WO2019026842A1 - 光学フィルム及びその製造方法 - Google Patents

光学フィルム及びその製造方法 Download PDF

Info

Publication number
WO2019026842A1
WO2019026842A1 PCT/JP2018/028445 JP2018028445W WO2019026842A1 WO 2019026842 A1 WO2019026842 A1 WO 2019026842A1 JP 2018028445 W JP2018028445 W JP 2018028445W WO 2019026842 A1 WO2019026842 A1 WO 2019026842A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
polymer
alicyclic structure
optical film
less
Prior art date
Application number
PCT/JP2018/028445
Other languages
English (en)
French (fr)
Inventor
祐二 柴田
Original Assignee
日本ゼオン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本ゼオン株式会社 filed Critical 日本ゼオン株式会社
Priority to JP2019534499A priority Critical patent/JP7140124B2/ja
Publication of WO2019026842A1 publication Critical patent/WO2019026842A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C55/00Shaping by stretching, e.g. drawing through a die; Apparatus therefor
    • B29C55/02Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets
    • B29C55/04Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets uniaxial, e.g. oblique
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors

Definitions

  • the present invention relates to an optical film and a method of manufacturing the same.
  • the polarizing plate generally includes a film-like polarizer formed of a material such as polyvinyl alcohol and a protective film for protecting such a polarizer.
  • a film of a resin containing an alicyclic structure-containing polymer is known (see Patent Documents 1 and 2).
  • a film of a resin containing an alicyclic structure-containing polymer can be usefully used as a protective film in a polarizing plate from the viewpoint of mechanical strength and optical properties.
  • the polarizing plate is required to exhibit durability in the environment at the time of production and use of the display device. For example, in the case of rework at the time of manufacture of a display, and when a polarizer shrinks at the time of use of a display, etc., it may be called for that peeling strength of a protective film in a polarizing plate is high.
  • the peel strength may be insufficient.
  • the protective film is a stretched film produced through the process of stretching, it is caused by cohesive failure in the vicinity of the surface layer caused by the orientation of the polymer molecules being reduced and the entanglement between molecules being reduced, and the peel strength A lack of can occur.
  • an object of the present invention is to provide an optical film which has high peel strength and can be usefully used as a protective film, and a method for producing the same.
  • the present inventor has found that at least one surface of an optical film formed by roughening at least one surface of a film containing an alicyclic structure-containing polymer, By making maximum height Rz and arithmetic mean roughness Ra into a predetermined range, it discovers that the above-mentioned subject can be solved and completed the present invention. That is, according to the present invention, the following [1] to [7] are provided.
  • the optical film according to [1] having an internal haze of 5% or less.
  • the alicyclic structure-containing polymer is a block copolymer hydride [E]
  • the block copolymer hydride [E] is a hydride of the block copolymer [D]
  • the block copolymer [D] is composed of the polymer block [A] and the polymer block [B], or is composed of the polymer block [A] and the polymer block [C].
  • the polymer block [A] is a polymer block mainly composed of a repeating unit [I] derived from an aromatic vinyl compound
  • the polymer block [B] is a polymer block mainly comprising a repeating unit [I] derived from an aromatic vinyl compound and a repeating unit [II] derived from a chain conjugated diene compound
  • [7] A method for producing an optical film according to any one of [1] to [6], A step of stretching a film containing an alicyclic structure-containing polymer, and a treatment step including at least one of the steps of heat curing the film; And d) roughening at least one surface of the film after the processing step.
  • optical film of this invention peeling strength is high and the film which can be usefully used as a protective film in a polarizing plate can be provided. Moreover, according to the method for producing an optical film of the present invention, such an optical film of the present invention can be easily produced.
  • a "long film” refers to a film having a length of 5 times or more, preferably 10 times or more of the width of the film, and specifically, It has a length that can be rolled up and stored or transported.
  • the upper limit of the ratio of the length to the width of the film is not particularly limited, and may be, for example, 100,000 times or less.
  • nx represents the refractive index in the direction (in-plane direction) perpendicular to the thickness direction of the film and in the direction giving the maximum refractive index.
  • ny represents the refractive index of the in-plane direction of the film, which is perpendicular to the nx direction.
  • nz represents the refractive index in the thickness direction of the film.
  • d represents the thickness of the film.
  • the measurement wavelength is 550 nm unless otherwise stated.
  • optical film of the present invention is obtained by roughening at least one surface of a film containing an alicyclic structure-containing polymer.
  • the film containing an alicyclic structure-containing polymer may be usually made of a resin containing an alicyclic structure-containing polymer.
  • the alicyclic structure-containing polymer include a crystalline alicyclic structure-containing polymer, an amorphous alicyclic structure-containing polymer, and an alicyclic structure-containing polymer which is a specific block copolymer hydride. Polymers may be mentioned.
  • a crystalline polymer refers to a polymer having a melting point (that is, the melting point can be observed with a differential scanning calorimeter (DSC)).
  • the alicyclic structure-containing polymer is a polymer having an alicyclic structure in the molecule, and means a polymer obtainable by a polymerization reaction using a cyclic olefin as a monomer or a hydrogenated product thereof.
  • an alicyclic structure containing polymer may be used individually by 1 type, and may be used combining two or more types by arbitrary ratios.
  • a cycloalkane structure and a cycloalkene structure are mentioned, for example.
  • a cycloalkane structure is preferable because an optical film having excellent properties such as thermal stability is easily obtained.
  • the number of carbon atoms contained in one alicyclic structure is preferably 4 or more, more preferably 5 or more, preferably 30 or less, more preferably 20 or less, particularly preferably 15 or less. is there. When the number of carbon atoms contained in one alicyclic structure is in the above range, mechanical strength, heat resistance, and formability are highly balanced.
  • the ratio of structural units having an alicyclic structure to all structural units is preferably 30% by weight or more, more preferably 50% by weight or more, and particularly preferably 70% by weight or more .
  • the balance other than the structural unit having an alicyclic structure is not particularly limited, and may be appropriately selected depending on the purpose of use.
  • the weight average molecular weight (Mw) of the alicyclic structure-containing polymer is preferably 1,000 or more, more preferably 2,000 or more, preferably 1,000,000 or less, more preferably 500,000 or less is there.
  • the alicyclic structure-containing polymer having such a weight average molecular weight is excellent in the balance between moldability and flexibility.
  • the molecular weight distribution (Mw / Mn) of the alicyclic structure-containing polymer is preferably 1.0 or more, more preferably 1.5 or more, preferably 4.0 or less, more preferably 3.5 or less .
  • Mn represents a number average molecular weight.
  • An alicyclic structure-containing polymer having such a molecular weight distribution is excellent in molding processability.
  • the weight average molecular weight (Mw) and molecular weight distribution (Mw / Mn) of the alicyclic structure-containing polymer can be measured as a polystyrene conversion value by gel permeation chromatography (GPC) using tetrahydrofuran as a developing solvent.
  • the glass transition temperature Tg of the alicyclic structure-containing polymer is not particularly limited, but is usually 85 ° C. or more, and usually 170 ° C. or less.
  • Examples of the above-mentioned alicyclic structure-containing polymer include the following polymers ( ⁇ ) to (6).
  • a polymer ( ⁇ ) is preferable as the alicyclic structure-containing polymer having crystallinity since an optical film excellent in flexibility is easily obtained.
  • Polymer ( ⁇ ) Addition polymer of cyclic olefin monomer, which has crystallinity.
  • Polymer ( ⁇ ) A hydrogenated substance of polymer ( ⁇ ) or the like, which has crystallinity.
  • a ring-opened polymer of dicyclopentadiene having crystallinity and a hydrogenated product of the ring-opened polymer of dicyclopentadiene which is a crystal
  • those having a property are more preferable, and those having a crystallinity and being a hydrogenated product of a ring-opening polymer of dicyclopentadiene are particularly preferable.
  • the ring-opened polymer of dicyclopentadiene means that the ratio of structural units derived from dicyclopentadiene to the total structural units is usually 50% by weight or more, preferably 70% by weight or more, and more preferably 90% by weight or more. Particularly preferred is 100% by weight of polymer.
  • the cyclic olefin monomer which can be used for producing the polymer ( ⁇ ) and the polymer ( ⁇ ) is a compound having a ring structure formed of carbon atoms and having a carbon-carbon double bond in the ring .
  • Examples of cyclic olefin monomers include norbornene monomers.
  • a monocyclic olefin may be used as the cyclic olefin monomer.
  • the norbornene-based monomer is a monomer containing a norbornene ring.
  • Examples of norbornene-based monomers include bicyclo [2.2.1] hept-2-ene (common name: norbornene), 5-ethylidene-bicyclo [2.2.1] hept-2-ene (common name).
  • substituent in the above-mentioned monomer for example, alkyl groups such as methyl group and ethyl group; alkenyl groups such as vinyl group; alkylidene groups such as propan-2-ylidene; aryl groups such as phenyl group; An acid anhydride group; a carboxyl group; an alkoxycarbonyl group such as a methoxycarbonyl group; and the like.
  • the said substituent may have one type independently, and may have two or more types by arbitrary ratios.
  • single ring cyclic olefins include cyclic monoolefins such as cyclobutene, cyclopentene, methylcyclopentene, cyclohexene, methylcyclohexene, cycloheptene, cyclooctene and the like; cyclohexadiene, methylcyclohexadiene, cyclooctadiene, methylcyclooctadiene, phenylcyclo Cyclic diolefins such as octadiene; and the like.
  • a cyclic olefin monomer may be used individually by 1 type, and may be used combining two or more types by arbitrary ratios.
  • the polymer ( ⁇ ) may be a block copolymer or a random copolymer.
  • cyclic olefin monomers there may be those in which stereoisomers of endo form and exo form are present.
  • the cyclic olefin monomer either an endo form or an exo form may be used.
  • only one of the endo and exo isomers may be used alone, or an isomer mixture containing the endo and exo isomers in any proportion may be used.
  • the crystallinity of the alicyclic structure-containing polymer is increased, and a film which is more excellent in heat resistance is easily obtained. Therefore, it is preferable to increase the proportion of one stereoisomer.
  • the proportion of endo or exo is preferably 80% or more, more preferably 90% or more, and still more preferably 95% or more.
  • the proportion of the endo form is high.
  • the crystallinity of the polymer ( ⁇ ) and the polymer ( ⁇ ) can usually be increased by increasing the degree of syndiotactic stereoregularity (ratio of racemo dyad).
  • the ratio of racemo dyads to structural units of the polymer ( ⁇ ) and the polymer ( ⁇ ) is preferably 51%.
  • the content is more preferably 60% or more, particularly preferably 70% or more.
  • the proportion of racemo dyads can be determined by 13 C-NMR spectral analysis. Specifically, it can be measured by the following method. Inverse-gated decoupling method is applied at 200 ° C. using ortho-dichlorobenzene-d 4 as a solvent, and 13 C-NMR measurement of a polymer sample is performed. Based on the result of this 13 C-NMR measurement, the intensity ratio of the 43.35 ppm signal from the meso dyad and the 43.43 ppm signal from the racemo dyad with the 127.5 ppm peak of orthodichlorobenzene-d 4 as a reference shift The ratio of racemo dyads of the polymer sample can be determined based on
  • the cyclic olefin monomer used for producing the polymers ( ⁇ ) and ( ⁇ ) is selected from the range shown as cyclic olefin monomers usable for producing the polymer ( ⁇ ) and the polymer ( ⁇ ) A thing can be used arbitrarily. Moreover, a cyclic olefin monomer may be used individually by 1 type, and may be used combining two or more types by arbitrary ratios.
  • any monomer that can be copolymerized with the cyclic olefin monomer may be used as the monomer in combination with the cyclic olefin monomer.
  • the optional monomer include ⁇ -olefins having 2 to 20 carbon atoms such as ethylene, propylene, 1-butene, 1-pentene and 1-hexene; and aromatic ring vinyl compounds such as styrene and ⁇ -methylstyrene
  • Non-conjugated dienes such as 1,4-hexadiene, 4-methyl-1,4-hexadiene, 5-methyl-1,4-hexadiene and 1,7-octadiene; and the like.
  • ⁇ -olefins are preferable, and ethylene is more preferable.
  • one type of arbitrary monomer may be used alone, or two or more types may be used in combination in an arbitrary ratio.
  • the ratio of the amount of the cyclic olefin monomer to the optional monomer is preferably 30:70 to 99: 1, more preferably 50: weight ratio (cyclic olefin monomer: optional monomer). 50 to 97: 3, particularly preferably 70:30 to 95: 5.
  • a polymer ((gamma)) may be a block copolymer and it is random. It may be a copolymer.
  • the alicyclic structure-containing polymer having crystallinity as described above can be produced, for example, by the method described in WO 2016/067893.
  • the proportion of the crystalline alicyclic structure-containing polymer in the crystalline resin is preferably 50% by weight or more, more preferably 70% by weight or more, and particularly preferably 90% by weight or more.
  • the flexibility of the optical film can be enhanced by setting the ratio of the alicyclic structure-containing polymer having crystallinity to the lower limit value of the above range or more.
  • the degree of crystallinity is preferably 1% or more, more preferably 2% or more, still more preferably 3% or more It is.
  • the optical film can be provided with high heat resistance and chemical resistance.
  • the upper limit of the degree of crystallinity of the polymer having crystallinity is not limited, it is usually 90% or less.
  • the degree of crystallinity is less than or equal to the above upper limit value, the transparency of the optical film can be easily improved.
  • the crystallinity of the polymer can be measured by X-ray diffraction.
  • the melting point of the crystalline polymer is preferably 200 ° C. or more, more preferably 230 ° C. or more, and preferably 290 ° C. or less.
  • the non-crystalline alicyclic structure-containing polymer is one having no crystallinity.
  • the monomer which comprises a non-crystalline alicyclic structure containing polymer the thing similar to the example of the monomer which comprises the crystalline alicyclic structure containing polymer described above is mentioned. It can be mentioned.
  • the non-crystalline alicyclic structure-containing polymer is obtained by polymerizing the above-mentioned monomers by a known polymerization method, and a polymer having a low degree of syndiotactic stereoregularity, a common atactic polymer or It can be produced by forming an isotactic polymer.
  • the mode of polymerization may be either ring-opening polymerization or addition polymerization.
  • Noncrystalline norbornene polymer In the case of the non-crystalline alicyclic structure-containing polymer other than the after-mentioned block copolymer hydride, specifically, in the case of a norbornene-based polymer, for example, the ring-opening weight of the norbornene-based monomer Coalescing, ring-opening copolymers of norbornene-based monomers and other monomers capable of ring-opening copolymerization, and hydrides thereof; addition polymers of norbornene-based monomers, norbornene-based monomers And addition copolymers with other polymerizable monomers.
  • a norbornene-based polymer for example, the ring-opening weight of the norbornene-based monomer Coalescing, ring-opening copolymers of norbornene-based monomers and other monomers capable of ring-opening copolymerization, and hydrides thereof; addition polymers of norbornene-based monomers, nor
  • a hydrogenated ring-opened polymer of a norbornene-based monomer is particularly preferable.
  • the norbornene-based polymer may be selected from, for example, the polymers disclosed in JP-A-2002-321302.
  • the weight average molecular weight (Mw) when the non-crystalline alicyclic structure-containing polymer is a norbornene-based polymer is preferably 10,000 or more, more preferably 15,000 or more, particularly preferably 20,000. It is the above, Preferably it is 100,000 or less, More preferably, it is 80,000 or less, Especially preferably, it is 50,000 or less.
  • the weight average molecular weight (Mw) and the number average molecular weight (Mn) of the norbornene-based polymer can be measured as a weight average molecular weight in terms of polyisoprene or polystyrene by gel permeation chromatography using cyclohexane as a solvent. If the sample is not soluble in cyclohexane, toluene may be used instead of cyclohexane as the solvent.
  • Block copolymer hydride which is an example of the alicyclic structure-containing polymer in the present invention may be crystalline or non-crystalline, but is usually non-crystalline.
  • Specific block copolymer hydrides [E] can be mentioned as block copolymer hydrides.
  • the block copolymer hydride [E] is obtained by hydrogenating the carbon-carbon unsaturated bond of the main chain and the side chain of the specific block copolymer [D] and the carbon-carbon unsaturated bond of the aromatic ring. It is a compound having the resulting structure.
  • the block copolymer [D] is composed of a specific polymer block [A] and a specific polymer block [B], or a specific polymer block [A] and a specific polymer block [C] It consists of Polymer block [A] is a polymer block which has as a main component repeating unit [I] derived from an aromatic vinyl compound.
  • Polymer block [B] is a polymer block which has as a main component repeating unit [I] derived from an aromatic vinyl compound and repeating unit [II] derived from a chain conjugated diene compound.
  • Polymer block [C] is a polymer block which has repeating unit [II] derived from a chain conjugated diene compound as a main component.
  • the term "main component” means one whose content is 50% by weight or more of the whole.
  • the repeating unit derived from a certain compound means a repeating unit having a structure obtained by polymerization of the compound.
  • the hydride of a certain polymer refers to a substance having a structure obtained by hydrogenation of the polymer. However, the said repeating unit and the hydride are not limited by the manufacturing method.
  • the block copolymer [D] preferably has two or more polymer blocks [A] per molecule, and one or more polymer blocks [B] or polymer blocks [C] per molecule, What consists of is preferable.
  • the block copolymer [D] has two or more polymer blocks [A], these may be the same as or different from each other.
  • the weight average molecular weights of two polymer blocks [A] which one block copolymer [D] has may be the same or different.
  • the weight average molecular weight Mw (A) of the polymer block [A] is 3,000 to 90,000, preferably 3,500 to 80,000, and more preferably 4,000 to 60,000.
  • Mw (A) of the polymer block [A] is 3,000 or more, the mechanical strength of the block copolymer hydride [E] can be improved.
  • the Mw (A) of the polymer block [A] is 90,000 or less, the melt formability of the block copolymer hydride [E] can be made favorable.
  • the weight fraction wA of all the polymer blocks [A] in the block copolymer [D] in the block copolymer [D], and the block copolymer of the polymer block [B] or the polymer block [C] It is preferable that the weight fraction wB in the combined [C] has a predetermined ratio. That is, the ratio of wA to wB (wA / wB) is preferably 50/50 or more, more preferably 53/47 or more, still more preferably 57/43 or more, and on the other hand preferably 95/5 or less, more preferably It is 85/15 or less.
  • wA / wB By making wA / wB below the above-mentioned upper limit, flexibility can be given to block copolymer hydride [E], and good mechanical strength can be given.
  • Favorable heat resistance can be provided by making wA / wB more than the said minimum.
  • the hydrogenation rate of the block copolymer hydride [E] is preferably It is 90% or more, preferably 95% or more, more preferably 99% or more.
  • the hydrogenation rate of the block copolymer hydride [E] can be determined by 1 H-NMR or comparison of peak areas by UV detector and RI detector by GPC, or the like. Specifically, 1 H-NMR can be measured at 145 ° C. using ortho-dichlorobenzene-d4 as a solvent.
  • the molecular weight of the block copolymer hydride [E] is preferably 40,000 or more, more preferably 41,000 or more, and more preferably 40,000 or more, more preferably 41,000 or more, in terms of polystyrene equivalent weight average molecular weight (Mw) measured by GPC using THF as a solvent. It is more preferably 45,000 or more, and preferably 150,000 or less, more preferably 130,000 or less, and still more preferably 100,000 or less.
  • the molecular weight distribution (Mw / Mn) of the block copolymer hydride [E] is preferably 3 or less, more preferably 2 or less, and particularly preferably 1.5 or less. When Mw and Mw / Mn are in the above ranges, the heat resistance and the mechanical strength to the change in retardation of the formed stretched film are good.
  • block copolymer hydride [E] Specific examples and production methods of the block copolymer hydride [E] include, for example, the specific examples and production methods disclosed in WO 2016/152871.
  • the proportion of the alicyclic structure-containing polymer in the resin is preferably 50% by weight or more, more preferably 70% by weight or more. Particularly preferably, it is 90% by weight or more.
  • the resin which comprises an optical film may contain arbitrary components other than an alicyclic structure containing polymer.
  • optional components include crosslinking aids.
  • crosslinking assistants include oximes such as p-quinonedioxime and p, p'-dibenzoylquinone dioxime; ethylene dimethacrylate, polyethylene glycol dimethacrylate, trimethylolpropane trimethacrylate, cyclohexyl methacrylate, acrylic acid / acrylic acid / Zinc oxide mixtures, acrylates or methacrylates such as allyl methacrylate; vinyl monomers such as divinylbenzene, vinyltoluene, vinylpyridine, etc.
  • allyl isocyanurate N, N'-m-phenylenebismaleimide, N, N '-(4,4'-methylenediphenylene) dimaleimide, etc. Mid compounds and the like.
  • crosslinking assistant one type may be used alone, or two or more types may be used in combination in an arbitrary ratio. From the viewpoint of improving the properties such as the electrical properties, heat resistance and solvent resistance of the stretched film obtained, allyl compounds are preferable, and in particular from the viewpoint of thermal stability, triallyl isocyanurate (TAIC) is most preferable.
  • Examples of other optional components include stabilizers such as antioxidants, ultraviolet light absorbers and light stabilizers; resin modifiers such as lubricants and plasticizers; colorants such as dyes and pigments; antistatic agents etc.
  • a compounding agent is mentioned. These compounding agents can be used singly or in combination of two or more kinds, and the compounding amount thereof is appropriately selected as long as the object of the present invention is not impaired.
  • the method for producing an optical film according to the present invention comprises a step of stretching a film containing an alicyclic structure-containing polymer, and a treatment step including at least one of the steps of heat curing the film, and after the treatment step. Roughening at least one side of the film.
  • the film containing the alicyclic structure-containing polymer before undergoing the treatment process may be referred to as a "raw film” for the purpose of distinguishing it from the film after undergoing the treatment process.
  • the film before passing through the roughening process may be called “film before roughening" among the films after passing through the treatment process, and the film after passing through the roughening process may be called “roughened film”.
  • the raw film can be produced, for example, by molding a resin containing an alicyclic structure-containing polymer into a film.
  • the molding method of the resin containing the alicyclic structure-containing polymer is not particularly limited, and a known method such as melt extrusion molding can be adopted.
  • the dimensions of the raw film can be appropriately set so as to obtain the desired dimensions as a product optical film.
  • the raw film is preferably a long film.
  • the thickness of the raw film is preferably 5 ⁇ m or more, more preferably 15 ⁇ m or more, and one side is preferably 200 ⁇ m or less, more preferably 170 ⁇ m or less.
  • the processing step is any one of a step of stretching a film containing an alicyclic structure-containing polymer (stretching step) and a step of heat curing a film containing an alicyclic structure-containing polymer (heat curing step) Or both steps.
  • stretching step stretching a film containing an alicyclic structure-containing polymer
  • heat curing step heat curing step
  • any mode such as uniaxial stretching or biaxial stretching may be employed.
  • the stretching direction is the longitudinal direction (the direction parallel to the longitudinal direction of the long film), the transverse direction (the width direction of the long film) And a diagonal direction (a direction which is neither vertical nor horizontal).
  • the stretching ratio is preferably 1.05 times or more, more preferably 1.1 times or more, and on the other hand preferably 7 times or less, more preferably 6 times or less.
  • the stretching temperature is preferably 80 ° C. or more, more preferably 100 ° C. or more, and preferably 200 ° C. or less, more preferably 180 ° C. or less.
  • a large-area film can be easily obtained by performing such stretching processing.
  • a film having retardation is required as a product, such retardation can be easily obtained.
  • a film with little retardation is required as a product, such a film can be easily obtained by adopting, for example, the above-mentioned block copolymer hydride [E] as the alicyclic structure-containing polymer Can be obtained.
  • the obtained film can be a film that easily breaks cohesively when subjected to a tensile force in the thickness direction.
  • by roughening at least one surface of the film it is possible to suppress the problem caused by cohesive failure, and therefore it is possible to achieve peel strength while enjoying the advantage obtained by stretching. It can be enhanced.
  • thermosetting process crystallizes the crystalline alicyclic structure containing polymer contained in a film, for example, when a film contains a crystalline alicyclic structure containing polymer as an alicyclic structure containing polymer. Forming a film containing the crystallized resin.
  • the crystalline alicyclic structure-containing polymer is crystallized to obtain, for example, a film whose main component is a crystallized resin having a crystallization degree of 1% or more.
  • the heat curing step can be carried out by bringing the film containing the alicyclic structure-containing polymer into a predetermined temperature range while holding and tensioning at least two ends.
  • the film containing the alicyclic structure-containing polymer to be subjected to the heat curing step is also referred to as a "film to be cured”.
  • the state in which the film to be cured is in tension means the state in which the film to be cured is in tension.
  • the state in which the film to be cured is tensioned does not include the state in which the film to be cured is substantially stretched. Further, being substantially stretched means that the stretching ratio in any direction of the film to be cured is usually 1.1 times or more.
  • the film to be cured When holding the film to be cured, the film to be cured is held by a suitable holder.
  • the holder may be capable of continuously holding the entire length of the edge of the film to be cured, or may be intermittently held at intervals.
  • the edge of the film to be cured may be intermittently held by holders arranged at predetermined intervals.
  • the film to be cured is held in tension by holding at least two ends of the film to be cured. This prevents deformation due to thermal contraction of the film to be cured in the region between the held edges.
  • the two opposing ends for example, the ends on the long side or the ends on the short side
  • the two end sides are held
  • the two end sides at the ends in the width direction are held to tension the region between the two end sides.
  • deformation can be prevented on the entire surface of the long curing target film.
  • the film to be cured that is prevented from being deformed is prevented from being deformed, such as wrinkles, even if stress is generated in the film due to heat contraction.
  • the deformation is suppressed by holding at least two sides orthogonal to the stretching direction (in the case of biaxial stretching, the direction in which the stretching ratio is large). It will be more reliable.
  • edges In order to more reliably suppress deformation in the heat curing step, it is preferable to hold more edges. Therefore, for example, in the film to be cured of a single wafer, it is preferable to hold all the edges thereof. As a specific example, in the case of a rectangular sheet-shaped cured film, it is preferable to hold four sides.
  • a holder what can fix the relative position of holders in a thermosetting process is preferable.
  • the positions of the holders do not move relative to each other in the heat curing step, it is easy to suppress the substantial stretching of the film to be cured in the heat curing step.
  • a grip such as a clip which is provided at a predetermined interval in a mold and can hold an end side of the film to be cured can be mentioned.
  • a grip provided on a tenter stretching machine and capable of gripping the end side of the curing target film Can be mentioned.
  • an end side at the longitudinal end of the film to be cured (that is, an end side on the short side) may be held, but instead of holding the above-mentioned side
  • the film may be held on both sides in the longitudinal direction of the region to be subjected to the crystallization treatment of the film to be cured.
  • holding devices capable of holding and tensioning the film to be cured may be provided on both sides in the longitudinal direction of the region of the film to be cured that is to be subjected to the crystallization treatment. Examples of such a holding device include a combination of two rolls, a combination of an extruder and a take-up roll, and the like.
  • the film to be cured in a state in which at least two end sides of the film to be cured are held and tensioned as described above, the film to be cured is not less than the glass transition temperature Tg of the alicyclic structure-containing polymer, alicyclic The temperature is lower than the melting point Tm of the formula structure-containing polymer.
  • Tg glass transition temperature
  • Tm melting point
  • the temperature range in the heat curing step can be arbitrarily set in the temperature range of not less than the glass transition temperature Tg of the alicyclic structure-containing polymer and the melting point Tm of the alicyclic structure-containing polymer.
  • the temperature is preferably set to increase the crystallization rate.
  • the temperature of the film to be cured in the heat curing step is preferably Tg + 20 ° C. or more, more preferably Tg + 30 ° C. or more, preferably Tm-20 ° C. or less, more preferably Tm-40 ° C. or less.
  • thermosetting process since a contact with a heating device and a hardening object film is unnecessary, a heating device which can raise atmosphere temperature of a hardening object film is preferred.
  • suitable heating devices include ovens and furnaces.
  • the treatment time for maintaining the film to be cured in the above temperature range is preferably 1 second or more, more preferably 5 seconds or more, preferably 30 minutes or less, more preferably 10 minutes or less.
  • the flexibility of the optical film can be enhanced by sufficiently advancing the crystallization of the alicyclic structure-containing polymer in the heat curing step.
  • the treatment time is set to the upper limit or less of the above range, so that an optical film suitable for the case where an optically transparent film is required can be obtained.
  • the roughening step is a step of roughening at least one surface of the raw film (film before roughening) after the treatment step.
  • the maximum height Rz of the surface is at least 150 nm and at most 3000 nm
  • the arithmetic mean roughness Ra is at least 30 nm and at most 1000 nm on at least one surface of the film after roughening (roughened film) Roughen the
  • the roughening method of the film before roughening is not particularly limited, and any method capable of setting the surface roughness on at least one surface of the roughened film obtained after the roughening step to the above predetermined range is selected. sell.
  • roughening methods include buffing, blasting, hairline treatment, and dry etching (corona discharge, plasma treatment, EUV exposure).
  • buff processing is preferable from the viewpoint of high-speed processing and securing of the cleanliness of the processing unit.
  • the roughening step is performed by corona discharge treatment, plasma treatment or the like, the roughening treatment is performed at an intensity (for example, 1000 w / m 2 ) higher than the intensity in general corona discharge treatment and plasma treatment.
  • the maximum height Rz is 150 nm or more and 3000 nm or less, and the arithmetic average roughness Ra is 30 nm or more and 1000 nm or less.
  • the maximum height Rz is preferably 200 nm or more, more preferably 300 nm or more, and preferably 2000 nm or less.
  • Arithmetic mean roughness Ra is preferably 40 nm or more, more preferably 45 nm or more, and preferably 700 nm or less.
  • the surface of the film is adjusted so that Rz and Ra fall within the above range. Since the cohesive failure part can be peeled off by roughening, the peel strength can be increased.
  • the optical film may be roughened so that the surface roughness (Ra, Rz) of one side or both sides is in the above-mentioned range.
  • the arithmetic average roughness Ra and the maximum height Rz of the surface of the optical film can be measured according to JIS B 0601-2001 using a color 3D laser microscope (VK-9700 manufactured by Keyence Corporation).
  • the internal haze of the optical film of the present invention is preferably 5% or less, more preferably 3% or less, and still more preferably 1% or less.
  • the internal haze can be measured, for example, using a haze meter ("NDH 5000" manufactured by Nippon Denshoku Industries Co., Ltd.).
  • the optical film of the present invention has a retardation Re in the in-plane direction of preferably 3 nm or less, more preferably 2.5 nm or less, still more preferably 2 nm or less.
  • the absolute value of the retardation Rth in the thickness direction is preferably 3 nm or less, more preferably 2.5 nm or less, and still more preferably 2 nm or less.
  • the absolute value of the retardation in the in-plane direction of the optical film and the retardation in the thickness direction can be measured at a measurement wavelength of 590 nm using “AxoScan” manufactured by AXOMETRICS as a measurement apparatus.
  • the phase difference of the in-plane direction and thickness direction of an optical film is calculated using the average refractive index of the said optical film.
  • the average refractive index refers to an average value of refractive indexes in two directions which are in-plane directions of the optical film and perpendicular to each other, and in a thickness direction of the optical film.
  • the dimensions of the optical film of the present invention can be appropriately set to the desired dimensions as a product. Due to the efficiency of production, the optical film of the present invention can be produced as a long film.
  • the thickness of the optical film of the present invention is preferably 5 ⁇ m or more, more preferably 10 ⁇ m or more, and preferably 200 ⁇ m or less, more preferably 170 ⁇ m or less.
  • the optical film of the present invention has high mechanical strength and good optical properties by including an alicyclic structure-containing polymer.
  • the optical film of the present invention has high peel strength with the adherend. Therefore, the optical film of the present invention can be suitably used as a protective film for protecting other layers in display devices such as liquid crystal display devices and organic electroluminescent display devices.
  • the optical film of the present invention can function particularly well as a polarizer protective film for protecting a polarizer in a polarizing plate.
  • an adhesive layer may be provided between the polarizer and the polarizer.
  • the polarizer to which the optical film of the present invention is applied is not particularly limited, and any known one may be used.
  • a polarizer after making materials, such as iodine and a dichroic dye, adsorb
  • the adhesive which comprises an adhesive bond layer
  • the base polymer is mentioned.
  • base polymers include, for example, acrylic polymers, silicone polymers, polyesters, polyurethanes, polyethers, and synthetic rubbers.
  • ⁇ Evaluation method ⁇ [Method of measuring weight average molecular weight and number average molecular weight]
  • the weight average molecular weight and the number average molecular weight of the polymer were measured as polystyrene equivalent values using a gel permeation chromatography (GPC) system (“HLC-8320” manufactured by Tosoh Corporation).
  • GPC gel permeation chromatography
  • H-type column manufactured by Tosoh Corporation
  • tetrahydrofuran was used as a solvent.
  • the temperature at the time of measurement was 40.degree.
  • Method of measuring glass transition temperature Tg and melting point Tm The sample heated to 300 ° C. in a nitrogen atmosphere was quenched with liquid nitrogen and heated at 10 ° C./min using a differential scanning calorimeter (DSC) to determine the glass transition temperature Tg and the melting point Tm of the sample.
  • DSC differential scanning calorimeter
  • the sample is press-formed to prepare a test piece 50 mm long, 10 mm wide and 1 mm thick, according to JIS-K7244-4 method.
  • the glass transition temperature Tg2 derived from the hard segment was determined from the glass transition temperature Tg1 derived from the soft segment from the peak top temperature on the low temperature side of the loss tangent tan ⁇ and the peak top temperature from the high temperature side.
  • Xc K ⁇ Ic / It (I)
  • Xc represents the crystallinity of the test sample
  • Ic represents the diffracted X-ray intensity from the crystallized portion
  • It represents the entire diffracted X-ray intensity
  • K represents the correction term.
  • a film of a resin containing a norbornene-based polymer (Zeonor film, glass transition temperature 160 ° C., thickness 100 ⁇ m, manufactured by Nippon Zeon Co., which is not particularly stretched) is prepared. Corona treatment was applied to one side of the film to be measured (the films of Examples and Comparative Examples) and one side of the adherend. The adhesive was attached to both the corona-treated surface of the film to be measured and the corona-treated surface of the adherend, and the surfaces to which the adhesive was attached were bonded. At this time, a UV adhesive CRB series (manufactured by Toyochem) was used as an adhesive.
  • a UV adhesive CRB series manufactured by Toyochem
  • UV irradiation was performed under the conditions of peak illuminance 100 mW / cm 2 and integrated light quantity 3000 mJ / cm 2 to cure the adhesive . Thereby, a sample film provided with a film to be measured and an adherend was obtained.
  • the 90 degree peeling test was implemented about the obtained sample film. That is, the sample film was cut to a width of 15 mm, and the film to be measured was attached to the surface of the slide glass with an adhesive. At this time, as a pressure-sensitive adhesive, a double-sided pressure-sensitive adhesive tape (manufactured by Nitto Denko Corporation, product number "CS9621") was used. Place the adherend on the tip of a high performance digital force gauge ZP-5N (made by Imada Co., Ltd.), and pull the adherend at a speed of 300 mm / min in the direction normal to the surface of the slide glass. Was measured as peel strength.
  • a pressure-sensitive adhesive a double-sided pressure-sensitive adhesive tape (manufactured by Nitto Denko Corporation, product number "CS9621") was used. Place the adherend on the tip of a high performance digital force gauge ZP-5N (made by Imada Co., Ltd.), and pull the adherend at a speed of 300 mm / min in the direction normal
  • the internal haze of the film was measured as follows. First, the film was cut out to a size of 50 mm ⁇ 50 mm to obtain a test piece. Subsequently, a cycloolefin film ("Zeonor film” manufactured by Nippon Zeon Co., Ltd., 40 ⁇ m thickness) is bonded to both surfaces of the test piece through a transparent optical adhesive film ("8146-2" manufactured by 3M) having a thickness of 50 ⁇ m. Then, a sample multilayer body having a layer configuration of cycloolefin film / transparent optical adhesive film / test strip / transparent optical adhesive film / cycloolefin film was obtained. Subsequently, the haze of this sample multilayer body was measured using a haze meter ("NDH 5000" manufactured by Nippon Denshoku Industries Co., Ltd.).
  • a reference laminate comprising a cycloolefin film, a transparent optical adhesive film, a transparent optical adhesive film, and a cycloolefin film in this order was formed.
  • the haze of this laminate for reference was measured by the above-mentioned haze meter.
  • the measured haze of the reference laminate was 0.04%.
  • the haze of 0.04% of the reference laminate is the sum of the haze of two cycloolefin films and the haze of two transparent optical adhesive films.
  • the internal haze of the test piece was obtained by subtracting the haze value of two cycloolefin films and the sum 0.04% of the haze value of two transparent optical adhesive films from the haze of the sample multilayer body described above.
  • the number average molecular weight (Mn) and the weight average molecular weight (Mw) of the ring-opened polymer of dicyclopentadiene obtained are 8,750 and 28,100, respectively, and the molecular weight distribution (Mw / Mn) determined therefrom was 3.21.
  • cyclohexane 100 parts is added to 200 parts of a ring-opened polymer solution of dicyclopentadiene (30 parts of a polymer) after filtration, and 0.0043 parts of chlorohydridocarbonyltris (triphenylphosphine) ruthenium is added to obtain hydrogen.
  • the hydrogenation reaction was performed at a pressure of 6 MPa and 180 ° C. for 4 hours.
  • a reaction solution containing a hydrogenated product of a ring-opened polymer of dicyclopentadiene was obtained.
  • a hydrogenated substance was precipitated to form a slurry solution.
  • the hydrogenated substance and solution contained in the above reaction solution are separated using a centrifugal separator, dried under reduced pressure at 60 ° C. for 24 hours, and the hydrogenated substance of the ring-opened polymer of dicyclopentadiene having crystallinity. 28.5 parts were obtained.
  • the hydrogenation rate of this hydrogenated substance was 99% or more, the glass transition temperature (Tg) was 95 ° C., and the melting point (Tm) was 262 ° C.
  • Example 1 (1-1. Preparation of resin) In 100 parts of the hydrogenated product of the ring-opened polymer of dicyclopentadiene obtained in Preparation Example 1, an antioxidant (tetrakis [methylene-3- (3 ′, 5′-di-t-butyl-4′-hydroxyphenyl)] ) Propionate] Methane; 1.1 parts of “Irganox (registered trademark) 1010” manufactured by BASF Japan Ltd. was mixed to obtain a resin as a film material.
  • an antioxidant tetrakis [methylene-3- (3 ′, 5′-di-t-butyl-4′-hydroxyphenyl)]
  • Irganox registered trademark
  • the resin obtained in (1-1) was introduced into a twin-screw extruder equipped with four die holes with an inner diameter of 3 mm.
  • the resin was formed into a strand-like molded product by hot melt extrusion using the above-mentioned twin-screw extruder.
  • the molded body was shredded with a strand cutter to obtain resin pellets.
  • the operating conditions of the above-mentioned twin screw extruder are shown below. Barrel set temperature: 270 ° C to 280 ° C ⁇ Die setting temperature: 250 ° C -Screw rotational speed: 145 rpm ⁇ Feeder rotation number: 50 rpm
  • the obtained pellets were fed to a hot melt extruded film forming machine equipped with a T-die.
  • the resin was extruded from a T-die and wound on a roll at a speed of 1 m / min to produce a long original film (50 ⁇ m in thickness) made of the resin.
  • the operating conditions of the above-mentioned film forming machine are shown below.
  • Example 2 (2-1. Production of a film before roughening)
  • the raw film cut into a size of 100 mm ⁇ 100 mm obtained in (1-2. Production of a film before roughening) is subjected to four sides of the film using a small biaxial stretching machine (made by Toyo Seiki Seisakusho Co., Ltd.)
  • the end portion of the film was gripped with a clip and heat curing was performed at a temperature of 145 ° C. to obtain a film before roughening.
  • the peel strength Fa was measured to be 0.1 N / m.
  • Example 3 (3-1. Production of a film before roughening) Pellets of a resin containing a cycloolefin polymer (a resin of a norbornene polymer having a glass transition temperature of 126 ° C., manufactured by Nippon Zeon Co., Ltd.) were dried at 100 ° C. for 5 hours. Thereafter, the dried resin pellets were fed to a single screw extruder. The resin was melted in an extruder, passed through a polymer pipe and a polymer filter, extruded from a T-die onto a casting drum, and cooled. Thus, a raw film having a thickness of 50 ⁇ m and a width of 500 mm was obtained.
  • a resin containing a cycloolefin polymer a resin of a norbornene polymer having a glass transition temperature of 126 ° C., manufactured by Nippon Zeon Co., Ltd.
  • Example 4 (4-1. Block copolymer [D]) In a sufficiently dried and nitrogen-substituted stainless steel reactor equipped with a stirrer, 256 parts of dehydrated cyclohexane, 25.0 parts of dehydrated styrene, and 0.65 parts of n-dibutyl ether are charged, and stirred at 60 ° C. The polymerization reaction was initiated by adding 1.35 parts of n-butyllithium (15% cyclohexane solution). Furthermore, it was made to react at 60 degreeC for 60 minutes, stirring. The polymerization conversion at this point was 99.5% (measured by gas chromatography, the same applies below).
  • the reaction solution was filtered to remove the hydrogenation catalyst.
  • pentaerythrityl tetrakis [3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate] phenol-based antioxidant
  • 1.0 part of a xylene solution in which 0.1 part was dissolved was added and dissolved.
  • the above solution is evaporated from the solution cyclohexane, xylene and other volatilization from the solution at a temperature of 260 ° C.
  • the molten polymer is continuously filtered at a temperature of 260 ° C. by a polymer filter (manufactured by Fuji Filter Co., Ltd.) equipped with a stainless steel sintered filter with a pore diameter of 20 ⁇ m connected to a concentration dryer, and then the molten polymer is formed into strands After extrusion and cooling, a block copolymer hydride [E] was obtained by a pelletizer.
  • Mw of the block copolymer hydride [E] is 45, 100, Mw / Mn is 1.04, the hydrogenation rate of the main chain and the aromatic ring is almost 100%, the glass transition temperature Tg1 is -50 ° C, Tg2 is It was 140 ° C.
  • At least one surface of the film containing the alicyclic structure-containing polymer has a maximum height Rz of 150 nm to 3000 nm and an arithmetic average roughness Ra of 30 nm to 1000 nm. It was found that the roughening treatment gave an optical film having high peel strength and useful as a polarizer protective film.

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Optics & Photonics (AREA)
  • Nonlinear Science (AREA)
  • Manufacturing & Machinery (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Mathematical Physics (AREA)
  • Health & Medical Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Polarising Elements (AREA)
  • Shaping By String And By Release Of Stress In Plastics And The Like (AREA)
  • Graft Or Block Polymers (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

脂環式構造含有重合体を含むフィルムの、少なくとも一方の面を粗化してなる光学フィルムであって、少なくとも一方の面において、最大高さRzが150nm以上3000nm以下であり、かつ、算術平均粗さRaが30nm以上1000nm以下である、光学フィルム。前記光学フィルムは、好ましくは、その内部ヘイズが5%以下である。前記脂環式構造含有重合体は、好ましくは、特定のブロック共重合体水素化物[E]である。粗化の工程を含む、光学フィルムの製造方法も併せて開示される。

Description

光学フィルム及びその製造方法
 本発明は光学フィルム及びその製造方法に関する。
 液晶表示装置などの表示装置には、偏光板、位相差板等の様々な光学素子が設けられる。このような光学素子の中にはフィルムにより構成されているものがある。例えば、偏光板は、ポリビニルアルコール等の材料で形成されたフィルム状の偏光子と、かかる偏光子を保護する保護フィルムとを含むことが一般的である。かかる保護フィルムの例としては、脂環式構造含有重合体を含む樹脂のフィルムが知られている(特許文献1~2参照)。脂環式構造含有重合体を含む樹脂のフィルムは、機械的強度及び光学的特性の観点から、偏光板における保護フィルムとして有用に用いうる。
特開2007-245551号公報 特開2011-013378号公報
 偏光板は、表示装置の製造時及び使用時の環境において耐久性を発現することが求められる。例えば、表示装置の製造時におけるリワークの際、及び表示装置の使用時において偏光子が収縮した際等において、偏光板における保護フィルムの剥離強度が高いことが求められる場合がある。
 しかしながら、従来の、脂環式構造含有重合体を含む樹脂のフィルムを、保護フィルムとして用いた場合、剥離強度が不十分である場合がある。特に、保護フィルムが、延伸の工程を経て製造された延伸フィルムである場合、当該重合体分子が配向して分子間の絡み合いが低下することにより生じる表層付近での凝集破壊が原因となり、剥離強度の不足が起こりうる。
 従って、本発明の目的は、剥離強度が高く、保護フィルムとして有用に用いることができる光学フィルム及びその製造方法を提供することにある。
 上述した課題を解決し目的を達成するため検討した結果、本発明者は、脂環式構造含有重合体を含むフィルムの少なくとも一方の面を粗化してなる光学フィルムの、少なくとも一方の面において、最大高さRz及び算術平均粗さRaを所定の範囲とすることにより、前記課題を解決しうることを見出し、本発明を完成させた。
 すなわち、本発明によれば、以下の〔1〕~〔7〕が提供される。
 〔1〕 脂環式構造含有重合体を含むフィルムの、少なくとも一方の面を粗化してなる光学フィルムであって、
 少なくとも一方の面において、最大高さRzが150nm以上3000nm以下であり、かつ、算術平均粗さRaが30nm以上1000nm以下である、光学フィルム。
 〔2〕 内部ヘイズが5%以下である、〔1〕に記載の光学フィルム。
 〔3〕 前記脂環式構造含有重合体は、ブロック共重合体水素化物[E]であり、
 前記ブロック共重合体水素化物[E]は、ブロック共重合体[D]の水素化物であり、
 前記ブロック共重合体[D]は、重合体ブロック[A]と重合体ブロック[B]とからなるか、又は前記重合体ブロック[A]と重合体ブロック[C]とからなり、
 前記重合体ブロック[A]は、芳香族ビニル化合物由来の繰り返し単位[I]を主成分とする重合体ブロックであり、
 前記重合体ブロック[B]は、芳香族ビニル化合物由来の繰り返し単位[I]及び鎖状共役ジエン化合物由来の繰り返し単位[II]を主成分とする重合体ブロックであり、
 前記重合体ブロック[C]は、鎖状共役ジエン化合物由来の繰り返し単位[II]を主成分とする重合体ブロックである、〔1〕または〔2〕に記載の光学フィルム。
 〔4〕 面内方向の位相差Reが3nm以下、厚み方向の位相差Rthの絶対値が3nm以下である、〔3〕に記載の光学フィルム。
 〔5〕 前記脂環式構造含有重合体が結晶性であり、結晶化度が1%以上である、〔1〕または〔2〕に記載の光学フィルム。
 〔6〕 偏光子保護フィルムである、〔1〕~〔5〕のいずれか1項に記載の光学フィルム。
 〔7〕 〔1〕~〔6〕のいずれか1項に記載の光学フィルムの製造方法であって、
 脂環式構造含有重合体を含むフィルムを延伸する工程、及び前記フィルムを熱硬化する工程のうちの少なくとも一方を含む処理工程と、
 前記処理工程を経た後のフィルムの、少なくとも一方の面を粗化する工程と、を有する、光学フィルムの製造方法。
 本発明の光学フィルムによれば、剥離強度が高く、偏光板における保護フィルムとして有用に用いることができるフィルムを提供することができる。また、本発明の光学フィルムの製造方法によれば、そのような本発明の光学フィルムを容易に製造することができる。
 以下、本発明について実施形態及び例示物を示して詳細に説明する。ただし、本発明は以下に示す実施形態及び例示物に限定されるものでは無く、本発明の請求の範囲及びその均等の範囲を逸脱しない範囲において任意に変更して実施しうる。
 本願において、「長尺状」のフィルムとは、フィルムの幅に対して、5倍以上の長さを有するものをいい、好ましくは10倍若しくはそれ以上の長さを有し、具体的にはロール状に巻き取られて保管又は運搬される程度の長さを有するものをいう。フィルムの幅に対する長さの割合の上限は、特に限定されないが、例えば100,000倍以下としうる。
 以下の説明において、フィルムの面内方向の位相差Reは、別に断らない限り、Re=(nx-ny)×dで表される値である。また、フィルムの厚み方向の位相差Rthは、別に断らない限り、Rth={(nx+ny)/2-nz}×dで表される値である。ここで、nxは、フィルムの厚み方向に垂直な方向(面内方向)であって最大の屈折率を与える方向の屈折率を表す。nyは、フィルムの前記面内方向であってnxの方向に直交する方向の屈折率を表す。nzは、フィルムの厚み方向の屈折率を表す。dは、フィルムの厚みを表す。測定波長は、別に断らない限り、550nmである。
 〔1.光学フィルム〕
 本発明の光学フィルムは、脂環式構造含有重合体を含むフィルムの少なくとも一方の面を粗化処理してなる。
 〔1.1.光学フィルムの材料〕
 脂環式構造含有重合体を含むフィルムは通常、脂環式構造含有重合体を含有する樹脂からなるものとしうる。脂環式構造含有重合体の例としては、結晶性の脂環式構造含有重合体、非結晶性の脂環式構造含有重合体及び特定のブロック共重合体水素化物である脂環式構造含有重合体が挙げられる。
 〔1.1.1.結晶性の脂環式構造含有重合体〕
 結晶性の重合体(結晶性を有する重合体)とは、融点を有する〔すなわち、示差走査熱量計(DSC)で融点を観測することができる〕重合体をいう。
 脂環式構造含有重合体とは、分子内に脂環式構造を有する重合体であって、環状オレフィンを単量体として用いた重合反応によって得られうる重合体又はその水素添加物をいう。また、脂環式構造含有重合体は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
 脂環式構造含有重合体が有する脂環式構造としては、例えば、シクロアルカン構造及びシクロアルケン構造が挙げられる。これらの中でも、熱安定性などの特性に優れる光学フィルムが得られ易いことから、シクロアルカン構造が好ましい。1つの脂環式構造に含まれる炭素原子の数は、好ましくは4個以上、より好ましくは5個以上であり、好ましくは30個以下、より好ましくは20個以下、特に好ましくは15個以下である。1つの脂環式構造に含まれる炭素原子の数が上記範囲内にあることで、機械的強度、耐熱性、及び成形性が高度にバランスされる。
 脂環式構造含有重合体において、全ての構造単位に対する脂環式構造を有する構造単位の割合は、好ましくは30重量%以上、より好ましくは50重量%以上、特に好ましくは70重量%以上である。脂環式構造含有重合体における脂環式構造を有する構造単位の割合を前記のように多くすることにより、高い可撓性等の本発明の効果をより高めることができる。
 また、脂環式構造含有重合体において、脂環式構造を有する構造単位以外の残部は、格別な限定はなく、使用目的に応じて適宜選択しうる。
 脂環式構造含有重合体の重量平均分子量(Mw)は、好ましくは1,000以上、より好ましくは2,000以上であり、好ましくは1,000,000以下、より好ましくは500,000以下である。このような重量平均分子量を有する脂環式構造含有重合体は、成形加工性と可撓性とのバランスに優れる。
 脂環式構造含有重合体の分子量分布(Mw/Mn)は、好ましくは1.0以上、より好ましくは1.5以上であり、好ましくは4.0以下、より好ましくは3.5以下である。ここで、Mnは数平均分子量を表す。このような分子量分布を有する脂環式構造含有重合体は、成形加工性に優れる。
 脂環式構造含有重合体の重量平均分子量(Mw)及び分子量分布(Mw/Mn)は、テトラヒドロフランを展開溶媒とするゲル・パーミエーション・クロマトグラフィー(GPC)により、ポリスチレン換算値として測定しうる。
 脂環式構造含有重合体のガラス転移温度Tgは、特に限定されないが、通常は85℃以上、通常170℃以下である。
 前記の脂環式構造含有重合体としては、例えば、下記の重合体(α)~重合体(δ)が挙げられる。これらの中でも、可撓性に優れる光学フィルムが得られ易いことから、結晶性を有する脂環式構造含有重合体としては、重合体(β)が好ましい。
 重合体(α):環状オレフィン単量体の開環重合体であって、結晶性を有するもの。
 重合体(β):重合体(α)の水素添加物であって、結晶性を有するもの。
 重合体(γ):環状オレフィン単量体の付加重合体であって、結晶性を有するもの。
 重合体(δ):重合体(γ)の水素添加物等であって、結晶性を有するもの。
 具体的には、脂環式構造含有重合体としては、ジシクロペンタジエンの開環重合体であって結晶性を有するもの、及び、ジシクロペンタジエンの開環重合体の水素添加物であって結晶性を有するものがより好ましく、ジシクロペンタジエンの開環重合体の水素添加物であって結晶性を有するものが特に好ましい。ここで、ジシクロペンタジエンの開環重合体とは、全構造単位に対するジシクロペンタジエン由来の構造単位の割合が、通常50重量%以上、好ましくは70重量%以上、より好ましくは90重量%以上、特に好ましくは100重量%の重合体をいう。
 重合体(α)及び重合体(β)の製造に用いうる環状オレフィン単量体は、炭素原子で形成された環構造を有し、該環中に炭素-炭素二重結合を有する化合物である。環状オレフィン単量体の例としては、ノルボルネン系単量体等が挙げられる。また、重合体(α)が共重合体である場合には、環状オレフィン単量体として、単環の環状オレフィンを用いてもよい。
 ノルボルネン系単量体は、ノルボルネン環を含む単量体である。ノルボルネン系単量体としては、例えば、ビシクロ[2.2.1]ヘプト-2-エン(慣用名:ノルボルネン)、5-エチリデン-ビシクロ[2.2.1]ヘプト-2-エン(慣用名:エチリデンノルボルネン)及びその誘導体(例えば、環に置換基を有するもの)等の、2環式単量体;トリシクロ[4.3.0.12,5]デカ-3,7-ジエン(慣用名:ジシクロペンタジエン)及びその誘導体等の、3環式単量体;7,8-ベンゾトリシクロ[4.3.0.12,5]デカ-3-エン(慣用名:メタノテトラヒドロフルオレン:1,4-メタノ-1,4,4a,9a-テトラヒドロフルオレンともいう)及びその誘導体、テトラシクロ[4.4.0.12,5.17,10]ドデカ-3-エン(慣用名:テトラシクロドデセン)、8-エチリデンテトラシクロ[4.4.0.12,5.17,10]-3-ドデセン及びその誘導体等の、4環式単量体;などが挙げられる。
 前記の単量体において置換基としては、例えば、メチル基、エチル基等のアルキル基;ビニル基等のアルケニル基;プロパン-2-イリデン等のアルキリデン基;フェニル基等のアリール基;ヒドロキシ基;酸無水物基;カルボキシル基;メトキシカルボニル基等のアルコキシカルボニル基;などが挙げられる。また、前記の置換基は、1種類を単独で有していてもよく、2種類以上を任意の比率で有していてもよい。
 単環の環状オレフィンとしては、例えば、シクロブテン、シクロペンテン、メチルシクロペンテン、シクロヘキセン、メチルシクロヘキセン、シクロヘプテン、シクロオクテン等の環状モノオレフィン;シクロヘキサジエン、メチルシクロヘキサジエン、シクロオクタジエン、メチルシクロオクタジエン、フェニルシクロオクタジエン等の環状ジオレフィン;等が挙げられる。
 環状オレフィン単量体は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。環状オレフィン単量体を2種以上用いる場合、重合体(α)は、ブロック共重合体であってもよいし、ランダム共重合体であってもよい。
 環状オレフィン単量体には、エンド体及びエキソ体の立体異性体が存在するものがありうる。環状オレフィン単量体としては、エンド体及びエキソ体のいずれを用いてもよい。また、エンド体及びエキソ体のうち一方の異性体のみを単独で用いてもよく、エンド体及びエキソ体を任意の割合で含む異性体混合物を用いてもよい。中でも、脂環式構造含有重合体の結晶性が高まり、耐熱性により優れるフィルムが得られ易くなることから、一方の立体異性体の割合を高くすることが好ましい。例えば、エンド体又はエキソ体の割合が、好ましくは80%以上、より好ましくは90%以上、さらに好ましくは95%以上である。また、合成が容易であることから、エンド体の割合が高いことが好ましい。
 重合体(α)及び重合体(β)は、通常、そのシンジオタクチック立体規則性の度合い(ラセモ・ダイアッドの割合)を高めることで、結晶性を高くすることができる。重合体(α)及び重合体(β)の立体規則性の程度を高くする観点から、重合体(α)及び重合体(β)の構造単位についてのラセモ・ダイアッドの割合は、好ましくは51%以上、より好ましくは60%以上、特に好ましくは70%以上である。
 ラセモ・ダイアッドの割合は、13C-NMRスペクトル分析により、測定しうる。具体的には、下記の方法により測定しうる。
 オルトジクロロベンゼン-dを溶媒として、200℃で、inverse-gated decoupling法を適用して、重合体試料の13C-NMR測定を行う。この13C-NMR測定の結果から、オルトジクロロベンゼン-d4の127.5ppmのピークを基準シフトとして、メソ・ダイアッド由来の43.35ppmのシグナルと、ラセモ・ダイアッド由来の43.43ppmのシグナルの強度比に基づいて、重合体試料のラセモ・ダイアッドの割合を求めうる。
 重合体(γ)及び(δ)の製造に用いる環状オレフィン単量体としては、重合体(α)及び重合体(β)の製造に用いうる環状オレフィン単量体として示した範囲から選択されるものを任意に用いうる。また、環状オレフィン単量体は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
 重合体(γ)の製造においては、単量体として、環状オレフィン単量体に組み合わせて、環状オレフィン単量体と共重合可能な任意の単量体を用いうる。任意の単量体としては、例えば、エチレン、プロピレン、1-ブテン、1-ペンテン、1-ヘキセン等の炭素原子数2~20のα-オレフィン;スチレン、α-メチルスチレン等の芳香環ビニル化合物;1,4-ヘキサジエン、4-メチル-1,4-ヘキサジエン、5-メチル-1,4-ヘキサジエン、1,7-オクタジエン等の非共役ジエン;等が挙げられる。これらの中でも、α-オレフィンが好ましく、エチレンがより好ましい。また、任意の単量体は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
 環状オレフィン単量体と任意の単量体との量の割合は、重量比(環状オレフィン単量体:任意の単量体)で、好ましくは30:70~99:1、より好ましくは50:50~97:3、特に好ましくは70:30~95:5である。
 環状オレフィン単量体を2種以上用いる場合、及び、環状オレフィン単量体と任意の単量体を組み合わせて用いる場合は、重合体(γ)は、ブロック共重合体であってもよく、ランダム共重合体であってもよい。
 上記のような結晶性を有する脂環式構造含有重合体は、例えば、国際公開第2016/067893号に記載の方法により、製造しうる。
 結晶性を有する樹脂中の、結晶性を有する脂環式構造含有重合体の割合は、好ましくは50重量%以上、より好ましくは70重量%以上、特に好ましくは90重量%以上である。結晶性を有する脂環式構造含有重合体の割合を前記範囲の下限値以上にすることにより、光学フィルムの可撓性を高めることができる。
 本発明の光学フィルムが、脂環式構造含有重合体として結晶性の重合体を含む場合、その結晶化度は、好ましくは1%以上、より好ましくは2%以上、さらにより好ましくは3%以上である。このように高い結晶化度を有することにより、光学フィルムに高い耐熱性及び耐薬品性を付与することができる。結晶性を有する重合体の結晶化度の上限に制限は無いが、通常は90%以下である。結晶化度が前記の上限値以下であることにより、光学フィルムの透明性を良好にし易い。重合体の結晶化度は、X線回折法によって測定しうる。
 結晶性を有する重合体の融点は、好ましくは200℃以上、より好ましくは230℃以上であり、好ましくは290℃以下である。このような融点を有する重合体を用いることによって、成形性と耐熱性とのバランスに更に優れた光学フィルムを得ることができる。
 〔1.1.2.非結晶性の脂環式構造含有重合体〕
 非結晶性の脂環式構造含有重合体とは、上に述べた脂環式構造含有重合体のうち、結晶性を有しないものである。非結晶性の脂環式構造含有重合体を構成する単量体の例としては、上に述べた、結晶性の脂環式構造含有重合体を構成する単量体の例と同様のものが挙げられる。非結晶性の脂環式構造含有重合体は、上に述べた単量体を、既知の重合法により重合し、シンジオタクチック立体規則性の度合いが低い重合体、通常のアタクチックな重合体又はアイソタクチックな重合体とすることにより製造しうる。重合の態様は、開環重合及び付加重合のいずれであってもよい。
 〔1.1.3.非結晶性のノルボルネン系重合体〕
 非結晶性の脂環式構造含有重合体が、後述のブロック共重合体水素化物以外のもの、具体的には、ノルボルネン系重合体の場合は、例えば、上記ノルボルネン系単量体の開環重合体、ノルボルネン系単量体と開環共重合可能なその他の単量体との開環共重合体、及びそれらの水素化物;ノルボルネン系単量体の付加重合体、ノルボルネン系単量体と共重合可能なその他の単量体との付加共重合体などが挙げられる。これらの中でも、透明性の観点から、ノルボルネン系単量体の開環重合体水素化物が特に好ましい。
 上記のノルボルネン系重合体は、例えば特開2002-321302号公報に開示されている重合体から選択され得る。
 非結晶性の脂環式構造含有重合体が、ノルボルネン系重合体である場合の重量平均分子量(Mw)は、好ましくは10,000以上、より好ましくは15,000以上、特に好ましくは20,000以上であり、好ましくは100,000以下、より好ましくは80,000以下、特に好ましくは50,000以下である。
 前記ノルボルネン系重合体の重量平均分子量(Mw)及び数平均分子量(Mn)は、溶媒としてシクロヘキサンを用いた、ゲル・パーミエーション・クロマトグラフィーにより、ポリイソプレン又はポリスチレン換算の重量平均分子量として測定できる。試料がシクロヘキサンに溶解しない場合には、溶媒としてシクロヘキサンに代えてトルエンを用いうる。
 〔1.1.4.ブロック共重合体水素化物〕
 本発明における脂環式構造含有重合体の一例であるブロック共重合体水素化物は、結晶性のものであっても非結晶性のものであってもよいが、通常は非結晶性である。
 ブロック共重合体水素化物としては、特定のブロック共重合体水素化物[E]が挙げられる。ブロック共重合体水素化物[E]は、特定のブロック共重合体[D]の主鎖及び側鎖の炭素-炭素不飽和結合、並びに、芳香環の炭素-炭素不飽和結合を、水素化して得られる構造を有する化合物である。ブロック共重合体[D]は、特定の重合体ブロック[A]と特定の重合体ブロック[B]とからなるか、又は特定の重合体ブロック[A]と特定の重合体ブロック[C]とからなる。重合体ブロック[A]は、芳香族ビニル化合物由来の繰り返し単位[I]を主成分とする重合体ブロックである。重合体ブロック[B]は、芳香族ビニル化合物由来の繰り返し単位[I]及び鎖状共役ジエン化合物由来の繰り返し単位[II]を主成分とする重合体ブロックである。重合体ブロック[C]は、鎖状共役ジエン化合物由来の繰り返し単位[II]を主成分とする重合体ブロックである。本願において、「主成分」とは、その含有量が全体の50重量%以上のものをいう。
 ある化合物由来の繰り返し単位とは、当該化合物の重合により得られる構造を有する繰り返し単位をいう。ある重合体の水素化物とは、当該重合体の水素化により得られる構造を有する物質をいう。ただし、当該繰り返し単位及び水素化物は、その製造方法によっては限定されない。
 ブロック共重合体[D]は、好ましくは、1分子当たり2つ以上の重合体ブロック[A]と、1分子当たり1つ以上の、重合体ブロック[B]又は重合体ブロック[C]と、からなるものが好ましい。ブロック共重合体[D]が2つ以上の重合体ブロック[A]を有する場合、これらは互いに同じであっても、相異なってもよい。また、1分子のブロック共重合体[D]が有する2つの重合体ブロック[A]の重量平均分子量は同一でも相異なってもよい。
 重合体ブロック[A]の重量平均分子量Mw(A)は各々3,000~90,000、好ましくは3,500~80,000、より好ましくは4,000~60,000である。重合体ブロック[A]のMw(A)が3,000以上であることにより、ブロック共重合体水素化物[E]の機械的強度を良好なものとすることができる。一方重合体ブロック[A]のMw(A)が90,000以下であることにより、ブロック共重合体水素化物[E]の溶融成形性を良好なものとすることができる。
 ブロック共重合体[D]中の、全重合体ブロック[A]がブロック共重合体[D]に占める重量分率wAと、重合体ブロック[B]または重合体ブロック[C]がブロック共重合体[C]に占める重量分率wBとは、所定の比率を有することが好ましい。即ちwAとwBとの比(wA/wB)は好ましくは50/50以上、より好ましくは53/47以上、さらにより好ましくは57/43以上であり、一方好ましくは95/5以下、より好ましくは85/15以下である。wA/wBを前記上限以下とすることにより、ブロック共重合体水素化物[E]に柔軟性を付与し、良好な機械的強度を付与することができる。wA/wBを前記下限以上とすることにより、良好な耐熱性を付与することができる。
 ブロック共重合体水素化物[E]の水素化率(ブロック共重合体[D]の全不飽和結合のうち、ブロック共重合体水素化物[E]において水素化されたものの割合)は、好ましくは90%以上、好ましくは95%以上、より好ましくは99%以上である。水素化率が高いほど、成形体の耐候性、耐熱性及び透明性が良好である。ブロック共重合体水素化物[E]の水素化率は、H-NMR、又はGPCによるUV検出器及びRI検出器によるピーク面積の比較などにより求めうる。H-NMRは、具体的には、オルトジクロロベンゼン-d4を溶媒として、145℃で測定しうる。
 ブロック共重合体水素化物[E]の分子量は、THFを溶媒としたGPCにより測定されるポリスチレン換算の重量平均分子量(Mw)で、好ましくは40,000以上、より好ましくは41,000以上、さらにより好ましくは45,000以上であり、一方好ましくは150,000以下、より好ましくは130,000以下、さらにより好ましくは100,000以下としうる。ブロック共重合体水素化物[E]の分子量分布(Mw/Mn)は、好ましくは3以下、より好ましくは2以下、特に好ましくは1.5以下にする。Mw及びMw/Mnが上記範囲となるようにすると、成形した延伸フィルムの位相差の変化に対する耐熱性や機械的強度が良好である。
 ブロック共重合体水素化物[E]の具体例及び製造方法としては、例えば国際公開第2016/152871号に開示される具体例及び製造方法が挙げられる。
 〔1.1.5.脂環式構造含有重合体の割合〕
 本発明の光学フィルムが脂環式構造含有重合体を含む樹脂からなる場合、当該樹脂における、脂環式構造含有重合体の割合は、好ましくは50重量%以上、より好ましくは70重量%以上、特に好ましくは90重量%以上である。脂環式構造含有重合体の割合を当該範囲内とすることにより、高い機械的強度及び良好な光学的特性等の、脂環式構造含有重合体の利点を得ることができる。
 〔1.1.6.任意の成分〕
 光学フィルムを構成する樹脂は、脂環式構造含有重合体以外に、任意の成分を含有しうる。
 任意の成分の例としては、架橋助剤が挙げられる。
 架橋助剤の例としては、p-キノンジオキシム、p,p’-ジベンゾイルキノンジオキシム等のオキシム類;エチレンジメタクリレート、ポリエチレングリコールジメタクリレート、トリメチロールプロパントリメタクリレート、シクロヘキシルメタクリレート、アクリル酸/酸化亜鉛混合物、アリルメタクリレート等のアクリレート若しくはメタクリレート類;ジビニルベンゼン、ビニルトルエン、ビニルピリジン等のビニルモノマー類;ヘキサメチレンジアリルナジイミド、ジアリルイタコネート、ジアリルフタレート、ジアリルイソフタレート、トリアリルシアヌレート、トリアリルイソシアヌレート等のアリル化合物類;N,N’-m-フェニレンビスマレイミド、N,N’-(4,4’-メチレンジフェニレン)ジマレイミド等のマレイミド化合物類等が挙げられる。架橋助剤としては、一種類を単独で用いてもよく、二種類以上を任意の割合で組み合わせて用いてもよい。得られる延伸フィルムの電気特性、耐熱性、耐溶剤性等の特性を向上させる観点からはアリル化合物類が好ましく、特に熱安定性の観点から、トリアリルイソシアヌレート(TAIC)が最も好ましい。
 その他の任意の成分の例としては、酸化防止剤、紫外線吸収剤、光安定剤などの安定剤;滑剤、可塑剤などの樹脂改質剤;染料や顔料などの着色剤;帯電防止剤などの配合剤が挙げられる。これらの配合剤は1種単独で、あるいは2種以上を組み合わせて用いることができ、その配合量は本発明の目的を損なわない範囲で適宜選択される。
 〔2.光学フィルムの製造方法〕
 本発明の光学フィルムの製造方法は、脂環式構造含有重合体を含むフィルムを延伸する工程、及び前記フィルムを熱硬化する工程のうちの少なくとも一方を含む処理工程と、処理工程を経た後のフィルムの、少なくとも一方の面を粗化する工程と、を有する。以下の説明において、処理工程を経る前の脂環式構造含有重合体を含むフィルムを、処理工程を経た後のフィルムと区別する都合上、「原反フィルム」ということがある。また、処理工程を経た後のフィルムのうち、粗化する工程を経る前のフィルムを「粗化前フィルム」、粗化する工程を経た後のフィルムを「粗化フィルム」ということがある。
 原反フィルムは、例えば、脂環式構造含有重合体を含む樹脂をフィルム状に成形すること等により製造することができる。脂環式構造含有重合体を含む樹脂の成形方法は、特に限定されず、溶融押出成形等の既知の方法を採用しうる。
 原反フィルムの寸法は、製品たる光学フィルムとして所望の寸法を有するものが得られるよう適宜設定しうる。製造の効率上、原反フィルムは長尺状のフィルムであることが好ましい。原反フィルムの厚みは、好ましくは5μm以上、より好ましくは15μm以上であり、一方好ましくは200μm以下、より好ましくは170μm以下である。
 〔2.1.処理工程〕
 処理工程は、脂環式構造含有重合体を含むフィルムを延伸する工程(延伸工程)及び、脂環式構造含有重合体を含むフィルムを熱硬化する工程(熱硬化工程)のうちのいずれか一方の工程、または双方の工程を含む。熱硬化工程と延伸工程をともに含む場合、どちらの工程を先に行ってもよい。
 〔2.1.1.延伸工程〕
 延伸工程においては、一軸延伸、二軸延伸等の任意の態様としうる。また、延伸工程前のフィルムが長尺状のフィルムである場合、延伸の方向は、縦方向(長尺状のフィルムの長手方向に平行な方向)、横方向(長尺状のフィルムの幅方向に平行な方向)、及び斜め方向(縦方向でも横方向でも無い方向)のいずれであってもよい。
 延伸倍率は、好ましくは1.05倍以上、より好ましくは1.1倍以上であり、一方好ましくは7倍以下、より好ましくは6倍以下である。延伸温度は、好ましくは80℃以上、より好ましくは100℃以上であり、一方好ましくは200℃以下、より好ましくは180℃以下である。
 このような延伸の処理を行うことにより、大面積のフィルムを容易に得ることができる。また、製品として位相差を有するフィルムが求められる場合はかかる位相差を容易に得ることができる。一方、製品として位相差の少ないフィルムが求められる場合は、脂環式構造含有重合体として、例えば上に述べたブロック共重合体水素化物[E]を採用することにより、そのようなフィルムを容易に得ることができる。しかしながら、このような延伸の処理を行うことにより、得られたフィルムが、厚み方向の引張力を受けると容易に凝集破壊するフィルムとなり得る。ここで、本発明では、フィルムの少なくとも一方の面を粗化することにより、凝集破壊に起因する問題を抑制することができるので、延伸することにより得られる利点を享受しつつ、剥離強度をも高めることができる。
 〔2.1.2.熱硬化工程〕
 熱硬化工程は、例えば、フィルムが、脂環式構造含有重合体として結晶性の脂環式構造含有重合体を含む場合に、フィルムに含まれる結晶性の脂環式構造含有重合体を結晶化させて結晶化樹脂を含むフィルムを得る工程である。熱硬化工程では、結晶性の脂環式構造含有重合体を結晶化させて、例えば、結晶化度が1%以上の結晶化樹脂を主成分とするフィルムを得る。熱硬化工程は、脂環式構造含有重合体を含むフィルムの、少なくとも二の端辺を保持して緊張させた状態で所定の温度範囲にすることにより行いうる。以下、熱硬化工程に供する脂環式構造含有重合体を含むフィルムを、「硬化対象フィルム」ともいう。
 硬化対象フィルムを緊張させた状態とは、硬化対象フィルムに張力がかかった状態をいう。ただし、この硬化対象フィルムを緊張させた状態には、硬化対象フィルムが実質的に延伸される状態を含まない。また、実質的に延伸されるとは、硬化対象フィルムのいずれかの方向への延伸倍率が通常1.1倍以上になることをいう。
 硬化対象フィルムを保持する場合、適切な保持具によって硬化対象フィルムを保持する。保持具は、硬化対象フィルムの端辺の全長を連続的に保持しうるものでもよく、間隔を空けて間欠的に保持しうるものでもよい。例えば、所定の間隔で配列された保持具によって硬化対象フィルムの端辺を間欠的に保持してもよい。
 熱硬化工程において、硬化対象フィルムは、当該硬化対象フィルムの少なくとも二の端辺を保持されて緊張した状態にされる。これにより、保持された端辺の間の領域において硬化対象フィルムの熱収縮による変形が妨げられる。硬化対象フィルムの広い面積において変形を妨げるためには、対向する二の端辺を含む端辺を保持して、その保持された端辺の間の領域を緊張した状態にすることが好ましい。例えば、矩形の枚葉の硬化対象フィルムでは、対向する二の端辺(例えば、長辺側の端辺同士、又は、短辺側の端辺同士)を保持して前記二の端辺の間の領域を緊張した状態にすることで、その枚葉の硬化対象フィルムの全面において変形を妨げることができる。また、長尺の硬化対象フィルムでは、幅方向の端部にある二の端辺(即ち、長辺側の端辺)を保持して前記二の端辺の間の領域を緊張した状態にすることで、その長尺の硬化対象フィルムの全面において変形を妨げることができる。このように変形を妨げられた硬化対象フィルムは、熱収縮によってフィルム内に応力が生じても、シワ等の変形の発生が抑制される。硬化対象フィルムとして延伸工程を経た後の原反フィルムを用いる場合は、延伸方向(二軸延伸の場合は延伸倍率が大きい方向)と直交する少なくとも二の端辺を保持することで変形の抑制がより確実なものとなる。
 熱硬化工程における変形をより確実に抑制するためには、より多くの端辺を保持することが好ましい。よって、例えば、枚葉の硬化対象フィルムでは、その全ての端辺を保持することが好ましい。具体例を挙げると、矩形の枚葉の硬化対象フィルムでは、四つの端辺を保持することが好ましい。
 硬化対象フィルムの端辺を保持しうる保持具としては、硬化対象フィルムの端辺以外の部分では硬化対象フィルムと接触しないものが好ましい。このような保持具を用いることにより、より平滑性に優れる光学フィルムを得ることができる。
 また、保持具としては、保持具同士の相対的な位置を熱硬化工程においては固定しうるものが好ましい。このような保持具は、熱硬化工程において保持具同士の位置が相対的に移動しないので、熱硬化工程における硬化対象フィルムの実質的な延伸を抑制しやすい。
 好適な保持具としては、例えば、矩形の硬化対象フィルム用の保持具として、型枠に所定間隔で設けられ硬化対象フィルムの端辺を把持しうるクリップ等の把持子が挙げられる。また、例えば、長尺の硬化対象フィルムの幅方向の端部にある二の端辺を保持するための保持具としては、テンター延伸機に設けられ硬化対象フィルムの端辺を把持しうる把持子が挙げられる。
 長尺の硬化対象フィルムを用いる場合、その硬化対象フィルムの長手方向の端部にある端辺(即ち、短辺側の端辺)を保持してもよいが、前記の端辺を保持する代わりに硬化対象フィルムの結晶化処理を施される領域の長手方向の両側を保持してもよい。例えば、硬化対象フィルムの結晶化処理を施される領域の長手方向の両側に、硬化対象フィルムを熱収縮しないように保持して緊張させた状態にしうる保持装置を設けてもよい。このような保持装置としては、例えば、2つのロールの組み合わせ、押出機と引き取りロールとの組み合わせ、などが挙げられる。これらの組み合わせによって硬化対象フィルムに搬送張力等の張力を加えることで、結晶化処理を施される領域において当該硬化対象フィルムの熱収縮を抑制できる。そのため、前記の組み合わせを保持装置として用いれば、硬化対象フィルムを長手方向に搬送しながら当該硬化対象フィルムを保持できるので、光学フィルムの効率的な製造ができる。
 熱硬化工程では、前記のように硬化対象フィルムの少なくとも二の端辺を保持して緊張させた状態で、当該硬化対象フィルムを、脂環式構造含有重合体のガラス転移温度Tg以上、脂環式構造含有重合体の融点Tm以下の温度にする。前記のような温度にされた硬化対象フィルムにおいては、脂環式構造含有重合体の結晶化が進行する。そのため、この熱硬化工程により、結晶化した脂環式構造含有重合体を含むフィルムが得られる。この際、結晶化した脂環式構造含有重合体を含むフィルムの変形を妨げながら緊張した状態にしているので、当該フィルムの平滑性を損なうことなく、結晶化を進めることができる。
 熱硬化工程における温度範囲は、前記のように、脂環式構造含有重合体のガラス転移温度Tg以上、脂環式構造含有重合体の融点Tm以下の温度範囲において任意に設定しうる。中でも、結晶化の速度が大きくなるような温度に設定することが好ましい。熱硬化工程における硬化対象フィルムの温度は、好ましくはTg+20℃以上、より好ましくはTg+30℃以上であり、好ましくはTm-20℃以下、より好ましくはTm-40℃以下である。熱硬化工程における温度を前記範囲の上限以下にすることにより、光学フィルムの白濁を抑制できるので、光学的に透明なフィルムが求められる場合に適した光学フィルムが得られる。
 熱硬化工程において用いる加熱装置としては、加熱装置と硬化対象フィルムとの接触が不要であることから、硬化対象フィルムの雰囲気温度を上昇させうる加熱装置が好ましい。好適な加熱装置の具体例を挙げると、オーブン及び加熱炉が挙げられる。
 熱硬化工程において、硬化対象フィルムを前記の温度範囲に維持する処理時間は、好ましくは1秒以上、より好ましくは5秒以上であり、好ましくは30分以下、より好ましくは10分以下である。熱硬化工程で、脂環式構造含有重合体の結晶化を十分に進行させることにより、光学フィルムの可撓性を高めることができる。また、処理時間を前記範囲の上限以下にすることにより、光学フィルムの白濁を抑制できるので、光学的に透明なフィルムが求められる場合に適した光学フィルムが得られる。
 〔2.2.粗化工程〕
 粗化工程は、処理工程を経た後の原反フィルム(粗化前フィルム)の、少なくとも一方の面を粗化する工程である。粗化工程では、粗化後のフィルム(粗化フィルム)の少なくとも一方の面における、表面の最大高さRzが150nm以上3000nm以下で、かつ、算術平均粗さRaが30nm以上1000nm以下となるように粗化を行う。
 粗化前フィルムの粗化方法は、特に限定されず、粗化工程を経た後に得られる粗化フィルムの少なくとも一方の面における表面粗度を上記所定範囲とすることができる任意の方法を選択しうる。粗化方法の例としては、バフ処理、ブラスト処理、ヘアライン処理、及びドライエッチング(コロナ放電、プラズマ処理、EUV露光)が挙げられる。これらの方法のうち、高速処理可能、処理部のクリーン度の確保の観点から、バフ処理が好ましい。本発明においてコロナ放電処理及びプラズマ処理等により粗化工程を行う場合、一般的なコロナ放電処理及びプラズマ処理における強度よりも高い強度(例えば1000w/m)で粗化処理を行う。
 [3.光学フィルムの物性値]
 [3.1.フィルム表面のRzおよびRa]
 本発明の光学フィルムの少なくとも一方の面において、最大高さRzが150nm以上3000nm以下で、かつ、算術平均粗さRaが30nm以上1000nm以下である。最大高さRzは好ましくは200nm以上、より好ましくは300nm以上であり、好ましくは2000nm以下である。算術平均粗さRaは、好ましくは40nm以上、より好ましくは45nm以上であり、好ましくは700nm以下である。
 例えば、延伸等によりフィルムに含まれる脂環式構造含有重合体が強配向することで凝集破壊部分が生じた場合であっても、RzおよびRaが上記範囲内となるように、フィルムの表面を粗化することにより当該凝集破壊部分が剥がされうるので、剥離強度を高めることができる。本発明において、光学フィルムは、一方の面または双方の面の表面粗さ(Ra、Rz)が、上述の範囲となるように粗化されていればよい。
 光学フィルムの表面の算術平均粗さRa及び最大高さRzは、カラー3Dレーザー顕微鏡((株)キーエンス製 VK-9700)を用いて、JIS B 0601-2001に準拠して測定することができる。
 [3.2.内部ヘイズ]
 本発明の光学フィルムの内部ヘイズは、好ましくは5%以下、より好ましくは3%以下、さらに好ましくは1%以下である。内部ヘイズを前記上限値以下とすることにより、透明性が高くなり、偏光子保護フィルム等の光学フィルムの用途に適したものとなる。
 内部ヘイズは、例えば、ヘイズメーター(日本電色工業社製「NDH5000」)を用いて測定することができる。
 [3.3.位相差]
 本発明の光学フィルムは、面内方向の位相差Reが、好ましくは3nm以下、より好ましくは2.5nm以下、さらに好ましくは2nm以下である。また、本発明の光学フィルムは、厚み方向の位相差Rthの絶対値が、好ましくは3nm以下、より好ましくは2.5nm以下、さらに好ましくは2nm以下である。本発明の光学フィルムのうち、脂環式構造含有重合体としてブロック共重合体水素化物を含むものにおいて、面内方向の位相差Reおよび厚み方向のRthの絶対値を上記範囲とすることが好ましい。
 光学フィルムの面内方向の位相差及び厚み方向の位相差の絶対値は、測定装置としてAXOMETRICS社製「AxoScan」を用いて、測定波長590nmで測定しうる。前記の測定装置を用いる場合、光学フィルムの面内方向及び厚み方向の位相差は、当該光学フィルムの平均屈折率を用いて算出する。ここで、平均屈折率とは、光学フィルムの面内方向であって互いに垂直な2方向の屈折率、及び、当該光学フィルムの厚み方向の屈折率の平均値をいう。
 [3.4.寸法]
 本発明の光学フィルムの寸法は、製品としての所望の寸法となるよう適宜設定しうる。製造の効率上、本発明の光学フィルムは長尺状のフィルムとして製造しうる。本発明の光学フィルムの厚みは、好ましくは5μm以上、より好ましくは10μm以上であり、一方好ましくは200μm以下、より好ましくは170μm以下である。
 〔4.光学フィルムの用途〕
 本発明の光学フィルムは、脂環式構造含有重合体を含むことによる高い機械的強度及び良好な光学的特性を有する。加えて、本発明の光学フィルムは、被着体との剥離強度が高い。したがって、本発明の光学フィルムは、液晶表示装置及び有機エレクトロルミネッセンス表示装置などの表示装置において、他の層を保護する保護フィルムとして好適に用いうる。特に、本発明の光学フィルムは、偏光板において偏光子を保護する偏光子保護フィルムとして特に良好に機能することができる。
 本発明の光学フィルムを偏光子保護フィルムとして用いる場合、偏光子との間に、接着剤層を備えてもよい。
 本発明の光学フィルムを適用する偏光子は、特に限定されず、任意の既知のものを用いうる。偏光子の例としては、ポリビニルアルコールフィルムに、ヨウ素、二色性染料等の材料を吸着させた後、延伸加工したものが挙げられる。接着剤層を構成する接着剤の例としては、各種の重合体をベースポリマーとしたものが挙げられる。かかるベースポリマーの例としては、例えば、アクリル重合体、シリコーン重合体、ポリエステル、ポリウレタン、ポリエーテル、及び合成ゴムが挙げられる。
 以下、実施例を示して本発明について具体的に説明する。ただし、本発明は以下に示す実施例に限定されるものではなく、本発明の請求の範囲及びその均等の範囲を逸脱しない範囲において任意に変更して実施しうる。
 以下の説明において、量を表す「%」及び「部」は、別に断らない限り重量基準である。また、以下に説明する操作は、別に断らない限り、常温及び常圧の条件において行った。
 〔評価方法〕
 〔重量平均分子量及び数平均分子量の測定方法〕
 重合体の重量平均分子量及び数平均分子量は、ゲル・パーミエーション・クロマトグラフィー(GPC)システム(東ソー社製「HLC-8320」)を用いて、ポリスチレン換算値として測定した。測定の際、カラムとしてはHタイプカラム(東ソー社製)を用い、溶媒としてはテトラヒドロフランを用いた。また、測定時の温度は、40℃であった。
 〔ガラス転移温度Tg及び融点Tmの測定方法〕
 窒素雰囲気下で300℃に加熱した試料を液体窒素で急冷し、示差操作熱量計(DSC)を用いて、10℃/分で昇温して試料のガラス転移温度Tg及び融点Tmを求めた。
 また、Tgが2つ以上あるブロック共重合体水素化物の場合は、試料をプレス成形して、長さ50mm、幅10mm、厚さ1mmの試験片を作製し、JIS-K7244-4法に基づき、粘弾性測定装置(ティー・エイ・インスツルメント・ジャパン社製、ARES)を使用して、-100℃から+150℃の範囲で、昇温速度5℃/分で粘弾性スペクトルを測定し、これから2つ以上のTgを求めた。例えばTgが2つの場合、損失正接tanδの低温側のピークトップ温度から、ソフトセグメントに由来するガラス転移温度Tg1、高温側のピークトップ温度から、ハードセグメントに由来するガラス転移温度Tg2を求めた。
 〔結晶性重合体の水素添加率、及びブロック共重合体水素化物の水素化率の測定方法〕
 重合体の水素添加率は、オルトジクロロベンゼン-d4を溶媒として、145℃で、H-NMR測定により測定した。
 〔重合体の結晶化度測定方法〕
 フィルムに含まれる重合体の結晶化度は、JIS K0131に準じて、X線回折により確認した。具体的には、広角X線回折装置(RINT 2000、株式会社リガク製)を用いて、結晶化部分からの回析X線強度を求め、全体の回析X線強度との比から、下記式(I)によって結晶化度を求めた。
 Xc=K・Ic/It (I)
 上記式(I)において、Xcは被検試料の結晶化度、Icは結晶化部分からの回析X線強度、Itは全体の回析X線強度、Kは補正項を、それぞれ表す。
 〔剥離強度の測定方法〕
 被着体として、ノルボルネン系重合体を含む樹脂のフィルム(ゼオノアフィルム、ガラス転移温度160℃、厚み100μm、日本ゼオン社製、延伸処理は特にされていないもの)を用意した。測定対象フィルム(実施例および比較例のフィルム)の片面及び被着体の片面に、コロナ処理を施した。測定対象フィルムのコロナ処理を施した面、及び被着体のコロナ処理した面の両方に接着剤を付着させ、接着剤を付着させた面同士を貼り合わせた。この際、接着剤としてはUV接着剤CRBシリーズ(トーヨーケム社製)を用いた。その後、無電極UV照射装置(ヘレウス社製)を用い、ランプとしてDバルブを使用し、ピーク照度100mW/cm、積算光量3000mJ/cmの条件でUV照射を行い、接着剤を硬化させた。これにより、測定対象フィルム及び被着体を備えるサンプルフィルムを得た。
 得られたサンプルフィルムについて、90度剥離試験を実施した。即ち、サンプルフィルムを15mmの幅に裁断して、測定対象フィルム側をスライドガラスの表面に粘着剤にて貼り合わせた。この際、粘着剤としては、両面粘着テープ(日東電工社製、品番「CS9621」)を用いた。高性能型デジタルフォースゲージZP-5N(イマダ社製)の先端に被着体を挟み、スライドガラスの表面の法線方向に300mm/minの速度で被着体を牽引し、牽引の力の大きさを剥離強度として測定した。
 〔参考例:剥離強度の測定方法の妥当性の評価〕
 上に述べた測定方法による剥離強度の測定が、被着体が偏光子である場合の剥離強度の評価を反映したものであると言えるか否かを評価する実験を行った。
 特開2005-70140号公報の実施例1に記載される方法と同様の方法により、偏光フィルム及び接着剤を用意した。また、測定対象フィルムとして、本願実施例1で得られた処理前延伸フィルム及び電子線照射延伸フィルムを用意した。測定対象フィルムの片面にコロナ処理を施し、この面を、偏光フィルムの片方の表面に、接着剤を介して貼合した。偏光フィルムのもう片方の表面には、トリアセチルセルロースフィルムを、接着剤を介して貼合した。その後、80℃で7分間乾燥させて接着剤を硬化させて、サンプルフィルムを得た。得られたサンプルフィルムについて、上に述べた〔剥離強度の測定方法〕におけるものと同様の90度剥離試験を行った。その結果、本願実施例1で得られた値と同様のFa及びFbの値が得られた。このことから、上に述べた測定方法による剥離強度の測定が、被着体が偏光子である場合の剥離強度の評価を反映したものであると言える。
 〔フィルムの内部ヘイズの測定方法〕
 フィルムの内部ヘイズは以下のようにして測定した。
 まず、フィルムから、50mm×50mmのサイズに切り出して、試験片を得た。続いて、試験片の両表面に、厚み50μmの透明光学粘着フィルム(3M社製「8146-2」)を介して、シクロオレフィンフィルム(日本ゼオン社製「ゼオノアフィルム」、厚み40μm)を貼合して、シクロオレフィンフィルム/透明光学粘着フィルム/試験片/透明光学粘着フィルム/シクロオレフィンフィルムの層構成を有する試料複層体を得た。次いで、この試料複層体のヘイズを、ヘイズメーター(日本電色工業社製「NDH5000」)を用いて測定した。
 別途、シクロオレフィンフィルム、透明光学粘着フィルム、透明光学粘着フィルム、及び、シクロオレフィンフィルムをこの順に備える参照用積層体を形成した。そして、この参照用積層体のヘイズを、前記のヘイズメーターで測定した。測定された参照用積層体のヘイズは、0.04%であった。この参照用積層体のヘイズ0.04%は、シクロオレフィンフィルム2枚分のヘイズと透明光学粘着フィルム2枚分のヘイズとの和である。
 前記の試料複層体のヘイズから、シクロオレフィンフィルム2枚分のヘイズ値と透明光学粘着フィルム2枚分のヘイズ値の和0.04%を差し引いて、試験片の内部ヘイズを得た。
 〔面内方向の位相差及び厚み方向の位相差の絶対値の測定方法〕
 実施例および比較例のフィルムを、波長590nmで位相差測定装置(Axometric社製 製品名「Axoscan」)を用いて測定することにより、各例のフィルムの面内方向の位相差Re及び厚み方向の位相差Rthの絶対値を求めた。
 〔光学フィルムの最大高さRz及び算術平均粗さRaの測定〕
 光学フィルムの表面の算術平均粗さRa及び最大高さRzは、カラー3Dレーザー顕微鏡((株)キーエンス製 VK-9700)を用いて、JIS B 0601-2001に準拠して測定した。
 〔製造例1.ジシクロペンタジエンの開環重合体の水素添加物の製造〕
 金属製の耐圧反応器を、充分に乾燥した後、窒素置換した。この金属製耐圧反応器に、シクロヘキサン154.5部、ジシクロペンタジエン(エンド体含有率99%以上)の濃度70%シクロヘキサン溶液42.8部(ジシクロペンタジエンの量として30部)、及び1-ヘキセン1.9部を加え、53℃に加温した。
 テトラクロロタングステンフェニルイミド(テトラヒドロフラン)錯体0.014部を0.70部のトルエンに溶解した溶液に、濃度19%のジエチルアルミニウムエトキシド/n-ヘキサン溶液0.061部を加えて10分間攪拌して、触媒溶液を調製した。
 この触媒溶液を耐圧反応器に加えて、開環重合反応を開始した。その後、53℃を保ちながら4時間反応させて、ジシクロペンタジエンの開環重合体の溶液を得た。
 得られたジシクロペンタジエンの開環重合体の数平均分子量(Mn)及び重量平均分子量(Mw)は、それぞれ、8,750および28,100であり、これらから求められる分子量分布(Mw/Mn)は3.21であった。
 得られたジシクロペンタジエンの開環重合体の溶液200部に、停止剤として1,2-エタンジオール0.037部を加えて、60℃に加温し、1時間攪拌して重合反応を停止させた。ここに、ハイドロタルサイト様化合物(協和化学工業社製「キョーワード(登録商標)2000」)を1部加えて、60℃に加温し、1時間攪拌した。その後、濾過助剤(昭和化学工業社製「ラヂオライト(登録商標)#1500」)を0.4部加え、PPプリーツカートリッジフィルター(ADVANTEC東洋社製「TCP-HX」)を用いて吸着剤と溶液を濾別した。
 濾過後のジシクロペンタジエンの開環重合体の溶液200部(重合体量30部)に、シクロヘキサン100部を加え、クロロヒドリドカルボニルトリス(トリフェニルホスフィン)ルテニウム0.0043部を添加して、水素圧6MPa、180℃で4時間水素化反応を行なった。これにより、ジシクロペンタジエンの開環重合体の水素添加物を含む反応液が得られた。この反応液は、水素添加物が析出してスラリー溶液となっていた。
 前記の反応液に含まれる水素添加物と溶液とを、遠心分離器を用いて分離し、60℃で24時間減圧乾燥して、結晶性を有するジシクロペンタジエンの開環重合体の水素添加物28.5部を得た。この水素添加物の水素添加率は99%以上、ガラス転移温度(Tg)は95℃、融点(Tm)は262℃であった。
 〔実施例1〕
 (1-1.樹脂の調製)
 製造例1で得たジシクロペンタジエンの開環重合体の水素添加物100部に、酸化防止剤(テトラキス〔メチレン-3-(3’,5’-ジ-t-ブチル-4’-ヒドロキシフェニル)プロピオネート〕メタン;BASFジャパン社製「イルガノックス(登録商標)1010」)1.1部を混合して、フィルムの材料となる樹脂を得た。
 (1-2.粗化前フィルムの製造)
 (1-1)で得た樹脂を、内径3mmのダイ穴を4つ備えた二軸押出機に投入した。前記の二軸押出機によって、樹脂を熱溶融押出成形によりストランド状の成形体に成形した。この成形体をストランドカッターにて細断して、樹脂のペレットを得た。前記の二軸押出機の運転条件を、以下に示す。
 ・バレル設定温度:270℃~280℃
 ・ダイ設定温度:250℃
 ・スクリュー回転数:145rpm
 ・フィーダー回転数:50rpm
 引き続き、得られたペレットを、Tダイを備える熱溶融押出しフィルム成形機に供給した。Tダイから樹脂を押出し、1m/分の速度でロールに巻き取ることにより、前記の樹脂からなる長尺の原反フィルム(厚み50μm)を製造した。前記のフィルム成形機の運転条件を、以下に示す。
 ・バレル温度設定:280℃~290℃
 ・ダイ温度:270℃
 ・スクリュー回転数:30rpm
 その後、原反フィルムを100mm×100mmのサイズに裁断し、小型二軸延伸機(東洋精機製作所社製)を用いて、フィルムの4辺の端部をクリップで把持して、延伸温度110℃、延伸倍率1.3倍で連続的に固定端一軸延伸を実施し、粗化前フィルムを得た。この時の粗化前フィルムにおける重合体の結晶化度は4%であった。得られた粗化前フィルムの一部を試料として、表面粗さを測定したところ、Ra(nm)=8、Rz(nm)=30であった。剥離強度Faを測定したところ、0.1N/mであった。
 (1-3.粗化フィルムの製造及び評価)
 表面粗化装置として、1000番の番手を備えたバフロールを使用し、粗化前フィルムの一方の面を粗化処理し、表面粗さがRa(nm)=200、Rz(nm)=800の粗化フィルムを得た。この粗化フィルムの剥離強度Fbを測定したところ、1.5N/mであった。
 〔実施例2〕
 (2-1.粗化前フィルムの製造)
 (1-2.粗化前フィルムの製造)にて得られた100mm×100mmのサイズに裁断した原反フィルムを、小型二軸延伸機(東洋精機製作所社製)を用いて、フィルムの4辺の端部をクリップで把持して、温度145℃にて熱硬化処理を実施し、粗化前フィルムを得た。得られた粗化前フィルムの一部を試料として、表面粗さを測定したところ、Ra(nm)=3、Rz(nm)=12であった。剥離強度Faを測定したところ0.1N/mであった。
 (2-2.粗化フィルムの製造及び評価)
 表面粗化装置として、1000番の番手を備えたバフロールを使用し、粗化前フィルムの一方の面を粗化処理し、表面粗さが、Ra(nm)=220、Rz(nm)=860の粗化フィルムを得た。この粗化フィルムの剥離強度Fbを測定しFbを求めたところ、1.5N/mであった。
 〔実施例3〕
 (3-1.粗化前フィルムの製造)
 シクロオレフィン系重合体を含む樹脂(ガラス転移温度126℃のノルボルネン重合体の樹脂、日本ゼオン社製)のペレットを100℃で5時間乾燥した。その後、乾燥した樹脂のペレットを、単軸の押出し機に供給した。樹脂は押出し機内で溶融された後、ポリマーパイプ及びポリマーフィルターを経て、Tダイからキャスティングドラム上にシート状に押出されて、冷却された。これにより、厚み50μm、幅500mmの原反フィルムを得た。原反フィルムを100mm×100mmのサイズに裁断し、小型二軸延伸機(東洋精機製作所社製)を用いて、フィルムの4辺の端部をクリップで把持して、延伸温度145℃、延伸倍率1.3倍で連続的に固定端一軸延伸を実施し、粗化前フィルムを得た。得られた粗化前フィルムの一部を試料として、表面粗さを測定したところ、Ra(nm)=4、Rz(nm)=10であった。剥離強度Faを測定したところ0.1N/mであった。
 (3-2.粗化フィルムの製造及び評価)
 表面粗化装置として、1000番の番手を備えたバフロールを使用し、粗化前フィルムの一方の面を粗化処理し、表面粗さが、Ra(nm)=300、Rz(nm)=900の粗化フィルムを得た。この粗化フィルムの剥離強度Fbを測定しFbを求めたところ、1.1N/mであった。
 〔実施例4〕
 (4-1.ブロック共重合体[D])
 十分に乾燥し窒素置換した、攪拌装置を備えたステンレス鋼製反応器に、脱水シクロヘキサン256部、脱水スチレン25.0部、及びn-ジブチルエーテル0.65部を仕込み、60℃で攪拌しながらn-ブチルリチウム(15%シクロヘキサン溶液)1.35部を添加して重合反応を開始した。さらに、攪拌しながら60℃で60分反応させた。この時点での重合転化率は99.5%であった(ガスクロマトグラフィーにより測定、以下にて同じ。)。次に、脱水イソプレン50.0部を加え、同温度で30分攪拌を続けた。この時点での重合転化率は99%であった。その後、更に、脱水スチレンを25.0部加え、同温度で60分攪拌した。この時点での重合転化率はほぼ100%であった。次いで、反応液にイソプロピルアルコール0.5部を加えて反応を停止させ、ブロック共重合体[C]を含む重合反応溶液を得た。得られたブロック共重合体[D]の重量平均分子量(Mw)は44,900、分子量分布(Mw/Mn)は1.03であった。
 (4-2.ブロック共重合体水素化物[E])
 (4-1)で得た重合反応溶液を、攪拌装置を備えた耐圧反応器に移送し、水素化触媒としてシリカ-アルミナ担持型ニッケル触媒(E22U、ニッケル担持量60%;日揮化学工業社製)4.0部及び脱水シクロヘキサン350部を添加して混合した。反応器内部を水素ガスで置換し、さらに溶液を攪拌しながら水素を供給し、温度170℃、圧力4.5MPaにて6時間水素化反応を行った。
 水素化反応終了後、反応溶液をろ過して水素化触媒を除去した。ろ液に、フェノール系酸化防止剤であるペンタエリスリチル・テトラキス[3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート](コーヨ化学研究所社製、製品名「Songnox1010」)0.1部を溶解したキシレン溶液1.0部を添加して溶解させた。次いで、上記溶液を、円筒型濃縮乾燥器(日立製作所社製、製品名「コントロ」)を用いて、温度260℃、圧力0.001MPa以下で、溶液から溶媒であるシクロヘキサン、キシレン及びその他の揮発成分を除去した。連続して溶融ポリマーを、濃縮乾燥器に連結した孔径20μmのステンレス製焼結フィルターを備えたポリマーフィルター(富士フィルター社製)により、温度260℃でろ過した後、ダイから溶融ポリマーをストランド状に押出し、冷却後、ペレタイザーによりブロック共重合体水素化物[E]を得た。
 得られたブロック共重合体水素化物は、スチレン由来の繰り返し単位を含有するブロック(以下、適宜「St」という。)、及びイソプレン由来の繰り返し単位を含有するブロック(以下、適宜「Ip」という。)からなる3元ブロック共重合体であり、それぞれのブロックの重量比は、St:Ip:St=25:50:25であった。該ブロック共重合体水素化物[E]のMwは45,100、Mw/Mnは1.04、主鎖及び芳香環の水素化率はほぼ100%、ガラス転移温度Tg1は-50℃、Tg2は140℃であった。
 (4-3.樹脂の調製)
 (4-2)で得られたブロック共重合体水素化物[E]100部と、架橋助剤(タイク(日本化成株式会社製))5部とを混合して、フィルムの材料となる樹脂を得た。
 (4-4.粗化前フィルムの製造)
 (1-1)で得た樹脂に代えて、(4-3)で得た樹脂を用いた他は、実施例1の(1-2)と同様にして、粗化前フィルムを得た。得られた粗化前フィルムの一部を試料として、表面粗さを測定したところ、Ra(nm)=7、Rz(nm)=20であった。剥離強度Faを測定したところ0.1N/mであった。
 (4-5.粗化フィルムの製造)
 実施例1の(1-3)と同様にして、表面粗さが、Ra(nm)=500、Rz(nm)=1600の実施例3の粗化フィルムを得た。この粗化フィルムの剥離強度Fbを測定したところ、2.1N/mであった。
 〔比較例1~3〕
 実施例1の(1-2)で得られた粗化前フィルムを比較例1のフィルムとし、実施例3の(3-1)で得られた粗化前フィルムを比較例2のフィルムとし、実施例4の(4-4)で得られた粗化前フィルムを比較例3のフィルムとし、各実施例品と同様に評価を行った。
 実施例及び比較例の評価結果(表面粗さ(Ra、Rz)、剥離強度、内部ヘイズ、位相差(Re、Rth))を表1にまとめて示す。
Figure JPOXMLDOC01-appb-T000001
 表1の結果から、脂環式構造含有重合体を含むフィルムの少なくとも一方の面を、最大高さRzが150nm以上3000nm以下で、かつ、算術平均粗さRaが30nm以上1000nm以下となるように粗化処理することにより、剥離強度が高く偏光子保護フィルムとして有用に用いうる光学フィルムが得られたことが分かった。

Claims (7)

  1.  脂環式構造含有重合体を含むフィルムの、少なくとも一方の面を粗化してなる光学フィルムであって、
     少なくとも一方の面において、最大高さRzが150nm以上3000nm以下であり、かつ、算術平均粗さRaが30nm以上1000nm以下である、光学フィルム。
  2.  内部ヘイズが5%以下である、請求項1に記載の光学フィルム。
  3.  前記脂環式構造含有重合体は、ブロック共重合体水素化物[E]であり、
     前記ブロック共重合体水素化物[E]は、ブロック共重合体[D]の水素化物であり、
     前記ブロック共重合体[D]は、重合体ブロック[A]と重合体ブロック[B]とからなるか、又は前記重合体ブロック[A]と重合体ブロック[C]とからなり、
     前記重合体ブロック[A]は、芳香族ビニル化合物由来の繰り返し単位[I]を主成分とする重合体ブロックであり、
     前記重合体ブロック[B]は、芳香族ビニル化合物由来の繰り返し単位[I]及び鎖状共役ジエン化合物由来の繰り返し単位[II]を主成分とする重合体ブロックであり、
     前記重合体ブロック[C]は、鎖状共役ジエン化合物由来の繰り返し単位[II]を主成分とする重合体ブロックである、請求項1または2に記載の光学フィルム。
  4.  面内方向の位相差Reが3nm以下、厚み方向の位相差Rthの絶対値が3nm以下である、請求項3に記載の光学フィルム。
  5.  前記脂環式構造含有重合体が結晶性であり、結晶化度が1%以上である、請求項1または2に記載の光学フィルム。
  6.  偏光子保護フィルムである、請求項1~5のいずれか1項に記載の光学フィルム。
  7.  請求項1~6のいずれか1項に記載の光学フィルムの製造方法であって、
     脂環式構造含有重合体を含むフィルムを延伸する工程、及び前記フィルムを熱硬化する工程のうちの少なくとも一方を含む処理工程と、
     前記処理工程を経た後のフィルムの、少なくとも一方の面を粗化する工程と、を有する、光学フィルムの製造方法。
PCT/JP2018/028445 2017-08-02 2018-07-30 光学フィルム及びその製造方法 WO2019026842A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019534499A JP7140124B2 (ja) 2017-08-02 2018-07-30 光学フィルム及びその製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017150130 2017-08-02
JP2017-150130 2017-08-02

Publications (1)

Publication Number Publication Date
WO2019026842A1 true WO2019026842A1 (ja) 2019-02-07

Family

ID=65232665

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/028445 WO2019026842A1 (ja) 2017-08-02 2018-07-30 光学フィルム及びその製造方法

Country Status (3)

Country Link
JP (1) JP7140124B2 (ja)
TW (1) TW201910398A (ja)
WO (1) WO2019026842A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022024879A1 (ja) * 2020-07-29 2022-02-03 コニカミノルタ株式会社 光学フィルム、偏光板及び液晶表示装置
TWI816459B (zh) * 2022-07-06 2023-09-21 住華科技股份有限公司 光學膜

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002194067A (ja) * 2000-12-25 2002-07-10 Nippon Zeon Co Ltd フィルムおよびシート
JP2006309033A (ja) * 2005-04-28 2006-11-09 Kaneka Corp 光学用フィルムの製造方法
JP2011013378A (ja) * 2009-06-30 2011-01-20 Nippon Zeon Co Ltd フィルム
JP2012103355A (ja) * 2010-11-08 2012-05-31 Sekisui Chem Co Ltd 偏光板用保護フィルムの製造方法、偏光板用保護フィルム、複合偏光板、偏光板及び液晶表示装置
JP2013010309A (ja) * 2011-06-30 2013-01-17 Nippon Zeon Co Ltd フィルムの製造方法
JP2017122857A (ja) * 2016-01-08 2017-07-13 コニカミノルタ株式会社 光学フィルム、光学フィルムの製造方法、ロールフィルム、偏光板及び画像表示装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002194067A (ja) * 2000-12-25 2002-07-10 Nippon Zeon Co Ltd フィルムおよびシート
JP2006309033A (ja) * 2005-04-28 2006-11-09 Kaneka Corp 光学用フィルムの製造方法
JP2011013378A (ja) * 2009-06-30 2011-01-20 Nippon Zeon Co Ltd フィルム
JP2012103355A (ja) * 2010-11-08 2012-05-31 Sekisui Chem Co Ltd 偏光板用保護フィルムの製造方法、偏光板用保護フィルム、複合偏光板、偏光板及び液晶表示装置
JP2013010309A (ja) * 2011-06-30 2013-01-17 Nippon Zeon Co Ltd フィルムの製造方法
JP2017122857A (ja) * 2016-01-08 2017-07-13 コニカミノルタ株式会社 光学フィルム、光学フィルムの製造方法、ロールフィルム、偏光板及び画像表示装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022024879A1 (ja) * 2020-07-29 2022-02-03 コニカミノルタ株式会社 光学フィルム、偏光板及び液晶表示装置
TWI816459B (zh) * 2022-07-06 2023-09-21 住華科技股份有限公司 光學膜

Also Published As

Publication number Publication date
JPWO2019026842A1 (ja) 2020-08-20
TW201910398A (zh) 2019-03-16
JP7140124B2 (ja) 2022-09-21

Similar Documents

Publication Publication Date Title
JP5587063B2 (ja) 二軸光学ポリノルボルネン系フィルム及びその製造方法、それを具備した一体型光学補償偏光板及びその製造方法、及びそのフィルム及び/または偏光板を備える液晶表示装置
WO2018135360A1 (ja) タッチパネル用フィルム積層体
CN108291997B (zh) 多层膜、制造方法、圆偏振片、防反射膜以及有机电致发光显示装置
WO2018135359A1 (ja) タッチパネル用フィルム積層体
TWI680313B (zh) 多層膜、偏光板及多層膜的製造方法
WO2015002020A1 (ja) 光学用フィルム及びその製造方法
JP7184133B2 (ja) 位相差フィルム及びその製造方法
JP7140124B2 (ja) 光学フィルム及びその製造方法
TWI743240B (zh) 光學薄膜的製造方法
TWI808262B (zh) 光學薄膜及其製造方法、光學堆疊體以及液晶顯示裝置
JP4897137B2 (ja) 偏光板
JP2017134305A (ja) 延伸フィルム、製造方法、偏光板及び表示装置
JPWO2017115776A1 (ja) 光学積層体、偏光板及び液晶表示装置
TWI788510B (zh) 堆疊薄膜及其製造方法以及偏光板
CN108431653B (zh) 光学层叠体及其制造方法、偏振片以及显示装置
TWI743149B (zh) 導電性膜及其製造方法
WO2022163416A1 (ja) 光学フィルム及びその製造方法、並びに偏光フィルム
TWI794524B (zh) 光學薄膜、光學堆疊體及液晶顯示裝置
WO2017150313A1 (ja) 偏光解消フィルム及びその製造方法
TWI829817B (zh) 堆疊體及其製造方法、圓偏光板、顯示裝置以及觸控面板
JP7322889B2 (ja) 成形体及びその製造方法
WO2022255076A1 (ja) 基材フィルム、光学積層体及びその製造方法、並びに、偏光板の製造方法
JP5130958B2 (ja) Tnモード液晶表示素子、その製造方法およびtnモード液晶表示素子用位相差フィルム
TW202328230A (zh) 光學膜、多層薄膜及其製造方法以及偏光板
JP2010170131A (ja) 偏光板

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18841724

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019534499

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18841724

Country of ref document: EP

Kind code of ref document: A1