WO2019029498A1 - 一种通信的方法和装置 - Google Patents

一种通信的方法和装置 Download PDF

Info

Publication number
WO2019029498A1
WO2019029498A1 PCT/CN2018/099049 CN2018099049W WO2019029498A1 WO 2019029498 A1 WO2019029498 A1 WO 2019029498A1 CN 2018099049 W CN2018099049 W CN 2018099049W WO 2019029498 A1 WO2019029498 A1 WO 2019029498A1
Authority
WO
WIPO (PCT)
Prior art keywords
message
uplink resources
terminal device
uplink
network device
Prior art date
Application number
PCT/CN2018/099049
Other languages
English (en)
French (fr)
Inventor
颜矛
黄煌
陈磊
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2019029498A1 publication Critical patent/WO2019029498A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/21Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0057Physical resource allocation for CQI
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/002Transmission of channel access control information
    • H04W74/006Transmission of channel access control information in the downlink, i.e. towards the terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0833Random access procedures, e.g. with 4-step access
    • H04W74/0841Random access procedures, e.g. with 4-step access with collision treatment
    • H04W74/085Random access procedures, e.g. with 4-step access with collision treatment collision avoidance

Definitions

  • the present invention relates to the field of communications, and in particular, to a method and apparatus for communication.
  • Beamforming technology is proposed in future wireless communication systems (eg, new air interface). Beamforming technology can limit the energy of the transmitted signal to a certain beam direction, thereby increasing signal reception. effectiveness. Beamforming technology can effectively expand the transmission range of wireless signals and reduce signal interference, thereby achieving higher communication efficiency and higher network capacity. Beamforming technology, while improving the efficiency of communication networks, also poses challenges for beam management.
  • the user equipment needs to complete uplink synchronization before sending uplink service data to the network device.
  • LTE long term evolution
  • a random access procedure initiated by a user equipment completes uplink synchronization, but in a random access procedure of an LTE communication system, a user equipment initiates and retransmits a message 3 (msg3)
  • msg3 message 3
  • the technical problem to be solved by the present application is to provide a communication method and device, which can reduce the probability of collision of the message 3 and reduce the delay of the uplink synchronization.
  • the present application provides a method for communication, including: a network device receiving a message 3 sent by a terminal device, and if the detection message 3 fails to be sent, the network device sends, to the terminal device, K items for indicating that the message 3 is retransmitted.
  • K is an integer greater than 1.
  • the message 3 is the message 3 in the random access process, and the uplink resource includes at least one of a time-frequency resource, an antenna port, and a reference signal.
  • the configuration information can be notified to the terminal device by message 2 and/or system information (SI).
  • the network device when the network device detects that the message 3 fails to be sent, the network device sends, to the terminal device, configuration information of multiple uplink resources used to indicate that the message 3 is retransmitted, so that the terminal device obtains multiple uplink resources. Selecting one or more uplink resources to retransmit at least one message 3 reduces the probability of retransmitting the message 3 with the same uplink resource by other terminal devices, thereby reducing the probability of collision occurrence and reducing the delay of random access.
  • the new radio supports: the network device schedules 1 message 3 for transmission via message 2, and the network device can schedule multiple messages 3 for retransmission to reduce access delay and Reduce the probability of collision.
  • NR supports scheduling multiple Msg3 retransmission to reduce the access delay and the contention probability.
  • the new air interface supports: the network device schedules one uplink grant/uplink resource for the transmission of the message 3 through the message 2, and the network device can schedule multiple uplink grant/uplink resources for the weight of the message 3. Pass to reduce access delay and reduce the probability of collision.
  • the configuration information of the K uplink resources is indicated by one downlink control information (DCI), and one DCI is configured with K uplink resources; or the configuration information of the K uplink resources is configured by K.
  • the DCI indicates that the K DCIs and the K uplink resources have a one-to-one relationship, and each DCI is configured with one uplink resource; or the configuration information of the K uplink resources is indicated by M DCIs, where M is greater than 1
  • M is greater than 1
  • M An integral number
  • each DCI of the M1 DCIs is configured with one uplink resource
  • the sum of the number of uplink resources and the number of uplink resources configured by the M2 DCIs is K.
  • the K DCIs are located in different frequency domain locations and/or time slots, respectively, and the M DCIs are respectively located in different frequency domain locations or time slots.
  • the configuration information includes the uplink resource quantity information and/or the uplink resource location information of the retransmission message 3, and the uplink resource location information of the retransmission message 3 indicates the location information time domain of the K uplink resources. Location and/or frequency domain location; uplink resource quantity information indicates the number K of uplink resources.
  • the method before the network device receives the message 3 sent by the terminal device, the method further includes:
  • the network device sends at least one of a system message, a message 2, and other messages to the terminal device, where the system message or the message 2 carries uplink resource quantity information, and the uplink resource quantity information indicates the The number of K uplink resources.
  • the system message may be a remaining minimum system information (RMSI), and the other message may be a radio resource control (RRC) message, a medium access control-control element (Medium access control-control element) , MAC-CE) message, and physical down control channel order (PDCCH order).
  • RRC radio resource control
  • Medium access control-control element Medium access control-control element
  • MAC-CE physical down control channel order
  • the network device before the network device sends the message 2 to the terminal device, the network device further includes: the network device receiving the random access preamble sent by the terminal, and the network device determining that the type of the random access preamble is a preset type.
  • the random access preambles are divided into different types according to different roles, and different random access preambles correspond to different types.
  • the role of the random access preamble includes a contention-free random access method, beam recovery, beam management, link interruption recovery, and channel state information reference signal (CSI-RS) random access preamble.
  • CSI-RS channel state information reference signal
  • the system message or message 2 carries DCI configuration information indicating at least one of a time domain location, a frequency domain location, and a number of K DCIs or M DCIs.
  • the application provides a method for communication, including: the terminal device sends a message 3 to the network device, and if the message 3 fails to be sent, the terminal device receives the configuration of the K uplink resources from the network device indication message 3 for retransmission.
  • the information, K is an integer greater than 1, the terminal device selects N uplink resources from the K uplink resources, and retransmits the message 3 according to the N uplink resources.
  • the message 3 is the message 3 in the random access process, and in the step of the terminal device sending the message 3 to the network device, the message 3 may be initially transmitted or retransmitted.
  • the terminal device may retransmit N messages 3 according to the N uplink resources, and each uplink resource corresponds to one message 3.
  • Different uplink resources may use different physical layer parameters to transmit Msg3, and the physical layer parameters include at least one of a modulation and coding mode, a redundancy version, a transmission power, a frequency hopping mode, a waveform, and a subcarrier spacing.
  • the terminal device when the terminal device fails to send the message 3, the terminal device selects one or more uplink resources from the multiple uplink resources to retransmit one or more messages 3, and reduces the retransmission of the same uplink resource with other terminal devices.
  • the probability of message 3, thereby reducing the probability of collision occurrence and reducing the delay of random access.
  • the terminal device selects N uplink resources from the K uplink resources, where the terminal device randomly selects N uplink resources from the K uplink resources, or the terminal device associates according to the message 3.
  • the type of the random access preamble determines the number of uplink resources K and/or N; the terminal device selects N uplink resources from the K uplink resources.
  • the number N of downlink resources is notified by the network device to the terminal device.
  • the network device may notify the terminal device by using at least one of message 2, downlink control information, remaining minimum system message, radio resource control message, media access control-control element message, and physical downlink control channel command.
  • the terminal device determines K and/or N associated with the random access preamble according to the type of random access preamble transmitted.
  • the retransmission message 3 uses a different beam than the one used to transmit the message 3.
  • the beamwidth used by the retransmission message 3 is smaller than the beamwidth used by the last transmission message 3 (eg, the retransmission message 3 uses a 3 dB beamwidth), and the beam direction used by the retransmission message 3 is the same as that used for the last transmission of the message 3.
  • the beam directions can overlap in space.
  • the antenna port used by the retransmission message 3 may also be different from the antenna port used for the last transmission of the message 3.
  • the configuration information of the uplink resource is indicated by one downlink control information DCI, and K uplink resources are scheduled; or
  • the configuration information of the uplink resource is indicated by K DCIs, and each DCI is configured with one uplink resource; or
  • the configuration information includes uplink resource location information and uplink resource quantity information, where the uplink resource location information indicates a location of the K uplink resources, and the uplink resource quantity information indicates The number of K uplink resources.
  • the method before the terminal device sends the message 3 to the network device, the method further includes:
  • the terminal device receives at least one of a system message, a message 2, and other messages that are sent by the network device, and the uplink resource quantity information indicates the number of uplink resources of the retransmission message 3.
  • the system message may be an RMSI, and the other message may be at least one of an RRC message, a MAC-CE message, and a PDCCH order.
  • the terminal device sends a random access preamble to the network device, where the type of the random access preamble is a preset type.
  • the terminal device acquires the K uplink resources for retransmission of the message 3 from the K uplink resources according to the type of the random access preamble sent, and/or the K devices from the terminal device.
  • N uplink resources are selected in the uplink resource for retransmission of the message 3.
  • system message or the message 2 further carries DCI configuration information, where the DCI configuration information is used to indicate the time domain location, quantity, and sum of the K DCIs or the M DCIs. At least one of the frequency domain locations.
  • the DCI configuration information is carried in a DCI that has been sent to a terminal device, where the DCI configuration information is used to indicate a time domain location, a quantity, and a quantity of the K DCIs or the M DCIs. At least one of the frequency domain locations.
  • the DCI that has been sent to the terminal device may be other DCIs than K DCIs or M DCIs, or may belong to any one of K DCIs or M DCIs.
  • a communication device having the functionality to implement the behavior of a network device in the above method.
  • the functions may be implemented by hardware or by corresponding software implemented by hardware.
  • the hardware or software includes one or more modules corresponding to the functions described above.
  • the apparatus includes: a receiving unit and a sending unit.
  • the receiving unit is configured to receive the message 3 sent by the terminal device.
  • a sending unit configured to send, to the terminal device, configuration information of the K uplink resources used to indicate that the message 3 is retransmitted, if the sending of the message 3 fails to be sent, where K is an integer greater than 1.
  • the device includes: a transceiver, a memory, and a processor; wherein
  • a transceiver configured to receive a message 3 sent by the terminal device
  • the program stores a set of program codes
  • the processor is configured to call the program code stored in the memory to perform the following operations:
  • the transceiver is instructed to send, to the terminal device, configuration information of the K uplink resources used to indicate that the message 3 is retransmitted, and K is an integer greater than 1.
  • the device may be a chip, and optionally, the chip may include one or more memories for storing program code, and when the program code is executed, causing the processor to implement a corresponding Features.
  • the principle and the beneficial effects of the device can be referred to the method embodiments of the foregoing possible network devices and the beneficial effects thereof. Therefore, the implementation of the device can refer to the implementation of the method, and the repetition is not Let me repeat.
  • a communication device having the functionality to implement the behavior of a terminal device in the above method.
  • the functions may be implemented by hardware or by corresponding software implemented by hardware.
  • the hardware or software includes one or more modules corresponding to the functions described above.
  • the apparatus includes: a sending unit, an acquiring unit, and a retransmission unit.
  • a sending unit configured to send a message 3 to the network device
  • An acquiring unit configured to receive configuration information of K uplink resources from the network device, used to indicate that the message 3 is retransmitted, if the message 3 fails to be sent; K is an integer greater than one;
  • a retransmission unit configured to select N uplink resources from the K uplink resources, and retransmit the message 3 according to the N uplink resources; where N ⁇ K, and N is an integer greater than 0.
  • the terminal device includes: a transceiver, a memory, and a processor; wherein
  • a transceiver configured to send a message 3 to the network device
  • the program stores a set of program codes
  • the processor is configured to call the program code stored in the memory to perform the following operations:
  • the terminal device acquires configuration information of the K uplink resources used to indicate that the message 3 is retransmitted; K is an integer greater than one;
  • N ⁇ K, and N is an integer greater than 0.
  • the device may be a chip, and optionally, the chip may include one or more memories for storing program code, and when the program code is executed, causing the processor to implement a corresponding Features.
  • the principle and the beneficial effects of the device can be referred to the method embodiments of the foregoing possible terminal devices and the beneficial effects thereof. Therefore, the implementation of the device can refer to the implementation of the method, and the repetition is not Let me repeat.
  • Yet another aspect of the present application is directed to a computer readable storage medium having instructions stored therein that, when executed on a computer, cause the computer to perform the methods described in the various aspects above.
  • Yet another aspect of the present application provides a computer program product comprising instructions which, when run on a computer, cause the computer to perform the methods described in the various aspects above.
  • 1a is a schematic structural diagram of a communication system according to an embodiment of the present invention.
  • 1b is a schematic diagram of a random access procedure in a long term evolution communication system
  • 2a is a schematic diagram of multi-beam communication in a new air interface communication system
  • 2b is another schematic diagram of multi-beam communication in a new air interface communication system
  • FIG. 3 is a schematic flowchart of a method for communication according to an embodiment of the present invention.
  • FIG. 4 is a schematic structural diagram of a communication apparatus according to an embodiment of the present invention.
  • FIG. 5 is another schematic structural diagram of a communication apparatus according to an embodiment of the present invention.
  • FIG. 6 is another schematic structural diagram of a communication device according to an embodiment of the present invention.
  • FIG. 7 is another schematic structural diagram of a communication apparatus according to an embodiment of the present invention.
  • FIG. 1a is a schematic structural diagram of a communication system according to an embodiment of the present invention.
  • the communication system includes multiple base stations and multiple terminal devices.
  • Figure 1a shows a network device communicating with two terminal devices.
  • the communication system may be a global system for mobile communication (GSM), a code division multiple access (CDMA) system, a wideband code division multiple access (WCDMA) system, and a global system.
  • GSM global system for mobile communication
  • CDMA code division multiple access
  • WCDMA wideband code division multiple access
  • WiMAX Worldwide interoperability for microwave access
  • LTE long term evolution
  • 5G communication system such as new radio (NR)
  • NR new radio
  • the random access procedure between the terminal device and the network device is as shown in FIG. 1b.
  • S101 The network device sends system information to the terminal device, where the terminal device receives the system information sent by the network device, and the system message can carry parameters such as the maximum number of retransmissions.
  • S102. The terminal device sends a random access preamble (msg1, message 1) to the network device, where the network device receives the random access preamble sent by the terminal device.
  • the terminal device sends a message 3 (msg3) of the first scheduled transmission to the network device, where the network device receives the message 3 of the first scheduled transmission sent by the terminal device; and the time domain location and frequency indicated by the terminal device according to the uplink scheduling authorization.
  • the domain location sends a scheduling transmission message 3 (msg3); if the network device correctly receives the message 3, it sends a message 4 (msg4) to the terminal device for resolving the conflict, and the collision causes multiple users to use the same uplink resource to initiate the random access procedure.
  • the network device considers that only one user initiates random access.
  • S105 The network device sends a scheduling retransmission to the terminal device, and sends a scheduling retransmission through DCI (downlink control information, DCI).
  • DCI downlink control information
  • the network device When the message 3 is transmitted, the network device fails to receive the message 3 due to factors such as channel fading, interference, low transmission power, or multiple user conflicts. When the network device fails to receive the message 3, the resource is scheduled for the message 3 again by using the downlink control information.
  • the network device uses the downlink control information format 0 to schedule resources.
  • the structure of the downlink control information format 0 is as shown in Table 1.
  • the resource block assignment and hopping resource allocation schedules the frequency domain resources retransmitted by the message 3.
  • the maximum number of retransmissions of the message 3 is indicated by the system information. When the number of retransmissions of the message 3 exceeds the maximum number of retransmissions, the terminal device resends the random access preamble or reports the random access problem to the upper layer.
  • the network device assigns a temporary cell-radio network temporary identifier (TC-RNTI) to the terminal device for scrambling of the message 3. If the network device detects that the message 3 is successfully transmitted and the message 4 successfully resolves the conflict, the TC-RNTI is used as the cell-radio network temporary identifier (C-RNTI) of the terminal device.
  • TC-RNTI temporary cell-radio network temporary identifier
  • the network device reconfigures resources and power when the message 3 is retransmitted, and can solve the message 3 transmission failure caused by channel fading or interference, but does not resolve the conflict.
  • the network device notifies the terminal device to retransmit the message 3 all the time, resulting in a large access delay.
  • the network device and the terminal device may use multiple beams for communication, and there is also a problem that the collision probability is large and the access is prolonged.
  • multiple terminal devices use the same random access preamble, and when multiple terminal devices receive a random access response sent by the network device, they all consider that they are granting their own uplink scheduling authorization, so multiple terminals The device sends a message 3 on the same upstream resource, causing a collision.
  • FIG. 2b in a multi-beam scenario, when a random access is initiated, the terminal device uses a wider beam for communication, and a wider beam gains lower antenna gain, and the network device may not receive the message correctly. 3, thus causing the transmission of message 3 to fail.
  • the present application proposes a retransmission method of the message 3: when the network device detects that the message 3 fails to transmit, The terminal device sends a downlink control information to schedule multiple uplink resources, and the terminal device selects one or more uplink resources from the scheduled multiple uplink resources to retransmit one or more messages 3, thereby reducing collision when the message 3 is retransmitted. If the network device detects that the message 3 fails to transmit, the network device sends multiple downlink control information to schedule multiple uplink resources, and the terminal device selects one or more uplink resources from multiple uplink resources to retransmit at least one message.
  • Beam transmits one or more messages 3, sounding reference signal (SRS), channel state information reference signal (ch The annel state information reference signal (CSI-RS) improves the probability of successful message 3 detection.
  • SRS sounding reference signal
  • ch channel state information reference signal
  • CSI-RS annel state information reference signal
  • the terminal device in the present application is a device having a wireless communication function, and may be a handheld device having a wireless communication function, an in-vehicle device, a wearable device, a computing device, or other processing device connected to a wireless modem.
  • Terminal devices in different networks may be called different names, such as: user equipment, access terminals, subscriber units, subscriber stations, mobile stations, mobile stations, remote stations, remote terminals, mobile devices, user terminals, terminals, wireless communications.
  • Device, user agent or user device cellular phone, cordless phone, Session Initiation Protocol (SIP) phone, Wireless Local Loop (WLL) station, Personal Digital Assistant (PDA), Terminal equipment in a 5G network or a future evolution network.
  • SIP Session Initiation Protocol
  • WLL Wireless Local Loop
  • PDA Personal Digital Assistant
  • the network device in the present application may also be referred to as a base station device, and is a device deployed in a radio access network to provide wireless communication functions, including but not limited to: a base station (for example, a BTS (Base Transceiver Station, BTS), a node. B (NodeB, NB), Evolved Node B (eNB or eNodeB), transmission node or transmission reception point (TRP or TP) or next generation Node B (gNB) in the NR system , base stations or network devices in future communication networks), relay stations, access points, in-vehicle devices, wearable devices, wireless-fidelity (Wi-Fi) sites, wireless backhaul nodes, small stations, micro stations and many more.
  • a base station for example, a BTS (Base Transceiver Station, BTS
  • BTS Base Transceiver Station
  • NodeB NodeB
  • eNB or eNodeB Evolved Node B
  • TRP or TP transmission no
  • FIG. 3 is a schematic flowchart diagram of a method for communication according to an embodiment of the present invention, where the method includes but is not limited to the following steps:
  • the terminal device sends a message 3 to the network device, where the network device receives the message 3 sent by the terminal device.
  • the sending of the message 3 in this step may be the initial data or the retransmitted data.
  • the network device sends a system message to the terminal device, where the terminal device sends a random access preamble (msg1) to the network device, the network device receives the random access preamble sent by the terminal device, and the network device sends a random access response to the terminal device. (msg2).
  • the transmission process of the message 1 and the message 2 can be referred to the description in the long-term evolution communication system, and details are not described herein again.
  • the network device detects that the message 3 is sent.
  • the network device may determine the cause of the failure of the message 3 according to the signal quality, and determine the number of multiple uplink resources and/or multiple uplink resources scheduled for retransmission.
  • the signal quality is at least one of a reference signal receiving power (RSRP), a reference signal receiving quality (RSRQ), and a received signal strength indication (RSSI).
  • the reference signal may be a channel state information reference signal (CSI-RS), a demodulation reference signal (DMRS), a phase tracking reference signal (PTRS), and a sounding reference signal. At least one of a sounding reference signal (SRS).
  • the network device detects the signal quality of the reference signal in the message 3, the signal quality meets the preset condition (for example, the signal quality exceeds the preset threshold), and when the message 3 fails to detect, the network device determines that the message 3 fails to be sent, and the message 3 is sent due to the occurrence. Collision (ie, multiple terminal devices simultaneously send a message 3 on the same uplink resource). Optionally, the network device determines that multiple terminal devices collide, and determines a quantity of multiple uplink resources and/or multiple uplink resources that are scheduled for retransmission.
  • the preset condition for example, the signal quality exceeds the preset threshold
  • the network device presets the number of multiple uplink resources and/or uplink resources for retransmission after the message 3 fails to be transmitted according to the type of the random access preamble. For example, when the type of the random access preamble received by the network device is a preset type, after the message 3 fails to be transmitted, multiple uplink resources are scheduled for retransmission and retransmission of the message 3. For another example, when the type of the random access preamble received by the network device does not belong to the preset type, after the message 3 fails to be transmitted, only one uplink resource is scheduled for retransmission of the message 3.
  • the preset type of the contention-free random access mode, the beam recovery, the beam management, the link interruption recovery, and the random access preamble of the channel state information reference signal pre-defines the mapping between the index and the type of the random access preamble.
  • the different random access preambles correspond to different types, and the network device queries the corresponding type according to the received index of the random access preamble.
  • the network device sends, to the terminal device, configuration information of the K uplink resources, where the message 3 is retransmitted, and the terminal device receives the configuration information sent by the network device.
  • the configuration information is used to indicate information of K uplink resources scheduled to the message 3, for example, at least one of a time domain location, a frequency domain location, and a quantity of the K uplink resources.
  • K uplink resources are used to retransmit message 3, and K is an integer greater than one.
  • the uplink resource includes at least one of a time domain resource, a frequency domain resource, and a spatial resource of the service data of the message 3, and includes a reference signal resource of the message 3, and a reference signal. It may be any one of SRS, PTRS, DMRS, and CSI-RS. It should be noted that the K uplink resources may be in the same slot or in different time slots.
  • the configuration information of the K uplink resources is indicated by one DCI, and one DCI is configured with K uplink resources, that is, the network device sends the K uplink resources indicating that the message 3 is retransmitted to the terminal device. DCI.
  • the network device may notify the configuration information of one DCI in this embodiment in the system message, the message 2, or other DCI, where the configuration information includes at least one of the number of DCIs, the time domain location, and the frequency domain location.
  • the configuration information of the K uplink resources is indicated by K DCIs, and each DCI is configured with one uplink resource.
  • K 3
  • the network device sends three DCIs to the terminal device, namely DCI1, DCI2, and DCI3, and the uplink resources scheduled by the three DCIs are uplink resource 1, uplink resource 2, and uplink resource 3.
  • DCI1 indicates the time-frequency position of the uplink resource 1
  • DCI2 indicates the time-frequency position of the uplink resource 2
  • DCI3 indicates the time-frequency position of the uplink resource 3.
  • the network device may notify the configuration information of the K DCIs in the embodiment in the DCI that has been sent to the terminal device in the system message, the message 2, or the K DCIs, where the configuration information includes the number of K DCIs, the time domain location, and the frequency. At least one of the domain locations.
  • the K DCIs may be located in different frequency domain locations and/or time slots.
  • the K DCIs may be located in the same frequency domain location and/or time slot, and sent through different base station beams or antenna ports.
  • the configuration information of the K uplink resources is indicated by M DCIs, and M is an integer greater than 1.
  • M is an integer greater than 1.
  • Each DCI of the M1 DCIs is configured with one uplink resource, and each of the M2 DCIs.
  • the sum of the number of uplink resources configured by M1 DCIs and the number of uplink resources configured by M2 DCIs is equal to K.
  • the network device may notify the configuration information of the M DCIs in the embodiment in the DCI that has been sent to the terminal device in the system message, the message 2, or the M DCI, where the configuration information includes the number of the M DCIs, the time domain location, and At least one of the frequency domain locations.
  • the M DCIs may be located in different frequency domain locations and/or time slots.
  • the M DCIs may be located in the same frequency domain location and/or time slot, and sent through different base station beams or antenna ports.
  • the network device sends, to the terminal device, M DCIs for indicating that the message 3 is retransmitted.
  • Some DCIs of the M DCIs are configured with one uplink resource, and DCIs of another part of the M DCIs are configured with multiple uplink resources.
  • One uplink resource, three DCIs are divided into DCI1, DCI2 and DCI3.
  • DCI1 is configured with uplink resource 1
  • DCI2 is configured with uplink resource 2
  • DCI3 is configured with uplink resource 3 and uplink resource 4.
  • the configuration information of the K uplink resources may further indicate physical layer parameters on each uplink resource, where the physical layer parameters include at least one of a sending power, a modulation mode, an encoding mode, and a redundancy version.
  • the physical layer parameters used by different uplink resources may be the same or different.
  • the configuration information of the K uplink resources may further indicate a manner of sending the message 3 on each uplink resource, where the sending manner includes: switching a beam, changing a precoding manner, and changing a demodulation reference signal (demodulation reference) At least one of signal, DMRS), waveform, and subcarrier spacing.
  • the sending manner includes: switching a beam, changing a precoding manner, and changing a demodulation reference signal (demodulation reference) At least one of signal, DMRS), waveform, and subcarrier spacing.
  • the system message sent by the network device to the terminal device carries the resource quantity indication identifier, where the resource quantity indication identifier is used to indicate that the number of uplink resources scheduled to be retransmitted to the message 3 is one or more.
  • the resource quantity indication identifier is represented by 0 and 1, and 0 indicates that the number of uplink resources scheduled to be retransmitted to the message 3 is one, and 1 indicates that the number of uplink resources scheduled to be retransmitted to the message 3 is plural.
  • the system message includes, but is not limited to, any one of an RMSI, an RRC message, a MAC CE, and a PDCCH order.
  • the network message sent by the network device to the terminal device carries the quantity of the uplink resource, where the quantity of the uplink resource indicates the number of the K uplink resources that are scheduled to be retransmitted by the message 3, that is, the quantity of the uplink resource.
  • the information indicates K.
  • the system message includes an RMSI, where the uplink resource quantity information may also be carried in any one of an RRC message, a MAC CE, and a PDCCH order.
  • the message 2 sent by the network device to the terminal device carries the uplink resource quantity information of the uplink resource, and the message 2 is the random access response sent by the network device to the terminal device.
  • the uplink resource quantity information indicates the number of K uplink resources scheduled for retransmission by the message 3, that is, the uplink resource quantity information indicates K.
  • the system message includes an RMSI, where the uplink resource quantity information may also be carried in any one of an RRC message, a MAC CE, and a PDCCH order.
  • the network device when the network device detects that the message 3 fails to be sent, the network device schedules K uplink resources for retransmission for the message 3, and the number of K is greater than the number of uplink resources that are scheduled to be transmitted to the message 3 last time. .
  • the network device schedules one uplink resource for the message 3; when the first transmission fails, the network device schedules K1 uplink resources for the message 3; when the second transmission fails, The network device schedules K2 uplink resources for message 3.
  • the network device schedules K3 uplink resources for message 3 until the number of retransmissions is equal to the maximum number of retransmissions or the total number of scheduled uplink resources is equal to the maximum allowed.
  • the number of uplink resources; wherein the maximum number of retransmissions and the maximum number of allowed uplink resources may be notified to the terminal device by the network device by any one of system message, DCI, RRC message or PDCCH order.
  • 1 ⁇ K1 ⁇ K2 ⁇ K3, and K1, K2, and K3 are integers, so that the number of uplink resources scheduled for each message 3 is greater than the number of uplink resources scheduled for message 3 last time.
  • the new air interface communication system supports: the network device schedules 1 message 3 for transmission through the message 2, and the network device can schedule multiple messages 3 for retransmission to reduce the access delay and reduce the collision. Probability. NR supports scheduling multiple Msg3 retransmission to reduce the access delay and contention probability.
  • the network device assigns a corresponding C-RNTI (different from the TC-RNTI in message 2) and/or TA (time advance) to the corresponding terminal device in the corresponding message 4.
  • the terminal device determines the contention resolution successful according to the content of the message 4, adopts the C-RNTI in the currently received message 4, and discards the TC-RNTI.
  • the network device does not assign a new C-RNTI to the message 4 corresponding to one of the messages 3.
  • the user equipment sends the message 3) after receiving the message 4 and completing the conflict resolution, the TC- The RNTI is set to C-RNTI.
  • the new air interface communication system supports: the network device schedules 1 uplink grant by message 2 for the transmission of the message 2, and the network device can schedule multiple uplink grants for the retransmission of the message 3 to reduce Access delay and reduce the probability of collision.
  • NR supports: gNB schedules one UL grant for Msg3 transmission by Msg2, and gNB may schedule multiple UL grants for Msg3 to reduce the access delay and contention probability.
  • the terminal device selects N uplink resources from the K uplink resources.
  • the terminal device receives configuration information from the network device for indicating retransmission of the message 3, and determines information of the K uplink resources according to the configuration information.
  • the configuration information may be one or more DCIs sent by the network device.
  • the terminal device selects N uplink resources from the K uplink resources according to a pre-stored or pre-configured selection rule, where N ⁇ K and N are integers.
  • the network device may notify the terminal device selection rule by at least one of system message, message 2, and DCI.
  • the terminal device may acquire N from at least one of message 2, DCI, RMSI, RRC message, MAC-CE message, and PDCCH order.
  • the terminal device pre-stores or pre-configures a mapping relationship between the type of the random access preamble and the number of selected uplink resources, and the terminal device determines the number of uplink resources according to the type of the random access preamble. N and / or K, select N uplink resources from K uplink resources.
  • the random access preamble 1 is a dedicated preamble when the link is interrupted, and the number of random access preamble 1 associations is 1; the random access preamble 2 is a dedicated preamble for beam management, and the number of random access preamble 2 associations is 2. It is assumed that the number of uplink resources indicated by the configuration information is 4, and when the message 3 fails to be transmitted, the terminal device determines that the message 3 corresponds to the random access preamble 1, and determines the number of associations of the random access preamble 1 according to the pre-stored or pre-configured mapping relationship. As shown in FIG. 1, the terminal device selects one uplink resource from the four uplink resources for retransmitting the message 3.
  • the terminal device determines that the message 3 corresponds to the random access preamble 2. According to the pre-stored or pre-configured mapping relationship, the number of associations of the random access preamble 2 is determined to be 2, and the terminal device selects from the four uplink resources. Two uplink resources are used to retransmit message 3.
  • the selection rule is: the terminal device randomly selects N uplink resources from the K uplink resources.
  • the probability that each of the uplink resources is selected is equal, and the terminal device randomly selects N uplink resources from the K uplink resources, that is, the terminal device selects N uplink resources from the K uplink resources.
  • the terminal device may retransmit the message 3 multiple times, and the number of retransmissions of the message 3 must be less than the maximum number of retransmissions, and the network device may pass the system message, the message 2, the DCI, Any one of the RRC message or the PDCCH order notifies the terminal device of the maximum number of retransmissions.
  • the network device schedules uplink resources for each retransmitted message 3.
  • the number of uplink resources scheduled for retransmission for message 3 may be in an increasing or non-decreasing relationship with the number of retransmissions, and the terminal device needs to select at least one of multiple uplink resources scheduled from the network device each time.
  • the uplink resource retransmits the message 3.
  • the selection rule and the number of the uplink resources of the network device may be the same or different, and the embodiment does not limit the present invention.
  • the terminal device retransmits the message 3 to the network device, where the network device receives the message 3 retransmitted by the terminal device.
  • the terminal device retransmits the message 3 to the network device according to the N uplink resources selected by S204.
  • the number of messages 3 retransmitted by the terminal device may be N, that is, one message 3 is retransmitted for each uplink resource.
  • the terminal device may send N messages 3 by using N transmit beams and/or antenna ports respectively according to the indication of the configuration information sent by the network device, and send 1 message 3 to each transmit beam and/or antenna port, and each sent message 3 may be The SRS, the DMRS, the PTRS, and/or the CSI-RS carried in each message 3 may be the same or different.
  • the terminal device may send N messages 3 in the same manner (for example, a transmit beam/antenna port) according to the indication of the configuration information sent by the network device.
  • the base station receives N messages 3 using different receive beams.
  • the network device may schedule multiple uplink resources for the message 3, and the uplink resources selected by the conflicting terminal devices may be different, so that the network device may be in different uplink resources.
  • Message 3 is detected on, reducing the probability of a collision occurring.
  • the network device After receiving the retransmitted message 3, the network device sends a message 4 to the terminal device.
  • the network device when the network device detects that the message 3 fails to be sent, the network device sends, to the terminal device, configuration information of multiple uplink resources used to indicate that the message 3 is retransmitted, so that the terminal device obtains multiple uplink resources. Selecting one or more uplink resources to retransmit at least one message 3 reduces the probability of retransmitting the message 3 with the same uplink resource by other terminal devices, thereby reducing the probability of collision occurrence and reducing the delay of random access.
  • the apparatus 4 shown in FIG. 4 can implement the network device side of the embodiment shown in FIG. 3, and the apparatus 4 includes a receiving unit 401 and a sending unit 402.
  • the receiving unit 401 is configured to receive the message 3 sent by the terminal device, for example: the receiving unit 401 performs the step of S301 in FIG. 3.
  • the sending unit 402 is configured to: if it detects that the message 3 fails to be sent, send, to the terminal device, configuration information of the K uplink resources used to indicate that the message 3 is retransmitted, where M is an integer greater than 1, for example, sending The unit performs the steps of S302 and S303 in FIG.
  • the device 4 may be a network device, and the device 4 may also be a field-programmable gate array (FPGA), a dedicated integrated chip, a system on chip (SoC), and a central unit.
  • FPGA field-programmable gate array
  • SoC system on chip
  • CPU central processor unit
  • NP network processor
  • MCU micro controller unit
  • PLD programmable logic device
  • an embodiment of the present invention further provides a device 5.
  • the device 5 is a network device, and the network device includes:
  • the memory 502 is configured to store programs and data.
  • the number of the memories may be one or more, and the type of the memory may be any form of storage medium.
  • the memory may be a random access memory (English: random access memory, RAM for short) or a read only memory (English: read only memory, abbreviated as: ROM) or a flash memory, wherein the memory 502 may be located separately in the terminal device, It may be located inside the processor 501.
  • the transceiver 503 is configured to send and receive signals.
  • the transceiver can be a separate chip, or can be a transceiver circuit in the processor 501 or as an input and output interface.
  • the transceiver may be at least one of a transmitter for performing a transmitting step in the device and a receiver for performing a receiving step in the device.
  • the transceiver 503 may further include a transmitting antenna and a receiving antenna.
  • the transmitting antenna and the receiving antenna may be two antennas that are separately provided, or may be one antenna.
  • the transceiver 503 is configured to receive the message 3 sent by the terminal device.
  • the transceiver 503 is configured to perform the steps of S301 in FIG.
  • the processor 501 is configured to execute the program code stored by the memory 502. When the program code is executed, the processor 501 is configured to instruct the transceiver 503 to send to the terminal device if the sending of the message 3 fails.
  • K is an integer greater than 1.
  • the processor 501 is configured to perform the steps of S302 and S303 in FIG.
  • the transceiver 503, the memory 502, and the processor 501 communicate with each other through an internal connection path, for example, by a bus connection.
  • the configuration information of the uplink resource is indicated by one downlink control information DCI; or
  • the configuration information of the uplink resource is indicated by K DCIs, and each DCI is configured with one uplink resource; or
  • the K DCIs are located in different frequency domain locations and/or time slots
  • the M DCIs are located in different frequency domain locations and/or time slots.
  • the configuration information includes uplink resource location information and/or uplink resource quantity information, where the uplink resource location information indicates a time domain location and/or a frequency domain location of the K uplink resources, where The uplink resource quantity information indicates the number of the K uplink resources.
  • the transceiver is further configured to send, to the terminal device, a system message SI, a message 2, a radio resource control RRC message, a media access control-control element MAC-CE message, and a physical downlink control channel instruction PDCCH.
  • a system message SI a message 2, a radio resource control RRC message, a media access control-control element MAC-CE message, and a physical downlink control channel instruction PDCCH.
  • At least one of the order; wherein, at least one of the system message SI, the message 2, the radio resource control RRC message, the media access control-control element MAC-CE message, and the physical downlink control channel command PDCCH order carries uplink resource quantity information
  • the uplink resource quantity information indicates the quantity of the K uplink resources.
  • the transceiver 503 is further configured to receive a random access preamble sent by the terminal device;
  • the processor 501 is further configured to determine that the type of the random access preamble is a preset type.
  • the system message or the message 2 further carries DCI configuration information, where the DCI configuration information indicates a time domain location, a quantity, and a frequency domain location of the K DCIs or the M DCIs. At least one of them.
  • the device 5 may be a chip, for example, may be a communication chip used in a network device for implementing related functions of the processor 501 in the network device.
  • the chip can be a field programmable gate array for implementing related functions, a dedicated integrated chip, a system chip, a central processing unit, a network processor, a digital signal processing circuit, a microcontroller, and a programmable controller or other integrated chip.
  • one or more memories may be included for storing program code, and when the program code is executed, the processor implements corresponding functions.
  • the computer program product includes one or more computer instructions (sometimes referred to as code or programs).
  • code or programs When the computer program instructions are loaded and executed on a computer, the processes or functions described in accordance with embodiments of the present application are generated in whole or in part.
  • the computer can be a general purpose computer, a special purpose computer, a computer network, or other programmable device.
  • the computer instructions can be stored in a computer readable storage medium or transferred from one computer readable storage medium to another computer readable storage medium, for example, the computer instructions can be from a website site, computer, server or data center Transmission to another website site, computer, server or data center via wired (eg coaxial cable, fiber optic, digital subscriber line (DSL)) or wireless (eg infrared, wireless, microwave, etc.).
  • the computer readable storage medium can be any available media that can be accessed by a computer or a data storage device that includes one or more servers, data centers, etc. that can be integrated with the media.
  • the usable medium may be a magnetic medium (eg, a floppy disk, a hard disk, a magnetic tape), an optical medium (eg, a DVD), or a semiconductor medium (such as a solid state disk (SSD)) or the like.
  • a magnetic medium eg, a floppy disk, a hard disk, a magnetic tape
  • an optical medium eg, a DVD
  • a semiconductor medium such as a solid state disk (SSD)
  • the apparatus 6 shown in FIG. 6 can implement the terminal device side of the embodiment shown in FIG. 3, and the apparatus 6 includes: a sending unit 601, an obtaining unit 602, and a retransmission unit 603.
  • the sending unit 601 is configured to send a message 3 to the network device.
  • the obtaining unit 602 is configured to: if the message 3 fails to be sent, receive configuration information of the K uplink resources from the network device for indicating that the message 3 is retransmitted; K is an integer greater than 1.
  • the retransmission unit 603 is configured to select N uplink resources from the K uplink resources, and retransmit the message 3 according to the N uplink resources; where N ⁇ K, and N is an integer greater than 0.
  • the device 6 may be a terminal device, and the device 6 may also be a field-programmable gate array (FPGA), a dedicated integrated chip, a system on chip (SoC), and a central unit for implementing related functions.
  • FPGA field-programmable gate array
  • SoC system on chip
  • CPU central processor unit
  • NP network processor
  • MCU micro controller unit
  • PLD programmable logic device
  • an embodiment of the present invention further provides a device 7.
  • the device 7 is a terminal device, and the terminal device includes:
  • the memory 702 is configured to store programs and data.
  • the number of the memories may be one or more, and the type of the memory may be any form of storage medium.
  • the memory may be a random access memory (English: random access memory, RAM for short) or a read only memory (English: read only memory, abbreviated as: ROM) or a flash memory, wherein the memory 702 may be located separately in the terminal device, It may be located inside the processor 701.
  • the transceiver 703 is configured to send and receive signals.
  • the transceiver can be a separate chip, or can be a transceiver circuit in the processor 701 or as an input and output interface.
  • the transceiver may be at least one of a transmitter for performing a transmitting step in the device and a receiver for performing a receiving step in the device.
  • the transceiver 703 may further include a transmitting antenna and a receiving antenna, and the transmitting antenna and the receiving antenna may be two antennas that are separately provided, or may be one antenna.
  • the transceiver 703 is configured to send a message 3 to the network device.
  • the transceiver 703 is configured to perform the steps of S303 in FIG.
  • the processor 701 is configured to execute the program code stored in the memory 702. When the program code is executed, the processor 701 is configured to: if the message 3 fails to be sent, acquire, to indicate that the message 3 is retransmitted. Configuration information of K uplink resources; K is an integer greater than 1;
  • N ⁇ K and N is an integer greater than 0.
  • the processor 701 is configured to perform the steps of S304 and S305 in FIG.
  • the transceiver 703, the memory 702, and the processor 701 communicate with each other through an internal connection path, for example, via a bus.
  • the device 7 may be a chip, for example, may be a communication chip used in a network device for implementing related functions of the processor 701 in the network device.
  • the chip can be a field programmable gate array for implementing related functions, a dedicated integrated chip, a system chip, a central processing unit, a network processor, a digital signal processing circuit, a microcontroller, and a programmable controller or other integrated chip.
  • one or more memories may be included for storing program code, and when the program code is executed, the processor implements corresponding functions.
  • the computer program product includes one or more computer instructions (sometimes referred to as code or programs).
  • code or programs When the computer program instructions are loaded and executed on a computer, the processes or functions described in accordance with embodiments of the present application are generated in whole or in part.
  • the computer can be a general purpose computer, a special purpose computer, a computer network, or other programmable device.
  • the computer instructions can be stored in a computer readable storage medium or transferred from one computer readable storage medium to another computer readable storage medium, for example, the computer instructions can be from a website site, computer, server or data center Transmission to another website site, computer, server or data center via wired (eg coaxial cable, fiber optic, digital subscriber line (DSL)) or wireless (eg infrared, wireless, microwave, etc.).
  • the computer readable storage medium can be any available media that can be accessed by a computer or a data storage device that includes one or more servers, data centers, etc. that can be integrated with the media.
  • the usable medium may be a magnetic medium (eg, a floppy disk, a hard disk, a magnetic tape), an optical medium (eg, a DVD), or a semiconductor medium (such as a solid state disk (SSD)) or the like.
  • a magnetic medium eg, a floppy disk, a hard disk, a magnetic tape
  • an optical medium eg, a DVD
  • a semiconductor medium such as a solid state disk (SSD)
  • the disclosed systems, devices, and methods may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the above embodiments it may be implemented in whole or in part by software, hardware, firmware, or any combination thereof.
  • software it may be implemented in whole or in part in the form of a computer program product.
  • the computer program product includes one or more computer instructions.
  • the computer program instructions When the computer program instructions are loaded and executed on a computer, the processes or functions described in accordance with embodiments of the present invention are generated in whole or in part.
  • the computer can be a general purpose computer, a special purpose computer, a computer network, or other programmable device.
  • the computer instructions can be stored in or transmitted by a computer readable storage medium.
  • the computer instructions can be from a website site, computer, server or data center to another website site by wire (eg, coaxial cable, fiber optic, digital subscriber line (DSL)) or wireless (eg, infrared, wireless, microwave, etc.) Transfer from a computer, server, or data center.
  • the computer readable storage medium can be any available media that can be accessed by a computer or a data storage device such as a server, data center, or the like that includes one or more available media.
  • the usable medium may be a magnetic medium (eg, a floppy disk, a hard disk, a magnetic tape), an optical medium (eg, a DVD), or a semiconductor medium (such as a solid state disk (SSD)).
  • the program can be stored in a computer readable storage medium, when the program is executed
  • the flow of the method embodiments as described above may be included.
  • the foregoing storage medium includes various media that can store program codes, such as a ROM or a random access memory RAM, a magnetic disk, or an optical disk.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种通信的方法和装置,网络设备在检测到消息3发送失败的情况下,网络设备向终端设备发送用于指示消息3进行重传的多个上行资源的配置信息,使终端设备从从多个上行资源中选择一个或多个上行资源重传至少一个消息3,减少和其他终端设备使用相同的上行资源重传消息3的概率,从而降低冲突发生的概率,减小随机接入的时延。

Description

一种通信的方法和装置 技术领域
本发明涉及通信领域,尤其涉及一种通信的方法和装置。
背景技术
为了提升无线通信的数据速率和效率,在未来无线通信***(例如:新空口)中提出了波束成形技术,波束成形技术能将传输信号的能量限制在某个波束方向上,从而增加信号的接收效率。波束成形技术能够有效扩大无线信号的传输范围,降低信号干扰,从而达到更高的通信效率和获得更高的网络容量。波束成形技术在提升通信网络的效率的同时,也给波束管理带来了挑战。
用户设备在向网络设备发送上行业务数据之前,需要完成上行同步。在长期演进(long term evolution,LTE)通信***中,由用户设备发起随机接入流程完成上行同步,然而在LTE通信***的随机接入过程中,用户设备在初传和重传消息3(msg3)的过程中发生冲突的概率大,增加了上行同步的时延。
发明内容
本申请所要解决的技术问题在于,提供一种通信的方法和装置,实现了降低消息3发生冲突的概率,减少上行同步的时延。
第一方面,本申请提供了一种通信的方法,包括:网络设备接收终端设备发送的消息3,如果检测消息3发送失败,网络设备向终端设备发送用于指示消息3进行重传的K个上行资源的配置信息,K为大于1的整数。
其中,消息3为随机接入过程中的消息3,上行资源包括时频资源、天线端口、参考信号中的至少一种。配置信息可通过消息2和/或***消息(system information,SI)通知给终端设备。
实施本发明实施例,网络设备在检测到消息3发送失败的情况下,网络设备向终端设备发送用于指示消息3进行重传的多个上行资源的配置信息,使终端设备从多个上行资源中选择一个或多个上行资源重传至少一个消息3,减少和其他终端设备使用相同的上行资源重传消息3的概率,从而降低冲突发生的概率,减小随机接入的时延。
在一种可能的设计中,新空口(new radio,NR)支持:网络设备通过消息2调度1个消息3进行传输,以及网络设备可调度多个消息3进行重传以减少接入时延和降低冲突概率。NR supports scheduling multiple Msg3 retransmission to reduce the access delay and the contention probability。
在一种可能的设计中,新空口支持:网络设备通过消息2调度1个上行授权/上行资源用于消息3的传输,以及网络设备可调度多个上行授权/上行资源用于消息3的重传以减少接入时延和降低冲突概率。NR supports:gNB schedules one UL grant for Msg3 transmission by Msg2,and gNB may schedule multiple UL grants for Msg3 to reduce the access delay and the  contention probability。
在一种可能的设计中,K个上行资源的配置信息由1个下行控制信息(downlink control information,DCI)来指示,1个DCI配置K个上行资源;或K个上行资源的配置信息由K个DCI来指示,K个DCI和K个上行资源为一对一的关系,每个DCI配置1个上行资源;或K个上行资源的配置信息由M个DCI来指示,其中,M为大于1的整数,M1个DCI中每个DCI配置一个上行资源,M2个DCI中每个DCI配置多个上行资源,M=M1+M2,M1和M2为大于0的整数,所述M1个DCI配置的上行资源的数量与所述M2个DCI配置的上行资源的数量之和为K。
在另一种可能的设计中,所述K个DCI分别位于不同的频域位置和/或时隙,以及M个DCI分别位于不同的频域位置或时隙。
在另一种可能的设计中,配置信息包括重传消息3的上行资源数量信息和/或上行资源位置信息,重传消息3的上行资源位置信息指示所述K个上行资源的位置信息时域位置和/或频域位置;上行资源数量信息指示所述上行资源的数量K。
在另一种可能的设计中,网络设备接收终端设备发送的消息3之前,还包括:
所述网络设备向所述终端设备发送***消息、消息2和其它消息中至少一种;其中,所述***消息或所述消息2中携带上行资源数量信息,所述上行资源数量信息指示所述K个上行资源的数量。
其中,***消息可以为剩余最小***消息(remaining minimum system information,RMSI),所述其它消息可以是无线资源控制(radio resource control,RRC)消息、媒体访问控制-控制元素(Medium access control-control element,MAC-CE)消息、和物理下行控制信道指令(physical down control channel order,PDCCH order)。
在另一种可能的设计中,网络设备向终端设备发送消息2之前,还包括:网络设备接收终端发送的随机接入前导,网络设备确定随机接入前导的类型为预设类型。
其中,随机接入前导根据不同的作用划分为不同的类型,不同的随机接入前导对应不同的类型。例如:随机接入前导的作用包括无竞争随机接入方式、波束恢复、波束管理、链路中断恢复、信道状态信息参考信号(channel state information reference signal,CSI-RS)的随机接入前导。
在另一种可能的设计中,***消息或消息2携带DCI配置信息,所述DCI配置信息指示K个DCI或M个DCI的时域位置、频域位置和数量中的至少一种。
第二方面,本申请提供了一种通信的方法,包括:终端设备向网络设备发送消息3,如果消息3发送失败,终端设备接收来自网络设备指示消息3进行重传的K个上行资源的配置信息,K为大于1的整数,终端设备从K个上行资源中选择N个上行资源,以及根据N个上行资源重传消息3。
其中,消息3为随机接入过程中的消息3,终端设备向网络设备发送消息3的步骤中,消息3可以是初传的,也可以是重传的。终端设备可根据N个上行资源重传N个消息3,每个上行资源对应1个消息3。不同上行资源可采用不同的物理层参数发送的Msg3,物理层参数包括调制编码方式、冗余版本、发送功率、跳频方式、波形和子载波间隔中至少一种。
实施上述实施例,终端设备在发送消息3失败时,终端设备从多个上行资源中选择一个或多个上行资源重传一个或多个消息3,减少和其他终端设备使用相同的上行资源重传消息3的概率,从而降低冲突发生的概率,减小随机接入的时延。
在一种可能的设计中,终端设备从K个上行资源中选择N个上行资源包括:终端设备随机从K个上行资源中选择N个上行资源;或所述终端设备根据所述消息3关联的随机接入前导的类型,确定上行资源的数量K和/或N;所述终端设备从所述K个上行资源中选择N个上行资源。
在一种可能的设计中,所述下行资源的数量N由网络设备通知给终端设备。其中,网络设备可以消息2、下行控制信息、剩余最小***消息、无线资源控制消息、媒体访问控制-控制元素消息、和物理下行控制信道指令中至少一种通知终端设备。
在一种可能的设计中,终端设备根据发送的随机接入前导的类型,确定与所述随机接入前导关联的K和/或N。
在另一种可能的设计中,重传消息3使用的波束与上次传输消息3使用的波束不同。例如,重传消息3使用的波束宽度小于上次传输消息3使用的波束宽度(例如:重传消息3采用3dB波束宽度),且重传消息3使用的波束方向与上次传输消息3所使用的波束方向可以在空间上有重叠。其中,重传消息3使用的天线端口也可以不同于上次传输消息3使用的天线端口。
在另一可能的设计中,所述上行资源的配置信息由1个下行控制信息DCI来指示,调度K个上行资源;或
所述上行资源的配置信息由K个DCI来指示,每个DCI配置一个上行资源;或
所述上行资源的配置信息由M个DCI来指示;其中,M为大于1的整数,M1个DCI中每个DCI配置一个上行资源,M2个DCI中每个DCI配置多个上行资源,M=M1+M2,M1和M2为大于或等于0的整数,所述M1个DCI配置的上行资源的数量与所述M2个DCI配置的上行资源的数量之和为K。
在另一种可能的设计中,所述配置信息包括上行资源位置信息和上行资源数量信息;其中,所述上行资源位置信息指示所述K个上行资源的位置,所述上行资源数量信息指示所述K个上行资源的数量。
在另一种可能的设计中,所述终端设备向网络设备发送消息3之前,还包括:
所述终端设备接收所述网络设备发送的携带上行资源数量信息的***消息、消息2和其它消息中至少一种;其中,所述上行资源数量信息指示重传消息3的上行资源的数量。
其中,***消息可以为RMSI,所述其它消息可以是RRC消息、MAC-CE消息、和PDCCH order中至少一种。
在另一种可能的设计中,还包括:
所述终端设备向所述网络设备发送随机接入前导;其中,所述随机接入前导的类型为预设类型。
在另一种可能的设计中,终端设备根据所发送的随机接入前导类型,从K个上行资源中获取所述K个上行资源用于消息3的重传,和/或终端设备从K个上行资源中选择N个上行资源用于消息3的重传。
在另一种可能的设计中,所述***消息或所述消息2还携带DCI配置信息,所述DCI配置信息用于指示所述K个DCI或所述M个DCI的时域位置、数量和频域位置中的至少一种。
在一种可能的设计中,在已发送给终端设备的DCI中携带所述DCI配置信息,所述DCI配置信息用于指示所述K个DCI或所述M个DCI的时域位置、数量和频域位置中的至少一种。其中,已发送给终端设备的DCI可以是除K个DCI或M个DCI之外的其他DCI,也可以属于K个DCI或M个DCI中的任意一个DCI。
再一方面,提供了一种通信的装置,该装置具有实现上述方法中网络设备行为的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的模块。
一种可能的实现方式中,所述装置包括:接收单元和发送单元。接收单元,用于接收终端设备发送的消息3。发送单元,用于如果检测所述消息3发送失败,向所述终端设备发送用于指示所述消息3进行重传的K个上行资源的配置信息,K为大于1的整数。
另一种可能的实现方式中,所述装置包括:收发器、存储器和处理器;其中,
收发器,用于接收终端设备发送的消息3;
所述存储器中存储一组程序代码,且所述处理器用于调用所述存储器中存储的程序代码,执行以下操作:
如果检测所述消息3发送失败,指示收发器向所述终端设备发送用于指示所述消息3进行重传的K个上行资源的配置信息,K为大于1的整数。
在一种可能的实现方式中,所述装置可以为芯片,该芯片中可选的可以包括一个或多个存储器,用于存储程序代码,当所述程序代码执行时,使处理器实现相应的功能。
基于同一发明构思,由于该装置解决问题的原理以及有益效果可以参见上述各可能的网络设备的方法实施方式以及所带来的有益效果,因此该装置的实施可以参见方法的实施,重复之处不再赘述。
再一方面,提供了一种通信的装置,该装置具有实现上述方法中终端设备行为的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的模块。
一种可能的实现方式中,所述装置包括:发送单元、获取单元和重传单元。
发送单元,用于向网络设备发送消息3;
获取单元,用于如果所述消息3发送失败,接收来自所述网络设备的用于指示所述消息3进行重传的K个上行资源的配置信息;K为大于1的整数;
重传单元,用于从所述K个上行资源中选择N个上行资源,以及根据N个上行资源重传所述消息3;其中,N≤K,且N为大于0的整数。
另一种可能的实现方式中,所述终端设备包括:收发器、存储器和处理器;其中,
收发器,用于向网络设备发送消息3;
所述存储器中存储一组程序代码,且所述处理器用于调用所述存储器中存储的程序代码,执行以下操作:
如果所述消息3发送失败,所述终端设备获取用于指示所述消息3进行重传的K个上 行资源的配置信息;K为大于1的整数;
从所述K个上行资源中选择N个上行资源,以及指示收发器根据N个上行资源重传所述消息3;其中,N≤K,且N为大于0的整数。
在一种可能的实现方式中,所述装置可以为芯片,该芯片中可选的可以包括一个或多个存储器,用于存储程序代码,当所述程序代码执行时,使处理器实现相应的功能。
基于同一发明构思,由于该装置解决问题的原理以及有益效果可以参见上述各可能的终端设备的方法实施方式以及所带来的有益效果,因此该装置的实施可以参见方法的实施,重复之处不再赘述。
本申请的又一方面提了供一种计算机可读存储介质,所述计算机可读存储介质中存储有指令,当其在计算机上运行时,使得计算机执行上述各方面所述的方法。
本申请的又一方面提供了一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机执行上述各方面所述的方法。
附图说明
为了更清楚地说明本发明实施例或背景技术中的技术方案,下面将对本发明实施例或背景技术中所需要使用的附图进行说明。
图1a是本发明实施例提供的一种通信***架构示意图;
图1b是长期演进通信***中随机接入流程的示意图;
图2a是新空口通信***中多波束通信的示意图;
图2b是新空口通信***中多波束通信的另一示意图;
图3是本发明实施例提供的一种通信的方法的流程示意图;
图4是本发明实施例提供的一种通信装置的结构示意图;
图5是本发明实施例提供的一种通信装置的另一结构示意图;
图6是本发明实施例提供的一种通信装置的另一结构示意图;
图7是本发明实施例提供的一种通信装置的另一结构示意图。
具体实施方式
下面结合本发明实施例中的附图对本发明实施例进行描述。
图1a为本发明实施例涉及的一种通信***架构示意图,所述通信***包括多个基站和多个终端设备。图1a示出了1个网络设备与2个终端设备通信。该通信***可以是全球移动通信***(global system for mobile communication,GSM),码分多址(code division multiple access,CDMA)***、宽带码分多址(wideband code division multiple access,WCDMA)***,全球微波互联接入(worldwide interoperability for microwave access,WiMAX)***、长期演进(long term evolution,LTE)***,5G通信***(例如新空口(new radio,NR))***、多种通信技术融合的通信***(例如:LTE技术和NR技术融合的通信***),或者后续演进通信***。需要说明的是,图1a中网络设备和基站设备的数量和形态仅为示例性的说明,并不对本发明实施例构成限定。
在长期演进通信***中,终端设备和网络设备之间的随机接入过程如图1b所示。
S101、网络设备向终端设备发送***信息,终端设备接收网络设备发送的***信息,***消息中可携带最大重传次数等参数。S102、终端设备向网络设备发送随机接入前导(msg1,消息1),网络设备接收终端设备发送的随机接入前导。S103、网络设备向终端设备发送随机接入响应(msg2),终端设备接收网络设备发送的随机接入响应;随机接入响应中包括随机前导索引和上行调度授权(UL grant)。S104、终端设备向网络设备发送第一次调度传输的消息3(msg3),网络设备接收终端设备发送的第一次调度传输的消息3;终端设备根据上行调度授权中指示的时域位置和频域位置发送调度传输消息3(msg3);若网络设备正确接收消息3,则向终端设备发送消息4(msg4)用于解决冲突,冲突使指多个用户使用相同的上行资源发起随机接入过程,而网络设备认为只有1个用户发起随机接入。S105、网络设备向终端设备发送调度重传,通过DCI(downlink control information,DCI)发送调度重传。S106、终端设备向网络设备调度传输重传。S107、网络设备向终端设备发送竞争解决(msg4,消息4)。
在消息3传输时,由于信道衰落、干扰、发送功率过低或多个用户冲突等因素,导致网络设备接收消息3失败。在网络设备接收消息3失败时,会通过下行控制信息重新为消息3调度资源。长期演进通信***中,网络设备利用下行控制信息格式0来调度资源,下行控制信息格式0的结构如表1所示。其中,资源调度字段(resource block assignment and hopping resource allocation)调度消息3重传的频域资源。消息3的最大重传次数是由***信息中指示的,当消息3的重传次数超过最大重传次数,终端设备重新发送随机接入前导或者向高层上报随机接入问题。
在消息2中,网络设备会给终端设备指派临时小区无线网络临时标识(temporary cell-radio network temporary identifier,TC-RNTI)用于消息3的加扰。如果网络设备检测到消息3传输成功且消息4成功解决冲突,将TC-RNTI作为终端设备的小区无线网络临时标识(cell-radio network temporary identifier,C-RNTI)。
字段 长度(比特数量) 作用
格式标识 1 区分格式0或者格式1A
跳频指示 1 是否上行跳频
资源调度 13 分配上行资源
MCS和冗余版本 5 调制编码信息
新数据指示 1 新数据指示
功率控制指示 2 功率控制
其它字段 ≥14 其它信息传递
表1
根据上述的长期演进通信***的随机接入过程,消息3重传时网络设备会重新配置资源和功率,可以解决由信道衰落或干扰导致的消息3传输失败,但是并没有解决冲突。当冲突发生时,网络设备会通知终端设备一直重传消息3,造成较大的接入时延。
参见图2a和图2b,在新空口通信***中,网络设备和终端设备可能采用多个波束进行 通信,同样存在冲突概率大,接入时延长的问题。例如:如图2a所示,多个终端设备使用相同的随机接入前导,多个终端设备接收到网络设备发送的随机接入响应时,都认为是给自己的上行调度授权,因此多个终端设备在相同的上行资源上发送消息3,从而造成冲突。如图2b所示,在多波束场景下,终端设备在发起随机接入时,为了快速加入,使用较宽的波束进行通信,较宽的波束获得天线增益低,网络设备可能无法正确接收到消息3,因而导致消息3的传输失败。
为了解决目前的随机接入过程中消息3的重传发生的冲突概率大,接入时延长的问题,本申请提出了一种消息3的重传方法:网络设备检测消息3传输失败时,向终端设备发送一个下行控制信息调度多个上行资源,终端设备从调度的多个上行资源中选择1个或多个上行资源重传一个或多个消息3,从而降低消息3重传时发生冲突的概率,降低时延;或网络设备检测到消息3传输失败时,发送多个下行控制信息调度多个上行资源,终端设备从多个上行资源中选择一个或多个上行资源重传至少一个消息3,从而降低重传消息3发生冲突的概率,降低时延;或网络设备检测消息3传输失败时,调度多个上行资源,终端设备从多个上行资源中选择一个或多个上行资源使用更窄的波束发送一个或多个消息3、探测参考信号(sounding reference signal,SRS)、信道状态信息参考信号(channel state information reference signal,CSI-RS),从而提升消息3检测成功的概率。
本申请中的终端设备是一种具有无线通信功能的设备,可以是具有无线通信功能的手持设备、车载设备、可穿戴设备、计算设备或连接到无线调制解调器的其它处理设备等。在不同的网络中终端设备可以叫做不同的名称,例如:用户设备、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置、蜂窝电话、无绳电话、会话启动协议(Session Initiation Protocol,SIP)电话、无线本地环路(Wireless Local Loop,WLL)站、个人数字处理(Personal Digital Assistant,PDA)、5G网络或未来演进网络中的终端设备等。
本申请中的网络设备也可以称为基站设备,是一种部署在无线接入网用以提供无线通信功能的设备,包括但不限于:基站(例如:BTS(Base Transceiver Station,BTS),节点B(NodeB,NB),演进型基站B(Evolutional Node B,eNB或eNodeB),NR***中的传输节点或收发点(transmission reception point,TRP或者TP)或者下一代节点B(generation nodeB,gNB),未来通信网络中的基站或网络设备)、中继站、接入点、车载设备、可穿戴设备,无线保真(Wireless-Fidelity,Wi-Fi)的站点、无线回传节点、小站、微站等等。
请参见图3,图3是本发明实施例提供的一种通信的方法的流程示意图,该方法包括但不限于如下步骤:
S301、终端设备向网络设备发送消息3,网络设备接收终端设备发送的消息3。
具体地,本步骤中消息3的发送可用是初传的数据,也可以是重传的数据。在本步骤之前,网络设备向终端设备发送***消息,终端设备向网络设备发送随机接入前导(msg1),网络设备接收终端设备发送的随机接入前导,网络设备向终端设备发送随机接入响应(msg2)。其中,消息1和消息2的传输过程可参见长期演进通信***中的描述,此处不再 赘述。
S302、网络设备检测消息3发送失败。
在一种可能的实施方式中,网络设备可根据信号质量来确定消息3失败的原因,并确定调度用于重传的多个上行资源和/或多个上行资源的数量。例如:信号质量为参考信号接收功率(reference signal receiving power,RSRP)、参考信号接收质量(reference signal receiving quality,RSRQ)和接收的信号强度指示(received signal strength indication,RSSI)中的至少一种,参考信号可以是信道状态信息参考信号(channel state information reference signal,CSI-RS)、解调参考信号(demodulation reference signal,DMRS)、相位跟踪参考信号(phase tracking reference signal,PTRS)、和探测参考信号(sounding reference signal,SRS)中至少一种。网络设备检测消息3中的参考信号的信号质量,信号质量满足预设条件(例如:信号质量超过预设门限)且消息3检测失败时,网络设备确定消息3发送失败,消息3发送是由于发生冲突(即多个终端设备同时在相同的上行资源上发送消息3)。可选的,网络设备确定有多个终端设备发生冲突,确定调度用于重传的多个上行资源和/或多个上行资源的数量。
在一种可能的实施方式中,网络设备根据随机接入前导的类型为预设类型,在消息3传输失败后,调度用于重传的多个上行资源和/或上行资源的数量。例如,网络设备接收到的随机接入前导的类型为预设类型时,在消息3传输失败后,调度多个上行资源用于消息3的重传重传。又例如,网络设备接收到的随机接入前导的类型不属于预设类型时,在消息3传输失败后,只调度一个上行资源用于消息3的重传。其中,预设类型的无竞争随机接入方式、波束恢复、波束管理、链路中断恢复和信道状态信息参考信号的随机接入前导中的任意一种。其中,通信***预先定义了随机接入前导的索引和类型的映射关系,不同的随机接入前导对应不同的类型,网络设备根据接收到的随机接入前导的索引查询对应的类型。
S303、网络设备向终端设备发送指示消息3进行重传的K个上行资源的配置信息,终端设备接收网络设备发送的配置信息。
具体的,配置信息用于表示调度给消息3的K个上行资源的信息,例如K个上行资源的时域位置、频域位置和数量中至少一种。K个上行资源用于重传消息3,K为大于1的整数。其中,重传消息3的K个上行资源中,上行资源包括消息3的业务数据的时域资源、频域资源、空间资源中的至少一种,也包括消息3的参考信号的资源,参考信号可以是SRS、PTRS、DMRS和CSI-RS中任意一种。需要说明的是,K个上行资源可以在同一个时隙(slot)中,也可以在不同的时隙中。
在一种可能的实施方式中,K个上行资源的配置信息由1个DCI来指示,1个DCI配置K个上行资源,即网络设备向终端设备发送指示消息3进行重传的K个上行资源的DCI。其中,网络设备可以在***消息、消息2或其他DCI中通知本实施例中的1个DCI的配置信息,配置信息包括DCI的数量、时域位置和频域位置中的至少一种。
在另一种可能的实施方式中,K个上行资源的配置信息由K个DCI来指示,每个DCI配置1个上行资源。例如:K=3,网络设备向终端设备发送3个DCI分别为DCI1、DCI2和DCI3,3个DCI调度的上行资源分别为上行资源1、上行资源2和上行资源3。DCI1指 示上行资源1的时频位置,DCI2指示上行资源2的时频位置,DCI3指示上行资源3的时频位置。其中,网络设备可以在***消息、消息2或K个DCI中已发送给终端设备的DCI通知本实施例中的K个DCI的配置信息,配置信息包括K个DCI的数量、时域位置和频域位置中的至少一种。可选的,K个DCI可位于不同频域位置和/或时隙。可选的,K个DCI可位于相同频域位置和/或时隙,通过不同的基站波束或者天线端口发送。
在另一种可能的实施方式中,K个上行资源的配置信息由M个DCI来指示,M为大于1的整数,M1个DCI中每个DCI配置1个上行资源,M2个DCI中每个DCI配置多个上行资源,M=M1+M2,M1和M2为大于0的整数,M1个DCI配置的上行资源的数量和M2个DCI配置的上行资源的数量之和等于K。其中,网络设备可以在***消息、消息2或M个DCI中已发送给终端设备的DCI中通知本实施例中的M个DCI的配置信息,配置信息包括M个DCI的数量、时域位置和频域位置中的至少一种。可选的,M个DCI可位于不同的频域位置和/或时隙。可选的,M个DCI可位于相同频域位置和/或时隙,通过不同的基站波束或者天线端口发送。
其中,网络设备向终端设备发送用于指示消息3进行重传的M个DCI,M个DCI中部分DCI配置1个上行资源,M个DCI中另一部分的DCI配置多个上行资源。例如:K=4,网络设备调度的4个上行资源为:上行资源1、上行资源2、上行资源3和上行资源4,网络设备向终端设备发送的3个DCI,3个DCI用于调度4个上行资源,3个DCI分为为DCI1、DCI2和DCI3。DCI1配置上行资源1,DCI2配置上行资源2,DCI3配置上行资源3和上行资源4。
在一种可能的实施方式中,K个上行资源的配置信息还可以指示每个上行资源上物理层参数,物理层参数包括发送功率、调制方式、编码方式和冗余版本中的至少一种,不同的上行资源使用的物理层参数可以相同,也可以不相同。
在一种可能的实施方式中,K个上行资源的配置信息还可以指示每个上行资源上消息3的发送方式,发送方式包括:切换波束、改变预编码方式、改变解调参考信号(demodulation reference signal,DMRS)、波形、子载波间隔中的至少一种。
在一种可能的实施方式中,网络设备向终端设备发送的***消息中携带资源数量指示标识,资源数量指示标识用于指示调度给消息3重传的上行资源的数量是一个或多个。例如:资源数量指示标识用0和1来表示,0表示调度给消息3重传的上行资源的数量为一个,1表示调度给消息3重传的上行资源的数量为多个。其中,***消息包括但不限于RMSI、RRC消息、MAC CE、和PDCCH order中任意一种。
在一种可能的实施方式中,网络设备向终端设备发送的***消息中携带上行资源数量信息,上行资源数量信息表示调度给消息3用于重传的K个上行资源的数量,即上行资源数量信息表示K。***消息包括RMSI,其中,上行资源数量信息还可以携带在RRC消息、MAC CE和PDCCH order中任意一种中。
在一种可能的实施方式中,网络设备向终端设备发送的消息2中携带上行资源的上行资源数量信息,消息2即网络设备向终端设备发送的随机接入响应。上行资源数量信息表示调度给消息3用于重传的K个上行资源的数量,即上行资源数量信息表示K。***消息包括RMSI,其中,上行资源数量信息还可以携带在RRC消息、MAC CE和PDCCH order 中任意一种中。
在一种可能的实施方式中,网络设备检测消息3发送失败时,网络设备为消息3调度用于重传的K个上行资源,K的数量大于上次调度给消息3传输的上行资源的数量。
举例说明:在消息3为第一次传输时,网络设备为消息3调度1个上行资源;在第一次传输失败时,网络设备为消息3调度K1个上行资源;第二次传输失败时,网络设备为消息3调度K2个上行资源;第三次传输失败时,网络设备为消息3调度K3个上行资源,直到重传次数等于最大重传次数或调度的上行资源的总数量等于最大允许的上行资源数量;其中,最大重传次数和最大允许的上行资源数量可以由网络设备通过***消息、DCI、RRC消息或PDCCH order中任意一种方式通知给终端设备。在本实施例中,1<K1<K2<K3,且K1、K2和K3为整数,这样满足每次为消息3调度的上行资源的数量大于上次为消息3调度的上行资源的数量。
在另一种可能的实施方式中,新空口通信***支持:网络设备通过消息2调度1个消息3进行传输,以及网络设备可调度多个消息3进行重传以减少接入时延和降低冲突概率。NR supports scheduling multiple Msg3 retransmission to reduce the access delay and contention probability。
在一种可能的方式中,网络设备在相应的消息4中,给对应的终端设备指派新的C-RNTI(不同于消息2中的TC-RNTI)和/或TA(time advance,时间提前);终端设备根据消息4的内容,确定冲突解决成功(contention resolution successful),采用当前收到的消息4中的C-RNTI,并丢弃TC-RNTI。可选地,网络设备给其中的一个消息3对应的消息4中,不指派新的C-RNTI,该用户设备(发送所述消息3)在收到消息4并完成冲突解决后,将TC-RNTI设置成C-RNTI。
在另一种可能的实施方式中,新空口通信***支持:网络设备通过消息2调度1上行授权用于消息2的传输,以及网络设备可调度多个上行授权用于消息3的重传以减少接入时延和降低冲突概率。NR supports:gNB schedules one UL grant for Msg3 transmission by Msg2,and gNB may schedule multiple UL grants for Msg3 to reduce the access delay and contention probability。
S304、终端设备从K个上行资源中选择N个上行资源。
其中,终端设备接收来自网络设备的用于指示消息3重传的配置信息,根据配置信息确定K个上行资源的信息。其中,配置信息可以是网络设备发送的1个或多个DCI。终端设备根据预存储或预配置的选择规则从K个上行资源中选择N个上行资源,N≤K且N为整数。网络设备可以通过***消息、消息2和DCI中的至少一种通知终端设备选择规则。
在一种可能实施方式中,终端设备可以从消息2、DCI、RMSI、RRC消息、MAC-CE消息和PDCCH order中的至少一种中获取N。
在一种可能的设计中,终端设备预存储或预配置有随机接入前导的类型和选择的上行资源的数量之间的映射关系,终端设备根据随机接入前导的类型,确定上行资源的数量N和/或K,从K个上行资源中选择N个上行资源。
举例说明,随机接入前导1为链路中断时的专用前导,随机接入前导1关联的数量为1;随机接入前导2为波束管理时的专用前导,随机接入前导2关联的数量为2。假设配置 信息指示的上行资源的数量为4,终端设备在消息3传输失败时,确定消息3对应随机接入前导1,根据预存储或预配置的映射关系,确定随机接入前导1关联的数量为1,终端设备从4个上行资源中选择1个上行资源用于重传消息3。终端设备在消息3传输失败时,确定消息3对应随机接入前导2,根据预存储或预配置的映射关系,确定随机接入前导2关联的数量为2,终端设备从4个上行资源中选择2个上行资源用于重传消息3。
需要说明的是,上述的随机接入前导的类型、数量以及映射关系仅为示例性的说明,并非对本实施例的限定。
在另一种可能的实施方式中,选择规则为:终端设备随机从K个上行资源中选择N个上行资源。
其中,K个上行资源中每个上行资源被选择的概率相等,终端设备随机从K个上行资源中选择N个上行资源,即终端设备等概率的从K个上行资源中选择N个上行资源。
需要说明的是,终端设备在第一次传输消息3失败后,可多次重传消息3,重传消息3的次数必须小于最大重传次数,网络设备可通过***消息、消息2、DCI、RRC消息或PDCCH order中任意一种将最大重传次数通知给终端设备。网络设备为每次重传的消息3调度上行资源。可选地,每次重传为消息3调度的上行的资源的数量可以随重传次数呈递增或非递减的关系,而终端设备需要每次从网络设备调度的多个上行资源中选择至少一个上行资源重传消息3。其中,网络设备每次选择上行资源的选择规则和数量可以相同,也可以不相同,本实施例不作限制。
S305、终端设备向网络设备重传消息3,网络设备接收终端设备重传的消息3。
其中,终端设备根据S204选择的N个上行资源向网络设备重传消息3。终端设备重传的消息3的数量可以为N个,即每个上行资源重传1个消息3。终端设备可根据网络设备发送的配置信息的指示分别用N个发送波束和/天线端口发送N个消息3,每个发送波束和/天线端口发送1个消息3,每个发送的消息3中可携带SRS、DMRS、PTRS、和CSI-RS中的至少一种,且每个消息3中携带的SRS、DMRS、PTRS、和/或CSI-RS可以相同,也可以不同。在另外的实现方式中,终端设备可以根据网络设备发送的配置信息的指示,用相同的方式(例如,发送波束/天线端口)发送N个消息3。可选地,基站采用不同的接收波束接收N个消息3。
需要说明的是,在多个终端设备发生冲突时,由于网络设备为消息3调度多个上行资源,各个发生冲突的终端设备选择的上行资源可能会不相同,从而网络设备可以在不同的上行资源上检测到消息3,降低冲突发生的概率。网络设备接收到重传的消息3后向终端设备发送消息4。
实施本发明实施例,网络设备在检测到消息3发送失败的情况下,网络设备向终端设备发送用于指示消息3进行重传的多个上行资源的配置信息,使终端设备从多个上行资源中选择一个或多个上行资源重传至少一个消息3,减少和其他终端设备使用相同的上行资源重传消息3的概率,从而降低冲突发生的概率,减小随机接入的时延。
需要说明的是,图4所示的装置4可以实现图3所示实施例的网络设备侧,装置4包括接收单元401和发送单元402。接收单元401,用于接收终端设备发送的消息3,例如: 接收单元401执行图3中S301的步骤。发送单元402,用于如果检测所述消息3发送失败,向所述终端设备发送用于指示所述消息3进行重传的K个上行资源的配置信息,M为大于1的整数,例如:发送单元执行图3中S302和S303的步骤。所述装置4可以为网络设备,所述装置4也可以为实现相关功能的现场可编程门阵列(field-programmable gate array,FPGA),专用集成芯片,***芯片(system on chip,SoC),中央处理器(central processor unit,CPU),网络处理器(network processor,NP),数字信号处理电路,微控制器(micro controller unit,MCU),还可以采用可编程控制器(programmable logic device,PLD)或其他集成芯片。
本发明实施例和图3的方法实施例基于同一构思,其带来的技术效果也相同,具体过程可参照图3的方法实施例的描述,此处不再赘述。
如图5所示,本发明实施例还提供了一种装置5。
在一种可能的设计中,装置5为网络设备,该网络设备包括:
存储器502,用于存储程序和数据。所述存储器的数量可以是一个或多个,所述存储器的类型可以是任意形式的存储介质。例如:该存储器可以为随机访问内存(英文:random access memory,简称:RAM)或者只读内存(英文:read only memory,简称:ROM)或者闪存,其中存储器502可以位于单独位于终端设备内,也可以位于处理器501的内部。
收发器503,用于收发信号。收发器可以作为单独的芯片,也可以为处理器501内的收发电路或者作为输入输出接口。收发器可以为发射器和接收器中的至少一种,发射器用于执行装置中的发送步骤,接收器用于执行装置中的接收步骤。可选的,收发器503还可以包括发射天线和接收天线,发射天线和接收天线可以为单独设置的两个天线,也可以为一个天线。收发器503,用于接收终端设备发送的消息3。例如:收发器503用于执行图3中的S301的步骤。
处理器501,用于执行存储器502存储的所述程序代码,当所述程序代码被执行时,处理器501用于如果检测所述消息3发送失败,指示收发器503向所述终端设备发送用于指示所述消息3进行重传的K个上行资源的配置信息,K为大于1的整数。例如:处理器501用于执行图3中的S302和S303的步骤。
收发器503、存储器502、处理器501之间通过内部连接通路互相通信,例如:通过总线连接。
在不同的实施方式中,所述上行资源的配置信息由1个下行控制信息DCI来指示;或
所述上行资源的配置信息由K个DCI来指示,每个DCI配置一个上行资源;或
所述上行资源的配置信息由M个DCI来指示;其中,M为大于1的整数,M1个DCI中每个DCI配置一个上行资源,M2个DCI中每个DCI配置多个上行资源,M=M1+M2,M1和M2为大于0的整数,所述M1个DCI配置的上行资源的数量与所述M2个DCI配置的上行资源的数量之和为K。
在不同的实施方式中,所述K个DCI位于不同的频域位置和/或时隙,M个DCI位于不同的频域位置和/或时隙。
在不同的实施方式中,所述配置信息包括上行资源位置信息和/或上行资源数量信息, 所述上行资源位置信息指示所述K个上行资源的时域位置和/或频域位置,所述上行资源数量信息指示所述K个上行资源的数量。
在不同的实施方式中,所述收发器还用于向所述终端设备发送***消息SI、消息2、无线资源控制RRC消息、媒体访问控制-控制元素MAC-CE消息和物理下行控制信道指令PDCCH order中至少一种;其中,所述***消息SI、消息2、无线资源控制RRC消息、媒体访问控制-控制元素MAC-CE消息和物理下行控制信道指令PDCCH order中至少一种携带上行资源数量信息,所述上行资源数量信息指示所述K个上行资源的数量。
在不同的实施方式中,其特征在于,
收发器503,还用于接收所述终端设备发送的随机接入前导;
处理器501,还用于确定所述随机接入前导的类型为预设类型。
在不同的实施方式中,所述***消息或所述消息2还携带DCI配置信息,所述DCI配置信息指示所述K个DCI或所述M个DCI的时域位置、数量和频域位置中的至少一种。
在一种可能的设计中,装置5可以为芯片,例如:可以为用于网络设备中的通信芯片,用于实现网络设备中处理器501的相关功能。该芯片可以为实现相关功能的现场可编程门阵列,专用集成芯片,***芯片,中央处理器,网络处理器,数字信号处理电路,微控制器,还可以采用可编程控制器或其他集成芯片。该芯片中,可选的可以包括一个或多个存储器,用于存储程序代码,当所述程序代码执行时,使处理器实现相应的功能。
这些芯片可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件程序实现时,可以全部或部分地以计算机程序产品的形式来实现。该计算机程序产品包括一个或多个计算机指令(有时也称为代码或程序)。在计算机上加载和执行计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或者数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可以用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带),光介质(例如,DVD)、或者半导体介质(例如固态硬盘(solid state disk,SSD))等。
本发明实施例和图3的方法实施例基于同一构思,其带来的技术效果也相同,具体过程可参照图3的方法实施例的描述,此处不再赘述。
需要说明的是,图6所示的装置6可以实现图3所示实施例的终端设备侧,装置6包括:发送单元601、获取单元602和重传单元603。其中,发送单元601,用于向网络设备发送消息3。获取单元602,用于如果所述消息3发送失败,接收来自网络设备的用于指示所述消息3进行重传的K个上行资源的配置信息;K为大于1的整数。重传单元603,用于从所述K个上行资源中选择N个上行资源,以及根据N个上行资源重传所述消息3;其 中,N≤K,且N为大于0的整数。所述装置6可以为终端设备,所述装置6也可以为实现相关功能的现场可编程门阵列(field-programmable gate array,FPGA),专用集成芯片,***芯片(system on chip,SoC),中央处理器(central processor unit,CPU),网络处理器(network processor,NP),数字信号处理电路,微控制器(micro controller unit,MCU),还可以采用可编程控制器(programmable logic device,PLD)或其他集成芯片。
本发明实施例和图3的方法实施例基于同一构思,其带来的技术效果也相同,具体过程可参照图3的方法实施例的描述,此处不再赘述。
如图7所示,本发明实施例还提供了一种装置7。
在一种可能的设计中,装置7为终端设备,该终端设备包括:
存储器702,用于存储程序和数据。所述存储器的数量可以是一个或多个,所述存储器的类型可以是任意形式的存储介质。例如:该存储器可以为随机访问内存(英文:random access memory,简称:RAM)或者只读内存(英文:read only memory,简称:ROM)或者闪存,其中存储器702可以位于单独位于终端设备内,也可以位于处理器701的内部。
收发器703,用于收发信号。收发器可以作为单独的芯片,也可以为处理器701内的收发电路或者作为输入输出接口。收发器可以为发射器和接收器中的至少一种,发射器用于执行装置中的发送步骤,接收器用于执行装置中的接收步骤。
可选的,收发器703还可以包括发射天线和接收天线,发射天线和接收天线可以为单独设置的两个天线,也可以为一个天线。收发器703,用于向网络设备发送消息3。例如:收发器703用于执行图3中的S303的步骤。
处理器701,用于执行存储器702存储的所述程序代码,当所述程序代码被执行时,处理器701用于如果所述消息3发送失败,获取用于指示所述消息3进行重传的K个上行资源的配置信息;K为大于1的整数;
从所述K个上行资源中选择N个上行资源,以及指示所述收发器根据N个上行资源重传所述消息3;其中,N≤K且N为大于0的整数。例如:处理器701用于执行图3中的S304和S305的步骤。
收发器703、存储器702、处理器701之间通过内部连接通路互相通信,例如:通过总线连接。
在一种可能的设计中,装置7可以为芯片,例如:可以为用于网络设备中的通信芯片,用于实现网络设备中处理器701的相关功能。该芯片可以为实现相关功能的现场可编程门阵列,专用集成芯片,***芯片,中央处理器,网络处理器,数字信号处理电路,微控制器,还可以采用可编程控制器或其他集成芯片。该芯片中,可选的可以包括一个或多个存储器,用于存储程序代码,当所述程序代码执行时,使处理器实现相应的功能。
这些芯片可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件程序实现时,可以全部或部分地以计算机程序产品的形式来实现。该计算机程序产品包括一个或多个计算机指令(有时也称为代码或程序)。在计算机上加载和执行计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算 机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或者数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可以用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带),光介质(例如,DVD)、或者半导体介质(例如固态硬盘(solid state disk,SSD))等。
本发明实施例和图2a的方法实施例基于同一构思,其带来的技术效果也相同,具体过程可参照图2a的方法实施例的描述,此处不再赘述。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的***、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的***、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个***,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本发明实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者通过所述计算机可读存储介质进行传输。所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多 个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如固态硬盘Solid State Disk(SSD))等。
本领域普通技术人员可以理解实现上述实施例方法中的全部或部分流程,该流程可以由计算机程序来指令相关的硬件完成,该程序可存储于计算机可读取存储介质中,该程序在执行时,可包括如上述各方法实施例的流程。而前述的存储介质包括:ROM或随机存储记忆体RAM、磁碟或者光盘等各种可存储程序代码的介质。

Claims (24)

  1. 一种通信的方法,其特征在于,包括:
    网络设备接收终端设备发送的消息3;
    如果检测所述消息3发送失败,所述网络设备向所述终端设备发送用于指示所述消息3进行重传的K个上行资源的配置信息,K为大于1的整数。
  2. 如权利要求1所述的方法,其特征在于,
    所述K个上行资源的配置信息由1个下行控制信息DCI来指示;或
    所述K个上行资源的配置信息由K个DCI来指示,每个DCI配置一个上行资源;或所述K个上行资源的配置信息由M个DCI来指示;其中,M为大于1的整数,M1个DCI中每个DCI配置一个上行资源,M2个DCI中每个DCI配置多个上行资源,M=M1+M2,M1和M2为大于0的整数,所述M1个DCI配置的上行资源的数量与所述M2个DCI配置的上行资源的数量之和为K。
  3. 如权利要求2所述的方法,其特征在于,所述K个DCI位于不同的频域位置和/或时隙,所述M个DCI分别位于不同的频域位置和/或时隙。
  4. 如权利要求2或3所述的方法,其特征在于,所述K个上行资源的配置信息包括上行资源位置信息和/或上行资源数量信息,所述上行资源位置信息指示所述K个上行资源的时域位置和/或频域位置,所述上行资源数量信息指示所述K个上行资源的数量。
  5. 如权利要求2或3所述的方法,其特征在于,所述网络设备接收终端设备发送的消息3之前,还包括:
    所述网络设备向所述终端设备发送***消息SI、消息2、无线资源控制RRC消息、媒体访问控制-控制元素MAC-CE消息和物理下行控制信道指令PDCCH order中至少一种;其中,所述***消息SI、消息2、无线资源控制RRC消息、媒体访问控制-控制元素MAC-CE消息和物理下行控制信道指令PDCCH order中至少一种携带上行资源数量信息,所述上行资源数量信息指示所述K个上行资源的数量。
  6. 如权利要求5所述的方法,其特征在于,所述***消息或所述消息2还携带DCI配置信息,所述DCI配置信息指示所述K个DCI或所述M个DCI的时域位置、数量和频域位置中的至少一种。
  7. 一种通信的方法,其特征在于,包括:
    终端设备向网络设备发送消息3;
    如果所述消息3发送失败,所述终端设备接收来自所述网络设备的用于指示所述消息3进行重传的K个上行资源的配置信息,K为大于1的整数;
    所述终端设备从所述K个上行资源中选择N个上行资源,以及根据N个上行资源重传所述消息3;其中,N≤K且N为大于0的整数。
  8. 如权利要求7所述的方法,其特征在于,所述终端设备从所述K个上行资源中选择N个上行资源包括:
    所述终端设备随机从所述K个上行资源中选择N个上行资源;或
    所述终端设备根据所述消息3关联的随机接入前导的类型,确定上行资源的数量N;
    所述终端设备从所述K个上行资源中选择N个上行资源。
  9. 如权利要求7或8所述的方法,其特征在于,重传所述消息3使用的波束与上次传输所述消息3使用的波束不相同;或
    重传消息3使用的天线端口与上次传输所述消息3使用的天线端口不相同。
  10. 一种通信的装置,其特征在于,包括:收发器和处理器;
    所述收发器,用于接收终端设备发送的消息3;
    所述处理器,用于如果检测所述消息3发送失败,指示所述收发器向所述终端设备发送用于指示所述消息3进行重传的K个上行资源的配置信息,K为大于1的整数。
  11. 如权利要求10所述的装置,其特征在于,
    所述K个上行资源的配置信息由1个下行控制信息DCI来指示;或
    所述K个上行资源的配置信息由K个DCI来指示,每个DCI配置一个上行资源;或所述K个上行资源的配置信息由M个DCI来指示;其中,M为大于1的整数,M1个DCI中每个DCI配置一个上行资源,M2个DCI中每个DCI配置多个上行资源,M=M1+M2,M1和M2为大于0的整数,所述M1个DCI配置的上行资源的数量与所述M2个DCI配置的上行资源的数量之和为K。
  12. 如权利要求10或11所述的装置,其特征在于,所述配置信息包括上行资源位置信息和/或上行资源数量信息,所述上行资源位置信息指示所述K个上行资源的时域位置和/或频域位置,所述上行资源数量信息指示所述上行资源的数量。
  13. 如权利要求10-12任意一项所述的装置,其特征在于,所述收发器还用于向所述终端设备发送***消息SI、消息2、无线资源控制RRC消息、媒体访问控制-控制元素MAC-CE消息和物理下行控制信道指令PDCCH order中至少一种;其中,所述***消息SI、消息2、无线资源控制RRC消息、媒体访问控制-控制元素MAC-CE消息和物理下行控制信道指令PDCCH order中至少一种携带上行资源数量信息,所述上行资源数量信息指示所述K个上行资源的数量。
  14. 一种通信的装置,其特征在于,包括:处理器和收发器;
    所述收发器,用于向网络设备发送消息3;
    所述处理器,用于如果所述消息3发送失败,获取用于指示所述消息3进行重传的K个上行资源的配置信息;K为大于1的整数;
    所述处理器,还用于从所述K个上行资源中选择N个上行资源,以及指示所述收发器根据N个上行资源重传所述消息3;其中,N≤K且N为大于0的整数。
  15. 如权利要求14所述的装置,其特征在于,所述处理器从所述K个上行资源中选择N个上行资源,具体包括:
    随机从所述K个上行资源中选择N个上行资源;或
    根据所述消息3关联的随机接入前导的类型,确定上行资源的数量N;
    从所述K个上行资源中选择N个上行资源。
  16. 如权利要求14或15所述的装置,其特征在于,重传所述消息3使用的波束与上次传输所述消息3使用的波束不相同;或
    重传所述消息3使用的天线端口与上次传输所述消息3使用的天线端口不相同。
  17. 一种计算机存储介质,包括指令,当其在计算机上运行时,使得计算机执行如权利要求1-6任意一项所述的方法。
  18. 一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机执行如权利要求1-6任意一项所述的方法。
  19. 一种网络设备,其特征在于,所述网络设备包括存储器和一个或多个处理器,所述存储器与所述一个或多个处理器耦合,所述一个或多个处理器用于执行如权利要求1-6任意一项所述的方法。
  20. 一种网络设备,其特征在于,所述网络设备包括一个或多个处理器,所述一个或多个处理器与存储器耦合,读取所述存储器中的指令并根据所述指令执行如权利要求1-6任意一项所述的方法。
  21. 一种计算机存储介质,包括指令,当其在计算机上运行时,使得计算机执行如权利要求7-9任意一项所述的方法。
  22. 一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机执行如权利要求7-9任意一项所述的方法。
  23. 一种终端设备,其特征在于,所述终端设备包括存储器和一个或多个处理器,所述存储器与所述一个或多个处理器耦合,所述一个或多个处理器用于执行如权利要求7-9 任意一项所述的方法。
  24. 一种终端设备,其特征在于,所述终端设备包括一个或多个处理器,所述一个或多个处理器与存储器耦合,读取所述存储器中的指令并根据所述指令执行如权利要求7-9任意一项所述的方法。
PCT/CN2018/099049 2017-08-08 2018-08-06 一种通信的方法和装置 WO2019029498A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710671308.2 2017-08-08
CN201710671308.2A CN109392107B (zh) 2017-08-08 2017-08-08 一种通信的方法和装置

Publications (1)

Publication Number Publication Date
WO2019029498A1 true WO2019029498A1 (zh) 2019-02-14

Family

ID=65273301

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/099049 WO2019029498A1 (zh) 2017-08-08 2018-08-06 一种通信的方法和装置

Country Status (2)

Country Link
CN (2) CN109392107B (zh)
WO (1) WO2019029498A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111757497A (zh) * 2019-03-29 2020-10-09 华为技术有限公司 控制信息的传输方法和装置
CN113711661A (zh) * 2019-09-30 2021-11-26 Oppo广东移动通信有限公司 数据传输方法、设备及介质
CN114144981A (zh) * 2019-08-16 2022-03-04 华为技术有限公司 配置侧行链路的传输资源的方法和通信装置
CN114424641A (zh) * 2019-09-30 2022-04-29 华为技术有限公司 一种通信方法及装置
EP4221424A4 (en) * 2020-10-16 2024-03-13 Huawei Technologies Co., Ltd. RANDOM ACCESS METHOD

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020199031A1 (zh) * 2019-03-29 2020-10-08 华为技术有限公司 一种通信方法及装置
WO2020223878A1 (zh) * 2019-05-06 2020-11-12 Oppo广东移动通信有限公司 随机接入的方法、终端设备和网络设备
WO2020227907A1 (zh) * 2019-05-13 2020-11-19 Oppo广东移动通信有限公司 一种资源确定方法及装置、终端
BR112021024133A2 (pt) * 2019-06-07 2022-01-11 Qualcomm Inc Retransmissão adaptativa para um procedimento de acesso aleatório
CN111800884B (zh) * 2019-07-10 2023-02-24 维沃移动通信有限公司 随机接入消息的传输方法和设备
CN111836397B (zh) * 2019-08-07 2022-09-27 维沃移动通信有限公司 随机接入方法、终端及网络侧设备
CN112040558B (zh) * 2020-08-07 2022-01-18 中国信息通信研究院 一种随机接入过程中的上行数据传输方法和设备
CN116724629A (zh) * 2021-01-15 2023-09-08 中兴通讯股份有限公司 无线网络中用于覆盖增强的方法和***
CN113114429B (zh) * 2021-03-09 2022-07-19 中国信息通信研究院 一种非周期信道状态信息发送方法和设备
CN113163507A (zh) * 2021-03-15 2021-07-23 新华三技术有限公司 一种处理随机接入的方法、***和基站
CN115175243A (zh) * 2021-04-06 2022-10-11 华为技术有限公司 一种通信方法及通信装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102340884A (zh) * 2010-07-26 2012-02-01 中兴通讯股份有限公司 一种防止随机接入冲突的基站及方法
CN102740403A (zh) * 2011-04-02 2012-10-17 上海贝尔股份有限公司 一种在通信网络的终端中用于接入的方法及装置
US20160219624A1 (en) * 2015-01-23 2016-07-28 Mediatek Inc. LTE RACH Procedure Enhancement

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110113484A (ko) * 2010-04-09 2011-10-17 주식회사 팬택 다중 반송파 시스템에서 랜덤 액세스의 수행장치 및 방법
US9451639B2 (en) * 2013-07-10 2016-09-20 Samsung Electronics Co., Ltd. Method and apparatus for coverage enhancement for a random access process
US11290215B2 (en) * 2015-08-06 2022-03-29 Telefonaktiebolaget Lm Ericsson (Publ) Uplink HARQ procedure for MTC operation
CN107466113B (zh) * 2016-06-03 2020-04-21 北京佰才邦技术有限公司 一种Msg3传输方法、装置和相关设备

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102340884A (zh) * 2010-07-26 2012-02-01 中兴通讯股份有限公司 一种防止随机接入冲突的基站及方法
CN102740403A (zh) * 2011-04-02 2012-10-17 上海贝尔股份有限公司 一种在通信网络的终端中用于接入的方法及装置
US20160219624A1 (en) * 2015-01-23 2016-07-28 Mediatek Inc. LTE RACH Procedure Enhancement

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111757497A (zh) * 2019-03-29 2020-10-09 华为技术有限公司 控制信息的传输方法和装置
CN111757497B (zh) * 2019-03-29 2024-01-19 华为技术有限公司 控制信息的传输方法和装置
CN114144981A (zh) * 2019-08-16 2022-03-04 华为技术有限公司 配置侧行链路的传输资源的方法和通信装置
CN114144981B (zh) * 2019-08-16 2023-08-04 华为技术有限公司 配置侧行链路的传输资源的方法和通信装置
CN113711661A (zh) * 2019-09-30 2021-11-26 Oppo广东移动通信有限公司 数据传输方法、设备及介质
CN114424641A (zh) * 2019-09-30 2022-04-29 华为技术有限公司 一种通信方法及装置
CN113711661B (zh) * 2019-09-30 2023-06-27 Oppo广东移动通信有限公司 数据传输方法、设备及介质
EP4221424A4 (en) * 2020-10-16 2024-03-13 Huawei Technologies Co., Ltd. RANDOM ACCESS METHOD

Also Published As

Publication number Publication date
CN109392107B (zh) 2023-09-01
CN109392107A (zh) 2019-02-26
CN117241398A (zh) 2023-12-15

Similar Documents

Publication Publication Date Title
CN109392107B (zh) 一种通信的方法和装置
JP6857855B2 (ja) 基地局、通信方法及び集積回路
CN109804701B (zh) 使用多个prach传输的rach过程
US11013035B2 (en) User terminal and radio communication method
US10932294B2 (en) Method for transmitting uplink data considering hidden node problem and channel occupation of user terminals
US11985092B2 (en) Terminal, radio communication method, and base station
US10708944B2 (en) Preconfigured grants with a distribution pattern
CN113615304B (zh) 用于在随机接入过程中使用多个上行链路资源集合的技术
CN108668374B (zh) 一种调度请求的传输方法及装置
KR20230017230A (ko) Msg3의 커버리지 향상을 위한 방법 및 장치
EP3751881A1 (en) Beam management method, terminal, network device, and storage medium
JP2015065603A (ja) 無線通信端末、無線基地局および無線通信方法
US11825514B2 (en) Repetitive random access transmissions
US11882588B2 (en) Scheduling sidelink transmission with relay
WO2020248259A1 (zh) 随机接入方法、终端设备和网络设备
CN113366909A (zh) 对两步随机接入信道过程的消息b的反馈
CN114667705A (zh) 用于两步随机接入信道(rach)的物理上行链路共享信道(pusch)时机验证的***和方法
US20220070926A1 (en) Communication control method and user equipment
WO2020061945A1 (zh) 用于随机接入的方法、网络设备和终端设备
TW202249525A (zh) 用於下行鏈路控制通道命令的下行鏈路控制通道重複
CN113498067A (zh) 处理具有多个探测参考信号的上行链路传输的装置及方法
KR102571817B1 (ko) 비면허 대역을 통해 데이터를 송수신하는 수신 장치 및 송신 장치
CN114499803B (zh) 发送数据的方法、通信装置、计算机存储介质
US20230062505A1 (en) Uplink beam sweeping during random access procedures
EP4316156A1 (en) Techniques for indicating coverage enhancement for random access procedures in wireless communications systems

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18844492

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18844492

Country of ref document: EP

Kind code of ref document: A1