화 데이터를 외부의 상위 처리장치로 전송할 수 있다. 이에, 외부의 상위 처리장치는 전송받은 압력변화 데이터를 기초로 강도를 도출할 수 있다. The wired/wireless communication module unit may transmit pressure change data obtained by measuring a change in physical pressure applied to the piezoelectric sensor based on a digital signal of a resonant frequency and impedance change of the piezoelectric sensor to an external upper processing device. Accordingly, the external upper processing device may derive the intensity based on the transmitted pressure change data.
여기서, 외부의 상위 처리장치는 컴퓨터, 서버, 클라우드 등 다양한 형태로 구비될 수 있으며, 본 발명의 기술분야에서 사용하는 처리장치는 모두 사용 가능하다.Here, the external upper processing device may be provided in various forms such as a computer, server, and cloud, and all processing devices used in the technical field of the present invention may be used.
디스플레이부는 강도데이터를 표시하여 사용자가 강도를 육안으로 바로 확인할 수 있도록 할 수 있다. 디스플레이부는 시인성 높은 강도데이터를 전달할 수 있는 장치는 모두 사용 가능하다. The display unit may display strength data so that the user can directly check the strength with the naked eye. The display unit may use any device capable of transmitting high-visibility intensity data.
GPS 모듈부는 센서장치(1) 또는 강도측정장치(2)에 구비되며, 압전센서(11)의 위치 정보를 외부의 상위 처리장치로 전송할 수 있다.The GPS module unit is provided in the sensor device 1 or the strength measuring device 2, and may transmit location information of the piezoelectric sensor 11 to an external upper processing device.
도 12를 참조하면, 제어모듈부(21)는 교류전기신호 제어부(210), 주파수-임피던스 검출부(211), 압력변화 측정부(212), 주파수-임피던스 보정부(213), 신호 증폭부(214),저역 필터부(215),아날로그-디지털 컨버터부(216) 및 강도 산출부(217)를 포함할 수 있다. Referring to FIG. 12, the control module unit 21 includes an AC electrical signal control unit 210, a frequency-impedance detection unit 211, a pressure change measurement unit 212, a frequency-impedance correction unit 213, a signal amplification unit ( 214), a low-pass filter unit 215, an analog-to-digital converter unit 216, and an intensity calculation unit 217.
교류전기신호 제어부(210)는 교류전기신호 발생부(20)에서 발생되는 교류전기신호를 제어하여 압전센서(11)로 인가되도록 할 수 있다. The AC electrical signal controller 210 may control the AC electrical signal generated by the AC electrical signal generator 20 to be applied to the piezoelectric sensor 11 .
여기서, 교류전기신호는 주기파로 구성되며, 주기파는 사인파(Sine wave), 사각파(Square wave), 삼각파(Triangle wave) 및 톱니파(Sawtooh wave) 중 하나이상을 포함할 수 있다. 가장 바람직하게는 낮은 주파수에서 높은 주파수의 주파수 대역을 갖는 사인파를 사용하는 것이 좋다.Here, the AC electrical signal is composed of periodic waves, and the periodic waves may include one or more of a sine wave, a square wave, a triangle wave, and a sawtooh wave. Most preferably, a sine wave having a frequency band from a low frequency to a high frequency is used.
교류전기신호 제어부(210)는 압전센서의 주파수 특성에 따라 교류전기신호의 주파수와 발생시간을 제어할 수 있다. 예를 들면, 교류전기신호 제어부(210)는 교류전기신호 발생부(20)에서 5KHz에서 100KHz의 사인파가 1초 동안 발생되도록 제어할 수 있다.The AC electrical signal controller 210 may control the frequency and generation time of the AC electrical signal according to the frequency characteristics of the piezoelectric sensor. For example, the AC electrical signal controller 210 may control the AC electrical signal generator 20 to generate a sine wave of 5 KHz to 100 KHz for 1 second.
주파수-임피던스 검출부(211)는 압전센서로 가해지는 교류전기신호의 주파수에 따른 압전센서(11)의 공진주파수와 임피던스의 변화를 검출할 수 있다. The frequency-impedance detection unit 211 may detect a change in the resonance frequency and impedance of the piezoelectric sensor 11 according to the frequency of the AC electrical signal applied to the piezoelectric sensor.
압력변화 측정부(212)는 주파수-임피던스 검출부(211)에서 검출된 압전센서(11)의 공진주파수와 임피던스의 변화에 기반하여 압전센서(11)에 가해진 물리적인 압력의 변화를 측정할 수 있다. The pressure change measurement unit 212 may measure a change in physical pressure applied to the piezoelectric sensor 11 based on the change in impedance and resonance frequency of the piezoelectric sensor 11 detected by the frequency-impedance detector 211. .
주파수-임피던스 보정부(213)는 주파수-임피던스 검출부(211)에서 압전센서(11)의 공진주파수와 임피던스를 검출할 때, 온도센서에 의해 검출된 온도에 기반하여, 검출된 공진주파수 값 및 임피던스 값 중에서 적어도 하나를 보정하여 측정 오차를 최소화할 수 있다.When the frequency-impedance detector 211 detects the resonance frequency and impedance of the piezoelectric sensor 11, the frequency-impedance correction unit 213 detects the resonance frequency value and impedance based on the temperature detected by the temperature sensor. At least one of the values may be corrected to minimize the measurement error.
일반적으로 온도에 따른 저항은 증가하는 것으로써, 이것은 일반적인 사항이기에 온도와 저항간의 관계식과 그 설명은 생략하며, 본 발명에 의한 관계식은 다음과 같다. In general, resistance increases with temperature, and since this is a general matter, the relational expression between temperature and resistance and its description are omitted, and the relational expression according to the present invention is as follows.
주파수-임피던스 보정부(213)는 하기의 식 1 및 식 2를 통해 보정된 공진주파수와 보정된 임피던스를 얻을 수 있다. The frequency-impedance correction unit 213 can obtain the corrected resonant frequency and the corrected impedance through Equations 1 and 2 below.
f = f1 + A * (Tc-Tref) + B (식 1) f = f1 + A * (Tc-Tref) + B (Equation 1)
z = z1 + C * (Tc-Tref) + D (식 2)z = z1 + C * (Tc-Tref) + D (Equation 2)
(여기에서, f : 보정된 공진주파수, z : 보정된 임피던스, f1 : 측정된 공진주파수, z1: 측정된 임피던스, A : 압전센서의 온도특성계수 1, C : 압전센서의 온도특성계수 3, B : 압전센서의 온도특성계수 2, D : 압전센서의 온도특성계수 4, Tc: 측정된 현재 온도, Tref: 기준온도, A, B, C, D 및 Tref는 압전센서에 대한 온도특성실험을 통해 얻은 상수값)(Here, f: corrected resonance frequency, z: corrected impedance, f1: measured resonance frequency, z1: measured impedance, A: temperature characteristic coefficient of piezoelectric sensor 1, C: temperature characteristic coefficient of piezoelectric sensor 3, B: temperature characteristic coefficient of piezoelectric sensor 2, D: temperature characteristic coefficient of piezoelectric sensor 4, Tc: measured current temperature, Tref: reference temperature, A, B, C, D and Tref are temperature characteristic tests for piezoelectric sensors constant value obtained through
여기서, A, B, C, D 및 Tref는 사용하는 압전센서에 따라 상이하며, 해당 압전센서에 대한 온도특성실험을 통해 얻어지는 데이터일 수 있다. 이러한 공진주파수와 임피던스의 보정은 외부기온 변화에 따른 수화반응물질의 온도의 변화가 수화반응물질의 압력과 무관하게 압전센서의 공진주파수와 임피던스의 변화를 발생시키는 것에 기반하는 것이다.Here, A, B, C, D, and Tref are different depending on the piezoelectric sensor used, and may be data obtained through a temperature characteristic experiment for the piezoelectric sensor. The correction of the resonant frequency and impedance is based on the fact that a change in the temperature of the hydration reactant due to a change in external air temperature causes a change in the resonant frequency and impedance of the piezoelectric sensor regardless of the pressure of the hydration reactant.
신호 증폭부(214)는 압전센서(11)의 공진주파수와 임피던스의 변화에 따른 전기신호의 크기를 증폭시킬 수 있다. The signal amplifying unit 214 may amplify the magnitude of the electrical signal according to the change in the resonant frequency and impedance of the piezoelectric sensor 11 .
저역 필터부(215)는 저역 필터(Low pass filter)를 통해 신호 증폭부(214)로부터 출력되는 나오는 전기신호 중 교류전기신호 발생부(20)에서 발생한 교류전기신호는 제거하고, 압전센서(11)의 공진주파수와 임피던스 변화에 따른 전기신호만을 통과시킬 수 있다. The low pass filter unit 215 removes the AC electrical signal generated by the AC electrical signal generator 20 among the electrical signals output from the signal amplifier 214 through a low pass filter, and the piezoelectric sensor 11 ) can pass only electrical signals according to the resonant frequency and impedance change.
아날로그-디지털 컨버터부(216)는 저역 필터부(215)를 통해 필터링되어 출력되는 압전센서(11)의 공진주파수와 임피던스 변화에 따른 아날로그 전기신호를 디지털 신호로 변환시켜 출력할 수 있다. The analog-to-digital converter unit 216 may convert an analog electrical signal according to a change in the resonant frequency and impedance of the piezoelectric sensor 11 filtered through the low-pass filter unit 215 into a digital signal and output the converted digital signal.
강도 산출부(217)는 압전센서(11)의 공진주파수와 임피던스 변화의 디지털 신호에 기반하여 압전센서(11)에 가해진 물리적인 압력의 변화인 압력변화 데이터를 측정하고, 압력변화 데이터를 기초로 강도데이터를 계산하고 산출할 수 있다. The strength calculation unit 217 measures pressure change data, which is a change in physical pressure applied to the piezoelectric sensor 11, based on the digital signal of the resonant frequency and impedance change of the piezoelectric sensor 11, and based on the pressure change data Strength data can be calculated and calculated.
여기서, 강도 산출은 하기와 같이 설명할 수 있다. Here, strength calculation can be explained as follows.
강도 변화가 없는 상태에서 공진 주파수는 일정한 값을 갖는다. 물질의 강도가 변하게 되면 공진 주파수값의 이동이 생기는데, 이 변동값은 재료(물질)마다 다르게 나타난다. 즉, 절대값을 이용하여 강도를 추출할 수는 없고, 초기에 구조물에서 추출한 샘플을 이용하여 강도시험을 수행하고, 같은 재령(age)에서의 공진 주파수를 해당 강도값과 1:1 대응하여 강도값과 주파수값의 관계식을 근거로, 추후 측정되는 피크 주파수(공진 주파수)의 변화에 따른 강도를 산출하게 된다. 다시 말해서, 기준(reference) 값을 근거로 같은 재료에 대한 강도를 측정할 수 있다. 여기에서, 샘플에 대한 강도시험 방법으로는 만능재료시험기(UTM: Universal Testing Machine)를 이용한 압축강도시험, 마샬시험법, 초음파에 의한 비파괴시험법 등을 활용할 수 있다.In the state where there is no intensity change, the resonant frequency has a constant value. When the strength of a material changes, a resonant frequency value shifts, and this shift value is different for each material (substance). That is, it is not possible to extract the strength using the absolute value, and the strength test is performed using a sample initially extracted from the structure, and the resonance frequency at the same age is corresponded 1:1 to the corresponding strength value. Based on the relationship between the value and the frequency value, the intensity according to the change in the peak frequency (resonance frequency) to be measured later is calculated. In other words, the strength of the same material can be measured based on the reference value. Here, as a strength test method for the sample, a compressive strength test using a universal testing machine (UTM), a Marshall test method, a non-destructive test method using ultrasonic waves, and the like can be utilized.
한편, 본 발명의 실시예에 따른 수화반응물질 구조체 강도 모니터링 장치를 이용한 강도 모니터링 방법에 대하여 하기에서 자세하게 설명하기로 한다.Meanwhile, a strength monitoring method using the strength monitoring device for a hydration reactant structure according to an embodiment of the present invention will be described in detail below.
도 13은 본 발명의 실시예에 따른 수화반응물질 구조체 강도 모니터링 장치를 이용한 강도 모니터링 방법을 순차적으로 나타낸 흐름도이고, 도 14는 도 13에서 주파수-임피던스 검출단계를 순차적으로 나타낸 흐름도이고, 도 15는 도 13에서 압력변화 측정 단계를 순차적으로 나타낸 흐름도이다.13 is a flow chart sequentially illustrating a strength monitoring method using a hydration reactant structure strength monitoring device according to an embodiment of the present invention, FIG. 14 is a flowchart sequentially showing frequency-impedance detection steps in FIG. 13, and FIG. 15 is 13 is a flow chart sequentially showing pressure change measurement steps.
본 발명의 실시예에 따른 수화반응물질 구조체 강도 모니터링 장치를 이용한 강도 모니터링 방법은 수화반응물질 구조체에 매립되되, 압전센서(11)가 부착된 전달부재(12)가 결합된 센서 하우징(10)으로 구성된 센서장치(1) 및 센서장치(1)와 연결되어 수화반응물질 구조체(M)의 강도를 측정하는 강도측정장치(2)를 포함하는 수화반응물질 구조체 강도 모니터링 장치를 이용하여 수화반응물질 구조체의 강도를 모니터링하는 방법이다. In the strength monitoring method using the hydration reactant structure strength monitoring device according to an embodiment of the present invention, the sensor housing 10 is embedded in the hydration reactant structure and the transmission member 12 to which the piezoelectric sensor 11 is attached is coupled. A hydration-reactive material structure using a hydration-reactive material structure strength monitoring device including a configured sensor device 1 and a strength measuring device 2 connected to the sensor device 1 to measure the strength of the hydration-reactive material structure M How to monitor the strength of
도 13 내지 도 15를 참조하면, 본 발명의 수화반응물질 구조체 강도 모니터링 장치를 이용한 강도 모니터링 방법은 교류전기신호 발생 단계(S10), 교류전기신호 인가 단계(S20), 주파수-임피던스 수신 단계(S30), 주파수-임피던스 검출 단계(S40) 및 압력변화 측정 단계(S50)를 포함할 수 있다. 13 to 15, the strength monitoring method using the hydration reactant structure strength monitoring device of the present invention includes generating an AC electrical signal (S10), applying an AC electrical signal (S20), and receiving a frequency-impedance (S30). ), a frequency-impedance detection step (S40), and a pressure change measurement step (S50).
교류전기신호 발생 단계(S10)는 소정 주파수 대역의 주파수를 갖는 특정 파형의 교류전기신호를 발생시키는 단계이다. 여기서, 교류전기신호는 주기파로 구성되며, 주기파는 사인파(Sine wave), 사각파(Square wave), 삼각파(Triangle wave) 및 톱니파(Sawtooh wave) 중 하나이상을 포함할 수 있다. 가장 바람직하게는 낮은 주파수에서 높은 주파수의 주파수 대역을 갖는 사인파를 사용하는 것이 좋다. The AC electrical signal generating step (S10) is a step of generating an AC electrical signal of a specific waveform having a frequency of a predetermined frequency band. Here, the AC electrical signal is composed of periodic waves, and the periodic waves may include one or more of a sine wave, a square wave, a triangle wave, and a sawtooh wave. Most preferably, a sine wave having a frequency band from a low frequency to a high frequency is used.
교류전기신호 발생 단계(S10)는 교류전기신호를 일정시간 이내에 순차적으로 발생시키는 것으로 이루어진다. 구체적으로, 교류전기신호 발생 단계(S10)에서 발생되는 교류전기신호의 주파수와 발생 시간은 연계되는 압전센서(11)의 주파수 특성에 따라 결정되게 된다. 예를 들면, 교류전기신호 발생 단계(S10)는 5KHz에서 100KHz의 사인파를 1초 동안 발생시키는 것으로 이루어진다. The AC electrical signal generating step (S10) consists of sequentially generating an AC electrical signal within a predetermined time. Specifically, the frequency and generation time of the AC electrical signal generated in the AC electrical signal generating step (S10) are determined according to the frequency characteristics of the associated piezoelectric sensor 11. For example, the AC electrical signal generating step (S10) consists of generating a sine wave of 5KHz to 100KHz for 1 second.
또한, 교류전기신호 발생 단계(S10)는 강도측정장치(2)에 구비되는 교류전기신호 발생부(20)에 의해 교류전기신호를 발생하는 단계이다. In addition, the AC electrical signal generating step (S10) is a step of generating an AC electrical signal by the AC electrical signal generating unit 20 provided in the intensity measuring device 2.
교류전기신호 인가 단계(S20)는 발생된 교류전기신호를 제어하여 일정 시간 동안 압전센서(11)로 인가하는 단계이다. 교류전기신호 인가 단계(S20)는 강도측정장치(2)에 구비되는 제어모듈부(21)를 통해 교류전기신호 발생부(20)에서 압전센서(11)의 주파수 특성에 따라 설정된 교류전기신호를 발생시키고 인가하는 단계이다. The AC electrical signal applying step (S20) is a step of controlling the generated AC electrical signal and applying it to the piezoelectric sensor 11 for a predetermined time. In the AC electrical signal applying step (S20), an AC electrical signal set according to the frequency characteristics of the piezoelectric sensor 11 is received from the AC electrical signal generating unit 20 through the control module unit 21 provided in the intensity measuring device 2. This is the stage of generating and applying.
주파수-임피던스 수신 단계(S30)는 압전센서(11)에 인가된 교류전기신호를 전달부재(12) 및 센서 하우징(10)을 통해 수화반응물질 구조체(M)에 전달하고 수화반응물질 구조체(M)에 의해 변화된 공진주파수 및 임피던스를 전달받는 단계이다. In the frequency-impedance receiving step (S30), the AC electrical signal applied to the piezoelectric sensor 11 is transmitted to the hydration reactant material structure M through the transmission member 12 and the sensor housing 10, and the hydration reactant material structure M It is a step of receiving the resonant frequency and impedance changed by ).
주파수-임피던스 검출 단계(S40)는 압전센서(11)로 가해지는 교류전기신호의 주파수에 따른 압전센서(11)의 공진주파수와 임피던스의 변화로 발생하는 전기신호를 검출하는 단계이다. 주파수-임피던스 검출 단계(S40)는 교류전기신호 인가 단계(S20)에서 가해지는 교류전기신호의 주파수에 의해 압전센서에서 발생하는 공진주파수와 임피던스를 검출하는 단계이다. 여기서, 공진주파수는 고유 공진주파수이고, 임피던스는 공진주파수와 임피던스 값일 수 있다. The frequency-impedance detection step (S40) is a step of detecting an electrical signal generated by a change in impedance and resonance frequency of the piezoelectric sensor 11 according to the frequency of the AC electrical signal applied to the piezoelectric sensor 11. The frequency-impedance detection step (S40) is a step of detecting the resonance frequency and impedance generated by the piezoelectric sensor by the frequency of the AC electric signal applied in the AC electric signal application step (S20). Here, the resonant frequency may be a natural resonant frequency, and the impedance may be a resonant frequency and an impedance value.
주파수-임피던스 검출 단계(S40)는 신호 증폭 단계(S41) 및 주파수-임피던스 보정 단계(S42)를 포함할 수 있다. The frequency-impedance detection step (S40) may include a signal amplification step (S41) and a frequency-impedance correction step (S42).
신호 증폭 단계(S41)는 압전센서(11)의 공진주파수와 임피던스의 변화에 따른 전기신호를 증폭시키는 단계이다. 신호 증폭 단계(S41)는 압전센서(11)에 가해지는 교류전기신호의 주파수의 변화에 따라 압전센서(11)의 공진주파수와 임피던스가 변화하고, 이 변화는 미세한 전기신호로 바뀌는데 이 미세 전기신호를 측정가능한 신호의 크기로 증폭시키기 위하여 신호 증폭부(214)를 통해 신호의 크기를 증폭시키는 단계이다. The signal amplification step (S41) is a step of amplifying the electrical signal according to the change in the resonant frequency and impedance of the piezoelectric sensor 11. In the signal amplification step (S41), the resonant frequency and impedance of the piezoelectric sensor 11 change according to the change in the frequency of the AC electrical signal applied to the piezoelectric sensor 11, and this change is converted into a fine electrical signal. It is a step of amplifying the size of the signal through the signal amplifier 214 to amplify the size of the measurable signal.
주파수-임피던스 보정 단계(S42)는 수화반응물질 구조체 강도 모니터링 장치에 구비된 온도센서에 의해 검출된 온도에 기반하여 검출된 공진주파수와 임피던스 값을 보정하여 측정 오차를 최소화하는 단계이다. 주파수-임피던스 보정 단계(S42)는 아래의 식 1 및 식 2를 통해 보정된 공진주파수와 임피던스를 얻는 단계이다. The frequency-impedance correction step (S42) is a step of minimizing a measurement error by correcting the detected resonant frequency and impedance value based on the temperature detected by the temperature sensor provided in the hydration reactant structure strength monitoring device. The frequency-impedance correction step (S42) is a step of obtaining a corrected resonant frequency and impedance through Equations 1 and 2 below.
f = f1 + A * (Tc-Tref) + B (식 1) f = f1 + A * (Tc-Tref) + B (Equation 1)
z = z1 + C * (Tc-Tref) + D (식 2)z = z1 + C * (Tc-Tref) + D (Equation 2)
(여기에서, f : 보정된 공진주파수, z : 보정된 임피던스, f1 : 측정된 공진주파수, z1: 측정된 임피던스, A : 압전센서의 온도특성계수 1, C : 압전센서의 온도특성계수 3, B : 압전센서의 온도특성계수 2, D : 압전센서의 온도특성계수 4, Tc: 측정된 현재 온도, Tref: 기준온도, A, B, C, D 및 Tref는 압전센서에 대한 온도특성실험을 통해 얻은 상수값)(Here, f: corrected resonance frequency, z: corrected impedance, f1: measured resonance frequency, z1: measured impedance, A: temperature characteristic coefficient of piezoelectric sensor 1, C: temperature characteristic coefficient of piezoelectric sensor 3, B: temperature characteristic coefficient of piezoelectric sensor 2, D: temperature characteristic coefficient of piezoelectric sensor 4, Tc: measured current temperature, Tref: reference temperature, A, B, C, D and Tref are temperature characteristic tests for piezoelectric sensors constant value obtained through
여기서, A, B, C, D 및 Tref는 사용하는 압전센서에 따라 상이하며, 해당 압전센서(11)에 대한 온도특성실험을 통해 얻어지는 데이터일 수 있다. Here, A, B, C, D, and Tref are different depending on the piezoelectric sensor used, and may be data obtained through a temperature characteristic test for the piezoelectric sensor 11.
또한, 주파수-임피던스 보정 단계(S42)는 추가보정을 통해 강도를 계산할 수 있다. Also, in the frequency-impedance correction step (S42), intensity may be calculated through additional correction.
추가 보정 방법은 일반 콘크리트의 경험식을 통한 강도 계산일 수 있다. 수화반응에 따라 물질의 강도는 점차 증가하다가 상당한 기간이 지나 수화반응이 끝남과 동시에 일정한 강도로 수렴한다. 일반 콘크리트의 경우에는 다음과 같은 경험식(식 3)으로 강도를 계산할 수 있다.An additional correction method may be the strength calculation through an empirical formula for ordinary concrete. According to the hydration reaction, the strength of the material gradually increases, and then converges to a certain strength at the same time that the hydration reaction ends after a considerable period of time. In the case of general concrete, the strength can be calculated by the following empirical formula (Equation 3).
일반 콘크리트의 강도 = 28일 강도 × {21 + 61 × log(양생기간 동안의 양생온도의 평균값 × 양생기간)} (식 3)Strength of normal concrete = 28 days strength × {21 + 61 × log (average value of curing temperature during curing period × curing period)} (Equation 3)
따라서, 상기의 추가 보정 방법은, 식 3을 이용하여 상기한 식 1과 식 2를 통해 얻어진 보정 값(보정 공진주파수와 보정 임피던스의 값)을 보완하여 추가 보정할 수 있다.Therefore, in the above additional correction method, additional correction can be performed by supplementing the correction values (correction resonance frequency and correction impedance values) obtained through Equations 1 and 2 using Equation 3.
또한, 다른 형태의 추가 보정 방법은 계산값과 시험결과값을 이용한 강도 계산일 수 있다. 여기서 계산값은 기본 주파수 패턴변화에 따른 경험식으로 시간흐름에 따라 강도를 계산한 값이고, 시험결과값은 강도시험 결과가 나오는 시점의 강도값일 수 있다. 다른 형태의 추가 보정 방법은 {시험결과값 - 계산값} 만큼의 차이를 더해줄 수 있다. In addition, another type of additional correction method may be strength calculation using calculated values and test result values. Here, the calculated value is an empirical formula according to the basic frequency pattern change, and the strength is calculated according to the passage of time, and the test result value may be the strength value at the time when the strength test result comes out. Other types of additional correction methods can add up to a difference of {test result value - calculated value}.
구체적으로, 다른 형태의 추가 보정 방법은 수화반응물질 양생시작 후 25시간이 지난 시점에 강도시험을 한 결과값인 시험결과값이 계산값보다 다소 높게 나오는 경우, 시험결과값을 양생시작 후 24시간에서의 강도값으로 확정하고 {시험결과값 - 계산값} 만큼의 차이를 더해줌으로써 식 1과 식 2를 통해 얻어진 보정 값을 추가 보정할 수 있다.Specifically, another type of additional correction method is when the test result value, which is the result of the strength test 25 hours after the start of curing the hydration reactant, is slightly higher than the calculated value, The correction values obtained through Equations 1 and 2 can be further corrected by confirming the strength value in and adding the difference by {test result value - calculated value}.
압력변화 측정 단계(S50)는 검출된 압전센서(11)의 공진주파수와 임피던스의 변화에 기반하여 압전센서(11)에 가해진 물리적인 압력의 변화에 따른 강도전기신호로 측정하는 단계이다. The pressure change measuring step (S50) is a step of measuring an intensity electrical signal according to a change in physical pressure applied to the piezoelectric sensor 11 based on the detected change in resonance frequency and impedance of the piezoelectric sensor 11.
압력변화 측정 단계(S50)는 저역 필터 단계(S51), 아날로그-디지털 컨버터 단계(S52) 및 강도 산출 단계(S53)를 포함할 수 있다. The pressure change measurement step (S50) may include a low-pass filter step (S51), an analog-to-digital converter step (S52), and an intensity calculation step (S53).
저역 필터 단계(S51)는 저역 필터를 통해 신호 증폭 단계(S41)를 거친 전기신호에서 교류전기신호를 제거하고, 압전센서(11)의 공진주파수와 임피던스 변화에 따른 전기신호만을 통과시키는 단계이다. 여기서, 신호 증폭 단계(S41)를 거친 전기신호는 교류전기신호 발생부(20)에서 발생한 교류전기신호와 압전센서(11)의 공진주파수와 임피던스의 변화에 따른 전기신호와 함께 섞여있어, 저역 필터를 통해 압전센서(11)의 공진주파수와 임피던스의 변화에 따른 전기신호만은 추출할 수 있다. The low-pass filter step (S51) is a step of removing the AC electrical signal from the electrical signal that has passed through the signal amplification step (S41) through a low-pass filter, and passing only the electrical signal according to the change in the resonance frequency and impedance of the piezoelectric sensor 11. Here, the electric signal that has passed through the signal amplification step (S41) is mixed with the AC electric signal generated by the AC electric signal generator 20 and the electric signal according to the change in the resonant frequency and impedance of the piezoelectric sensor 11, and the low-pass filter Through this, only the electrical signal according to the change in the resonant frequency and impedance of the piezoelectric sensor 11 can be extracted.
아날로그-디지털 컨버터 단계(S52)는 저역 필터 단계(S51)를 통해 필터링되어 출력되는 압전센서(11)의 공진주파수와 임피던스 변화에 따른 아날로그 전기신호를 디지털 신호로 변환시켜 출력하는 단계이다. The analog-to-digital converter step (S52) is a step of converting the analog electrical signal according to the change in resonance frequency and impedance of the piezoelectric sensor 11 filtered through the low-pass filter step (S51) into a digital signal and outputting the converted signal.
강도 산출 단계(S53)는 압전센서(11)의 공진주파수와 임피던스 변화의 디지털 신호에 기반하여 압전센서(11)에 가해진 물리적인 압력의 변화인 압력변화 데이터를 측정하고, 압력변화 데이터를 기초로 강도데이터를 계산하고 산출하는 단계이다. In the strength calculation step (S53), pressure change data, which is a change in physical pressure applied to the piezoelectric sensor 11, is measured based on the digital signal of the resonance frequency and impedance change of the piezoelectric sensor 11, and based on the pressure change data This is the step of calculating and calculating intensity data.
또한, 압력변화 측정 단계(S50)는 강도 모니터링 장치에 구비된 유무선 통신 모듈부를 통해 외부의 상위 처리장치로 전송하여 상위 처리장치에서 압력변화 데이터에 기초하여 강도데이터를 계산하도록 하거나, 강도 산출부(217)를 통해 압력변화 데이터를 계산한 강도데이터를 유무선 통신 모듈부를 통해 외부의 상위 처리장치로 전송하는 단계일 수 있다. In addition, the pressure change measuring step (S50) is transmitted to an external upper processing device through a wired/wireless communication module included in the intensity monitoring device so that the upper processing device calculates the intensity data based on the pressure change data, or the intensity calculation unit ( 217) may be a step of transmitting intensity data calculated as pressure change data to an external upper processing device through a wired/wireless communication module unit.
여기서, 외부의 상위 처리장치는 컴퓨터, 서버, 클라우드 등 다양한 형태로 구비될 수 있으며, 본 발명의 기술분야에서 사용하는 처리장치는 모두 사용 가능하다. Here, the external upper processing device may be provided in various forms such as a computer, server, and cloud, and all processing devices used in the technical field of the present invention may be used.
이상으로 첨부된 도면을 참조하여 본 발명의 실시 예를 설명하였으나, 본 발명의 속하는 기술분야에서 통상의 지식을 가진 자는 본 발명의 기술적 사상이나 필수적인 특징을 변경하지 않고 다른 구체적인 형태로 실시할 수 있다는 것을 이해할 수 있을 것이다. 따라서 이상에서 기술한 실시 예는 모든 면에서 예시적인 것이며 한정적이 아닌 것이다.Although the embodiments of the present invention have been described with reference to the accompanying drawings, those skilled in the art can implement them in other specific forms without changing the technical spirit or essential features of the present invention. you will be able to understand Therefore, the embodiments described above are illustrative in all respects and are not restrictive.
본 발명은 수화반응물질 구조체의 강도 모니터링 장치 및 이를 이용한 강도 모니터링 방법에 관한 것으로써 콘크리트의 수화반응 등에 사용가능하다.The present invention relates to a strength monitoring device of a hydration reactant structure and a strength monitoring method using the same, and can be used for a hydration reaction of concrete.

Claims (10)

  1. 수화반응물질 구조체에 매립되어 상기 수화반응물질 구조체에 교류전기신호를 전달하고 상기 수화반응물질 구조체에 의해 변화된 공진주파수 및 임피던스를 전달받는 센서장치 및A sensor device embedded in a hydration reactant material structure to transmit an AC electrical signal to the hydration reactant material structure and to receive the resonant frequency and impedance changed by the hydration reactant material structure; and
    상기 센서장치와 연결되어 상기 수화반응물질 구조체의 강도를 측정하는 강도측정장치를 포함하고,A strength measuring device connected to the sensor device to measure the strength of the hydration reactant structure,
    상기 센서장치는,The sensor device,
    상기 수화반응물질 구조체에 매립되는 센서 하우징;a sensor housing embedded in the hydration reactant structure;
    상기 센서 하우징 내부에 설치되며 교류전기신호를 전달받아 상기 수화반응물질 구조체에 전달하고, 상기 수화반응물질 구조체에 의해 변화된 공진주파수 및 임피던스를 전달받는 압전센서 및A piezoelectric sensor installed inside the sensor housing, receiving an alternating current electrical signal, transmitting it to the hydration reactant material structure, and receiving the resonant frequency and impedance changed by the hydration reactant material structure; and
    상기 압전센서가 부착되어 상기 공진주파수 및 임피던스가 상기 수화반응물질 구조체에 전달되도록 하는 전달부재를 포함하며,A transmission member to which the piezoelectric sensor is attached to transmit the resonant frequency and impedance to the hydration reactant material structure,
    상기 센서 하우징은,The sensor housing,
    머리부(1000) 및 몸통부(1001)로 구성되되, 상기 몸통부의 외면에 상기 전달부재가 나선형으로 감싸도록 연결되는 상부 센서 하우징 및An upper sensor housing composed of a head part 1000 and a body part 1001, connected to the outer surface of the body part so that the transmission member spirally wraps, and
    상기 상부 센서 하우징이 삽입되도록 상측이 개방된 형태로 형성되되, 내주면에 상기 상부 센서 하우징의 회전에 의해 상기 나선형의 전달부재가 삽입되어 결합되도록 상기 나선형에 대응되는 형상의 결합홈이 형성된 하부 센서 하우징을 포함하는 수화반응물질 구조체 강도 모니터링 장치.The lower sensor housing is formed with an open top so that the upper sensor housing is inserted, and a coupling groove corresponding to the shape of the spiral is formed on the inner circumferential surface so that the spiral transmission member is inserted and coupled by rotation of the upper sensor housing. Hydration reactant structure strength monitoring device comprising a.
  2. 수화반응물질 구조체에 매립되어 상기 수화반응물질 구조체에 교류전기신호를 전달하고 상기 수화반응물질 구조체에 의해 변화된 공진주파수 및 임피던스를 전달받는 센서장치 및A sensor device embedded in a hydration reactant material structure to transmit an AC electrical signal to the hydration reactant material structure and to receive the resonant frequency and impedance changed by the hydration reactant material structure; and
    상기 센서장치와 연결되어 상기 수화반응물질 구조체의 강도를 측정하는 강도측정장치를 포함하고,A strength measuring device connected to the sensor device to measure the strength of the hydration reactant structure,
    상기 센서장치는,The sensor device,
    상기 수화반응물질 구조체에 매립되는 센서 하우징;a sensor housing embedded in the hydration reactant structure;
    상기 센서 하우징 내부에 설치되며 교류전기신호를 전달받아 상기 수화반응물질 구조체에 전달하고, 상기 수화반응물질 구조체에 의해 변화된 공진주파수 및 임피던스를 전달받는 압전센서 및A piezoelectric sensor installed inside the sensor housing, receiving an alternating current electrical signal, transmitting it to the hydration reactant material structure, and receiving the resonant frequency and impedance changed by the hydration reactant material structure; and
    상기 압전센서가 부착되어 상기 공진주파수 및 임피던스가 상기 수화반응물질 구조체에 전달되도록 하는 전달부재를 포함하며,A transmission member to which the piezoelectric sensor is attached to transmit the resonant frequency and impedance to the hydration reactant material structure,
    상기 센서 하우징의 하단면에 무게추가 구비되어 수화반응물질과 함께 타설시 기울어지지 않고 정방향으로 매립되고,A weight is provided on the lower surface of the sensor housing so that it is buried in the forward direction without tilting when pouring together with the hydration reactant,
    상기 센서 하우징은,The sensor housing,
    머리부(1000) 및 몸통부(1001)로 구성되되, 상기 몸통부의 외면에 상기 전달부재가 나선형으로 감싸도록 연결되는 상부 센서 하우징 및An upper sensor housing composed of a head part 1000 and a body part 1001, connected to the outer surface of the body part so that the transmission member spirally wraps, and
    상기 상부 센서 하우징이 삽입되도록 상측이 개방된 형태로 형성되되, 내주면에 상기 상부 센서 하우징의 회전에 의해 상기 나선형의 전달부재가 삽입되어 결합되도록 상기 나선형에 대응되는 형상의 결합홈이 형성된 하부 센서 하우징을 포함하는 수화반응물질 구조체 강도 모니터링 장치.The lower sensor housing is formed with an open top so that the upper sensor housing is inserted, and a coupling groove corresponding to the shape of the spiral is formed on the inner circumferential surface so that the spiral transmission member is inserted and coupled by rotation of the upper sensor housing. Hydration reactant structure strength monitoring device comprising a.
  3. 제 1항 또는 2항에 있어서, According to claim 1 or 2,
    상기 강도측정장치는,The strength measuring device,
    소정 주파수 대역의 주파수를 갖는 특정 파형의 교류전기신호를 발생시키는 교류전기신호 발생부;an AC electrical signal generator for generating an AC electrical signal of a specific waveform having a frequency of a predetermined frequency band;
    상기 교류전기신호 발생부에서 소정 주파수 대역의 주파수를 갖는 특정 파형의 교류전기신호가 발생되도록 제어하고, 발생된 교류전기신호를 상기 압전센서에 인가하며, 상기 압전센서로 인가된 교류전기신호에 기반하여 상기 압전센서에 가해진 물리적인 압력의 변화를 측정하여 강도데이터를 산출하는 제어모듈부 및Controls the AC electrical signal generation unit to generate an AC electrical signal of a specific waveform having a frequency of a predetermined frequency band, applies the generated AC electrical signal to the piezoelectric sensor, and based on the AC electrical signal applied to the piezoelectric sensor a control module unit for calculating strength data by measuring a change in physical pressure applied to the piezoelectric sensor; and
    상기 제어모듈부에 필요 전력을 공급하는 전원부를 포함하는 수화반응물질 구조체 강도 모니터링 장치.A hydration reactant structure strength monitoring device comprising a power supply unit supplying necessary power to the control module unit.
  4. 제 3항에 있어서,According to claim 3,
    상기 수화반응물질 구조체 강도 모니터링 장치는,The hydration reactant structure strength monitoring device,
    상기 센서장치 또는 강도측정장치의 외면에 설치되어 주변 온도를 검출하는 온도센서;a temperature sensor installed on an outer surface of the sensor device or intensity measuring device to detect ambient temperature;
    상기 강도데이터를 전송하도록 상기 센서장치 또는 강도측정장치에 구비되는 유무선 통신 모듈부;a wired/wireless communication module unit provided in the sensor device or intensity measurement device to transmit the intensity data;
    상기 강도데이터를 표시하는 디스플레이부 및A display unit for displaying the intensity data; and
    상기 센서장치 또는 강도측정장치에 구비되며, 상기 압전센서의 위치 정보를 전송하는 GPS 모듈부;를 더 포함하는 수화반응물질 구조체 강도 모니터링 장치.The hydration-reactive material structure strength monitoring device further comprising a GPS module unit provided in the sensor device or the strength measuring device and transmitting position information of the piezoelectric sensor.
  5. 제 4항에 있어서, According to claim 4,
    상기 제어모듈부는,The control module unit,
    상기 교류전기신호 발생부에서 발생되는 교류전기신호를 제어하여 상기 압전센서로 인가되도록 하는 교류전기신호 제어부;an AC electrical signal controller controlling the AC electrical signal generated by the AC electrical signal generator to be applied to the piezoelectric sensor;
    상기 압전센서로 가해지는 교류전기신호의 주파수에 따른 상기 압전센서의 공진주파수와 임피던스의 변화를 검출하는 주파수-임피던스 검출부;a frequency-impedance detector detecting a change in impedance and resonance frequency of the piezoelectric sensor according to the frequency of an AC electrical signal applied to the piezoelectric sensor;
    상기 주파수-임피던스 검출부에서 검출된 상기 압전센서의 공진주파수와 임피던스의 변화에 기반하여 상기 압전센서에 가해진 물리적인 압력의 변화를 측정하는 압력변화 측정부;a pressure change measurement unit for measuring a change in physical pressure applied to the piezoelectric sensor based on a change in impedance and a resonant frequency of the piezoelectric sensor detected by the frequency-impedance detector;
    상기 주파수-임피던스 검출부에서 압전센서의 공진주파수와 임피던스를 검출할 때, 상기 온도 센서에 의해 검출된 온도에 기반하여 검출된 공진주파수값 및 임피던스 값중에서 적어도 하나를 보정하여 측정 오차를 최소화하는 주파수-임피던스 보정부;When the frequency-impedance detecting unit detects the resonance frequency and impedance of the piezoelectric sensor, at least one of the resonance frequency value and the impedance value detected based on the temperature detected by the temperature sensor is corrected to minimize measurement error. an impedance correction unit;
    상기 압전센서의 공진주파수와 임피던스의 변화에 따른 전기신호의 크기를 증폭시키는 신호 증폭부;a signal amplification unit amplifying the magnitude of an electrical signal according to a change in the resonant frequency and impedance of the piezoelectric sensor;
    상기 신호 증폭부로부터 출력되는 나오는 전기신호 중 상기 교류전기신호 발생부에서 발생한 교류전기신호는 제거하고, 상기 압전센서의 공진주파수와 임피던스 변화에 따른 전기신호만을 통과시키는 저역 필터부;a low-pass filter unit that removes the AC electrical signal generated from the AC electrical signal generator among the electrical signals output from the signal amplifying unit and passes only the electrical signal according to the resonant frequency and impedance change of the piezoelectric sensor;
    상기 저역 필터부를 통해 필터링되어 출력되는 상기 압전센서의 공진주파수와 임피던스 변화에 따른 아날로그 전기신호를 디지털 신호로 변환시켜 출력하는 아날로그-디지털 컨버터부 및 An analog-to-digital converter unit converting an analog electrical signal according to a change in impedance and resonance frequency of the piezoelectric sensor filtered through the low-pass filter unit into a digital signal and outputting the converted signal; and
    상기 압전센서의 공진주파수와 임피던스 변화의 디지털 신호에 기반하여 상기 압전센서에 가해진 물리적인 압력의 변화인 압력변화 데이터를 측정하고, 상기 압력변화 데이터를 기초로 강도데이터를 계산하고 산출하는 강도 산출부;를 포함하는 수화반응물질 구조체 강도 모니터링 장치.A strength calculation unit for measuring pressure change data, which is a change in physical pressure applied to the piezoelectric sensor, based on the digital signal of the resonant frequency and impedance change of the piezoelectric sensor, and calculating and calculating strength data based on the pressure change data Hydration reactant structure strength monitoring device comprising a;
  6. 제 5항에 있어서, According to claim 5,
    상기 공진 주파수 및 임피던스 중에서 적어도 하나의 보정은, Correcting at least one of the resonant frequency and impedance,
    f = f1 + A * (Tc-Tref) + B (식 1) f = f1 + A * (Tc-Tref) + B (Equation 1)
    z = z1 + C * (Tc-Tref) + D (식 2)z = z1 + C * (Tc-Tref) + D (Equation 2)
    (여기에서, f : 보정된 공진주파수, z : 보정된 임피던스, f1 : 측정된 공진주파수, z1: 측정된 임피던스, A : 압전센서의 온도특성계수 1, C : 압전센서의 온도특성계수 3, B : 압전센서의 온도특성계수 2, D : 압전센서의 온도특성계수 4, Tc: 측정된 현재 온도, Tref: 기준온도, A, B, C, D 및 Tref는 압전센서에 대한 온도특성실험을 통해 얻은 상수값)(Here, f: corrected resonance frequency, z: corrected impedance, f1: measured resonance frequency, z1: measured impedance, A: temperature characteristic coefficient of piezoelectric sensor 1, C: temperature characteristic coefficient of piezoelectric sensor 3, B: temperature characteristic coefficient of piezoelectric sensor 2, D: temperature characteristic coefficient of piezoelectric sensor 4, Tc: measured current temperature, Tref: reference temperature, A, B, C, D and Tref are temperature characteristic tests for piezoelectric sensors constant value obtained through
    여기서, A, B, C, D 및 Tref는 사용하는 압전센서에 따라 가변되고,Here, A, B, C, D and Tref are variable depending on the piezoelectric sensor used,
    상기의 관계식에 의거 수행되는 것을 특징으로 하는 수화반응물질 구조체 강도 모니터링 장치를 이용한 강도 모니터링 장치. A strength monitoring device using a hydration reactant structure strength monitoring device, characterized in that it is performed based on the above relational expression.
  7. 제 1항 또는 2항에 있어서, 상기 전달부재는,The method of claim 1 or 2, wherein the transmission member,
    중심기둥;central pillar;
    상기 중심기둥의 길이방향을 따라 일정간격 이격되도록 형성되되, 중단부를 기준으로 상하방향으로 원주의 크기가 점차적으로 작아지는 다수 개의 전달원판 및 A plurality of transmission discs formed to be spaced apart at regular intervals along the longitudinal direction of the central pillar, the size of the circumference gradually decreasing in the vertical direction based on the middle part, and
    다수 개의 상기 전달원판의 외측면과 상하방향으로 연결되되, 상기 전달원판이 삽입되도록 전달홈이 구비된 전달편을 포함하고, It includes a transmission piece connected to the outer surface of the plurality of transmission disks in the vertical direction and provided with a transmission groove into which the transmission disks are inserted,
    상기 센서 하우징은,The sensor housing,
    상기 전달부재가 수용되도록 내부가 중공상태인 구형태로 형성되되, 내면에 상기 전달편이 삽입되어 결합되도록 삽입홈이 형성되는 것을 특징으로 하는 수화반응물질 구조체 강도 모니터링 장치.The apparatus for monitoring the strength of a structure of a hydration reactant, characterized in that it is formed in a spherical shape with a hollow inside to accommodate the delivery member, and an insertion groove is formed on the inner surface to allow the delivery piece to be inserted and coupled thereto.
  8. 수화반응물질 구조체에 매립되되, 압전센서가 부착된 전달부재가 결합된 센서 하우징으로 구성된 센서장치 및 상기 센서장치와 연결되어 상기 수화반응물질 구조체의 강도를 측정하는 강도측정장치를 포함하는 수화반응물질 구조체 강도 모니터링 장치를 이용하여 수화반응물질 구조체의 강도를 모니터링하는 방법에 있어서,A hydration reactant material comprising a sensor device embedded in the hydration reactant material structure and composed of a sensor housing to which a transmission member to which a piezoelectric sensor is attached is coupled, and a strength measuring device connected to the sensor device to measure the strength of the hydration reactant material structure. A method for monitoring the strength of a hydration reactant structure using a structure strength monitoring device,
    소정 주파수 대역의 주파수를 갖는 특정 파형의 교류전기신호를 발생시키는 교류전기신호 발생 단계;AC electrical signal generation step of generating an AC electrical signal of a specific waveform having a frequency of a predetermined frequency band;
    상기 발생된 교류전기신호를 제어하여 일정 시간 동안 상기 압전센서로 인가하는 교류전기신호 인가 단계;an AC electrical signal applying step of controlling the generated AC electrical signal and applying it to the piezoelectric sensor for a predetermined period of time;
    상기 압전센서에 인가된 교류전기신호를 상기 전달부재 및 센서 하우징을 통해 상기 수화반응물질 구조체에 전달하고 상기 수화반응물질 구조체에 의해 변화된 공진주파수 및 임피던스를 전달받는 주파수-임피던스 수신 단계;a frequency-impedance receiving step of transmitting the alternating current electrical signal applied to the piezoelectric sensor to the hydration reactant material structure through the transmission member and the sensor housing and receiving the resonant frequency and impedance changed by the hydration reactant material structure;
    상기 압전센서로 가해지는 상기 교류전기신호의 주파수에 따른 상기 압전센서의 공진주파수와 임피던스의 변화에 따른 전기신호를 검출하는 주파수-임피던스 검출 단계 및A frequency-impedance detection step of detecting an electrical signal according to a change in impedance and a resonant frequency of the piezoelectric sensor according to the frequency of the AC electrical signal applied to the piezoelectric sensor; and
    상기 검출된 상기 압전센서의 공진주파수와 임피던스의 변화에 기반하여 상기 압전센서에 가해진 물리적인 압력의 변화에 따른 강도전기신호로 측정하는 압력변화 측정 단계를 포함하고,A pressure change measuring step of measuring an intensity electrical signal according to a change in physical pressure applied to the piezoelectric sensor based on the detected change in resonance frequency and impedance of the piezoelectric sensor,
    상기 센서장치는,The sensor device,
    상기 수화반응물질 구조체에 파손되지 않게 매립되는 센서 하우징;a sensor housing buried in the hydration reactant structure so as not to be damaged;
    상기 센서 하우징 내부에 설치되어 교류전기신호를 전달받아 상기 수화반응물질 구조체에 전달하고, 상기 수화반응물질 구조체에 의해 변화된 공진주파수 및 임피던스를 전달받는 압전센서 및A piezoelectric sensor installed inside the sensor housing to receive an alternating current electrical signal, transmit it to the hydration reactant material structure, and receive the resonant frequency and impedance changed by the hydration reactant material structure; and
    상기 압전센서가 부착되어 상기 공진주파수 및 임피던스가 상기 수화반응물질 구조체에 전달되도록 하는 전달부재를 포함하며,A transmission member to which the piezoelectric sensor is attached to transmit the resonant frequency and impedance to the hydration reactant material structure,
    상기 센서 하우징의 하단면에 무게추가 구비되어 수화반응물질과 함께 타설시 기울어지지 않고 정방향으로 매립되고,A weight is provided on the lower surface of the sensor housing so that it is buried in the forward direction without tilting when pouring together with the hydration reactant,
    상기 센서 하우징은,The sensor housing,
    머리부 및 몸통부로 구성되되, 상기 몸통부의 외면에 상기 전달부재가 나선형으로 감싸도록 연결되는 상부 센서 하우징 및An upper sensor housing composed of a head part and a body part, connected to the outer surface of the body part so that the transmission member spirally wraps; and
    상기 상부 센서 하우징이 삽입되도록 상측이 개방된 형태로 형성되되, 내주면에 상기 상부 센서 하우징의 회전에 의해 상기 전달부재가 삽입되어 결합되도록 하는 결합홈이 형성된 하부 센서 하우징을 포함하는 수화반응물질 구조체 강도 모니터링 장치를 이용한 강도 모니터링 방법.Strength of the hydration reactant material structure including a lower sensor housing formed in an open top so that the upper sensor housing is inserted, and having a coupling groove formed on an inner circumferential surface of which the delivery member is inserted and coupled by rotation of the upper sensor housing. Strength monitoring method using a monitoring device.
  9. 제 8항에 있어서,According to claim 8,
    상기 주파수-임피던스 검출 단계는,The frequency-impedance detection step,
    상기 압전센서의 공진주파수와 임피던스의 변화에 따른 전기신호를 증폭시키는 신호 증폭 단계 및A signal amplification step of amplifying an electrical signal according to a change in the resonant frequency and impedance of the piezoelectric sensor; and
    상기 수화반응물질 구조체 강도 모니터링 장치에 구비된 온도센서에 의해 검출된 온도에 기반하여 검출된 공진주파수값 및 임피던스 값중에서 적어도 하나를 보정하여 측정 오차를 최소화하는 주파수-임피던스 보정 단계를 포함하고,A frequency-impedance correction step of minimizing a measurement error by correcting at least one of a resonant frequency value and an impedance value detected based on a temperature detected by a temperature sensor provided in the hydration reactant structure strength monitoring device,
    상기 압력변화 측정 단계는,The pressure change measurement step,
    저역 필터를 통해 상기 신호 증폭 단계를 거친 전기신호에서 교류전기신호를 제거하고, 상기 압전센서의 공진주파수와 임피던스 변화에 따른 전기신호만을 통과시키는 저역 필터 단계;a low-pass filter step of removing an alternating current electrical signal from the electrical signal that has passed through the signal amplification step through a low-pass filter and passing only the electrical signal according to the resonant frequency and impedance change of the piezoelectric sensor;
    상기 저역 필터 단계를 통해 필터링되어 출력되는 상기 압전센서의 공진주파수와 임피던스 변화에 따른 아날로그 전기신호를 디지털 신호로 변환시켜 출력하는 아날로그-디지털 컨버터 단계 및 An analog-to-digital converter step of converting an analog electrical signal according to a change in resonance frequency and impedance of the piezoelectric sensor filtered through the low-pass filter step into a digital signal and outputting the converted signal; and
    상기 압전센서의 공진주파수와 임피던스 변화의 디지털 신호에 기반하여 상기 압전센서에 가해진 물리적인 압력의 변화인 압력변화 데이터를 측정하고, 상기 압력변화 데이터를 기초로 강도데이터를 계산하고 산출하는 강도 산출 단계;를 포함하는 수화반응물질 구조체 강도 모니터링 장치를 이용한 강도 모니터링 방법.A strength calculation step of measuring pressure change data, which is a change in physical pressure applied to the piezoelectric sensor, based on the digital signal of the resonant frequency and impedance change of the piezoelectric sensor, and calculating and calculating strength data based on the pressure change data Strength monitoring method using a hydration reactant structure strength monitoring device comprising;
  10. 제 9항에 있어서,According to claim 9,
    상기 주파수 및 임피던스 중에서 적어도 하나의 보정은, Correcting at least one of the frequency and impedance,
    f = f1 + A * (Tc-Tref) + B (식 1) f = f1 + A * (Tc-Tref) + B (Equation 1)
    z = z1 + C * (Tc-Tref) + D (식 2)z = z1 + C * (Tc-Tref) + D (Equation 2)
    (여기에서, f : 보정된 공진주파수, z : 보정된 임피던스, f1 : 측정된 공진주파수, z1: 측정된 임피던스, A : 압전센서의 온도특성계수 1, C : 압전센서의 온도특성계수 3, B : 압전센서의 온도특성계수 2, D : 압전센서의 온도특성계수 4, Tc: 측정된 현재 온도, Tref: 기준온도, A, B, C, D 및 Tref는 압전센서에 대한 온도특성실험을 통해 얻은 상수값)(Here, f: corrected resonance frequency, z: corrected impedance, f1: measured resonance frequency, z1: measured impedance, A: temperature characteristic coefficient of piezoelectric sensor 1, C: temperature characteristic coefficient of piezoelectric sensor 3, B: temperature characteristic coefficient of piezoelectric sensor 2, D: temperature characteristic coefficient of piezoelectric sensor 4, Tc: measured current temperature, Tref: reference temperature, A, B, C, D and Tref are temperature characteristic tests for piezoelectric sensors constant value obtained through
    여기서, A, B, C, D 및 Tref는 사용하는 압전센서에 따라 가변되고,Here, A, B, C, D and Tref are variable depending on the piezoelectric sensor used,
    상기다의 관계식에 의거 수행되는 것을 특징으로 수화반응물질 구조체 강도 모니터링 장치를 이용한 강도 모니터링 방법. A strength monitoring method using a hydration reactant structure strength monitoring device, characterized in that it is performed based on the above multi-relational expression.
PCT/KR2022/002978 2021-11-11 2022-03-03 Apparatus for monitoring strength of hydration reaction material structure and strength monitoring method using same WO2023085525A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2021-0155039 2021-11-11
KR1020210155039A KR102409861B1 (en) 2021-11-11 2021-11-11 Apparatus for monitoring strength of hydration reaction materials and a method for monitoring strength by using same.

Publications (1)

Publication Number Publication Date
WO2023085525A1 true WO2023085525A1 (en) 2023-05-19

Family

ID=82269069

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/002978 WO2023085525A1 (en) 2021-11-11 2022-03-03 Apparatus for monitoring strength of hydration reaction material structure and strength monitoring method using same

Country Status (3)

Country Link
KR (1) KR102409861B1 (en)
CN (1) CN116106371A (en)
WO (1) WO2023085525A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102579278B1 (en) * 2023-01-16 2023-09-15 에코엔텍주식회사 Shotcrete Strength Measurement System

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110119025A (en) * 2010-04-26 2011-11-02 성균관대학교산학협력단 A system and a method for monitoring the curing process of concrete structures
KR20110121329A (en) * 2010-04-30 2011-11-07 성균관대학교산학협력단 Pipe structure monitoring system using piezoelectric sensors based on impedance and guided wave
KR101184048B1 (en) * 2011-12-28 2012-09-27 (주)대우건설 Early-age concrete strength estimation apparatus and method for using impedance
KR101684428B1 (en) * 2015-06-03 2016-12-20 한국과학기술원 Multi-Directional Damage Detection System Embedded in Concrete And Method for Detecting Damage in Concrete Structure
KR102256047B1 (en) * 2020-09-28 2021-05-25 주식회사 비엘 Strength signal measuring method and strength signal measuring device for monitoring strength of hydration reaction materials

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110119025A (en) * 2010-04-26 2011-11-02 성균관대학교산학협력단 A system and a method for monitoring the curing process of concrete structures
KR20110121329A (en) * 2010-04-30 2011-11-07 성균관대학교산학협력단 Pipe structure monitoring system using piezoelectric sensors based on impedance and guided wave
KR101184048B1 (en) * 2011-12-28 2012-09-27 (주)대우건설 Early-age concrete strength estimation apparatus and method for using impedance
KR101684428B1 (en) * 2015-06-03 2016-12-20 한국과학기술원 Multi-Directional Damage Detection System Embedded in Concrete And Method for Detecting Damage in Concrete Structure
KR102256047B1 (en) * 2020-09-28 2021-05-25 주식회사 비엘 Strength signal measuring method and strength signal measuring device for monitoring strength of hydration reaction materials

Also Published As

Publication number Publication date
CN116106371A (en) 2023-05-12
KR102409861B1 (en) 2022-06-17

Similar Documents

Publication Publication Date Title
Bao et al. Tensile and compressive strain measurement in the lab and field with the distributed Brillouin scattering sensor
WO2023085525A1 (en) Apparatus for monitoring strength of hydration reaction material structure and strength monitoring method using same
WO2009136768A1 (en) Collapse prediction method for ground structure
WO2016171391A1 (en) Device for measuring friction of vibrating structure
CN205861281U (en) Meter locale calibration system
WO2022065595A1 (en) Strength signal measuring method and device for monitoring strength of hydration reaction material structure
WO2012044003A2 (en) Vacuum thermal-insulation material, and a device and method for assessing the degree of vacuum in the vacuum insulation material by using the frequency response method
CN106840482B (en) A kind of tension of prestressed tendon stress and stress under anchorage test device and its test method
WO2011159022A2 (en) Digital device and method for measuring the axial load of a torque-shear-type high strength bolt
CN106959184A (en) A kind of cable strain method of testing and tension tester
WO2012081873A2 (en) Ultra high frequency fatigue tester
CN1979184A (en) Transverse piezoelectric strain constant measuring method by piezoelectric material quasistatic method and system thereof
WO2013133551A1 (en) Resistance welding monitoring apparatus and method and system therefor
WO2017039195A1 (en) Large-space structure collapse sensing device, structure monitoring device, and method using same
WO2012036376A1 (en) Insulator checking module and method for driving same, and insulator checking apparatus and method for same
JPH1183420A (en) Strain measuring module and multipoint-strain measuring system
D'Alessandro et al. Self-sensing concrete nanocomposites for smart structures
WO2021091187A1 (en) Stainless steel water tank monitoring management system and management method
CN110274715A (en) A kind of loss of prestress detection method
CN109813210A (en) Semi-rigid type base internal fissure monitors system and fracture width, location determining method
CN108168820A (en) A kind of building curtain wall safety detecting method
WO2012011631A1 (en) Apparatus for detecting magnetic field including a differential magnetic sensor module
JP2008247604A (en) Removable tension detector for wire rope
CN108240844B (en) Power plant support and hanger detecting system
WO2022119020A1 (en) Stress detection method for work scaffold and work scaffold safety management system using same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22892948

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE