WO2019029467A1 - 一种获取目标服务小区的跟踪区的标识信息的方法及设备 - Google Patents

一种获取目标服务小区的跟踪区的标识信息的方法及设备 Download PDF

Info

Publication number
WO2019029467A1
WO2019029467A1 PCT/CN2018/098908 CN2018098908W WO2019029467A1 WO 2019029467 A1 WO2019029467 A1 WO 2019029467A1 CN 2018098908 W CN2018098908 W CN 2018098908W WO 2019029467 A1 WO2019029467 A1 WO 2019029467A1
Authority
WO
WIPO (PCT)
Prior art keywords
synchronization frame
serving cell
duration
terminal device
wur interface
Prior art date
Application number
PCT/CN2018/098908
Other languages
English (en)
French (fr)
Inventor
杜振国
丁志明
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201710875251.8A external-priority patent/CN109392050B/zh
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2019029467A1 publication Critical patent/WO2019029467A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W8/00Network data management
    • H04W8/02Processing of mobility data, e.g. registration information at HLR [Home Location Register] or VLR [Visitor Location Register]; Transfer of mobility data, e.g. between HLR, VLR or external networks
    • H04W8/08Mobility data transfer
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/08Reselecting an access point
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present application relates to the field of communications technologies, and in particular, to a method and a device for acquiring identification information of a tracking area of a target serving cell.
  • LTE Long Term Evolution
  • IDLE idle
  • the cell reference signal is measured, and based on the measurement result, it is determined whether to initiate a cell reselection process.
  • the terminal device After the terminal device determines the target serving cell from the other neighboring serving cells, that is, after the completion of the cell reselection, the terminal device receives the System Information Block 1 (SIB1) of the target serving cell through the primary communication interface, from the SIB1. Obtaining a Tracking Area Identity (TAI) of the target serving cell to determine whether to perform a Tracking Area (TA) update according to the TAI of the target serving cell.
  • SIB1 System Information Block 1
  • TAI Tracking Area Identity
  • the terminal device needs to receive the system message block 1 of the target serving cell through the primary communication interface, to obtain the TAI of the target serving cell, and determine whether it is needed.
  • the system message block 1 for receiving the target serving cell through the primary communication interface has adopted a relatively complex modulation and channel coding method on the network device side, for example, Orthogonal Frequency Division Multiplexing (OFDM) modulation, Channel coding such as Turbo, Low Density Parity Check (LDPC) or Polar, so that the terminal device needs to perform Fast Fourier Transform (FFT) and forward after receiving the message block 1 of the system.
  • OFDM Orthogonal Frequency Division Multiplexing
  • LDPC Low Density Parity Check
  • FFT Fast Fourier Transform
  • the embodiment of the present invention provides a method and a device for acquiring identification information of a tracking area of a target serving cell, which are used to reduce power consumption of the terminal device.
  • the embodiment of the present application provides a method for acquiring identification information of a tracking area TA of a cell reselection target serving cell, where the method includes: the network device generates a synchronization frame, where the synchronization frame includes the network device The identifier information of the tracking area TA to which the cell belongs; the network device sends the synchronization frame; after the terminal device reselects to the target serving cell, acquires the synchronization frame sent by the network device of the target serving cell received by the wake-up radio WUR interface The terminal device acquires, from the synchronization frame, identifier information of the TA to which the target serving cell belongs, and the terminal device determines, according to the identifier information of the TA to which the target serving cell belongs, whether to perform TA update, when not needed, The main communication interface of the terminal device is kept in a closed state.
  • the terminal device when the terminal device receives the system message to obtain the TAI of the TA to which the target serving cell belongs, the terminal device does not need to perform the TA update, and the main communication interface of the terminal device is in the closed state. Avoiding complex signal processing operations such as Fast Fourier Transform (FFT) and Forward Error Correction (FEC) on signals received through the main communication interface, thereby reducing power consumption of the terminal device .
  • FFT Fast Fourier Transform
  • FEC Forward Error Correction
  • the network device transmits the synchronization frame according to a preset period.
  • the preset period can be configured by the network device or by a standard protocol.
  • the synchronization frame further includes duration information of the preset period.
  • the terminal device can predict the arrival time of the subsequent synchronization frame after receiving the first synchronization frame of the target serving cell, and can accurately adjust the time when the WUR interface is in the active state. And the duration of the active state, reducing the power consumption of the terminal device while being able to accurately receive subsequent synchronization frames of the target serving cell.
  • the synchronization frame further includes cell identity information of a cell where the network device is located.
  • the identification information of the target serving cell can be acquired without performing complex parsing operations on the received synchronization frame, thereby reducing power consumption of the terminal device.
  • the cell identifier information may be a physical-layer cell identifier (PCI), or may be part of the information in the PCI, or may be indication information for indicating the PCI. After the terminal device obtains the indication information, the terminal device may Indicates a correspondence between the information and the PCI, and determines the PCI indicated by the indication information.
  • PCI physical-layer cell identifier
  • the terminal device may receive, by using the WUR interface, a synchronization frame sent by each of the N network devices of the N candidate serving cells, and then send the first to each network device respectively.
  • the synchronization frame performs measurement to obtain N measurement results.
  • the target serving cell is determined from the N candidate serving cells, and the target serving cell is recorded as the current serving cell.
  • the identifier information is used to determine the TAI of the TA to which the target serving cell belongs according to the identifier information of the TA to which the target serving cell belongs, and the system information that the terminal device needs to receive the target serving cell through the primary communication interface after performing the cell reselection is omitted.
  • the message performs a step of complex parsing, thereby further reducing the power consumption of the terminal device.
  • the terminal device may also determine the target serving cell according to other manners, for example, measure the reference signals of the N serving cells where the N network devices are located, perform cell reselection according to the obtained measurement result, and after determining the target serving cell, Receiving a synchronization frame sent by a network device of the target serving cell.
  • the WUR interface corresponds to an awake window determined by the terminal device in a source serving cell of the source network device, where the awake window is a time window in which the WUR interface is in an active state, and the awake
  • the window duration of the window is the duration of the first window
  • the terminal device receives, by the WUR interface, a synchronization frame respectively sent by each of the N network devices during the first window duration; or the terminal Receiving, by the WUR interface, the first synchronization frame respectively sent by each of the N network devices, and determining the target service, by using the WUR interface, the first synchronization frame sent by the network device in the active state.
  • the network device that receives the target serving cell After the cell, according to the time when the network device that receives the target serving cell sends the first synchronization frame, adjust the duration of the WUR interface in the active state to a second duration, and pass the WUR interface in the second duration.
  • the first time duration; or the terminal device receives, by using the WUR interface, the first synchronization sent by each of the N network devices respectively, in a third time period in which the WUR interface is in the active state.
  • the period of the synchronization frame sent by each of the N network devices of the N candidate serving cells may be the same as the period in which the source network device sends the synchronization frame, or may be different, and the N network devices
  • the start time of the synchronization frame sent by each network device may be the same as the start time of the synchronization frame sent by the source network device, or may be different.
  • each network device of the N network devices separately sends the synchronization frame period.
  • the period of the synchronization frame is the same as the period in which the source network device sends the synchronization frame, and the interval between the start time is smaller than the duration of the first window; or, the period in which each network device in each of the N network devices sends the synchronization frame and the period in which the source network device sends the synchronization frame Similarly, the interval between the start time of the synchronization frame sent by at least one of the N network devices and the start time of the synchronization frame sent by the source network device is greater than the first window duration of the terminal device; or, at least N network devices The period in which a network device sends a synchronization frame is different from the period in which the source network device transmits a synchronization frame. There are other situations, which are not listed here.
  • the WUR interface of the terminal device may continue to be in an active state. In this case, regardless of the manner in which the N network devices send the synchronization frame, the terminal device can pass the WUR interface within the first window duration. Receiving, and when the WUR interface of the terminal device is activated at a certain time interval, the terminal device needs to receive in different receiving manners for different transmission modes of the N network devices.
  • the period in which each of the N network devices sends the synchronization frame is the same as the period in which the source network device sends the synchronization frame, and the interval between the start time is smaller than the duration of the first window, and the terminal device passes the duration of the first window.
  • the WUR interface can receive synchronization frames sent by each of the N network devices.
  • the period in which each of the N network devices separately transmits the synchronization frame is the same as the period in which the source network device sends the synchronization frame, and at least one of the N network devices sends the synchronization frame at the start time and the source network device sends the synchronization frame.
  • the interval between the start time is greater than the duration of the first window, and the terminal device may not receive the synchronization frame sent by each network device of the N network devices during the first window duration, and the terminal device may control the WUR interface to be activated.
  • the duration is the first duration, which is greater than the duration of the first window, to receive the first synchronization frame respectively sent by each network device of the N network devices through the WUR interface in the first duration, and determine from the N candidate serving cells.
  • the target serving cell After the target serving cell receives the first synchronization frame sent by the network device of the target serving cell, adjusts the starting time of the WUR interface in the active state and the duration of the active state to the second duration, and passes the WUR interface in the second duration. Receiving a subsequent synchronization frame sent by the network device of the target serving cell.
  • the network device that can accurately receive the target serving cell is sent by using the technical solution provided by the embodiment of the present application, because the WUR window is activated at the time when the subsequent synchronization frame is reached, and the second time period in which the WUR window is in the active state is smaller than the first time length.
  • the subsequent synchronization frame reduces the power consumption of the terminal device.
  • the period in which at least one of the N network devices sends the synchronization frame is different from the period in which the source network device sends the synchronization frame, and the terminal device may not receive the synchronization frame sent by each of the N network devices in the first window duration.
  • the terminal device can control the duration of the WUR interface to be in the activated state for a third duration, which is greater than the duration of the first window, to receive the first synchronization sent by each network device of the N network devices through the WUR interface in the third duration.
  • the start time of the WUR interface in the active state and the duration of the active state are adjusted to be the fourth duration, and the subsequent synchronization frame sent by the network device of the target serving cell is received through the WUR interface in the fourth duration.
  • the terminal device may send the first synchronization frame according to the network device that receives the target serving cell.
  • the terminal device determines whether the TAI indicated by the identifier information of the TA to which the target serving cell belongs is in the TA list stored by the terminal device, and if it is determined that the identifier information of the TA to which the target serving cell belongs is indicated The TAI is in the TA list, and the terminal device can keep the main communication interface in the off state.
  • the terminal device activates the primary communication interface to perform TA update with the network device through the primary communication interface, and when the target serving cell belongs to the TA
  • the terminal device may keep the main communication interface in a closed state to reduce the power consumption of the terminal device.
  • the embodiment of the present application provides a terminal device, where the terminal device has a function of implementing the behavior of the terminal device in the method of the foregoing first aspect.
  • the functions may be implemented by hardware or by corresponding software implemented by hardware.
  • the hardware or software includes one or more modules corresponding to the functions described above.
  • the structure of the terminal device includes a wake-up radio frequency WUR interface and a processor configured to support the terminal device to perform the corresponding function in the method of the first aspect described above.
  • the WUR interface is configured to support communication between the terminal device and the network device, and receive information or instructions involved in the method of the first aspect.
  • the terminal device can also include a memory coupled to the processor that holds the necessary program instructions and data.
  • the terminal device may further include a main communication interface for supporting communication between the terminal device and the network device.
  • the embodiment of the present application provides a network device, where the network device has a function of implementing the behavior of the network device in the method of the foregoing first aspect.
  • the function can be implemented by hardware, and the structure of the network device includes a processor and a transmitter.
  • the corresponding software implementation can also be performed by hardware.
  • the hardware or software includes one or more modules corresponding to the above functions.
  • the modules can be software and/or hardware.
  • the embodiment of the present application provides a communication system, where the system includes the terminal device of the second aspect and the network device of the third aspect.
  • the embodiment of the present application provides a computer storage medium, which is stored with computer software instructions for performing the functions of any of the above first aspect, the first aspect, or includes the foregoing first aspect.
  • the embodiment of the present application provides a computer program product, which, when invoked by a computer, can cause the computer to execute the method of any one of the above first aspect and the first aspect.
  • the embodiment of the present application provides a chip system, where the chip system includes a processor, and is configured to support a terminal device or a network device to implement the method described in the foregoing first aspect, for example, generating or processing the foregoing first aspect method.
  • the chip system further includes a memory for storing necessary program instructions and data of the terminal device or the network device, and the processor in the chip system can call the program stored in the memory in the chip system.
  • the instructions and data are such that the chip system can implement the above-mentioned terminal device or network device to implement the function.
  • the chip system can be composed of chips, and can also include chips and other discrete devices.
  • the embodiment of the present application provides a data transmission method, where the method is applied to a network device and at least one terminal device, where the network device includes a first interface and a second interface, where the terminal device includes a third interface and a fourth interface, the first interface and the third interface communicate by using a first communication manner, and the second interface and the fourth interface are communicated by using a second communication manner;
  • the method includes:
  • the network device generates a synchronization frame, where the synchronization frame includes TA identifier information of the tracking area TA to which the network device belongs;
  • the network device sends the synchronization frame to the third interface of the at least one terminal device by using the first interface, so that each terminal device of the at least one terminal device determines whether it needs to be determined according to the TA identifier information.
  • the fourth interface is activated to perform a TA update process with the second interface of the network device through the fourth interface.
  • the first communication mode may be communication between WUR interfaces, and the synchronization frame may be referred to as a WUR synchronization frame because the communication is performed by the first communication mode.
  • the second communication mode may be communication between the primary communication interfaces.
  • the third interface When the network device sends the synchronization frame to the third interface of the at least one terminal device (eg, user equipment UE) through the first interface, the third interface is in an active state, where the The four interfaces are off (such as sleep).
  • the WUR synchronization frame carries the TA identification information, so that the IDLE state UE can determine whether the TA update process needs to be performed without activating the system message (SIB1) of the new communication cell after the cell reselection is completed, thereby saving power.
  • SIB1 system message
  • the synchronization frame further includes cell identity information of a cell to which the network device belongs.
  • the WUR synchronization frame carries the cell identity information, so that the UELE state UE does not need to activate the system message (MIB) of the other cell to obtain the cell identity when the cell is reselected, so that the UE receives low power consumption.
  • MIB system message
  • the transmission of the synchronization frame is periodic, and the synchronization frame further includes a transmission period of the synchronization frame.
  • the transmission period of the synchronization frame is carried in the WUR synchronization frame, so that the UE can only receive the synchronization time of all the synchronization frames by receiving only one synchronization frame of the new serving cell.
  • the first interface and the third interface are wake-up radio interfaces
  • the second interface and the fourth interface are main communication interfaces.
  • the third interface is the WUR interface and the fourth interface is the main communication interface. Therefore, the fourth interface is in the closed state and the third interface is in the active state, which is beneficial to the UE to save power.
  • the embodiment of the present application provides a data transmission method, where the method is applied to a network device and at least one terminal device, where the network device includes a first interface and a second interface, where the terminal device includes a third interface and a fourth interface, the first interface and the third interface communicate by using a first communication manner, and the second interface and the fourth interface are communicated by using a second communication manner;
  • the method includes:
  • the third interface Receiving, by the third interface, the synchronization frame that is sent by the network device by using the first interface, where the synchronization frame includes the TA identifier information of the tracking area TA to which the network device belongs;
  • the WUR synchronization frame carries the TA identity information, so that the IDLE state UE can determine whether the TA update process needs to be performed without activating the system message (SIB1) of the new communication cell after the cell reselection is completed, thereby saving power.
  • SIB1 system message
  • the terminal device determines, according to the TA identifier information, whether the fourth interface needs to be activated, to perform a TA update process by using the fourth interface and the second interface of the network device, including:
  • the terminal device activates the fourth interface, and passes through the fourth interface and the second interface of the network device.
  • the interface performs the TA update process.
  • the UE removes the TA List range configured by the network side to itself, and therefore needs to open the main communication interface to perform the TA update process.
  • the terminal device determines, according to the TA identifier information, whether the fourth interface needs to be activated, to perform a TA update process by using the fourth interface and the second interface of the network device, including:
  • the terminal device When the TA indicated by the TA identification information is included in the TA list saved by the terminal device, the terminal device does not activate the fourth interface.
  • the UE does not remove the TA List range that the network side has configured for itself, and does not need to update the TA List. Since the decision is made by listening to the sync frame on the third interface (WUR interface) instead of listening to the system message through the fourth interface (main communication interface), the process is more power efficient than the conventional method.
  • WUR interface sync frame on the third interface
  • main communication interface main communication interface
  • the synchronization frame further includes cell identity information of a cell to which the network device belongs.
  • the WUR synchronization frame carries the cell identity information, so that the UELE state UE does not need to activate the system message (MIB) of the other cell to obtain the cell identity when the cell is reselected, so that the UE receives low power consumption.
  • MIB system message
  • the transmission of the synchronization frame is periodic, and the synchronization frame further includes a transmission period of the synchronization frame.
  • the transmission period of the synchronization frame is carried in the WUR synchronization frame, so that the UE can only receive the synchronization time of all the synchronization frames by receiving only one synchronization frame of the new serving cell.
  • the first interface and the third interface are wake-up radio interfaces
  • the second interface and the fourth interface are main communication interfaces.
  • the third interface is the wake-up radio interface (WUR interface) and the fourth interface is the main communication interface. Therefore, the fourth interface is closed and the third interface is activated, which is beneficial to the UE to save power.
  • WUR interface wake-up radio interface
  • the embodiment of the present application provides a network device, where the network device includes:
  • the transceiver is configured to receive and send data
  • the memory is configured to store an instruction
  • the processor is configured to execute the instruction in the memory, and perform the method of any one of the eighth aspect and the eighth aspect.
  • the transceiver is a main communication module, and is configured to transmit a synchronization frame of any one of the eighth aspect and the eighth aspect.
  • the primary communication module may be an LTE/NR module.
  • the synchronization frame may be a synchronization frame that can be identified by the WUR interface, and may also be referred to as a WUR synchronization frame.
  • the network device further includes a transmitter for transmitting a synchronization frame of any one of the eighth aspect, the eighth aspect.
  • the transmitter may be a WUR module (also referred to as a WUR interface) having a transmit signal function.
  • the synchronization frame may be a synchronization frame that can be identified by the WUR interface, and may also be referred to as a WUR synchronization frame.
  • the embodiment of the present application provides a terminal device, where the terminal device includes:
  • the transceiver is configured to receive and send data
  • the memory is for storing instructions
  • the processor is configured to execute the instructions in the memory, and perform the method of any one of the ninth aspect and the ninth aspect.
  • the receiver is configured to receive a synchronization frame of any of the ninth aspect, the ninth aspect.
  • the receiver may be a WUR or a WUR module (also referred to as a WUR interface).
  • the synchronization frame may be a synchronization frame that can be identified by the WUR interface, and may also be referred to as a WUR synchronization frame.
  • the embodiment of the present application provides a computer program product, including a computer program, when the computer program is executed on a computer unit, the computer unit is configured to implement any one of the eighth aspect and the eighth aspect.
  • a method of design is provided.
  • the embodiment of the present application provides a computer program product, including a computer program, when the computer program is executed on a computer unit, the computer unit is configured to implement any one of the ninth aspect and the ninth aspect.
  • the embodiment of the present application provides a computer program, which when executed on a computer unit, causes the computer unit to implement the method of any one of the eighth aspect and the eighth aspect.
  • the embodiment of the present application provides a computer program, which when executed on a computer unit, causes the computer unit to implement the method of any one of the ninth aspect and the ninth aspect.
  • the embodiment of the present application provides a network device, where the network device is configured to perform the method of any one of the eighth aspect and the eighth aspect.
  • the embodiment of the present application provides a terminal device, where the terminal device is configured to perform the method of any one of the ninth aspect and the ninth aspect.
  • the terminal device after the terminal device reselects to a target serving cell, the terminal device obtains the identifier information of the TA to which the target serving cell belongs from the synchronization frame sent by the network device of the target serving cell received through the WUR interface, and further according to The identification information of the TA to which the target serving cell belongs determines the TAI of the TA to which the target serving cell belongs, and determines whether to perform TA update according to the TAI of the TA to which the target serving cell belongs, and keeps the main communication interface in a closed state when necessary, and the terminal device according to the The identifier information of the TA to which the target serving cell belongs is determined whether the TA update needs to be performed, and the main communication interface of the terminal device is kept in the closed state when not needed.
  • the terminal device when the terminal device receives the system message to obtain the TAI of the TA to which the target serving cell belongs, the terminal device does not need to perform the TA update, and the main communication interface of the terminal device is in the closed state. Avoiding complex signal processing operations such as Fast Fourier Transform (FFT) and Forward Error Correction (FEC) on signals received through the main communication interface, thereby reducing power consumption of the terminal device .
  • FFT Fast Fourier Transform
  • FEC Forward Error Correction
  • FIG. 1 is a schematic diagram of an application scenario provided by an embodiment of the present application
  • FIG. 2 is a schematic structural diagram of a terminal device and a network device according to an embodiment of the present disclosure
  • FIG. 3 is a schematic diagram of an awake window of a WUR interface of a terminal device according to an embodiment of the present disclosure
  • FIG. 4 is a flowchart of a method for acquiring a tracking area identifier TAI of a target cell to be reselected by a cell according to an embodiment of the present disclosure
  • 5A-5C are schematic diagrams of a network device separately sending a synchronization frame according to an embodiment of the present disclosure
  • FIG. 6 is a flowchart of a TA update according to an embodiment of the present application.
  • FIG. 7 is a flowchart of another method for acquiring a tracking area identifier TAI of a cell reselection target serving cell according to an embodiment of the present disclosure
  • FIG. 8 is a schematic structural diagram of another terminal device according to an embodiment of the present disclosure.
  • FIG. 9 is a schematic structural diagram of another network device according to an embodiment of the present disclosure.
  • FIG. 10 is a schematic structural diagram of another terminal device according to an embodiment of the present disclosure.
  • FIG. 11 is a schematic structural diagram of another network device according to an embodiment of the present application.
  • FIG. 12 is a schematic diagram of an application scenario according to an embodiment of the present disclosure.
  • FIG. 13 is a schematic diagram of a base station sending a synchronization frame according to an embodiment of the present disclosure
  • FIG. 14 is a schematic structural diagram of a base station according to an embodiment of the present disclosure.
  • FIG. 15 is a schematic structural diagram of a terminal device according to an embodiment of the present disclosure.
  • the technical solution described in the embodiments of the present application can be applied to the fifth generation mobile communication technology (5G), and can also be used in the next generation mobile communication system.
  • 5G fifth generation mobile communication technology
  • a network device for example comprising a base station (e.g., an access point), may refer to a device in the access network that communicates over the air interface with the wireless terminal device over one or more sectors.
  • the base station can be used to convert the received air frame to the IP packet as a router between the terminal device and the rest of the access network, wherein the rest of the access network can include an IP network.
  • the base station can also coordinate attribute management of the air interface.
  • the base station may include an evolved base station (NodeB or eNB or e-NodeB, evolutional Node B) in a Long Term Evolution (LTE) system or an evolved LTE system (LTE-A), or
  • NodeB or eNB or e-NodeB, evolutional Node B in a Long Term Evolution (LTE) system or an evolved LTE system (LTE-A), or
  • LTE Long Term Evolution
  • LTE-A evolved LTE system
  • the next generation node B (gNB) in the 5G system may be included in the embodiment of the present application.
  • a terminal device including a device that provides voice and/or data connectivity to a user, for example, may include a handheld device having a wireless connection function, or a processing device connected to a wireless modem.
  • the terminal device can communicate with the core network via a Radio Access Network (RAN) to exchange voice and/or data with the RAN.
  • the terminal device may include a user equipment (User Equipment, UE), a wireless terminal device, a mobile terminal device, a Subscriber Unit, a Subscriber Station, a mobile station, a mobile station, and a remote station.
  • Station Remote Station
  • AP Access Point
  • Remote Terminal Access Terminal
  • User Terminal User Agent
  • User Equipment User Equipment
  • a mobile phone or "cellular” phone
  • a computer with a mobile terminal device a portable, pocket, handheld, computer built-in or in-vehicle mobile device, smart wearable device, and the like.
  • PCS Personal Communication Service
  • SIP Session Initiation Protocol
  • WLL Wireless Local Loop
  • PDA Personal Digital Assistant
  • Smart Watches smart helmets, smart glasses, smart bracelets, and other equipment.
  • restricted devices such as devices with lower power consumption, or devices with limited storage capacity, or devices with limited computing capabilities. Examples include information sensing devices such as bar codes, radio frequency identification (RFID), sensors, global positioning systems (GPS), and laser scanners.
  • RFID radio frequency identification
  • GPS global positioning systems
  • system and “network” in the embodiments of the present application may be used interchangeably.
  • Multiple means two or more.
  • a plurality can also be understood as “at least two” in the embodiment of the present application.
  • the character "/” unless otherwise specified, generally indicates that the contextual object is an "or" relationship.
  • the terminal device after the terminal device reselects to a target serving cell, the terminal device obtains the identifier information of the TA to which the target serving cell belongs from the synchronization frame sent by the network device of the target serving cell received through the WUR interface, and then according to The identifier information of the TA to which the target serving cell belongs determines the TAI of the TA to which the target serving cell belongs. Since the signals received through the WUR interface are all in a relatively simple modulation manner, the terminal device side does not need to perform fast Fourier on the received synchronization frame. Complex signal processing operations such as Fast Fourier Transform (FFT) and Forward Error Correction (FEC) can reduce the power consumption of the terminal device.
  • FFT Fast Fourier Transform
  • FEC Forward Error Correction
  • FIG. 1 is an application scenario of an embodiment of the present application.
  • a plurality of base stations and terminal devices located within a common coverage of the plurality of base stations are included, and each of the plurality of base stations generates a synchronization frame and broadcasts the respective generated synchronization frames.
  • the technical solution provided by the embodiment of the present application is described in the following with reference to the accompanying drawings.
  • the technical solution provided by the embodiment of the present application is applied to the application scenario shown in FIG. 1 as an example, and the network device is a base station.
  • the network device is a base station.
  • the embodiment of the present invention provides a method and a device for acquiring identification information of a tracking area TA of a cell reselection target serving cell, which are applicable to a terminal device and a base station.
  • Figure 2 shows a block diagram of a possible terminal device and base station.
  • the terminal device 20 shown in FIG. 2 includes: a wake-up radio (WUR) interface 201, a main communication interface (Main Radio) 202, and the like.
  • the base station 21 shown in FIG. 2 includes a main communication interface 211.
  • WUR wake-up radio
  • Main Radio Main Radio
  • the base station 21 shown in FIG. 2 includes a main communication interface 211.
  • a person skilled in the art can understand that the structure of the terminal device 20 shown in FIG. 2 does not constitute a limitation on the terminal device 20.
  • the terminal device 20 provided in this embodiment of the present application may include more or less components than illustrated.
  • the structure of the base station 21 shown in FIG. 2 does not constitute a limitation to the base station 21.
  • the base station 21 provided by the embodiment of the present application may include more components than the illustrated ones, or combine some components or different components. Arrangement.
  • terminal device 20 The components of the terminal device 20 and the base station 21 will be specifically described below with reference to FIG. 2:
  • the WUR interface 201 is configured to receive a wake-up signal sent by the base station 21, such as a wake-up packet (Wakeup Packet), or a wake-up frame. After receiving the wake-up signal, the WUR interface 201 sends a trigger signal to the main communication interface 202 to wake up.
  • the main communication interface 202 The main communication interface 202.
  • the trigger signal for example, the interrupt signal, may be sent to the main communication interface 202 by the WUR interface 201 in a wired manner or wirelessly, or may be sent by the processor of the terminal device 20 to the main communication interface 202, for example, in an actual system, WUR
  • the interface 201 forwards the received wake-up signal to the processor, and the processor determines whether to activate the main communication interface 202, and the trigger signal is sent by the processor to the main communication interface 202;
  • the main communication interface 202 such as Long Term Evolution (LTE), New Radio (NR), or Wireless Fidelity (WiFi) interface, etc.
  • LTE Long Term Evolution
  • NR New Radio
  • WiFi Wireless Fidelity
  • the WUR interface 201 has a simple circuit structure in order to achieve low power consumption.
  • the circuit structure of the WUR interface 201 may include an energy detection and a radio frequency portion, and the complex modulation mode cannot be demodulated, so the wake-up signal is also required.
  • Simple modulation methods such as On-Off Keying (OOK) modulation, Amplitude Shift Keying (ASK) or Frequency Shift Keying (FSK) are used.
  • OOK On-Off Keying
  • ASK Amplitude Shift Keying
  • FSK Frequency Shift Keying
  • the WUR interface 201 can be continuously activated or activated at a certain time interval to reduce the power consumption of the terminal device 20. When the WUR interface 201 is activated according to a certain time interval, the terminal device 20 needs to perform time synchronization with the base station 21.
  • the time window in which the WUR interface 201 is in an active state may be referred to as an awake window, and the start time of the awake window, the duration of the awake window, and the period of the awake window may be pre-agreed by the base station 21 and the terminal device 20, or configured by the base station 21 to the terminal device. 20.
  • FIG. 3 is an example of a WUR interface awake window with a period of 120 milliseconds (ms) and a wake-up window of 2 ms.
  • the base station 21 includes a primary communication interface 211, the base station 21 may be a wake-up signal to generate a primary communication interface 211, since the current third generation partnership (3 rd Generation Partnership Project, 3GPP ) standard, the base station 21
  • the main communication interface 211 is usually an Orthogonal Frequency Division Multiplexing (OFDM) wideband transmitter, and the wakeup signal may be a narrowband signal.
  • OFDM Orthogonal Frequency Division Multiplexing
  • OFDM may be utilized.
  • the wideband transmitter produces a narrowband wake-up signal.
  • a partial subcarrier of the OFDM signal is vacant and the signal is transmitted only on a narrow band corresponding to the wakeup signal, thereby generating a narrowband signal.
  • the base station 21 can also implement the main communication interface 211 and the WUR interface separately in a specific implementation, that is, the base station 21 shown in FIG. 2 can also include the main communication interface 211 and the WUR interface.
  • both the base station 21 and the terminal device 20 shown in FIG. 2 are configured with one antenna, which is mainly considering that the WUR interface 201 of the terminal device 20 and the main communication interface 202 can share the same antenna when using the same or close frequency band carrier.
  • the WUR interface 201 and the main communication interface 202 of the terminal device 20 use different frequency band carriers with a larger interval in the frequency domain, the WUR interface 201 and the main communication interface 202 of the terminal device 20 should be configured with different antennas.
  • the main communication interface 202 of the terminal device 20 uses the 6 GHz band
  • the WUR interface 201 uses the 1.8 GHz band.
  • the main communication interface 202 and the WUR interface 201 should be configured with different antennas.
  • the primary communication interface 211 and the WUR interface of the base station 21 are separately implemented, and the primary communication interface 211 and the WUR interface use different frequency band carriers with larger intervals in the frequency domain, the primary communication interface 211 and the WUR interface of the base station 21 should also be configured. Different antennas.
  • the cell reselection performed by the terminal device 20 may be a periodic measurement trigger or an event trigger.
  • the terminal device 20 measures the reference signal or the synchronization frame of the source serving cell and finds that the received power is less than a specific threshold, the terminal device 20 is triggered to perform cell reselection, that is, N candidate serving cells for cell reselection.
  • the reference signal or the synchronization frame of the neighboring serving cell performs measurement and determines the target serving cell of the cell reselection, thereby completing cell reselection.
  • the terminal device 20 determines the specific criterion of the target serving cell according to the measurement result of the N candidate serving cells, and may be determined by the terminal device 20.
  • the terminal device 20 selects the candidate serving cell with the largest received power as the target serving cell for cell reselection.
  • the timing at which the terminal device 20 receives the synchronization frame transmitted by the base station 21 is also different.
  • the terminal device 20 performs cell based on the reference signals transmitted by the N base stations 21 of the N candidate serving cells.
  • the terminal device 20 receives the synchronization frame sent by the network device of the target serving cell after determining the target serving cell, or the terminal device 20 performs cell reselection based on the synchronization frame sent by the N base stations 21 of the N candidate serving cells.
  • the terminal device 20 receives the synchronization frames respectively sent by each of the N base stations 21 of the N candidate serving cells through the WUR interface before performing cell reselection, which are respectively introduced below.
  • an embodiment of the present application provides a method and a device for acquiring identification information of a tracking area TA of a cell reselection target serving cell, and the method is applicable to the terminal device 20 and the base station 21 shown in FIG. 2 above.
  • the base station 21 generates a synchronization frame, where the synchronization frame includes the identifier information of the tracking area TA to which the cell where the base station 21 belongs.
  • the TA is a communication system, for example, the concept introduced by the LTE to simplify the location management of the terminal device 20. , represents a collection of cells. Multiple cells are assigned to the same TA, that is, each TA includes at least one cell, and each cell can belong to only one TA.
  • the identifier information of the tracking area TA to which the cell where the base station 21 belongs may be a Tracking Area Identity (TAI), including a Public Land Mobile Network (PLMN) and a tracking area code ( Tracking Area Code, TAC).
  • TAI Tracking Area Identity
  • PLMN Public Land Mobile Network
  • TAC Tracking Area Code
  • the identification information of the tracking area TA to which the cell in which the base station 21 belongs may also be part of the information included in the TAI, for example, a Tracking Area Code (TAC) included in the TAI.
  • TAC Tracking Area Code
  • the length of the identification information of the tracking area TA to which the cell where the base station 21 belongs is shortened, that is, the length of the synchronization frame becomes shorter, and the length of the synchronization frame changes.
  • the resources used by the base station 21 to transmit the synchronization frame are also reduced, thereby reducing the resource overhead of the base station 21.
  • the identifier information of the tracking area TA to which the cell in which the base station 21 is located may also be part of the TAC, such as a lower number of bits of the TAC.
  • the identifier information of the tracking area TA to which the cell to which the base station 21 belongs may also be the indication information of the TAI of the TA to which the cell where the base station 21 belongs.
  • the indication information is a sequence, and different sequences represent different TAIs. As an example, 001 is used. Indicates that TAI1, 010 is used to indicate TAI2, or 100 is used to indicate TAI3.
  • the identifier information of the tracking area TA to which the cell in which the base station 21 is located may also be the identifier information used by the base station 21 to identify the TAI generated according to the TAI of the TA to which the cell of the base station 21 belongs.
  • the TAI of the TA to which the cell of the base station 21 belongs is mapped by using a hash algorithm. It is a hash value to identify the TAI of the TA to which the cell where the base station 21 is located.
  • the base station 21 sends a synchronization frame.
  • the terminal device 20 receives the synchronization frame sent by each of the N base stations 21 of the N candidate serving cells by the wake-up radio frequency WUR interface 201, where N is greater than or equal to 1.
  • the integer the N base stations 21 of the N candidate serving cells are referred to as N candidate base stations 21, and the base station of the serving cell (ie, the source serving cell) where the terminal device 20 performs cell reselection is referred to as the source base station 21, the source.
  • the serving cell in which the base station 21 is located is referred to as a source serving cell; the serving cell in which the terminal device performs reselection is referred to as a target serving cell, and the base station 21 of the target serving cell is referred to as a target base station 21.
  • the terminal device 20 corresponds to an awake window, and the awake window is determined by the terminal device 20 in the source serving cell where the source base station 21 is located.
  • the awake window includes the start time of the awake window and the duration of the awake window, and the duration of the awake window is The length of a window.
  • the manner in which the N candidate base stations 21 and the source base station 21 transmit the synchronization frame may be sent in a preset period.
  • any candidate base station 21 of the N candidate base stations 21 may be configured by any one of the candidate base stations 21, for example, any one of the candidate base stations 21 passes Radio Resource Control (RRC) signaling and the main information block.
  • RRC Radio Resource Control
  • MIB/SIB Master/System Information Block
  • MAC CE Media Access Control Element
  • physical downlink control channel configuration or RRC signaling configuration parameter set, by MAC CE or The physical layer signaling configures a parameter from the parameter set configured by the RRC signaling to the terminal device 20; the preset period may also be specified by a standard protocol.
  • the source base station 21 or any one of the candidate base stations 21 sends configuration information to the terminal device 20, where the configuration information includes a preset period.
  • the base station may configure the preset period for the terminal device 20 through the foregoing configuration information; and for the terminal device 20 in the idle state, the terminal device may adopt a preset pre-defined preset period or adopt a saved preset.
  • the period in the connected state before the terminal device is configured by the base station, or the terminal device 20 actively searches for the synchronization frame, and determines the preset period according to the received one or more synchronization frames.
  • the source base station 21 or any one of the candidate base stations 21 can configure the period for transmitting the synchronization frame by using the base station configuration information, and can also configure the transmission synchronization frame in the base station configuration information.
  • the above parameters can also be predefined by the standard.
  • the source base station 21 or any one of the candidate base stations 21 may also configure the start time of transmitting the synchronization frame in the base station configuration information, and the time at which the source base station 21 or any one of the candidate base stations 21 transmits the synchronization frame may be represented by a time offset, for example, for example.
  • the time offset may be the time interval between the first synchronization frame and the base station configuration information.
  • the source base station 21 or any one of the candidate base stations 21 may transmit base station configuration information to the primary communication interface 202 of the terminal device 20 through the primary communication interface when the terminal device 20 is in the connected state.
  • the period in which each of the N candidate base stations 21 transmits the synchronization frame may be the same as or different from the period of the synchronization frame transmitted by the source base station 21 of the terminal device 20; the start time of the synchronization frame transmitted by each candidate base station 21
  • the starting time of transmitting the synchronization frame with the source base station 21 may be the same or different, and is separately introduced below.
  • the period of the synchronization frame sent by each of the candidate base stations 21 is the same as the period in which the source base station 21 transmits the synchronization frame, and the start of the synchronization frame sent by each of the candidate base stations 21
  • the interval between the moment and the start time of the synchronization frame sent by the source base station 21 is less than or equal to a preset value
  • the period in which the candidate base station 21(1) transmits the synchronization frame 1 is the same as the period in which the source base station 21(2) transmits the synchronization frame 2, candidates
  • the interval between the start time of the base station 21(1) transmitting the synchronization frame 1 and the start time of the source base station 21(2) transmitting the synchronization frame 2 is less than or equal to a preset value.
  • the candidate base station 21(1) transmits the synchronization frame 1 and the period in which the source base station 21(2) transmits the synchronization frame are the same, if the candidate base station 21(1) transmits the start time of the synchronization frame 1 The same as the start time at which the source base station 21(2) transmits the synchronization frame 2, interference occurs between the synchronization frame 1 transmitted by the candidate base station 21(1) and the synchronization frame 2 transmitted by the source base station 21(2).
  • the candidate base station 21(1) and the source base station 21(2) may mutually mutually agree to send a time interval between the synchronization frame 1 and the synchronization frame 2, for example, the candidate base station 21(1) transmits the synchronization frame 1
  • the interval between the start time and the start time of the source station 21 (2) transmitting the synchronization frame 2 is less than or equal to a preset value, and the preset value is the first window duration of the WUR interface 201 of the terminal device 20, for example, FIG.
  • the duration of the awake window is 2ms.
  • the period of the synchronization frame sent by each of the candidate base stations 21 is the same as the synchronization frame transmitted by the source base station 21, and the start time and source of the synchronization frame sent by at least one candidate base station 21 of the N candidate base stations 21.
  • the interval between the start times of the synchronization frames sent by the base station 21 is greater than a preset value;
  • the candidate base station 21(1) transmits the synchronization frame 1 period and the source base station 21(2) transmits synchronization.
  • the period of the frame 2 is the same, and the interval between the start time of the candidate base station 21(1) transmitting the synchronization frame 1 and the start time of the source base station 21(2) transmitting the synchronization frame 2 is greater than a preset value, and the preset value is the terminal.
  • the first window duration of the WUR interface 201 of the device 20, such as the duration of the wake window shown in Figure 3, is 2 ms.
  • the period of the synchronization frame sent by at least one of the N candidate base stations 21 is different from the period in which the source base station 21 transmits the synchronization frame.
  • the candidate base station 21(1) transmits the synchronization frame 1 period and the source base station 21(2) transmits synchronization.
  • the period of frame 2 is different.
  • the WUR interface 201 of the terminal device 20 may be continuously activated or may be activated at certain time intervals.
  • the terminal device 20 can receive the N through the WUR interface 201 within the first window duration.
  • the WUR interface 201 of the terminal device 20 is activated at a certain time interval, when each of the N candidate base stations 21 adopts different transmission modes, the terminal device 20 needs to adopt different receiving modes.
  • the period of the synchronization frame sent by each of the candidate base stations 21 is the same as the period in which the source base station 21 transmits the synchronization frame, and each of the candidate base stations 21 of the N candidate base stations 21 transmits the synchronization frame.
  • the interval between the start time of the synchronization frame and the start time of the synchronization frame sent by the source base station 21 is less than or equal to the duration of the first window, so that the terminal device 20 can receive N through the WUR interface 201 within the first window duration.
  • the terminal device 20 can always receive the synchronization frame sent by the candidate base station 21(1) through the WUR interface 201 within the first window duration.
  • the interval between the start time of the synchronization frame sent by the at least one candidate base station 21 and the start time of the synchronization frame sent by the source base station 21 is greater than the first window duration, so the terminal The device 20 may not be able to receive the synchronization frame respectively transmitted by each of the N candidate base stations 21 through the WUR interface 201 within the first window duration.
  • the terminal device 20 can control the duration of the WUR interface 201 to be in the active state for a first duration, and the first duration is greater than the first window duration to receive the N candidate base stations 21 through the WUR interface 201 within the first duration.
  • the first synchronization frame sent by each candidate base station 21 is separately measured, for example, And respectively measuring the first synchronization frame sent by each candidate base station 21, or respectively measuring the second synchronization frame sent by each candidate base station 21, or respectively transmitting the first synchronization frame to each candidate base station and
  • the second synchronization frame performs measurement, and then the measurement result of the measurement of the first synchronization frame and the measurement result of the measurement of the second synchronization frame are averaged, and a total of N measurement results are obtained, and N measurement results are obtained from N Determining the target serving cell in the candidate serving cell, and then adjusting the duration of the WUR interface 201 in the active state to be less than the second duration in the second duration according to the time of receiving the first synchronization frame sent by the target base station 21, in the second duration
  • the second duration is that after the terminal device 20
  • the first window duration of the WUR interface 201 of the terminal device is 2 ms
  • the synchronization frame transmission period is 120 ms (also the wake window period of the WUR interface 201)
  • the start and end time (system clock) of an awake window is 995 ms to 997 ms, first.
  • the synchronization frame is the first synchronization frame sent by the target base station 21, and the terminal device 20 first controls the duration of the WUR interface 201 to be in the active state to be greater than the first duration of the first window, 6 ms, and receives N candidates in the first duration.
  • the first synchronization frame transmitted by each candidate base station 21 in the base station 21. After the target serving cell is determined, the target serving cell is the serving cell where the candidate base station 21(1) is located.
  • the candidate base station 21(1) is the target base station 21(1), and the period of the synchronization frame is 120ms, and the terminal device 20
  • the terminal device 20 can determine the number of the target base station 21(1) according to the synchronization frame transmission period of 120 ms and the arrival time of 1000 ms.
  • the arrival time of the two synchronization frames is 1120 ms, and the start time of the WUR interface 201 in the active state is adjusted according to the time, and the duration of the WUR interface 201 being activated is adjusted to be the second duration, for example, the target base station is received through the WUR interface 201.
  • the WUR interface 201 After the first synchronization frame is sent, the WUR interface 201 is in the off state, and the WUR interface 201 is activated at the time of 1120 ms, and the duration of the WUR interface 201 being activated is less than the second duration of the first duration of 3 ms. .
  • the terminal device can adjust the start time of the WUR interface 201 in the active state and the duration of the active state in real time according to the actual situation, so as to ensure accurate reception of the subsequent synchronization frame sent by the target base station 21(1). At the same time, the power consumption of the terminal device 20 is lowered.
  • the period of the synchronization frame sent by at least one of the candidate base stations 21 is different from the period in which the source base station 21 transmits the synchronization frame. Therefore, the WUR interface 201 of the terminal device 20 is within the first window duration. The synchronization frame transmitted by each of the N candidate base stations 21 may not be received. In this case, the terminal device 20 can control the duration in which the WUR interface 201 is in the active state to be greater than the third duration of the first window duration, to receive each of the N candidate base stations 21 through the WUR interface 201 within the third duration.
  • the first synchronization frame sent by the candidate base station 21, wherein the first synchronization frame respectively sent by each of the candidate base stations 21 may be the first synchronization frame sent by each candidate base station 21, and each candidate
  • the first synchronization frame and the second synchronization frame respectively sent by the base station 21 are not specifically limited herein.
  • the first synchronization frame sent by each candidate base station 21 is separately measured, for example, And respectively measuring the first synchronization frame sent by each candidate base station 21, or respectively measuring the second synchronization frame sent by each candidate base station 21, or respectively transmitting the first synchronization frame to each candidate base station and
  • the second synchronization frame performs measurement, and then the measurement result of the measurement of the first synchronization frame and the measurement result of the measurement of the second synchronization frame are averaged, and a total of N measurement results are obtained, and N measurement results are obtained from N
  • the target serving cell is determined among the candidate serving cells.
  • the terminal device 20 cannot know the period in which each of the candidate base stations 21 in the N candidate base stations 21 respectively transmits the synchronization frame. Therefore, the terminal device 20 is required to correctly receive the subsequent synchronization frame sent by the target base station 21. The period in which the target base station 21 sends the synchronization frame needs to be determined.
  • the specific implementation process includes but is not limited to the following two types, which are respectively introduced below.
  • the terminal device 20 determines, according to the time of receiving the first synchronization frame sent by the target base station 21, or according to the time of the first synchronization frame transmitted by the reception target base station 21 and the time of the second synchronization frame transmitted by the reception target base station 21.
  • the target base station 21 transmits the period of the synchronization frame, and further adjusts the duration of the WUR interface 201 in the active state to be less than the third duration in the fourth period according to the calculated period and the timing of the subsequent synchronization frame sent by the target base station 21.
  • the subsequent synchronization frame sent by the target base station 21 is received in the duration, and the fourth duration is the duration of the awake window of the WUR interface 201 in the current serving cell after the terminal device 20 selects the target serving cell as the current serving cell.
  • the terminal device 20 may further receive, according to the time of receiving the first synchronization frame of the current serving cell, or according to the time of receiving the first synchronization frame and the second synchronization frame of the current serving cell, and the synchronization frame transmission period of the current serving cell, The start time of the wake window of its WUR interface 201 in the current serving cell is adjusted.
  • the window duration of the WUR interface 201 is 2 ms
  • the synchronization frame transmission period is 120 ms (that is, the awake window period of the WUR interface 201)
  • the start time (system clock) of an awake window is 995 ms to 997 ms
  • the first synchronization frame is The first synchronization frame sent by the target base station 21 is taken as an example.
  • the terminal device 20 first controls the duration of the WUR interface 201 to be in the active state to be greater than the third duration of the first window duration by 6 ms, and receives the N candidate base stations 21 in the third duration.
  • the first synchronization frame transmitted by each candidate base station 21 and the second synchronization frame transmitted by the target base station 21 after the target serving cell is determined.
  • the target serving cell is the serving cell where the candidate base station 21(1) is located, and the terminal device 20 receives the candidate base station 21(1), that is, the time (system clock) of the first synchronization frame sent by the target base station 21(1) is 1000ms, the terminal device 20 receives the second synchronization frame sent by the target base station 21(1) as an example.
  • the terminal device 20 can determine that the target base station 21(1) sends the synchronization frame for 120ms, and the terminal device 20 Further, it can be determined that the time at which the third synchronization frame sent by the target base station 21(1) arrives is 1240 ms, and then the start time of the WUR interface 201 in the active state is adjusted according to the time, and the duration of the WUR interface 201 being activated is adjusted.
  • the fourth time length for example, after the terminal device 20 receives the second synchronization frame sent by the target base station 21(1), the WUR interface 201 is controlled to be in the off state, and the WUR interface 201 is activated at the time of 1240 ms, and the WUR interface 201 is activated.
  • the duration is less than the third duration of the third duration of 3 ms.
  • the terminal device adjusts the start time of the WUR interface 201 in the active state and the duration of the active state in real time according to actual conditions, so as to ensure accurate reception of the subsequent synchronization frame sent by the target base station 21(1).
  • the power consumption of the terminal device 20 is reduced.
  • the synchronization frame sent by each candidate base station 21 in the N candidate base stations 21 further includes period information of the synchronization frame sent by the candidate base station 21, so that the terminal device 20 receives the first synchronization sent by the target base station 21.
  • the time of reaching the next synchronization frame sent by the target base station 21 is determined according to the time of the first synchronization frame sent by the target base station 21, and the duration of the WUR interface 201 being activated is less than the fifth according to the time.
  • the sixth duration of the duration is to receive the subsequent synchronization frame sent by the target base station 21 within the sixth duration.
  • the sixth duration is that after the terminal device 20 selects the target serving cell as the current serving cell, the WUR interface 201 is in the current serving cell.
  • the length of the wake window is Certainly, the terminal device 20 may further adjust the start time of the WW interface 201 in the current serving cell according to the time when the first synchronization frame of the current serving cell is received.
  • the WUR interface 201 of the terminal device 20 has a window duration of 2 ms, the synchronization frame transmission period is 120 ms (which is also the awake window period of the WUR interface 201), and the start and end time (system clock) of an awake window is 995 ms to 997 ms, and the first synchronization frame.
  • the first synchronization frame sent by the target base station 21 is used as an example.
  • the terminal device 20 controls the duration of the WUR interface 201 to be in the active state to be greater than the fifth duration of the first window duration by 6 ms, and receives the N candidate base stations 21 in the fifth duration.
  • the first synchronization frame transmitted by each candidate base station 21 is separately performed.
  • the target serving cell is the serving cell where the candidate base station 21(1) is located, and the terminal device 20 receives the candidate base station 21(1), that is, the first synchronization frame sent by the target base station 21(1).
  • the time is 1000 ms.
  • the terminal device 20 determines that the target base station 21(1) transmits the second according to the period in which the target base station 21(1) carried in the first synchronization frame transmitted by the target base station 21(1) transmits the synchronization frame for 120 ms.
  • the time when the synchronization frame arrives is 1120 ms, and the start time of the WUR interface 201 in the active state and the duration of the active state are set to be less than the sixth duration of the fifth duration according to the time, for example, the terminal device 20 receives the target base station 21 ( 1) After the first synchronization frame is sent, the control WUR interface 201 is in the off state, and the WUR interface 201 is activated at the time of 1120 ms.
  • the duration of controlling the WUR interface 201 to be in the active state is less than the fifth duration and the sixth duration is 3 ms.
  • the terminal device adjusts the time when the WUR interface 201 is in the active state and the duration of the active state according to the actual situation, so that the terminal device can be reduced while ensuring accurate reception of the synchronization frame sent by the target base station 21(1). 20 power consumption.
  • the duration of the WUR interface 201 being activated is greater than the WUR interface 201 in the source serving cell.
  • the period of the wake-up window such as 120 ms in the above example.
  • the period in which the candidate base station 21(1) transmits the synchronization frame 1 in the above 1 is the same as the period in which the source base station 21(2) transmits the synchronization frame, and the candidate base station 21(1) transmits the start of the synchronization frame 1.
  • the case where the interval between the time and the start time of the source base station 21(2) transmitting the synchronization frame is less than or equal to a preset value, which is pre-specified by the standard protocol, or the core network device instructs each candidate base station 21 of the terminal device 20 to transmit the synchronization frame.
  • the period is the same as the period in which the source base station 21 transmits the synchronization frame, and the interval between the start times of the transmission synchronization frames is smaller than a preset value, that is, the terminal device 20 can know that the period in which each candidate base station 21 transmits the synchronization frame is transmitted by the source base station 21.
  • the period of the synchronization frame is the same, and the interval between the start times of the synchronization frames is less than or equal to the preset value, and the terminal device 20 receives the synchronization frame sent by the candidate base station 21(1) in the foregoing manner; 21 (1)
  • the period in which the synchronization frame 1 is transmitted and the period in which the source base station 21 (2) transmits the synchronization frame 2 are the same, which is predetermined by a standard protocol, or is instructed by the core network device to transmit the synchronization frame week by each candidate base station 21 of the terminal device.
  • the terminal device 20 can know that the period in which each candidate base station 21 transmits the synchronization frame is the same as the period in which the source base station 21 transmits the synchronization frame, and does not know that each candidate base station 21 transmits the synchronization frame.
  • the terminal device 20 receives the synchronization frame sent by the candidate base station 21(1) in the foregoing manner;
  • the standard protocol stipulates that the terminal device 20 is instructed by the core network device, that is, the terminal device 20 cannot know whether the period in which each candidate base station 21 transmits the synchronization frame is the same as the period in which the source base station 21 transmits the synchronization frame, and the terminal device 20 adopts In the above manner, the synchronization frame transmitted by the candidate base station 21(1) is received.
  • the synchronization frame sent by each of the N candidate base stations 21 can be used for the terminal device 20 to perform measurement, so as to select one target serving cell from the N candidate serving cells, and N at the same time.
  • the synchronization frame transmitted by each candidate base station 21 in the base station 21 can also be used for synchronization between the WUR interface 201 of the terminal device 20 and the candidate base station 21.
  • the terminal device 20 receives the synchronization frame sent by each candidate base station 21 of the N candidate base stations through the WUR interface 201, and the signals received through the WUR interface 201 as described above adopt a relatively simple modulation mode.
  • the terminal device 20 can determine the information carried by the received synchronization frame by a relatively simple detection method, such as an energy detection method. There is energy of 1, and no energy is zero.
  • a more complex modulation and channel coding scheme has been adopted on the candidate base station 21 side, such as OFDM modulation, Turbo, Low Density Parity Check (LDPC) or Polar.
  • the equal channel coding method is such that complex signal processing operations such as Fast Fourier Transform (FFT) and Forward Error Correction (FEC) are performed on the terminal device 20 side, and these complex signal processing operations are performed. It takes a lot of energy. Therefore, receiving signals through the WUR201 interface can reduce the power consumption of the terminal device 20 as compared to receiving signals through the main communication interface 202.
  • FFT Fast Fourier Transform
  • FEC Forward Error Correction
  • the terminal device 20 obtains N measurement results by measuring the first synchronization frame sent by each of the N candidate base stations 21, and then obtains N serving cells from which the N base stations 21 are located according to the N measurement results. After selecting a target serving cell, the terminal device can obtain the identifier information of the TA to which the target serving cell belongs from the synchronization frame sent by the network device of the target serving cell, and determine the TA to which the target serving cell belongs according to the identifier information of the TA to which the target serving cell belongs.
  • the TAI eliminates the need for the terminal device to receive the system message of the target serving cell through the primary communication interface after the cell reselection, and performs a complex analysis step on the system message, thereby further reducing the power consumption of the terminal device.
  • the process in which the terminal device 20 receives the synchronization frame from each of the N candidate base stations 21 is applicable to each of the N candidate base stations 21, and each of the candidate base stations 21 transmits the synchronization frame by using the same frequency band carrier.
  • the terminal device 20 does not need to perform frequency domain switching when receiving a synchronization frame transmitted by each of the N candidate base stations 21 by each of the candidate base stations 21.
  • the standard protocol defines each of the N candidate base stations 21 that may be used to transmit the frequency band carriers of the synchronization frame.
  • the set, in this case, the terminal device 20 can take turns to listen to each of the frequency band carriers that may send the synchronization frame, that is, for each frequency band carrier, the frame listening reception is performed by using one of the above one, two, and three modes.
  • the standard protocol defines that each of the N candidate base stations 21 may use two frequency band carriers in the set of frequency band carriers that may be used to transmit the synchronization frame, and f1 and f2 are taken as an example, and the above one and two may be adopted for f1.
  • One of the three methods performs frame listening reception, and for f2, frame listening can be performed by using one of the above one, two, and three modes.
  • the terminal device 20 acquires the identification information of the TA to which the target serving cell belongs from the synchronization frame sent by the target base station 21.
  • the terminal device 20 can directly acquire the TAI of the TA to which the target serving cell belongs; if the target base station 21 transmits
  • the identification information of the TA to which the target serving cell is included in the synchronization frame is the partial information TAC of the TAI, and the terminal device 20 determines the TAI of the TA to which the target cell belongs according to the known PLMN, and includes the TAI included in the synchronization frame sent by the target candidate 21.
  • the identifier information of the TA to which the target serving cell belongs is the indication information of the TAI of the TA to which the target serving cell belongs, and the terminal device 20 acquires the TAI of the TA to which the target serving cell belongs according to the correspondence between the indication information and the TAI.
  • the terminal device 20 determines whether the TA update needs to be performed according to the identifier information of the TA to which the target serving cell belongs, and keeps the main communication interface of the terminal device in a closed state when not needed.
  • the target serving cell reselected by the terminal device 20 is exemplified by the cell where the base station 21(1) is located, and the terminal device 20 is sent from the candidate base station 21(1), that is, the target base station 21(1).
  • the identifier information of the TA to which the target serving cell belongs is obtained, and the TAI is taken as an example.
  • the terminal device 20 determines whether the TAI of the TA to which the target serving cell belongs is in the TA list stored by the terminal device 20. If the TA update is not required in the TA list, the terminal device 20 can keep the main communication interface 202 in the off state to reduce the power consumption of the terminal device. If it is not in the TA list, a TA update is required.
  • the terminal device 20 can activate the main communication interface 202 to perform TA update with the target base station 21(1) through the primary communication interface 202, and the terminal device 20 passes through the primary communication interface 202. Please refer to FIG. 6 for the process of performing TA update by the target base station 21(1).
  • the terminal device 20 initiates a random access (RA Preamble) to the target base station 21(1);
  • the target base station 21(1) After detecting the random access initiated by the terminal device 20, the target base station 21(1) sends a random access response message (RA Response) to the terminal device 20;
  • RA Response random access response message
  • the terminal device 20 After receiving the RA Response, the terminal device 20 sends an RRC Connection Request message (RRC Connection Request) to the target base station 21(1);
  • the target base station 21(1) sends an RRC Connection Setup message to the terminal device 20 (RRC Connection Setup);
  • the terminal device 20 sends an RRC Connection Setup message (RRC Connection Setup) to the target base station 21(1) according to the RRC connection setup completion signaling radio bearer (Signaling Radio Bearers1, SRB1) and the radio resource configuration, the message including the tracking area update.
  • RRC Connection Setup RRC Connection Setup
  • SRB1 RRC connection setup completion signaling radio bearer
  • the target base station 21(1) sends an initial UE message to the Evolved Packet Core (EPC), and the Initial UE Message includes a TAU Request.
  • EPC Evolved Packet Core
  • the authentication/security process is completed between the terminal device 20 and the EPC.
  • the EPC completes the context update of the terminal device 20;
  • the EPC sends a downlink non-access stratum transmission message (Downlink NAS Transport) to the target base station 21(1); the message includes a TAU accept message (TAU Accept);
  • the target base station 21(1) sends a downlink information transmission message (DL Information Transfer) to the terminal device 20; the message includes a TAU Accept;
  • DL Information Transfer downlink information transmission message
  • the terminal device 20 sends an uplink information transmission message (UL Information Transfer) to the target base station 21(1); the message includes a TAU Complete message (TAU Complete);
  • the target base station 21(1) sends an uplink non-access stratum transmission message (Uplink NAS Transport) to the EPC; the message includes TAU Complete;
  • Uplink NAS Transport uplink non-access stratum transmission message
  • the terminal device 20 sends the first uplink data (First Uplink Data) to the EPC.
  • the EPC completes the bearer update
  • the EPC sends the first downlink data (First Downlink Data) to the terminal device 20;
  • the terminal device 20 enters the idle mode again.
  • the synchronization frame sent by each of the candidate base stations 21 may also include the cell identity information of the serving cell where the candidate base station 21 is located.
  • the process of receiving the system message of the target serving cell through the primary communication interface 202 after the terminal device 20 completes the cell reselection, to obtain the cell identity information of the serving cell of the target cell in the target cell from the system message, thereby Reduce the power consumption of the terminal device.
  • the cell identifier information of the serving cell where the candidate base station 21 is located in the embodiment of the present application may be a physical-layer cell identity (PCI), or may be part of the information in the PCI, or an indication for indicating the PCI.
  • PCI physical-layer cell identity
  • the terminal device 20 may determine the PCI indicated by the indication information according to the correspondence between the indication information and the PCI.
  • the synchronization frame sent by each candidate base station 21 in the N candidate base stations 21 may include only the cell identity information of the cell where the candidate base station 21 is located, that is, each of the N candidate base stations 21.
  • the candidate base station 21 includes the identification information of the TA to which the candidate base station 21 is located and/or the cell identification information of the cell where the candidate base station 21 is located.
  • the embodiment of the present application provides a method and a device for acquiring identification information of a tracking area TA of a cell reselection serving cell, and the method is applicable to the terminal device 20 and the base station 21 shown in FIG. 2 above.
  • the base station 21 generates a synchronization frame, where the synchronization frame includes the identifier information of the tracking area TA to which the cell where the base station 21 belongs.
  • the synchronization frame includes the identifier information of the tracking area TA to which the cell in which the base station 21 belongs, and the identifier information of the tracking area TA to which the cell in which the base station 21 is located in the fourth embodiment, and details are not described herein.
  • the base station 21 transmits a synchronization frame.
  • the synchronization frame is broadcasted in a certain preset period, and the terminal device 20 receives the synchronization frame sent by the base station 21 only after determining the target serving cell.
  • the terminal device 20 After determining the target serving cell, the terminal device 20 receives the synchronization frame sent by the target base station 21 by waking up the radio frequency WUR interface 201.
  • the target base station 21 is a target serving cell after the cell device 20 performs cell reselection, that is, a base station of the new serving cell determined by the terminal device 20 through cell reselection.
  • the terminal device 20 determines the manner of the target serving cell, for example, the primary communication interface 202 receives a reference signal sent by each of the N base stations 21 of the N candidate serving cells, where N is greater than Or an integer equal to 1.
  • the terminal device 20 measures the reference signal transmitted by each base station 21, and selects one target serving cell from the N service candidate cells according to the obtained N measurement results. After determining the target serving cell, the synchronization frame transmitted by the target base station 21 is received through the WUR interface.
  • the N base stations 21 of the N candidate cells are referred to as N candidate base stations 21, the base station 21 of the target serving cell is referred to as the target base station 21, and the base station of the serving cell in which the terminal equipment is in the cell reselection is referred to as The source base station 21 and the serving cell where the source base station 21 is located are referred to as source serving cells.
  • the terminal device 20 has an awake window, and the awake window is determined by the terminal device 20 in the source serving cell where the source base station 21 is located.
  • the awake window includes the start time of the awake window and the duration of the awake window, and the terminal device 20 is in the source service.
  • the duration of the awake window in the cell is referred to as the first window duration.
  • the period in which the target base station 21 transmits the synchronization frame may be the same as the period of the synchronization frame sent by the source base station 21, or may be different; the target base station 21 sends the start time of the synchronization frame and the synchronization frame sent by the source base station 21.
  • the starting moments can be the same or different. The following are introduced separately.
  • the period in which the target base station 21 transmits the synchronization frame is the same as the period in which the source base station 21 transmits the synchronization frame, and the interval between the start time at which the target base station 21 transmits the synchronization frame and the start time at which the source base station 21 transmits the synchronization frame is less than or equal to the pre-predetermined period.
  • a value is set, wherein the preset value is the first window duration of the WUR interface 201 of the terminal device 20.
  • the period in which the target base station 21 transmits the synchronization frame is the same as the period in which the source base station 21 transmits the synchronization frame, and the interval between the start time at which the target base station 21 transmits the synchronization frame and the start time at which the source base station 21 transmits the synchronization frame is greater than a preset value.
  • the preset value is the first window duration of the WUR interface 201 of the terminal device 20.
  • the period in which the target base station 21 transmits the synchronization frame is different from the period in which the source base station 21 transmits the synchronization frame, and the interval between the start time of the target base station 21 transmitting the synchronization frame and the start time of the source base station 21 transmitting the synchronization frame is greater than a preset value.
  • the preset value is the first window duration of the WUR interface 201 of the terminal device 20.
  • the period in which the target base station 21 transmits the synchronization frame 1 in the above 1 is the same as the period in which the source base station 21 transmits the synchronization frame, the start time at which the target base station 21(1) transmits the synchronization frame 1, and the source base station 21 transmits.
  • the case where the interval between the start times of the synchronization frames is less than or equal to the preset value, which is pre-specified by the standard protocol, or the period in which the core network device instructs the target base stations 21 of the terminal device 20 to transmit the synchronization frame and the source base station 21 to transmit the synchronization frame.
  • the period is the same, and the interval between the start times of the transmission synchronization frames is smaller than a preset value, that is, the terminal device 20 can know that the period in which the target base station 21 transmits the synchronization frame is the same as the period in which the source base station 21 transmits the synchronization frame, and the synchronization frame is transmitted.
  • the interval between the start time is less than or equal to the preset value, and the terminal device 20 receives the synchronization frame sent by the target base station 21 in the above manner; the period in which the target base station 21 transmits the synchronization frame 1 and the source base station 21 transmits the synchronization.
  • the period of the frame 2 is the same, the period is determined by the standard protocol, or the period in which the core network device instructs the terminal device to select the base station 21 to send the synchronization frame and the source base station 21 sends the same.
  • the period of the synchronization frame is the same, that is, the terminal device 20 can know that the period in which the target base station 21 transmits the synchronization frame is the same as the period in which the source base station 21 transmits the synchronization frame, and does not know that the start time of the synchronization frame is transmitted by the target base station 21 and the source base station 21 transmits.
  • the terminal device 20 receives the synchronization frames sent by the target base station 21 in the foregoing manner.
  • the foregoing three cases do not need to be specified by the standard protocol, or are used by the core network device.
  • the terminal device 20 is instructed, that is, the terminal device 20 cannot know whether the period in which the target base station 21 transmits the synchronization frame is the same as the period in which the source base station 21 transmits the synchronization frame, and the terminal device 20 uses the above manner to receive the synchronization frame sent by the target base station 21. .
  • the WUR interface 201 of the terminal device 20 may be continuously activated or may be activated at certain time intervals.
  • the terminal device 20 can receive the target base station 21 and transmit through the WUR interface 201 within the first window duration. Synchronization frame.
  • the WUR interface 201 of the terminal device 20 is activated at a certain time interval, when the target base station 21 adopts different transmission modes, the terminal device 20 needs to adopt different receiving modes, which are respectively introduced below.
  • the terminal device 20 can always receive the synchronization frame transmitted by the target base station 21 through the WUR interface 201 within the first window duration.
  • the start time between the target base station 21 transmitting the synchronization frame and the start time at which the source base station 21 transmits the synchronization frame is greater than the duration of the first window, such that the terminal device 20 may not be able to receive the synchronization frame transmitted by the target base station 21 within the first window duration.
  • the terminal device 20 can control the duration of the WUR interface 201 in the active state to be the first duration, and the first duration is greater than the duration of the first window, to receive the first packet sent by the target base station 21 through the WUR interface 201 in the first duration.
  • a synchronization frame where the first synchronization frame may be the first synchronization frame sent by the target base station 21, the first synchronization frame and the second synchronization frame sent by the target base station 21, and is not specifically limited herein.
  • the duration of the WUR interface 201 being activated is smaller than the first time.
  • the second duration of the duration is to receive the subsequent synchronization frame sent by the target base station 21 in the second duration, and the second duration is after the terminal device 20 selects the target serving cell as the current serving cell, and the WUR interface 201 is in the current serving cell.
  • the length of time to wake up the window may be further adjusted.
  • the terminal device 20 may further adjust the start time of the WW interface 201 in the current serving cell according to the time when the first synchronization frame of the current serving cell is received.
  • the specific example is the same as the example in the second embodiment, and details are not described herein again.
  • the start time between the target base station 21 transmitting the synchronization frame and the start time at which the source base station 21 transmits the synchronization frame The interval is greater than the duration of the first window, such that the terminal device 20 may not be able to receive the synchronization frame transmitted by the target base station 21 within the first window duration.
  • the terminal device 20 since the terminal device 20 cannot know the period in which the target base station 21 transmits the synchronization frame in advance, the terminal device 20 needs to determine that the target base station 21 transmits the synchronization frame in order to ensure that the subsequent synchronization frame transmitted by the target base station 21 can be correctly received.
  • the specific implementation process includes but is not limited to the following two types, which are respectively introduced below.
  • the terminal device 20 determines, according to the time of receiving the first synchronization frame sent by the target base station 21, or according to the time of the first synchronization frame transmitted by the reception target base station 21 and the time of the second synchronization frame transmitted by the reception target base station 21.
  • the target base station 21 transmits the period of the synchronization frame, and further adjusts the duration of the WUR interface 201 in the active state to be less than the third duration in the fourth period according to the calculated period and the timing of the subsequent synchronization frame sent by the target base station 21.
  • the subsequent synchronization frame sent by the target base station 21 is received in the duration, and the fourth duration is the duration of the awake window of the WUR interface 201 in the current serving cell after the terminal device 20 selects the target serving cell as the current serving cell.
  • the terminal device 20 may further receive, according to the time of receiving the first synchronization frame of the current serving cell, or according to the time of receiving the first synchronization frame and the second synchronization frame of the current serving cell, and the synchronization frame transmission period of the current serving cell, The start time of the wake window of its WUR interface 201 in the current serving cell is adjusted.
  • the specific example is the same as the example in the third embodiment, and details are not described herein again.
  • the synchronization frame sent by the target base station 21 further includes period information of the synchronization frame sent by the target base station 21, so that the terminal device 20 can receive the target base station after receiving the first synchronization frame sent by the target base station 21.
  • the time of the first synchronization frame sent by the target base station 21 determines the time of arrival of the next synchronization frame sent by the target base station 21, and dynamically adjusts the duration of the WUR interface 201 in the active state to a sixth duration that is less than the fifth duration according to the time.
  • the sixth synchronization duration is the duration of the awake window of the WUR interface 201 in the current serving cell after the terminal device 20 selects the target serving cell as the current serving cell.
  • the terminal device 20 may further adjust the start time of the WW interface 201 in the current serving cell according to the time when the first synchronization frame of the current serving cell is received.
  • the specific example is the same as the example in the third embodiment, and details are not described herein again.
  • the terminal device 20 acquires, from the synchronization frame, identifier information of the TA to which the target serving cell belongs.
  • the terminal device 20 determines whether the TA update needs to be performed according to the identifier information of the TA to which the target serving cell belongs, and keeps the main communication interface of the terminal device in a closed state when not needed.
  • the terminal device 20 determines whether to perform the TA update according to the identifier information of the TA to which the target serving cell belongs, and the specific process of the TA update is the same.
  • the process of TA update in the embodiment shown in FIG. 4 will not be repeated here.
  • the embodiment of the present application provides a data transmission method, which is specifically described as follows:
  • a base station (a type of network device) can perform data transmission with a User Equipment (UE) (also referred to herein as a terminal device).
  • UE User Equipment
  • the base station can send wake-up signals, such as wake-up frames and synchronization frames; the UE configures the WUR module and the main communication module, and can receive the wake-up signal sent by the base station through the WUR module.
  • the sending of the wake-up signal may be a base station or a UE.
  • FIG. 5C is an example of a base station transmitting a wake-up signal.
  • the scenario involved in the present invention is a scenario in which the IDLE state UE moves to the cell reselection at the edge of the current serving cell as shown in FIG. 13, and the situation of each cell is as shown in FIG. 12, that is, the base station of each cell can send wakeup. signal.
  • the UE is configured with a Wake-up Radio (WUR) interface.
  • WUR Wake-up Radio
  • the UE can close the main communication interface (such as the LTE/NR interface) and enable the WUR interface.
  • the WUR can be continuously active or can operate in an intermittent mode of operation as shown in Figure 3.
  • the base station can send a synchronization frame in addition to the wake-up frame, and the synchronization frame is also a type of wake-up signal, which can be received by the WUR interface of the UE.
  • the WUR sync frame may also be referred to as a WUR beacon frame, referred to as a sync frame or a beacon frame.
  • the role of the sync frame includes one or more of the following effects:
  • the UE can perform the measurement process based on the synchronization frame when the primary communication interface is closed and the WUR interface is enabled. For example, the UE determines whether cell reselection needs to be performed based on the measurement of the synchronization frame. In this way, the UE does not need to turn on the main communication to receive the PSS/SSS and the cell reference signal, thereby achieving the purpose of power saving.
  • the UE needs to maintain timing synchronization with the base station based on the reception of the synchronization frame, so that the awake window of the UE does not miss the possible incoming wake-up frame due to excessive clock drift.
  • the UE decides to perform cell reselection based on receiving the synchronization frame of the original serving cell, and determines the new serving cell by receiving the target cell synchronization frame.
  • the UE may open the primary communication interface and determine a new serving cell identity (required to determine the new serving cell identity through reception of the PSS/SSS and the MIB) by receiving the new serving cell synchronization signal and the system message, thereby completing cell reselection.
  • the UE may open a primary communication interface to receive a system message (eg, SIB1) of the new serving cell to determine the TAI of the new serving cell to determine whether a TA update procedure needs to be performed.
  • SIB1 system message
  • the UE needs to open the main communication interface for receiving PSS/SSS and system messages (MIB&SIB1), which is obviously more power-consuming.
  • the basic idea of the solution for reducing the power consumption of the UE is that the base station sends a WUR synchronization frame, which carries the TA identification information to which the base station belongs.
  • the UE does not need to open the SIB1 of the new serving cell to obtain the TAI of the new serving cell, but only needs to determine whether to remove the WUR synchronization frame according to the received new serving cell.
  • the cell included in the TA list saved by itself, thereby determining whether the main communication interface needs to be opened to perform the TA update process.
  • the solution of the present invention enables the IDLE state UE to complete the cell reselection and the acquisition of the TA to which the new serving cell belongs and whether the TA update process needs to be performed without activation of the primary communication interface, thereby making the UE more power efficient.
  • the WUR synchronization frame sent by the base station may further include base station identification information or cell identification information.
  • the UE may not need to open the primary communication interface to receive the PSS/SSS and the MIB of the new serving cell to acquire the new serving cell identity, but only obtain the new WUR synchronization frame of the new serving cell.
  • the identity of the serving cell completes the cell reselection.
  • the WUR synchronization frame sent by the base station includes cell identification information and TA identification information, which are independent of each other, that is, the WUR synchronization frame may include any one of cell identification information and TA identification information, or both. Two.
  • the WUR Beacon is the WUR synchronization frame.
  • the TA ID is the TA identity information of the TA to which the cell of the WUR Beacon belongs.
  • the Cell ID is the cell identity information of the cell that sends the WUR Beacon.
  • the IDLE state UE can complete cell reselection without activating the primary communication interface during the mobile process, thereby reducing UE power consumption.
  • the primary communication interface needs to be enabled to perform the TA update process only when the UE determines that it has removed the cell included in the TA List configured by the network side according to the TA identity information carried by the WUR synchronization frame of the new serving cell.
  • the signaling interaction process of the IDLE state UE performing the TA update process through the new serving cell is as shown in FIG. 4 . This process is a prior art of the existing 3GPP standard, so the specific process will not be described again.
  • the TA identifier information may be a TAI, or may be part of the TAI, or other information generated based on the TAI that can be used to identify the TA to which the base station belongs.
  • the TAI is composed of a PLMN and a TAC, and the PLMN is used to identify a network service operator.
  • the TA identification information may not include the PLMN but only the TAC.
  • the length of the TA identification information is reduced, thereby reducing the length of the WUR synchronization frame and saving overhead.
  • the TA identification information may also be part of the TAC, such as the lower number of bits of the TAC.
  • the cell identification information may be a PCI (Physical-layer Cell Identity) in the current standard, or may be part of the PCI, or other information generated based on the PCI that can be used to identify the base station or the cell.
  • PCI Physical-layer Cell Identity
  • the WUR synchronization frame of each cell is regularly transmitted by the base station.
  • the WUR synchronization frame is periodically transmitted by the base station, and the transmission period may be configured by the base station, or may be pre-defined by the standard.
  • the base station may configure the period of the WUR synchronization frame by using upper layer information such as RRC, system message, MAC CE, or physical layer signaling such as DCI.
  • the base station can also configure the time and/or frequency resources used to transmit the WUR synchronization frame, ie, the time domain and/or frequency domain resource allocation of the WUR synchronization frame.
  • the base station can also configure the time starting point for transmitting the WUR synchronization frame, that is, the time at which the first WUR synchronization frame is transmitted.
  • the time start point can be represented by a time offset.
  • the time offset can be the time interval between the first WUR sync frame and the base station configuration information.
  • the transmission periods of WUR synchronization frames of different cells may be the same or different.
  • the WUR synchronization frame transmission time of different cells may be substantially the same, or there is a time offset. If the WUR of the UE is in a continuously activated state, the UE can always receive the WUR synchronization frame of the other cell through the WUR, and determine the WUR synchronization frame transmission period of the cell based on the received at least two WUR synchronization frames of the same cell. However, if the UE adopts the intermittent activation mode as shown in FIG. 3, the method for the UE to listen to the WUR synchronization frame of other cells in different situations is different:
  • the WUR synchronization frame transmission timings of different cells may be identical, but in this case, the WUR synchronization frames of the neighboring cells are likely to interfere with each other. Therefore, the WUR synchronization frame transmission timings of different cells can be configured to be substantially the same. For example, they all lie in the same sub-frame but occupy different mini-slots. Specifically, “substantially the same” means that the offset between the WUR synchronization frame transmission times of the neighboring cells does not exceed the UE awake window duration. This can be achieved through coordination between base stations.
  • the UE can receive the WUR synchronization frame of other cells in its own awake window, determine the new serving cell based on the measurement of the WUR synchronization frame, and complete the cell reselection.
  • “larger offset” means that the offset between the WUR sync frame transmission times of neighboring cells exceeds the UE's wake window duration.
  • the UE may keep its own WUR interface active for a period of time (not less than the transmission period of the WUR synchronization frame), so as to receive the WUR synchronization frame of other cells, and then determine the new serving cell according to the measurement of the WUR synchronization frame of other cells. Since the transmission period of the WUR synchronization frame of different cells is the same, the UE can determine the transmission time of the subsequent WUR synchronization frame based on the received WUR synchronization frame of the new serving cell.
  • the definition of "large offset” is the same as Case 2.
  • the UE also needs to keep its WUR interface active for a period of time in order to receive WUR synchronization frames of other cells, thereby completing cell reselection.
  • the WUR synchronization frame transmission period of different cells is different, and the UE does not know the WUR synchronization frame transmission period of the new serving cell, there are two methods for the UE to obtain the WUR synchronization frame transmission period of the new serving cell.
  • One method is that the WUR interface of the UE remains active for a long time until at least two WUR synchronization frames from the new serving cell are received, and the UE can obtain a new service based on the distance between two adjacent WUR synchronization frames.
  • the transmission period of the cell, and the subsequent transmission time of the subsequent synchronization frame; the other method is that the WUR synchronization frame sent by the base station carries its own WUR synchronization frame transmission period, so that the UE receives a WUR synchronization frame of the new serving cell.
  • the sending time of the subsequent synchronization frame can be determined according to the transmission period carried by the same.
  • the second method is that the WUR interface of the UE does not have to remain active for a long time (a WUR synchronization frame of the new serving cell is received), but the WUR synchronization frame becomes longer, indicating that the overhead becomes larger.
  • the UE uses the Case 1 method to acquire the WUR synchronization frame of other cells; if the standard pre-defined different cell WUR synchronization If the frame transmission period is the same or the network side indicates the information, but the UE is not sure whether the transmission times of different cells are substantially the same, the UE uses the Case 2 method to acquire the WUR synchronization frame of other cells; if the UE sends the WUR synchronization frame to different cells. Whether the period is the same and whether the transmission timing is substantially the same cannot be determined, and the UE uses the method of Case 3 to acquire the WUR synchronization frame of other cells.
  • the method for obtaining a WUR synchronization frame of another cell is applicable to a case where different cells use the same carrier frequency to transmit a WUR synchronization frame, that is, the UE does not need to perform frequency domain handover when receiving the WUR synchronization frame.
  • the carrier frequency of the WUR synchronization frame sent by different cells is different, but the standard pre-defines the set of carrier frequencies that may be used to transmit the WUR synchronization frame
  • the UE may periodically listen to the potential carrier frequency of each possible WUR synchronization frame (ie, Each potential carrier frequency is camped for a period of time), and corresponding operations are performed on each potential carrier frequency according to the above three cases (Case 1 to Case 3) to receive possible neighbor WUR synchronization frames and related configuration information. (Transmission period and time offset of WUR sync frame, etc.).
  • FIG. 8 shows a schematic structural diagram of a terminal device 800.
  • the terminal device 800 may include a receiving unit 801 and an obtaining unit 802, wherein the receiving unit 801 may be used to execute S42 in the embodiment shown in FIG. 4, and/or S73 in the embodiment shown in FIG.
  • the acquisition unit 702 can be used to perform S43 in the embodiment shown in FIG. 4, and/or S74 in the embodiment shown in FIG. All the related content of the steps involved in the foregoing method embodiments and the function descriptions of the corresponding function modules may be referred to, and details are not described herein again.
  • FIG. 9 shows a schematic structural diagram of a network device 900.
  • the network device 900 may include a generating unit 901 and a transmitting unit 902, wherein the generating unit 901 may be configured to execute S41 in the embodiment shown in FIG. 4, and/or S71 in the embodiment shown in FIG.
  • the transmitting unit 902 can be used to execute S42 in the embodiment shown in FIG. 4, and/or S72 in the embodiment shown in FIG. All the related content of the steps involved in the foregoing method embodiments may be referred to the functional descriptions of the corresponding functional modules, and details are not described herein again.
  • FIG. 10 shows a schematic structural diagram of a terminal device 1000.
  • the terminal device 1000 can include a wake-up radio frequency WUR interface 1001, a processor 1002, and a WUR interface 1001 coupled to the processor 1002.
  • the processor 1002 may be a central processing unit (CPU), or an application specific integrated circuit (ASIC), and may be one or more integrated circuits for controlling program execution, and may be a baseband chip, etc. .
  • the terminal device 1000 can also include a memory 1003 and a primary communication interface 1004 that are coupled to the processor 1002, respectively.
  • the number of memories may be one or more, and the memory may be a read only memory (ROM), a random access memory (RAM), or a disk storage, and the like.
  • the foregoing code corresponding to the method for acquiring the identification information of the tracking area TA of the cell reselection target cell is solidified into the chip, so that the chip can execute the foregoing FIG. 4 or FIG.
  • the method for obtaining the identification information of the tracking area TA of the cell reselection target cell provided by the embodiment shown in FIG. 7 , how to design and program the processor 1002 is a technology well known to those skilled in the art, and details are not described herein again.
  • FIG. 11 shows a schematic structural diagram of a network device 1100.
  • the network device 1100 can include a processor 1101 and a transmitter 1102 that is coupled to the processor 1101.
  • the processor 1101 may be a central processing unit (CPU), or an application specific integrated circuit (ASIC), and may be one or more integrated circuits for controlling program execution, and may be a baseband chip, etc.
  • the transmitter 1102 can be used as a main communication interface for transmitting and receiving a main communication interface signal, or can be used as a WUR interface for transmitting a wake-up signal.
  • Network device 1100 can also include a memory 1103 that is coupled to processor 1101.
  • the number of memories may be one or more, and the memory may be a read only memory (ROM), a random access memory (RAM), or a disk storage, and the like.
  • the foregoing code corresponding to the method for acquiring the identification information of the tracking area TA of the cell reselection target cell is solidified into the chip, so that the chip can execute the foregoing FIG. 4 or FIG.
  • the method for obtaining the identification information of the tracking area TA of the cell reselection target cell is provided by the embodiment shown in FIG. 7 . How to design and program the processor 1101 is a technique well known to those skilled in the art, and details are not described herein again.
  • the embodiment of the present application further provides a computer storage medium, which may include a memory, where the memory may store a program, and the program includes the terminal device as described in the foregoing method embodiment shown in FIG. 4 or FIG. All steps performed, or all steps performed by the network device.
  • a computer storage medium which may include a memory, where the memory may store a program, and the program includes the terminal device as described in the foregoing method embodiment shown in FIG. 4 or FIG. All steps performed, or all steps performed by the network device.
  • the embodiment of the present application further provides a computer program product, which when executed by a computer, can cause the computer to perform the method described in the method embodiment shown in FIG. 4 or FIG.
  • the embodiment of the present application further provides a chip system, including a processor, for supporting a terminal device or a network device to implement the method provided by the embodiment shown in FIG. 4 or FIG. 7, for example, generating or processing FIG. 4 or The data and/or information involved in the method provided by the embodiment shown in FIG.
  • the chip system further includes a memory for storing program instructions and data necessary for the terminal device or the network device, wherein the processor in the chip system can call program instructions and data stored in the memory in the chip system to enable the
  • the chip system can implement the above-mentioned terminal device or network device to realize the function.
  • the chip system can be composed of chips, and can also include chips and other discrete devices.
  • the embodiment of the present application further provides a communication system, including the terminal device 1000 provided by the embodiment shown in FIG. 10 and the network device 1100 provided by the embodiment shown in FIG.
  • the network element involved in the present invention includes a base station (such as a gNB, a generation Node B, that is, a base station referred to in the 5G NR standard) and a user terminal UE.
  • a base station such as a gNB, a generation Node B, that is, a base station referred to in the 5G NR standard
  • UE user terminal
  • the base station 1400 includes a processor 1401, a memory 1402, a transceiver 1403, and a bus 1404.
  • the transceiver 1403 is used as a main communication interface for transmitting and receiving a main communication interface signal (for example, an LTE/NR signal), and is also used as a WUR interface for transmitting a wake-up signal.
  • the processor 1401, the memory 1402, and the transceiver 1403 are connected to each other through a bus 1404.
  • the bus 1404 may be a Peripheral Component Interconnect (PCI) bus or an Extended Industry Standard Architecture (EISA) bus.
  • PCI Peripheral Component Interconnect
  • EISA Extended Industry Standard Architecture
  • the base station 1400 shown in FIG. 14 includes a transceiver 1403 and a transmitter 1405, wherein the transceiver 1403 functions as a primary communication interface for transceiving a primary communication interface signal (eg, an LTE/NR signal), the transmitter The 1405 acts as a WUR interface for transmitting wake-up signals.
  • a primary communication interface signal eg, an LTE/NR signal
  • the embodiment of the present invention further provides a non-volatile storage medium having one or more program codes stored therein.
  • the processor 1401 of the base station 1400 executes the program code
  • the base station 1400 executes the program. The method steps performed by the base station in any of the method embodiments of the invention.
  • the base station 1400 provided by the embodiment of the present invention can perform the related method steps performed by the base station in the method embodiment of the present invention, the detailed description of each module or unit, and each module or unit perform the base station in any of the method embodiments of the present invention.
  • the related method steps refer to the related description in the method embodiment of the present invention, and details are not described herein again.
  • the UE 1500 includes a processor 1501, a memory 1502, a transceiver 1503, a receiver 1505, and a bus 1504.
  • the transceiver 1503 is used as a main communication interface for transmitting and receiving main communication interface signals (for example, LTE/NR signals), and the receiver 1505 is also used as a WUR interface for receiving wake-up signals.
  • the processor 1501, the memory 1502, and the transceiver 1503 are connected to each other through a bus 1504.
  • the bus 1504 may be a PCI bus or an EISA bus.
  • the bus 1504 can be divided into an address bus, a data bus, a control bus, and the like. For ease of representation, only one thick line is shown in Figure 15, but it does not mean that there is only one bus or one type of bus.
  • the embodiment of the present invention further provides a non-volatile storage medium in which one or more program codes are stored.
  • the processor 1501 of the UE 1500 executes the program code
  • the UE 1500 executes the present invention.
  • each module in the UE 1500 provided by the embodiment of the present invention, and the technical effects of each module performing the related method steps performed by the UE in any method embodiment of the present invention may be referred to in the method embodiment of the present invention. Related descriptions are not described here.
  • the embodiment of the present application provides a network device, which has the function of implementing the behavior of the network device in the foregoing method embodiments.
  • the functions may be implemented by hardware or by corresponding software implemented by hardware.
  • the hardware or software includes one or more modules corresponding to each of the above-described functions.
  • the network device may be a base station.
  • the embodiment of the present application provides a terminal device, which has the function of implementing the behavior of the terminal device in the foregoing method embodiments.
  • the functions may be implemented by hardware or by corresponding software implemented by hardware.
  • the hardware or software includes one or more modules corresponding to each of the above-described functions.
  • the terminal device may be a user equipment.
  • the embodiment of the present application further provides a communication system, which includes the network device and the terminal device described in the foregoing embodiments.
  • the embodiment of the present application further provides a computer storage medium for storing computer software instructions used by the network device, which includes a program designed to perform the functions implemented by the network device in the foregoing embodiments.
  • the embodiment of the present application further provides a computer storage medium for storing computer software instructions used by the terminal device, which includes a program designed to perform the functions implemented by the terminal device in the foregoing embodiments.
  • the embodiment of the present invention further provides a computer readable storage medium, on which a computer program is stored, and when the computer program is executed by a computer, the method flow related to the terminal device in the foregoing method embodiment is implemented.
  • the computer may be the above terminal device.
  • the embodiment of the present invention further provides a computer readable storage medium, on which a computer program is stored, and when the computer program is executed by a computer, the method flow related to the network device in the foregoing method embodiment is implemented.
  • the computer may be the above network device.
  • processors mentioned in the embodiment of the present invention may be a central processing unit (CPU), and may also be other general-purpose processors, digital signal processors (DSPs), and application specific integrated circuits ( Application Specific Integrated Circuit (ASIC), Field Programmable Gate Array (FPGA) or other programmable logic device, discrete gate or transistor logic device, discrete hardware component, etc.
  • the general purpose processor may be a microprocessor or the processor or any conventional processor or the like.
  • the memory referred to in the embodiments of the present invention may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory may be a read-only memory (ROM), a programmable read only memory (PROM), an erasable programmable read only memory (Erasable PROM, EPROM), or an electric Erase programmable read only memory (EEPROM) or flash memory.
  • the volatile memory can be a Random Access Memory (RAM) that acts as an external cache.
  • RAM Random Access Memory
  • many forms of RAM are available, such as static random access memory (SRAM), dynamic random access memory (DRAM), synchronous dynamic random access memory (Synchronous DRAM). SDRAM), Double Data Rate SDRAM (DDR SDRAM), Enhanced Synchronous Dynamic Random Access Memory (ESDRAM), Synchronous Connection Dynamic Random Access Memory (Synchlink DRAM, SLDRAM) ) and direct memory bus random access memory (DR RAM).
  • processor is a general-purpose processor, DSP, ASIC, FPGA or other programmable logic device, discrete gate or transistor logic device, discrete hardware component, the memory (storage module) is integrated in the processor.
  • embodiments of the present application can be provided as a method, system, or computer program product.
  • the present application can take the form of an entirely hardware embodiment, an entirely software embodiment, or an embodiment in combination of software and hardware.
  • the application can take the form of a computer program product embodied on one or more computer-usable storage media (including but not limited to disk storage, CD-ROM, optical storage, etc.) including computer usable program code.
  • the computer program instructions can also be stored in a computer readable memory that can direct a computer or other programmable data processing device to operate in a particular manner, such that the instructions stored in the computer readable memory produce an article of manufacture comprising the instruction device.
  • the apparatus implements the functions specified in one or more blocks of a flow or a flow and/or block diagram of the flowchart.
  • These computer program instructions can also be loaded onto a computer or other programmable data processing device such that a series of operational steps are performed on a computer or other programmable device to produce computer-implemented processing for execution on a computer or other programmable device.
  • the instructions provide steps for implementing the functions specified in one or more of the flow or in a block or blocks of a flow diagram.
  • memories described herein are intended to comprise, without being limited to, these and any other suitable types of memory.
  • the size of the serial numbers of the above processes does not mean the order of execution, and the order of execution of each process should be determined by its function and internal logic, and should not be taken to the embodiments of the present invention.
  • the implementation process constitutes any limitation.
  • the disclosed systems, devices, and methods may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the functions may be stored in a computer readable storage medium if implemented in the form of a software functional unit and sold or used as a standalone product.
  • the technical solution of the present application which is essential or contributes to the prior art, or a part of the technical solution, may be embodied in the form of a software product, which is stored in a storage medium, including
  • the instructions are used to cause a computer device (which may be a personal computer, server, or network device, etc.) to perform all or part of the steps of the methods described in various embodiments of the present application.
  • the foregoing storage medium includes: a U disk, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk, and the like, which can store program codes. .
  • each device embodiment may refer to related methods in the related method embodiments. Partial understanding.
  • the device configuration diagrams given in the various device embodiments of the present invention show only a simplified design of the corresponding device.
  • the device may include any number of transmitters, receivers, processors, memories, etc., to implement the functions or operations performed by the device in various embodiments of the present invention, and all devices that can implement the present application All are within the scope of this application.
  • the names of the message/frame/instruction information, modules, units, and the like provided in the embodiments of the present invention are merely examples, and other names may be used as long as the functions of the message/frame/instruction information, the module or the unit, and the like are the same.
  • the words “if” or “if” as used herein may be interpreted as “when” or “when” or “in response to determining” or “in response to detecting.”
  • the phrase “if determined” or “if detected (conditions or events stated)” can be interpreted as “when determined” or “in response to determination” or “when detected (stated condition or event) "Time” or “in response to a test (condition or event stated)”.

Landscapes

  • Engineering & Computer Science (AREA)
  • Databases & Information Systems (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种获取目标服务小区的跟踪区的标识信息的方法及设备,用于降低终端设备的功耗。其中一种获取小区重选目标服务小区的跟踪区标识TAI的方法包括:终端设备获取通过唤醒射频WUR接口接收目标服务小区的网络设备发送的同步帧,其中,所述同步帧中包括所述目标服务小区所属TA的标识信息,所述目标服务小区为所述终端设备进行小区重选后所在的服务小区;所述终端设备从所述同步帧中获取所述目标服务小区所属TA的标识信息;所述终端设备根据所述目标服务小区所属TA的标识信息确定是否需要进行TA更新,在不需要时,保持所述终端设备的主通信接口处于关闭状态。

Description

一种获取目标服务小区的跟踪区的标识信息的方法及设备
本申请要求在2017年8月10日提交中国专利局、申请号为201710682675.2、发明名称为“数据传输方法和设备”的中国专利申请,以及在2017年9月25日提交中国专利局、申请号为201710875251.8、发明名称为“一种获取目标服务小区的跟踪区的标识信息的方法及设备”的中国专利申请的优先权,它们的全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及一种获取目标服务小区的跟踪区的标识信息的方法及设备。
背景技术
传统移动通信***中,例如长期演进(Long Term Evolution,LTE)***,处于空闲(IDLE)态的终端设备在移动过程中需要进行小区重选时,会对当前服务小区及其它相邻服务小区的小区参考信号进行测量,并基于测量结果确定是否启动小区重选过程。
在终端设备从其它相邻服务小区中确定目标服务小区,也就是完成小区重选完成之后,终端设备会通过主通信接口接收目标服务小区的***消息块1(System Information Block1,SIB1),从SIB1中获取目标服务小区的跟踪区标识(Tracking Area Identity,TAI),以根据目标服务小区的TAI确定是否进行跟踪区(Tracking Area,TA)更新。
基于上述对小区重选过程的描述,终端设备在移动过程中发生小区重选后,还需要通过主通信接口接收目标服务小区的***消息块1,以获取目标服务小区的TAI,并确定是否需要进行TA更新,而通过主通信接口接收目标服务小区的***消息块1在网络设备侧已采用较为复杂的调制、信道编码方式,例如正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)调制、Turbo、低密度奇偶校验(Low Density Parity Check,LDPC)或Polar等信道编码方式,这样在终端设备接收该***消息块1后需执行快速傅里叶变换(Fast Fourier Transform,FFT)、前向纠错码(Forward Error Correction,FEC)等复杂信号处理操作,且在终端设备不需要进行TA更新时,通过这些复杂信号处理操作获取目标服务小区的TAI需要耗费大量能量,增加了终端设备的功耗。
发明内容
本申请实施例提供一种获取目标服务小区的跟踪区的标识信息的方法及设备,用于降低终端设备的功耗。
第一方面,本申请实施例提供了一种获取小区重选目标服务小区的跟踪区TA的标识信息的方法,该方法包括:网络设备生成同步帧,所述同步帧中包括所述网络设备所在小区所属跟踪区TA的标识信息;所述网络设备发送所述同步帧;在终端设备重选到目标服务小区后,获取通过唤醒射频WUR接口接收的所述目标服务小区的网络设备发送的同步帧;所述终端设备从所述同步帧中获取所述目标服务小区所属TA的标识信息,所述终端设备根据所述目标服务小区所属TA的标识信息确定是否需要进行TA更新,在不需要时,保持所述终端设备的主通信接口处于关闭状态。通过本申请实施例提供的方案,避免终端设备在通过主通信接口接收***消息获取目标服务小区所属TA的TAI时,不需要进行TA更新的情况,终端设备的主通信接口处于关闭状态,也就避免对通过主通信接口接收的信号进行进行快速傅里叶变换(Fast Fourier Transform,FFT)、前向纠错码(Forward Error Correction,FEC)等复杂信号处理操作,从而能够降低终端设备的功耗。
在一个可能的设计中,所述网络设备按照预设周期发送所述同步帧。预设周期可以由网络设备配置,也可以由标准协议规定。
在一个可能的设计中,所述同步帧中还包括所述预设周期的时长信息。这样在终端设备的WUR接口以一定时间间隔激活时,终端设备在接收到目标服务小区的第一同步帧后就能够预测后续同步帧的达到时刻,进而能够准确调整WUR接口处于激活状态的的时刻以及处于激活状态的时长,在能够准确接收目标服务小区的后续同步帧的同时降低终端设备的功耗。
在一个可能的设计中,所述同步帧还包括所述网络设备所在小区的小区标识信息。在终端设备重选到一个目标服务小区后,无需对接收到的同步帧进行复杂的解析操作,便能够获取目标服务小区的标识信息,从而能够降低终端设备的功耗。其中,小区标识信息可以是物理层小区标识(Physical-lay Cell Identity,PCI),也可以是PCI中的部分信息,或者是用于指示PCI的指示信息,终端设备获取该指示信息后,可以根据指示信息与PCI之间的对应关系,确定该指示信息所指示的PCI。
在一个可能的设计中,所述终端设备可以通过所述WUR接口接收N个候选服务小区的N个网络设备中每个网络设备分别发送的同步帧,然后分别对每个网络设备发送的第一同步帧进行测量,获得N个测量结果;根据所述N个测量结果,从所述N个候选服务小区中确定出目标服务小区,并记录所述目标服务小区作为当前服务小区。通过本申请实施例提供的方案,在终端设备重选到N个候选服务小区中的一个目标服务小区时,终端设备能够直接从目标服务小区的网络设备发送的同步帧中得到目标服务小区所属TA的标识信息,进而根据目标服务小区所属TA的标识信息确定目标服务小区所属TA的TAI,省去了终端设备在进行小区重选之后还需要通过主通信接口接收目标服务小区的***消息,对***消息进行复杂解析的步骤,从而能够进一步降低终端设备的功耗。当然,终端设备也可以根据其它方式确定目标服务小区,例如对N个网络设备所在的N个服务小区的参考信号进行测量,根据获得的测量结果进行小区重选,在确定目标服务小区后,再接收目标服务小区的网络设备发送的同步帧。
在一个可能的设计中,所述WUR接口对应有所述终端设备在源网络设备的源服务小区内确定的唤醒窗口,所述唤醒窗口为所述WUR接口处于激活状态的时间窗口, 所述唤醒窗口的窗口时长为第一窗口时长;所述终端设备在所述第一窗口时长内,通过所述WUR接口接收所述N个网络设备中每个网络设备分别发送的同步帧;或所述终端设备在所述WUR接口处于所述激活状态的第一时长内,通过所述WUR接口接收所述N个网络设备中每个网络设备分别发送的第一同步帧,并在确定出所述目标服务小区后,根据接收所述目标服务小区的网络设备发送第一同步帧的时刻,调整所述WUR接口处于所述激活状态的时长为第二时长,在所述第二时长内通过所述WUR接口接收所述目标服务小区的网络设备发送的后续同步帧,其中,所述第一时长大于所述第一窗口时长,所述第二时长小于所述第一时长;或所述终端设备在所述WUR接口处于所述激活状态的第三时长内,通过所述WUR接口接收所述N个网络设备中每个网络设备分别发送的第一同步帧;并在确定出所述目标服务小区后,根据接收所述目标服务小区的网络设备发送的第一同步帧的时刻或根据接收所述目标服务小区的网络设备发送的第一同步帧的时刻及接收所述目标服务小区的网络设备发送的第二同步帧的时刻,调整所述WUR接口处于所述激活状态的时长为第四时长,在所述第四时长内通过所述WUR接口接收所述目标服务小区的网络设备发送的后续同步帧,其中,所述第三时长大于所述第一窗口时长,所述第四时长小于所述第三时长;或所述终端设备在所述WUR接口处于所述激活状态的第五时长内,通过所述WUR接口接收所述N个网络设备中每个网络设备分别发送的第一同步帧;并在确定出所述目标服务小区后,根据接收所述目标服务小区的网络设备发送的第一同步帧的时刻,以及所述第一同步帧中包括的所述目标服务小区的网络设备发送同步帧的周期,调整所述WUR接口处于所述激活状态的时长为第六时长,在所述第六时长内通过所述WUR接口接收所述目标服务小区的网络设备发送的后续同步帧,其中,所述第五时长大于所述第一窗口时长,所述第六时长小于所述第五时长。
在本申请实施例中,N个候选服务小区的N个网络设备中的每个网络设备分别发送的同步帧的周期可以与源网络设备发送同步帧的周期相同,也可以不同,N个网络设备中的每个网络设备分别发送的同步帧的起始时刻可以与源网络设备发送同步帧的起始时刻相同,也可以不同,例如N个网络设备中的每个网络设备分别发送同步帧的周期与源网络设备发送同步帧的周期相同,起始时刻之间的间隔小于第一窗口时长;或者,N个网络设备中每个网络设备分别发送同步帧的周期与源网络设备发送同步帧的周期相同,N个网络设备中至少一个网络设备发送同步帧的起始时刻与源网络设备发送同步帧的起始时刻之间的间隔大于终端设备的第一窗口时长;或者,N个网络设备中至少一个网络设备发送同步帧的周期与源网络设备发送同步帧的周期不同。还有其它情况,在此不再一一列举。
在本申请实施例中,终端设备的WUR接口可以持续处于激活状态,在这种情况下,无论N个网络设备以何种方式发送同步帧,终端设备均能够在第一窗口时长内通过WUR接口接收,而当终端设备的WUR接口以一定时间间隔激活时,针对N个网络设备的不同发送方式,终端设备需采用不同的接收方式接收。
例如N个网络设备中每个网络设备分别发送同步帧的周期与源网络设备发送同步帧的周期相同,起始时刻之间的间隔小于第一窗口时长,终端设备在第一窗口时长内,通过WUR接口就能够接收N个网络设备中每个网络设备分别发送的同步帧。
N个网络设备中每个网络设备分别发送同步帧的周期与源网络设备发送同步帧的周期相同,N个网络设备中有至少一个网络设备发送同步帧的起始时刻与源网络设备发送同步帧的起始时刻之间的间隔大于第一窗口时长,终端设备在第一窗口时长内可能无法接收N个网络设备中每个网络设备发送的同步帧,这时终端设备可以控制WUR接口处于激活状态的时长为第一时长,大于第一窗口时长,以在第一时长内通过WUR接口接收N个网络设备中每个网络设备分别发送的第一同步帧,并从N个候选服务小区中确定出目标服务小区后根据接收目标服务小区的网络设备发送的第一同步帧的时刻,调整WUR接口处于激活状态的起始时刻以及处于激活状态的时长为第二时长,在第二时长内通过WUR接口接收目标服务小区的网络设备发送的后续同步帧。由于在后续同步帧的达到时刻才激活WUR窗口,且WUR窗口处于激活状态的第二时长小于第一时长,所以通过本申请实施例提供的技术方案,在能够准确接收目标服务小区的网络设备发送的后续同步帧的同时降低终端设备的功耗。
N个网络设备中有至少一个网络设备发送同步帧的周期与源网络设备发送同步帧的周期不同,终端设备在第一窗口时长内可能无法接收N个网络设备中每个网络设备发送的同步帧,这时终端设备可以控制WUR接口处于激活状态的时长为第三时长,大于第一窗口时长,以在第三时长内通过WUR接口接收N个网络设备中每个网络设备分别发送的第一同步帧,并在从N个候选服务小区中确定出目标服务小区后根据接收目标服务小区的网络设备发送的第一同步帧的时刻或根据接收目标服务小区的第一同步帧和第二同步帧的时刻,调整WUR接口处于激活状态的起始时刻及处于激活状态的时长为第四时长,在第四时长内通过WUR接口接收目标服务小区的网络设备发送的后续同步帧。在该方式中,若N个网络设备中每个网络设备分别发送的同步帧中还包括该网络设备发送该同步帧的周期信息,终端设备可以根据接收目标服务小区的网络设备发送第一同步帧的时刻,动态调整WUR接口处于激活状态的起始时刻以及处于激活状态的时长,在保证能够准确接收目标服务小区的网络设备发送后续同步帧的同时降低终端设备的功耗。
在一个可能的设计中,所述终端设备确定所述目标服务小区所属TA的标识信息所指示的TAI是否在终端设备存储的TA列表中,若确定所述目标服务小区所属TA的标识信息所指示的TAI在TA列表中,终端设备可以保持所述主通信接口处于关闭状态。这样,只有当目标服务小区所属TA的标识信息所指示的TAI不在TA列表中时,终端设备才激活主通信接口,以通过主通信接口与网络设备进行TA更新,而当目标服务小区所属TA的标识信息所指示的TAI在TA列表中时,终端设备可以保持主通信接口处于关闭状态,以降低终端设备的功耗。
第二方面,本申请实施例提供了一种终端设备,该终端设备具有实现上述第一方面方法中终端设备行为的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的模块。
在一个可能的设计中,终端设备的结构中包括唤醒射频WUR接口和处理器,所述处理器被配置为支持终端设备执行上述第一方面方法中相应的功能。所述WUR接口用于支持终端设备和网络设备之间的通信,接收上述第一方面方法中所涉及的信息或者指令。所述终端设备还可以包括存储器,所述存储器与处理器耦合,其保存必要 的程序指令和数据。所述终端设备还可以包括主通信接口,用于支持终端设备与网络设备之间的通信。
第三方面,本申请实施例提供了一种网络设备,该网络设备具有实现上述第一方面方法中网络设备行为的功能。所述功能可以通过硬件实现,网络设备的结构中包括处理器和发送器。也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个上述功能相对应的模块。所述模块可以是软件和/或硬件。
第四方面,本申请实施例提供了一种通信***,该***包括上述第二方面所述的终端设备和第三方面所述的网络设备。
第五方面,本申请实施例提供了一种计算机存储介质,存储有用于执行上述第一方面、第一方面的任意一种设计的功能所用的计算机软件指令,或包含用于执行上述第一方面、第一方面的任意一种设计的方法所涉及的程序。
第六方面,本申请实施例提供了一种计算机程序产品,该程序产品在被计算机调用执行时,可以使得计算机执行上述第一方面、第一方面的任意一种设计的方法。
第七方面,本申请实施例提供了一种芯片***,该芯片***包括处理器,用于支持终端设备或网络设备实现上述第一方面所述的方法,例如生成或处理上述第一方面方法中所涉及的数据和/或信息。在一个可能的设计中,该芯片***还包括存储器,所述存储器用于保存终端设备或网络设备必要的程序指令和数据,该芯片***中的处理器可以调用该芯片***中的存储器存储的程序指令和数据,以使该芯片***可以实现上述终端设备或网络设备能够实现功能。该芯片***,可以由芯片构成,也可以包含芯片和其它分立器件。
第八方面,本申请实施例提供一种数据传输方法,所述方法应用于网络设备和至少一个终端设备,所述网络设备包括第一接口和第二接口,所述终端设备包括第三接口和第四接口,所述第一接口和所述第三接口通过第一通信方式进行通信,所述第二接口和所述第四接口通过第二通信方式进行通信;
所述方法包括:
所述网络设备生成同步帧,所述同步帧包括所述网络设备所属跟踪区域TA的TA标识信息;
所述网络设备通过所述第一接口向所述至少一个终端设备的所述第三接口发送所述同步帧,以便所述至少一个终端设备中每个终端设备根据所述TA标识信息确定是否需激活所述第四接口,以通过所述第四接口与所述网络设备的第二接口执行TA更新过程。
所述第一通信方式可以是WUR接口之间的通信,所述同步帧因为是通过第一通信方式进行通信的,故所述同步帧可以称为WUR同步帧。所述第二通信方式可以是主通信接口之间的通信。
在所述网络设备通过所述第一接口向所述至少一个终端设备(如,用户设备UE)的所述第三接口发送所述同步帧时,所述第三接口处于激活状态,所述第四接口处于关闭状态(如睡眠状态)。
WUR同步帧中携带TA标识信息,使得IDLE态UE在完成小区重选后无需激活主通信接口监听新服务小区的***消息(SIB1)即可判断是否需要执行TA更新过程, 从而更加省电。
在一个可能的设计中,所述同步帧还包括所述网络设备所属小区的小区标识信息。
WUR同步帧中携带小区标识信息,使得IDLE态UE在小区重选时无需激活主通信接口监听其它小区的***消息(MIB)来获取小区标识,从而使UE接收功耗低。
在一个可能的设计中,所述同步帧的发送是周期性的,所述同步帧还包括所述同步帧的发送周期。
对于不同小区的WUR同步帧周期可以不同的情况,在WUR同步帧中携带同步帧的发送周期,能够使UE只收到新服务小区的一个同步帧即可推知后续所有同步帧的发送时间。
在一个可能的设计中,所述第一接口和所述第三接口为唤醒射频接口,所述第二接口和所述第四接口为主通信接口。
由于第三接口为WUR接口而第四接口为主通信接口,故第四接口处于关闭状态、第三接口处于激活状态有利于UE省电。
第九方面,本申请实施例提供一种数据传输方法,所述方法应用于网络设备和至少一个终端设备,所述网络设备包括第一接口和第二接口,所述终端设备包括第三接口和第四接口,所述第一接口和所述第三接口通过第一通信方式进行通信,所述第二接口和所述第四接口通过第二通信方式进行通信;
所述方法包括:
所述终端设备通过所述第三接口接收所述网络设备通过第一接口发送的同步帧,所述同步帧包括所述网络设备所属跟踪区域TA的TA标识信息;
所述终端设备根据所述TA标识信息确定是否需激活所述第四接口,以通过所述第四接口与所述网络设备的第二接口执行TA更新过程。
WUR同步帧中携带TA标识信息,使得IDLE态UE在完成小区重选后无需激活主通信接口监听新服务小区的***消息(SIB1)即可判断是否需要执行TA更新过程,从而更加省电。
在一个可能的设计中,所述终端设备根据所述TA标识信息确定是否需激活所述第四接口,以通过所述第四接口与所述网络设备的第二接口执行TA更新过程,包括:
当所述TA标识信息所指示的TA未包括在所述终端设备保存的TA列表中时,所述终端设备激活所述第四接口,并通过所述第四接口与所述网络设备的第二接口执行TA更新过程。
UE移出了网络侧给自己配置的TA List范围,故需打开主通信接口执行TA更新过程。
在一个可能的设计中,所述终端设备根据所述TA标识信息确定是否需激活所述第四接口,以通过所述第四接口与所述网络设备的第二接口执行TA更新过程,包括:
当所述TA标识信息所指示的TA包括在所述终端设备保存的TA列表中时,所述终端设备不激活所述第四接口。
UE未移出网络侧给自己配置的TA List范围,无需更新TA List。由于该判定是通过在第三接口(WUR接口)上听同步帧做出的,而不是通过第四接口(主通信接口)听***消息获得的,故该过程相比传统方式更加省电。
在一个可能的设计中,所述同步帧还包括所述网络设备所属小区的小区标识信息。
WUR同步帧中携带小区标识信息,使得IDLE态UE在小区重选时无需激活主通信接口监听其它小区的***消息(MIB)来获取小区标识,从而使UE接收功耗低。
在一个可能的设计中,所述同步帧的发送是周期性的,所述同步帧还包括所述同步帧的发送周期。
对于不同小区的WUR同步帧周期可以不同的情况,在WUR同步帧中携带同步帧的发送周期,能够使UE只收到新服务小区的一个同步帧即可推知后续所有同步帧的发送时间。
在一个可能的设计中,所述第一接口和所述第三接口为唤醒射频接口,所述第二接口和所述第四接口为主通信接口。
由于第三接口为唤醒射频接口(WUR接口)而第四接口为主通信接口,故第四接口关闭、第三接口激活有利于UE省电。
第十方面,本申请实施例提供一种网络设备,所述网络设备包括:
处理器,存储器和收发器;
所述收发器,用于接收和发送数据;
所述存储器,用于存储指令;
所述处理器,用于执行所述存储器中的所述指令,执行如第八方面、第八方面的任意一种设计的方法。
在一个可能的设计中,所述收发器为主通信模块,用于发送如第八方面、第八方面的任意一种设计的同步帧。
所述主通信模块可以是LTE/NR模块。所述同步帧可以是WUR接口能识别的同步帧,也可称为WUR同步帧。
在一个可能的设计中,所述网络设备还包括发射器,所述发射器用于发送如第八方面、第八方面的任意一种设计的同步帧。
所述发射器可以是具有发射信号功能的WUR模块(也可称为WUR接口)。所述同步帧可以是WUR接口能识别的同步帧,也可称为WUR同步帧。
第十一方面,本申请实施例提供一种终端设备,所述终端设备包括:
处理器,存储器,收发器和接收器;
所述收发器,用于接收和发送数据;
所述存储器用于存储指令;
所述处理器用于执行所述存储器中的所述指令,执行如第九方面、第九方面的任意一种设计的方法。
在一个可能的设计中,所述接收器用于接收如第九方面、第九方面的任意一种设计的同步帧。
所述接收器可以是WUR,也可称为WUR模块(也可称为WUR接口)。所述同步帧可以是WUR接口能识别的同步帧,也可称为WUR同步帧。
第十二方面,本申请实施例提供一种计算机程序产品,包括计算机程序,该计算机程序在某一计算机单元上执行时,将会使所述计算机单元实现第八方面、第八方面的任意一种设计的方法。
第十三方面,本申请实施例提供一种计算机程序产品,包括计算机程序,该计算机程序在某一计算机单元上执行时,将会使所述计算机单元实现第九方面、第九方面的任意一种设计的方法。
第十四方面,本申请实施例提供一种计算机程序,该计算机程序在某一计算机单元上执行时,将会使所述计算机单元实现第八方面、第八方面的任意一种设计的方法。
第十五方面,本申请实施例提供一种计算机程序,该计算机程序在某一计算机单元上执行时,将会使所述计算机单元实现第九方面、第九方面的任意一种设计的方法。
第十六方面,本申请实施例提供一种网络设备,所述网络设备被配置为执行如第八方面、第八方面的任意一种设计的方法。
第十七方面,本申请实施例提供一种终端设备,所述终端设备被配置为执行如第九方面、第九方面的任意一种设计的方法。
在本申请实施例中,在终端设备重选到一个目标服务小区后,终端设备从通过WUR接口接收的目标服务小区的网络设备发送的同步帧中得到目标服务小区所属TA的标识信息,进而根据目标服务小区所属TA的标识信息确定目标服务小区所属TA的TAI,并根据目标服务小区所属TA的TAI确定是否进行TA更新,在需要时,保持主通信接口处于关闭状态,所述终端设备根据所述目标服务小区所属TA的标识信息确定是否需要进行TA更新,在不需要时,保持所述终端设备的主通信接口处于关闭状态。通过本申请实施例提供的方案,避免终端设备在通过主通信接口接收***消息获取目标服务小区所属TA的TAI时,不需要进行TA更新的情况,终端设备的主通信接口处于关闭状态,也就避免对通过主通信接口接收的信号进行进行快速傅里叶变换(Fast Fourier Transform,FFT)、前向纠错码(Forward Error Correction,FEC)等复杂信号处理操作,从而能够降低终端设备的功耗。
附图说明
图1为本申请实施例提供的一种应用场景示意图;
图2为本申请实施例提供的一种终端设备和网络设备的结构示意图;
图3为本申请实施例提供的一种终端设备的WUR接口的唤醒窗口的示意图;
图4为本申请实施例提供的一种获取小区重选目标服务小区的跟踪区标识TAI的方法的流程图;
图5A-图5C为本申请实施例提供的网络设备分别发送同步帧的示意图;
图6为本申请实施例提供的TA更新的流程图;
图7为本申请实施例提供的另一种获取小区重选目标服务小区的跟踪区标识TAI的方法的流程图;
图8为本申请实施例提供的另一种终端设备的结构示意图;
图9为本申请实施例提供的另一种网络设备的结构示意图;
图10为本申请实施例提供的另一种终端设备的结构示意图;
图11为本申请实施例提供的另一种网络设备的结构示意图;
图12为本申请实施例提供的一种应用场景示意图;
图13为本申请实施例提供的基站发送同步帧的示意图;
图14为本申请实施例提供的一种基站的结构示意图;
图15为本申请实施例提供的一种终端设备的结构示意图。
具体实施方式
为了使本申请的目的、技术方案和优点更加清楚,下面将结合附图对本申请作进一步地详细描述。
本申请实施例中描述的技术方案可用于第五代移动通信技术(5G),还可用于下一代移动通信***。
以下,对本申请实施例中的部分用语进行解释,以便于本领域技术人员理解。
(1)网络设备,例如包括基站(例如,接入点),可以是指接入网中在空中接口上通过一个或多个扇区与无线终端设备通信的设备。基站可用于将收到的空中帧与IP分组进行相互转换,作为终端设备与接入网的其余部分之间的路由器,其中接入网的其余部分可包括IP网络。基站还可协调对空中接口的属性管理。例如,基站可以包括长期演进(Long Term Evolution,LTE)***或演进的LTE***(LTE-Advanced,LTE-A)中的演进型基站(NodeB或eNB或e-NodeB,evolutional Node B),或者也可以包括5G***中的下一代节点B(next generation node B,gNB),本申请实施例并不限定。
(2)终端设备,包括向用户提供语音和/或数据连通性的设备,例如可以包括具有无线连接功能的手持式设备、或连接到无线调制解调器的处理设备。该终端设备可以经无线接入网(Radio Access Network,RAN)与核心网进行通信,与RAN交换语音和/或数据。该终端设备可以包括用户设备(User Equipment,UE)、无线终端设备、移动终端设备、订户单元(Subscriber Unit)、订户站(Subscriber Station),移动站(Mobile Station)、移动台(Mobile)、远程站(Remote Station)、接入点(Access Point,AP)、远程终端设备(Remote Terminal)、接入终端设备(Access Terminal)、用户终端设备(User Terminal)、用户代理(User Agent)、或用户装备(User Device)等。例如,可以包括移动电话(或称为“蜂窝”电话),具有移动终端设备的计算机,便携式、袖珍式、手持式、计算机内置的或者车载的移动装置,智能穿戴式设备等。例如,个人通信业务(Personal Communication Service,PCS)电话、无绳电话、会话发起协议(SIP)话机、无线本地环路(Wireless Local Loop,WLL)站、个人数字助理(Personal Digital Assistant,PDA)、智能手表、智能头盔、智能眼镜、智能手环、等设备。还包括受限设备,例如功耗较低的设备,或存储能力有限的设备,或计算能力有限的设备等。例如包括条码、射频识别(RFID)、传感器、全球定位***(GPS)、激光扫描器等信息传感设备。
(3)本申请实施例中的术语“***”和“网络”可被互换使用。“多个”是指两个或两个以上,鉴于此,本申请实施例中也可以将“多个”理解为“至少两个”。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,字符“/”,如无特殊说明,一般表示前后关联对象是一种“或”的关系。
在本申请实施例中,在终端设备重选到一个目标服务小区后,终端设备从通过WUR接口接收的目标服务小区的网络设备发送的同步帧中得到目标服务小区所属TA 的标识信息,进而根据目标服务小区所属TA的标识信息确定目标服务小区所属TA的TAI,由于通过WUR接口接收的信号的都是采用较为简单的调制方式,这样终端设备侧无需对接收到的同步帧进行快速傅里叶变换(Fast Fourier Transform,FFT)、前向纠错码(Forward Error Correction,FEC)等复杂信号处理操作,从而能够降低终端设备的功耗。
请参见图1,为本申请实施例的一种应用场景。在图1中,包括多个基站和位于该多个基站的共同覆盖范围内的终端设备,多个基站中的每个基站分别生成同步帧,并广播各自生成的同步帧。
下面结合附图介绍本申请实施例提供的技术方案,在下面的介绍过程中,以将本申请实施例提供的技术方案应用在图1所示的应用场景中为例,且以网络设备是基站为例。
本申请实施例提供一种获取小区重选目标服务小区的跟踪区TA的标识信息的方法及设备,适用于终端设备和基站。图2示出了一种可能的终端设备和基站的结构图。图2中所示的终端设备20包括:唤醒射频(Wake-up Radio,WUR)接口201、主通信接口(Main Radio)202等部件。图2中所示的基站21包括:主通信接口211。本领域技术人员可以理解,图2中示出的终端设备20的结构并不构成对终端设备20的限定,本申请实施例提供的终端设备20可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置。同样的,图2中示出的基站21的结构并不构成对基站21的限定,本申请实施例提供的基站21可以包括比图示更多的部件,或者组合某些部件,或者不同的部件布置。
下面结合图2对终端设备20及基站21的各个构成部件进行具体的介绍:
WUR接口201,用于接收基站21发送的唤醒信号,例如唤醒包(Wakeup Packet),或唤醒帧,在WUR接口201接收到唤醒信号之后,向主通信接口202发送触发信号,以唤醒处于关闭状态的主通信接口202。其中,触发信号,例如中断信号,可以由WUR接口201以有线方式或无线方式发送给主通信接口202,也可以由终端设备20的处理器发送给主通信接口202,例如在实际***中,WUR接口201将接收到的唤醒信号转发给处理器,由处理器决定是否激活主通信接口202,此时触发信号是由处理器发送给主通信接口202的;
主通信接口202,例如长期演进(Long Term Evolution,LTE)、新无线(New Radio,NR)、或者无线保真(Wireless Fidelity,WiFi)接口等,主通信接口202通常处于关闭状态,只有在接收到WUR接口201或终端设备20的处理器发送的触发信号时,才处于激活状态,以与基站21的主通信接口211进行数据交互。
在本申请实施例中,WUR接口201为了实现低功耗,其电路构造较为简单,例如WUR接口201的电路结构可能包括能量检测和射频部分,无法解调复杂的调制方式,因此唤醒信号也需要采用简单的调制方式,例如开关键控(On-Off Keying,OOK)调制、幅移键控(Amplitude Shift Keying,ASK)或频移键控(Frequency Shift Keying,FSK)。WUR接口201可以持续处于激活状态,也可以按照一定时间间隔激活,以降低终端设备20的功耗。其中,在WUR接口201按照一定时间间隔激活时,终端设备20需要与基站21进行时间同步。WUR接口201处于激活状态的时间窗口可以称为唤 醒窗口,唤醒窗口的起始时刻、唤醒窗口的时长及唤醒窗口的周期可以由基站21与终端设备20预先约定,或者由基站21配置给终端设备20。请参见图3,为一个WUR接口的唤醒窗口的周期为120毫秒(ms),唤醒窗口的时长为2ms的例子。
继续参见图2,基站21包括主通信接口211,基站21可以由主通信接口211生成唤醒信号,这是因为对于当前第三代合作伙伴(3 rd Generation Partnership Project,3GPP)标准而言,基站21的主通信接口211通常为正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)宽带发射机,而唤醒信号可能是窄带信号,为了降低基站21的制造成本和简化基站21的结构,可以利用OFDM宽带发射机产生窄带唤醒信号。例如将OFDM信号的部分子载波空置而仅在唤醒信号对应的窄带上传输信号,从而产生窄带信号。需要说明的是,基站21在具体实现中也可将主通信接口211和WUR接口分别单独实现,也就是图2中所示的基站21也可以同时包含主通信接口211和WUR接口。
另外,图2中所示的基站21和终端设备20均配置一根天线,这主要是考虑终端设备20的WUR接口201和主通信接口202使用相同或接近的频段载波情况下,能够共用同一天线,以节省终端设备20的制造成本和简化设备结构。当然,当终端设备20的WUR接口201和主通信接口202在使用频域上间隔较大的不同频段载波时,终端设备20的WUR接口201和主通信接口202应配置不同天线。例如,终端设备20的主通信接口202使用6GHz频段,WUR接口201使用1.8GHz频段,此时主通信接口202和WUR接口201应配置不同天线。其中,当基站21主通信接口211和WUR接口分别单独实现,且主通信接口211和WUR接口使用频域上间隔较大的不同频段载波时,基站21的主通信接口211和WUR接口也应配置不同天线。
在本申请实施例中,终端设备20进行小区重选可以是周期性测量触发,也可以是事件触发。例如,当终端设备20对源服务小区的参考信号或同步帧进行测量并发现接收功率小于特定阈值时,则触发终端设备20执行小区重选,即对小区重选的N个候选服务小区(相邻服务小区)的参考信号或同步帧进行测量并确定小区重选的目标服务小区,进而完成小区重选。终端设备20根据N个候选服务小区的测量结果确定目标服务小区的具体准则,可由终端设备20决定,例如终端设备20选择接收功率最大的候选服务小区作为小区重选的目标服务小区。终端设备20进行小区重选的测量对象不同时,终端设备20接收基站21发送的同步帧的时机也不相同,例如终端设备20基于N个候选服务小区的N个基站21发送的参考信号进行小区重选,终端设备20则在确定目标服务小区后,接收目标服务小区的网络设备发送的同步帧;或者终端设备20基于N个候选服务小区的N个基站21发送的同步帧进行小区重选,终端设备20则在进行小区重选之前,通过WUR接口接收N个候选服务小区的N个基站21中每个基站21分别发送的同步帧,下面分别进行介绍。
请参见图4,本申请实施例提供了一种获取小区重选目标服务小区的跟踪区TA的标识信息的方法及设备,该方法适用于上述如图2所示的终端设备20和基站21。
S41:基站21生成同步帧,同步帧中包括基站21所在小区所属跟踪区TA的标识信息;在本申请实施例中,TA是通信***,例如LTE为简化终端设备20的位置管理而引入的概念,表示一组小区的集合。多个小区划归同一TA,也就是每个TA包括至 少一个小区,而每个小区只能属于一个TA。
在本申请实施例中,基站21所在的小区所属跟踪区TA的标识信息可以是跟踪区标识(Tracking Area Identity,TAI),包括公共陆地移动网(Public Land Mobile Network,PLMN)和跟踪区编码(Tracking Area Code,TAC)。
基站21所在的小区所属跟踪区TA的标识信息也可以是TAI中包括的部分信息,例如为TAI中包括的跟踪区编码(Tracking Area Code,TAC)。这是因为TAI中包括的PLMN用于标识网络服务运营商,而同一地区中一个频段通常分配给一家运营商,因此基站21所在的小区所属跟踪区TA的标识信息中可以不包括PLMN。在基站21所在的小区所属跟踪区TA的标识信息为TAC时,基站21所在的小区所属跟踪区TA的标识信息的长度变短,也就是同步帧的长度变短了,在同步帧的长度变短时,基站21用于发送同步帧的资源也就减少了,从而也就降低了基站21的资源开销。那么为进一步降低基站21的资源开销,基站21所在的小区所属跟踪区TA的标识信息还可以是TAC的一部分,例如TAC的低若干位。
基站21所在小区所属跟踪区TA的标识信息也可以是基站21所在的小区所属TA的TAI的指示信息,例如指示信息为一种序列,不同序列代表不同的TAI,作为一种示例,001用于指示TAI1,010用于指示TAI2,或者100用于指示TAI3。
基站21所在小区所属跟踪区TA的标识信息也可以是基站21根据基站21所在小区所属TA的TAI生成的用于标识TAI的标识信息,例如对基站21所在小区所属TA的TAI利用哈希算法映射为一个哈希值,以标识基站21所在小区所属TA的TAI。
S42:基站21发送同步帧,相应的,终端设备20通过唤醒射频WUR接口201接收N个候选服务小区的N个基站21中每个基站21分别发送的同步帧,其中,N为大于或等于1的整数。在此,将N个候选服务小区的N个基站21称为N个候选基站21,将终端设备20在执行小区重选时所在服务小区(即源服务小区)的基站称为源基站21,源基站21所在的服务小区称为源服务小区;将终端设备进行重选后所在的服务小区称为目标服务小区,目标服务小区的基站21称为目标基站21。其中,终端设备20对应有唤醒窗口,唤醒窗口是终端设备20在源基站21所在的源服务小区内确定的,唤醒窗口包括唤醒窗口的起始时刻和唤醒窗口的时长,唤醒窗口的时长为第一窗口时长。
在本申请实施例中,N个候选基站21和源基站21发送同步帧的方式可以是以预设周期发送。以N个候选基站21中任意一个候选基站21为例,预设周期可以由任意一个候选基站21配置,例如任意一个候选基站21通过无线资源控制(Radio Resource Control,RRC)信令、主信息块/***信息块(Master/System Information Block,MIB/SIB)、媒体访问控制元素(Media Access Control Control Element,MAC CE)或物理下行控制信道配置;或者由RRC信令配置参数集合,由MAC CE或物理层信令从RRC信令配置的参数集合中配置一个参数给终端设备20;预设周期还可以是由标准协议规定。在本申请实施例中,源基站21或任意一个候选基站21向终端设备20发送配置信息,配置信息中包括预设周期。对于连接态的终端设备20,基站可通过上述配置信息为终端设备20配置预设周期;而对于空闲态的终端设备20,终端设备可采用标准预定义的预设周期,或采用保存的预设周期(在终端设备之前处于连接态是,由基站配置),或终端设备20主动搜索同步帧,根据接收到的一个或多个同步帧来确定预设周期。
在本申请实施例中,对于连接态的终端设备20,源基站21或任意一个候选基站21除了能够通过基站配置信息来配置发送同步帧的周期,还可以在基站配置信息中配置发送同步帧所使用的时间和/或频率资源以及终端设备20的唤醒窗口长度。当然,上述参数也可以是由标准预定义的。同时,源基站21或任意一个候选基站21还可以在基站配置信息中配置发送同步帧的起始时刻,源基站21或任意一个候选基站21发送同步帧的时刻可以通过时间偏移来表示,例如该时间偏移可以是第一个同步帧与基站配置信息之间的时间间隔。源基站21或任意一个候选基站21可以在终端设备20处于连接态时,通过主通信接口向终端设备20的主通信接口202发送基站配置信息。
N个候选基站21中每个候选基站21发送同步帧的周期与终端设备20的源基站21发送的同步帧的周期可以相同,也可以不同;每个候选基站21发送的同步帧的起始时刻与源基站21发送同步帧的起始时刻可以相同,也可以不同,下面分别介绍。
1、N个候选基站21中每个候选基站21分别发送的同步帧的周期与源基站21发送同步帧的周期相同,N个候选基站21中每个候选基站21分别发送的同步帧的起始时刻与源基站21发送同步帧的起始时刻之间的间隔小于或等于预设值;
请参见图5A,以候选基站21(1)和源基站21(2)为例,候选基站21(1)发送同步帧1的周期和源基站21(2)发送同步帧2的周期相同,候选基站21(1)发送同步帧1的起始时刻和源基站21(2)发送同步帧2的起始时刻之间的间隔小于或等于预设值。
在本申请实施例中,在候选基站21(1)发送同步帧1的周期和源基站21(2)发送同步帧的周期相同时,若候选基站21(1)发送同步帧1的起始时刻和源基站21(2)发送同步帧2的起始时刻也相同,候选基站21(1)发送的同步帧1和源基站21(2)发送的同步帧2之间会产生干扰。为避免干扰,候选基站21(1)和源基站21(2)之间可以预先相互约定发送同步帧1和同步帧2之间的时间间隔,例如候选基站21(1)发送同步帧1的起始时刻和源基站21(2)发送同步帧2的起始时刻之间的间隔小于或等于预设值,该预设值为终端设备20的WUR接口201的第一窗口时长,例如图3所示的唤醒窗口的时长2ms。
2、N个候选基站21中每个候选基站21分别发送的同步帧的周期与源基站21发送同步帧相同,N个候选基站21中至少一个候选基站21发送的同步帧的起始时刻与源基站21发送同步帧的起始时刻之间的间隔大于预设值;
请参见图5B,以至少一个候选基站21中的候选基站21(1)和源基站21(2)为例,候选基站21(1)发送同步帧1的周期和源基站21(2)发送同步帧2的周期相同,候选基站21(1)发送同步帧1的起始时刻和源基站21(2)发送同步帧2的起始时刻之间的间隔大于预设值,该预设值为终端设备20的WUR接口201的第一窗口时长,例如图3所示的唤醒窗口的时长2ms。
3、N个候选基站21中至少一个候选基站21分别发送的同步帧的周期与源基站21发送同步帧的周期不同;
请参见图5C,以至少一个候选基站21中的候选基站21(1)和源基站21(2)为例,候选基站21(1)发送同步帧1的周期和源基站21(2)发送同步帧2的周期不同。
基于上述描述,终端设备20的WUR接口201可以持续处于激活状态,也可以以一定时间间隔激活。其中,在终端设备20的WUR接口201持续处于激活状态时,无论N个候 选基站21以哪种发送方式分别发送同步帧,终端设备20都能够在第一窗口时长内,通过WUR接口201接收N个候选基站21中每个候选基站21分别发送的同步帧。而在终端设备20的WUR接口201以一定时间间隔激活的情况下,在N个候选基站21中每个候选基站21采用不同的发送方式时,终端设备20需要要采用不同的接收方式,下面分别进行介绍。
一、针对方式1,由于N个候选基站21中每个候选基站21分别发送的同步帧的周期与源基站21发送同步帧的周期相同,N个候选基站21中每个候选基站21分别发送的同步帧的起始时刻与源基站21发送同步帧的起始时刻之间的间隔小于或等于第一窗口时长,这样,终端设备20在第一窗口时长内,通过WUR接口201就能够接收N个候选基站21中每个候选基站21分别发送的同步帧。例如终端设备20在第一窗口时长内,通过WUR接口201总能接收到候选基站21(1)发送的同步帧。
二、针对方式2,由于N个候选基站21中有至少一个候选基站21发送的同步帧的起始时刻与源基站21发送同步帧的起始时刻之间的间隔大于第一窗口时长,因此终端设备20在第一窗口时长内,通过WUR接口201可能无法接收N个候选基站21中每个候选基站21分别发送的同步帧。在这种情况下,终端设备20可以控制WUR接口201处于激活状态的时长为第一时长,第一时长大于第一窗口时长,以在第一时长内通过WUR接口201接收N个候选基站21中每个候选基站21分别发送的第一同步帧,其中,N个候选基站21中每个候选基站21分别发送的第一同步帧可以是每个候选基站21分别发送的第一个同步帧、每个候选基站21分别发送的第一个同步帧和第二个同步帧,在此不作具体限制。在本申请实施例中,在终端设备20接收N个候选基站21中每个候选基站21分别发送的第一同步帧后,则分别对每个候选基站21发送的第一同步帧进行测量,例如,分别对每个候选基站21发送的第一个同步帧进行测量、或分别对每个候选基站21发送的第二同步帧进行测量、或分别对每个候选基站发送的第一个同步帧及第二个同步帧进行测量,然后对第一个同步帧进行测量的测量结果和对第二个同步帧进行测量的测量结果求平均,共得到N个测量结果,并根据N个测量结果从N个候选服务小区中确定出目标服务小区,然后根据接收目标基站21发送的第一同步帧的时刻,调整WUR接口201处于激活状态的时长为小于第一时长的第二时长,以在第二时长内接收目标基站21发送的后续同步帧,第二时长为终端设备20选定目标服务小区作为当前服务小区后,其WUR接口201在当前服务小区中的唤醒窗口的时长。当然,终端设备20还可以根据接收到当前服务小区的第一同步帧的时刻,调整其WUR接口201在当前服务小区中的唤醒窗口的起始时刻。
例如以终端设备的WUR接口201的第一窗口时长是2ms,同步帧发送周期为120ms(也是WUR接口201的唤醒窗口周期),一个唤醒窗口的起止时刻(***时钟)是995ms~997ms、第一同步帧是目标基站21发送的第一个同步帧为例,终端设备20首先控制WUR接口201处于激活状态的时长为大于第一窗口时长的第一时长6ms,在第一时长内接收N个候选基站21中每个候选基站21发送的第一个同步帧。在确定目标服务小区后,以目标服务小区是候选基站21(1)所在的服务小区,此时,候选基站21(1)就是目标基站21(1),同步帧的周期是120ms,终端设备20接收目标基站21(1)发送的第一个同步帧的时刻(***时钟)是1000ms为例,终端设备20可以根据同步帧发 送周期120ms、到达时刻为1000ms确定目标基站21(1)发送的第二个同步帧的到达时刻为1120ms,进而根据该时刻调整WUR接口201处于激活状态的起始时刻,并调整WUR接口201处于激活状态的时长为第二时长,例如在通过WUR接口201接收目标基站21(1)发送的第一个同步帧后,控制WUR接口201处于关闭状态,在1120ms这个时刻激活WUR接口201,并控制WUR接口201处于激活状态的时长为小于第一时长的第二时长3ms。在本申请实施例中,终端设备可根据实际情况实时调整WUR接口201处于激活状态的起始时刻以及处于激活状态的时长,从而能够在保证准确接收目标基站21(1)发送的后续同步帧的同时降低终端设备20的功耗。
三、针对方式3,由于N个候选基站21中有至少一个候选基站21发送的同步帧的周期与源基站21发送同步帧的周期不同,因此终端设备20的WUR接口201在第一窗口时长内可能无法接收N个候选基站21中每个候选基站21分别发送的同步帧。在这种情况下,终端设备20可以控制WUR接口201处于激活状态的时长为大于第一窗口时长的第三时长,以在第三时长内,通过WUR接口201接收N个候选基站21中每个候选基站21分别发送的第一同步帧,其中,N个候选基站21中每个候选基站21分别发送的第一同步帧可以是每个候选基站21分别发送的第一个同步帧、每个候选基站21分别发送的第一个同步帧和第二个同步帧,在此不作具体限制。在本申请实施例中,在终端设备20接收N个候选基站21中每个候选基站21分别发送的第一同步帧后,则分别对每个候选基站21发送的第一同步帧进行测量,例如,分别对每个候选基站21发送的第一个同步帧进行测量、或分别对每个候选基站21发送的第二同步帧进行测量、或分别对每个候选基站发送的第一个同步帧及第二个同步帧进行测量,然后对第一个同步帧进行测量的测量结果和对第二个同步帧进行测量的测量结果求平均,共得到N个测量结果,并根据N个测量结果从N个候选服务小区中确定出目标服务小区。
在该方式三中,由于终端设备20事先无法获知N个候选基站21中每个候选基站21分别发送同步帧的周期,因此,为保证能够正确接收目标基站21发送的后续同步帧,终端设备20需要确定出目标基站21发送同步帧的周期,具体实现过程包括但不限于以下两种,下面分别进行介绍。
作为一种示例,终端设备20根据接收目标基站21发送的第一同步帧的时刻,或根据接收目标基站21发送的第一同步帧的时刻及接收目标基站21发送的第二同步帧的时刻确定目标基站21发送同步帧的周期,进而根据计算出的周期及接收目标基站21发送的后续同步帧的时刻,调整WUR接口201处于激活状态的时长为小于第三时长的第四时长,在第四时长内接收目标基站21发送的后续同步帧,第四时长即为终端设备20选定目标服务小区作为当前服务小区后,其WUR接口201在当前服务小区中的唤醒窗口的时长。当然,终端设备20还可以根据接收到当前服务小区的第一同步帧的时刻,或根据接收到当前服务小区的第一同步帧和第二同步帧的时刻以及当前服务小区的同步帧发送周期,调整其WUR接口201在当前服务小区中的唤醒窗口的起始时刻。
例如以WUR接口201的窗口时长是2ms,同步帧发送周期为120ms(也就是WUR接口201的唤醒窗口周期),一个唤醒窗口的起始时刻(***时钟)是995ms~997ms、第一同步帧为目标基站21发送的第一个同步帧为例,终端设备20首先控制WUR接口201处于激活状态的时长为大于第一窗口时长的第三时长6ms,在第三时长内接收N个候选 基站21中每个候选基站21分别发送的第一个同步帧,以及在确定出目标服务小区后,接收目标基站21发送的第二个同步帧。接着以目标服务小区是候选基站21(1)所在的服务小区,终端设备20接收候选基站21(1),也就是目标基站21(1)发送的第一个同步帧的时刻(***时钟)是1000ms,终端设备20接收目标基站21(1)发送的第二个同步帧的时刻是1120ms为例,终端设备20由此可确定目标基站21(1)发送同步帧的周期为120ms,终端设备20进而能够确定目标基站21(1)发送的第三个同步帧到达的时刻为1240ms,进而根据该时刻调整WUR接口201处于激活状态的的起始时刻,并调整WUR接口201处于激活状态的时长为第四时长,例如在终端设备20接收目标基站21(1)发送的第二个同步帧后,控制WUR接口201处于关闭状态,在1240ms这个时刻再激活WUR接口201,控制WUR接口201处于激活状态的时长为小于第三时长的第四时长3ms。在本申请实施例中,终端设备根据实际情况实时调整WUR接口201处于激活状态的起始时刻以及处于激活状态的时长,从而能够在保证准确接收目标基站21(1)发送的后续同步帧的同时降低终端设备20的功耗。
作为另一示例,N个候选基站21中每个候选基站21发送的同步帧中还包括该候选基站21发送的同步帧的周期信息,这样终端设备20在接收到目标基站21发送的第一同步帧后,便能够根据接收目标基站21发送的第一同步帧的时刻确定目标基站21发送的下一同步帧的达到时刻,并根据该时刻动态调整WUR接口201处于激活状态的时长为小于第五时长的第六时长,以在第六时长内接收目标基站21发送的后续同步帧,第六时长即为终端设备20选定目标服务小区作为当前服务小区后,其WUR接口201在当前服务小区中的唤醒窗口的时长。当然,终端设备20还可以根据接收到当前服务小区的第一同步帧的时刻,调整其WUR接口201在当前服务小区中的唤醒窗口的起始时刻。
例如以终端设备20的WUR接口201窗口时长是2ms,同步帧发送周期为120ms(也是WUR接口201的唤醒窗口周期),一个唤醒窗口的起止时刻(***时钟)为995ms~997ms、第一同步帧是目标基站21发送的第一个同步帧为例,终端设备20控制WUR接口201处于激活状态的时长为大于第一窗口时长的第五时长6ms,在第五时长内接收N个候选基站21中每个候选基站21分别发送的第一个同步帧。在确定出目标服务小区后,以目标服务小区是候选基站21(1)所在的服务小区,终端设备20接收候选基站21(1),也就是目标基站21(1)发送的第一个同步帧的时刻是1000ms为例,终端设备20根据目标基站21(1)发送的第一个同步帧中携带的目标基站21(1)发送同步帧的周期120ms,确定目标基站21(1)发送第二个同步帧到达的时刻为1120ms,进而根据该时刻调整WUR接口201处于激活状态的起始时刻及处于激活状态的时长为小于第五时长的第六时长,例如在终端设备20接收目标基站21(1)发送的第一个同步帧后,控制WUR接口201处于关闭状态,在1120ms这个时刻再激活WUR接口201,控制WUR接口201处于激活状态的时长为小于第五时长第六时长3ms。在本申请实施例中,终端设备根据实际情况实时调整WUR接口201处于激活状态的时刻以及处于激活状态的时长,从而能够在保证准确接收目标基站21(1)发送的同步帧的同时降低终端设备20的功耗。
针对上述二、三两种方式中,为保证终端设备20能够接收所有候选基站21中每个候选基站21发送的同步帧,需要控制WUR接口201处于激活状态的时长大于WUR接口 201在源服务小区的唤醒窗口的周期,例如上述举例中的120ms。
在此,需要说明的是,上述1中候选基站21(1)发送同步帧1的周期和源基站21(2)发送同步帧的周期相同、候选基站21(1)发送同步帧1的起始时刻和源基站21(2)发送同步帧的起始时刻之间的间隔小于或等于预设值的情况,由标准协议预先规定,或由核心网设备指示终端设备20各候选基站21发送同步帧的周期与源基站21发送同步帧的周期相同、发送同步帧的起始时刻之间的间隔小于预设值,也就是终端设备20能够知道各候选基站21发送同步帧的周期与源基站21发送同步帧的周期相同,且发送同步帧的起始时刻之间的间隔小于或等于预设值,终端设备20则采用上述方式一接收候选基站21(1)发送的同步帧;上述2中候选基站21(1)发送同步帧1的周期和源基站21(2)发送同步帧2的周期相同的情况,由标准协议预先规定,或由核心网设备指示终端设备各候选基站21发送同步帧的周期和源基站21发送同步帧的周期相同,也就是终端设备20能够知道各候选基站21发送同步帧的周期和源基站21发送同步帧的周期相同,并不知道各候选基站21发送同步帧的起始时刻与源基站21发送同步帧的起始时刻之间的间隔是否大于预设值,终端设备20则采用上述方式二接收候选基站21(1)发送的同步帧;而上述3的情况,无需标准协议规定,或是由核心网设备对终端设备20进行指示,也就是终端设备20无法知道各候选基站21发送同步帧的周期是否与源基站21发送同步帧的周期相同,终端设备20则采用上述方式三接收候选基站21(1)发送的同步帧。
在本申请实施例中,N个候选基站21中每个候选基站21发送的同步帧除了可以用于供终端设备20进行测量,以从N个候选服务小区中选择一个目标服务小区,同时N个基站21中每个候选基站21发送的同步帧还可以用于供终端设备20的WUR接口201与候选基站21之间的同步。
本申请实施例中,终端设备20通过WUR接口201接收N个候选基站中每个候选基站21发送的同步帧,而正如上面所述通过WUR接口201接收的信号都是采用较为简单的调制方式,终端设备20在通过WUR接口201接收到N个候选基站21中每个候选基站21分别发送的同步帧后,能够通过较为简单的检测方法,例如能量检测法判断接收到的同步帧承载的信息,有能量为1,无能量为0。而不会像通过主通信接口202接收的信号,在候选基站21侧已采用较为复杂的调制、信道编码方式,例如OFDM调制、Turbo、低密度奇偶校验(Low Density Parity Check,LDPC)或Polar等信道编码方式,这样在终端设备20侧需执行快速傅里叶变换(Fast Fourier Transform,FFT)、前向纠错码(Forward Error Correction,FEC)等复杂信号处理操作,而这些复杂信号处理操作需要耗费大量能量。因此,相较于通过主通信接口202接收信号,通过WUR201接口接收信号能够降低终端设备20的功耗。
进一步,终端设备20通过对N个候选基站21中每个候选基站21发送的第一同步帧进行测量,获得N个测量结果,然后根据N个测量结果从N个基站21所在的N个服务小区中选择一个目标服务小区后,终端设备能够直接从目标服务小区的网络设备发送的同步帧中得到目标服务小区所属TA的标识信息,进而根据目标服务小区所属TA的标识信息确定目标服务小区所属TA的TAI,省去了终端设备在进行小区重选之后还需要通过主通信接口接收目标服务小区的***消息,对***消息进行复杂解析的步骤,从而能够进一步降低终端设备的功耗。
在本申请实施例中,上述终端设备20接收N个候选基站21中每个候选基站21分别发送同步帧的过程适用于N个候选基站21中每个候选基站21分别采用相同频段载波发送同步帧的情况,在该情况下,终端设备20在接收N个候选基站21中每个候选基站21分别发送的同步帧时不需要进行频域切换。而当N个候选基站21中每个候选基站21分别采用不同频段载波发送同步帧的情况,标准协议会定义N个候选基站21中每个候选基站21可能用来发送同步帧的各频段载波的集合,在该情况下终端设备20可以轮流侦听每个可能发送同步帧的频段载波,也就是针对每个频段载波利用上述一、二、三3种方式中的一种方式进行帧听接收。例如标准协议定义N个候选基站21中每个候选基站21可能用来发送同步帧的各频段载波的集合中包括2个频段载波,以f1和f2为例,针对f1可以采用上述一、二、三3种方式中的一种方式进行帧听接收,针对f2可以采用上述一、二、三3种方式中的一种方式进行帧听接收。
S43:终端设备20从目标基站21发送的同步帧中获取目标服务小区所属TA的标识信息。
在本申请实施例中,若目标基站21发送的同步帧中包括的目标服务小区所属TA的标识信息是TAI,终端设备20则能够直接获取目标服务小区所属TA的TAI;若目标基站21发送的同步帧中包括的目标服务小区所属TA的标识信息是TAI的部分信息TAC,终端设备20根据已知的PLMN,与TAC确定目标小区所属TA的TAI;若目标候选21发送的同步帧中包括的目标服务小区所属TA的标识信息是目标服务小区所属TA的TAI的指示信息,终端设备20根据指示信息与TAI之间的对应关系,获取目标服务小区所属TA的TAI。
S44:终端设备20根据目标服务小区所属TA的标识信息确定是否需要进行TA更新,在不需要时,保持所述终端设备的主通信接口处于关闭状态。
在本申请实施例中,终端设备20重选到的目标服务小区以基站21(1)所在的小区为例,终端设备20则从候选基站21(1),也就是目标基站21(1)发送的同步帧2中获取目标服务小区所属TA的标识信息,以TAI为例。终端设备20会确定目标服务小区所属TA的TAI是否在终端设备20存储的TA列表中。若在TA列表中,则不需要进行TA更新,终端设备20可以保持主通信接口202处于关闭状态,以降低终端设备的功耗。若不在TA列表中,则需要进行TA更新,这时终端设备20可以激活主通信接口202,以通过主通信接口202与目标基站21(1)进行TA更新,终端设备20通过主通信接口202与目标基站21(1)进行TA更新的过程请参见图6。
1、终端设备20向目标基站21(1)发起随机接入(RA Preamble);
2、目标基站21(1)在检测到终端设备20发起的随机接入后,向终端设备20发送随机接入响应消息(RA Response);
3、终端设备20接收到RA Response后,向目标基站21(1)发送RRC连接请求消息(RRC Connection Request);
4、目标基站21(1)向终端设备20发送RRC连接建立消息(RRC Connection Setup);
5、终端设备20根据RRC连接建立完成信令无线承载(Signaling RadioBearers1,SRB1)和无线资源配置,向目标基站21(1)发送RRC连接建立完成消息(RRC Connection Setup),该消息包括跟踪区更新(Tracking Area Update,TAU)请求(TAU Request) 消息;
6、目标基站21(1)向演进的分组核心网(Evolved Packet Core,EPC)发送初始UE消息(Initial UE Message),Initial UE Message中包括TAU Request;
7、终端设备20和EPC之间完成鉴权/安全(Authentication/Security)过程;
8、EPC完成终端设备20的上下文更新;
9、EPC向目标基站21(1)发送下行非接入层传输消息(Downlink NAS Transport);该消息中包括TAU接受消息(TAU Accept);
10、目标基站21(1)向终端设备20发送下行信息传输消息(DL Information Transfer);该消息中包括TAU Accept;
11、终端设备20向目标基站21(1)发送上行信息传输消息(UL Information Transfer);该消息中包括TAU完成消息(TAU Complete);
12、目标基站21(1)向EPC发送上行非接入层传输消息(Uplink NAS Transport);该消息中包括TAU Complete;
13、终端设备20向EPC发送第一上行数据(First Uplink Data);
14、EPC完成承载更新;
15、EPC向终端设备20发送第一下行数据(First Downlink Data);
16、终端设备20再次进入空闲模式。
在本申请实施例中,N个候选基站21中每个候选基站21分别发送的同步帧中还可以包括该候选基站21所在服务小区的小区标识信息。省去了在终端设备20完成小区重选后,通过主通信接口202接收目标服务小区的***消息,以从***消息中获取目标小区的候选基站21所在服务小区的小区标识信息的过程,从而可以降低终端设备的功耗。
本申请实施例中的候选基站21所在服务小区的小区标识信息可以是是物理层小区标识(Physical-lay Cell Identity,PCI),也可以是PCI中的部分信息,或者是用于指示PCI的指示信息,终端设备20获取该指示信息后,可以根据指示信息与PCI之间的对应关系,确定该指示信息所指示的PCI。
在此需要说明的是,N个候选基站21中每个候选基站21分别发送的同步帧中可以仅包括该候选基站21所在小区的小区标识信息,也就说是N个候选基站21中每个候选基站21包括该候选基站21所在小区的所属TA的标识信息和/或该候选基站21所在小区的小区标识信息。
请参见图7,本申请实施例提供了一种获取小区重选服务小区的跟踪区TA的标识信息的方法及设备,该方法适用于上述如图2所示的终端设备20和基站21。
S71:基站21生成同步帧,同步帧中包括基站21所在小区所属跟踪区TA的标识信息;
所述同步帧中包括基站21所在小区所属跟踪区TA的标识信息同实施例四中的基站21所在小区所属跟踪区TA的标识信息,在此不再赘述。
S72:基站21发送同步帧。
在本申请实施例中,基站21生成同步帧后会以一定预设周期广播同步帧,而终端设备20只有在确定目标服务小区后,才接收基站21发送的同步帧。
S73:终端设备20确定目标服务小区后,通过唤醒射频WUR接口201接收目标基站21发送的同步帧;
在本申请实施例中,目标基站21是终端设备20进行小区重选后的目标服务小区,即终端设备20经过小区重选确定的新服务小区的基站。
在本申请实施例中,终端设备20确定目标服务小区的方式,例如通过主通信接口202接收N个候选服务小区的N个基站21中每个基站21分别发送的参考信号,其中,N为大于或等于1的整数。终端设备20分别对每个基站21发送的参考信号进行测量,并根据获得的N个测量结果从N个服务候选小区中选择一个目标服务小区。在确定目标服务小区后,通过WUR接口接收目标基站21发送的同步帧。在此,将N个候选小区的N个基站21称为N个候选基站21,将目标服务小区的基站21称为目标基站21,将终端设备在进行小区重选时所在服务小区的基站称为源基站21,源基站21所在的服务小区称为源服务小区。且终端设备20对应有唤醒窗口,唤醒窗口是终端设备20在源基站21所在的源服务小区内确定的,唤醒窗口包括唤醒窗口的起始时刻和唤醒窗口的时长,将终端设备20在源服务小区中的唤醒窗口的时长称为第一窗口时长。
在本申请实施例中,目标基站21发送同步帧的周期与源基站21发送的同步帧的周期可以相同,也可以不同;目标基站21发送同步帧的起始时刻与源基站21发送的同步帧的起始时刻可以相同,也可以不同。下面分别介绍。
1、目标基站21发送同步帧的周期与源基站21发送同步帧的周期相同,目标基站21发送同步帧的起始时刻与源基站21发送同步帧的起始时刻之间的间隔小于或等于预设值,其中,预设值为终端设备20的WUR接口201的第一窗口时长。
2、目标基站21发送同步帧的周期与源基站21发送同步帧的周期相同,目标基站21发送同步帧的起始时刻与源基站21发送同步帧的起始时刻之间的间隔大于预设值,其中,预设值为终端设备20的WUR接口201的第一窗口时长。
3、目标基站21发送同步帧的周期与源基站21发送同步帧的周期不同,目标基站21发送同步帧的起始时刻与源基站21发送同步帧的起始时刻之间的间隔大于预设值,其中,预设值为终端设备20的WUR接口201的第一窗口时长。
在此,需要说明的是,上述1中目标基站21发送同步帧1的周期和源基站21发送同步帧的周期相同、目标基站21(1)发送同步帧1的起始时刻和源基站21发送同步帧的起始时刻之间的间隔小于或等于预设值的情况,由标准协议预先规定,或由核心网设备指示终端设备20各目标基站21发送同步帧的周期与源基站21发送同步帧的周期相同、发送同步帧的起始时刻之间的间隔小于预设值,也就是终端设备20能够知道目标基站21发送同步帧的周期与源基站21发送同步帧的周期相同,且发送同步帧的起始时刻之间的间隔小于或等于预设值,终端设备20则采用上述方式一接收目标基站21发送的同步帧;上述2中目标基站21发送同步帧1的周期和源基站21发送同步帧2的周期相同的情况,由标准协议预先规定,或由核心网设备指示终端设备目标选基站21发送同步帧的周期和源基站21发送同步帧的周期相同,也就是终端设备20能够知道目标基站21发送同步帧的周期和源基站21发送同步帧的周期相同,并不知道目标基站21发送同步帧的起始时刻与源基站21发送同步帧的起始时刻之间的间隔是否大于预设值,终端设备20则采用上述方式二接收目标基站21发送的同步帧;而上述3的情况,无需标准协议规定,或是由核心网设备对终端设备20进行指示,也就是终端设备20无法知道目标基站21发送同步帧的周期是否与源基站21发送同步帧的周期相同,终端设备20则采用上述方式 三接收目标基站21发送的同步帧。
基于实施例四中的描述,终端设备20的WUR接口201可以持续处于激活状态,也可以以一定时间间隔激活。其中,在终端设备20的WUR接口201持续处于激活状态时,无论目标基站21以哪种发送方式发送同步帧,终端设备20都能够在第一窗口时长内,通过WUR接口201接收目标基站21发送的同步帧。而在终端设备20的WUR接口201以一定时间间隔激活的情况下,在目标基站21采用不同的发送方式时,终端设备20需要要采用不同的接收方式,下面分别进行介绍。
一、针对方式1,由于目标基站21发送同步帧的周期与源基站21发送同步帧的周期相同,目标基站21发送同步帧的起始时刻与源基站21发送同步帧的起始时刻之间的间隔小于第一窗口时长,这样,终端设备20在第一窗口时长内,通过WUR接口201总能够接收目标基站21发送的同步帧。具体举例同实施例四的一中的举例,在此不再赘述。
二、针对方式2,由于目标基站21发送同步帧的周期与源基站21发送同步帧的周期相同,目标基站21发送同步帧的起始时刻与源基站21发送同步帧的起始时刻之间的间隔大于第一窗口时长,这样,终端设备20在第一窗口时长内,可能无法接收目标基站21发送的同步帧。
在这种情况下,终端设备20可以控制WUR接口201处于激活状态的时长为第一时长,第一时长大于第一窗口时长,以在第一时长内通过WUR接口201接收目标基站21发送的第一同步帧,其中,第一同步帧可以是目标基站21发送的第一个同步帧、目标基站21发送的第一个同步帧和第二个同步帧,在此不作具体限制。在本申请实施例中,在终端设备20接收目标基站21发送的第一同步帧后,根据接收目标基站21发送的第一同步帧的时刻,调整WUR接口201处于激活状态的时长为小于第一时长的第二时长,以在第二时长内接收目标基站21发送的后续同步帧,第二时长为终端设备20选定目标服务小区作为当前服务小区后,其WUR接口201在当前服务小区中的唤醒窗口的时长。当然,终端设备20还可以根据接收到当前服务小区的第一同步帧的时刻,调整其WUR接口201在当前服务小区中的唤醒窗口的起始时刻。具体举例同实施例四的二中的举例,在此不再赘述。
三、针对方式3,由于目标基站21发送同步帧的周期与源基站21发送同步帧的周期不同,目标基站21发送同步帧的起始时刻与源基站21发送同步帧的起始时刻之间的间隔大于第一窗口时长,这样,终端设备20在第一窗口时长内,可能无法接收目标基站21发送的同步帧。
在该方式三中,由于终端设备20事先无法获知目标基站21发送同步帧的周期,因此,为保证能够正确接收目标基站21发送的后续同步帧,终端设备20需要确定出目标基站21发送同步帧的周期,具体实现过程包括但不限于以下两种,下面分别进行介绍。
作为一种示例,终端设备20根据接收目标基站21发送的第一同步帧的时刻,或根据接收目标基站21发送的第一同步帧的时刻及接收目标基站21发送的第二同步帧的时刻确定目标基站21发送同步帧的周期,进而根据计算出的周期及接收目标基站21发送的后续同步帧的时刻,调整WUR接口201处于激活状态的时长为小于第三时长的第四时长,在第四时长内接收目标基站21发送的后续同步帧,第四时长即为终端设备20选定目标服务小区作为当前服务小区后,其WUR接口201在当前服务小区中的唤醒窗口 的时长。当然,终端设备20还可以根据接收到当前服务小区的第一同步帧的时刻,或根据接收到当前服务小区的第一同步帧和第二同步帧的时刻以及当前服务小区的同步帧发送周期,调整其WUR接口201在当前服务小区中的唤醒窗口的起始时刻。具体举例同实施例四的三中的举例,在此不再赘述。
作为另一示例,目标基站21发送的同步帧中还包括目标基站21发送的同步帧的周期信息,这样终端设备20在接收到目标基站21发送的第一同步帧后,便能够根据接收目标基站21发送的第一同步帧的时刻确定目标基站21发送的下一同步帧的达到时刻,并根据该时刻动态调整WUR接口201处于激活状态的时长为小于第五时长的第六时长,以在第六时长内接收目标基站21发送的后续同步帧,第六时长即为终端设备20选定目标服务小区作为当前服务小区后,其WUR接口201在当前服务小区中的唤醒窗口的时长。当然,终端设备20还可以根据接收到当前服务小区的第一同步帧的时刻,调整其WUR接口201在当前服务小区中的唤醒窗口的起始时刻。具体举例同实施例四的三中的举例,在此不再赘述。
S74:终端设备20从所述同步帧中获取目标服务小区所属TA的标识信息;
S75:终端设备20根据目标服务小区所属TA的标识信息确定是否需要进行TA更新,在不需要时,保持所述终端设备的主通信接口处于关闭状态。
在本申请实施例中,在终端设备20从同步帧中获取目标服务小区所属TA的标识信息之后,终端设备根据目标服务小区所属TA的标识信息确定是否进行TA更新,TA更新的具体过程同图4所示的实施例中TA更新的过程,在此不再赘述。
本申请实施例提供一种数据传输方法,具体描述如下:
在如图12所示的场景中,基站(一种网络设备)可与用户设备(User Equpiment,UE)(本文中也称之为终端设备)进行数据传输。基站能够发送唤醒信号,如唤醒帧和同步帧;UE配置了WUR模块和主通信模块,并且可通过WUR模块接收基站发送的唤醒信号。从产品形态上来看,发送唤醒信号的可以是基站,也可以是UE。图5C是基站发送唤醒信号的例子。本发明涉及的场景是如图13所示的IDLE态UE移动至当前服务小区边缘发生小区重选的场景,每个小区的情况则如图12所示,即每个小区的基站都可以发送唤醒信号。
假设UE配置了唤醒射频(Wake-up Radio,WUR)接口,当UE处于空闲(IDLE)态时,UE可关闭主通信接口(如LTE/NR接口)而开启WUR接口。WUR可以持续处于激活状态,也可以工作于如图3所示的间歇性工作模式。
在UE引入WUR接口之后,基站除了发送唤醒帧,还可发送同步帧,同步帧也是唤醒信号的一种,可被UE的WUR接口接收。WUR同步帧又可称为WUR信标(Beacon)帧,简称同步帧或信标帧。同步帧的作用包括下述作用中的一个或多个:
使得UE在主通信接口关闭、WUR接口开启情况下,可基于同步帧执行测量过程。例如,UE基于同步帧的测量确定是否需要执行小区重选。这样,UE就无需打开主通信接通去接收PSS/SSS以及小区参考信号,从而达到省电的目的。
若UE的WUR工作于间歇性工作模式,UE需基于同步帧的接收与基站保持定时同步,从而使得UE的唤醒窗口不至于由于时钟漂移过大而错过可能到来的唤醒帧。
假设UE基于接收原服务小区的同步帧,决定进行小区重选,并通过接收目标小 区同步帧确定了新服务小区。此时,UE可打开主通信接口并通过新服务小区同步信号和***消息的接收确定新服务小区标识(需通过PSS/SSS以及MIB的接收来确定新服务小区标识),从而完成小区重选。然后,UE可打开主通信接口接收新服务小区的***消息(如SIB1)来确定新服务小区的TAI,以便决定是否需要执行TA更新过程。上述过程中,UE需要打开主通信接口进行PSS/SSS以及***消息(MIB&SIB1)的接收,显然比较耗电。
基于上述原因,本发明提出降低UE功耗的解决方案的基本思想是:基站发送WUR同步帧,其中携带基站所属的TA标识信息。这样,当UE进行小区重选之后,无需打开主通信接口接收新服务小区的SIB1以获取新服务小区的TAI,而只需根据收到的新服务小区的WUR同步帧,UE即可确定是否移出自身保存的TA List所包含的小区,进而确定是否需要打开主通信接口以执行TA更新过程。
本发明的方案使得IDLE态UE无需激活主通信接口即可完成小区重选和新服务小区所属TA的获取以及是否需执行TA更新过程的判定,从而使得UE更加省电。
基站发送的WUR同步帧中还可包含基站标识信息或小区标识信息。这样,UE在执行小区重选时,可以不必打开主通信接口去接收新服务小区的PSS/SSS以及MIB以获取新服务小区标识,而仅通过接收新服务小区的WUR同步帧,即可获得新服务小区的标识,从而完成小区重选。需要说明的是,基站发送的WUR同步帧中包括小区标识信息和TA标识信息,这两者是相互独立的,即WUR同步帧可包括小区标识信息和TA标识信息中的任何一个,或同时包括两个。
如图12所示,WUR Beacon即WUR同步帧,TA ID即发送WUR Beacon的小区所属的TA的TA标识信息,Cell ID即发送WUR Beacon的小区的小区标识信息。
这样,通过在WUR同步帧中携带TA标识信息和小区标识信息,IDLE态UE在移动过程中无需激活主通信接口即可完成小区重选,从而降低UE功耗。仅当UE根据新服务小区的WUR同步帧所携带的TA标识信息判断自身已经移出网络侧为自己配置的TA List所包括的小区时,才需要开启主通信接口执行TA更新过程。IDLE态UE通过新服务小区执行TA更新过程的信令交互流程如图4所示。该流程是现有3GPP标准的已有技术,故具体过程不再赘述。
上述TA标识信息可以是TAI,也可以是TAI的一部分,或者是基于TAI生成的其它可用于标识基站所属TA的信息。例如,TAI由PLMN和TAC构成,而PLMN用于标识网络服务运营商,考虑到同一地区中一个频段一般只会分配给一家运营商,故TA标识信息可以不包含PLMN,而仅包括TAC,以便降低TA标识信息长度,从而降低WUR同步帧的长度,节省开销。TA标识信息还可以是TAC的一部分,如TAC的低若干位。同理,小区标识信息可以是当前标准中的PCI(Physical-layer Cell Identity,物理层小区标识),也可以是PCI的一部分,或者是基于PCI生成的其它可用于标识基站或小区的信息。
每个小区的WUR同步帧是由基站规律性发送的。例如,由基站周期性发送WUR同步帧,发送周期可以由基站配置,或者,是标准预先定义的。对于前者,基站可通过RRC、***消息、MAC CE等上层信息,或通过DCI等物理层信令,对WUR同步帧的周期进行配置。基站还可配置发送WUR同步帧所使用的时间和/或频率资源,即 WUR同步帧的时域和/或频域资源分配。此外,基站还可配置发送WUR同步帧的时间起点,即发送第一个WUR同步帧的时刻。具体的,该时间起点可通过时间偏移来表示。例如,该时间偏移可以是第一个WUR同步帧与基站配置信息之间的时间间隔。
不同小区的WUR同步帧的发送周期可以相同或者不同。在不同小区的WUR同步帧发送周期相同的情况下,不同小区的WUR同步帧发送时间可能大致相同,或存在时间偏移。若UE的WUR处于持续激活状态,则UE总是能够通过WUR接收到其它小区的WUR同步帧,并基于接收到的同一小区的至少两个WUR同步帧判断该小区的WUR同步帧发送周期。但是,若UE采用如图3所示的间歇性激活模式,则不同情况下UE侦听其它小区的WUR同步帧的方法有所不同:
Case 1:假设不同小区的WUR同步帧发送周期相同,且不同小区的WUR同步帧发送时机也大致相同,如图5A所示;
不同小区的WUR同步帧发送时机可以完全相同,但这种情况下相邻小区的WUR同步帧容易相互干扰。因此,可将不同小区的WUR同步帧发送时机配置为大致相同。例如,均位于同一子帧,但占据不同mini-slot。具体来说,“大致相同”是指相邻小区的WUR同步帧发送时间之间的偏移不超过UE的唤醒窗口时长。这一点可通过基站之间的协调实现。由于相邻小区发送WUR同步帧的时机大致相同,故UE在自身的唤醒窗口中即可接收到其它小区的WUR同步帧,基于这些WUR同步帧的测量确定新服务小区并完成小区重选。
Case 2:假设不同小区的WUR同步帧发送周期相同,但不同小区的WUR同步帧发送时机之间存在较大偏移,如图5B所示;
这里的“较大偏移”是指相邻小区的WUR同步帧发送时间之间的偏移超过UE的唤醒窗口时长。这种情况下,当UE发现原服务小区信号较弱而需要执行小区重选时,在唤醒窗口中并不能听到其他小区的WUR同步帧。此时,UE可将自己的WUR接口保持激活状态一段时间(不小于WUR同步帧的发送周期),以便接收其它小区的WUR同步帧,进而根据其他小区WUR同步帧的测量确定新服务小区。由于不同小区的WUR同步帧的发送周期相同,故UE基于接收到的新服务小区的一个WUR同步帧,即可确定后续WUR同步帧的发送时刻。
Case 3:假设不同小区的WUR同步帧发送周期不同,且不同小区的WUR同步帧发送时机之间存在较大偏移,如图5C所示;
“较大偏移”的定义同Case 2。这种情况下,类似Case 2,UE也需要将自己的WUR接口保持激活状态一段时间,以便接收其它小区的WUR同步帧,从而完成小区重选。但是,由于不同小区的WUR同步帧发送周期不同,而UE并不知道新服务小区的WUR同步帧发送周期,故此时有两种方法可以使UE获得新服务小区的WUR同步帧发送周期。一种方法是,UE的WUR接口保持激活状态一段较长时间,直至接收到至少两个来自新服务小区的WUR同步帧,UE基于相邻两个WUR同步帧之间的距离即可获得新服务小区的发送周期,进而获的后续同步帧的发送时间;另一种方法是,基站发送的WUR同步帧中携带自身的WUR同步帧发送周期,这样,UE接收到新服务小区的一个WUR同步帧即可根据其携带的发送周期确定后续同步帧的发送时间。第二种方法使得UE的WUR接口不必长时间保持激活状态(收到新服务小区的一个WUR同步 帧即可),但会造成WUR同步帧变长,指示开销变大。
若标准预定义不同小区WUR同步帧发送周期相同且发送时机大致相同,或网络侧指示了该信息,则UE采用Case 1的方法来获取其他小区的WUR同步帧;若标准预定义不同小区WUR同步帧发送周期相同或网络侧指示了该信息,但UE不确定不同小区的发送时间是否大致相同,则UE采用Case 2的方法来获取其他小区的WUR同步帧;若UE对不同小区WUR同步帧发送周期是否相同以及发送时机是否大致相同均不能确定,则UE采用Case 3的方法来获取其他小区的WUR同步帧。
上述获取其他小区WUR同步帧的方法适用于不同小区采用相同载频发送WUR同步帧的情况,即UE在接收WUR同步帧时无需进行频域切换。若不同小区发送WUR同步帧的载频不同,但标准预定义了可能用来发送WUR同步帧的载频的集合,则UE可轮流侦听每个可能发送WUR同步帧的潜在载频(即在每个潜在载频上驻留一段时间),并根据上述三种情况(Case 1~Case 3)在每个潜在载频上执行对应操作,以接收可能存在的邻区WUR同步帧及相关配置信息(WUR同步帧的发送周期及时间偏移等)。
下面结合附图介绍本申请实施例提供的设备。
图8示出了一种终端设备800的结构示意图。该终端设备800可以包括接收单元801和获取单元802,其中,接收单元801可以用于执行图4所示的实施例中的S42,和/或图7所示的实施例中的S73。获取单元702可以用于执行图4所示的实施例中的S43,和/或图7所示的实施例中的S74。其中,上述方法实施例涉及的各步骤的所有相关内容均和可以援引到对应功能模块的功能描述,在此不再赘述。
图9示出了一种网络设备900的结构示意图。该网络设备900可以包括生成单元901和发送单元902,其中,生成单元901可以用于执行图4所示的实施例中的S41,和/或图7所示的实施例中的S71。发送单元902可以用于执行图4所示的实施例中的S42,和/或图7所示的实施例中的S72。其中,上述方法实施例涉及的各步骤的所有相关内容均可以援引到对应功能模块的功能描述,在此不再赘述。
图10示出了一种终端设备1000的结构示意图。该终端设备1000可以包括唤醒射频WUR接口1001、处理器1002,WUR接口1001耦合至处理器1002。其中,处理器1002可以是中央处理器(CPU),或特定应用集成电路(Application Specific Integrated Circuit,ASIC),可以是一个或多个用于控制程序执行的集成电路,可以是基带芯片,等等。
终端设备1000还可以包括存储器1003和主通信接口1004,存储器1003和主通信接口1004分别耦合至处理器1002。存储器的数量可以是一个或多个,存储器可以是只读存储器(Read only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)或磁盘存储器,等等。
通过对处理器1002进行设计编程,将前述的获取小区重选目标服务小区的跟踪区TA的标识信息的方法所对应的代码固化到芯片内,从而使芯片在运行时能够执行前述图4或图7所示的实施例提供的获取小区重选目标服务小区的跟踪区TA的标识信息的方法,如何对处理器1002进行设计编程为本领域技术人员公知的技术,这里不再赘述。
图11示出了一种网络设备1100的结构示意图。该网络设备1100可以包括处理器1101和发送器1102,发送器1102耦合至处理器1101。其中,处理器1101可以是中央处理器(CPU),或特定应用集成电路(Application Specific Integrated Circuit,ASIC),可以是一个或多个用于控制程序执行的集成电路,可以是基带芯片,等等。发送器1102可以作为主通信接口用于收发主通信接口信号,也可以作为WUR接口用于发送唤醒信号。
网络设备1100还可以包括存储器1103,存储器1103耦合至处理器1101。存储器的数量可以是一个或多个,存储器可以是只读存储器(Read only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)或磁盘存储器,等等。
通过对处理器1101进行设计编程,将前述的获取小区重选目标服务小区的跟踪区TA的标识信息的方法所对应的代码固化到芯片内,从而使芯片在运行时能够执行前述图4或图7所示的实施例提供的获取小区重选目标服务小区的跟踪区TA的标识信息的方法,如何对处理器1101进行设计编程为本领域技术人员公知的技术,这里不再赘述。
本申请实施例还提供一种计算机存储介质,该存储介质可以包括存储器,该存储器可存储有程序,该程序执行时包括如前的图4或图7所示的方法实施例中记载的终端设备所执行的全部步骤、或网络设备所执行的全部步骤。
本申请实施例还提供一种计算机程序产品,该程序产品在被计算机调用执行时,可以使得计算机执行图4或图7所示的方法实施例提供所述的方法。
本申请实施例还提供一种芯片***,该芯片***包括处理器,用于支持终端设备或网络设备实现图4或图7所示的实施例提供所述的方法,例如生成或处理图4或图7所示的实施例提供的方法中所涉及的数据和/或信息。该芯片***还包括存储器,所述存储器用于保存终端设备或网络设备必要的程序指令和数据,该芯片***中的处理器可以调用该芯片***中的存储器存储的程序指令和数据,以使该芯片***可以实现上述终端设备或网络设备能够实现功能。该芯片***,可以由芯片构成,也可以包含芯片和其它分立器件。
本申请实施例还提供一种通信***,包括图10所示的实施例提供的终端设备1000和图11所示的实施例提供的网络设备1100。
本发明涉及的网元包括基站(如gNB,generation Node B,即5G NR标准中所指的基站)和用户终端UE。
参阅图14所示,基站1400包括:处理器1401、存储器1402、收发器1403以及总线1404。其中,收发器1403作为主通信接口用于收发主通信接口信号(例如,LTE/NR信号),还作为WUR接口用于发送唤醒信号。其中,处理器1401、存储器1402和收发器1403通过总线1404相互连接。其中,总线1404可以是外设部件互连标准(英文:Peripheral Component Interconnect,简称:PCI)总线或扩展工业标准结构(英文:Extended Industry Standard Architecture,简称:EISA)总线等。上述总线1404可以分为地址总线、数据总线、控制总线等。为便于表示,图14中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。在另外一些实施例中,图14所示的基站1400包括收发器1403和发射器1405,其中,收发器1403作为主通信接口用于收发主通信 接口信号(例如,LTE/NR信号),发射器1405作为WUR接口用于发送唤醒信号。
本发明实施例还提供一种非易失性存储介质,该非易失性存储介质中存储有一个或多个程序代码,当基站1400的处理器1401执行该程序代码时,该基站1400执行本发明任一方法实施例中基站执行的相关方法步骤。
其中,本发明实施例提供的基站1400能执行本发明任一方法实施例中基站执行的相关方法步骤,其各个模块或单元的详细描述以及各个模块或单元执行本发明任一方法实施例中基站执行的相关方法步骤后所带来的技术效果可以参考本发明方法实施例中的相关描述,此处不再赘述。
参阅图15所示,UE 1500包括:处理器1501、存储器1502、收发器1503、接收器1505以及总线1504。其中,收发器1503作为主通信接口用于收发主通信接口信号(例如,LTE/NR信号),接收器1505还作为WUR接口用于接收唤醒信号。其中,处理器1501、存储器1502和收发器1503通过总线1504相互连接。其中,总线1504可以是PCI总线或EISA总线等。总线1504可以分为地址总线、数据总线、控制总线等。为便于表示,图15中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。
本发明实施例还提供一种非易失性存储介质,该非易失性存储介质中存储有一个或多个程序代码,当UE 1500的处理器1501执行该程序代码时,UE 1500执行本发明任一方法实施例中UE执行的相关方法步骤。
其中,本发明实施例提供的UE 1500中各个模块的详细描述以及各个模块执行本发明任一方法实施例中UE执行的相关方法步骤后所带来的技术效果可以参考本发明方法实施例中的相关描述,此处不再赘述。
本申请实施例提供了一种网络设备,该网络设备具有实现上述各方法实施例中网络设备的行为的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能中各个子功能相对应的模块。可选的,该网络设备可以是基站。
本申请实施例提供了一种终端设备,该终端设备具有实现上述各方法实施例中终端设备的行为的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能中各个子功能相对应的模块。可选的,该终端设备可以是用户设备。
本申请实施例还提供了一种通信***,该***包括上述各实施例所述的网络设备和终端设备。
本申请实施例还提供了一种计算机存储介质,用于储存为上述网络设备所用的计算机软件指令,其包含用于执行上述各实施例中网络设备所实现的功能所设计的程序。
本申请实施例还提供了一种计算机存储介质,用于储存为上述终端设备所用的计算机软件指令,其包含用于执行上述各实施例中终端设备所实现的功能所设计的程序。
本发明实施例还提供了一种计算机可读存储介质,其上存储有计算机程序,该计算机程序被计算机执行时实现上述方法实施例中与终端设备相关的方法流程。具体地,该计算机可以为上述终端设备。
本发明实施例还提供了一种计算机可读存储介质,其上存储有计算机程序,该计 算机程序被计算机执行时实现上述方法实施例中与网络设备相关的方法流程。具体地,该计算机可以为上述网络设备。
应理解,本发明实施例中提及的处理器可以是中央处理单元(Central Processing Unit,CPU),还可以是其他通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
还应理解,本发明实施例中提及的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)。
需要说明的是,当处理器为通用处理器、DSP、ASIC、FPGA或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件时,存储器(存储模块)集成在处理器中。
本领域内的技术人员应明白,本申请的实施例可提供为方法、***、或计算机程序产品。因此,本申请可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本申请可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本申请是参照根据本申请的方法、设备(***)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的精神和范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。
应注意,本文描述的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
还应理解,本文中涉及的第一、第二以及各种数字编号仅为描述方便进行的区分,并不用来限制本申请的范围。
应理解,在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本发明实施例的实施过程构成任何限定。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的***、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的***、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个***,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光 盘等各种可以存储程序代码的介质。
本发明各方法实施例之间相关部分可以相互参考;各装置实施例所提供的装置用于执行对应的方法实施例所提供的方法,故各装置实施例可以参考相关的方法实施例中的相关部分进行理解。
本发明各装置实施例中给出的装置结构图仅示出了对应的装置的简化设计。在实际应用中,该装置可以包含任意数量的发射器,接收器,处理器,存储器等,以实现本发明各装置实施例中该装置所执行的功能或操作,而所有可以实现本申请的装置都在本申请的保护范围之内。
本发明各实施例中提供的消息/帧/指示信息、模块或单元等的名称仅为示例,可以使用其他名称,只要消息/帧/指示信息、模块或单元等的作用相同即可。
在本发明实施例中使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本发明。在本发明实施例和所附权利要求书中所使用的单数形式的“一种”、“所述”和“该”也旨在包括多数形式,除非上下文清楚地表示其他含义。
取决于语境,如在此所使用的词语“如果”或“若”可以被解释成为“在……时”或“当……时”或“响应于确定”或“响应于检测”。类似地,取决于语境,短语“如果确定”或“如果检测(陈述的条件或事件)”可以被解释成为“当确定时”或“响应于确定”或“当检测(陈述的条件或事件)时”或“响应于检测(陈述的条件或事件)”。
本领域普通技术人员可以理解实现上述实施例方法中的全部或部分步骤是可以通过程序来指令相关硬件来完成,所述的程序可以存储于一个设备的可读存储介质中,该程序在执行时,包括上述全部或部分步骤,所述的存储介质,如:FLASH、EEPROM等。
以上所述的具体实施方式,对本发明的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,不同的实施例可以进行组合,以上所述仅为本发明的具体实施方式而已,并不用于限定本发明的保护范围,凡在本发明的精神和原则之内,所做的任何组合、修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (21)

  1. 一种获取小区重选目标服务小区的跟踪区TA的标识信息的方法,其特征在于,包括:
    终端设备获取通过唤醒射频WUR接口接收的目标服务小区的网络设备发送的同步帧,其中,所述同步帧中包括所述目标服务小区所属TA的标识信息,所述目标服务小区为所述终端设备进行小区重选后所在的服务小区;
    所述终端设备从所述同步帧中获取所述目标服务小区所属TA的标识信息;
    所述终端设备根据所述目标服务小区所属TA的标识信息确定是否需要进行TA更新,在不需要时,保持所述终端设备的主通信接口处于关闭状态。
  2. 根据权利要求1所述的方法,其特征在于,在终端设备获取通过唤醒射频WUR接口接收的目标服务小区的网络设备发送的同步帧之前,所述方法还包括:
    所述终端设备通过所述WUR接口接收N个候选服务小区的N个网络设备中每个网络设备分别发送的同步帧,其中,所述候选服务小区为所述N个候选服务小区中的任意一个,N为大于或等于1的整数;
    所述终端设备分别对所述每个网络设备发送的第一同步帧进行测量,获得N个测量结果;
    所述终端设备根据所述N个测量结果,从所述N个候选服务小区中确定出所述目标服务小区,并记录所述目标服务小区作为当前服务小区。
  3. 根据权利要求2所述的方法,其特征在于,所述WUR接口对应有所述终端设备在源服务小区内确定的唤醒窗口,所述唤醒窗口为所述WUR接口处于激活状态的时间窗口,所述唤醒窗口的窗口时长为第一窗口时长;
    所述终端设备通过所述WUR接口接收所述N个候选服务小区的N个网络设备中每个网络设备分别发送的同步帧,包括:
    所述终端设备在所述第一窗口时长内,通过所述WUR接口接收所述N个网络设备中每个网络设备分别发送的同步帧;或
    所述终端设备在所述WUR接口处于所述激活状态的第一时长内,通过所述WUR接口接收所述N个网络设备中每个网络设备分别发送的第一同步帧;并在确定出所述目标服务小区后,根据接收所述目标服务小区的网络设备发送第一同步帧的时刻,调整所述WUR接口处于所述激活状态的时长为第二时长,在所述第二时长内通过所述WUR接口接收所述目标服务小区的网络设备发送的后续同步帧,其中,所述第一时长大于所述第一窗口时长,所述第二时长小于所述第一时长;或
    所述终端设备在所述WUR接口处于所述激活状态的第三时长内,通过所述WUR接口接收所述N个网络设备中每个网络设备分别发送的第一同步帧;并在确定出所述目标服务小区后,根据接收所述目标服务小区的网络设备发送的第一同步帧的时刻或根据接收所述目标服务小区的网络设备发送的第一同步帧的时刻及接收所述目标服务小区的网络设备发送的第二同步帧的时刻,调整所述WUR接口处于所述激活状态的时长为第四时长,在所述第四时长内通过所述WUR接口接收所述目标服务小区的网络设备发送的后续同步帧,其中,所述第三时长大于所述第一窗口时长,所述第四时 长小于所述第三时长;或
    所述终端设备在所述WUR接口处于所述激活状态的第五时长内,通过所述WUR接口接收所述N个网络设备中每个网络设备分别发送的第一同步帧;并在确定出所述目标服务小区后,根据接收所述目标服务小区的网络设备发送的第一同步帧的时刻,以及所述第一同步帧中包括的所述目标服务小区的网络设备发送同步帧的周期,调整所述WUR接口处于所述激活状态的时长为第六时长,在所述第六时长内通过所述WUR接口接收所述目标服务小区的网络设备发送的后续同步帧,其中,所述第五时长大于所述第一窗口时长,所述第六时长小于所述第五时长。
  4. 根据权利要求1-3任一项所述的方法,其特征在于,所述终端设备根据所述目标服务小区所属TA的标识信息确定是否需要进行TA更新,在不需要时,保持所述终端设备的主通信接口处于关闭状态,包括:
    所述终端设备若确定所述目标服务小区所属TA的标识信息所指示的跟踪区标识TAI在所述终端设备存储的TA列表中,则保持所述主通信接口处于关闭状态。
  5. 根据权利要求1-4任一项所述的方法,其特征在于,所述同步帧中还包括所述目标服务小区的小区标识信息。
  6. 一种获取小区重选目标服务小区的跟踪区TA的标识信息的方法,其特征在于,包括:
    网络设备生成同步帧,所述同步帧中包括所述网络设备所在小区所属TA的标识信息;
    所述网络设备发送所述同步帧,以使终端设备能够通过唤醒射频WUR接口接收所述同步帧。
  7. 根据权利要求6所述的方法,其特征在于,所述网络设备发送所述同步帧,包括:
    所述网络设备按照预设周期发送所述同步帧。
  8. 根据权利要求7所述的方法,其特征在于,所述同步帧中还包括所述预设周期的时长信息。
  9. 根据权利要求6-8任一项所述的方法,其特征在于,所述同步帧还包括所述网络设备所在小区的小区标识信息。
  10. 一种终端设备,其特征在于,包括:
    唤醒射频WUR接口,用于接收或发送数据;
    主通信接口,用于接收或发送数据,所述主通信接口处于关闭状态;
    处理器,用于获取通过所述WUR接口接收的目标服务小区的网络设备发送的同步帧,所述同步帧中包括所述目标服务小区所属TA的标识信息,所述目标服务小区为所述终端设备进行小区重选后所在的服务小区;从所述同步帧中获取所述目标服务小区所属TA的标识信息;以及根据所述目标服务小区所属TA的标识信息确定是否需要进行TA更新,在不需要时,保持所述主通信接口处于所述关闭状态。
  11. 根据权利要求10所述的终端设备,其特征在于,所述处理器还用于:
    控制所述WUR接口接收所述N个候选服务小区的N个网络设备中每个网络设备分别发送的同步帧,其中,所述候选服务小区为所述N个候选服务小区中的任意一个, N为大于或等于1的整数;
    分别对所述WUR接口接收到的所述每个网络设备发送的第一同步帧进行测量,获得N个测量结果;
    根据所述N个测量结果,从所述N个候选服务小区中确定出目标服务小区,并记录所述目标服务小区作为当前服务小区。
  12. 根据权利要求11所述的终端设备,其特征在于,所述WUR接口对应有所述终端设备在源服务小区内确定的唤醒窗口,所述唤醒窗口为所述WUR接口处于激活状态的时间窗口,所述唤醒窗口的窗口时长为第一窗口时长;
    所述WUR接口在接收所述N个候选服务小区的N个网络设备中每个网络设备分别发送的同步帧时,具体用于:
    在所述WUR接口在所述第一窗口时长内,接收所述N个网络设备中每个网络设备分别发送的同步帧。
  13. 根据权利要求11所述的终端设备,其特征在于,所述WUR接口对应有所述终端设备在源网络设备的源服务小区内确定的唤醒窗口,所述唤醒窗口为所述WUR接口处于激活状态的时间窗口,所述唤醒窗口的窗口时长为第一窗口时长;
    所述WUR接口在接收所述N个候选服务小区的N个网络设备中每个网络设备分别发送的同步帧时,具体用于:在所述WUR接口处于所述激活状态的第一时长内,接收所述N个网络设备中每个网络设备分别发送的第一同步帧,其中,所述第一时长大于所述第一窗口时长;
    所述处理器,还用于在确定出所述目标服务小区后,根据接收所述目标服务小区的网络设备发送第一同步帧的时刻,调整所述WUR接口处于所述激活状态的时长为第二时长,其中,所述第二时长小于所述第一时长;
    所述WUR接口在接收N个网络设备中每个网络设备分别发送的同步帧时,具体还用于:在所述第二时长内接收所述终端设备重选到的目标服务小区的网络设备发送的后续同步帧。
  14. 根据权利要求11所述的终端设备,其特征在于,所述WUR接口对应有所述终端设备在源网络设备的源服务小区内确定的唤醒窗口,所述唤醒窗口为所述WUR接口处于激活状态的时间窗口,所述唤醒窗口的窗口时长为第一窗口时长;
    所述WUR接口在接收所述N个候选服务小区的N个网络设备中每个网络设备分别发送的同步帧时,具体用于:在所述WUR接口处于所述激活状态的第三时长内,接收所述N个网络设备中每个网络设备分别发送的第一同步帧,其中,所述第三时长大于所述第一窗口时长;
    所述处理器,还用于在确定出所述目标服务小区后,根据接收所述目标服务小区的网络设备发送的第一同步帧的时刻或根据接收所述目标服务小区的网络设备发送的第一同步帧的时刻及接收所述目标服务小区的网络设备发送的第二同步帧的时刻,调整所述WUR接口处于所述激活状态的时长为第四时长,其中,所述第四时长小于所述第三时长;
    所述WUR接口在接收N个网络设备中每个网络设备分别发送的同步帧时,具体还用于:在所述第四时长内接收所述终端设备重选到的目标服务小区的网络设备发送 的后续同步帧。
  15. 根据权利要求11所述的终端设备,其特征在于,所述WUR接口对应有所述终端设备在源网络设备的源服务小区内确定的唤醒窗口,所述唤醒窗口为所述WUR接口处于激活状态的时间窗口,所述唤醒窗口的窗口时长为第一窗口时长;
    所述WUR接口在接收所述N个候选服务小区的N个网络设备中每个网络设备分别发送的同步帧时,具体用于:在所述WUR接口处于所述激活状态的第五时长内,接收所述N个网络设备中每个网络设备分别发送的第一同步帧,其中,所述第五时长大于所述第一窗口时长;
    所述处理器,还用于在确定出所述目标服务小区后,根据接收所述目标服务小区的网络设备发送的第一同步帧的时刻和所述第一同步帧中包括的所述目标服务小区的网络设备发送同步帧周期,调整所述WUR接口处于所述激活状态的时长为第六时长,其中,所述第六时长小于所述第五时长;
    所述WUR接口在接收N个网络设备中每个网络设备分别发送的同步帧时,具体还用于:在所述第六时长内接收所述终端设备重选到的目标服务小区的网络设备发送的后续同步帧。
  16. 根据权利要求10-15任一项所述的终端设备,其特征在于,所述处理器在根据所述目标服务小区所属TA的标识信息确定是否需要进行TA更新,在不需要时,保持所述主通信接口处于所述关闭状态时,具体用于:
    若确定所述目标服务小区所属TA的标识信息所指示的跟踪区标识TAI在所述存储器存储的TA列表中时,则保持所述主通信接口处于所述关闭状态。
  17. 一种网络设备,其特征在于,包括:
    处理器,用于生成同步帧,所述同步帧中包括所述网络设备所在小区所属跟踪区TA的标识信息;
    发送器,用于发送所述同步帧,以使所述终端设备能够通过唤醒射频WUR接口接收所述同步帧。
  18. 根据权利要求17所述的网络设备,其特征在于,所述发送器发送所述同步帧时,具体用于:
    按照预设周期发送所述同步帧。
  19. 根据权利要求18所述的网络设备,其特征在于,所述同步帧中还包括所述预设周期的时长信息。
  20. 根据权利要求17-19任一项所述的网络设备,其特征在于,所述同步帧还包括所述网络设备所在小区的小区标识信息。
  21. 一种计算机存储介质,其特征在于,所述计算机存储介质存储有指令,当所述指令在计算机上运行时,使得所述计算机执行如权利要求1-9任一项所述的方法。
PCT/CN2018/098908 2017-08-10 2018-08-06 一种获取目标服务小区的跟踪区的标识信息的方法及设备 WO2019029467A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201710682675.2 2017-08-10
CN201710682675 2017-08-10
CN201710875251.8A CN109392050B (zh) 2017-08-10 2017-09-25 一种获取目标服务小区的跟踪区的标识信息的方法及设备
CN201710875251.8 2017-09-25

Publications (1)

Publication Number Publication Date
WO2019029467A1 true WO2019029467A1 (zh) 2019-02-14

Family

ID=65270883

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/098908 WO2019029467A1 (zh) 2017-08-10 2018-08-06 一种获取目标服务小区的跟踪区的标识信息的方法及设备

Country Status (1)

Country Link
WO (1) WO2019029467A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101415171A (zh) * 2007-10-19 2009-04-22 华为技术有限公司 一种进行位置更新的方法及装置
CN102124786A (zh) * 2008-08-18 2011-07-13 艾利森电话股份有限公司 发送小区标识信息的方法
US20140286312A1 (en) * 2011-11-14 2014-09-25 Samsung Electronics, Co., Ltd. Method and device of supporting group mobility
CN104080074A (zh) * 2013-03-27 2014-10-01 宏碁股份有限公司 用户设备和通信***及其管理跟踪区域标识列表的方法
CN104768194A (zh) * 2009-02-13 2015-07-08 三星电子株式会社 包括毫微微小区的无线通信***中的切换方法和装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101415171A (zh) * 2007-10-19 2009-04-22 华为技术有限公司 一种进行位置更新的方法及装置
CN102124786A (zh) * 2008-08-18 2011-07-13 艾利森电话股份有限公司 发送小区标识信息的方法
CN104768194A (zh) * 2009-02-13 2015-07-08 三星电子株式会社 包括毫微微小区的无线通信***中的切换方法和装置
US20140286312A1 (en) * 2011-11-14 2014-09-25 Samsung Electronics, Co., Ltd. Method and device of supporting group mobility
CN104080074A (zh) * 2013-03-27 2014-10-01 宏碁股份有限公司 用户设备和通信***及其管理跟踪区域标识列表的方法

Similar Documents

Publication Publication Date Title
CN109392050B (zh) 一种获取目标服务小区的跟踪区的标识信息的方法及设备
ES2873401T3 (es) Nodo de red y método en una red de telecomunicaciones inalámbrica
US10805814B2 (en) Signal measurement method and apparatus
US10165455B2 (en) Coordination for PBCH
WO2018227617A1 (zh) 信号发送方法、检测方法及其装置、通信***
US20150056982A1 (en) Methods and Network Nodes for Management of Resources
WO2014166032A1 (zh) 传输公共信号的方法及其装置
WO2021249001A1 (zh) 一种小区测量方法及装置
US20210168746A1 (en) Communication Method and Device
WO2019183905A1 (zh) 信号传输的方法、网络设备和终端设备
US11546044B2 (en) Wireless communication method, terminal device and network device
CN110121203B (zh) 通信方法和通信装置
WO2020186532A1 (zh) 无线通信方法、终端设备和网络设备
CN114679770B (zh) Pdcch的监听方法和设备
US20220217034A1 (en) Communication method and apparatus
WO2021051364A1 (zh) 一种通信方法、装置及设备
WO2014154184A1 (zh) 信号发送方法及设备
US20210243705A1 (en) Methods for Adapting Over-the-Air Synchronization to Radio Conditions
US20230354118A1 (en) Wireless communication method, terminal device and network device
WO2022061545A1 (zh) 一种通信方法和装置
CN116095794A (zh) 通信网络中终端设备的唤醒方法、装置及可读存储介质
WO2019029467A1 (zh) 一种获取目标服务小区的跟踪区的标识信息的方法及设备
CN115226118A (zh) 通信方法和装置
WO2020150877A1 (zh) 用于非授权频谱的通信方法和设备
WO2023284620A1 (zh) 通信的方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18844638

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18844638

Country of ref document: EP

Kind code of ref document: A1