WO2019026374A1 - 通信装置、情報処理装置、及び情報処理方法 - Google Patents

通信装置、情報処理装置、及び情報処理方法 Download PDF

Info

Publication number
WO2019026374A1
WO2019026374A1 PCT/JP2018/017854 JP2018017854W WO2019026374A1 WO 2019026374 A1 WO2019026374 A1 WO 2019026374A1 JP 2018017854 W JP2018017854 W JP 2018017854W WO 2019026374 A1 WO2019026374 A1 WO 2019026374A1
Authority
WO
WIPO (PCT)
Prior art keywords
antenna
unit
antenna element
wireless signal
information
Prior art date
Application number
PCT/JP2018/017854
Other languages
English (en)
French (fr)
Inventor
雄 田中
Original Assignee
ソニー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニー株式会社 filed Critical ソニー株式会社
Priority to US16/630,923 priority Critical patent/US11668838B2/en
Priority to JP2019533906A priority patent/JPWO2019026374A1/ja
Publication of WO2019026374A1 publication Critical patent/WO2019026374A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/01Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/13Receivers
    • G01S19/32Multimode operation in a single same satellite system, e.g. GPS L1/L2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/06Arrays of individually energised antenna units similarly polarised and spaced apart
    • H01Q21/061Two dimensional planar arrays
    • H01Q21/065Patch antenna array
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/01Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/13Receivers
    • G01S19/35Constructional details or hardware or software details of the signal processing chain
    • G01S19/36Constructional details or hardware or software details of the signal processing chain relating to the receiver frond end
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/38Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
    • G01S19/39Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/42Determining position
    • G01S19/43Determining position using carrier phase measurements, e.g. kinematic positioning; using long or short baseline interferometry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/38Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
    • G01S19/39Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/42Determining position
    • G01S19/43Determining position using carrier phase measurements, e.g. kinematic positioning; using long or short baseline interferometry
    • G01S19/44Carrier phase ambiguity resolution; Floating ambiguity; LAMBDA [Least-squares AMBiguity Decorrelation Adjustment] method
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/27Adaptation for use in or on movable bodies
    • H01Q1/28Adaptation for use in or on aircraft, missiles, satellites, or balloons
    • H01Q1/288Satellite antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/06Arrays of individually energised antenna units similarly polarised and spaced apart
    • H01Q21/061Two dimensional planar arrays
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/40Imbricated or interleaved structures; Combined or electromagnetically coupled arrangements, e.g. comprising two or more non-connected fed radiating elements
    • H01Q5/42Imbricated or interleaved structures; Combined or electromagnetically coupled arrangements, e.g. comprising two or more non-connected fed radiating elements using two or more imbricated arrays

Definitions

  • the present disclosure relates to a communication apparatus, an information processing apparatus, and an information processing method.
  • GNSS Global Navigation Satellite System
  • GPS Global Positioning System
  • GLONASS GLObal NAvigation Satellite System
  • QZSS Quadrature-Zenith Satellite System
  • RTK Real Time Kinematic
  • PPP Precise Point Positioning
  • Patent Document 1 discloses an example of a satellite positioning system adopting the PPP-RTK method.
  • the present disclosure proposes a technology capable of further reducing the implementation cost of the satellite positioning system.
  • a plurality of antenna units arranged in an array are provided, the antenna units including a first antenna element and a second antenna element disposed along a first direction, and satellite positioning
  • a first receiving unit that receives a first wireless signal used for the second antenna element via the first antenna element, and a second wireless signal used for satellite positioning reception via the second antenna element;
  • the first antenna unit and the second antenna unit adjacent to each other in the second direction orthogonal to the first direction include two receiving units;
  • a communication apparatus is provided, wherein the first antenna element in and the second antenna element in the other antenna unit are arranged adjacent to each other in the second direction.
  • an acquisition unit configured to acquire the reception result of each of the first radio signal and the second radio signal used for satellite positioning by each of the plurality of antenna units arranged in an array, and And an estimation unit configured to estimate information on a carrier wave of at least one of the first radio signal and the second radio signal controlled on the satellite side based on the reception result.
  • a first antenna element and a second antenna element disposed along a first direction, and a first receiving unit configured to receive the first radio signal via the first antenna element; And a second receiving unit configured to receive the second wireless signal via the second antenna element, and of the plurality of antenna units in a second direction orthogonal to the first direction.
  • the first antenna element of one antenna unit and the second antenna element of the other antenna unit are adjacent to each other in the second direction.
  • a computer includes: a first antenna element and a second antenna element disposed along a first direction; and a first radio signal used for satellite positioning as the first radio signal.
  • An array comprising: a first receiver receiving via an antenna element; and a second receiver receiving the second radio signal used for satellite positioning via the second antenna element. The satellite side is controlled based on acquiring the reception result of each of the first radio signal and the second radio signal by each of a plurality of antenna units arranged in a shape, and based on the acquired reception result.
  • the first antenna unit and the second antenna unit adjacent to each other in the second direction are the first antenna element in one antenna unit and the second antenna element in the other antenna unit.
  • An information processing method is provided, arranged adjacent to the second direction.
  • FIG. 1 is an explanatory diagram for describing an example of a schematic system configuration of a satellite positioning system according to the present embodiment.
  • the satellite positioning system 1 includes GPS satellites 400a to 400n, electronic reference points 100a to 100n, a center station 200, a quasi-zenith satellite 500, and a positioning device 300. .
  • the GPS satellites 400a to 400n are also simply referred to as “GPS satellites 400", unless otherwise specified.
  • the electronic control points 100a to 100n are not particularly distinguished, they are also simply referred to as "electronic control point 100".
  • the GPS satellite 400 transmits positioning information used for satellite positioning using a wireless signal.
  • the GPS satellite 400 may use a plurality of wireless signals having different frequencies to transmit positioning information.
  • two types of wireless signals that is, an L1 signal in the 1575.42 MHz band and an L2 signal in the 1227.60 MHz band may be used to transmit positioning information.
  • an L5 signal in the 1176.45 MHz band may be used instead of either the L1 signal or the L2 signal.
  • the L1 signal, the L2 signal, and the L5 signal described above are merely examples, and the radio signals used for transmitting the positioning information are not necessarily limited.
  • the plurality of wireless signals used to transmit the positioning information correspond to an example of the “first wireless signal” and the “second wireless signal”.
  • the electronic reference point 100 receives positioning information transmitted from the GPS satellite 400 using a wireless signal. Based on the reception result of the positioning information, the electronic reference point 100 includes, for example, information including a pseudo distance between the electronic reference point 100 and the GPS satellite 400, Doppler frequency, carrier phase, etc. (hereinafter referred to as “electronic reference point information , And transmits the information to the center station 200.
  • the electronic reference point 100 is installed at various places in the area targeted for satellite positioning.
  • the center station 200 includes a transmitter 201.
  • the transmitting device 201 acquires electronic reference point information from each of the electronic reference points 100 installed at each place, and generates positioning correction data used by the positioning device 300 for satellite positioning based on the acquired electronic reference point information. Do.
  • the positioning correction data includes, for example, a data set of a corrected satellite clock error and a region-specific error associated with the time of day for each predetermined period (frame).
  • a plurality of data sets may be included in one frame (ie, during one cycle).
  • the area-specific error includes, for example, information on an error specific to each area where the electronic reference point 100 is installed, such as a tropospheric delay error or an ionospheric delay error.
  • at least some of the data sets may include satellite-specific errors.
  • the satellite intrinsic error includes, for example, information on an error inherent to each GPS satellite, such as a satellite orbit error, a frequency time bias, and the like.
  • the transmitting device 201 transmits (uplinks) the generated correction data for positioning from the antenna of the center station 200 to the quasi-zenith satellite 500 using, for example, a wireless signal.
  • the quasi-zenith satellite 500 receives positioning correction data transmitted from the center station 200 using a radio signal.
  • the quasi-zenith satellite 500 transmits the received correction data for positioning to the positioning device 300 using a wireless signal.
  • the positioning device 300 is held by a mobile object such as a vehicle or the like, or a device or the like configured to be portable, such as a wearable device or a smartphone.
  • the positioning device 300 performs satellite positioning based on the positioning information transmitted from the GPS satellite 400 and the correction data for positioning transmitted from the quasi-zenith satellite 500.
  • satellite positioning methods include a method called relative positioning method (RTK: Real Time Kinematic) and a method called high accuracy single positioning (PPP: Precise Point Positioning).
  • RTK Real Time Kinematic
  • PPP Precise Point Positioning
  • RTK places a reference station at a known coordinate point, and measures and measures radio signals transmitted from two satellites at two reception points of the reference station and a mobile station (receiver). It is a method of calculating.
  • RTK it is possible to eliminate satellite clock error and receiver clock error by finding the double phase difference of the carrier in positioning calculation, and if the base length is sufficiently short, the same value for each pseudo distance It is possible to almost eliminate propagation delay errors and satellite orbit errors of the ionosphere and troposphere, which are included as errors.
  • PPP is a method of performing positioning only at a single observation point, and differs from RTK in that it does not require a reference observation point such as a reference station in the vicinity of the receiver.
  • the orbit history of satellites and clock data are transmitted from a predetermined satellite (such as a geostationary satellite) to a receiver as correction information.
  • the orbit history of satellites and clock data are fixed as known, and the positions of observation points and receiver clock errors are estimated using positioning signal observation values of a plurality of satellites.
  • a carrier wave phase which does not take a difference as a basic observation amount (Undifferenced) is used, positioning with higher accuracy is possible.
  • PPP-RTK corresponds to a positioning method in which PPP and RTK are fused.
  • ambiguity can be determined by adding correction information called Phase Fractional Bias (FCB) that differs from satellite to satellite, shortening initialization time and improving accuracy.
  • FCB Phase Fractional Bias
  • satellite phase bias information is transmitted as correction information from a predetermined satellite (such as a geostationary satellite) to a receiver.
  • the correction information may be distributed to the receiver via a predetermined network such as the Internet.
  • the receiver can shorten the initialization time by performing the ambiguity determination based on the correction information.
  • PPP-RTK accurate absolute positioning is performed based on a network of electronic reference points (RTK network) using actual state-space data.
  • RTK network electronic reference points
  • electronic reference points for example, the electronic reference point 100 shown in FIG. 1
  • a satellite positioning system adopting the PPP-RTK method tend to have relatively high requirement specifications such as the need to cope with multiple frequencies. It is in. Therefore, the antenna, the receiver, etc. used for the electronic reference point become more expensive, and the mounting cost of the electronic reference point tends to increase.
  • ionospheric delays In order to estimate satellite orbits, ionospheric delays, tropospheric delays, etc., a wide and dense network of electronic reference points is required. Specifically, satellite orbits change due to the effects of the earth's nonuniform gravity field and satellite orbit correction operations, and surveillance on a wider scale (ideally on a global scale) to capture them Is required. In addition, since ionospheric delay and tropospheric delay do not have long-distance linear correlation, observation information at a plurality of points is required locally, so a denser network of electronic reference points is required. Therefore, the number of electronic collimation points tends to increase, and the cost tends to increase.
  • the present disclosure proposes a technique capable of reducing the implementation cost of the electronic reference point and further reducing the realization cost of the satellite positioning system adopting the PPP-RTK method.
  • FIG. 2 is an explanatory view for explaining an example of a schematic configuration of the antenna device applied to the electronic reference point according to the present embodiment.
  • basic units hereinafter referred to as "antenna units 130" indicated by reference numeral 130 are arranged in an array. It is configured as a so-called array antenna.
  • the antenna unit 130 includes an antenna element 131 configured to receive a first wireless signal and an antenna element 133 configured to receive a second wireless signal.
  • each of the antenna elements 131 and 133 is configured as a planar antenna (patch antenna).
  • the L1 signal is used as the first wireless signal and the L2 signal is used as the second wireless signal.
  • FIG. 3 is an explanatory diagram for describing an example of a schematic configuration of a basic unit of the antenna apparatus applied to the electronic reference point according to the present embodiment, and illustrates an example of the configuration of the antenna unit 130.
  • the antenna unit 130 includes antenna elements 131 and 133, receivers 135 and 137, and a receiver clock 139.
  • the antenna elements 131 and 133 correspond to the antenna elements 131 and 133 shown in FIG. Note that one of the antenna elements 131 and 133 corresponds to an example of the “first antenna element”, and the other corresponds to an example of the “second antenna element”. Further, one of the receivers 135 and 137 corresponds to an example of the “first receiver”, and the other corresponds to an example of the “second receiver”.
  • the receiver clock 139 is a configuration for acquiring time information (clock data) on the receiver side (that is, the electronic reference point 100 side) in satellite positioning. As shown in FIG. 3, receiver clock 139 is shared between receivers 135 and 137. Further, as shown in FIG. 2, in the case of arraying a plurality of antenna units 130, when one receiver clock 139 is shared between two or more antenna units 130 (thus, all the antenna units 130). Good.
  • the receiver clock 139 corresponds to an example of the “timekeeping unit”.
  • the receiver 135 receives the L1 signal transmitted from the GPS satellite 400 via the antenna element 131, and decodes the positioning information by performing a predetermined decoding process on the received L1 signal.
  • the receiver 135 obtains information on a code pseudorange related to transmission of the L1 signal and information on the carrier wave phase of the L1 signal based on the decoding result of the positioning information and the time measurement result of the receiver clock 139. .
  • the receiver 137 receives the L2 signal transmitted from the GPS satellite 400 via the antenna element 133, and decodes the positioning information by performing a predetermined decoding process on the received L2 signal.
  • the receiver 137 acquires information on a code pseudorange related to transmission of the L2 signal and information on the carrier wave phase of the L2 signal based on the decoding result of the positioning information and the time measurement result of the receiver clock 139. .
  • FIG. 4 is an explanatory diagram for describing an example of a schematic configuration of the antenna device applied to the electronic reference point according to the present embodiment, and illustrates an example of an arrangement pattern of a plurality of antenna units 130.
  • the normal direction of each of the antenna elements 131 and 133 of each antenna unit 130 will be referred to as the z direction.
  • directions orthogonal to the z direction and orthogonal to each other are referred to as an x direction and ay direction. That is, the x direction and the y direction correspond to directions parallel to the planes of the antenna elements 131 and 133, respectively.
  • the plurality of antenna units 130 are arranged in an array along the x direction and the y direction. Further, in each antenna unit 130, the antenna elements 131 and 133 are disposed to be adjacent to each other in the x direction.
  • the x direction corresponds to an example of “first direction”
  • the y direction corresponds to an example of “second direction”.
  • the antenna device 110 may be configured by arranging the antenna units 130 in two dimensions in the order of 10 4 .
  • the antenna units 130 are arrayed in the order of about 100 in each of the x direction and the y direction.
  • the distance between the antenna elements 131 and 133 constituting the antenna unit 130 may be set in the order of 1 cm. Further, the distance between adjacent antenna units may be set in the order of about 10 cm.
  • two antenna units 130 adjacent to each other in at least a part of the y direction are adjacent to each other in the y direction, one antenna element 131 and the other antenna element 133 It is arranged to fit.
  • one antenna element 131 and the other antenna element 133 are disposed adjacent to each other in the y direction.
  • the two antenna units 130 one antenna element of the antenna elements 131 and 133 in one antenna unit 130 and the one antenna element in the other antenna unit 130 are adjacent to each other in the x direction. It is arranged.
  • the antenna elements 130 a and 130 b the antenna element 133 of the antenna unit 130 a and the antenna element 133 of the antenna unit 130 b are disposed adjacent to each other.
  • the antenna units 130 b and 130 c are disposed such that the antenna element 131 of the antenna unit 130 b and the antenna element 131 of the antenna unit 130 c are adjacent to each other. Note that, of the two antenna units 130 adjacent to each other in the x direction, one corresponds to the “third antenna unit” and the other corresponds to the “fourth antenna unit”.
  • the electronic reference point 100 receives the L1 signal and the L2 signal transmitted from the GPS satellite 400 by each antenna unit 130 constituting the antenna device 110.
  • the L1 signal according to the delay (device delay) for each GPS satellite 400 and the L2 based on the reception result of the L1 signal and the L2 signal by each antenna unit 130 as described above.
  • the information on the carrier of the signal (in other words, the information controlled by the GPS satellite 400 side) is estimated.
  • the information on the carrier include information corresponding to at least a part of the phase indeterminacy of the carrier phase which is one of the observation quantities of the GNSS receiver, such as carrier initial bias and carrier initial phase bias. .
  • the details of the process related to the same estimation will be described later separately.
  • the configuration of the electronic reference point 100 applied to the satellite positioning system according to the present embodiment in particular, an antenna device for receiving a radio signal transmitted from the GPS satellite 400
  • the description has focused on the configuration of
  • FIG. 5 is a block diagram showing an example of a functional configuration of the satellite positioning system according to the present embodiment.
  • the transmission device 201 of the center station 200 is the quasi-zenith satellite 500 after the electronic reference point 100 receives a radio signal from the GPS satellite 400. It shows in part focusing on the configuration up to the generation of the correction data to be sent. Therefore, in the following description, when the system shown in FIG. 3 (in other words, a partial system in the satellite positioning system 1) is distinguished from the satellite positioning system 1 shown in FIG. There is a case.
  • the system 10 includes an electronic reference point 100, an estimation unit 190, and a transmitting device 201.
  • the transmission device 201 includes a correction data generation unit 203.
  • the electronic control point 100 corresponds to the electronic control point 100 shown in FIG. That is, the antenna device 110 shown in FIG. 5 and the plurality of antenna units 130 included in the antenna device 110 correspond to the antenna device 110 and the plurality of antenna units 130 described with reference to FIGS. 2 to 4.
  • the estimation unit 190 is configured to estimate information on carrier waves of the L1 signal and the L2 signal transmitted from the GPS satellite 400.
  • the information on the carrier includes, for example, carrier initial bias and carrier initial phase bias.
  • the carrier initial bias corresponds to the bias loaded to the radio signal based on the control on the satellite side when transmitting the radio signal.
  • the carrier initial phase bias corresponds to the phase shift of the radio signal at the time of transmission of the carrier initial bias.
  • the carrier initial bias is B
  • the carrier initial phase bias is b
  • the wavelength of the radio signal from the GPS satellite is ⁇
  • the number N of waves of the radio signal the carrier initial bias B is given by It is expressed by the relational expression shown by.
  • the estimation unit 190 obtains information related to positioning information decoded from the reception results of each of the L1 signal and the L2 signal by each of the plurality of antenna units 130 that constitute the antenna device 110. get.
  • the information includes, for example, information on each of the P1 code pseudo distance and L1 carrier wave phase corresponding to the L1 signal, and information on each of the P2 code pseudo distance and L2 carrier wave phase corresponding to the L2 signal.
  • the subscript corresponding to “i” corresponds to the reception result of the Li signal from the satellite s (GPS satellite) by the receiver r i corresponding to the Li signal, Pi corresponding to the Li signal
  • the code pseudorange is indicated by “R S Pi "
  • the Li carrier phase corresponding to the Li signal is indicated by “ ⁇ S Li ". That is, the P1 code pseudo distance corresponding to the L1 signal is indicated by “R S P1 ”, and the L1 carrier wave phase corresponding to the L1 signal is indicated by “ ⁇ S L1 ”.
  • the P2 code pseudorange corresponding to the L2 signal is indicated by “R S P2 ", and the L2 carrier phase corresponding to the L2 signal is indicated by “ ⁇ S L2 ".
  • [rho i s shows the satellite s, a receiver r i corresponding to the Li signal, the antenna phase center distance.
  • .DELTA.t r is the receiver r 1 corresponding to the L1 signal, and a receiver r 2 corresponding to the L2 signal, indicating a common receiver clock error since.
  • ⁇ t s represents satellite clock error.
  • T i s indicates the tropospheric delay between the satellite s and the receiver r i .
  • K 21 is an amount defined by the difference between the receiver DCB (Differential Code Bias) “K P2 ⁇ K P1 ” and the satellite DCB “K P2 s ⁇ K P1 s ”.
  • Each of M i s and m i s indicates a multipath bias.
  • ⁇ i ⁇ indicates a phase windup.
  • I i s is an amount defined by the formula shown in (Equation 6) below when the total number of electrons STEC i s along the radio wave path between the satellite s and the receiver r i is used It is.
  • B i s indicates a phase bias corresponding to the Ni signal, and as described above (Equation 1), the initial phase bias corresponding to the Ni signal is b i s , the carrier wavelength is ⁇ i , and the integer phase Assuming that the bias is N i s , it is expressed by a calculation formula shown as (Expression 7) below.
  • the above (Equation 8) and (Equation 9) are amounts corresponding to the averaging operation of the geometric distance, the tropospheric delay amount, and the ionospheric delay amount.
  • This amount is an amount for defining a virtual antenna phase center in the basic unit (antenna unit 130), that is, an amount introduced to regard the basic unit as a pseudo dual frequency antenna receiver. is there.
  • the above (Equation 10) and (Equation 11) for example, when a large number (for example, about 10 4 ) of basic units are provided as shown in FIG. Is the expected amount.
  • the above (Equation 12) and (Equation 13) defined by the difference of variables are, for example, a plurality of basic units (antenna units such that the antenna element 131 and the antenna element 133 are adjacent to each other as shown in FIG. By alternately arranging 130), it is an amount that is expected to be canceled out each other.
  • a plurality of basic units are disposed so that a large number of basic units are disposed and the antenna element 131 and the antenna element 133 are adjacent to each other. Are expected to be removed by arranging them alternately.
  • each of L1 P1 Code pseudorange corresponding to the signal R S P1 and L1 carrier phase phi S L1 are represented by the calculation formulas shown in the following (Expression 16) to (Expression 19).
  • phase bias ie, carrier initial biases B 1 s and B 2 s
  • Equation 22 the state quantities of the respective antenna units 130 constituting the multi-array antenna (ie, the antenna device 110)
  • the basic units (the antenna units 130) are alternately arranged such that the antenna elements 131 corresponding to the L1 signal and the antenna elements 133 corresponding to the L2 signal are adjacent to each other, the path of the radio wave The difference is reversed between adjacent unit units. Accordingly, the [Delta] [rho] ⁇ r s and [Delta] I ⁇ r s represented by (Equation 25), so that the Most canceled.
  • the second term of the above (formula 10) and (formula 11) can be made sufficiently small as a result of the above averaging operation, and can be ignored.
  • the multipath bias shown in the first term of the above (Equation 10) and (Equation 11) can be ignored by applying the existing method for alleviating the influence of the multipath bias. .
  • the estimation unit 190 is input with P1 code pseudorange R S P1, P2 code pseudorange R S P2, L1 carrier phase phi S L1, and L2 carrier phase phi S L2, based on the above (Equation 28), the carrier It is possible to estimate the initial phase bias b 1 s and b 2 s .
  • FIG. 6 is a diagram showing an example of an algorithm related to the estimation of the carrier initial phase bias in the sanitary positioning system according to the present embodiment, and the carrier initial phase bias b 1 s and b 2 based on the above (Expression 28). An example of a process of estimating s is shown.
  • the carrier initial biases B 1 s and B 2 s instead of the carrier initial phase biases b 1 s and b 2 s as information on the carrier of each of the L 1 signal and the L 2 signal.
  • the carrier wave is obtained by performing the above-described averaging operation and removing the error term without performing division on the wavelength of each wireless signal with respect to the above (Equation 22) and (Equation 23).
  • the relational expressions of the initial biases B 1 s and B 2 s may be obtained.
  • the estimation unit 190 estimates information (for example, carrier initial phase biases b 1 s and b 2 s ) regarding the carrier for each of the L1 signal and the L2 signal, and the result of the estimation is used as the electronic reference point information.
  • the information is output to the transmission device 201 as at least a part of information of
  • the estimation unit 190 acquires information other than the information on the carrier wave based on the reception result of the L1 signal and the L2 signal by the electronic reference point 100, and transmits the information as at least a part of the electronic reference point information. It may be output to 201.
  • a portion for acquiring various information from the electronic reference point 100 corresponds to an example of the “acquisition unit”.
  • the part which estimates the information regarding the said carrier based on the said various information acquired is corresponded to an example of an "estimation part.”
  • the transmission device 201 includes a correction data generation unit 203 and a transmission processing unit 205.
  • the correction data generation unit 203 acquires, from the estimation unit 190, electronic reference point information including estimation results of information on carrier waves for each of the L1 signal and the L2 signal.
  • the correction data generation unit 203 generates correction data for positioning that the positioning device (for example, the positioning device 300 shown in FIG. 1) uses for satellite positioning, based on the acquired electronic reference point information. Then, the correction data generation unit 203 outputs the generated position correction data to the transmission processing unit 205.
  • the transmission processing unit 205 acquires positioning correction data from the correction data generation unit 203, and performs a predetermined modulation process on the acquired positioning correction data to generate a transmission signal. Then, the transmission processing unit 205 transmits (uplinks) the transmission signal (that is, correction data for positioning after modulation) from the predetermined communication unit (for example, the antenna of the center station 200) to the quasi-zenith satellite 500. .
  • the configuration of the system 10 is merely an example, and the configuration of the system 10 is not necessarily limited to the example illustrated in FIG. 5 as long as the above-described functions are realized.
  • the place where the estimation unit 190 is provided is not particularly limited.
  • the estimation unit 190 may be provided as part of the electronic reference point 100.
  • the estimation unit 190 may be provided as part of the transmission device 201.
  • the estimation unit 190 may be provided in another device (for example, a server or the like) different from each of the electronic reference point 100 and the transmission device 201.
  • the estimation unit 190 may execute, for the plurality of electronic reference points 100, a process related to estimation of information on a carrier wave corresponding to each of the L1 signal and the L2 signal described above. Also, the function corresponding to the estimation unit 190 may be realized by cooperation of a plurality of devices (servers and the like).
  • an apparatus including a configuration particularly corresponding to the estimation unit 190 corresponds to an example of the “information processing apparatus”.
  • the method concerning estimation of the information regarding a carrier wave demonstrated as a process of the said system 10 corresponds to an example of an "information processing method.”
  • the electronic reference point 100 corresponds to an example of the “communication device”.
  • the functional configuration of the satellite positioning system according to the present embodiment, in particular, it relates to estimation of information on the carrier of the radio signal from the GPS satellite according to the reception result of the radio signal from the GPS satellite by the electronic reference point
  • the explanation was focused on the processing.
  • two antenna units 130 adjacent to each other in at least a part of the y direction include one antenna element 131 and the other antenna element 133 They are disposed adjacent to each other in the y direction.
  • the arrangement pattern of the plurality of antenna units 130 in the antenna device 110 is not particularly limited.
  • FIG. 7 is an explanatory diagram for describing an example of a schematic configuration of an antenna apparatus applied to an electronic reference point according to a modification, and illustrates an example of an arrangement pattern of a plurality of antenna units 130. There is.
  • two antenna units 130 adjacent to each other in the x direction are one antenna element of the antenna elements 131 and 133 at one side and the one antenna at the other side.
  • the elements are disposed adjacent to each other in the x direction.
  • the antenna elements 130a and 130b in the antenna units 130a and 130b, the antenna element 133 of the antenna unit 130a and the antenna element 133 of the antenna unit 130b are disposed adjacent to each other.
  • the antenna units 130 b and 130 c are disposed such that the antenna element 131 of the antenna unit 130 b and the antenna element 131 of the antenna unit 130 c are adjacent to each other.
  • the example shown in FIG. 7 is different from the example shown in FIG. 4 in the arrangement pattern of the antenna units 130 in the y direction (in other words, the arrangement pattern of the antenna elements 131 and 133). Specifically, in the antenna units 130a and 130d, one antenna element 131 and the other antenna element 133 are disposed adjacent to each other in the y direction. The same applies to the antenna units 130e and 130f. On the other hand, in the example shown in FIG. 7, the arrangement pattern along the y direction of the antenna unit 130d and the antenna unit 130e adjacent to the antenna unit 130d on the opposite side to the antenna unit 130d is It differs from the example shown in FIG.
  • the antenna units 130d and 130e are disposed such that one of the antenna elements 131 and 133 at one side and the one antenna element at the other side are adjacent to each other in the x direction.
  • the antenna unit 130 e corresponds to an example of a “fifth antenna unit”. .
  • FIG. 8 is an explanatory view for explaining an example of a schematic configuration of an antenna apparatus applied to an electronic reference point according to a modification, and another example of the arrangement pattern of a plurality of antenna units 130. It shows.
  • the arrangement pattern of the plurality of antenna units 130 has randomness.
  • pairs of antenna units 130 in which the arrangement patterns of the antenna elements 131 and 133 are opposite to each other are randomly arranged along the x direction.
  • two antenna units 130 adjacent to each other in at least a part of the y direction are disposed such that one antenna element 131 and the other antenna element 133 are adjacent to each other in the y direction. If it is done, it is possible to realize the hygiene positioning system concerning this embodiment.
  • FIG. 9 is a flowchart illustrating an example of a flow of a series of processes of the positioning device according to the first application example.
  • the positioning device 300 calculates its rough position (that is, the receiver position) by single positioning calculation or the like (S101). In addition, the positioning device 300 acquires a satellite single difference with respect to the carrier wave phase with the zenith satellite as a base point (S103).
  • the positioning device 300 corrects the tropospheric delay derived from the dry atmosphere and the wet atmosphere based on a model estimated in advance (S105). Further, the positioning device 300 corrects the ionospheric delay based on the correction information provided by a predetermined organization or service (S107).
  • the positioning device 300 corrects the carrier wave phase based on the positioning correction data transmitted (downlink) from the quasi-zenith satellite 500 (S109). At this time, the positioning device 300 may use information on the carrier (for example, carrier initial phase bias) included in the side correction data to correct the carrier phase.
  • the information on the carrier wave is estimated based on the processing described with reference to FIGS. 5 and 6.
  • the positioning device 300 obtains a float solution by performing positioning calculation using the Kalman filter (S111). Also, the positioning device 300 estimates an integer bias, for example, using the Lambda method (integer least squares method) (S113). Then, the positioning device 300 fixes the integer bias and reflects the fix solution on the positioning result (S115).
  • an integer bias for example, using the Lambda method (integer least squares method) (S113). Then, the positioning device 300 fixes the integer bias and reflects the fix solution on the positioning result (S115).
  • FIG. 10 is a flowchart illustrating an example of a flow of a series of processes of the positioning device according to the second application example.
  • the positioning device 300 calculates its own rough position (that is, the receiver position) by single positioning calculation or the like (S201). Also, the positioning device 300 estimates the Wide-lane (WL) integer phase bias based on the Melbourne-Wubbena linear combination (S203). Also, the positioning device 300 performs calculation of ionospheric (IF) linear combination with respect to the L1 / L2 carrier phase (S205). The positioning device 300 acquires a satellite single difference with the zenith satellite as a base point for the corrected IF linear combined carrier phase (S207).
  • WL Wide-lane
  • IF ionospheric
  • the positioning device 300 corrects the tropospheric delay derived from the dry atmosphere and the wet atmosphere based on a model estimated in advance (S209).
  • the positioning device 300 corrects the IF linear combined carrier phase based on the WL integer phase bias obtained above and the positioning correction data transmitted (downlink) from the quasi-zenith satellite 500 (S211).
  • the positioning device 300 may use information on the carrier (for example, carrier initial phase bias) included in the side correction data to correct the IF linear combined carrier phase.
  • the information on the carrier wave is estimated based on the processing described with reference to FIGS. 5 and 6.
  • the positioning device 300 obtains a float solution by performing positioning calculation using the Kalman filter (S213). Also, the positioning device 300 estimates an integer bias using, for example, the Lambda method (integer least squares method) (S215). Then, the positioning device 300 fixes the integer bias and reflects the fix solution on the positioning result (S217).
  • the Lambda method integer least squares method
  • FIG. 11 is a functional block diagram showing an example of a hardware configuration of an information processing apparatus that configures a system according to an embodiment of the present disclosure.
  • An information processing apparatus 900 constituting a system according to the present embodiment mainly includes a CPU 901, a ROM 902, and a RAM 903.
  • the information processing apparatus 900 further includes a host bus 907, a bridge 909, an external bus 911, an interface 913, an input device 915, an output device 917, a storage device 919, a drive 921 and a connection port 923. And a communication device 925.
  • the CPU 901 functions as an arithmetic processing unit and a control unit, and controls the entire operation or a part of the information processing apparatus 900 according to various programs recorded in the ROM 902, the RAM 903, the storage device 919, or the removable recording medium 927.
  • the ROM 902 stores programs used by the CPU 901, calculation parameters, and the like.
  • the RAM 903 temporarily stores a program used by the CPU 901, parameters which appropriately change in the execution of the program, and the like. These are mutually connected by a host bus 907 constituted by an internal bus such as a CPU bus.
  • the estimation unit 190 and the correction data generation unit 203 illustrated in FIG. 5 may be configured by the CPU 901.
  • the host bus 907 is connected to an external bus 911 such as a peripheral component interconnect / interface (PCI) bus via the bridge 909. Further, an input device 915, an output device 917, a storage device 919, a drive 921, a connection port 923, and a communication device 925 are connected to the external bus 911 via an interface 913.
  • PCI peripheral component interconnect / interface
  • the input device 915 is an operation unit operated by the user, such as a mouse, a keyboard, a touch panel, a button, a switch, a lever, and a pedal.
  • the input device 915 may be, for example, a remote control means (so-called remote control) using infrared rays or other radio waves, or an externally connected device such as a mobile phone or PDA corresponding to the operation of the information processing apparatus 900. It may be 929.
  • the input device 915 includes, for example, an input control circuit that generates an input signal based on the information input by the user using the above-described operation means, and outputs the generated input signal to the CPU 901.
  • the user of the information processing apparatus 900 can input various data to the information processing apparatus 900 and instruct processing operations by operating the input device 915.
  • the output device 917 is configured of a device capable of visually or aurally notifying the user of the acquired information.
  • Such devices include display devices such as CRT display devices, liquid crystal display devices, plasma display devices, EL display devices and lamps, audio output devices such as speakers and headphones, and printer devices.
  • the output device 917 outputs, for example, results obtained by various processes performed by the information processing apparatus 900.
  • the display device displays the result obtained by the various processes performed by the information processing apparatus 900 as text or an image.
  • the audio output device converts an audio signal composed of reproduced audio data, acoustic data and the like into an analog signal and outputs it.
  • the storage device 919 is a device for data storage configured as an example of a storage unit of the information processing device 900.
  • the storage device 919 is configured of, for example, a magnetic storage unit device such as a hard disk drive (HDD), a semiconductor storage device, an optical storage device, a magneto-optical storage device, or the like.
  • the storage device 919 stores programs executed by the CPU 901, various data, and the like.
  • the drive 921 is a reader / writer for a recording medium, and is built in or externally attached to the information processing apparatus 900.
  • the drive 921 reads out information recorded in a removable recording medium 927 such as a mounted magnetic disk, an optical disk, a magneto-optical disk, or a semiconductor memory, and outputs the information to the RAM 903.
  • the drive 921 can also write a record on a removable recording medium 927 such as a mounted magnetic disk, an optical disk, a magneto-optical disk, or a semiconductor memory.
  • the removable recording medium 927 is, for example, a DVD medium, an HD-DVD medium, a Blu-ray (registered trademark) medium, or the like.
  • the removable recording medium 927 may be Compact Flash (registered trademark) (CF: Compact Flash), a flash memory, an SD memory card (Secure Digital memory card), or the like.
  • the removable recording medium 927 may be, for example, an IC card (Integrated Circuit card) equipped with a non-contact IC chip, an electronic device, or the like.
  • the connection port 923 is a port for direct connection to the information processing apparatus 900.
  • Examples of the connection port 923 include a Universal Serial Bus (USB) port, an IEEE 1394 port, and a Small Computer System Interface (SCSI) port.
  • USB Universal Serial Bus
  • SCSI Small Computer System Interface
  • As another example of the connection port 923 there are an RS-232C port, an optical audio terminal, a high-definition multimedia interface (HDMI (registered trademark)) port, and the like.
  • HDMI registered trademark
  • the communication device 925 is, for example, a communication interface configured of a communication device or the like for connecting to a communication network (network) 931.
  • the communication device 925 is, for example, a communication card for a wired or wireless LAN (Local Area Network), Bluetooth (registered trademark) or WUSB (Wireless USB).
  • the communication device 925 may be a router for optical communication, a router for Asymmetric Digital Subscriber Line (ADSL), a modem for various communications, or the like.
  • the communication device 925 can transmit and receive signals and the like according to a predetermined protocol such as TCP / IP, for example, with the Internet or another communication device.
  • the communication network 931 connected to the communication device 925 is configured by a network or the like connected by wire or wireless, and may be, for example, the Internet, home LAN, infrared communication, radio wave communication, satellite communication, etc. .
  • the transmission processing unit 205 illustrated in FIG. 5 may be configured by the communication device 925.
  • a computer program for realizing each function of the information processing apparatus 900 constituting the information processing system according to the present embodiment as described above can be prepared and implemented on a personal computer or the like.
  • a computer readable recording medium in which such a computer program is stored can be provided.
  • the recording medium is, for example, a magnetic disk, an optical disk, a magneto-optical disk, a flash memory or the like.
  • the above computer program may be distributed via, for example, a network without using a recording medium.
  • the number of computers that execute the computer program is not particularly limited. For example, a plurality of computers (for example, a plurality of servers and the like) may execute the computer program in cooperation with each other.
  • the electronic reference point (communication device) includes a plurality of antenna units arranged in an array.
  • the antenna unit includes a first antenna element and a second antenna element, a first receiving unit, and a second receiving unit.
  • the first antenna element and the second antenna element are disposed along the first direction.
  • the first receiver receives a first radio signal used for satellite positioning via the first antenna element.
  • the second receiver receives a second radio signal used for satellite positioning via the second antenna element.
  • the first antenna unit and the second antenna unit adjacent to each other in the second direction orthogonal to the first direction are a first antenna element in one and a second in the other.
  • the antenna elements of are arranged adjacent to each other in the second direction.
  • the information processing apparatus obtains the reception results of the first wireless signal and the second wireless signal from the electronic reference point.
  • the information processing apparatus estimates information on a carrier wave of at least one of the first radio signal and the second radio signal controlled by the satellite based on the acquired reception result.
  • the information processing apparatus is configured to set the carrier initial state of the first wireless signal and the second wireless signal based on the code pseudorange and the carrier phase of each of the first wireless signal and the second wireless signal. At least one of bias and carrier initial phase bias is estimated.
  • the electronic reference point according to the present embodiment can cope with multiple frequencies by combining a plurality of antennas and receivers corresponding to one frequency.
  • the mounting cost of the electronic reference point is further reduced as compared to the case of applying an antenna or receiver capable of handling multiple frequencies. It becomes possible. Therefore, in the realization of the satellite positioning system adopting the PPP-RTK method, it is possible to realize a wide-area and dense network of electronic reference points at lower cost. Also, even when the electronic reference point is applied, it is possible to estimate information (eg, carrier initial bias and carrier initial phase bias) for generating positioning correction data when performing satellite positioning based on the PPP-RTK method. It is as having mentioned above.
  • the following configurations are also within the technical scope of the present disclosure.
  • the antenna unit is A first antenna element and a second antenna element disposed along the first direction;
  • a first receiving unit that receives a first wireless signal used for satellite positioning via the first antenna element;
  • a second receiving unit that receives a second wireless signal used for satellite positioning via the second antenna element;
  • a first antenna unit and a second antenna unit adjacent to each other in a second direction orthogonal to the first direction are the first antenna elements in one antenna unit,
  • the second antenna element in the other antenna unit is disposed adjacent to the second direction, Communication device.
  • the third antenna unit and the fourth antenna unit adjacent to each other in the first direction among the plurality of antenna units are ones of the first antenna element and the second antenna element in one antenna unit.
  • the first antenna unit, and a fifth antenna unit adjacent to the first antenna unit on the opposite side to the second antenna unit are the first antenna element in one antenna unit;
  • the communication device according to any one of (3) to (3). (5) The communication device according to (4), wherein the clock section is shared between at least two of the plurality of antenna units.
  • An acquisition unit configured to acquire reception results of the first radio signal and the second radio signal used for satellite positioning by each of a plurality of antenna units arranged in an array;
  • An estimation unit configured to estimate information on a carrier wave of at least one of the first radio signal and the second radio signal controlled on the satellite side based on the acquired reception result; Equipped with The antenna unit is A first antenna element and a second antenna element disposed along the first direction; A first receiving unit that receives the first wireless signal via the first antenna element; A second receiving unit that receives the second wireless signal via the second antenna element;
  • the information processing apparatus estimates information on the carrier based on a code pseudorange and a carrier phase of each of the first wireless signal and the second wireless signal.
  • the information on the carrier wave includes at least one of a carrier initial bias and a carrier initial phase bias.
  • the estimation unit is configured based on a remainder obtained by dividing the carrier initial bias of at least one of the first wireless signal and the second wireless signal by the wavelength of the wireless signal.
  • the information processing apparatus which calculates a carrier initial phase bias of a signal.
  • the estimation unit is configured to estimate information on the carrier wave of each of the first wireless signal and the second wireless signal, based on the first wireless signal and the second wireless signal among the plurality of antenna units.
  • the information processing apparatus according to any one of (7) to (9), which is calculated according to a code pseudo distance and an average of information based on the carrier wave phase.
  • (11) Among the first antenna element and the second antenna element, the first radio signal and the second radio signal of each of a plurality of other antenna elements disposed in different directions with respect to one antenna element. The error caused by at least one of the tropospheric delay and the ionospheric delay included in the reception result of each of the plurality of other antenna elements is canceled based on the reception result of each of the radio signals.
  • the computer is A first antenna element and a second antenna element arranged along a first direction, and a first reception for receiving a first radio signal used for satellite positioning via the first antenna element
  • Including Among the plurality of antenna units, a first antenna unit and a second antenna unit adjacent to each other in a second direction orthogonal to the first direction are the first antenna elements in one antenna unit,
  • the second antenna element in the other antenna unit is disposed adjacent to the second direction, Information processing method.
  • satellite positioning system 10 system 100 electronic reference point 110 antenna device 130 antenna unit 131, 133 antenna element 135, 137 receiver 139 receiver clock 190 estimation unit 200 center station 201 transmission device 203 correction data generation unit 205 transmission processing unit 300 positioning Device 400 GPS satellite 500 Quasi-zenith satellite

Landscapes

  • Engineering & Computer Science (AREA)
  • Remote Sensing (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Astronomy & Astrophysics (AREA)
  • Signal Processing (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Electromagnetism (AREA)
  • Position Fixing By Use Of Radio Waves (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

【課題】衛星測位システムの実現コストをより低減する。 【解決手段】アレイ状に配列された複数のアンテナユニットを備え、前記アンテナユニットは、第1の方向に沿って配設された第1のアンテナ素子及び第2のアンテナ素子と、衛星測位に用いられる第1の無線信号を前記第1のアンテナ素子を介して受信する第1の受信部と、衛星測位に用いられる第2の無線信号を前記第2のアンテナ素子を介して受信する第2の受信部と、を含み、前記複数のアンテナユニットのうち、前記第1の方向に直交する第2の方向に互いに隣接する第1のアンテナユニット及び第2のアンテナユニットは、一方のアンテナユニットにおける前記第1のアンテナ素子と、他方のアンテナユニットにおける前記第2のアンテナ素子と、が前記第2の方向に隣接するように配設される、通信装置。

Description

通信装置、情報処理装置、及び情報処理方法
 本開示は、通信装置、情報処理装置、及び情報処理方法に関する。
 近年、GPS(Global Positioning System)、Galileo、GLONASS(GLObal NAvigation Satellite System)、及びQZSS(Quasi-Zenith Satellite System)等のようなGNSS(Global Navigation Satellite System)と呼称される所謂衛星測位システムを実現するための技術が各種提案されている。このような衛星測位の方式としては、例えば、相対測位方式(RTK:Real Time Kinematic)と呼ばれる方式や、高精度単独測位(PPP:Precise Point Positioning)と呼ばれる方式が挙げられる。
 また、近年では、PPP-RTKと称される、PPPとRTKとを融合させた測位方式が注目されている。PPP-RTKでは、衛星ごとに異なる位相端数バイアス(FCB:Fractional Cycle Bias)と呼ばれる補正情報を追加することで、アンビギュイティ(ambiguity)決定を可能とし、初期化時間の短縮と精度の向上とを実現することが可能となる。例えば、特許文献1には、PPP-RTK方式を採用した衛星測位システムの一例が開示されている。
特開2014-016315号公報
 一方で、PPP-RTK方式を採用した衛星測位システムに適用される電子基準点は、多周波への対応が必要であるなど要求仕様が比較的高く、使用されるアンテナや受信機等がより高価となり、実装コストが増大する傾向にある。
 そこで、本開示では、衛星測位システムの実現コストをより低減することが可能な技術を提案する。
 本開示によれば、アレイ状に配列された複数のアンテナユニットを備え、前記アンテナユニットは、第1の方向に沿って配設された第1のアンテナ素子及び第2のアンテナ素子と、衛星測位に用いられる第1の無線信号を前記第1のアンテナ素子を介して受信する第1の受信部と、衛星測位に用いられる第2の無線信号を前記第2のアンテナ素子を介して受信する第2の受信部と、を含み、前記複数のアンテナユニットのうち、前記第1の方向に直交する第2の方向に互いに隣り合う第1のアンテナユニット及び第2のアンテナユニットは、一方のアンテナユニットにおける前記第1のアンテナ素子と、他方のアンテナユニットにおける前記第2のアンテナ素子と、が前記第2の方向に隣り合うように配設される、通信装置が提供される。
 また、本開示によれば、アレイ状に配列された複数のアンテナユニットそれぞれによる、衛星測位に用いられる第1の無線信号及び第2の無線信号それぞれの受信結果を取得する取得部と、取得された前記受信結果に基づき、衛星側で制御されている前記第1の無線信号及び前記第2の無線信号のうち少なくともいずれかの搬送波に関する情報を推定する推定部と、を備え、前記アンテナユニットは、第1の方向に沿って配設された第1のアンテナ素子及び第2のアンテナ素子と、前記第1の無線信号を前記第1のアンテナ素子を介して受信する第1の受信部と、前記第2の無線信号を前記第2のアンテナ素子を介して受信する第2の受信部と、を含み、前記複数のアンテナユニットのうち、前記第1の方向に直交する第2の方向に互いに隣り合う第1のアンテナユニット及び第2のアンテナユニットは、一方のアンテナユニットにおける前記第1のアンテナ素子と、他方のアンテナユニットにおける前記第2のアンテナ素子と、が前記第2の方向に隣り合うように配設される、情報処理装置が提供される。
 また、本開示によれば、コンピュータが、第1の方向に沿って配設された第1のアンテナ素子及び第2のアンテナ素子と、衛星測位に用いられる第1の無線信号を前記第1のアンテナ素子を介して受信する第1の受信部と、衛星測位に用いられる前記第2の無線信号を前記第2のアンテナ素子を介して受信する第2の受信部と、をそれぞれが含む、アレイ状に配列された複数のアンテナユニットそれぞれによる、前記第1の無線信号及び前記第2の無線信号それぞれの受信結果を取得することと、取得された前記受信結果に基づき、衛星側で制御されている前記第1の無線信号及び前記第2の無線信号のうち少なくともいずれかの搬送波に関する情報を推定することと、を含み、前記複数のアンテナユニットのうち、前記第1の方向に直交する第2の方向に互いに隣り合う第1のアンテナユニット及び第2のアンテナユニットは、一方のアンテナユニットにおける前記第1のアンテナ素子と、他方のアンテナユニットにおける前記第2のアンテナ素子と、が前記第2の方向に隣り合うように配設されている、情報処理方法が提供される。
 以上説明したように本開示によれば、衛星測位システムの実現コストをより低減することが可能な技術が提供される。
 なお、上記の効果は必ずしも限定的なものではなく、上記の効果とともに、または上記の効果に代えて、本明細書に示されたいずれかの効果、または本明細書から把握され得る他の効果が奏されてもよい。
本開示の一実施形態に係る衛星測位システムの概略的なシステム構成の一例について説明するための説明図である。 同実施形態に係る電子基準点に適用されるアンテナ装置の概略的な構成の一例について説明するための説明図である。 同実施形態に係る電子基準点に適用されるアンテナ装置の基本ユニットの概略的な構成の一例について説明するための説明図である。 同実施形態に係る電子基準点に適用されるアンテナ装置の概略的な構成の一例について説明するための説明図である。 同実施形態に係る衛星測位システムの機能構成の一例を示したブロック図である。 同実施形態に係る衛生測位システムにおける搬送波初期位相バイアスの推定に係るアルゴリズムの一例を示した図である。 変形例に係る電子基準点に適用されるアンテナ装置の概略的な構成の一例について説明するための説明図である。 変形例に係る電子基準点に適用されるアンテナ装置の概略的な構成の一例について説明するための説明図である。 適用例1に係る測位装置の一連の処理の流れの一例を示したフローチャートである。 適用例2に係る測位装置の一連の処理の流れの一例を示したフローチャートである。 本開示の一実施形態に係るシステムを構成する情報処理装置のハードウェア構成の一構成例を示す機能ブロック図である。
 以下に添付図面を参照しながら、本開示の好適な実施の形態について詳細に説明する。なお、本明細書及び図面において、実質的に同一の機能構成を有する構成要素については、同一の符号を付することにより重複説明を省略する。
 なお、説明は以下の順序で行うものとする。
 1.概略構成
 2.衛星測位に関する検討
 3.技術的特徴
  3.1.電子基準点のアンテナ装置の構成
  3.2.機能構成
  3.3.変形例
 4.適用例
  4.1.適用例1:一周波対応の測位装置の場合
  4.2.適用例2:二周波対応の測位装置の場合
 5.ハードウェア構成
 6.むすび
 <<1.概略構成>>
 まず、図1を参照して、本開示の一実施形態に係る衛星測位システムの概略的なシステム構成の一例として、特に、PPP-RTK方式を適用可能なシステムの構成の一例について説明する。図1は、本実施形態に係る衛星測位システムの概略的なシステム構成の一例について説明するための説明図である。
 図1に示すように、本実施形態に係る衛星測位システム1は、GPS衛星400a~400nと、電子基準点100a~100nと、センター局200と、準天頂衛星500と、測位装置300とを含む。なお、以降の説明では、GPS衛星400a~400nを特に区別しない場合には、単に「GPS衛星400」とも称する。同様に、電子基準点100a~100nを特に区別しない場合には、単に「電子基準点100」とも称する。
 GPS衛星400は、衛星測位に利用される測位情報を、無線信号を利用して送信する。なお、本実施形態に係る衛星測位システム1において、GPS衛星400は、測位情報の送信に、周波数が互いに異なる複数の無線信号を利用してもよい。具体的な一例として、1575.42MHz帯のL1信号と、1227.60MHz帯のL2信号と、の2種類の無線信号(測位用信号)が、測位情報の送信に利用されてもよい。また、L1信号及びL2信号のうちいずれかに替えて、1176.45MHz帯のL5信号が利用されてもよい。なお、上述したL1信号、L2信号、及びL5信号はあくまで一例であり、必ずしも、上記測位情報の送信に利用される無線信号を限定するものではない。なお、上記測位情報の送信に利用される複数の無線信号が、「第1の無線信号」及び「第2の無線信号」の一例に相当する。
 電子基準点100は、GPS衛星400から無線信号を利用して送信される測位情報を受信する。電子基準点100は、測位情報の受信結果に基づき、例えば、当該電子基準点100とGPS衛星400との間の疑似距離、ドップラ周波数、搬送波位相等を含む情報(以降では、「電子基準点情報」とも称する)を生成し、当該情報をセンター局200に送信する。電子基準点100は、衛星測位の対象となる領域内の各所に設置される。
 センター局200は、送信装置201を含む。送信装置201は、各所に設置された電子基準点100のそれぞれから電子基準点情報を取得し、取得した当該電子基準点情報に基づき、測位装置300が衛星測位に利用する測位用補正データを生成する。
 測位用補正データには、例えば、所定の期間(フレーム)ごとに、時刻に対応付けられた修正衛星クロック誤差と地域固有誤差とのデータセットが含まれる。このとき、1つのフレーム(即ち、1周期の間)に、複数のデータセットが含まれていてもよい。なお、地域固有誤差には、例えば、対流圏遅延誤差や電離層遅延誤差等のように、電子基準点100が設置された地域ごとに固有の誤差に関する情報が含まれる。また、少なくとも一部のデータセットには、衛星固有誤差が含まれていてもよい。衛星固有誤差には、例えば、衛星軌道誤差や周波数時間バイアス等のように、GPS衛星ごとに固有の誤差に関する情報が含まれる。
 送信装置201は、生成した測位用補正データを、例えば、無線信号を利用してセンター局200のアンテナから準天頂衛星500に送信(アップリンク)する。
 準天頂衛星500は、センター局200から無線信号を利用して送信される測位用補正データを受信する。準天頂衛星500は、受信した当該測位用補正データを、無線信号を利用して測位装置300に送信する。
 測位装置300は、車両等のような移動体や、ウェアラブルデバイスやスマートフォン等のように携行可能に構成された装置等に保持される。測位装置300は、GPS衛星400から送信される測位情報と、準天頂衛星500から送信される測位用補正データと、に基づき、衛星測位を行う。
 以上、図1を参照して、本開示の一実施形態に係る衛星測位システムの概略的なシステム構成の一例として、特に、PPP-RTK方式を適用可能なシステムの構成の一例について説明した。
 <<2.衛星測位に関する検討>>
 続いて、衛星測位について概要を説明したうえで、本実施形態に係る衛星測位システムの課題(即ち、PPP-RTK方式を採用した衛星測位システムの課題)について整理する。
 衛星測位の方式としては、例えば、相対測位方式(RTK:Real Time Kinematic)と呼ばれる方式や、高精度単独測位(PPP:Precise Point Positioning)と呼ばれる方式が挙げられる。
 具体的には、RTKは、既知の座標点に基準局を設置し、2基の衛星から送信される無線信号を、当該基準局と移動局(受信機)との2つの受信点において観測して測位計算を行う方式である。RTKでは、測位計算において搬送波の二重位相差を求めることで、衛星時計誤差と受信機時計誤差とを除去することが可能であり、基線長が十分に短ければ、各疑似距離に同一の値が誤差として含まれている電離層と対流圏の伝搬遅延誤差や衛星軌道誤差をほとんど除去することが可能である。
 また、PPPは、単独観測点のみで測位を行う方式であり、受信機の近傍に基準局のような基準観測点を必要としない点でRTKとは異なる。PPPでは、衛星の軌道歴とクロックデータとが補正情報として所定の衛星(静止衛星等)から受信機に送信される。このような構成の基で、PPPでは、衛星の軌道歴とクロックデータとを既知として固定し、複数衛星の測位信号観測値を利用して観測点の位置と受信機時計誤差とを推定する。また、PPPでは、基本観測量として差をとらない(Undifferenced)搬送波位相を使用するため、より高精度の測位が可能となる。
 これに対して、PPP-RTKは、PPPとRTKとを融合させた測位方式に相当する。PPP-RTKでは、衛星ごとに異なる位相端数バイアス(FCB:Fractional Cycle Bias)と呼ばれる補正情報を追加することで、アンビギュイティ(ambiguity)決定を可能とし、初期化時間の短縮と精度の向上とを実現することが可能となる。具体的には、PPP-RTKでは、衛星の軌道歴とクロックデータとに加えて、衛星の位相バイアス情報が補正情報として所定の衛星(静止衛星等)から受信機に送信される。また、他の一例として、当該補正情報は、インターネット等の所定のネットワークを介して当該受信機に配信されてもよい。これにより、受信機は当該補正情報に基づきアンビギュイティ決定を行うことで初期化時間を短縮することが可能となる。また、PPP-RTKでは、実際の状態空間データ(state-space data)を使用して、電子基準点のネットワーク(RTKネットワーク)を基に、正確絶対測位が行われる。これにより、PPP-RTKでは、数秒程度の初期化時間で、後処理及びリアルタイムでセンチオーダーの測位が可能となる。
 しかしながら、PPP-RTK方式を採用した衛星測位システムに適用される電子基準点(例えば、図1に示す電子基準点100)は、多周波への対応が必要であるなど要求仕様が比較的高い傾向にある。そのため、電子基準点に使用されるアンテナや受信機等がより高価となり、当該電子基準点の実装コストが増大する傾向にある。
 また、衛星軌道、電離層遅延、及び対流圏遅延等を推定するためには、広域かつ密な電子基準点のネットワークが必要となる。具体的には、衛星軌道は、地球の非一様な重力場の影響や衛星の軌道修正オペレーションにより変化し、これらを捉えるためにはより広範囲な規模(理想的には地球規模)での監視が必要となる。また、電離層遅延や対流圏遅延が長距離線型相関を持たないため、局所的に複数地点における観測情報が必要となることから、より密な電子基準点のネットワークが必要となる。そのため、電子視準点の設置数もより多くなる傾向にあり、コストがより増大する傾向にある。
 そこで、本開示では、電子基準点の実装コストを低減し、ひいては、PPP-RTK方式を採用した衛星測位システムの実現コストをより低減することが可能な技術について提案する。
 <<3.技術的特徴>>
 以下に、本実施形態に係る衛星測位システムの技術的特徴について説明する。
  <3.1.電子基準点のアンテナ装置の構成>
 まず、図2~図4を参照して、本実施形態に係る衛星測位システムに適用される電子基準点100の構成について、特に、GPS衛星400から送信される無線信号を受信するためのアンテナ装置の構成に着目して説明する。
 例えば、図2は、本実施形態に係る電子基準点に適用されるアンテナ装置の概略的な構成の一例について説明するための説明図である。図2に示すように、本実施形態に係る電子基準点100に適用されるアンテナ装置110は、参照符号130で示す基本ユニット(以降では、「アンテナユニット130」と称する)がアレイ状に配列された所謂アレイアンテナとして構成される。アンテナユニット130は、第1の無線信号を受信可能に構成されたアンテナ素子131と、第2の無線信号を受信可能に構成されたアンテナ素子133と、を含む。例えば、図2に示す例では、アンテナ素子131及び133のそれぞれは平面アンテナ(パッチアンテナ)として構成されている。なお、以降の説明では、第1の無線信号としてL1信号が使用され、第2の無線信号としてL2信号が使用されるものとして説明する。
 ここで、図3を参照して、アンテナユニット130の構成の一例について説明する。図3は、本実施形態に係る電子基準点に適用されるアンテナ装置の基本ユニットの概略的な構成の一例について説明するための説明図であり、アンテナユニット130の構成の一例を示している。図3に示すように、アンテナユニット130は、アンテナ素子131及び133と、受信機135及び137と、受信機時計139とを含む。アンテナ素子131及び133は、図2に示すアンテナ素子131及び133に相当する。なお、アンテナ素子131及び133のうち、一方が「第1のアンテナ素子」の一例に相当し、他方が「第2のアンテナ素子」の一例に相当する。また、受信機135及び137のうち、一方が「第1の受信部」の一例に相当し、他方が「第2の受信部」の一例に相当する。
 受信機時計139は、衛星測位において受信機側(即ち、電子基準点100側)における時刻情報(クロックデータ)を取得するための構成である。図3に示すように、受信機時計139は、受信機135及び137間で共有される。また、図2に示すように、複数のアンテナユニット130をアレイ化する場合においては、2以上のアンテナユニット130(ひいては、全アンテナユニット130)間において1つの受信機時計139が共有化されるとよい。なお、受信機時計139が、「計時部」の一例に相当する。
 受信機135は、GPS衛星400から送信されるL1信号を、アンテナ素子131を介して受信し、受信した当該L1信号に所定の復号処理を施すことで測位情報を復号する。受信機135は、測位情報の復号結果と、受信機時計139の計時結果と、に基づき、L1信号の伝送に係るコード疑似距離に関する情報と、当該L1信号の搬送波位相に関する情報と、を取得する。
 また、受信機137は、GPS衛星400から送信されるL2信号を、アンテナ素子133を介して受信し、受信した当該L2信号に所定の復号処理を施すことで測位情報を復号する。受信機137は、測位情報の復号結果と、受信機時計139の計時結果と、に基づき、L2信号の伝送に係るコード疑似距離に関する情報と、当該L2信号の搬送波位相に関する情報と、を取得する。
 以上、図3を参照して、アンテナユニット130の構成の一例について説明した。
 次いで、図2及び図4を参照して、アンテナ装置110のより詳細な構成について説明する。図4は、本実施形態に係る電子基準点に適用されるアンテナ装置の概略的な構成の一例について説明するための説明図であり、複数のアンテナユニット130の配置パターンの一例について示している。なお、以降の説明では、便宜上、各アンテナユニット130のアンテナ素子131及び133それぞれの法線方向をz方向と称する。また、当該z方向に直交し、かつ互いに直交する方向をx方向及びy方向と称する。即ち、x方向及びy方向は、アンテナ素子131及び133それぞれの面に平行な方向に相当する。
 なお、本説明では、アンテナ装置110の構成をよりわかりやすくするために、複数のアンテナユニット130は、x方向及びy方向に沿ってアレイ状に配列されているものとする。また、各アンテナユニット130において、アンテナ素子131及び133は、x方向に互いに隣り合うように配設されているものとする。なお、図1及び図3に示す例において、x方向が「第1の方向」の一例に相当し、y方向が「第2の方向」の一例に相当する。
 アンテナ装置110は、10個程度のオーダーでアンテナユニット130を二次元に配設することで構成されるとよい。例えば、図2に示す例では、アンテナユニット130が、x方向及びy方向それぞれに100個ずつ程度のオーダーでアレイ状に配設されている。アンテナユニット130を構成するアンテナ素子131及び133の間隔は1cm程度のオーダーで設定とするとよい。また、互いに隣り合うアンテナユニット間の間隔は10cm程度のオーダーで設定するとよい。
 また、本実施形態に係るアンテナ装置110において、少なくとも一部のy方向に互いに隣り合う2つのアンテナユニット130が、一方のアンテナ素子131と、他方のアンテナ素子133と、が当該y方向に互いに隣り合うように配設される。例えば、図4に示す例では、アンテナユニット130a及び130dは、一方のアンテナ素子131と他方のアンテナ素子133とがy方向に互いに隣り合うように配設されている。これは、アンテナユニット130d及び130eと、アンテナユニット130e及び130fと、のそれぞれについても同様である。なお、上記y方向に互いに隣り合う2つのアンテナユニット130のうち、一方が「第1のアンテナユニット」に相当し、他方が「第2のアンテナユニット」に相当する。
 次いで、図4に示す例において、x方向に互いに隣り合う2つのアンテナユニット130に着目する。当該2つのアンテナユニット130は、一方のアンテナユニット130におけるアンテナ素子131及び133のうち一方のアンテナ素子と、他方のアンテナユニット130における当該一方のアンテナ素子と、が当該x方向に互いに隣り合うように配設される。例えば、図4に示す例では、アンテナユニット130a及び130bは、アンテナユニット130aのアンテナ素子133と、アンテナユニット130bのアンテナ素子133と、が互いに隣り合うように配設されている。また、アンテナユニット130b及び130cは、アンテナユニット130bのアンテナ素子131と、アンテナユニット130cのアンテナ素子131と、が互いに隣り合うように配設されている。なお、上記x方向に互いに隣り合う2つのアンテナユニット130のうち、一方が「第3のアンテナユニット」に相当し、他方が「第4のアンテナユニット」に相当する。
 以上のような構成に基づき、本実施形態に係る電子基準点100は、アンテナ装置110を構成する各アンテナユニット130により、GPS衛星400から送信されるL1信号及びL2信号を受信する。本実施形態に係る衛星測位システム1では、上記のように各アンテナユニット130によるL1信号及びL2信号の受信結果に基づき、GPS衛星400ごとの遅延(機器遅延)に応じた当該L1信号及び当該L2信号の搬送波に関する情報(換言すると、GPS衛星400側で制御されている情報)を推定する。当該搬送波に関する情報としては、例えば、搬送波初期バイアスや搬送波初期位相バイアス等のように、GNSS受信機の観測量の一つである搬送波位相の位相不定項の少なくとも一部に相当する情報が挙げられる。また、同推定に係る処理の詳細については別途後述する。
 以上、図2~図4を参照して、本実施形態に係る衛星測位システムに適用される電子基準点100の構成について、特に、GPS衛星400から送信される無線信号を受信するためのアンテナ装置の構成に着目して説明した。
  <3.2.機能構成>
 続いて、本実施形態に係る衛星測位システムの機能構成の一例について、特に、電子基準点によるGPS衛星からの無線信号の受信結果に応じた、GPS衛星からの無線信号の搬送波に関する情報の推定に係る処理に着目して説明する。
 例えば、図5は、本実施形態に係る衛星測位システムの機能構成の一例を示したブロック図である。なお、図5に示す例では、図1に示す衛星測位システム1のうち、電子基準点100がGPS衛星400からの無線信号を受信してから、センター局200の送信装置201が準天頂衛星500に送信する補正データを生成するまでの構成に着目して部分的に示している。そこで、以降の説明では、図3に示すシステム(換言すると、衛星測位システム1中の部分的なシステム)を、図1に示す衛星測位システム1と区別する場合には、「システム10」と称する場合がある。
 図3に示すように、システム10は、電子基準点100と、推定部190と、送信装置201とを含む。また、送信装置201は、補正データ生成部203を含む。なお、電子基準点100は、図1に示す電子基準点100に相当する。即ち、図5に示すアンテナ装置110と、当該アンテナ装置110に含まれる複数のアンテナユニット130とは、図2~図4を参照して説明したアンテナ装置110及び複数のアンテナユニット130に相当する。
 推定部190は、GPS衛星400から送信されるL1信号及びL2信号それぞれの搬送波に関する情報を推定するための構成である。前述したように、搬送波に関する情報としては、例えば、搬送波初期バイアスや搬送波初期位相バイアスが挙げられる。搬送波初期バイアスは、無線信号の送信時に衛星側の制御に基づき当該無線信号に負荷されるバイアスに相当する。特に、搬送波初期位相バイアスは、当該搬送波初期バイアスのうち、無線信号の送信時における位相のずれに相当する。ここで、搬送波初期バイアスをB、搬送波初期位相バイアスをb、GPS衛星からの無線信号の波長をλ、当該無線信号の波数Nとした場合に、搬送波初期バイアスBは、以下に(式1)で示す関係式で表される。
Figure JPOXMLDOC01-appb-M000001
 以下に、推定部190による、上記搬送波に関する情報の推定に係る処理についてより詳細に説明する。なお、以降の説明においては、「x」と記載した場合には、「x」の上にチルダが付された文字を示すものとする。
 具体的には、推定部190は、アンテナ装置110を構成する複数のアンテナユニット130それぞれによる、上記L1信号及び上記L2信号それぞれの受信結果から復号された測位情報に関する情報を、電子基準点100から取得する。当該情報としては、例えば、L1信号に対応するP1コード疑似距離及びL1搬送波位相それぞれに関する情報や、L2信号に対応するP2コード疑似距離及びL2搬送波位相それぞれに関する情報が挙げられる。なお、以降の説明では、添え字を「i」として、Li信号に対応する受信機rによる衛星s(GPS衛星)からの当該Li信号の受信結果に応じた、当該Li信号に対応するPiコード疑似距離を「R Pi」で示し、当該Li信号に対応するLi搬送波位相を「φ Li」で示すものとする。即ち、L1信号に対応するP1コード疑似距離は「R P1」で示され、当該L1信号に対応するL1搬送波位相を「φ L1」で示される。同様に、L2信号に対応するP2コード疑似距離は「R P2」で示され、当該L2信号に対応するL2搬送波位相を「φ L2」で示される。
 Li信号に対応するPiコード疑似距離R Pi及びLi搬送波位相φ Liは、以下に(式2)及び(式3)として示すようにモデル化される。
Figure JPOXMLDOC01-appb-M000002
 上記(式2)及び(式3)において、ρ は、衛星sと、Li信号に対応する受信機rと、のアンテナ位相中心間距離を示している。δtは、L1信号に対応する受信機rと、L2信号に対応する受信機rと、ので共通の受信機時計誤差を示している。δtは、衛星時計誤差を示している。T は、衛星sと受信機rとの間における対流圏遅延を示している。K21は、受信機DCB(Differential Code Bias)「KP2-KP1」と、衛星DCB「KP2 -KP1 」と、の差で定義される量である。M 及びm のそれぞれは、マルチパスバイアスを示している。λωは、位相ワインドアップを示している。また、α は、以下に(式4)で示される換算係数から定義される無次元量であり、以下に(式5)で示す計算式で表される。なお、1TECU=1016/mである。
Figure JPOXMLDOC01-appb-M000003
 また、I は、衛星sと受信機rとの間の電波パスに沿った全電子数STEC を用いた場合に、以下に(式6)で示す計算式で定義される量である。
Figure JPOXMLDOC01-appb-M000004
 また、B はNi信号に対応する位相バイアスを示しており、前述した(式1)のように、当該Ni信号に対応する初期位相バイアスをb 、搬送波波長をλ、整数位相バイアスをN とした場合に、以下に(式7)として示す計算式で表される。
Figure JPOXMLDOC01-appb-M000005
 なお、以降の説明において、標記を簡略化するために、以下に(式8)~(式15)で示す量を導入する。
Figure JPOXMLDOC01-appb-M000006
 ここで、上記(式8)及び(式9)は、幾何距離、対流圏遅延量、及び電離層遅延量の平均化操作にあたる量である。この量は、基本ユニット(アンテナユニット130)に仮想的なアンテナ位相中心を定義するための量であり、即ち、当該基本ユニットを疑似的な二周波アンテナ受信機とみなすために導入された量である。また、上記(式10)及び(式11)は、例えば、図2に示すように基本ユニットを多数(例えば、10個程度)配設した場合に、平均操作により統計的に除去されることが期待される量である。また、変数の差で定義される上記(式12)及び(式13)は、例えば、図4に示すようにアンテナ素子131とアンテナ素子133とが互いに隣り合うように複数の基本ユニット(アンテナユニット130)を交互に配設することにより、互いに打ち消し合い除去されることが期待される量である。また、変数の差で定義される上記(式14)及び(式15)は、多数の基本ユニットを配設し、かつ、アンテナ素子131とアンテナ素子133とが互いに隣り合うように複数の基本ユニットを交互に配設することにより除去されることが期待される量である。
 以上を踏まえると、L1信号に対応するP1コード疑似距離R P1及びL1搬送波位相φ L1のそれぞれと、L2信号に対応するP2コード疑似距離R P2及びL2搬送波位相φ L2のそれぞれと、は、以下に(式16)~(式19)で示す計算式で表される。
Figure JPOXMLDOC01-appb-M000007
 また、上記(式16)~(式19)を行列で表すと、以下に(式20)及び(式21)で示す関係式で表される。
Figure JPOXMLDOC01-appb-M000008
 ここで、上記(式20)に逆行列が存在することを利用し、α -α =1の関係式を用いると、上記(式20)及び(式21)は、以下に(式22)及び(式23)で示す関係式に変換することが可能である。
Figure JPOXMLDOC01-appb-M000009
 ここで、マルチアレイアンテナ(即ち、アンテナ装置110)を構成する各アンテナユニット130の状態量に相当する上記(式22)における位相バイアス(即ち、搬送波初期バイアスB 及びB )を、各無線信号(即ち、信号L1及びL2)の波長で除算することで得られる剰余の平均を取ることを考える。波長λを法として得られる剰余の平均操作を「<>」で示すと、上記(式7)、(式22)、及び(式23)に基づき、信号L1及びL2それぞれに対応する搬送波初期位相バイアスb 及びb は、以下に(式24)~(式27)で示す関係式で表すことが可能である。
Figure JPOXMLDOC01-appb-M000010
 ここで、上記(式24)~(式27)のうち、(式25)~(式27)それぞれにより示される誤差項について以下に検討する。
 まず、マルチアンテナの大きさを1m四方程度と仮定し、当該マルチアレイアンテナの大きさと、アンテナと衛星との間の距離(~20,200km)と、のオーダーを考慮すると、各アンテナに入射する電波は近似的に平行であるとみなすことが可能である。また、L1信号に対応するアンテナ素子131と、L2信号に対応するアンテナ素子133と、が互いに隣り合うように、基本ユニット(アンテナユニット130)を交互に配設していることから、電波の行路差は隣接する単位ユニット間で逆転する。従って、上記(式25)で示されるΔρ やΔI は、ほとんど打ち消されることとなる。
 また、上記(式26)についても、マルチパス電波が平行入射するとみなすことが可能である。そのため、L1信号に対応するアンテナ素子131と、L2信号に対応するアンテナ素子133と、が互いに隣り合うように、基本ユニットが交互に配設されることで、上記(式14)及び(式15)それぞれの第一項はほとんど打ち消される。また、(式14)及び(式15)それぞれの第二項については、上述した平均操作の結果として、統計的に100倍程度のオーダーで小さくすることが可能であり、無視することが可能となる。
 上記(式27)において、上記(式10)及び(式11)の第二項については、上記平均操作の結果として、十分小さくすることが可能であり、無視することが可能となる。また、上記(式10)及び(式11)の第一項に示されたマルチパスバイアスついては、マルチパスバイアスの影響を緩和するための既存の手法を適用することで無視することが可能となる。より具体的な一例として、アンテナ装置110の上空が開けた環境を実現、高仰角衛星のデータの使用、及びチョーキングによる対策等を講じることで、マルチパスバイアスの影響を十分に抑えることが可能である。
 以上の結果から、(式24)~(式27)は、誤差項を影響を除くと、以下に(式28)で示す関係式に変換することが可能である。
Figure JPOXMLDOC01-appb-M000011
 即ち、推定部190は、P1コード疑似距離R P1、P2コード疑似距離R P2、L1搬送波位相φ L1、及びL2搬送波位相φ L2を入力として、上記(式28)に基づき、搬送波初期位相バイアスb 及びb を推定することが可能となる。例えば、図6は、本実施形態に係る衛生測位システムにおける搬送波初期位相バイアスの推定に係るアルゴリズムの一例を示した図であり、上記(式28)に基づき搬送波初期位相バイアスb 及びb を推定する処理の一例を示している。
 なお、L1信号及びL2信号それぞれの搬送波に関する情報として、搬送波初期位相バイアスb 及びb に替えて、搬送波初期バイアスB 及びB を推定することも可能である。この場合には、上記(式22)及び(式23)に対して、各無線信号の波長での除算を行わずに、上述した平均操作と、誤差項の除去と、を行うことで、搬送波初期バイアスB 及びB の関係式を得ればよい。
 以上のようにして、推定部190は、L1信号及びL2信号それぞれについて搬送波に関する情報(例えば、搬送波初期位相バイアスb 及びb )を推定し、当該推定の結果を、電子基準点情報の少なくとも一部の情報として送信装置201に出力する。なお、推定部190は、上記搬送波に関する情報以外の情報を、電子基準点100によるL1信号及びL2信号の受信結果に基づき取得し、当該情報を電子基準点情報の少なくとも一部の情報として送信装置201に出力してもよい。なお、推定部190のうち、電子基準点100から各種情報を取得する部分が、「取得部」の一例に相当する。また、取得された当該各種情報に基づき、上記搬送波に関する情報を推定する部分が、「推定部」の一例に相当する。
 送信装置201は、補正データ生成部203と、送信処理部205とを含む。
 補正データ生成部203は、L1信号及びL2信号それぞれについて搬送波に関する情報の推定結果を含む電子基準点情報を推定部190から取得する。補正データ生成部203は、取得した当該電子基準点情報に基づき、測位装置(例えば、図1に示す測位装置300)が衛星測位に利用する測位用補正データを生成する。そして、補正データ生成部203は、生成した測位用補正データを送信処理部205に出力する。
 送信処理部205は、補正データ生成部203から測位用補正データを取得し、取得した当該測位用補正データに対して所定の変調処理を施すことで送信信号を生成する。そして、送信処理部205は、当該送信信号(即ち、変調後の測位用補正データ)を、所定の通信部(例えば、センター局200のアンテナ等)から準天頂衛星500に送信(アップリンク)する。
 なお、上記システム10の構成はあくまで一例であり、上述した各機能が実現されれば、当該システム10の構成は必ずしも図5に示す例のみには限定されない。例えば、推定部190が設けられる場所は特に限定されない。具体的な一例として、推定部190は、電子基準点100の一部として設けられていてもよい。また、他の一例として、推定部190は、送信装置201の一部として設けられていてもよい。また、他の一例として、推定部190は、電子基準点100及び送信装置201のそれぞれとは異なる他の装置(例えば、サーバ等)に設けられていてもよい。また、推定部190は、複数の電子基準点100について、上述したL1信号及びL2信号それぞれに対応する搬送波に関する情報の推定に係る処理を実行してもよい。また、推定部190に相当する機能が、複数の装置(サーバ等)の連携により実現されてもよい。
 なお、上記システム10のうち、特に推定部190に相当する構成を含む装置が、「情報処理装置」の一例に相当する。また、上記システム10(特に、推定部190)の処理として説明した、搬送波に関する情報の推定に係る方法が、「情報処理方法」の一例に相当する。また、電子基準点100が、「通信装置」の一例に相当する。
 以上、本実施形態に係る衛星測位システムの機能構成の一例について、特に、電子基準点によるGPS衛星からの無線信号の受信結果に応じた、GPS衛星からの無線信号の搬送波に関する情報の推定に係る処理に着目して説明した。
  <3.3.変形例>
 続いて、本実施形態に係る衛生測位システムの変形例として、電子基準点100のアンテナ装置110における複数のアンテナユニット130の配設パターンの一例について説明する。
 本実施形態に係る電子基準点100に適用されるアンテナ装置110は、少なくとも一部のy方向に互いに隣り合う2つのアンテナユニット130が、一方のアンテナ素子131と、他方のアンテナ素子133と、が当該y方向に互いに隣り合うように配設される。このような条件を満たせば、当該アンテナ装置110における複数のアンテナユニット130の配設パターンは特に限定されない。
 例えば、図7は、変形例に係る電子基準点に適用されるアンテナ装置の概略的な構成の一例について説明するための説明図であり、複数のアンテナユニット130の配設パターンの一例について示している。
 図7に示す例では、図4に示す例と同様に、x方向に互いに隣り合う2つのアンテナユニット130が、一方におけるアンテナ素子131及び133のうち一方のアンテナ素子と、他方における当該一方のアンテナ素子と、が当該x方向に互いに隣り合うように配設される。例えば、図7に示す例では、アンテナユニット130a及び130bは、アンテナユニット130aのアンテナ素子133と、アンテナユニット130bのアンテナ素子133と、が互いに隣り合うように配設されている。また、アンテナユニット130b及び130cは、アンテナユニット130bのアンテナ素子131と、アンテナユニット130cのアンテナ素子131と、が互いに隣り合うように配設されている。
 一方で、図7に示す例は、y方向におけるアンテナユニット130の配列パターン(換言すると、アンテナ素子131及び133の配列パターン)が図4に示す例と異なる。具体的には、アンテナユニット130a及び130dは、一方のアンテナ素子131と他方のアンテナ素子133とがy方向に互いに隣り合うように配設されている。これは、アンテナユニット130e及び130fについても同様である。これに対して、図7に示す例において、アンテナユニット130dと、当該アンテナユニット130dに対してアンテナユニット130aとは逆側に隣り合うアンテナユニット130eと、のy方向に沿った配設パターンが、図4に示す例と異なる。即ち、アンテナユニット130d及び130eは、一方におけるアンテナ素子131及び133のうち一方のアンテナ素子と、他方における当該一方のアンテナ素子と、がx方向に互いに隣り合うように配設されている。なお、上記において、アンテナユニット130dを「第1のアンテナユニット」とし、アンテナユニット130aを「第2のアンテナユニット」とした場合に、アンテナユニット130eが「第5のアンテナユニット」の一例に相当する。
 また、図8は、変形例に係る電子基準点に適用されるアンテナ装置の概略的な構成の一例について説明するための説明図であり、複数のアンテナユニット130の配設パターンの他の一例について示している。図8に示す例では、複数のアンテナユニット130の配設パターンにランダム性を持たせている。具体的には、図8に示す例では、x方向に沿ってアンテナ素子131及び133の配列パターンが互いに逆向きのアンテナユニット130のペアをランダムに配設している。このような場合においても、少なくとも一部のy方向に互いに隣り合う2つのアンテナユニット130が、一方のアンテナ素子131と、他方のアンテナ素子133と、が当該y方向に互いに隣り合うように配設されれば、本実施形態に係る衛生測位システムを実現することが可能である。
 以上、本実施形態に係る衛生測位システムの変形例として、電子基準点100のアンテナ装置110における複数のアンテナユニット130の配設パターンの一例について説明した。
 <<4.適用例>>
 続いて、本実施形態に係る衛生測位システムの適用例として、電子基準点100によるGPS衛星400から無線信号の受信結果に応じた補正情報である、当該無線信号の搬送波に関する情報(例えば、搬送波位相初期バイアス)を測位装置300がどのように利用するかについて一例を説明する。なお、適用方法については、測位装置300の種類に応じて異なる。そのため、以降では、測位装置300が、一周波(L1)対応の測位装置である場合と、二周波(L1/L2)対応の測位装置である場合と、についてそれぞれ説明する。なお、以降の説明においては、PPP-RTKの測位アルゴリズムとして典型的なものを想定する。そのため、当該測位アルゴリズムに関する処理については、概要レベルの説明に留め、詳細な説明については省略する。
  <4.1.適用例1:一周波対応の測位装置の場合>
 まず、適用例1として、図9を参照して、一周波対応の測位装置を適用した場合における、当該測位装置による衛星測位に係る一連の処理の流れの一例について説明する。図9は、適用例1に係る測位装置の一連の処理の流れの一例を示したフローチャートである。
 まず、測位装置300は、単独測位計算等により自身の大まかな位置(即ち、受信機位置)を算出する(S101)。また、測位装置300は、搬送波位相について天頂衛星を基点として衛星一重差を取得する(S103)。
 次いで、測位装置300は、あらかじめ推定されたモデルに基づき、乾燥大気と湿潤大気とに由来する対流圏遅延の補正を行う(S105)。また、測位装置300は、所定の機関やサービスにより提供される補正情報に基づき、電離層遅延の補正を行う(S107)。
 次いで、測位装置300は、準天頂衛星500から送信(ダウンリンク)される測位用補正データに基づき搬送波位相の補正を行う(S109)。このとき、測位装置300は、当該側用補正データに含まれる、搬送波に関する情報(例えば、搬送波初期位相バイアス)を搬送波位相の補正に利用すればよい。なお、当該搬送波に関する情報については、図5及び図6を参照して説明した処理に基づき推定される。
 次いで、測位装置300は、カルマンフィルタを利用して測位計算を行うことでフロート(Float)解を得る(S111)。また、測位装置300は、例えば、Lambda法(整数最小二乗法)を利用して整数バイアスを推定する(S113)。そして、測位装置300は、整数バイアスをフィックス(Fix)し、フィックス(Fix)解を測位結果へ反映する(S115)。
 以上、適用例1として、図9を参照して、一周波対応の測位装置を適用した場合における、当該測位装置による衛星測位に係る一連の処理の流れの一例について説明した。
  <4.2.適用例2:二周波対応の測位装置の場合>
 続いて、適用例2として、図10を参照して、二周波対応の測位装置を適用した場合における、当該測位装置による衛星測位に係る一連の処理の流れの一例について説明する。図10は、適用例2に係る測位装置の一連の処理の流れの一例を示したフローチャートである。
 まず、測位装置300は、単独測位計算等により自身の大まかな位置(即ち、受信機位置)を算出する(S201)。また、測位装置300は、Melbourne-Wubbena線形結合に基づき、Wide-lane(WL)整数位相バイアスを推定する(S203)。また、測位装置300は、L1/L2搬送波位相に対して電離層(IF)線形結合の計算を行う(S205)。測位装置300は、補正後のIF線形結合搬送波位相について天頂衛星を基点として衛星一重差を取得する(S207)。
 次いで、測位装置300は、あらかじめ推定されたモデルに基づき、乾燥大気と湿潤大気とに由来する対流圏遅延の補正を行う(S209)。また、測位装置300は、先に求めたWL整数位相バイアスと、準天頂衛星500から送信(ダウンリンク)される測位用補正データと、に基づき、IF線形結合搬送波位相を補正する(S211)。このとき、測位装置300は、当該側用補正データに含まれる、搬送波に関する情報(例えば、搬送波初期位相バイアス)をIF線形結合搬送波位相の補正に利用すればよい。なお、当該搬送波に関する情報については、図5及び図6を参照して説明した処理に基づき推定される。
 次いで、測位装置300は、カルマンフィルタを利用して測位計算を行うことでフロート(Float)解を得る(S213)。また、測位装置300は、例えば、Lambda法(整数最小二乗法)を利用して整数バイアスを推定する(S215)。そして、測位装置300は、整数バイアスをフィックス(Fix)し、フィックス(Fix)解を測位結果へ反映する(S217)。
 以上、適用例2として、図10を参照して、二周波対応の測位装置を適用した場合における、当該測位装置による衛星測位に係る一連の処理の流れの一例について説明した。
 <<5.ハードウェア構成>>
 続いて、図11を参照しながら、本開示の一実施形態に係るシステムを構成する情報処理装置のハードウェア構成の一例について、詳細に説明する。図11は、本開示の一実施形態に係るシステムを構成する情報処理装置のハードウェア構成の一構成例を示す機能ブロック図である。
 本実施形態に係るシステムを構成する情報処理装置900は、主に、CPU901と、ROM902と、RAM903と、を備える。また、情報処理装置900は、更に、ホストバス907と、ブリッジ909と、外部バス911と、インタフェース913と、入力装置915と、出力装置917と、ストレージ装置919と、ドライブ921と、接続ポート923と、通信装置925とを備える。
 CPU901は、演算処理装置及び制御装置として機能し、ROM902、RAM903、ストレージ装置919又はリムーバブル記録媒体927に記録された各種プログラムに従って、情報処理装置900内の動作全般又はその一部を制御する。ROM902は、CPU901が使用するプログラムや演算パラメータ等を記憶する。RAM903は、CPU901が使用するプログラムや、プログラムの実行において適宜変化するパラメータ等を一次記憶する。これらはCPUバス等の内部バスにより構成されるホストバス907により相互に接続されている。例えば、図5に示す推定部190及び補正データ生成部203は、CPU901により構成され得る。
 ホストバス907は、ブリッジ909を介して、PCI(Peripheral Component Interconnect/Interface)バスなどの外部バス911に接続されている。また、外部バス911には、インタフェース913を介して、入力装置915、出力装置917、ストレージ装置919、ドライブ921、接続ポート923及び通信装置925が接続される。
 入力装置915は、例えば、マウス、キーボード、タッチパネル、ボタン、スイッチ、レバー及びペダル等、ユーザが操作する操作手段である。また、入力装置915は、例えば、赤外線やその他の電波を利用したリモートコントロール手段(いわゆる、リモコン)であってもよいし、情報処理装置900の操作に対応した携帯電話やPDA等の外部接続機器929であってもよい。さらに、入力装置915は、例えば、上記の操作手段を用いてユーザにより入力された情報に基づいて入力信号を生成し、CPU901に出力する入力制御回路などから構成されている。情報処理装置900のユーザは、この入力装置915を操作することにより、情報処理装置900に対して各種のデータを入力したり処理動作を指示したりすることができる
 出力装置917は、取得した情報をユーザに対して視覚的又は聴覚的に通知することが可能な装置で構成される。このような装置として、CRTディスプレイ装置、液晶ディスプレイ装置、プラズマディスプレイ装置、ELディスプレイ装置及びランプ等の表示装置や、スピーカ及びヘッドホン等の音声出力装置や、プリンタ装置等がある。出力装置917は、例えば、情報処理装置900が行った各種処理により得られた結果を出力する。具体的には、表示装置は、情報処理装置900が行った各種処理により得られた結果を、テキスト又はイメージで表示する。他方、音声出力装置は、再生された音声データや音響データ等からなるオーディオ信号をアナログ信号に変換して出力する。
 ストレージ装置919は、情報処理装置900の記憶部の一例として構成されたデータ格納用の装置である。ストレージ装置919は、例えば、HDD(Hard Disk Drive)等の磁気記憶部デバイス、半導体記憶デバイス、光記憶デバイス又は光磁気記憶デバイス等により構成される。このストレージ装置919は、CPU901が実行するプログラムや各種データ等を格納する。
 ドライブ921は、記録媒体用リーダライタであり、情報処理装置900に内蔵、あるいは外付けされる。ドライブ921は、装着されている磁気ディスク、光ディスク、光磁気ディスク又は半導体メモリ等のリムーバブル記録媒体927に記録されている情報を読み出して、RAM903に出力する。また、ドライブ921は、装着されている磁気ディスク、光ディスク、光磁気ディスク又は半導体メモリ等のリムーバブル記録媒体927に記録を書き込むことも可能である。リムーバブル記録媒体927は、例えば、DVDメディア、HD-DVDメディア又はBlu-ray(登録商標)メディア等である。また、リムーバブル記録媒体927は、コンパクトフラッシュ(登録商標)(CF:CompactFlash)、フラッシュメモリ又はSDメモリカード(Secure Digital memory card)等であってもよい。また、リムーバブル記録媒体927は、例えば、非接触型ICチップを搭載したICカード(Integrated Circuit card)又は電子機器等であってもよい。
 接続ポート923は、情報処理装置900に直接接続するためのポートである。接続ポート923の一例として、USB(Universal Serial Bus)ポート、IEEE1394ポート、SCSI(Small Computer System Interface)ポート等がある。接続ポート923の別の例として、RS-232Cポート、光オーディオ端子、HDMI(登録商標)(High-Definition Multimedia Interface)ポート等がある。この接続ポート923に外部接続機器929を接続することで、情報処理装置900は、外部接続機器929から直接各種のデータを取得したり、外部接続機器929に各種のデータを提供したりする。
 通信装置925は、例えば、通信網(ネットワーク)931に接続するための通信デバイス等で構成された通信インタフェースである。通信装置925は、例えば、有線若しくは無線LAN(Local Area Network)、Bluetooth(登録商標)又はWUSB(Wireless USB)用の通信カード等である。また、通信装置925は、光通信用のルータ、ADSL(Asymmetric Digital Subscriber Line)用のルータ又は各種通信用のモデム等であってもよい。この通信装置925は、例えば、インターネットや他の通信機器との間で、例えばTCP/IP等の所定のプロトコルに則して信号等を送受信することができる。また、通信装置925に接続される通信網931は、有線又は無線によって接続されたネットワーク等により構成され、例えば、インターネット、家庭内LAN、赤外線通信、ラジオ波通信又は衛星通信等であってもよい。例えば、図5に示す送信処理部205は、通信装置925により構成され得る。
 以上、本開示の実施形態に係るシステムを構成する情報処理装置900の機能を実現可能なハードウェア構成の一例を示した。上記の各構成要素は、汎用的な部材を用いて構成されていてもよいし、各構成要素の機能に特化したハードウェアにより構成されていてもよい。従って、本実施形態を実施する時々の技術レベルに応じて、適宜、利用するハードウェア構成を変更することが可能である。なお、図11では図示しないが、システムを構成する情報処理装置900に対応する各種の構成を当然備える。
 なお、上述のような本実施形態に係る情報処理システムを構成する情報処理装置900の各機能を実現するためのコンピュータプログラムを作製し、パーソナルコンピュータ等に実装することが可能である。また、このようなコンピュータプログラムが格納された、コンピュータで読み取り可能な記録媒体も提供することができる。記録媒体は、例えば、磁気ディスク、光ディスク、光磁気ディスク、フラッシュメモリなどである。また、上記のコンピュータプログラムは、記録媒体を用いずに、例えばネットワークを介して配信してもよい。また、当該コンピュータプログラムを実行させるコンピュータの数は特に限定されない。例えば、当該コンピュータプログラムを、複数のコンピュータ(例えば、複数のサーバ等)が互いに連携して実行してもよい。
 <<6.むすび>>
 以上説明したように、本実施形態に係る電子基準点(通信装置)は、アレイ状に配列された複数のアンテナユニットを備える。当該アンテナユニットは、第1のアンテナ素子及び第2のアンテナ素子と、第1の受信部と、第2の受信部とを含む。第1のアンテナ素子及び第2のアンテナ素子は、第1の方向に沿って配設されている。第1の受信部は、衛星測位に用いられる第1の無線信号を前記第1のアンテナ素子を介して受信する。第2の受信部は、衛星測位に用いられる第2の無線信号を前記第2のアンテナ素子を介して受信する。また、複数のアンテナユニットのうち、第1の方向に直交する第2の方向に互いに隣り合う第1のアンテナユニット及び第2のアンテナユニットは、一方における第1のアンテナ素子と、他方における第2のアンテナ素子と、が第2の方向に隣り合うように配設される。
 また、本実施形態に係る情報処理装置は、上記第1の無線信号及び上記第2の無線信号それぞれの受信結果を上記電子基準点から取得する。当該情報処理装置は、取得した当該受信結果に基づき、衛星側で制御されている上記第1の無線信号及び上記第2の無線信号のうち少なくともいずれかの搬送波に関する情報を推定する。具体的な一例として、当該情報処理装置は、第1の無線信号及び第2の無線信号それぞれのコード疑似距離及び搬送波位相に基づき、当該第1の無線信号及び当該第2の無線信号の搬送波初期バイアスと搬送波初期位相バイアスとのうち少なくともいずれかを推定する。
 以上のように、本実施形態に係る電子基準点は、1周波に対応したアンテナや受信機を複数組み合わせることで多周波への対応を可能としている。以上のような構成により、本実施形態に係る衛星測位システムに依れば、多周波への対応が可能なアンテナや受信機を適用する場合に比べて、電子基準点の実装コストをより低減することが可能となる。そのため、PPP-RTK方式を採用した衛星測位システムの実現に際し、広域かつ密な電子基準点のネットワークを、より低コストで実現することが可能となる。また、上記電子基準点を適用した場合においても、PPP-RTK方式に基づき衛星測位を行う場合における測位用補正データを生成するための情報(例えば、搬送波初期バイアスや搬送波初期位相バイアス)を推定可能であることは前述したとおりである。
 以上、添付図面を参照しながら本開示の好適な実施形態について詳細に説明したが、本開示の技術的範囲はかかる例に限定されない。本開示の技術分野における通常の知識を有する者であれば、特許請求の範囲に記載された技術的思想の範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、これらについても、当然に本開示の技術的範囲に属するものと了解される。
 また、本明細書に記載された効果は、あくまで説明的または例示的なものであって限定的ではない。つまり、本開示に係る技術は、上記の効果とともに、または上記の効果に代えて、本明細書の記載から当業者には明らかな他の効果を奏しうる。
 なお、以下のような構成も本開示の技術的範囲に属する。
(1)
 アレイ状に配列された複数のアンテナユニットを備え、
 前記アンテナユニットは、
 第1の方向に沿って配設された第1のアンテナ素子及び第2のアンテナ素子と、
 衛星測位に用いられる第1の無線信号を前記第1のアンテナ素子を介して受信する第1の受信部と、
 衛星測位に用いられる第2の無線信号を前記第2のアンテナ素子を介して受信する第2の受信部と、
 を含み、
 前記複数のアンテナユニットのうち、前記第1の方向に直交する第2の方向に互いに隣り合う第1のアンテナユニット及び第2のアンテナユニットは、一方のアンテナユニットにおける前記第1のアンテナ素子と、他方のアンテナユニットにおける前記第2のアンテナ素子と、が前記第2の方向に隣り合うように配設される、
 通信装置。
(2)
 前記複数のアンテナユニットのうち、前記第1の方向に互いに隣り合う第3のアンテナユニット及び第4のアンテナユニットは、一方のアンテナユニットにおける前記第1のアンテナ素子及び前記第2のアンテナ素子のうち一方のアンテナ素子と、他方のアンテナユニットにおける当該一方のアンテナ素子と、が前記第1の方向に隣り合うように配設される、前記(1)に記載の通信装置。
(3)
 前記第1のアンテナユニットと、当該第1のアンテナユニットに対して前記第2のアンテナユニットとは逆側に隣り合う第5のアンテナユニットは、一方のアンテナユニットにおける前記第1のアンテナ素子と、他方のアンテナユニットにおける前記第1のアンテナ素子と、が前記第2の方向に隣り合うように配設される、前記(1)または(2)に記載の通信装置。
(4)
 前記第1の受信部による前記第1の無線信号の受信タイミングと、前記第2の受信部による前記第2の無線信号の受信タイミングと、のそれぞれを検出する計時部を備える、前記(1)~(3)のいずれか一項に記載の通信装置。
(5)
 前記計時部は、前記複数のアンテナユニットのうち少なくとも2以上の当該アンテナユニット間で共有される、前記(4)に記載の通信装置。
(6)
 アレイ状に配列された複数のアンテナユニットそれぞれによる、衛星測位に用いられる第1の無線信号及び第2の無線信号それぞれの受信結果を取得する取得部と、
 取得された前記受信結果に基づき、衛星側で制御されている前記第1の無線信号及び前記第2の無線信号のうち少なくともいずれかの搬送波に関する情報を推定する推定部と、
 を備え、
 前記アンテナユニットは、
 第1の方向に沿って配設された第1のアンテナ素子及び第2のアンテナ素子と、
 前記第1の無線信号を前記第1のアンテナ素子を介して受信する第1の受信部と、
 前記第2の無線信号を前記第2のアンテナ素子を介して受信する第2の受信部と、
 を含み、
 前記複数のアンテナユニットのうち、前記第1の方向に直交する第2の方向に互いに隣り合う第1のアンテナユニット及び第2のアンテナユニットは、一方のアンテナユニットにおける前記第1のアンテナ素子と、他方のアンテナユニットにおける前記第2のアンテナ素子と、が前記第2の方向に隣り合うように配設される、
 情報処理装置。
(7)
 前記推定部は、前記第1の無線信号及び前記第2の無線信号それぞれのコード疑似距離及び搬送波位相に基づき、前記搬送波に関する情報を推定する、前記(6)に記載の情報処理装置。
(8)
 前記搬送波に関する情報は、搬送波初期バイアスと搬送波初期位相バイアスとのうち少なくともいずれかを含む、前記(7)に記載の情報処理装置。
(9)
 前記推定部は、前記第1の無線信号及び前記第2の無線信号のうち少なくともいずれかの無線信号の前記搬送波初期バイアスを当該無線信号の波長で除算することで得られる剰余に基づき、当該無線信号の搬送波初期位相バイアスを算出する、前記(8)に記載の情報処理装置。
(10)
 前記推定部は、前記第1の無線信号及び前記第2の無線信号それぞれの前記搬送波に関する情報を、前記複数のアンテナユニット間における、当該第1の無線信号及び当該第2の無線信号それぞれの前記コード疑似距離及び前記搬送波位相に基づく情報の平均に応じて算出する、前記(7)~(9)のいずれか一項に記載の情報処理装置。
(11)
 前記第1のアンテナ素子及び前記第2のアンテナ素子のうち、一方のアンテナ素子を基準として互いに異なる方向に配設された複数の他方のアンテナ素子それぞれの前記第1の無線信号及び前記第2の無線信号それぞれの受信結果に基づき、当該複数の他方のアンテナ素子それぞれの当該受信結果に含まれる対流圏遅延及び電離層遅延のうち少なくともいずれかに伴う誤差が打ち消される、前記(6)~(10)のいずれか一項に記載の情報処理装置。
(12)
 コンピュータが、
 第1の方向に沿って配設された第1のアンテナ素子及び第2のアンテナ素子と、衛星測位に用いられる第1の無線信号を前記第1のアンテナ素子を介して受信する第1の受信部と、衛星測位に用いられる第2の無線信号を前記第2のアンテナ素子を介して受信する第2の受信部と、をそれぞれが含む、アレイ状に配列された複数のアンテナユニットそれぞれによる、前記第1の無線信号及び前記第2の無線信号それぞれの受信結果を取得することと、
 取得された前記受信結果に基づき、衛星側で制御されている前記第1の無線信号及び前記第2の無線信号のうち少なくともいずれかの搬送波に関する情報を推定することと、
 を含み、
 前記複数のアンテナユニットのうち、前記第1の方向に直交する第2の方向に互いに隣り合う第1のアンテナユニット及び第2のアンテナユニットは、一方のアンテナユニットにおける前記第1のアンテナ素子と、他方のアンテナユニットにおける前記第2のアンテナ素子と、が前記第2の方向に隣り合うように配設されている、
 情報処理方法。
 1   衛星測位システム
 10  システム
 100 電子基準点
 110 アンテナ装置
 130 アンテナユニット
 131、133 アンテナ素子
 135、137 受信機
 139 受信機時計
 190 推定部
 200 センター局
 201 送信装置
 203 補正データ生成部
 205 送信処理部
 300 測位装置
 400 GPS衛星
 500 準天頂衛星

Claims (12)

  1.  アレイ状に配列された複数のアンテナユニットを備え、
     前記アンテナユニットは、
     第1の方向に沿って配設された第1のアンテナ素子及び第2のアンテナ素子と、
     衛星測位に用いられる第1の無線信号を前記第1のアンテナ素子を介して受信する第1の受信部と、
     衛星測位に用いられる第2の無線信号を前記第2のアンテナ素子を介して受信する第2の受信部と、
     を含み、
     前記複数のアンテナユニットのうち、前記第1の方向に直交する第2の方向に互いに隣り合う第1のアンテナユニット及び第2のアンテナユニットは、一方のアンテナユニットにおける前記第1のアンテナ素子と、他方のアンテナユニットにおける前記第2のアンテナ素子と、が前記第2の方向に隣り合うように配設される、
     通信装置。
  2.  前記複数のアンテナユニットのうち、前記第1の方向に互いに隣り合う第3のアンテナユニット及び第4のアンテナユニットは、一方のアンテナユニットにおける前記第1のアンテナ素子及び前記第2のアンテナ素子のうち一方のアンテナ素子と、他方のアンテナユニットにおける当該一方のアンテナ素子と、が前記第1の方向に隣り合うように配設される、請求項1に記載の通信装置。
  3.  前記第1のアンテナユニットと、当該第1のアンテナユニットに対して前記第2のアンテナユニットとは逆側に隣り合う第5のアンテナユニットは、一方のアンテナユニットにおける前記第1のアンテナ素子と、他方のアンテナユニットにおける前記第1のアンテナ素子と、が前記第2の方向に隣り合うように配設される、請求項1に記載の通信装置。
  4.  前記第1の受信部による前記第1の無線信号の受信タイミングと、前記第2の受信部による前記第2の無線信号の受信タイミングと、のそれぞれを検出する計時部を備える、請求項1に記載の通信装置。
  5.  前記計時部は、前記複数のアンテナユニットのうち少なくとも2以上の当該アンテナユニット間で共有される、請求項4に記載の通信装置。
  6.  アレイ状に配列された複数のアンテナユニットそれぞれによる、衛星測位に用いられる第1の無線信号及び第2の無線信号それぞれの受信結果を取得する取得部と、
     取得された前記受信結果に基づき、衛星側で制御されている前記第1の無線信号及び前記第2の無線信号のうち少なくともいずれかの搬送波に関する情報を推定する推定部と、
     を備え、
     前記アンテナユニットは、
     第1の方向に沿って配設された第1のアンテナ素子及び第2のアンテナ素子と、
     前記第1の無線信号を前記第1のアンテナ素子を介して受信する第1の受信部と、
     前記第2の無線信号を前記第2のアンテナ素子を介して受信する第2の受信部と、
     を含み、
     前記複数のアンテナユニットのうち、前記第1の方向に直交する第2の方向に互いに隣り合う第1のアンテナユニット及び第2のアンテナユニットは、一方のアンテナユニットにおける前記第1のアンテナ素子と、他方のアンテナユニットにおける前記第2のアンテナ素子と、が前記第2の方向に隣り合うように配設される、
     情報処理装置。
  7.  前記推定部は、前記第1の無線信号及び前記第2の無線信号それぞれのコード疑似距離及び搬送波位相に基づき、前記搬送波に関する情報を推定する、請求項6に記載の情報処理装置。
  8.  前記搬送波に関する情報は、搬送波初期バイアスと搬送波初期位相バイアスとのうち少なくともいずれかを含む、請求項7に記載の情報処理装置。
  9.  前記推定部は、前記第1の無線信号及び前記第2の無線信号のうち少なくともいずれかの無線信号の前記搬送波初期バイアスを当該無線信号の波長で除算することで得られる剰余に基づき、当該無線信号の搬送波初期位相バイアスを算出する、請求項8に記載の情報処理装置。
  10.  前記推定部は、前記第1の無線信号及び前記第2の無線信号それぞれの前記搬送波に関する情報を、前記複数のアンテナユニット間における、当該第1の無線信号及び当該第2の無線信号それぞれの前記コード疑似距離及び前記搬送波位相に基づく情報の平均に応じて算出する、請求項7に記載の情報処理装置。
  11.  前記第1のアンテナ素子及び前記第2のアンテナ素子のうち、一方のアンテナ素子を基準として互いに異なる方向に配設された複数の他方のアンテナ素子それぞれの前記第1の無線信号及び前記第2の無線信号それぞれの受信結果に基づき、当該複数の他方のアンテナ素子それぞれの当該受信結果に含まれる対流圏遅延及び電離層遅延のうち少なくともいずれかに伴う誤差が打ち消される、請求項6に記載の情報処理装置。
  12.  コンピュータが、
     第1の方向に沿って配設された第1のアンテナ素子及び第2のアンテナ素子と、衛星測位に用いられる第1の無線信号を前記第1のアンテナ素子を介して受信する第1の受信部と、衛星測位に用いられる第2の無線信号を前記第2のアンテナ素子を介して受信する第2の受信部と、をそれぞれが含む、アレイ状に配列された複数のアンテナユニットそれぞれによる、前記第1の無線信号及び前記第2の無線信号それぞれの受信結果を取得することと、
     取得された前記受信結果に基づき、衛星側で制御されている前記第1の無線信号及び前記第2の無線信号のうち少なくともいずれかの搬送波に関する情報を推定することと、
     を含み、
     前記複数のアンテナユニットのうち、前記第1の方向に直交する第2の方向に互いに隣り合う第1のアンテナユニット及び第2のアンテナユニットは、一方のアンテナユニットにおける前記第1のアンテナ素子と、他方のアンテナユニットにおける前記第2のアンテナ素子と、が前記第2の方向に隣り合うように配設されている、
     情報処理方法。
PCT/JP2018/017854 2017-08-04 2018-05-09 通信装置、情報処理装置、及び情報処理方法 WO2019026374A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US16/630,923 US11668838B2 (en) 2017-08-04 2018-05-09 Communication apparatus, information processing apparatus, and information processing method
JP2019533906A JPWO2019026374A1 (ja) 2017-08-04 2018-05-09 通信装置、情報処理装置、及び情報処理方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017151704 2017-08-04
JP2017-151704 2017-08-04

Publications (1)

Publication Number Publication Date
WO2019026374A1 true WO2019026374A1 (ja) 2019-02-07

Family

ID=65233581

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/017854 WO2019026374A1 (ja) 2017-08-04 2018-05-09 通信装置、情報処理装置、及び情報処理方法

Country Status (3)

Country Link
US (1) US11668838B2 (ja)
JP (1) JPWO2019026374A1 (ja)
WO (1) WO2019026374A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4119972A4 (en) * 2020-03-10 2024-03-20 Kabushiki Kaisha Toshiba DEVICE FOR VISUALIZING RADIO WAVE EMISSION SOURCES AND BANDWIDTH EXPANSION METHOD

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030137456A1 (en) * 2002-01-24 2003-07-24 Sreenivas Ajay I. Dual band coplanar microstrip interlaced array
JP2009074930A (ja) * 2007-09-20 2009-04-09 Sumitomo Electric Ind Ltd 測位装置、測位システム、コンピュータプログラム及び測位方法
US20100289717A1 (en) * 2007-06-13 2010-11-18 The University Court Of The University Of Edinburgh reconfigurable antenna
JP2016503275A (ja) * 2013-01-15 2016-02-01 タイコ・エレクトロニクス・コーポレイションTyco Electronics Corporation パッチアンテナ
US20170153332A1 (en) * 2015-11-30 2017-06-01 Trimble Navigation Limited Hardware front-end for a gnss receiver

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4929959A (en) * 1988-03-08 1990-05-29 Communications Satellite Corporation Dual-polarized printed circuit antenna having its elements capacitively coupled to feedlines
DE4239597C2 (de) * 1991-11-26 1999-11-04 Hitachi Chemical Co Ltd Ebene Antenne mit dualer Polarisation
US5400042A (en) * 1992-12-03 1995-03-21 California Institute Of Technology Dual frequency, dual polarized, multi-layered microstrip slot and dipole array antenna
KR100526585B1 (ko) * 2002-05-27 2005-11-08 삼성탈레스 주식회사 이중 편파 특성을 갖는 평판형 안테나
JP5972215B2 (ja) 2007-06-13 2016-08-17 ソファント テクノロジーズ リミテッド 再構成可能なアンテナに関する改良
US8102638B2 (en) 2007-06-13 2012-01-24 The University Court Of The University Of Edinburgh Micro electromechanical capacitive switch
FR2936320B1 (fr) * 2008-09-23 2012-12-28 Centre Nat Etd Spatiales Traitement de signaux de radionavigation utilisant une combinaison widelane
EP2870658B1 (de) * 2012-07-03 2019-10-23 Lisa Dräxlmaier GmbH Antennensystem zur breitbandigen satellitenkommunikation im ghz frequenzbereich mit hornstrahlern mit geometrischen konstriktionen
JP6025430B2 (ja) 2012-07-11 2016-11-16 三菱電機株式会社 送信装置
US9246222B2 (en) 2013-03-15 2016-01-26 Tyco Electronics Corporation Compact wideband patch antenna
US9325071B2 (en) 2013-01-15 2016-04-26 Tyco Electronics Corporation Patch antenna
US10069213B2 (en) * 2014-01-31 2018-09-04 Quintel Technology Limited Antenna system with beamwidth control
CN107102340B (zh) * 2017-06-18 2020-04-10 南京理工大学 一种应用于卫星导航的极化敏感阵列抗干扰方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030137456A1 (en) * 2002-01-24 2003-07-24 Sreenivas Ajay I. Dual band coplanar microstrip interlaced array
US20100289717A1 (en) * 2007-06-13 2010-11-18 The University Court Of The University Of Edinburgh reconfigurable antenna
JP2009074930A (ja) * 2007-09-20 2009-04-09 Sumitomo Electric Ind Ltd 測位装置、測位システム、コンピュータプログラム及び測位方法
JP2016503275A (ja) * 2013-01-15 2016-02-01 タイコ・エレクトロニクス・コーポレイションTyco Electronics Corporation パッチアンテナ
US20170153332A1 (en) * 2015-11-30 2017-06-01 Trimble Navigation Limited Hardware front-end for a gnss receiver

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4119972A4 (en) * 2020-03-10 2024-03-20 Kabushiki Kaisha Toshiba DEVICE FOR VISUALIZING RADIO WAVE EMISSION SOURCES AND BANDWIDTH EXPANSION METHOD

Also Published As

Publication number Publication date
US20200233093A1 (en) 2020-07-23
US11668838B2 (en) 2023-06-06
JPWO2019026374A1 (ja) 2020-06-18

Similar Documents

Publication Publication Date Title
US8255160B2 (en) Integrated mobile terminal navigation
US8935597B2 (en) Receivers, circuits, and methods to improve GNSS time-to-fix and other performances
EP1891458B1 (en) Method and apparatus for validating a position in a satellite positioning system using range-rate measurements
CN102859390B (zh) Gnss参考站和监测
CN103823223B (zh) 通过扩展sps轨道信息进行定位的方法和装置
EP1864152B1 (en) Method and apparatus for combining measurements and determining clock offsets between different satellite positioning systems
Geng et al. GLONASS fractional-cycle bias estimation across inhomogeneous receivers for PPP ambiguity resolution
US9405009B2 (en) Navigation data structure generation and data transmission for optimal time to first fix
CN102713675A (zh) 用于使用双实时动态引擎对位置进行估计的方法和***
JP2010509592A5 (ja)
TW200405026A (en) Ionospheric error prediction and correction in satellite positioning systems
JP7065277B2 (ja) 測位方法および測位端末
WO2019026374A1 (ja) 通信装置、情報処理装置、及び情報処理方法
US7961145B1 (en) Method and apparatus for estimating relative position in a global navigation satellite system
JP2010210436A (ja) Gps受信機搬送波位相測定値の品質監視装置、方法、プログラム
JPWO2018225421A1 (ja) 測位方法および測位端末
JP5078352B2 (ja) 部分的アルマナック収集システム
TWI681203B (zh) 用於對裝置進行定位之方法、定位裝置及非暫態電腦可讀取媒體
Melgard et al. Advantages of combined GPS and GLONASS PPP—experiences based on G2. A new service from Fugro
JP7134036B2 (ja) 衛星情報推定装置、衛星情報推定システムおよび衛星情報推定方法
Shukla et al. Development of Automation Test Suites for Validating GNSS Software
CN117630984A (zh) 钟差测量方法及装置、接收机终端、存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18840674

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019533906

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18840674

Country of ref document: EP

Kind code of ref document: A1