WO2019029176A1 - 电机控制电路、电机***、电调及无人机 - Google Patents

电机控制电路、电机***、电调及无人机 Download PDF

Info

Publication number
WO2019029176A1
WO2019029176A1 PCT/CN2018/082221 CN2018082221W WO2019029176A1 WO 2019029176 A1 WO2019029176 A1 WO 2019029176A1 CN 2018082221 W CN2018082221 W CN 2018082221W WO 2019029176 A1 WO2019029176 A1 WO 2019029176A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
circuit
motor
unit
subunit
Prior art date
Application number
PCT/CN2018/082221
Other languages
English (en)
French (fr)
Inventor
陈毅东
Original Assignee
深圳市道通智能航空技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市道通智能航空技术有限公司 filed Critical 深圳市道通智能航空技术有限公司
Publication of WO2019029176A1 publication Critical patent/WO2019029176A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/14Estimation or adaptation of machine parameters, e.g. flux, current or voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P25/00Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details
    • H02P25/16Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the circuit arrangement or by the kind of wiring

Definitions

  • the present application relates to the field of drone technology, and in particular, to a motor control circuit, a motor system having the motor control circuit, an ESC having the control circuit, and a drone having the ESC.
  • the drone referred to as the UAV, is a new concept equipment that is rapidly developing, which has the advantages of flexibility, quick response, driverless operation and low operational requirements.
  • UAVs can carry out real-time image transmission and high-risk area detection by carrying many types of sensors or camera equipment. It is a powerful complement to satellite remote sensing and traditional aerial remote sensing.
  • the scope of use of drones has been expanded to three major fields of military, scientific research and civil use, specifically in power communication, meteorology, agriculture, oceanography, exploration, photography, disaster prevention and mitigation, crop yield estimation, anti-drug smuggling, border patrol, security and anti-terrorism, etc. The field is widely used.
  • ESC Electronically adjustable full name electronic governor
  • English Electronic Speed Control referred to as ESC.
  • ESC Electronically adjustable full name electronic governor
  • ESC Electronically adjustable full name electronic governor
  • ESC Electronic Speed Control
  • it can be divided into brushed ESC and brushless ESC. It adjusts the speed of the motor based on the control signal.
  • the inventors have found that at least the following problems exist in the prior art: the current electronic control of the drone generally has the problems of excessive volume and heavy weight, which is not only disadvantageous for the miniaturization design of the drone. It also restricts the flexibility of the UAV structural design; and the existing ESC, as a key component of the power system, has poor reliability and has many shortcomings in redundant design.
  • an embodiment of the present application provides a motor control circuit with high integration and reliability, a motor system having the motor control circuit, an ESC having the control circuit, and a drone having the ESC. .
  • the embodiment of the present application provides the following technical solutions:
  • a motor control circuit is applied to a motor, the motor control circuit comprising: a main circuit, a control unit, a power conversion circuit, a drive circuit, and an operational amplifier circuit, the main circuit including at least one power unit, the at least one power The unit is for electrically connecting to the motor; the driving circuit is electrically connected to the at least one power unit and the control unit respectively; the power conversion circuit and the operational amplifier circuit are both electrically connected to the control unit.
  • the at least one power unit includes: a first power subunit and a second power subunit, the driving circuit being electrically connected to the first power subunit and the second power subunit, respectively, The first power subunit and the second power subunit are connected in series; a connection point between the first power subunit and the second power subunit is electrically connected to the motor.
  • the first power sub-unit and the second power sub-unit each include a first gate resistor, a first fast recovery diode, a first power component, a second gate resistor, a second fast recovery diode, and a second power component; the first gate resistor and the first fast recovery diode are connected in parallel, in series with the first power component; after the second gate resistor and the second fast recovery diode are connected in parallel, The two power components are connected in series.
  • the primary loop includes a first power unit, a second power unit, and a third power unit; the first power unit, the second power unit, and the third power unit are each electrically coupled to the motor.
  • the first power unit further includes a first sampling circuit, a connection point between the first sampling circuit and a first power subunit and a second power subunit in the first power unit Electrically connected and grounded;
  • the second power unit further includes a second sampling circuit, a connection point between the second sampling circuit and the first power subunit and the second power subunit of the second power unit Electrically connected and grounded;
  • the third power unit further includes a third sampling circuit, a connection point between the third sampling circuit and the first power subunit and the second power subunit of the third power unit Electrically connected and grounded;
  • the first, second, and third sampling circuits are electrically connected to the control unit for collecting a phase voltage of the motor, and feeding the phase voltage to the control unit.
  • the second power subunit further includes a first sampling resistor, the first sampling resistor being in series with the first power component and the second power component, respectively, and the first sampling resistor and the The op amp circuit is electrically connected.
  • the motor control circuit further includes a sampling module electrically connected to the motor and the control unit, respectively, for measuring and collecting the rotational speed of the motor, and converting the rotational speed An electrical signal is fed back to the control unit.
  • control unit is an MCU.
  • the first power component and the second power component are both MOS transistors.
  • the embodiment of the present application further provides the following technical solutions:
  • a motor system includes a motor and a motor control circuit as described above, the motor control circuit being electrically coupled to the motor for controlling operation of the motor.
  • the embodiment of the present application further provides the following technical solutions:
  • An electrical adjustment includes the motor control circuit described above.
  • the power conversion circuit, the drive circuit, and the operational amplifier circuit are integrated to form one chip.
  • the embodiment of the present application further provides the following technical solutions:
  • An unmanned aerial vehicle includes an electric tones and an electric motor, the electrical tones being electrically connected to the electric machine for controlling operation of the electric machine to control a flight attitude of the unmanned aerial vehicle.
  • the power conversion circuit, the driving circuit and the operational amplifier circuit in the motor control circuit of the embodiment of the present application can be integrated into one chip, so that the motor control circuit is integrated high, thereby reducing the volume of the ESC, and Reduce the weight of the ESC. Further, the reliability of the motor control circuit in the ESC is enhanced by the parallel connection of the first power subunit and the second power subunit.
  • FIG. 1 is a schematic diagram of functional modules of a motor system according to an embodiment of the present application.
  • FIG. 2 is a schematic structural view of the motor system shown in FIG. 1;
  • FIG. 3 is a schematic structural view of a control circuit in the motor system shown in FIG. 2;
  • FIG. 4 is a schematic structural view of a power conversion circuit, a driving circuit, and an operational amplifier circuit in the motor system shown in FIG. 1;
  • FIG. 5 is a schematic structural diagram of a motor system applied to a drone according to an embodiment of the present application.
  • an embodiment of the present application provides a motor system 100 including a motor 10 and a motor control circuit 20 .
  • the motor control circuit 20 is electrically coupled to the motor 10 for controlling operation of the motor 10.
  • the motor control circuit 20 includes a main circuit 21, a control unit 22, a power conversion circuit 23, a drive circuit 24, and an operational amplifier circuit 25.
  • the control unit 22 is electrically connected to the main circuit 21, the power conversion circuit 23, the drive circuit 24, and the operational circuit 25, respectively, and the main circuit 21 is electrically connected to the motor 10.
  • the main circuit 21, the control unit 22, the power conversion circuit 23, the drive circuit 24, and the operational amplifier circuit 25 are all integrated in an ESC for controlling the operation of the motor 10; and, the power conversion The circuit 23, the drive circuit 24 and the operational amplifier circuit 25 are integrated to form one chip.
  • control unit 22 is an MCU.
  • the main circuit 21 includes at least one power unit.
  • the three power units are three, which are a first power unit 211, a second power unit 212, and a third power unit 213, respectively.
  • the first power unit 211, the second power unit 212, and the third power unit 213 are all electrically connected to the motor 10.
  • the driving circuit 24 is electrically connected to the control unit 22 of the s, respectively, and the control unit 22 sends a control signal, and the control signal is processed by the driving circuit 24 and sent to the first power unit 211,
  • the driving circuit 24 is electrically connected to the first power unit 211, the second power unit 212, and the third power unit 213, respectively, and the control unit 22 sends a control signal, and the control signal is processed by the driving circuit 24, and It is delivered to the first power unit 211, the second power unit 212, and the third power unit 213, thereby controlling the operation of the motor 10.
  • the first power unit 211, the second power unit 212, and the third power unit 213 each include a first power subunit 201 and a second power subunit 202.
  • the driving circuit 24 is electrically connected to the first power subunit 201 and the second power subunit 202, respectively, and the first power subunit 201 and the second power subunit 202 are connected in series.
  • a connection point between the first power subunit 201 and the second power subunit 202 is electrically connected to the motor 10.
  • first power sub-unit 201 and the second power sub-unit 202 each include a first gate resistor R1, a first fast recovery diode D1, a first power element Q1, a second gate resistor R2, and a second fast The diode D2 and the second power element Q2 are restored.
  • first gate resistor R1 and the first fast recovery diode D1 are connected in parallel, in series with the first power element Q1; after the second gate resistor R2 and the second fast recovery diode D2 are connected in parallel, and the second power element Q2 In series.
  • the use of a gate resistor in parallel with the fast recovery diode can delay the turn-on time of the power components in series with it and speed up the turn-off time of the power components in series with it.
  • the power component has a longer turn-on time, which is beneficial for controlling electromagnetic interference; the power component has a shorter turn-off time, which is beneficial to reducing power consumption.
  • the first power element Q1 is connected in parallel with the second power element Q2, so that the current input to the motor 10 can be increased, thereby increasing the output power of the motor control circuit 20, and when one of the power elements fails, The motor control circuit 20 can still provide current to the motor 10, greatly enhancing the reliability of the motor control circuit 20.
  • the first power unit 211 further includes a first sampling circuit R4, the first sampling circuit R4 and the first power subunit 201 and the second power subunit in the first power unit 211.
  • the connection point between 202 is electrically connected and grounded.
  • the second power unit 212 further includes a second sampling circuit R5, a connection point between the second sampling circuit R5 and the first power subunit 201 and the second power subunit 202 in the second power unit 212. Electrically connected and grounded.
  • the third power unit 213 further includes a third sampling circuit R6, a connection point between the third sampling circuit R6 and the first power subunit 201 and the second power subunit 202 in the third power unit 213. Electrically connected and grounded.
  • the first, second, and third sampling circuits R4, R5, and R6 are electrically connected to the control unit 22, and are configured to collect a phase voltage of the motor 10 and feed it back to the control unit 22, so that the The motor control circuit 20 can realize the function of non-inductive square wave control.
  • the second power sub-unit 202 further includes a first sampling resistor R3, and the first sampling resistor R3 is connected in series with the first power element Q1 and the second power element Q2, respectively.
  • the sampling resistor R3 is also electrically connected to the operational amplifier circuit 25, and the first sampling resistor R3 is used for measuring and collecting the voltage (U3, U4, U5) of the second power subunit 202, and the voltage (U3) , U4, U5) is transmitted to the operational amplifier circuit 25, and the voltage (U3, U4, U5) is amplified by the operational amplifier circuit 25, and then sent to the control unit 22.
  • the number of gate resistors, fast recovery diodes and power elements in the first power subunit 201 and the second power subunit 202 are the same.
  • the number of gate resistors, fast recovery diodes, and power components in the first power subunit 201 and the second power subunit 202 can be set to one, three, or four, etc. according to actual needs.
  • the first power subunit 201 and the second power subunit 202 each include only the first gate resistor R1, the first fast recovery diode D1, the first power element Q1, and the first gate resistor R1 and the first After a fast recovery diode D1 is connected in parallel, it is connected in series with the first power element Q1.
  • the number of power units is determined by the motor.
  • the motor 10 is a three-phase motor, and thus the main circuit 21 includes three power units.
  • the motor 10 employed may also be, but is not limited to, a single phase motor, and correspondingly, the main circuit 21 includes a power unit.
  • the motor 10 is a motor of a type other than a single-phase motor or a three-phase motor, the number of power units in the main circuit 21 corresponds to it, and will not be described herein.
  • first power unit 211, the second power unit 212, and the third power unit 213, and the first power element Q1 and the second power element Q2 may be identical in structure and function, only for clearer.
  • the connection relationship between the plurality of power units and the motor 10 and the connection relationship between the first power element Q1 and the second power element Q2 are illustrated, and are named "first”, “second”, and "third”, respectively.
  • first power element Q1 and the second power element Q2 may be an insulated gate bipolar transistor (IGBT), a metal oxide semiconductor field effect transistor (MOSFET) or a thyristor.
  • IGBT insulated gate bipolar transistor
  • MOSFET metal oxide semiconductor field effect transistor
  • thyristor a thyristor
  • the first power element Q1 and the second power element Q2 are both MOS transistors.
  • the driving circuit 24 is provided with a signal receiving end for receiving a control signal sent by the control unit 22, thereby turning on or off the first power.
  • the collector of the first power element Q1 and the emitter of the second power element Q2 are both current inputs for electrical connection to a power source (not shown).
  • the emitter of the first power element Q1 is electrically coupled to the collector of the second power element Q2, both of which are current outputs for electrical connection to the motor 10.
  • the drive circuit 24 includes a signal amplifying circuit for amplifying the input control signal to control the conduction and disconnection of the first power element Q1 and the second power element Q2.
  • the control unit 22 is electrically connected to a signal receiving end of the driving circuit 24, and the control unit 22 outputs a control signal to the driving circuit 24 to control the first power subunit 201 and the second power subunit
  • the first power element Q1 and the second power element Q2 are turned on or off in 202, thereby controlling the operation of the motor 10.
  • the control unit 22 includes a first Pulse-Width Modulation (PWM), PWM_0-PWM_5.
  • the first pulse width modulation terminal PWM_0-PWM_5 is electrically connected to the signal receiving end of the driving circuit 24 for controlling the first power component Q1 and the first power subunit 201 and the second power subunit 202.
  • the second power element Q2 is turned on or off, thereby controlling the operation of the motor 10.
  • the driving circuit 24 includes: a second pulse width modulation terminal PWM1_0-PWM1_5.
  • the second pulse width modulation terminal PWM1_0 is electrically connected to the signal receiving end of the first power subunit 201 in the first power unit 211 for controlling the first power component Q1 in the first power subunit 201.
  • the second power element Q2 is turned on or off.
  • the second pulse width modulation terminal PWM1_1 is electrically connected to the signal receiving end of the second power subunit 202 in the first power unit 211, and is configured to control the first power component Q1 in the second power subunit 202.
  • the second power element Q2 is turned on or off.
  • the second pulse width modulation terminal PWM1_2 is electrically connected to the signal receiving end of the first power subunit 201 in the second power unit 212 for controlling the first power component Q1 in the first power subunit 201. And the second power element Q2 is turned on or off.
  • the second pulse width modulation terminal PWM1_3 is electrically connected to the signal receiving end of the second power subunit 202 in the second power unit 212 for controlling the first power component Q1 in the second power subunit 202.
  • the second power element Q2 is turned on or off.
  • the second pulse width modulation terminal PWM1_4 is electrically connected to the signal receiving end of the first power subunit 201 in the third power unit 213 for controlling the first power component Q1 in the first power subunit 201.
  • the second pulse width modulation terminal PWM1_5 is electrically connected to the signal receiving end of the second power subunit 202 in the third power unit 213 for controlling the first power component Q1 in the second power subunit 202. And the second power element Q2 is turned on or off.
  • the main circuit path 21 further includes a second sampling resistor 217, and the second sampling resistor 217 is respectively associated with the first power unit 211, the second power unit 212, and the third power unit 213.
  • the two power subunits Q2 are electrically connected.
  • the second sampling resistor 217 obtains a three-phase current by collecting the voltage V2, and combined with the collected DC-side voltage Vdc, the control unit 22 receives the above three-phase current and the DC-side voltage Vdc, and performs motor vector operation to generate a control signal. It is used to control the operation of the motor 10, and it can be judged whether or not the motor 10 has a load abnormality under various conditions.
  • the motor control circuit 20 further includes a sampling module 28, and the sampling module 28 is electrically connected to the motor 10 and the control unit 22, respectively, for measuring and collecting the rotation speed n of the motor 10, and The rotation speed n is converted into an electrical signal and fed back to the control unit 22.
  • the sampling module 28 is a Hall element. The voltage signal is obtained by the Hall element, and the rotor speed or the rotor position signal of the motor is obtained by software derivation, thereby realizing the function of controlling the motor.
  • the motor control circuit 20 has both a non-inductive control and a sensible control function.
  • the motor system 100 can be applied to mobile devices such as drones, remote control vehicles, and unmanned ships.
  • the drone 200 may be a quadrotor drone, and the drone 200 includes a motor 10 and The electric switch 50 is electrically connected to the motor 10 for controlling the operation of the motor 10 to control the flight attitude of the drone 200.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Multiple Motors (AREA)
  • Control Of Electric Motors In General (AREA)

Abstract

本申请涉及无人机技术领域,提供一种电机控制电路、电机***、电调及无人机,所述电机控制电路包括:主回路、控制单元、电源转换电路、驱动电路和运放电路,所述主回路包括至少一个功率单元,所述至少一个功率单元用于与所述电机电连接;所述驱动电路分别与所述至少一个功率单元和控制电路电连接;所述电源转换电路和运放电路均与所述控制单元电连接。通过以上方式,电机控制电路中的电源转换电路、驱动电路和运放电路可集成为一个芯片,使得电机控制电路集成化高,从而缩小了电调的体积,并减轻了电调的重量。进一步的,通过第一功率子单元和第二功率子单元的并联,增强了电调中电机控制电路的可靠性。

Description

电机控制电路、电机***、电调及无人机
本申请要求于2017年08月10日提交的、申请号为201710681142.2、申请名称为“电机控制电路、电机***、电调及无人机”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及无人机技术领域,尤其涉及一种电机控制电路、具有此电机控制电路的电机***、具有此控制电路的电调及具有此电调的无人机。
背景技术
无人驾驶飞机,简称无人机(UAV),是一种处在迅速发展中的新概念装备,其具有机动灵活、反应快速、无人驾驶、操作要求低的优点。无人机通过搭载多类传感器或摄像设备,可以实现影像实时传输、高危地区探测功能,是卫星遥感与传统航空遥感的有力补充。目前。无人机的使用范围已经扩宽到军事、科研、民用三大领域,具体在电力通信、气象、农业、海洋、勘探、摄影、防灾减灾、农作物估产、缉毒缉私、边境巡逻、治安反恐等领域应用甚广。
电调全称电子调速器,英文Electronic Speed Control,简称ESC。针对电机不同,可分为有刷电调和无刷电调。它根据控制信号调节电机的转速。
在实现本申请的过程中,发明人发现现有技术至少存在以下问题:目前的无人机的电调普遍存在体积过大、重量过重的问题,不仅不利于无人机的小型化设计,还制约着无人机结构设计的灵活度;并且现有的电调,作为动力***的关键部件,可靠性较差,在冗余设计方面还有许多不足之处。
发明内容
为了解决上述技术问题,本申请实施例提供一种集成化高并且可靠性 好的电机控制电路、具有此电机控制电路的电机***、具有此控制电路的电调及具有此电调的无人机。
为解决上述技术问题,本申请实施例提供以下技术方案:
一种电机控制电路,其应用于电机,所述电机控制电路包括:主回路、控制单元、电源转换电路、驱动电路和运放电路,所述主回路包括至少一个功率单元,所述至少一个功率单元用于与所述电机电连接;所述驱动电路分别与所述至少一个功率单元和控制单元电连接;所述电源转换电路和所述运放电路均与所述控制单元电连接。
在一些实施例中,所述至少一个功率单元包括:第一功率子单元和第二功率子单元,所述驱动电路分别与所述第一功率子单元和所述第二功率子单元电连接,所述第一功率子单元和第二功率子单元串联;所述第一功率子单元和第二功率子单元之间的连接点电连接至所述电机。
在一些实施例中,所述第一功率子单元和第二功率子单元均包括第一栅极电阻、第一快恢复二极管、第一功率元件、第二栅极电阻、第二快恢复二极管和第二功率元件;所述第一栅极电阻和第一快恢复二极管并联后,与所述第一功率元件串联;所述第二栅极电阻和第二快恢复二极管并联后,与所述第二功率元件串联。
在一些实施例中,所述主回路包括第一功率单元、第二功率单元和第三功率单元;所述第一功率单元、第二功率单元和第三功率单元均与所述电机电连接。
在一些实施例中,所述第一功率单元还包括第一采样电路,所述第一采样电路与所述第一功率单元中的第一功率子单元和第二功率子单元之间的连接点电连接,并接地;所述第二功率单元还包括第二采样电路,所述第二采样电路与所述第二功率单元中的第一功率子单元和第二功率子单元之间的连接点电连接,并接地;所述第三功率单元还包括第三采样电路,所述第三采样电路与所述第三功率单元中的第一功率子单元和第二功率子单元之间的连接点电连接,并接地;所述第一、二、三采样电路均与所述控制单元电连接,用于采集所述电机的相电压,并将所述相电压反馈至所述控制单元。
在一些实施例中,所述第二功率子单元还包括第一采样电阻,所述第 一采样电阻分别与所述第一功率元件和第二功率元件串联,并且所述第一采样电阻与所述运放电路电连接。
在一些实施例中,所述电机控制电路还包括采样模块,所述采样模块分别与所述电机和所述控制单元电连接,用于测量和采集所述电机的转速,并将所述转速转变为电信号反馈至所述控制单元。
在一些实施例中,所述控制单元为一MCU。
在一些实施例中,所述第一功率元件和第二功率元件均为MOS管。
为解决上述技术问题,本申请实施例还提供以下技术方案:
一种电机***,包括电机和以上所述的电机控制电路,所述电机控制电路与所述电机电连接,用以控制所述电机的运行。
为解决上述技术问题,本申请实施例还提供以下技术方案:
一种电调包括以上所述的电机控制电路。
在一些实施例中,所述电源转换电路、驱动电路和运放电路集成形成一个芯片。
为解决上述技术问题,本申请实施例还提供以下技术方案:
一种无人机,包括电调和电机,所述电调与所述电机电连接,用于控制所述电机的运行,从而控制所述无人机的飞行姿态。
与现有技术相比较,本申请实施例的电机控制电路中的电源转换电路、驱动电路和运放电路可集成为一个芯片,使得电机控制电路集成化高,从而缩小了电调的体积,并减轻了电调的重量。进一步的,通过第一功率子单元和第二功率子单元的并联,增强了电调中电机控制电路的可靠性。
附图说明
一个或多个实施例通过与之对应的附图中的图片进行示例性说明,这些示例性说明并不构成对实施例的限定,附图中具有相同参考数字标号的元件表示为类似的元件,除非有特别申明,附图中的图不构成比例限制。
图1为本申请实施例提供的一种电机***的功能模块示意图;
图2为图1所示的电机***的结构示意图;
图3为图2所示的电机***中控制电路的结构示意图;
图4为图1所示的电机***中电源转换电路、驱动电路和运放电路的 结构示意图;
图5为本申请实施例提供的一种电机***应用于无人机的结构示意图。
具体实施方式
为了便于理解本申请,下面结合附图和具体实施方式,对本申请进行更详细的说明。需要说明的是,当元件被表述“固定于”另一个元件,它可以直接在另一个元件上、或者其间可以存在一个或多个居中的元件。当一个元件被表述“电连接”另一个元件,它可以是直接连接到另一个元件、或者其间可以存在一个或多个居中的元件。本说明书所使用的术语“上”、“下”、“内”、“外”、“底部”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。此外,术语“第一”、“第二”“第三”等仅用于描述目的,而不能理解为指示或暗示相对重要性。
除非另有定义,本说明书所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同。在本申请的说明书中所使用的术语只是为了描述具体的实施方式的目的,不是用于限制本申请。本说明书所使用的术语“和/或”包括一个或多个相关的所列项目的任意的和所有的组合。
此外,下面所描述的本申请不同实施方式中所涉及的技术特征只要彼此之间未构成冲突就可以相互结合。
请参阅图1,本申请实施例提供一种电机***100,包括电机10和电机控制电路20。所述电机控制电路20与所述电机10电连接,用以控制所述电机10的运行。
所述电机控制电路20包括主回路21、控制单元22、电源转换电路23、驱动电路24和运放电路25。所述控制单元22分别与所述主回路21、电源转换电路23、驱动电路24和运放电路25电连接,所述主回路21与所述电机10电连接。所述主回路21、控制单元22、电源转换电路23、驱动电路 24和运放电路25均集成在一个电调内,所述电调用于控制所述电机10的运行;并且,所述电源转换电路23、驱动电路24和运放电路25集成形成一个芯片。
优选地,在本实施例中,所述控制单元22为一MCU。
请参阅图2,图2为电机***的结构示意图。所述主回路21包括至少一个功率单元,在本实施例中,所述三个功率单元为三个,分别是第一功率单元211、第二功率单元212和第三功率单元213。第一功率单元211、第二功率单元212和第三功率单元213均与所述电机10电连接。所述驱动电路24分别与所述s所述控制单元22电连接,所述控制单元22发出控制信号,该控制信号经所述驱动电路24处理,并分别输送至所述第一功率单元211、第二功率单元212和第三功率单元213,进而控制所述电机10的运行。所述驱动电路24分别与所述第一功率单元211、第二功率单元212和第三功率单元213电连接,所述控制单元22发出控制信号,该控制信号经所述驱动电路24处理,并输送至所述第一功率单元211、第二功率单元212和第三功率单元213,进而控制所述电机10的运行。
在本实施例中,所述第一功率单元211、第二功率单元212和第三功率单元213均包括第一功率子单元201和第二功率子单元202。所述驱动电路24分别与所述第一功率子单元201和第二功率子单元202电连接,所述第一功率子单元201和第二功率子单元202串联。所述第一功率子单元201和第二功率子单元202之间的连接点电连接至所述电机10。
进一步地,所述第一功率子单元201和第二功率子单元202均包括第一栅极电阻R1、第一快恢复二极管D1、第一功率元件Q1、第二栅极电阻R2、第二快恢复二极管D2和第二功率元件Q2。所述第一栅极电阻R1和第一快恢复二极管D1并联后,与第一功率元件Q1串联;所述第二栅极电阻R2和第二快恢复二极管D2并联后,与第二功率元件Q2串联。采用栅极电阻和快恢复二极管并联,可以起到延缓与其串联的功率元件打开时间,并加快与其串联的功率元件关断时间的作用。具体来说,功率元件打开时间长一些,有利于控制电磁干扰;功率元件关断时间短一些,有利于降低功耗。所述第一功率元件Q1与第二功率元件Q2并联,从而可以增大输入所述电机10的电流,进而增大所述电机控制电路20的输出功率,并且当 其中一个功率元件出现故障时,所述电机控制电路20仍然可以向电机10提供电流,极大的增强了所述电机控制电路20的可靠性。
在本实施例中,所述第一功率单元211还包括第一采样电路R4,所述第一采样电路R4与所述第一功率单元211中的第一功率子单元201和第二功率子单元202之间的连接点电连接,并接地。所述第二功率单元212还包括第二采样电路R5,所述第二采样电路R5与所述第二功率单元212中的第一功率子单元201和第二功率子单元202之间的连接点电连接,并接地。所述第三功率单元213还包括第三采样电路R6,所述第三采样电路R6与所述第三功率单元213中的第一功率子单元201和第二功率子单元202之间的连接点电连接,并接地。所述第一、二、三采样电路R4,R5,R6均与所述控制单元22电连接,用于采集所述电机10的相电压,并将其反馈至所述控制单元22,使得所述电机控制电路20可以实现无感方波控制的功能。
在本实施例中,所述第二功率子单元202还包括第一采样电阻R3,所述第一采样电阻R3分别与所述第一功率元件Q1和第二功率元件Q2串联,所述第一采样电阻R3还与所述运放电路25电连接,所述第一采样电阻R3用于测量和采集所述第二功率子单元202的电压(U3,U4,U5),并将该电压(U3,U4,U5)传送至所述运放电路25,由所述运放电路25对该电压(U3,U4,U5)进行放大处理,然后输送至所述控制单元22。
可以理解的是,所述第一功率子单元201和第二功率子单元202中栅极电阻、快恢复二极管和功率元件的数量是相同的。所述第一功率子单元201和第二功率子单元202中栅极电阻、快恢复二极管和功率元件的数量,可以根据实际需求设置为一个、三个或四个等。例如:所述第一功率子单元201和第二功率子单元202均仅包括第一栅极电阻R1、第一快恢复二极管D1、第一功率元件Q1;所述第一栅极电阻R1和第一快恢复二极管D1并联后,与第一功率元件Q1串联。
可以理解的是,功率单元的个数是由电机决定的,在本实施例中,所采用所述电机10为三相电机,因此所述主回路21包括三个功率单元。在其它一些实施例中,所采用的所述电机10还可以但不限于为单相电机,相应的,所述主回路21包括一个功率单元。当所述电机10为除单相电机或 三相电机以外其它类型的电机时,所述主回路21中功率单元的数量与其相对应,在此不做赘述。
可以理解的是,所述第一功率单元211、第二功率单元212和第三功率单元213以及第一功率元件Q1和第二功率元件Q2在结构和功能上可以完全相同,仅为了更清楚的说明多个功率单元与电机10的连接关系以及第一功率元件Q1和第二功率元件Q2的连接关系,而分别命名成了“第一”、“第二”和“第三”。
可以理解的是,所述第一功率元件Q1和第二功率元件Q2可以为绝缘栅双极型晶体管(Insulated Gate Bipolar Transistor,IGBT)、金属氧化物半导体场效应晶体管(MOSFET)或者晶闸管。在本实施例中,所述第一功率元件Q1和第二功率元件Q2均为MOS管。
在本实施例中,如图3和4所示,所述驱动电路24设置有信号接收端,用于接收由所述控制单元22发出的控制信号,进而导通或者断开所述第一功率元件Q1或/和第二功率元件Q2。所述第一功率元件Q1的集电极和第二功率元件Q2的发射极均为电流输入端,用于电连接至一电源(图未示)。所述第一功率元件Q1的发射极电连接至所述第二功率元件Q2的集电极,两者均为电流输出端,用于电连接至所述电机10。所述驱动电路24包括一信号放大电路,用于将输入的控制信号放大,进而控制所述第一功率元件Q1和第二功率元件Q2的导通与断开。
所述控制单元22与所述驱动电路24的信号接收端电连接,并且所述控制单元22输出控制信号至所述驱动电路24,以控制所述第一功率子单元201和第二功率子单元202中第一功率元件Q1和第二功率元件Q2的导通或断开,进而控制所述电机10的运行。在本实施例中,所述控制单元22包括第一脉宽调制端(Pulse-Width Modulation,PWM),PWM_0-PWM_5。所述第一脉宽调制端PWM_0-PWM_5分别电连接所述驱动电路24的信号接收端,用于控制所述第一功率子单元201和第二功率子单元202中第一功率元件Q1和第二功率元件Q2的导通或断开,进而控制所述电机10的运行。具体的,所述驱动电路24包括:第二脉宽调制端PWM1_0-PWM1_5。所述第二脉宽调制端PWM1_0与所述第一功率单元211中的第一功率子单元201的信号接收端电连接,用于控制所述第一功率子单元201中的第一 功率元件Q1和第二功率元件Q2的导通或断开。所述第二脉宽调制端PWM1_1与所述第一功率单元211中的第二功率子单元202的信号接收端电连接,用于控制所述第二功率子单元202中的第一功率元件Q1和第二功率元件Q2的导通或断开。所述第二脉宽调制端PWM1_2与所述第二功率单元212中的第一功率子单元201的信号接收端电连接,用于控制所述第一功率子单元201中的第一功率元件Q1和第二功率元件Q2的导通或断开。所述第二脉宽调制端PWM1_3与所述第二功率单元212中的第二功率子单元202的信号接收端电连接,用于控制所述第二功率子单元202中的第一功率元件Q1和第二功率元件Q2的导通或断开。所述第二脉宽调制端PWM1_4与所述第三功率单元213中的第一功率子单元201的信号接收端电连接,用于控制所述第一功率子单元201中的第一功率元件Q1和第二功率元件Q2的导通或断开。所述第二脉宽调制端PWM1_5与所述第三功率单元213中的第二功率子单元202的信号接收端电连接,用于控制所述第二功率子单元202中的第一功率元件Q1和第二功率元件Q2的导通或断开。
在本实施例中,所述主回路路21还包括第二采样电阻217,所述第二采样电阻217分别与所述第一功率单元211、第二功率单元212和第三功率单元213中第二功率子单元Q2电连接。所述第二采样电阻217通过采集电压V2进而得到三相电流,并结合采集到的直流侧电压Vdc,所述控制单元22接收以上三相电流和直流侧电压Vdc,进行电机矢量运算产生控制信号用于控制电机10的运行,并且可判断电机10在各个条件下是否存在负载异常的情况。
在本实施例中,所述电机控制电路20还包括采样模块28,所述采样模块28分别与所述电机10和控制单元22电连接,用于测量和采集所述电机10的转速n,并将该转速n转变为电信号反馈至所述控制单元22。具体地,在本实施例中,所述采样模块28为霍尔元件。通过霍尔元件得到电压信号,在通过软件推导的方式获取到电机的转子转速或转子位置信号,从而实现对电机的有感控制的功能。
因此,该电机控制电路20同时具备无感控制和有感控制的功能。
可以理解的是,所述电机***100可应用于无人机、遥控战车、无人船等移动装置上。具体的,如图5所示,当所述电机***100应用于所述 无人机200时,所述无人机200可以为四旋翼无人机,并且所述无人机200包括电机10和电调50,所述电调50与所述电机10电连接,用于控制所述电机10的运行,从而控制所述无人机200的飞行姿态。
最后应说明的是:以上实施例仅用以说明本申请的技术方案,而非对其限制;在本申请的思路下,以上实施例或者不同实施例中的技术特征之间也可以进行组合,步骤可以以任意顺序实现,并存在如上所述的本申请的不同方面的许多其它变化,为了简明,它们没有在细节中提供;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的范围。

Claims (13)

  1. 一种电机控制电路(20),其应用于电机(10),其特征在于,所述电机控制电路(20)包括:主回路(21)、控制单元(22)、电源转换电路(23)、驱动电路(24)和运放电路(25),所述主回路(21)包括至少一个功率单元(211,212,213),所述至少一个功率单元(211,212,213)用于与所述电机(10)电连接;所述驱动电路(24)分别与所述至少一个功率单元(211,212,213)和所述控制单元(22)电连接;所述电源转换电路(23)和所述运放电路(25)均与所述控制单元(22)电连接。
  2. 根据权利要求1所述的电机控制电路(20),其特征在于,所述至少一个功率单元包括:第一功率子单元(201)和第二功率子单元(202),所述驱动电路(24)分别与所述第一功率子单元(201)和所述第二功率子单元(202)电连接,所述第一功率子单元(201)和第二功率子单元(202)串联;所述第一功率子单元(201)和第二功率子单元(202)之间的连接点电连接至所述电机(10)。
  3. 根据权利要求2所述的电机控制电路(20),其特征在于,所述第一功率子单元(201)和第二功率子单元(202)均包括第一栅极电阻(R1)、第一快恢复二极管(D1)、第一功率元件(Q1)、第二栅极电阻(R2)、第二快恢复二极管(D2)和第二功率元件(Q2);所述第一栅极电阻(R1)和第一快恢复二极管(D1)并联后,与所述第一功率元件(Q1)串联;所述第二栅极电阻(R2)和第二快恢复二极管(D2)并联后,与所述第二功率元件(Q2)串联。
  4. 根据权利要求3所述的电机控制电路(20),其特征在于,所述主回路(21)包括第一功率单元(211)、第二功率单元(212)和第三功率单元(213);所述第一功率单元(211)、第二功率单元(212)和第三功率单元(213)均与所述电机(10)电连接。
  5. 根据权利要求4所述的电机控制电路(20),其特征在于,所述第一功率单元(211)还包括第一采样电路(R4),所述第一采样电路(R4)与所述第一功率单元(211)中的第一功率子单元(201)和第二功率子单元(202)之间的连接点电连接,并接地;所述第二功率单元(212)还包括第二采样电路(R5),所述第二采样电路(R5)与所述第二功率单元(212)中的第一功率子单元(201)和第二功率子单元(202)之间的连接点电连接,并接地;所述第三功率单元(213)还包括第三采样电路(R6),所述第三采样电路(R6)与所述第三功率单元(213)中的第一功率子单元(201)和第二功率子单元(202)之间的连接点电连接,并接地;所述第一、二、三采样电路(R4,R5,R6)均与所述控制单元(22)电连接,用于采集所述电机(10)的相电压,并将所述相电压反馈至所述控制单元(22)。
  6. 根据权利要求5中任一项所述的电机控制电路(20),其特征在于,所述第二功率子单元(202)还包括第一采样电阻(R3),所述第一采样电阻(R3)分别与所述第一功率元件(Q1)和第二功率元件(Q2)串联,并且所述第一采样电阻(R3)与所述运放电路(25)电连接。
  7. 根据权利要求1至6中任一项所述的电机控制电路(20),其特征在于,所述电机控制电路(20)还包括采样模块(28),所述采样模块(28)分别与所述电机(10)和所述控制单元(22)电连接,用于测量和采集所述电机(10)的转速(n),并将所述转速(n)转变为电信号反馈至所述控制单元(22)。
  8. 根据权利要求6所述的电机控制电路(20),其特征在于,所述控制单元(22)为一MCU。
  9. 根据权利要求8所述的电机控制电路(20),其特征在于,所述第一功率元件(Q1)和第二功率元件(Q2)均为MOS管。
  10. 一种电机***(100),其特征在于,包括:电机(10)和如权利 要求1至9中任一项所述的电机控制电路(20),所述电机控制电路(20)与所述电机(10)电连接,用以控制所述电机(10)的运行。
  11. 一种电调(50),其特征在于,包括:如权利要求1至9中任一项所述电机控制电路(20)。
  12. 根据权利要求11所述的电调(50),其特征在于,所述电源转换电路(23)、驱动电路(24)和运放电路(25)集成形成一个芯片。
  13. 一种无人机(200),其特征在于,包括:电机(10)和如权利要求11或12所述的电调(50),所述电调(50)与所述电机(10)电连接,用于控制所述电机(10)的运行,从而控制所述无人机(200)的飞行姿态。
PCT/CN2018/082221 2017-08-10 2018-04-08 电机控制电路、电机***、电调及无人机 WO2019029176A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710681142.2A CN109391197A (zh) 2017-08-10 2017-08-10 电机控制电路、电机***、电调及无人机
CN201710681142.2 2017-08-10

Publications (1)

Publication Number Publication Date
WO2019029176A1 true WO2019029176A1 (zh) 2019-02-14

Family

ID=65273333

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/082221 WO2019029176A1 (zh) 2017-08-10 2018-04-08 电机控制电路、电机***、电调及无人机

Country Status (2)

Country Link
CN (1) CN109391197A (zh)
WO (1) WO2019029176A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102957366A (zh) * 2012-09-18 2013-03-06 青岛海信日立空调***有限公司 永磁同步电机控制方法和装置以及空调设备
CN205304653U (zh) * 2016-01-19 2016-06-08 哈尔滨理工大学 一种基于无刷直流电机的双面式通风机控制***
CN105703689A (zh) * 2014-11-25 2016-06-22 沈阳工业大学 大功率无刷双馈电机三电平双向变频调速***
CN106464188A (zh) * 2014-07-03 2017-02-22 三菱电机株式会社 电力变换装置以及具备该电力变换装置的空调装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102045014A (zh) * 2010-11-29 2011-05-04 辽宁工业大学 一种四轮独立驱动电动汽车用无刷直流电机控制器及控制方法
CN104601076B (zh) * 2015-02-15 2017-08-25 电子科技大学 用于电动汽车电动机的无传感器滑模观测器设计方法
CN105391364B (zh) * 2015-11-24 2018-01-19 哈尔滨理工大学 一种无刷直流电机无位置传感器控制***及控制方法
CN206135406U (zh) * 2016-11-07 2017-04-26 西安科技大学 一种伺服控制器过电压泄放保护电路
CN206379872U (zh) * 2016-11-28 2017-08-04 深圳市道通智能航空技术有限公司 一种电调集成化电路及无人机
CN207559892U (zh) * 2017-08-10 2018-06-29 深圳市道通智能航空技术有限公司 电机控制电路、电机***、电调及无人机

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102957366A (zh) * 2012-09-18 2013-03-06 青岛海信日立空调***有限公司 永磁同步电机控制方法和装置以及空调设备
CN106464188A (zh) * 2014-07-03 2017-02-22 三菱电机株式会社 电力变换装置以及具备该电力变换装置的空调装置
CN105703689A (zh) * 2014-11-25 2016-06-22 沈阳工业大学 大功率无刷双馈电机三电平双向变频调速***
CN205304653U (zh) * 2016-01-19 2016-06-08 哈尔滨理工大学 一种基于无刷直流电机的双面式通风机控制***

Also Published As

Publication number Publication date
CN109391197A (zh) 2019-02-26

Similar Documents

Publication Publication Date Title
WO2019100894A1 (zh) 电子调速器、电机控制***及无人机
WO2018082526A1 (zh) 一种电子调速器、电机组件以及无人飞行器
CN106672224B (zh) 一种无人机及其控制方法
JP2000341974A (ja) 車載用電力変換装置
KR20180095503A (ko) Igbt 단락 검출 및 보호 회로 및 igbt-기반 제어 가능한 정류 회로
WO2019100893A1 (zh) 电子调速器、电机控制***及无人机
JP2001275348A (ja) 直流電源装置及びその制御回路並びに電源用半導体集積回路装置
US20180123362A1 (en) Charging control circuit, charging device, charging system and charging control method
US10483869B1 (en) Power conversion circuit having inrush current limiting resistor bypass
JP2018502432A (ja) シリコン制御整流器に適合する定電圧回路、led調光回路、及び関連するled照明装置
US20130279225A1 (en) Apparatus for controlling inverter current & method of operating the same
US20220201892A1 (en) Minimalistic power converter and vehicle including a power converter
WO2019029176A1 (zh) 电机控制电路、电机***、电调及无人机
JP2015082810A5 (zh)
CN207559892U (zh) 电机控制电路、电机***、电调及无人机
US20200283162A1 (en) Motor control system and unmanned aerial vehicle
CN107423940B (zh) 一种快递机器人
Kkelis et al. Hybrid class-e synchronous rectifier for wireless powering of quadcopters
CN206187338U (zh) 一种无人机
CN107567149B (zh) 无人驾驶电光驱动恒流电路、集成电路与控制***
WO2022087897A1 (zh) 电机控制方法、装置及可移动平台
CN206321967U (zh) 舵机控制***以及机器人
CN207360575U (zh) 电机控制***及无人机
CN210234712U (zh) 无人机电压调节电路以及无人机挂载电源调节装置
CN107608376A (zh) 一种基于无人机的环境监察***

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18843527

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18843527

Country of ref document: EP

Kind code of ref document: A1