WO2019031044A1 - 基地局装置、端末装置、通信システムおよび通信制御方法 - Google Patents

基地局装置、端末装置、通信システムおよび通信制御方法 Download PDF

Info

Publication number
WO2019031044A1
WO2019031044A1 PCT/JP2018/021764 JP2018021764W WO2019031044A1 WO 2019031044 A1 WO2019031044 A1 WO 2019031044A1 JP 2018021764 W JP2018021764 W JP 2018021764W WO 2019031044 A1 WO2019031044 A1 WO 2019031044A1
Authority
WO
WIPO (PCT)
Prior art keywords
base station
transmission beam
correction information
station apparatus
control unit
Prior art date
Application number
PCT/JP2018/021764
Other languages
English (en)
French (fr)
Inventor
紀之 志水
滝田 眞帆
浅野 弘明
秀樹 新宮
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to US16/636,194 priority Critical patent/US11201649B2/en
Publication of WO2019031044A1 publication Critical patent/WO2019031044A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0602Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using antenna switching
    • H04B7/0608Antenna selection according to transmission parameters
    • H04B7/061Antenna selection according to transmission parameters using feedback from receiving side
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0695Hybrid systems, i.e. switching and simultaneous transmission using beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/20Monitoring; Testing of receivers
    • H04B17/24Monitoring; Testing of receivers with feedback of measurements to the transmitter
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • H04B17/318Received signal strength
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/022Site diversity; Macro-diversity
    • H04B7/024Co-operative use of antennas of several sites, e.g. in co-ordinated multipoint or co-operative multiple-input multiple-output [MIMO] systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • H04B7/0868Hybrid systems, i.e. switching and combining
    • H04B7/088Hybrid systems, i.e. switching and combining using beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/24Cell structures
    • H04W16/28Cell structures using beam steering
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/0284Traffic management, e.g. flow control or congestion control detecting congestion or overload during communication

Definitions

  • the present invention relates to a base station apparatus, a terminal apparatus, a communication system, and a communication control method for controlling wireless communication of a terminal apparatus using any of a plurality of transmission beams formed by a base station apparatus.
  • the high SHF band and the EHF band are being used in the 5G (fifth generation mobile communication system) currently under study, and it is extremely wide by using such a high frequency band. Since the communication band can be secured, large capacity communication exceeding 1 Gbps can be performed. On the other hand, since wireless communication using such a high frequency band has a short radio wave arrival distance, studies are being made to extend the radio wave arrival distance using transmission beam forming technology.
  • the user terminal sequentially selects an appropriate transmission beam to perform communication.
  • a technique related to such beam selection a technique of selecting an appropriate transmission beam based on the reception power of each transmission beam is known (see Patent Document 1).
  • Patent Document 1 a technique of selecting an appropriate transmission beam based on the reception power of each transmission beam is known (see Patent Document 1).
  • the transmit beam is thickened, the receive power is lowered, so that an offset is added to the receive power of the transmit beam to make the transmit beam evaluation fair without being affected by the transmit beam thickness. I am trying to do it.
  • the present invention is mainly directed to providing a base station apparatus, a terminal apparatus, a communication system and a communication control method capable of improving the service satisfaction of the user by avoiding communication failure and lowering of the throughput in advance. To aim.
  • the base station apparatus of the present invention is a base station apparatus that controls wireless communication of a terminal apparatus using any of a plurality of transmission beams formed by the own apparatus or another base station apparatus, and the terminal apparatus and the wireless apparatus
  • a wireless communication unit performing communication and correction information for correcting a measurement value for evaluating the reception condition of the transmission beam so as to suppress or promote the use of a specific transmission beam in the terminal device, and the correction information
  • a control unit that transmits from the wireless communication unit to the terminal device.
  • the terminal device of the present invention is a terminal device that performs wireless communication with the base station device using any of a plurality of transmission beams formed by the base station device, and wireless communication with the base station device.
  • the wireless communication unit receives the correction information transmitted from the base station apparatus, the wireless communication unit performs the correction, and the correction value for evaluating the reception condition of the transmission beam is corrected based on the correction information, and the correction is performed.
  • a controller configured to perform wireless communication with the base station apparatus using the transmission beam selected based on the measured value.
  • a communication system is a communication system in which a terminal apparatus performs wireless communication with the base station apparatus using any of a plurality of transmission beams formed by the base station apparatus, and the base station apparatus A radio communication unit for performing radio communication with the terminal device, and correction information for correcting the measurement value for evaluating the reception condition of the transmission beam so as to suppress or promote the use of a specific transmission beam in the terminal device.
  • a control unit for acquiring the correction information and transmitting the correction information from the wireless communication unit to the terminal device, the terminal device including a wireless communication unit for performing wireless communication with the base station device, and the base station device
  • the measurement value for evaluating the reception condition of the transmission beam is corrected based on the correction information, and the correction value is measured based on the corrected measurement value.
  • the-option has been the transmitted beam a configuration and a control unit for performing the base station apparatus and radio communication.
  • the communication control method of the present invention is a communication control method for controlling wireless communication of a terminal apparatus using any of a plurality of transmission beams formed by a base station apparatus, wherein the base station apparatus is the terminal In the device, correction information for correcting a measurement value for evaluating the reception condition of the transmission beam is acquired so as to suppress or promote use of a specific transmission beam, and the correction information is transmitted to the terminal device, and the terminal
  • the apparatus receives the correction information transmitted from the base station apparatus, the apparatus corrects the measurement value for evaluating the reception condition of the transmission beam based on the correction information, and based on the corrected measurement value.
  • Wireless communication is performed with the base station apparatus using the selected transmission beam.
  • the use of a specific transmission beam can be suppressed or promoted in a terminal device.
  • Explanatory drawing which shows utilization beam historical information which concerns on 4th Embodiment.
  • a flowchart showing a procedure of processing performed when the user terminal 1 is connected in the base station 2 according to the fourth embodiment
  • Explanatory drawing which shows the condition of the transmission beam of user terminal 1 which concerns on 5th Embodiment, and base station 2.
  • a first invention for solving the above-mentioned problems is a base station apparatus for controlling wireless communication of a terminal apparatus using any of a plurality of transmission beams formed by the apparatus itself or another base station apparatus.
  • a radio communication unit for performing radio communication with the terminal device, and correction information for correcting a measurement value for evaluating the reception condition of the transmission beam so as to suppress or promote the use of a specific transmission beam in the terminal device.
  • a control unit for acquiring the correction information and transmitting the correction information from the wireless communication unit to the terminal device.
  • control unit acquires the correction information including an offset value which increases or decreases a measured value of received power as a measured value for evaluating the reception condition of the transmission beam.
  • the evaluation of the transmitted beam becomes low, and the use of the transmitted beam in the terminal device It can be suppressed. Also, by adding an offset value to the measured value of the received power and correcting the received power to be larger than the actual value, the evaluation of the transmitted beam becomes high, and the use of the transmitted beam in the terminal device is promoted. be able to.
  • control unit simultaneously transmits the correction information to all the terminal devices in the area including the terminal device not connected to the own device.
  • control unit selects the terminal device according to a predetermined condition from among the plurality of terminal devices in communication using a specific transmission beam, and the terminal selected
  • the apparatus is configured to transmit the correction information.
  • the use of a specific transmission beam can be suppressed or promoted in a specific terminal device. Thereby, it is possible to guide a terminal apparatus using a specific transmission beam to use another transmission beam, and to achieve load distribution of a specific transmission beam and to improve communication efficiency.
  • the control unit in the control unit, the number of beams constituting one beam group when the plurality of transmission beams arranged in a predetermined order are equally divided, and the measurement for each beam group The correction information including the offset value with respect to the value is acquired.
  • the correction information including the number of beams forming a group and the offset value of the beam group is acquired.
  • control unit determines the current congestion status of each transmission beam, and acquires the correction information for correcting the measurement value so as to suppress the use of the transmission beam in congestion.
  • the terminal apparatus since it is possible to suppress the use of the congested transmission beam in the terminal device, it is possible to avoid the reduction in throughput in advance. If the terminal apparatus is not connected to the base station apparatus, communication can be controlled to be started using another transmission beam not in congestion, and the terminal connected to the base station apparatus can be controlled. If the device is using a busy transmit beam, it can be controlled to switch to another transmit beam that is not busy.
  • the eighth invention further comprises a storage unit for storing correction information for correcting the measurement value so as to suppress the use of a transmission beam whose communication environment is always bad, and the control unit stores the correction information in the storage unit. The correction information thus obtained is acquired.
  • the terminal device since the use of the transmission beam whose communication environment is always bad is suppressed, it is possible to avoid in advance communication failure and a decrease in throughput.
  • control unit acquires the correction information for correcting the measurement value so as to suppress the use of a transmission beam whose communication environment deteriorates in the current time zone.
  • the terminal device since the use of the transmission beam in which the communication environment is deteriorated in the current time zone is suppressed, it is possible to prevent in advance the communication failure and the reduction of the throughput.
  • control section corrects the measurement value to suppress use of a transmission beam for a lane permitted to travel by a green light based on control information of a traffic light. It is configured to acquire information.
  • the use of the transmission beam for the lane permitted to travel by the green light is suppressed, so that the communication failure can be avoided in advance.
  • control unit acquires the correction information for correcting the measurement value so as to suppress the use of the transmission beam traveling upward by reflection.
  • the use of the transmission beam directed to the sky by the reflection is suppressed, so that the communication failure can be avoided in advance.
  • control unit is located on the front side in the moving direction of the terminal device when the own device is located on the rear side of the moving direction of the terminal device connected to the own device.
  • the configuration is configured to promote the use of the transmission beam formed by the adjacent base station apparatus or to acquire the correction information for correcting the measurement value so as to suppress the use of the transmission beam formed by the own apparatus.
  • the thirteenth invention further comprises a storage unit for accumulating, as utilization beam history information, information on transmission beams used in the past by the terminal device, and the control unit is configured to, based on the utilization beam history information, When it is determined that the terminal device currently connected to the device uses a transmission beam near the boundary with the adjacent base station device, the use of the transmission beam formed by the adjacent base station device is promoted Alternatively, the correction information for correcting the measurement value is acquired so as to suppress the use of the transmission beam formed by the device itself.
  • a fourteenth invention is a terminal device that performs wireless communication with the base station device using any of a plurality of transmission beams formed by the base station device, and wireless communication with the base station device.
  • the wireless communication unit receives the correction information transmitted from the wireless communication unit and the base station apparatus, the measurement value for evaluating the reception condition of the transmission beam is corrected based on the correction information, and the correction is performed.
  • a controller configured to perform wireless communication with the base station apparatus using the transmission beam selected based on the measured value.
  • the fifteenth invention further comprises a storage unit for storing the correction information received from the base station apparatus, and the control unit stores the correction beam stored in the storage unit when the transmitting beam in communication is lost. The measurement value is corrected based on the correction information.
  • the correction information can not be acquired from the base station apparatus, but the measurement value can be corrected by using the correction information stored in the storage unit.
  • the correction information in the storage unit may be updated.
  • control unit erases the correction information stored in the storage unit when a predetermined holding period has elapsed.
  • the holding period may be notified from the base station.
  • a seventeenth invention is a communication system in which a terminal device performs wireless communication with the base station device using any of a plurality of transmission beams formed by the base station device, and the base station device is A wireless communication unit performing wireless communication with the terminal device, and correction information for correcting a measurement value for evaluating a reception condition of the transmission beam so as to suppress or promote use of a specific transmission beam in the terminal device And a control unit for transmitting the correction information from the wireless communication unit to the terminal device, the terminal device transmitting from the base station device a wireless communication unit for performing wireless communication with the base station device When the wireless communication unit receives the correction information, the measurement value for evaluating the reception condition of the transmission beam is corrected based on the correction information, and the correction information is selected based on the corrected measurement value.
  • the eighteenth invention is a communication control method for controlling wireless communication of a terminal apparatus using any of a plurality of transmission beams formed by a base station apparatus, wherein the base station apparatus is the terminal apparatus
  • the correction information for correcting the measurement value for evaluating the reception condition of the transmission beam is acquired so as to suppress or promote the use of a specific transmission beam, the correction information is transmitted to the terminal device, and the terminal device
  • the measurement value for evaluating the reception condition of the transmission beam is corrected based on the correction information, and the correction information is selected based on the corrected measurement value.
  • the wireless communication with the base station apparatus is performed using the transmission beam.
  • FIG. 1 is an overall configuration diagram of a communication system according to the first embodiment.
  • This communication system includes a user terminal 1 (terminal device), a base station 2 for cellular communication (base station device), a base station 3 for wireless LAN (access point, base station device), and a communication control device 4 Have.
  • the user terminal 1 is a smartphone, a tablet terminal, or the like.
  • the user terminal 1 can be connected to a base station 2 for cellular communication, and communicates with an opposite station (server or the like) on the Internet via the base station 2 for the cellular communication and the communication control device 4. Further, the user terminal 1 can be connected to the base station 3 of the wireless LAN, and communicates with the opposite station (server or the like) on the Internet through the base station 3 of the wireless LAN.
  • the base station 2 for cellular communication performs wireless communication using the high SHF band or the EHF band (millimeter wave band) adopted in 5G.
  • transmission beam forming is performed, a plurality of transmission beams are formed, and data is transmitted to the user terminal 1 using one of the transmission beams.
  • the base station 3 of the wireless LAN performs wireless communication using a frequency higher than the high SHF band, such as WiGig (registered trademark).
  • WiGig registered trademark
  • transmission beam forming is performed and a plurality of transmission beams are formed as in the case of the base station 2 of cellular communication, and data is transmitted to the user terminal 1 using one of the transmission beams.
  • the transmission direction is fixed for each transmission beam.
  • the user terminal 1 measures the reception value of each transmission beam formed by the base station 2 of cellular communication and the base station 3 of the wireless LAN, specifically, measures the reception power of each transmission beam, Communication is performed with the base station 2 of the cellular communication and the base station 3 of the wireless LAN using the transmission beam selected based on the measurement value of the reception power of the transmission beam.
  • the communication control device 4 controls communication related to the base station 2 of cellular communication, and is an SMF (Session Management Function), a UPF (User Plane Function), or the like.
  • SMF Session Management Function
  • UPF User Plane Function
  • FIG. 2 is an explanatory view showing the state of transmission beams of the user terminal 1 and the base station 2.
  • the radio quality degrades, causing a communication failure such as disconnection of communication.
  • a communication failure such as disconnection of communication.
  • the transmission beam of the base station 2 is formed to cross a roadway where the traffic volume of the vehicle is heavy, the transmission beam is highly likely to cause communication failure.
  • the transmission beam of the base station 2 is formed in a direction in which there are many obstacles such as a signboard and a street tree, the transmission beam is highly likely to cause communication failure. And since the possibility that the communication failure by such shielding may occur depends on the condition of the shielding, it does not fluctuate greatly.
  • an offset value (initial value) is set to a fixed value so that use of the transmission beam is always suppressed in the user terminal 1 for the transmission beam formed in a specific direction in which the communication environment is always bad. And the received power of the transmission beam measured at the user terminal 1 is corrected based on the offset value.
  • the current congestion status of each transmission beam is determined, and an offset value that becomes a fluctuation value is set so that use of the transmission beam in congestion is suppressed in the user terminal 1, and Based on the offset value, the reception power of the transmission beam measured at the user terminal 1 is corrected.
  • an offset value for congestion is prepared separately from the initial offset value, and when it is determined that the transmission beam is in congestion, the offset value for congestion is updated.
  • the transmission beam When the transmission beam is in a congested state, the transmission beam may be uniformly updated to an offset value for congestion, but the offset value may be changed according to the degree of congestion.
  • the measured value of the reception power of the transmission beam is equal to or less than a predetermined reference power (a reference of reception power detected as a transmission beam, for example -120 dBm), it is not regarded as a transmission beam. For this reason, if the reception power is corrected up to the vicinity of the reference power, it becomes difficult to select the transmission beam. In particular, at the time of new connection, correction may be performed to a level lower than the reference power so that the transmission beam can not be selected. On the other hand, if connection to the base station 2 is in progress, the connection is cut off if the correction is made to be lower than the reference power, so it is preferable to correct the corrected reception power not to be lower than the reference power. Thereby, it is possible to switch to another transmission beam without breaking the communication.
  • a predetermined reference power a reference of reception power detected as a transmission beam, for example -120 dBm
  • FIG. 3 is a block diagram showing a schematic configuration of the base station 2 for cellular communication.
  • the base station 2 for cellular communication includes a wireless communication unit 11, a wired communication unit 12, a control unit 13, and a storage unit 14.
  • the wireless communication unit 11 performs wireless communication with the user terminal 1.
  • the wired communication unit 12 performs wired communication with the communication control device 4 and another base station 2 in the vicinity.
  • the storage unit 14 stores information related to the user terminal 1, information related to another base station 2 in the vicinity, a program executed by a processor that configures the control unit 13, and the like.
  • the storage unit 14 also stores registration information of the offset information database.
  • an offset value for correcting the reception power of each transmission beam measured by the user terminal 1 is registered.
  • the offset values include an initial offset value and an offset value for congestion.
  • the control unit 13 includes a wireless control unit 21 and a wired control unit 22.
  • the control unit 13 is configured by a processor, and each unit of the control unit 13 is realized by causing the processor to execute a program stored in the storage unit 14.
  • the wired control unit 22 exchanges information related to the connection destination of the user terminal 1 and the like by wired communication with the communication control device 4 and another base station 2 in the vicinity.
  • the wireless control unit 21 includes a congestion determination unit 31, a terminal selection unit 32, an offset information acquisition unit 33, and a message control unit 34.
  • the congestion determination unit 31 determines the congestion status of each transmission beam.
  • the congestion status is determined based on the number of communicating terminals of each transmission beam, that is, the number of user terminals 1 in communication using each transmitting beam. That is, it is determined whether or not the number of communicating terminals of the target transmission beam is equal to or greater than a predetermined threshold, and if the number of terminals in communication is equal to or larger than the threshold, the target transmitting beam is congested. judge.
  • the threshold value of the number of terminals in communication is the upper limit value of the user terminal 1 that permits the use of the transmission beam, and by limiting the number of user terminals 1 using the transmission beam by this threshold value, High throughput can be secured at the user terminal 1.
  • the terminal selection unit 32 selects the user terminal 1 to which the offset information is to be notified from the user terminals 1 in communication with the own device.
  • the user terminal 1 capable of using another transmission beam not in congestion is extracted, and here one user terminal 1 If not narrowed down, the user terminal 1 with the lowest radio quality is selected from among the plurality of extracted user terminals 1 by the transmission beam currently in communication.
  • the offset information acquisition unit 33 acquires offset information (correction information) that defines an offset value for each transmission beam.
  • the offset value for each transmission beam is set according to the congestion status of each transmission beam. That is, an offset value for correcting the reception power is set so that the selection is suppressed in the user terminal 1 for the transmission beam in congestion, and the initial offset stored in the storage unit 14 for the transmission beam not in congestion. Use the value as it is.
  • the message control unit 34 generates a message of broadcast information including the offset information acquired by the offset information acquisition unit 33 at the time of the new connection of the user terminal 1, and transmits the message of the broadcast information to all the user terminals Broadcast to
  • the message of the broadcast information is a message transmitted to the non-communicating user terminal 1, and the same content is transmitted to all the user terminals 1.
  • the message control unit 34 when the user terminal 1 is connected to the base station 2, the message control unit 34 generates a message of measurement related information including offset information, and transmits the message of the measurement related information to the user terminal 1 .
  • the message of the measurement related information is a message transmitted to the user terminal 1 in communication, and individual contents are transmitted to the individual user terminals 1.
  • FIG. 3 shows a schematic configuration of the base station 2 for cellular communication
  • the base station 3 for the wireless LAN is substantially the same.
  • FIG. 4 is a block diagram showing a schematic configuration of the user terminal 1.
  • the user terminal 1 includes a wireless communication unit 41, a control unit 42, and a storage unit 43.
  • the wireless communication unit 41 performs wireless communication with the base station 2 for cellular communication and the base station 3 for wireless LAN, and transmits / receives data to / from an opposite station (server or the like) on the Internet.
  • the storage unit 43 stores information related to the own apparatus, information related to the base stations 2 and 3, a program executed by a processor configuring the control unit 42, and the like.
  • the storage unit 43 also stores offset information included in the message received from the base station 2.
  • the control unit 42 includes a connection destination control unit 51, an offset processing unit 52, a beam selection unit 53, a message control unit 54, and a beam reception control unit 55.
  • the control unit 42 is configured by a processor, and each unit of the control unit 42 is realized by causing the processor to execute a program stored in the storage unit 43.
  • connection destination control unit 51 performs a cell search for searching for connectable cells. Further, the connection destination control unit 51 performs an appropriate cell determination to determine whether the cell selected by the beam selection unit 53 satisfies the reference as an appropriate cell that can be camped by the user terminal 1. Further, the connection destination control unit 51 performs a camp-on process of shifting to a camp state of monitoring system information and the like of a cell determined to be an appropriate cell.
  • the offset processing unit 52 acquires offset information included in the message received from the base station 2, acquires an offset value of each transmission beam based on the offset information, and transmits each transmission based on the offset value.
  • the measured values of the received power of the beam are corrected to obtain a corrected measured value of the received power.
  • the offset processing unit 52 subtracts or adds an offset value to the measurement value of the reception power when correcting the measurement value of the reception power of the transmission beam.
  • the offset value is added to the measured value of the received power to correct the received power to be larger than the actual, the evaluation of the transmitted beam becomes high, and the use of the transmitted beam in the user terminal 1 is promoted. can do.
  • the beam selection unit 53 selects an appropriate transmission beam based on the correction value of the reception power acquired by the offset processing unit 52 when the user terminal 1 is newly connected.
  • the base station 2 selects an optimal transmission beam.
  • the message control unit 54 When the user terminal 1 is connected to the base station 2, the message control unit 54 does not need to report the measured value of the received power based on the corrected measured value of the received power acquired by the offset processing unit 52. (Reporting event determination), and if reporting is necessary, generate a beam measurement report message including the corrected reception power measurement value, and transmit the beam measurement report message to the base station 2.
  • the beam reception control unit 55 controls reception of the transmission beam such that communication is started with the transmission beam selected by the beam selection unit 53 when the user terminal 1 is newly connected. Further, when the user terminal 1 is connected to the base station 2 and receives the message of beam instruction transmitted from the base station 2, the transmission beam to be received is switched to the transmission beam instructed by the message.
  • FIG. 5 is an explanatory view showing offset information added to a message of broadcast information.
  • FIG. 6 is an explanatory view showing offset information added to a message of measurement related information.
  • the offset information (correction information) representing the offset value of each transmission beam is a message of broadcast information (a message for transmitting the same content to all the user terminals 1 located) and a message of measurement related information (connection The message is transmitted to the user terminal 1 in addition to the message for transmitting individual contents individually to the user terminal 1 in the inside.
  • the number of transmission beams formed by the base station 2 is as large as 100 to 200, for example, if the offset value for each transmission beam is defined individually by the offset information, the amount of communication increases. Therefore, as shown below, the content of the offset information added to the message is set. In the example of the message of the broadcast information shown in FIG. 5, the number of transmission beams is 10 for the sake of illustration.
  • a plurality of transmission beams arranged in the order of beam ID are equally grouped, that is, transmission beams are grouped by a predetermined number
  • the offset amount is defined on a beam group basis.
  • the offset information added to the message stores the number of beams per beam group and the offset value for each beam group ID.
  • the user terminal 1 can specify the beam group to which each transmission beam belongs based on the number of beams per beam group. Then, the offset value of each transmission beam can be specified based on the offset value for each beam group ID.
  • the second method as shown in FIG. 5 (B-1), among a plurality of transmission beams arranged in the order of beam IDs, continuous transmission beams having the same offset value are combined with one beam group. Do. Then, as shown in FIG. 5 (B-2), in the offset information added to the message, the beam ID (identifier) of the first transmission beam (head beam) of one beam group and the beam group are configured The number of beams (the number of continuous beams) and the offset value of the beam group are stored.
  • the beam ID and the offset value acquired for the user terminal 1 as the transmission destination of the message are stored.
  • FIG. 7 is an explanatory view showing the offset information stored in the user terminal 1.
  • the offset information included in the message is stored in the storage unit 43.
  • the cell in which it is located changes, so that offset information can be acquired from the base station 2 of each cell, and the storage unit 43 stores each cell existing on the path that has moved in the past. Offset information of the base station 2 is stored. Also, when a new offset value is notified, the offset information of the storage unit 43 is updated, and the latest offset information is accumulated in the storage unit 43.
  • the user terminal 1 can not receive the message of measurement related information, and thus can not acquire offset information from the base station 2. In this case, the user terminal 1 acquires the offset information of the located cell from the offset information for each cell accumulated in the storage unit 43, and corrects the received power using the offset information.
  • information on the holding period of the offset information is transmitted from the base station 2 to the user terminal 1.
  • the user terminal 1 erases the offset information stored in the storage unit 43 when the retention period has elapsed.
  • FIG. 7 shows an example in which offset information according to the first method shown in FIG. 5A is used, the same applies to offset information according to the second method shown in FIG. 5B.
  • FIG. 8 is a flowchart showing the procedure of processing performed when the user terminal 1 is newly connected in the base station 2.
  • the offset information acquisition unit 33 first acquires the initial offset value of each transmission beam from the storage unit 14 (ST101). Next, congestion determination unit 31 performs congestion determination regarding the congestion status of each transmission beam (ST 102). Then, when there is a crowded transmission beam (Yes in ST103), the offset information acquisition unit 33 uses the offset value for the crowded transmission beam as the congestion offset value, that is, the user terminal 1 transmits the beam It updates to the offset value which correct
  • the message control unit 34 generates a message of broadcast information including the updated offset value for the congested transmission beam and the initial offset value for the non-congested transmission beam (ST105). And the message of the alerting
  • the message control unit 34 does not update the offset value (ST104), and the message control unit 34 sends a message of broadcast information including the initial offset value of each transmission beam. Are generated (ST105), and the message of the broadcast information is simultaneously transmitted to the located user terminal 1 (ST106).
  • the congestion determination (ST102), first, the number of communicating terminals of each transmission beam, that is, the number of user terminals 1 in communication using each transmission beam is acquired (ST201 ). Then, it is determined whether or not the number of communicating terminals of the target transmission beam is equal to or greater than a predetermined threshold (ST202). Here, if the number of terminals in communication is equal to or more than the threshold (Yes in ST 202), the target transmission beam is set to “in congestion” (ST 203). The processes of ST202 and ST203 are sequentially repeated for all transmission beams until all transmission beams are completed (Yes in ST204).
  • FIG. 9 is a flowchart showing the procedure of processing performed at the time of new connection in the user terminal 1.
  • the connection destination control unit 51 performs a cell search for searching for connectable cells (ST301). Then, when a connectable cell is found (Yes in ST 302), next, the wireless communication unit 41 receives a message of broadcast information transmitted from the base station 2 of the detected cell (ST 303).
  • the reception power of each transmission beam is measured (ST304).
  • beam selection unit 53 performs beam selection for selecting an appropriate transmission beam (ST 305).
  • an appropriate cell determination is performed to determine whether the selected cell satisfies the criteria as an appropriate cell that can be camped by the user terminal 1 (ST306).
  • the selected cell satisfies the criteria as an appropriate cell (Yes in ST 307), it is determined that the selected cell is an appropriate cell and camped on that cell, that is, the system information of that cell It shifts to the camp state which monitors etc. (ST308).
  • the offset processing unit 52 first determines the beam group to which each transmission beam belongs based on the offset information (see FIG. 5) included in the message of the broadcast information. An ID is acquired (ST401). Next, based on the offset value of each beam group ID, the offset value of each transmission beam is acquired (ST402).
  • the measurement value of the reception power of each transmission beam is corrected (ST 403). That is, the corresponding offset value is subtracted or added to the measurement value of the reception power of each transmission beam.
  • the beam selection unit 53 selects a transmission beam that maximizes the measured value of the reception power corrected (ST 404).
  • FIG. 10 is a flowchart showing a procedure of processing performed when the user terminal 1 is connected in the base station 2.
  • the offset information acquisition unit 33 first acquires the initial offset value of each transmission beam from the storage unit 14 (ST501). Next, the congestion determination unit 31 performs congestion determination regarding the congestion status of each transmission beam (ST 502).
  • the offset value of the transmission beam in congestion is the offset value for congestion, ie, the user terminal It updates to the offset value which correct
  • message control section 34 generates a message of measurement related information including the updated offset value for the congested transmission beam and the initial offset value for the non-congested transmission beam (ST 506). Then, the message of the measurement related information is transmitted from the wireless communication unit 11 to the selected user terminal 1 (ST 507).
  • the offset value which suppresses utilization of the said transmission beam in the user terminal 1 was set with respect to the transmission beam in congestion here, with respect to another transmission beam which is not congestion, a user terminal An offset value may be set to promote the use of the transmission beam in 1.
  • the congestion determination (ST 502), first, the number of communicating terminals of each transmission beam, ie, the number of user terminals 1 in communication using each transmission beam is acquired (ST 601) ). Then, it is determined whether or not the number of communicating terminals of the target transmission beam is equal to or more than a predetermined threshold Th (ST 602). Here, if the number of in-communication terminals is equal to or more than the threshold (Yes in ST 602), the target transmission beam is set to “in congestion” (ST 603). The processes of ST602 and ST603 are sequentially repeated for all transmission beams until all transmission beams are completed (Yes in ST604).
  • a plurality of user terminals 1 in communication are extracted using the transmission beam in congestion (ST 701).
  • the user terminal 1 which can use the transmission beam which is not crowded among the extracted plurality of user terminals 1 is extracted (ST702).
  • the user terminal 1 is not narrowed down (No in ST 703), then, among the plurality of extracted user terminals 1, the user terminal 1 having the lowest radio quality with the transmission beam currently in communication is selected. It chooses (ST704). This improves the frequency utilization efficiency.
  • the process of narrowing down the terminals in ST703 to ST704 to one may be omitted.
  • FIG. 11 is a flowchart showing the procedure of processing performed when the user terminal 1 is connected to the base station 2.
  • the wireless communication unit 41 receives a message of measurement related information transmitted from the base station 2 (Yes in ST801), the reception power of each transmission beam is measured (ST802).
  • the offset processing unit 52 acquires a beam group ID to which each transmission beam belongs, based on the offset information included in the message of the measurement related information (ST 803).
  • the offset value of each transmission beam is acquired from the offset information (see FIG. 7) of the storage unit 43 (ST 804).
  • the measurement value of the reception power of each transmission beam is corrected (ST 805). That is, the corresponding offset value is subtracted or added to the measurement value of the reception power of each transmission beam.
  • the message control unit 54 determines a report event regarding the necessity of the report of the reception power (ST806).
  • the radio communication unit 41 transmits a message of a beam measurement report including the corrected measurement value of received power to the base station 2 (ST 807).
  • the beam reception control unit 55 switches to the transmission beam instructed by the beam instruction message (ST 809).
  • FIG. 8 and FIG. 10 show the processing procedure of the base station 2 for cellular communication
  • the base station 3 of the wireless LAN is substantially the same.
  • the example in which the connection destination of the user terminal 1 is the base station 2 for cellular communication has been described in FIGS. 9 and 11, the case where the connection destination of the user terminal 1 is the base station 3 for wireless LAN It is substantially the same.
  • connection destination of the user terminal 1 is the base station 2 for cellular communication
  • the state of communication failure also changes according to the time zone. Further, since the traffic volume of the person carrying the user terminal 1 changes in accordance with the time zone, the use status of the transmission beam also changes in accordance with the time zone.
  • the offset information acquisition unit 33 determines whether the current time zone is a time zone in which the communication environment such as the traffic volume of a vehicle or the traffic volume of a person deteriorates or the communication environment is good. And set an offset value according to the determination result.
  • the storage unit 14 stores in advance the offset value for midnight of each transmission beam and the standard offset value of each transmission beam, and the current midnight is a time zone (for example, 0 to 5) It is determined whether or not it is time), and the late-night offset value or standard offset value stored in the storage unit 14 is acquired according to the determination result.
  • FIG. 12 is a flowchart showing the procedure of processing performed when the user terminal 1 is newly connected in the base station 2.
  • the offset information acquisition unit 33 determines whether the present time zone is the late night time zone (ST111). Here, if the current time zone is a late-night time zone (Yes in ST111), the late-night offset value of each transmission beam is acquired from the storage unit 14 (ST112). Next, the message control unit 34 generates broadcast information including an offset value for midnight of each transmission beam (ST105), and simultaneously transmits the message of the broadcast information to the user terminal 1 in the area (ST106).
  • the offset information acquisition unit 33 acquires the standard offset value of each transmission beam from the storage unit 14 (ST113).
  • the message control unit 34 generates broadcast information including the standard offset value of each transmission beam (ST105), and simultaneously transmits the message of the broadcast information to the user terminal 1 in the area (ST106).
  • FIG. 13 is an explanatory view showing the state of transmission beams of the user terminal 1 and the base station 2.
  • the transmission beam is used to communicate with the base station 2 at a user terminal 1 carried by a person riding a vehicle or at a user terminal 1 mounted on a vehicle be able to.
  • the vehicle 5 is traveling with a green light at the traffic light 5 (left and right direction in FIG. 13)
  • the user terminal 1 moves at high speed, so communication failure easily occurs.
  • the traffic light 5 is a red light and the vehicle is stopped (vertical direction in FIG. 13)
  • communication failure hardly occurs and stable communication can be performed.
  • the offset information acquisition unit 33 sets an offset value in accordance with the operation state of the traffic light 5.
  • the base station 2 acquires control information of the traffic light 5 from the signal control device 6, and based on the control information, the travel is prohibited by the lane permitted to travel by the green light and by the red light.
  • the specified lanes are identified, and the offset value for the transmission beam for each lane is set according to the progress permission status of each lane.
  • the transmission beams B1 and B2 for the lanes permitted to travel by the green signal have offset values set to promote the use of the transmission beam in the user terminal 1, and the travel is prohibited by the red signal.
  • the transmit beams B3 and B4 for the lane set offset values so that the use of the transmit beams in the user terminal 1 is suppressed.
  • the use of the transmission beam for the lane permitted to travel by the green light is suppressed, so that the communication failure occurs because the moving speed is high. Can be avoided in advance.
  • the use of the transmission beam for the lane prohibited to proceed by the red light is promoted, so the user terminal 1 communicates with the base station 2 It can be performed.
  • FIG. 14 is a flowchart showing the procedure of processing performed when the user terminal 1 is newly connected in the base station 2.
  • the offset information acquisition unit 33 acquires the initial offset value of each transmission beam from the storage unit 14 (ST101).
  • the control information of the traffic light 5 is acquired from the signal control device 6, and based on the control information, the signal state determination is performed to determine which lane the vehicle is allowed to travel at the intersection (ST121). .
  • the user terminal 1 is updated to an offset value that suppresses the use of the transmission beam (ST123).
  • the offset value promoting the use of the transmission beam in the user terminal 1 is updated (ST124).
  • the message control unit 34 generates a message of broadcast information including the updated offset value of each transmission beam (ST105). And the message of the alerting
  • FIG. 15 is an explanatory view showing the state of transmission beams of the user terminal 1 and the base station 2.
  • a person holds the user terminal 1 and moves from the left to the right.
  • the user terminal 1 when the user terminal 1 is in a state where the transmission beam of the base station 2 (the base station on the left side of FIG. 15) located behind the person carrying the user terminal 1, ie, behind the moving direction, is used.
  • the body of the person carrying the terminal 1 becomes a shielding object, and a communication failure occurs.
  • the base station 2 stores the history of the transmission beam used by the user terminal 1 in the storage unit 14 as usage beam history information for each user terminal 1, and based on the usage beam history information, the user The offset value is set so that the terminal 1 switches transmission beams.
  • FIG. 16 is an explanatory view of use beam history information.
  • FIG. 17 is a flowchart showing the procedure of processing performed when the user terminal 1 is connected in the base station 2.
  • the offset information acquisition unit 33 acquires the initial offset value of each transmission beam from the storage unit 14 (ST501).
  • utilization beam history information on the target user terminal 1 is acquired from the storage unit 14 (ST 511).
  • a cell ID and a beam ID used are stored as a history of transmission beams used by the user terminal 1 for each user terminal 1.
  • FIG. 16 it can be seen that when the base station (cell ID) switches from 1 to 2, the beam ID changes from 7 to 10.
  • this user terminal 1 determines from the utilization beam history information of the target user terminal 1 whether this user terminal 1 uses a beam serving as a boundary between base stations (ST 512).
  • the beam serving as the boundary between base stations in this case, beam ID 7
  • the user terminal 1 receives 10 of the beam ID of the base station 2 next to it.
  • the offset value of 10 of the beam ID of the transmission beam of the base station 2 next to the base station 2 is updated so that utilization is promoted (ST513).
  • the message control unit 34 generates a message (see FIG. 6) of measurement related information including the updated offset value (ST 506). Then, the message of the measurement related information is transmitted from the wireless communication unit 11 to the target user terminal 1 (ST 507).
  • the transmission beam of the adjacent base station 2 is instructed by the message of the beam instruction from the base station 2 to switch to the transmission beam (10 of beam ID) of the adjacent base station 2.
  • the offset value of the transmission beam is calculated based on the offset information of the offset information database stored in the storage unit 14. Update (ST 514).
  • the measurement value of the received power is corrected so that the evaluation of the transmission beam of the adjacent base station 2 located on the front side of the moving direction becomes high, but the position on the rear side of the moving direction It is also possible to correct the measured value of the received power so that the evaluation of the transmit beam of the currently connected base station 2 becomes lower, thereby facilitating the switch to the transmit beam of the adjacent base station 2 Ru.
  • the offset information on the transmission beam of the adjacent base station 2 is transmitted from the currently connected base station 2 to the user terminal 1.
  • the adjacent information is transmitted
  • the use of the transmission beam of the base station 2 may be promoted. That is, an instruction to offset the transmission beam of the adjacent base station 2 is transmitted from the currently connected base station 2 to the adjacent base station 2, and the adjacent base station 2 transmits to the user terminal 1 its own device. Transmit offset information on the transmit beam.
  • FIG. 18 is an explanatory view showing a state of transmission beams of the user terminal 1 and the base station 2.
  • the user terminal 1 mounted on the flying object 7 such as a drone communicates using a transmission beam formed in the upper air direction from the base station 2.
  • a transmission beam intended for a mobile object on the ground is reflected by the road surface of a road or the wall surface of a building and travels to the sky.
  • the user terminal 1 of the flying object 7 finds a transmission beam going upward by reflection and performs communication using the transmission beam, but there is a possibility that communication failure occurs due to interference in the transmission beam. Is high.
  • an offset value about a measured value of reception power is set up so that use of a transmitting beam which goes to the sky by reflection is controlled.
  • the embodiment has been described as an example of the technology disclosed in the present application.
  • the technology in the present disclosure is not limited to this, and can be applied to embodiments in which changes, replacements, additions, omissions, and the like have been made.
  • the base station for cellular communication or the base station for wireless LAN controls the wireless communication of the user terminal using the transmission beam formed by the own apparatus, and another base station, that is, Although the radio communication of the user terminal using the transmission beam formed by the adjacent base station is controlled, the base station of the macro cell adopting the communication method such as Long Term Evolution (LTE) has a control plane (C- Base station of a small cell serving as a base station of the user plane (U-Plane) as a base station of Plane), that is, wireless communication of a user terminal using a transmission beam formed by the base station of cellular communication in this embodiment May be controlled.
  • LTE Long Term Evolution
  • the measurement value of received power such as RSRP (Reference Signal Received Power) is corrected as an evaluation index for evaluating the reception status of the transmission beam.
  • RSRP Reference Signal Received Power
  • other measured values regarding the received intensity may be corrected as an evaluation index.
  • RSRQ Reference Signal Received Quality
  • the measurement value regarding the reception strength and the measurement value regarding the reception quality may be evaluated in combination, and these measurement values may be corrected.
  • the offset value when correcting the measurement value of the transmission beam, the offset value is subtracted or added to the measurement value, but the correction method of the measurement value of the transmission beam is such subtraction
  • the measurement value may be corrected to be smaller than the actual value, or the measured value may be corrected to be larger than the actual value.
  • the offset value may be multiplied or divided by the measured value. Good.
  • a base station apparatus, a terminal apparatus, a communication system, and a communication control method according to the present invention have an effect of being able to improve service satisfaction of a user by avoiding communication failure and lowering of throughput in advance
  • the present invention is useful as a base station apparatus, a terminal apparatus, a communication system, a communication control method, and the like which control wireless communication of a terminal apparatus using any of a plurality of transmission beams formed by the apparatus.
  • Terminal device 2
  • Base station for cellular communication base station equipment
  • Base station of wireless LAN base station device
  • DESCRIPTION OF SYMBOLS Signal control apparatus
  • Flying object 11
  • Control part 14 Storage part 41

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

【課題】通信不良やスループットの低下を事前に回避して、ユーザのサービス満足度を向上させることができるようにする。 【解決手段】基地局により形成される複数の送信ビームのいずれかを利用した端末装置の無線通信を制御する基地局2が、ユーザ端末1と無線通信を行う無線通信部11と、ユーザ端末において特定の送信ビームの利用を抑制または促進するように、当該送信ビームの受信状況を評価する測定値を補正する補正情報を取得して、その補正情報を無線通信部からユーザ端末に送信する制御部13と、を備えるものとする。

Description

基地局装置、端末装置、通信システムおよび通信制御方法
 本発明は、基地局装置により形成される複数の送信ビームのいずれかを利用した端末装置の無線通信を制御する基地局装置、端末装置、通信システムおよび通信制御方法に関するものである。
 現在検討が進められている5G(第5世代移動体通信システム)では、高SHF帯やEHF帯が利用されるようになっており、このような高周波数帯を利用することで、非常に広い通信帯域を確保できることから、1Gbpsを超える大容量通信が可能となる。一方、このような高周波数帯を利用した無線通信は、電波到達距離が短いため、送信ビームフォーミング技術を利用して、電波到達距離を伸ばす検討が行われている。
 送信ビームフォーミング技術を利用する場合、ユーザ端末では、適切な送信ビームを逐次選択して通信を行うことになる。このようなビーム選択に関する技術として、従来、各送信ビームの受信電力に基づいて、適切な送信ビームを選択する技術が知られている(特許文献1参照)。また、この技術では、送信ビームを太くした場合に、受信電力が下がることから、送信ビームの受信電力にオフセットを加えることで、送信ビームの太さに影響されずに、送信ビームの評価を公平に行うようにしている。
特開2015-185953号公報
 さて、5Gで採用される高周波数帯を利用した通信方式では、大容量通信が可能となる反面、電波の直進性が高いため、通信経路上に遮蔽物が存在すると無線品質が劣化することで、通信の切断などの通信不良が発生する。また、多数のユーザ端末が同一の送信ビームを利用する場合、ユーザ端末のスループットが低下する。このような通信不良が発生したり、ユーザ端末のスループットが低下したりすると、通信中のユーザのサービス満足度が低下する可能性がある。このため、遮蔽などによる通信不良や混雑によるスループットの低下を事前に回避することができる技術が望まれる。
 しかしながら、前記従来の技術のように、各送信ビームの受信電力に基づいて、適切な送信ビームを選択するだけでは、遮蔽などによる通信不良や混雑によるスループットの低下を事前に回避することができないという問題があった。
 そこで、本発明は、通信不良やスループットの低下を事前に回避して、ユーザのサービス満足度を向上させることができる基地局装置、端末装置、通信システムおよび通信制御方法を提供することを主な目的とする。
 本発明の基地局装置は、自装置または他の基地局装置により形成される複数の送信ビームのいずれかを利用した端末装置の無線通信を制御する基地局装置であって、前記端末装置と無線通信を行う無線通信部と、前記端末装置において特定の送信ビームの利用を抑制または促進するように、当該送信ビームの受信状況を評価する測定値を補正する補正情報を取得して、その補正情報を前記無線通信部から前記端末装置に送信する制御部と、を備える構成とする。
 また、本発明の端末装置は、基地局装置により形成される複数の送信ビームのいずれかを利用して、前記基地局装置と無線通信を行う端末装置であって、前記基地局装置と無線通信を行う無線通信部と、前記基地局装置から送信される補正情報を前記無線通信部で受信すると、前記補正情報に基づいて、送信ビームの受信状況を評価する測定値を補正して、その補正された測定値に基づいて選択された前記送信ビームを利用して前記基地局装置と無線通信を行う制御部と、を備える構成とする。
 また、本発明の通信システムは、基地局装置により形成される複数の送信ビームのいずれかを利用して、端末装置が前記基地局装置と無線通信を行う通信システムであって、前記基地局装置は、前記端末装置と無線通信を行う無線通信部と、前記端末装置において特定の送信ビームの利用を抑制または促進するように、当該送信ビームの受信状況を評価する測定値を補正する補正情報を取得して、その補正情報を前記無線通信部から前記端末装置に送信する制御部と、を備え、前記端末装置は、前記基地局装置と無線通信を行う無線通信部と、前記基地局装置から送信される前記補正情報を前記無線通信部で受信すると、前記補正情報に基づいて、前記送信ビームの受信状況を評価する測定値を補正して、その補正された測定値に基づいて選択された前記送信ビームを利用して前記基地局装置と無線通信を行う制御部と、を備える構成とする。
 また、本発明の通信制御方法は、基地局装置により形成される複数の送信ビームのいずれかを利用した端末装置の無線通信を制御する通信制御方法であって、前記基地局装置は、前記端末装置において特定の送信ビームの利用を抑制または促進するように、当該送信ビームの受信状況を評価する測定値を補正する補正情報を取得して、その補正情報を前記端末装置に送信し、前記端末装置は、前記基地局装置から送信される前記補正情報を受信すると、前記補正情報に基づいて、前記送信ビームの受信状況を評価する測定値を補正して、その補正された測定値に基づいて選択された前記送信ビームを利用して前記基地局装置と無線通信を行う構成とする。
 本発明によれば、端末装置において特定の送信ビームの利用を抑制または促進することができる。これにより、通信不良やスループットの低下を事前に回避して、ユーザのサービス満足度を向上させることができる。
第1実施形態に係る通信システムの全体構成図 第1実施形態に係るユーザ端末1および基地局2の送信ビームの状況を示す説明図 第1実施形態に係る基地局2の概略構成を示すブロック図 第1実施形態に係るユーザ端末1の概略構成を示すブロック図 第1実施形態に係る報知情報のメッセージに付加されるオフセット情報を示す説明図 第1実施形態に係る測定関連情報のメッセージに付加されるオフセット情報を示す説明図 第1実施形態に係るユーザ端末1に記憶されるオフセット情報を示す説明図 第1実施形態に係る基地局2においてユーザ端末1の新規接続時に行われる処理の手順を示すフロー図 第1実施形態に係るユーザ端末1において新規接続時に行われる処理の手順を示すフロー図 第1実施形態に係る基地局2においてユーザ端末1が接続中である場合に行われる処理の手順を示すフロー図 第1実施形態に係るユーザ端末1において基地局2に接続中である場合に行われる処理の手順を示すフロー図 第2実施形態に係る基地局2においてユーザ端末1の新規接続時に行われる処理の手順を示すフロー図 第3実施形態に係るユーザ端末1および基地局2の送信ビームの状況を示す説明図 第3実施形態に係る基地局2においてユーザ端末1の新規接続時に行われる処理の手順を示すフロー図 第4実施形態に係るユーザ端末1および基地局2の送信ビームの状況を示す説明図 第4実施形態に係る利用ビーム履歴情報を示す説明図 第4実施形態に係る基地局2においてユーザ端末1が接続中である場合に行われる処理の手順を示すフロー図 第5実施形態に係るユーザ端末1および基地局2の送信ビームの状況を示す説明図
 前記課題を解決するためになされた第1の発明は、自装置または他の基地局装置により形成される複数の送信ビームのいずれかを利用した端末装置の無線通信を制御する基地局装置であって、前記端末装置と無線通信を行う無線通信部と、前記端末装置において特定の送信ビームの利用を抑制または促進するように、当該送信ビームの受信状況を評価する測定値を補正する補正情報を取得して、その補正情報を前記無線通信部から前記端末装置に送信する制御部と、を備える構成とする。
 これによると、端末装置において特定の送信ビームの利用を抑制または促進することができる。これにより、通信不良やスループットの低下を事前に回避して、ユーザのサービス満足度を向上させることができる。
 また、第2の発明は、前記制御部は、前記送信ビームの受信状況を評価する測定値としての受信電力の測定値を増減するオフセット値を含む前記補正情報を取得する構成とする。
 これによると、受信電力の測定値からオフセット値を減算して、受信電力が実際より小さくなるように補正することで、当該送信ビームの評価が低くなり、端末装置での当該送信ビームの利用を抑制することができる。また、受信電力の測定値にオフセット値を加算して、受信電力が実際より大きくなるように補正することで、当該送信ビームの評価が高くなり、端末装置での当該送信ビームの利用を促進することができる。
 また、第3の発明は、前記制御部は、自装置に接続していない前記端末装置を含め在圏する全ての前記端末装置に、前記補正情報を一斉送信する構成とする。
 これによると、自装置のセルに在圏する未接続の端末装置において送信ビームの利用を抑制または促進することができる。これにより、特定の送信ビームを利用して新規に接続する端末装置を制限したり、新規に接続する端末装置を特定の送信ビームを利用するように誘導したりすることができる。
 また、第4の発明は、前記制御部は、特定の送信ビームを利用して通信中の複数の前記端末装置の中から、所定の条件にしたがって前記端末装置を選択して、選択した前記端末装置に、前記補正情報を送信する構成とする。
 これによると、特定の端末装置において特定の送信ビームの利用を抑制または促進することができる。これにより、特定の送信ビームを利用する端末装置を別の送信ビームを利用するように誘導することができ、特定の送信ビームの負荷分散や通信効率化を図ることができる。
 また、第5の発明は、前記制御部は、所定の順番で並べられた複数の送信ビームを均等にグループ分けした際の1つのビームグループを構成するビーム数と、前記ビームグループごとの前記測定値に対するオフセット値とを含む前記補正情報を取得する構成とする。
 これによると、補正情報のデータ量を削減することができる。
 また、第6の発明は、前記制御部は、所定の順番で並べられた複数の送信ビームのうち、前記測定値に対する同一のオフセット値となるビーム群の最初の送信ビームの識別子と、当該ビーム群を構成するビーム数と、当該ビーム群のオフセット値とを含む前記補正情報を取得する構成とする。
 これによると、オフセット値を設定する自由度を確保しつつ、補正情報のデータ量を削減することができる。
 また、第7の発明は、前記制御部は、各送信ビームの現在の混雑状況を判定して、混雑中の送信ビームの利用を抑制するように前記測定値を補正する前記補正情報を取得する構成とする。
 これによると、端末装置において混雑中の送信ビームの利用を抑制することができるため、スループットの低下を事前に回避することができる。なお、端末装置が基地局装置に接続中でない場合には、混雑中でない別の送信ビームを利用して通信が開始されるように制御することができ、また、基地局装置に接続中の端末装置が混雑中の送信ビームを利用している場合には、混雑中でない別の送信ビームに切り替えるように制御することができる。
 また、第8の発明は、さらに、通信環境が常時悪い送信ビームの利用を抑制するように前記測定値を補正する補正情報を記憶する記憶部を備え、前記制御部は、前記記憶部に記憶された前記補正情報を取得する構成とする。
 これによると、端末装置において、通信環境が常時悪い送信ビームの利用が抑制されるため、通信不良やスループットの低下を事前に回避することができる。
 また、第9の発明は、前記制御部は、現在の時間帯において通信環境が悪化する送信ビームの利用を抑制するように前記測定値を補正する前記補正情報を取得する構成とする。
 これによると、端末装置において、現在の時間帯において通信環境が悪化する送信ビームの利用が抑制されるため、通信不良やスループットの低下を事前に回避することができる。
 また、第10の発明は、前記制御部は、信号機の制御情報に基づいて、青信号により進行が許可された車線を対象にした送信ビームの利用を抑制するように前記測定値を補正する前記補正情報を取得する構成とする。
 これによると、青信号で走行中の車両に搭載された端末装置において、青信号により進行が許可された車線を対象にした送信ビームの利用が抑制されるため、通信不良を事前に回避することができる。
 また、第11の発明は、前記制御部は、反射により上空に向かう送信ビームの利用を抑制するように前記測定値を補正する前記補正情報を取得する構成とする。
 これによると、上空の飛翔体に搭載された端末装置において、反射により上空に向かう送信ビームの利用が抑制されるため、通信不良を事前に回避することができる。
 また、第12の発明は、前記制御部は、自装置が、自装置に接続中の前記端末装置の移動方向の後側に位置する場合には、前記端末装置の移動方向の前側に位置する隣の基地局装置により形成される送信ビームの利用を促進し、または、自装置により形成される送信ビームの利用を抑制するように前記測定値を補正する前記補正情報を取得する構成とする。
 これによると、現在通信中の基地局の送信ビームで通信不良が発生する前に、隣の基地局の送信ビームに切り替えることができる。
 また、第13の発明は、さらに、前記端末装置で過去に利用した送信ビームに関する情報を利用ビーム履歴情報として蓄積する記憶部を備え、前記制御部は、前記利用ビーム履歴情報に基づいて、自装置に接続中の前記端末装置が前記隣の基地局装置との境界付近の送信ビームを利用していると判定した場合には、前記隣の基地局装置により形成される送信ビームの利用を促進し、または、自装置により形成される送信ビームの利用を抑制するように前記測定値を補正する前記補正情報を取得する構成とする。
 これによると、端末装置の移動方向を取得することなく、現在通信中の基地局の送信ビームで通信不良が発生する前に、隣の基地局の送信ビームに切り替えることができる。
 また、第14の発明は、基地局装置により形成される複数の送信ビームのいずれかを利用して、前記基地局装置と無線通信を行う端末装置であって、前記基地局装置と無線通信を行う無線通信部と、前記基地局装置から送信される補正情報を前記無線通信部で受信すると、前記補正情報に基づいて、送信ビームの受信状況を評価する測定値を補正して、その補正された測定値に基づいて選択された前記送信ビームを利用して前記基地局装置と無線通信を行う制御部と、を備える構成とする。
 これによると、第1の発明と同様に、通信不良やスループットの低下を事前に回避して、ユーザのサービス満足度を向上させることができる。
 また、第15の発明は、さらに、前記基地局装置から受信した前記補正情報を記憶する記憶部を備え、前記制御部は、通信中の送信ビームを見失うと、前記記憶部に記憶された前記補正情報に基づいて前記測定値を補正する構成とする。
 これによると、通信中の送信ビームを見失った場合、基地局装置から補正情報を取得できなくなるが、記憶部に記憶された補正情報を用いることで、測定値の補正を行うことができる。なお、新たに補正情報が基地局装置から通知された場合には、記憶部の補正情報を更新すればよい。
 また、第16の発明は、前記制御部は、所定の保持期間が経過すると、前記記憶部に記憶された前記補正情報を消去する構成とする。
 これによると、無用な補正情報で記憶部の容量が浪費されることを避けることができる。なお、保持期間は、基地局から通知されるようにするとよい。
 また、第17の発明は、基地局装置により形成される複数の送信ビームのいずれかを利用して、端末装置が前記基地局装置と無線通信を行う通信システムであって、前記基地局装置は、前記端末装置と無線通信を行う無線通信部と、前記端末装置において特定の送信ビームの利用を抑制または促進するように、当該送信ビームの受信状況を評価する測定値を補正する補正情報を取得して、その補正情報を前記無線通信部から前記端末装置に送信する制御部と、を備え、前記端末装置は、前記基地局装置と無線通信を行う無線通信部と、前記基地局装置から送信される前記補正情報を前記無線通信部で受信すると、前記補正情報に基づいて、前記送信ビームの受信状況を評価する測定値を補正して、その補正された測定値に基づいて選択された前記送信ビームを利用して前記基地局装置と無線通信を行う制御部と、を備える構成とする。
 これによると、第1の発明と同様に、通信不良やスループットの低下を事前に回避して、ユーザのサービス満足度を向上させることができる。
 また、第18の発明は、基地局装置により形成される複数の送信ビームのいずれかを利用した端末装置の無線通信を制御する通信制御方法であって、前記基地局装置は、前記端末装置において特定の送信ビームの利用を抑制または促進するように、当該送信ビームの受信状況を評価する測定値を補正する補正情報を取得して、その補正情報を前記端末装置に送信し、前記端末装置は、前記基地局装置から送信される前記補正情報を受信すると、前記補正情報に基づいて、前記送信ビームの受信状況を評価する測定値を補正して、その補正された測定値に基づいて選択された前記送信ビームを利用して前記基地局装置と無線通信を行う構成とする。
 これによると、第1の発明と同様に、通信不良やスループットの低下を事前に回避して、ユーザのサービス満足度を向上させることができる。
 以下、本発明の実施の形態を、図面を参照しながら説明する。
(第1実施形態)
 図1は、第1実施形態に係る通信システムの全体構成図である。
 この通信システムは、ユーザ端末1(端末装置)と、セルラー通信の基地局2(基地局装置)と、無線LANの基地局3(アクセスポイント、基地局装置)と、通信制御装置4と、を備えている。
 ユーザ端末1は、スマートフォンやタブレット端末などである。このユーザ端末1は、セルラー通信の基地局2に接続することができ、このセルラー通信の基地局2と通信制御装置4を介して、インターネット上の対向局(サーバなど)と通信を行う。また、ユーザ端末1は、無線LANの基地局3に接続することができ、この無線LANの基地局3を介して、インターネット上の対向局(サーバなど)と通信を行う。
 セルラー通信の基地局2は、5Gで採用される高SHF帯またはEHF帯(ミリ波帯)を利用した無線通信を行うものである。このセルラー通信の基地局2では、送信ビームフォーミングが行われ、複数の送信ビームが形成され、いずれかの送信ビームを利用してユーザ端末1にデータを送信する。
 また、無線LANの基地局3は、WiGig(登録商標)等、高SHF帯以上の周波数を利用した無線通信を行うものである。この無線LANの基地局3では、セルラー通信の基地局2と同様に、送信ビームフォーミングが行われ、複数の送信ビームが形成され、いずれかの送信ビームを利用してユーザ端末1にデータを送信する。
 なお、基地局2あるいは基地局3により測定用のシグナリングを送信する場合の送信ビームフォーミングが行われるとき、送信ビームごとにその送信方向は固定されている。
 ユーザ端末1では、セルラー通信の基地局2および無線LANの基地局3により形成される各送信ビームの受信状況を評価する測定値、具体的には、各送信ビームの受信電力を測定し、各送信ビームの受信電力の測定値に基づいて選択された送信ビームを利用して、セルラー通信の基地局2および無線LANの基地局3と通信を行う。
 通信制御装置4は、セルラー通信の基地局2に関する通信を制御するものであり、SMF(Session Management Function)やUPF(User Plane Function)などである。
 次に、第1実施形態に係るユーザ端末1および基地局2において行われる処理の概要について説明する。図2は、ユーザ端末1および基地局2の送信ビームの状況を示す説明図である。
 ユーザ端末1と基地局2との間の通信経路上に遮蔽物が存在すると無線品質が劣化することで、通信の切断などの通信不良が発生する。例えば、基地局2の送信ビームが、車両の交通量が多い車道を横切るように形成される場合、その送信ビームは通信不良が発生する可能性が高い。また、基地局2の送信ビームが、看板や街路樹などの遮蔽物が多い方向に形成される場合にも、その送信ビームは通信不良が発生する可能性が高い。そして、このような遮蔽による通信不良が発生する可能性は、遮蔽物の状況に依存するため、大きく変動しない。
 そこで、本実施形態では、通信環境が常時悪い特定の方向に形成される送信ビームに対して、ユーザ端末1において当該送信ビームの利用が常時抑制されるように、固定値となるオフセット値(初期のオフセット値)を設定して、そのオフセット値に基づいて、ユーザ端末1で測定される送信ビームの受信電力を補正する。
 これにより、ユーザ端末1において、通信環境が常時悪い送信ビームの評価が低くなることで、その送信ビームの利用が抑制されるため、通信不良を事前に回避することができる。
 また、多数のユーザ端末1が同一の送信ビームを利用する場合、すなわち、送信ビームが混雑している場合、ユーザ端末1のスループットが低下する。この場合、混雑によるスループットの低下が発生する可能性は、送信ビームの混雑状況に依存し、変動する。
 そこで、本実施形態では、各送信ビームの現在の混雑状況を判定して、ユーザ端末1において混雑中の送信ビームの利用が抑制されるように、変動値となるオフセット値を設定して、そのオフセット値に基づいて、ユーザ端末1で測定される送信ビームの受信電力を補正する。特に本実施形態では、初期のオフセット値とは別に混雑用のオフセット値を用意し、送信ビームが混雑中と判定されると、混雑用のオフセット値に更新する。
 これにより、混雑によるスループットの低下が発生する可能性が高い送信ビームの利用が抑制され、新規接続時に、ユーザ端末1が混雑中の送信ビームを利用しないように制限することができ、また、ユーザ端末1が基地局2に接続中である場合には、混雑中の送信ビームに切り替えられないように制限することができるため、スループットの低下を事前に回避することができる。
 なお、送信ビームが混雑状態になると、その送信ビームに対して、一律に混雑用のオフセット値に更新すればよいが、混雑の度合に応じてオフセット値を変化させるようにしてもよい。
 また、ユーザ端末1では、送信ビームの受信電力の測定値が、所定の基準電力(送信ビームとして検出する受信電力の基準、例えば-120dBm)以下であれば送信ビームと見做さない。このため、基準電力の近傍まで受信電力を補正すると、その送信ビームが選択されにくくなる。特に、新規接続時には、基準電力以下に補正して、その送信ビームが選択できないようにしてもよい。一方、基地局2に接続中である場合には、基準電力以下に補正すると、接続が切断されるため、補正された受信電力が基準電力以下にならないように補正するとよい。これにより、通信が切断されずに、他の送信ビームに切り替えることができる。
 次に、第1実施形態に係るセルラー通信の基地局2の概略構成について説明する。図3は、セルラー通信の基地局2の概略構成を示すブロック図である。
 セルラー通信の基地局2は、無線通信部11と、有線通信部12と、制御部13と、記憶部14と、を備えている。
 無線通信部11は、ユーザ端末1と無線通信を行う。
 有線通信部12は、通信制御装置4や、周辺にある別の基地局2と有線通信を行う。
 記憶部14は、ユーザ端末1に関する情報や、周辺にある別の基地局2に関する情報や、制御部13を構成するプロセッサで実行されるプログラムなどを記憶する。また、記憶部14は、オフセット情報データベースの登録情報を記憶する。オフセット情報データベースには、ユーザ端末1で測定される各送信ビームの受信電力を補正するオフセット値が登録される。このオフセット値には、初期のオフセット値と混雑用のオフセット値とがある。
 制御部13は、無線制御部21と、有線制御部22と、を備えている。この制御部13は、プロセッサで構成され、制御部13の各部は、記憶部14に記憶されたプログラムをプロセッサで実行することで実現される。
 有線制御部22は、通信制御装置4や、周辺にある別の基地局2との有線通信により、ユーザ端末1の接続先などに関する情報を交換する。
 無線制御部21は、混雑判定部31と、端末選択部32と、オフセット情報取得部33と、メッセージ制御部34と、を備えている。
 混雑判定部31は、各送信ビームの混雑状況を判定する。本実施形態では、各送信ビームの通信中端末数、すなわち、各送信ビームを利用して通信中のユーザ端末1の数で混雑状況を判定する。すなわち、対象とする送信ビームの通信中端末数が所定のしきい値以上であるか否かを判定し、通信中端末数がしきい値以上であれば、対象とする送信ビームを混雑中と判定する。
 なお、通信中端末数のしきい値は、送信ビームの利用を許容するユーザ端末1の上限値であり、このしきい値により、送信ビームを利用するユーザ端末1の数を制限することで、ユーザ端末1で高いスループットを確保することができる。
 端末選択部32は、自装置と通信中のユーザ端末1の中から、オフセット情報を通知するユーザ端末1を選択する。本実施形態では、混雑中の送信ビームを利用して通信中の複数のユーザ端末1のうち、混雑中でない他の送信ビームを利用可能なユーザ端末1を抽出し、ここで1つのユーザ端末1に絞り込まれていない場合には、抽出した複数のユーザ端末1のうち、現在通信中の送信ビームで無線品質が最も低いユーザ端末1を選択する。
 オフセット情報取得部33は、各送信ビームに関するオフセット値を規定したオフセット情報(補正情報)を取得する。本実施形態では、各送信ビームの混雑状況に応じて、各送信ビームに関するオフセット値を設定する。すなわち、混雑中の送信ビームについては、ユーザ端末1で選択が抑制されるように受信電力を補正するオフセット値を設定し、混雑中でない送信ビームについては、記憶部14に記憶された初期のオフセット値をそのまま使用する。
 メッセージ制御部34は、ユーザ端末1の新規接続時に、オフセット情報取得部33で取得したオフセット情報を含む報知情報のメッセージを生成して、その報知情報のメッセージを、在圏する全てのユーザ端末1に一斉送信する。この報知情報のメッセージは、非通信中のユーザ端末1に向けて送信されるメッセージであり、全てのユーザ端末1に同一内容が送信される。また、メッセージ制御部34は、ユーザ端末1が基地局2に接続中である場合に、オフセット情報を含む測定関連情報のメッセージを生成して、その測定関連情報のメッセージをユーザ端末1に送信する。この測定関連情報のメッセージは、通信中のユーザ端末1に向けて送信されるメッセージであり、個々のユーザ端末1に個別の内容が送信される。
 なお、図3にはセルラー通信の基地局2の概略構成を示したが、無線LANの基地局3もこれと略同様である。
 次に、第1実施形態に係るユーザ端末1の概略構成について説明する。図4は、ユーザ端末1の概略構成を示すブロック図である。
 ユーザ端末1は、無線通信部41と、制御部42と、記憶部43と、を備えている。
 無線通信部41は、セルラー通信の基地局2および無線LANの基地局3との間で無線通信を行い、インターネット上の対向局(サーバなど)とデータの送受信を行う。
 記憶部43は、自装置に関する情報や、基地局2,3に関する情報や、制御部42を構成するプロセッサで実行されるプログラムなどを記憶する。また、記憶部43は、基地局2から受信したメッセージに含まれるオフセット情報を記憶する。
 制御部42は、接続先制御部51と、オフセット処理部52と、ビーム選択部53と、メッセージ制御部54と、ビーム受信制御部55と、を備えている。この制御部42は、プロセッサで構成され、制御部42の各部は、記憶部43に記憶されたプログラムをプロセッサで実行することで実現される。
 接続先制御部51は、接続可能なセルを探索するセルサーチを行う。また、接続先制御部51は、ビーム選択部53で選択したセルが、ユーザ端末1がキャンプできる適切なセルとしての基準を満足するか否かを判定する適切セル判定を行う。また、接続先制御部51は、適切なセルと判定したセルのシステム情報などを監視するキャンプ状態に移行するキャンプオンの処理を行う。
 オフセット処理部52は、基地局2から受信したメッセージに含まれるオフセット情報を取得して、このオフセット情報に基づいて、各送信ビームのオフセット値を取得して、そのオフセット値に基づいて、各送信ビームの受信電力の測定値を補正して、補正された受信電力の測定値を取得する。
 なお、オフセット処理部52では、送信ビームの受信電力の測定値を補正する際に、受信電力の測定値に対して、オフセット値を減算または加算する。ここで、受信電力の測定値からオフセット値を減算して、受信電力が実際より小さくなるように補正することで、当該送信ビームの評価が低くなり、ユーザ端末1での当該送信ビームの利用を抑制することができる。また、受信電力の測定値にオフセット値を加算して、受信電力が実際より大きくなるように補正することで、当該送信ビームの評価が高くなり、ユーザ端末1での当該送信ビームの利用を促進することができる。
 ビーム選択部53は、ユーザ端末1の新規接続時に、オフセット処理部52で取得した受信電力の補正値に基づいて、適切な送信ビームを選択する。なお、ユーザ端末1が基地局2に接続中である場合には、基地局2において最適な送信ビームを選択する。
 メッセージ制御部54は、ユーザ端末1が基地局2に接続中である場合に、オフセット処理部52で取得した補正済みの受信電力の測定値に基づいて、受信電力の測定値の報告の要否を判定し(報告イベント判定)、報告が必要であれば、補正済みの受信電力の測定値を含むビーム測定報告のメッセージを生成して、そのビーム測定報告のメッセージを基地局2に送信する。
 ビーム受信制御部55は、ユーザ端末1の新規接続時に、ビーム選択部53で選択した送信ビームで通信が開始されるように、送信ビームの受信を制御する。また、ユーザ端末1が基地局2に接続中である場合に、基地局2から送信されるビーム指示のメッセージを受信すると、受信する送信ビームを、そのメッセージで指示された送信ビームに切り替える。
 次に、第1実施形態に係る報知情報のメッセージおよび測定関連情報のメッセージに付加されるオフセット情報について説明する。図5は、報知情報のメッセージに付加されるオフセット情報を示す説明図である。図6は、測定関連情報のメッセージに付加されるオフセット情報を示す説明図である。
 本実施形態では、各送信ビームのオフセット値を表すオフセット情報(補正情報)を、報知情報のメッセージ(在圏する全てのユーザ端末1に同一内容を送信するメッセージ)および測定関連情報のメッセージ(接続中のユーザ端末1の個々に個別の内容を送信するメッセージ)に付加して、ユーザ端末1に送信する。このとき、基地局2で形成される送信ビームの本数は例えば100~200と多数になるため、オフセット情報で送信ビームごとのオフセット値を個別に規定するようにすると、通信量が多くなる。そこで、以下に示すように、メッセージに付加されるオフセット情報の内容を設定する。なお、図5に示す報知情報のメッセージの例では、図示の都合から送信ビーム本数を10本としている。
 まず、第1の方式では、図5(A-1)に示すように、ビームIDの順番にしたがって並べられた複数の送信ビームを均等にグループ分けする、すなわち、送信ビームを所定本数ずつグループ分けして、ビームグループ単位でオフセット量を規定している。そして、図5(A-2)に示すように、メッセージに付加されるオフセット情報には、1ビームグループあたりのビーム数と、ビームグループIDごとのオフセット値とを格納する。
 この場合、ユーザ端末1では、1ビームグループあたりのビーム数に基づいて、各送信ビームが属するビームグループを特定することができる。そして、ビームグループIDごとのオフセット値に基づいて、各送信ビームのオフセット値を特定することができる。
 なお、この第1の方式では、1ビームグループあたりのビーム数は変更することができるが、ビームグループに属する送信ビームは全て同一のオフセット値となる。
 第2の方式では、図5(B-1)に示すように、ビームIDの順番にしたがって並べられた複数の送信ビームのうち、同一のオフセット値となる連続した送信ビームを1つのビーム群とする。そして、図5(B-2)に示すように、メッセージに付加されるオフセット情報には、1つのビーム群の最初の送信ビーム(先頭ビーム)のビームID(識別子)と、そのビーム群を構成するビーム数(連続ビーム数)と、そのビーム群のオフセット値とを格納する。
 この第2の方式では、図5(A)に示す第1の方式のように、オフセット値の設定がビームグループで制限されないため、第1の方式より、オフセット値を設定する自由度が高くなる。
 また、図6に示す測定関連情報のメッセージの例では、メッセージの送信先となるユーザ端末1用に取得したビームIDとオフセット値を格納する。
 次に、第1実施形態に係るユーザ端末1に記憶されるオフセット情報について説明する。図7は、ユーザ端末1に記憶されるオフセット情報を示す説明図である。
 本実施形態では、ユーザ端末1において、在圏するセルの基地局2から報知情報のメッセージおよび測定関連情報のメッセージを受信すると、そのメッセージに含まれるオフセット情報を記憶部43に記憶する。ユーザ端末1が移動すると、在圏するセルが変化することで、各セルの基地局2からオフセット情報を取得することができ、記憶部43には、過去に移動した経路上に存在する各セルの基地局2のオフセット情報が蓄積される。また、新たにオフセット値が通知されたら記憶部43のオフセット情報を更新し、記憶部43には、最新のオフセット情報が蓄積される。
 一方、ユーザ端末1が、通信中の送信ビームを一時的に見失うと、測定関連情報のメッセージを受信できないため、基地局2からオフセット情報を取得できなくなる。この場合、ユーザ端末1では、記憶部43に蓄積されたセルごとのオフセット情報の中から、在圏するセルのオフセット情報を取得して、そのオフセット情報を使用して受信電力の補正を行う。
 また、本実施形態では、オフセット情報とともに、そのオフセット情報の保持期間に関する情報が、基地局2からユーザ端末1に送信される。ユーザ端末1では、保持期間が経過すると、記憶部43に記憶されたオフセット情報を消去する。
 なお、図7には、図5(A)に示した第1の方式によるオフセット情報とした例を示したが、図5(B)に示した第2の方式によるオフセット情報でも同様である。
 次に、第1実施形態に係る基地局2においてユーザ端末1の新規接続時に行われる処理の手順について説明する。図8は、基地局2においてユーザ端末1の新規接続時に行われる処理の手順を示すフロー図である。
 図8(A)に示すように、基地局2では、まず、オフセット情報取得部33において、各送信ビームの初期のオフセット値を記憶部14から取得する(ST101)。次に、混雑判定部31において、各送信ビームの混雑状況に関する混雑判定を行う(ST102)。そして、混雑中の送信ビームがある場合には(ST103でYes)、オフセット情報取得部33において、その混雑中の送信ビームに関するオフセット値を、混雑用のオフセット値、すなわち、ユーザ端末1で送信ビームの利用を抑制するように受信電力の測定値を補正するオフセット値に更新する(ST104)。
 次に、メッセージ制御部34において、混雑中の送信ビームに関する更新済みのオフセット値と、混雑中でない送信ビームに関する初期のオフセット値とを含む報知情報のメッセージを生成する(ST105)。そして、その報知情報のメッセージを、在圏するユーザ端末1に一斉送信する(ST106)。
 一方、混雑中の送信ビームがない場合には(ST103でNo)、オフセット値の更新(ST104)を行わずに、メッセージ制御部34において、各送信ビームの初期のオフセット値を含む報知情報のメッセージを生成して(ST105)、その報知情報のメッセージを在圏するユーザ端末1に一斉送信する(ST106)。
 図8(B)に示すように、混雑判定(ST102)では、まず、各送信ビームの通信中端末数、すなわち、各送信ビームを利用して通信中のユーザ端末1の数を取得する(ST201)。そして、対象とする送信ビームの通信中端末数が所定のしきい値以上であるか否かを判定する(ST202)。ここで、通信中端末数がしきい値以上であれば(ST202でYes)、対象とする送信ビームを「混雑中」に設定する(ST203)。このST202およびST203の処理は、全ての送信ビームが終了するまで(ST204でYes)、全ての送信ビームについて順次繰り返される。
 次に、第1実施形態に係るユーザ端末1において新規接続時に行われる処理の手順について説明する。図9は、ユーザ端末1において新規接続時に行われる処理の手順を示すフロー図である。
 図9(A)に示すように、ユーザ端末1では、まず、接続先制御部51において、接続可能なセルを探索するセルサーチを行う(ST301)。そして、接続可能なセルが見つかると(ST302でYes)、次に、検出したセルの基地局2から送信される報知情報のメッセージを無線通信部41で受信する(ST303)。
 次に、無線通信部41において、各送信ビームの受信電力を測定する(ST304)。次に、ビーム選択部53において、適切な送信ビームを選択するビーム選択を行う(ST305)。次に、接続先制御部51において、選択したセルが、ユーザ端末1がキャンプできる適切なセルとしての基準を満足するか否かを判定する適切セル判定を行う(ST306)。
 そして、選択したセルが適切なセルとしての基準を満足する場合には(ST307でYes)、選択したセルを適切なセルと判定して、そのセルにキャンプオンする、すなわち、そのセルのシステム情報などを監視するキャンプ状態に移行する(ST308)。
 一方、選択したセルが接続先としての基準を満足しない場合には(ST307でNo)、ST301に戻る。
 図9(B)に示すように、ビーム選択(ST305)では、まず、オフセット処理部52において、報知情報のメッセージに含まれるオフセット情報(図5参照)に基づいて、各送信ビームが属するビームグループIDを取得する(ST401)。次に、各ビームグループIDのオフセット値に基づいて、各送信ビームのオフセット値を取得する(ST402)。
 次に、各送信ビームのオフセット値に基づいて、各送信ビームの受信電力の測定値を補正する(ST403)。すなわち、各送信ビームの受信電力の測定値に対して、対応するオフセット値を減算または加算する。次に、ビーム選択部53において、補正された受信電力の測定値が最大となる送信ビームを選択する(ST404)。
 次に、第1実施形態に係る基地局2においてユーザ端末1が接続中である場合に行われる処理の手順について説明する。図10は、基地局2においてユーザ端末1が接続中である場合に行われる処理の手順を示すフロー図である。
 図10(A)に示すように、基地局2では、まず、オフセット情報取得部33において、各送信ビームの初期のオフセット値を記憶部14から取得する(ST501)。次に、混雑判定部31において、各送信ビームの混雑状況に関する混雑判定を行う(ST502)。
 そして、混雑中の送信ビームがある場合には(ST503でYes)、次に、端末選択部32において、混雑中の送信ビームを利用しているユーザ端末1のうち、別の送信ビームに切り替えるユーザ端末1を選択する端末選択を行う(ST504)。
 次に、オフセット情報取得部33において、端末選択部32で選択したユーザ端末1に関する各送信ビームのオフセット値のうち、混雑中の送信ビームのオフセット値を、混雑用のオフセット値、すなわち、ユーザ端末1で送信ビームの利用を抑制するように受信電力の測定値を補正するオフセット値に更新する(ST505)。
 次に、メッセージ制御部34において、混雑中の送信ビームに関する更新されたオフセット値と、混雑中でない送信ビームに関する初期のオフセット値とを含む測定関連情報のメッセージを生成する(ST506)。そして、その測定関連情報のメッセージを無線通信部11から、選択したユーザ端末1に送信する(ST507)。
 一方、混雑中の送信ビームがない場合には(ST503でNo)、特に処理を行わずに終了する。
 なお、ここでは、混雑中の送信ビームに対して、ユーザ端末1での当該送信ビームの利用を抑制するオフセット値を設定するようにしたが、混雑中でない別の送信ビームに対して、ユーザ端末1での当該送信ビームの利用を促進するオフセット値を設定するようにしてもよい。
 図10(B)に示すように、混雑判定(ST502)では、まず、各送信ビームの通信中端末数、すなわち、各送信ビームを利用して通信中のユーザ端末1の数を取得する(ST601)。そして、対象とする送信ビームの通信中端末数が所定のしきい値Th以上であるか否かを判定する(ST602)。ここで、通信中端末数がしきい値以上であれば(ST602でYes)、対象とする送信ビームを「混雑中」に設定する(ST603)。このST602およびST603の処理は、全ての送信ビームが終了するまで(ST604でYes)、全ての送信ビームについて順次繰り返される。
 図10(C)に示すように、端末選択(ST504)では、まず、混雑中の送信ビームを利用して通信中の複数のユーザ端末1を抽出する(ST701)。次に、抽出した複数のユーザ端末1のうち、混雑中でない送信ビームを利用可能なユーザ端末1を抽出する(ST702)。そして、1つのユーザ端末1に絞り込まれていない場合には(ST703でNo)、次に、抽出した複数のユーザ端末1のうち、現在通信中の送信ビームで無線品質が最も低いユーザ端末1を選択する(ST704)。これにより、周波数利用効率が向上する。また、ユーザ端末1間の公平性を重視する場合は、ST703~ST704の端末を1つに絞り込む処理を省略するようにしてもよい。
 一方、1つのユーザ端末1に絞り込まれた場合には(ST703でYes)、その時点で処理を終了する。
 次に、第1実施形態に係るユーザ端末1において基地局2に接続中である場合に行われる処理の手順について説明する。図11は、ユーザ端末1において基地局2に接続中である場合に行われる処理の手順を示すフロー図である。
 ユーザ端末1では、まず、無線通信部41において、基地局2から送信される測定関連情報のメッセージを受信すると(ST801でYes)、各送信ビームの受信電力を測定する(ST802)。
 次に、オフセット処理部52において、測定関連情報のメッセージに含まれるオフセット情報に基づいて、各送信ビームが属するビームグループIDを取得する(ST803)。次に、各ビームグループIDのオフセット値に基づいて、記憶部43のオフセット情報(図7参照)から、各送信ビームのオフセット値を取得する(ST804)。次に、各送信ビームのオフセット値に基づいて、各送信ビームの受信電力の測定値を補正する(ST805)。すなわち、各送信ビームの受信電力の測定値に対して、対応するオフセット値を減算または加算する。
 次に、メッセージ制御部54において、補正された受信電力の測定値に基づいて、受信電力の報告の要否に関する報告イベント判定を行う(ST806)。ここで、報告が必要であれば(ST806でYes)、補正された受信電力の測定値を含むビーム測定報告のメッセージを無線通信部41から基地局2に送信する(ST807)。そして、基地局2から送信されるビーム指示のメッセージを無線通信部41で受信すると(ST808でYes)、ビーム受信制御部55において、ビーム指示のメッセージで指示された送信ビームに切り替える(ST809)。
 一方、報告が必要でない場合や(ST806でNo)、送信ビーム指示のメッセージを受信しない場合には(ST808でNo)、ST801に戻る。
 なお、図8,図10には、セルラー通信の基地局2の処理手順を示したが、無線LANの基地局3もこれと略同様である。また、図9,図11には、ユーザ端末1の接続先をセルラー通信の基地局2とした例について説明したが、ユーザ端末1の接続先を無線LANの基地局3とした場合もこれと略同様である。
(第2実施形態)
 次に、第2実施形態について説明する。なお、ここで特に言及しない点は前記の実施形態と同様である。また、ここでは、ユーザ端末1の接続先をセルラー通信の基地局2とした例について説明するが、ユーザ端末1の接続先を無線LANの基地局3とした場合もこれと略同様である。
 遮蔽物となる車両の交通量は時間帯に応じて変化するため、通信不良の状況も時間帯に応じて変化する。また、ユーザ端末1を所持する人物の通行量は時間帯に応じて変化するため、送信ビームの利用状況も時間帯に応じて変化する。
 そこで、本実施形態では、オフセット情報取得部33において、現在の時間帯が、車両の交通量や人物の通行量などの通信環境が悪化する時間帯か、または通信環境がよい時間帯かを判定し、その判定結果に応じたオフセット値を設定する。特に本実施形態では、記憶部14に、各送信ビームの深夜用のオフセット値と、各送信ビームの標準のオフセット値とを予め記憶させておき、現在が深夜の時間帯(例えば0時から5時)か否かを判定し、その判定結果に応じて、記憶部14に記憶された深夜用のオフセット値または標準のオフセット値を取得する。
 次に、第2実施形態に係る基地局2においてユーザ端末1の新規接続時に行われる処理の手順について説明する。図12は、基地局2においてユーザ端末1の新規接続時に行われる処理の手順を示すフロー図である。
 基地局2では、まず、オフセット情報取得部33において、現在が深夜の時間帯か否かを判定する(ST111)。ここで、現在が深夜の時間帯であれば(ST111でYes)、記憶部14から各送信ビームの深夜用のオフセット値を取得する(ST112)。次に、メッセージ制御部34において、各送信ビームの深夜用のオフセット値を含む報知情報を生成して(ST105)、その報知情報のメッセージを在圏するユーザ端末1に一斉送信する(ST106)。
 一方、現在が深夜の時間帯でなければ(ST111でNo)、オフセット情報取得部33において、記憶部14から各送信ビームの標準のオフセット値を取得する(ST113)。次に、メッセージ制御部34において、各送信ビームの標準のオフセット値を含む報知情報を生成して(ST105)、その報知情報のメッセージを在圏するユーザ端末1に一斉送信する(ST106)。
(第3実施形態)
 次に、第3実施形態について説明する。なお、ここで特に言及しない点は前記の実施形態と同様である。また、ここでは、ユーザ端末1の接続先をセルラー通信の基地局2とした例について説明するが、ユーザ端末1の接続先を無線LANの基地局3とした場合もこれと略同様である。図13は、ユーザ端末1および基地局2の送信ビームの状況を示す説明図である。
 車道を対象にした送信ビームを形成すると、その送信ビームを利用して、車両に乗車している人物が所持するユーザ端末1、又は車両に搭載されたユーザ端末1で基地局2と通信を行うことができる。この場合、交差点において、信号機5が青信号で車両が走行している場合(図13の左右方向)には、ユーザ端末1が高速で移動するため、通信不良が発生しやすい。一方、信号機5が赤信号で車両が停止している場合(図13の上下方向)には、通信不良が発生しにくく、安定した通信を行うことができる。
 そこで、本実施形態では、オフセット情報取得部33において、信号機5の動作状態に応じてオフセット値を設定する。特に本実施形態では、基地局2が、信号機5の制御情報を信号制御装置6から取得して、その制御情報に基づいて、青信号により進行が許可された車線、および赤信号により進行が禁止された車線を特定して、各車線の進行許可状況に応じて、各車線を対象にした送信ビームに関するオフセット値を設定する。
 すなわち、青信号により進行が許可された車線を対象にした送信ビームB1,B2は、ユーザ端末1においてその送信ビームの利用が促進されるようにオフセット値を設定し、赤信号により進行が禁止された車線を対象にした送信ビームB3,B4は、ユーザ端末1においてその送信ビームの利用が抑制されるようにオフセット値を設定する。
 これにより、青信号で走行中の車両に搭載されたユーザ端末1では、青信号により進行が許可された車線を対象にした送信ビームの利用が抑制されるため、移動速度が速いために発生する通信不良を事前に回避することができる。また、赤信号で停止中の車両に搭載されたユーザ端末1では、赤信号により進行が禁止された車線を対象にした送信ビームの利用が促進されるため、ユーザ端末1が基地局2と通信を行うことができる。
 次に、第3実施形態に係る基地局2においてユーザ端末1の新規接続時に行われる処理について説明する。図14は、基地局2においてユーザ端末1の新規接続時に行われる処理の手順を示すフロー図である。
 基地局2では、まず、オフセット情報取得部33において、各送信ビームの初期のオフセット値を記憶部14から取得する(ST101)。次に、信号制御装置6から信号機5の制御情報を取得して、その制御情報に基づいて、交差点において、どの車線で車両の進行が許可されているかを判定する信号状態判定を行う(ST121)。
 次に、対象とする送信ビームが形成されるエリアが、進行許可車線か否かを判定する(ST122)。ここで、対象とする送信ビームが形成されるエリアが、進行許可車線である場合には(ST122でYes)、ユーザ端末1での送信ビームの利用を抑制するオフセット値に更新する(ST123)。一方、対象とする送信ビームが形成されるエリアが、進行禁止車線である場合には(ST122でNo)、ユーザ端末1での送信ビームの利用を促進するオフセット値に更新する(ST124)。
 このST122からST124の処理は、全ての送信ビームが終了するまで(ST125でYes)、全ての送信ビームについて順次繰り返される。
 次に、メッセージ制御部34において、各送信ビームの更新済みのオフセット値を含む報知情報のメッセージを生成する(ST105)。そして、その報知情報のメッセージを、在圏するユーザ端末1に一斉送信する(ST106)。
(第4実施形態)
 次に、第4実施形態について説明する。なお、ここで特に言及しない点は前記の実施形態と同様である。また、ここでは、ユーザ端末1の接続先をセルラー通信の基地局2とした例について説明するが、ユーザ端末1の接続先を無線LANの基地局3とした場合もこれと略同様である。図15は、ユーザ端末1および基地局2の送信ビームの状況を示す説明図である。
 図15において、人物はユーザ端末1を所持して左から右方向に移動するものとする。この場合、ユーザ端末1を所持する人物の背後、すなわち、移動方向の後側に位置する基地局2(図15の左側の基地局)の送信ビームをユーザ端末1が利用する状態になると、ユーザ端末1を所持する人物の身体が遮蔽物となり、通信不良が発生する。この場合、ユーザ端末1を所持する人物の前方、すなわち、移動方向の前側に位置する隣の基地局2(図15の右側の基地局)の送信ビームに切り替えることが望ましい。
 そこで、本実施形態では、基地局2が、ユーザ端末1で利用した送信ビームの履歴をユーザ端末1ごとに利用ビーム履歴情報として記憶部14に蓄積し、その利用ビーム履歴情報に基づいて、ユーザ端末1が送信ビームの切り替えを行うようにオフセット値を設定する。
 次に、第4実施形態に係る基地局2においてユーザ端末1が接続中である場合に行われる処理の手順について説明する。図16は、利用ビーム履歴情報を示す説明図である。図17は、基地局2においてユーザ端末1が接続中である場合に行われる処理の手順を示すフロー図である。
 基地局2では、まず、オフセット情報取得部33において、各送信ビームの初期のオフセット値を記憶部14から取得する(ST501)。次に、対象とするユーザ端末1に関する利用ビーム履歴情報を記憶部14から取得する(ST511)。利用ビーム履歴情報(図16参照)には、ユーザ端末1ごとに、そのユーザ端末1で利用した送信ビームの履歴として、セルIDと利用したビームIDが記憶されている。図16の例では、基地局(セルID)が1から2に切り替わる際に、ビームIDが7から10に遷移したことがわかる。
 そこで、対象とするユーザ端末1の利用ビーム履歴情報から、このユーザ端末1が基地局間の境界となるビームを利用しているか否かを判定する(ST512)。そして、基地局間の境界となるビーム(この場合は、ビームIDの7)を利用している場合には(ST512でYes)、ユーザ端末1においてその隣の基地局2のビームIDの10の利用が促進されるように、その隣の基地局2の送信ビームのビームIDの10のオフセット値を更新する(ST513)。
 次に、メッセージ制御部34において、更新されたオフセット値を含む測定関連情報のメッセージ(図6参照)を生成する(ST506)。そして、その測定関連情報のメッセージを無線通信部11から、対象とするユーザ端末1に送信する(ST507)。
 ユーザ端末1では、基地局2から受信した測定関連情報のメッセージに含まれるオフセット値に基づいて、移動方向の前側に位置する隣の基地局2の送信ビーム(この場合、ビームIDの10)の受信電力の測定値が高くなるように補正し、補正済みの受信電力の測定値を含むビーム測定報告のメッセージを生成して、そのビーム測定報告のメッセージを基地局2に送信する。そして、基地局2からのビーム指示のメッセージで隣の基地局2の送信ビームが指示されることにより、隣の基地局2の送信ビーム(ビームIDの10)に切り替える。
 一方、ユーザ端末1が基地局間の境界となるビームを利用していない場合には(ST512でNo)、記憶部14に記憶されるオフセット情報データベースのオフセット情報に基づいて送信ビームのオフセット値を更新する(ST514)。
 なお、本実施形態では、移動方向の前側に位置する隣の基地局2の送信ビームの評価が高くなるように、受信電力の測定値を補正するようにしたが、移動方向の後側に位置する現在接続中の基地局2の送信ビームの評価が低くなるように、受信電力の測定値を補正するようにしてもよく、これにより、隣の基地局2の送信ビームへの切り替えが促進される。
 また、本実施形態では、隣の基地局2の送信ビームに関するオフセット情報を、現在接続中の基地局2からユーザ端末1に送信するようにしたが、隣の基地局2と連携して、隣の基地局2の送信ビームの利用を促進するようにしてもよい。すなわち、隣の基地局2の送信ビームに対してオフセットを行う指示を、現在接続中の基地局2から隣の基地局2に送信し、隣の基地局2からユーザ端末1に、自装置の送信ビームに関するオフセット情報を送信する。
(第5実施形態)
 次に、第5実施形態について説明する。なお、ここで特に言及しない点は前記の実施形態と同様である。また、ここでは、ユーザ端末1の接続先をセルラー通信の基地局2とした例について説明するが、ユーザ端末1の接続先を無線LANの基地局3とした場合もこれと略同様である。図18は、ユーザ端末1および基地局2の送信ビームの状況を示す説明図である。
 ドローンなどの飛翔体7に搭載されたユーザ端末1は、基地局2から上空方向に形成される送信ビームを利用して通信を行う。一方、地上の移動体を対象にした送信ビームが道路の路面や建造物の壁面で反射して上空に向かう場合がある。このとき、飛翔体7のユーザ端末1が、反射により上空に向かう送信ビームを見つけて、その送信ビームを利用した通信を行う場合があるが、その送信ビームでは干渉により通信不良が発生する可能性が高い。
 そこで、本実施形態では、上空の飛翔体7のユーザ端末1において、反射により上空に向かう送信ビームの利用が抑制されるように、受信電力の測定値に関するオフセット値を設定する。これにより、飛翔体7のユーザ端末1において、反射により上空に向かう送信ビームの利用が抑制され、通信不良を事前に回避することができる。
 以上のように、本出願において開示する技術の例示として、実施形態を説明した。しかしながら、本開示における技術は、これに限定されず、変更、置き換え、付加、省略などを行った実施形態にも適用できる。また、上記の実施形態で説明した各構成要素を組み合わせて、新たな実施形態とすることも可能である。
 例えば、前記の実施形態では、セルラー通信の基地局や無線LANの基地局が、自装置により形成される送信ビームを利用したユーザ端末の無線通信を制御し、また、他の基地局、すなわち、隣の基地局により形成される送信ビームを利用したユーザ端末の無線通信を制御するようにしたが、LTE(Long Term Evolution)などの通信方式を採用したマクロセルの基地局が、制御プレーン(C-Plane)の基地局として、ユーザプレーン(U-Plane)の基地局となるスモールセルの基地局、すなわち、本実施形態におけるセルラー通信の基地局により形成される送信ビームを利用したユーザ端末の無線通信を制御するようにしてもよい。
 また、前記の実施形態では、適切な送信ビームを選択するために、送信ビームの受信状況を評価する評価指標として、RSRP(Reference Signal Received Power)などの受信電力の測定値を補正するようにしたが、この他の受信強度に関する測定値を評価指標として補正するようにしてもよい。また、RSRQ(Reference Signal Received Quality)などの受信品質に関する測定値を評価指標として補正するようにしてもよい。また、受信強度に関する測定値と受信品質に関する測定値とを組み合わせて評価するようにして、それらの測定値を補正するようにしてもよい。
 また、前記の実施形態では、送信ビームの測定値を補正する際に、測定値に対してオフセット値を減算または加算するようにしたが、送信ビームの測定値の補正方法は、このような減算や加算に限定されるものではなく、測定値を実際より小さく補正したり、測定値を実際より大きく補正したりできればよく、例えば、測定値に対してオフセット値を乗算または除算するようにしてもよい。
 本発明に係る基地局装置、端末装置、通信システムおよび通信制御方法は、通信不良やスループットの低下を事前に回避して、ユーザのサービス満足度を向上させることができる効果を有し、基地局装置により形成される複数の送信ビームのいずれかを利用した端末装置の無線通信を制御する基地局装置、端末装置、通信システムおよび通信制御方法などとして有用である。
1 ユーザ端末(端末装置)
2 セルラー通信の基地局(基地局装置)
3 無線LANの基地局(基地局装置)
6 信号制御装置
7 飛翔体
11 無線通信部
13 制御部
14 記憶部
41 無線通信部
42 制御部
43 記憶部

Claims (18)

  1.  自装置または他の基地局装置により形成される複数の送信ビームのいずれかを利用した端末装置の無線通信を制御する基地局装置であって、
     前記端末装置と無線通信を行う無線通信部と、
     前記端末装置において特定の送信ビームの利用を抑制または促進するように、当該送信ビームの受信状況を評価する測定値を補正する補正情報を取得して、その補正情報を前記無線通信部から前記端末装置に送信する制御部と、
    を備えることを特徴とする基地局装置。
  2.  前記制御部は、前記送信ビームの受信状況を評価する測定値としての受信電力の測定値を増減するオフセット値を含む前記補正情報を取得することを特徴とする請求項1に記載の基地局装置。
  3.  前記制御部は、自装置に接続していない前記端末装置を含め在圏する全ての前記端末装置に、前記補正情報を一斉送信することを特徴とする請求項1に記載の基地局装置。
  4.  前記制御部は、特定の送信ビームを利用して通信中の複数の前記端末装置の中から、所定の条件にしたがって前記端末装置を選択して、選択した前記端末装置に、前記補正情報を送信することを特徴とする請求項1に記載の基地局装置。
  5.  前記制御部は、所定の順番で並べられた複数の送信ビームを均等にグループ分けした際の1つのビームグループを構成するビーム数と、前記ビームグループごとの前記測定値に対するオフセット値とを含む前記補正情報を取得することを特徴とする請求項1に記載の基地局装置。
  6.  前記制御部は、所定の順番で並べられた複数の送信ビームのうち、前記測定値に対する同一のオフセット値となるビーム群の最初の送信ビームの識別子と、当該ビーム群を構成するビーム数と、当該ビーム群のオフセット値とを含む前記補正情報を取得することを特徴とする請求項1に記載の基地局装置。
  7.  前記制御部は、各送信ビームの現在の混雑状況を判定して、混雑中の送信ビームの利用を抑制するように前記測定値を補正する前記補正情報を取得することを特徴とする請求項1に記載の基地局装置。
  8.  さらに、通信環境が常時悪い送信ビームの利用を抑制するように前記測定値を補正する補正情報を記憶する記憶部を備え、
     前記制御部は、前記記憶部に記憶された前記補正情報を取得することを特徴とする請求項1に記載の基地局装置。
  9.  前記制御部は、現在の時間帯において通信環境が悪化する送信ビームの利用を抑制するように前記測定値を補正する前記補正情報を取得することを特徴とする請求項1に記載の基地局装置。
  10.  前記制御部は、信号機の制御情報に基づいて、青信号により進行が許可された車線を対象にした送信ビームの利用を抑制するように前記測定値を補正する前記補正情報を取得することを特徴とする請求項1に記載の基地局装置。
  11.  前記制御部は、反射により上空に向かう送信ビームの利用を抑制するように前記測定値を補正する前記補正情報を取得することを特徴とする請求項1に記載の基地局装置。
  12.  前記制御部は、自装置が、自装置に接続中の前記端末装置の移動方向の後側に位置する場合には、前記端末装置の移動方向の前側に位置する隣の基地局装置により形成される送信ビームの利用を促進し、または、自装置により形成される送信ビームの利用を抑制するように前記測定値を補正する前記補正情報を取得することを特徴とする請求項1に記載の基地局装置。
  13.  さらに、前記端末装置で過去に利用した送信ビームに関する情報を利用ビーム履歴情報として蓄積する記憶部を備え、
     前記制御部は、前記利用ビーム履歴情報に基づいて、自装置に接続中の前記端末装置が前記隣の基地局装置との境界付近の送信ビームを利用していると判定した場合には、前記隣の基地局装置により形成される送信ビームの利用を促進し、または、自装置により形成される送信ビームの利用を抑制するように前記測定値を補正する前記補正情報を取得することを特徴とする請求項12に記載の基地局装置。
  14.  基地局装置により形成される複数の送信ビームのいずれかを利用して、前記基地局装置と無線通信を行う端末装置であって、
     前記基地局装置と無線通信を行う無線通信部と、
     前記基地局装置から送信される補正情報を前記無線通信部で受信すると、前記補正情報に基づいて、送信ビームの受信状況を評価する測定値を補正して、その補正された測定値に基づいて選択された前記送信ビームを利用して前記基地局装置と無線通信を行う制御部と、
    を備えることを特徴とする端末装置。
  15.  さらに、前記基地局装置から受信した前記補正情報を記憶する記憶部を備え、
     前記制御部は、通信中の送信ビームを見失うと、前記記憶部に記憶された前記補正情報に基づいて前記測定値を補正することを特徴とする請求項14に記載の端末装置。
  16.  前記制御部は、所定の保持期間が経過すると、前記記憶部に記憶された前記補正情報を消去することを特徴とする請求項15に記載の端末装置。
  17.  基地局装置により形成される複数の送信ビームのいずれかを利用して、端末装置が前記基地局装置と無線通信を行う通信システムであって、
     前記基地局装置は、
     前記端末装置と無線通信を行う無線通信部と、
     前記端末装置において特定の送信ビームの利用を抑制または促進するように、当該送信ビームの受信状況を評価する測定値を補正する補正情報を取得して、その補正情報を前記無線通信部から前記端末装置に送信する制御部と、
    を備え、
     前記端末装置は、
     前記基地局装置と無線通信を行う無線通信部と、
     前記基地局装置から送信される前記補正情報を前記無線通信部で受信すると、前記補正情報に基づいて、前記送信ビームの受信状況を評価する測定値を補正して、その補正された測定値に基づいて選択された前記送信ビームを利用して前記基地局装置と無線通信を行う制御部と、
    を備えることを特徴とする通信システム。
  18.  基地局装置により形成される複数の送信ビームのいずれかを利用した端末装置の無線通信を制御する通信制御方法であって、
     前記基地局装置は、
     前記端末装置において特定の送信ビームの利用を抑制または促進するように、当該送信ビームの受信状況を評価する測定値を補正する補正情報を取得して、その補正情報を前記端末装置に送信し、
     前記端末装置は、
     前記基地局装置から送信される前記補正情報を受信すると、前記補正情報に基づいて、前記送信ビームの受信状況を評価する測定値を補正して、その補正された測定値に基づいて選択された前記送信ビームを利用して前記基地局装置と無線通信を行うことを特徴とする通信制御方法。
PCT/JP2018/021764 2017-08-10 2018-06-06 基地局装置、端末装置、通信システムおよび通信制御方法 WO2019031044A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/636,194 US11201649B2 (en) 2017-08-10 2018-06-06 Base station device, terminal device, communication system, and communication control method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-155457 2017-08-10
JP2017155457A JP7007134B2 (ja) 2017-08-10 2017-08-10 基地局装置、端末装置、通信システムおよび通信制御方法

Publications (1)

Publication Number Publication Date
WO2019031044A1 true WO2019031044A1 (ja) 2019-02-14

Family

ID=65271038

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/021764 WO2019031044A1 (ja) 2017-08-10 2018-06-06 基地局装置、端末装置、通信システムおよび通信制御方法

Country Status (3)

Country Link
US (1) US11201649B2 (ja)
JP (1) JP7007134B2 (ja)
WO (1) WO2019031044A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200406471A1 (en) * 2018-06-12 2020-12-31 Telefonaktiebolaget Lm Ericsson (Publ) Technique for robotic device control
US11638167B2 (en) * 2020-01-29 2023-04-25 Qualcomm Incorporated Techniques for set based beam reporting

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013093749A (ja) * 2011-10-26 2013-05-16 Ntt Docomo Inc 無線通信システム、無線基地局、移動通信端末、および通信制御方法
JP2013532913A (ja) * 2010-08-13 2013-08-19 日本電気株式会社 通信ネットワークにおけるセル選択のための方法及び装置
JP2015185953A (ja) * 2014-03-20 2015-10-22 株式会社Nttドコモ ビーム選択方法、基地局、およびユーザ装置
US20170012692A1 (en) * 2014-02-19 2017-01-12 Samsung Electronics Co., Ltd. Method and device for selecting and allocating transmission beam index having priority

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0414889D0 (en) * 2004-07-02 2004-08-04 Qinetiq Ltd Multiple-input multiple-output communications system
JP2016143916A (ja) * 2015-01-29 2016-08-08 ソニー株式会社 装置
EP3252971A4 (en) * 2015-01-30 2018-10-10 LG Electronics Inc. Radio link monitoring method in wireless communication system and device therefor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013532913A (ja) * 2010-08-13 2013-08-19 日本電気株式会社 通信ネットワークにおけるセル選択のための方法及び装置
JP2013093749A (ja) * 2011-10-26 2013-05-16 Ntt Docomo Inc 無線通信システム、無線基地局、移動通信端末、および通信制御方法
US20170012692A1 (en) * 2014-02-19 2017-01-12 Samsung Electronics Co., Ltd. Method and device for selecting and allocating transmission beam index having priority
JP2015185953A (ja) * 2014-03-20 2015-10-22 株式会社Nttドコモ ビーム選択方法、基地局、およびユーザ装置

Also Published As

Publication number Publication date
US20200382184A1 (en) 2020-12-03
US11201649B2 (en) 2021-12-14
JP2019036773A (ja) 2019-03-07
JP7007134B2 (ja) 2022-01-24

Similar Documents

Publication Publication Date Title
ES2834577T3 (es) Mapa de cobertura en una red de telecomunicaciones
US9351213B2 (en) Method and telecommunications network for deactivating or activating a cell in such a network
WO2016183949A1 (zh) 网络选择方法、装置及移动终端
US9008659B1 (en) Cell reselection methods based on tracking area for cellular systems
KR102043110B1 (ko) 멀티 캐리어 기반의 이동 통신 시스템에서 아이들 단말 분산 방법 및 장치
CA2681004A1 (en) Cell reselection process for wireless communications
CN109640250B (zh) 定向切换方法及装置
CN104703234A (zh) 一种无线局域网中的接入切换方法及装置
JP5781101B2 (ja) 制御装置、代表基地局、無線通信システム及び基地局制御方法
CN105009515A (zh) 用于管理无线接入节点簇的方法和设备
CN104703241A (zh) 一种小区切换方法及装置
EP2944119B1 (en) A method and a network node for improved resource utilization in a load balanced radio communication system
WO2019031044A1 (ja) 基地局装置、端末装置、通信システムおよび通信制御方法
JP6224834B2 (ja) モビリティ技法
CN104955128A (zh) 一种负荷信息传递方法和***、以及网元
EP3488633B1 (en) Decentralized base station load balancing
US9794840B1 (en) Systems and methods for determining access node candidates for handover of wireless devices
US9788214B2 (en) Method for measurement control and base station using the same
EP3206434B1 (en) Switching process between a base station and wireless lan access point
US9344928B2 (en) Neighbouring cell optimization method and mobile communication system
CN104703220A (zh) 一种业务请求方法及装置
US9237502B1 (en) Systems and methods for balancing wireless network load between band classes using automatic neighbor relations
KR102051851B1 (ko) 이동통신 시스템에서 단말 접속 제어 장치 및 그 방법
WO2015011922A1 (ja) 基地局装置、通信装置、制御方法及びプログラム
EP3182757A1 (en) Load distributing method and network-side device in heterogeneous network

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18843892

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18843892

Country of ref document: EP

Kind code of ref document: A1