WO2019024873A1 - 一种软包锂离子电池及其制造方法 - Google Patents

一种软包锂离子电池及其制造方法 Download PDF

Info

Publication number
WO2019024873A1
WO2019024873A1 PCT/CN2018/098068 CN2018098068W WO2019024873A1 WO 2019024873 A1 WO2019024873 A1 WO 2019024873A1 CN 2018098068 W CN2018098068 W CN 2018098068W WO 2019024873 A1 WO2019024873 A1 WO 2019024873A1
Authority
WO
WIPO (PCT)
Prior art keywords
cell
battery
electrode tab
lithium ion
negative electrode
Prior art date
Application number
PCT/CN2018/098068
Other languages
English (en)
French (fr)
Inventor
钟宽
陈宝荣
吉纯
曾庆苑
李影
Original Assignee
格力电器(武汉)有限公司
珠海格力电器股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 格力电器(武汉)有限公司, 珠海格力电器股份有限公司 filed Critical 格力电器(武汉)有限公司
Publication of WO2019024873A1 publication Critical patent/WO2019024873A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0587Construction or manufacture of accumulators having only wound construction elements, i.e. wound positive electrodes, wound negative electrodes and wound separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the invention relates to the technical field of lithium ion battery production, in particular to a soft-pack lithium ion battery and a manufacturing method thereof.
  • the soft-packed lithium ion battery using the aluminum plastic film has the characteristics of simple structure, small volume, light weight, shape according to needs, high energy density, high safety, and the like. Its application range is more and more extensive, and the demand is also increasing.
  • the current large-capacity soft-package batteries generally adopt a laminated production method: that is, a die-cut positive and negative electrode sheets and a separator are laminated together, which is characterized in that the fabricated battery has small internal resistance and is suitable for large current discharge, but its disadvantages.
  • the process is complicated, the production cost is high, the lamination efficiency is low, and the performance consistency is poor, and it is difficult to ensure the flatness of the battery in the subsequent charging and discharging, thereby affecting the cycle life.
  • the present invention provides a soft-package lithium ion battery, so that the production cost of a large-capacity soft-pack lithium-ion battery can be reduced, and at the same time, the large-capacity soft-pack battery can have excellent flatness and an ideal cycle life.
  • the present invention also provides a method of manufacturing a soft-pack lithium ion battery.
  • the present invention provides a soft-packed lithium ion battery comprising a battery core assembly and a soft package outer casing, wherein the battery core assembly comprises a plurality of battery cells in parallel with each other, and the battery cells are wound.
  • the cell assembly has a thickness of more than 1 cm.
  • the thickness of any one of the above-mentioned battery cells is not more than 1 cm.
  • the tab of the above-mentioned battery cell is any one of a full-ear, a multi-pole or a monopole.
  • the battery cell has a rectangular shape, and the positive electrode tab and the negative electrode tab of the battery cell are symmetrically distributed on both sides in the longitudinal direction of the battery cell.
  • the cell unit has a rectangular shape, and the positive electrode tab and the negative electrode tab of the cell unit are located on one side of the cell unit.
  • the above-mentioned battery core assembly includes 2 to 7 battery cells in parallel with each other.
  • the method for manufacturing a soft-package lithium ion battery disclosed in the present invention comprises the steps of:
  • Step 1) stacking the positive electrode sheets, the separator and the negative electrode sheets, and winding them to form the above-mentioned battery cells;
  • Step 2) stacking at least two of the above-mentioned battery cells to form a whole in parallel, and then welding the positive electrode tabs in the positive electrode bonding zone of the whole body, and forming the above-mentioned battery core assembly after welding the negative electrode tabs in the negative electrode bonding zone, the above electricity
  • the thickness of the core assembly is greater than 1 cm;
  • Step 3 The above-mentioned battery core assembly is fabricated into a soft-packed lithium ion battery by subsequent processing.
  • the subsequent processing includes: punching, top side sealing, liquid injection, hot and cold pressing, chemical formation, jig baking, secondary encapsulation, and partial volume.
  • the cell body prepared in the above step 1) has a rectangular shape, and the cell unit has a thickness of 5 mm to 10 mm, a width of 5 cm to 15 cm, and a length of 10 cm to 25 cm.
  • the positive blanking area is the positive electrode tab welding area
  • the negative electrode blanking area is the negative electrode tab welding area
  • the above step 1) further includes the above-mentioned battery core In the width direction of the single body, both ends of the positive electrode tab welding region and the negative electrode tab welding region are cut, and the cutting amount is 0.5 cm - 1 cm.
  • the positive electrode tab and the negative electrode tab have a thickness of 0.1 mm to 0.5 mm and a width of 3 cm to 10 cm.
  • the cell monomer produced in the above step 1) in the longitudinal direction of the cell unit, both ends of the coating on the negative electrode tab are beyond the coating on the positive electrode tab. In the layer, both ends of the separator exceed the coating on the negative electrode tab.
  • the positive electrode tab and the negative electrode tab are ultrasonically welded.
  • the positive electrode tab is an aluminum metal piece
  • the negative electrode tab is one of a nickel metal piece, a nickel plated metal piece, or a copper-nickel alloy metal piece.
  • the battery core assembly of the soft-packed lithium ion battery disclosed in the present invention is formed by a plurality of battery cells connected in parallel with each other, and each of the battery cells is wound.
  • the cell monomers, that is, the cell cells are cores, and the cell assembly formed by these cell cells has a thickness greater than 1 cm.
  • the wound type cell unit Compared with the lamination type production method, the wound type cell unit has higher production efficiency and lower production cost, and the structure in which a plurality of cell units are stacked in parallel can avoid the roll on the one hand.
  • the problem of high internal resistance of the winding structure cell can solve the problem of poor flatness of the thick core structure in the later charging and discharging process; the total number of cells formed by the parallel connection of multiple cells
  • the thickness of the battery assembly is greater than 1 cm, which makes the battery assembly have a larger capacity. Therefore, the soft-packed lithium ion battery made of the battery cell has high production efficiency, low production cost, and high energy density.
  • the battery capacity is large, and it can also improve the battery's high current charge and discharge performance.
  • FIG. 1 is a schematic structural view of a positive electrode tab or a negative pole tab disclosed in an embodiment of the present invention
  • FIG. 2 is a schematic view showing a position where a winding core is wound with a positive electrode and a separator according to a first embodiment of the present invention
  • FIG. 3 is a schematic structural view of a single battery cell after winding in the first embodiment
  • FIG. 4 is a schematic structural view of the battery cell shown in FIG. 3 after cutting the tab welding area at the edge;
  • Figure 5 is a schematic diagram showing the parallel connection of three battery cells in the first embodiment
  • FIG. 6 is a schematic structural view of a battery assembly formed by connecting three battery cells in parallel in a first embodiment after welding a large pole;
  • FIG. 7 is a schematic structural view of the battery assembly of FIG. 6 after completion of secondary packaging
  • FIG. 8 is a schematic view showing a position where a winding core is wound with a positive electrode and a separator according to a second embodiment of the present invention
  • Figure 9 is a schematic view showing the structure of the battery assembly in the second embodiment after welding the large tab
  • FIG. 10 is a schematic structural view of the battery assembly of FIG. 9 after the secondary packaging is completed.
  • 1 is a coating
  • 2 is a blanking zone
  • 3 is a positive pole piece
  • 4 is a negative electrode piece
  • 5 is a separator
  • 6 is a positive electrode bonding zone
  • 7 is a negative electrode bonding zone
  • 8 is a positive electrode tab
  • 9 is a negative electrode Extremely ear.
  • One of the cores of the present invention is to provide a soft-package lithium ion battery, so as to be able to reduce the production cost of a large-capacity soft-pack lithium-ion battery, and at the same time enable a large-capacity soft-pack battery to have excellent flatness and an ideal cycle life.
  • Another core of the present invention is to provide a method of fabricating a soft-pack lithium ion battery.
  • the soft-packed lithium ion battery disclosed in the present invention comprises a battery core assembly and a soft package outer casing, wherein the battery core assembly is formed by a plurality of battery cells connected in parallel with each other, and two adjacent battery cells are stacked one upon another. And any one of the battery cells is a wound type battery cell produced by winding, and the battery cell can also be simply referred to as a core, and the electricity formed by the parallel connection of a plurality of battery cells The thickness of the core assembly is greater than 1 cm.
  • the wound type cell unit Compared with the lamination type production method, the wound type cell unit has higher production efficiency and lower production cost, and the structure in which a plurality of cell units are stacked in parallel can avoid the roll on the one hand.
  • the problem of high internal resistance of the winding structure cell can solve the problem of poor flatness of the thick core structure in the later charging and discharging process; the total number of cells formed by the parallel connection of multiple cells
  • the thickness of the battery assembly is greater than 1 cm, which makes the battery assembly have a larger capacity. Therefore, the soft-packed lithium ion battery made of the battery cell has high production efficiency, low production cost, and high energy density.
  • the battery capacity is large, and it can also improve the battery's high current charge and discharge performance.
  • the thickness of the battery core assembly is greater than 1 cm, the thickness of any one of the battery cells is not more than 1 cm, and the plurality of battery cells are superposed and connected in parallel.
  • the assembly method has a great advantage, which can effectively solve the problem of poor flatness which occurs in the later charging and discharging process of the present thick electric core.
  • the soft-packed lithium ion battery in the embodiment of the present invention does not limit the polar mode of the cell, and the tab may be any one of a single pole, a multi-pole or a full-ear. That is, the ear can be a monopole, a multi-pole or a full-ear.
  • the tab of the cell of the present embodiment preferably uses an all-pole. ear.
  • the winding of the battery cells is formed by relying on a specific winding needle, and the winding needle itself determines the width of the battery cells. Therefore, the same direction of the cell core and the winding direction is usually the case.
  • the lower side is the width side of the cell, and the side perpendicular to the cell winding direction is usually the length side of the cell.
  • the cell is generally rectangular, and the positive electrode tab 8 and the negative electrode tab 9 of the cell unit can be symmetrically distributed on both sides of the length direction of the cell, or can be the positive tab 8 and The negative electrode tabs 9 are all located on one side of the cell, as shown in Figures 6 and 9.
  • 2 to 7 cell units can be connected in parallel to form a cell assembly, and then subjected to subsequent punching, top side sealing, liquid injection, hot and cold pressing, formation,
  • a large-capacity soft-pack lithium-ion battery in which a plurality of battery cells are connected in parallel is formed by a process such as jig baking, secondary encapsulation, and volume division.
  • the invention also provides a method for manufacturing a soft-package lithium ion battery, which comprises the following steps:
  • the coating layer 1 of the sheet 4 exceeds both ends of the coating layer 1 of the positive electrode tab 3 in the longitudinal direction at both ends in the longitudinal direction of the cell, that is, the coating 1 of the negative electrode tab 4 needs to be covered.
  • the coating layer 1 of the positive electrode tab 3 is short-circuited in order to prevent the positive and negative electrodes from coming into contact with each other, and both ends of the separator 5 in the longitudinal direction of the battery cell exceed the two ends of the coating layer 1 of the negative electrode tab 4 in the longitudinal direction. .
  • the "cell core length direction" in the present embodiment specifically means a direction perpendicular to the battery winding direction.
  • the incoming materials of the positive electrode tab 3, the negative electrode tab 4, and the separator 5 are all elongated, and the winding direction is actually along the length direction of the positive electrode tab 3, the negative electrode tab 4, and the separator 5 of the incoming material.
  • the direction perpendicular to the winding direction is actually the width direction of the positive pole piece 3, the negative pole piece 4, and the separator 5, so those skilled in the art need to pay attention to the direction change in the description, and the winding is completed.
  • the length direction of the cell unit is actually the width direction of the positive electrode tab 3, the negative pole tab 4, and the separator 5;
  • Step 2 stacking the battery cells in at least two of the above steps and forming a whole in parallel, then soldering the positive electrode tabs in the positive electrode pad 6 of the whole, and forming the cell assembly after the negative electrode pads 7 are soldered to the negative electrode tabs.
  • the thickness of the battery assembly is greater than 1 cm to ensure the capacity of the battery assembly;
  • Step 3 The battery assembly is made into a soft-packed lithium ion battery through subsequent processing.
  • the so-called subsequent processing usually includes punching, top side sealing, liquid injection, hot and cold pressing, chemical formation, fixture baking, secondary packaging, and volume division.
  • subsequent processing since the above process is a mature process in the current production process of the soft-packed lithium ion battery, the above process will not be described again in this embodiment.
  • the battery core assembly is formed by a plurality of battery cells connected in parallel with each other, and the battery cell is produced by winding, and the thickness of the battery core assembly is greater than 1cm, the winding type battery cell has high production efficiency and low production cost, and the structure in which a plurality of battery cells are stacked in parallel can avoid the problem of high internal resistance of the wound structure cell on the one hand, and the other
  • the aspect can solve the problem that the thick core structure always has poor flatness in the later charging and discharging process; the thickness of the battery core formed by the parallel connection of the plurality of battery cells is greater than 1 cm, which makes the cell assembly larger.
  • the capacity of the soft-packed lithium ion battery produced by the method for manufacturing a soft-packed lithium ion battery disclosed in the above embodiments is not only high in production efficiency, low in production cost, but also high in energy density and large in battery capacity. Features, and can also improve battery high current charge and discharge performance.
  • the cell unit produced in the step 1) of the above embodiment has a thickness of usually 5 mm to 10 mm and a width of 5 cm to 15 cm (this value usually varies depending on the needle), and the length is 10 cm to 25 cm (this is The values vary depending on the width of the positive electrode tab, the negative pole tab, and the separator feed, and the above numerical intervals include the endpoint values.
  • the positive electrode tab 3 and the negative electrode tab 4 have a blanking area 2 in addition to the coating 1, and in the all-pole cell unit after the winding is completed, the positive electrode remains.
  • the white area is the positive electrode bonding zone 6, and the negative electrode blanking zone is the negative electrode bonding zone 7, and the step 1) further includes: in the width direction of the cell unit, both ends of the positive electrode bonding zone 6 and the negative electrode bonding zone 7 are Cut and cut to a size of 0.5cm-1cm.
  • the positive electrode tab 8 and the negative electrode tab 9 have a thickness of 0.1 mm to 0.5 mm and a width of 3 cm to 10 cm, and the width direction of the tab is identical to the width direction of the cell. That is, the thickness of the positive electrode tab 8 is between 0.1 mm and 0.5 mm, the width is between 3 cm and 10 cm, and the thickness of the negative electrode tab 9 is between 0.1 mm and 0.5 mm, and the width is between 3 cm and 10 cm.
  • the welding of the positive electrode tab 8 and the negative electrode tab 9 is preferably ultrasonic welding, the positive electrode tab 8 is an aluminum metal piece, and the negative electrode tab 9 is a nickel metal piece, a nickel plated metal piece or a copper-nickel alloy.
  • the negative electrode tab 9 is a nickel metal sheet, a nickel-plated copper metal sheet or a copper-nickel alloy metal sheet.
  • the manufacturing method of the above-mentioned soft-packed lithium ion battery will be further elaborated in a specific manufacturing embodiment.
  • the left-right direction in FIG. 2 is the width direction
  • the up-and-down direction is the length direction.
  • the body is wound in the length direction.
  • the first specific manufacturing example is a first specific manufacturing example:
  • a positive electrode piece having a coating width of 134 mm, a blanking area width of 12 mm, a negative electrode piece having a coating width of 140 mm, a blanking area width of 11 mm, and a diaphragm having a width of 144.5 mm were wound into a core, so that a was 2 mm, b is 4 mm, c is 3 mm and d is 1.5 mm, and the obtained cell unit has a width of 8 cm, a length of 16.1 cm, and a thickness of 8 mm.
  • the capacity of the prepared cell monomer was 16.2 Ah, and the three cell assemblies formed in parallel had a thickness of 27 mm, a capacity of 48.6 Ah, an internal resistance of 3.0 m ⁇ , and a discharge capacity of 1.5 C of 98% of 0.2C.
  • a is that the negative electrode coating layer exceeds the size of the positive electrode coating layer at one end
  • b is the size of the negative electrode coating layer beyond the positive electrode coating layer at the other end
  • c is the separator that exceeds the negative electrode coating layer at one end.
  • Size, d is the size of the separator at the other end beyond the negative electrode coating.
  • the left-right direction in FIG. 2 is the width direction
  • the up-and-down direction is the length direction
  • the cell unit is wound in the longitudinal direction.
  • a positive electrode piece having a coating width of 120 mm, a blanking area width of 14 mm, a negative electrode piece having a coating width of 126 mm, a blanking area width of 10 mm, and a diaphragm having a width of 132 mm were wound into a cell unit, so that a It is 2 mm, b is 4 mm, c is 3 mm, and d is 3 mm, and the obtained cell unit has a width of 8.2 cm, a length of 14.8 cm, and a thickness of 5.5 mm.
  • the capacity of the single cell formed by the fabrication was 10.1 Ah, and the thickness of the four cell assemblies formed in parallel was 26 mm, the capacity was 40.4 Ah, the internal resistance was 1.8 m ⁇ , and the 1.5 C discharge capacity was 98.5% of 0.2 C.
  • the up-and-down direction in FIG. 8 is the width direction
  • the left-right direction is the length direction
  • the cell unit is wound in the longitudinal direction.
  • the positive electrode sheet having a positive electrode coating width of 71 mm and a whitening width of 9 mm was die-cut, so that the width of the metal-welded portion of the blank area was 5 cm; and the negative electrode layer having a width of the negative electrode coating of 74 mm and a blank width of 7 mm was used. Die-cutting, the width of the metal weld zone of the white space is 5 cm, and then the separator of width 80 mm, the positive and negative pole pieces are wound, so that a is 2 mm, b is 1 mm, c is 4 mm, and d is 2 mm. A cell monomer having a width of 80 mm, a length of 140 mm, and a thickness of 5.5 mm was obtained.
  • the four battery cells are superimposed, and the positive and negative poles are welded by ultrasonic welding in the positive and negative electrode tabs.
  • the ear size is: thickness 0.2mm, width 4mm, the positive electrode ear is aluminum ear, and the negative electrode ear is nickel plated copper ear.
  • the positive electrode tab, the negative pole tab, and the diaphragm should be overlapped.
  • FIG. 2 and FIG. 8 only for the sake of clarity, the relationship between the three dimensions is shown, and the components are only staggered and intercepted.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Secondary Cells (AREA)
  • Connection Of Batteries Or Terminals (AREA)

Abstract

本发明涉及一种软包锂离子电池,包括电芯总成和软包外壳,所述电芯总成包括多个相互并联的电芯单体,且所述电芯单体为卷绕式电芯单体,所述电芯总成的厚度大于1cm。卷绕式的电芯单体其生产效率更高,生产成本也更低,多个电芯单体并联方式层叠在一起的结构可以避免卷绕式结构电芯内阻较高的问题,还可以解决厚卷芯结构在后期充放电过程总出现的平整性较差的问题;多个电芯单体并联后所形成的电芯总成厚度大于1cm,这使得电芯总成具有更大的容量,因此该软包锂离子电池不仅生产效率高、生产成本低,而且还具有能量密度高、电池容量大的特点,并且还可以提高电池大电流充放电性能。本发明还公开了一种软包锂离子电池的制造方法。

Description

一种软包锂离子电池及其制造方法 技术领域
本发明涉及锂离子电池生产技术领域,特别涉及一种软包锂离子电池及其制造方法。
背景技术
相对于圆柱形电池和铝壳方形电池而言,采用铝塑膜的软包锂离子电池由于具有结构简单、体积小、重量轻、形状可根据需要变化、能量密度高、安全性高等特点,因此其应用范围越来越广泛,需求量也随之增长。
锂离子电池在储能领域的应用获得了迅速的发展,储能市场的主要应用在可再生能源并网和分布式发电及微网领域,户用储能在国外也已经发展成为了热门应用,在微网领域和追求体积以及重量优势的户用储能领域,高容量电芯具有很大的优势,而大容量软包电池正是采用这种电芯的电池。
众所周知,目前的大容量软包电池普遍采用叠片式生产方式:即模切好的正负极片和隔膜层叠在一起,其特点是制作的电池内阻小且适合大电流放电,但是其缺点是工艺复杂,生产成本高、叠片效率低,性能一致性较差,较难保证电芯在后续充放电的平整性,从而影响循环寿命。
因此,如何能够降低大容量软包电池的生产成本,并使得大容量软包电池具有优良的平整性以及理想的循环寿命是目前本领域技术人员亟需解决的技术问题。
发明内容
针对上述技术问题,本发明提供一种软包锂离子电池,以便能够降低大容量软包锂离子电池的生产成本,同时能够使得大容量软包电池具有优良的平整性以及理想的循环寿命。
本本发明还提供了一种软包锂离子电池的制造方法。
为达到上述目的,本发明提供的软包锂离子电池,包括电芯总成和软包外壳,上述电芯总成包括多个相互并联的电芯单体,且上述电芯单体为卷绕式电芯单体,上述电芯总成的厚度大于1cm。
优选的,在上述软包锂离子电池中,任意一上述电芯单体的厚度均不大于1cm。
优选的,在上述软包锂离子电池中,上述电芯单体的极耳为全极耳、多极耳或单极耳中的任意一种。
优选的,在上述软包锂离子电池中,上述电芯单体呈矩形,上述电芯单体的正极极耳和负极极耳分别对称分布在上述电芯单体长度方向上的两侧。
优选的,在上述软包锂离子电池中,上述电芯单体呈矩形,上述电芯单体的正极极耳和负极极耳均位于上述电芯单体的一个侧边上。
优选的,在上述软包锂离子电池中,上述电芯总成中包括2~7个相互并联的上述电芯单体。
本发明中所公开的软包锂离子电池的制造方法,包括步骤:
步骤1)将正极极片、隔膜和负极极片叠放好后卷绕制成上述电芯单体;
步骤2)将至少两个上述电芯单体叠合后并联形成整体,然后在该上述整体的正极焊接区焊接正极极耳,负极焊接区焊接负极极耳后形成上述电芯总成,上述电芯总成的厚度大于1cm;
步骤3)将上述电芯总成通过后续处理制成软包锂离子电池。
优选的,在上述制造方法中,上述后续处理包括:冲壳、顶侧封、注液、热冷压、化成、夹具烘烤、二次封装以及分容。
优选的,在上述制造方法中,上述步骤1)中制成的电芯单体呈矩形,上述电芯单体的厚度为5mm-10mm,宽度为5cm-15cm,长度为10cm-25cm。
优选的,在上述制造方法中,上述电芯单体中,正极留白区为正极极耳焊接区,负极留白区为负极极耳焊接区,上述步骤1)中还包括,在上述电芯单体的宽度方向上,对上述正极极耳焊接区以及上述负极极耳焊接区的两端进行剪裁,剪裁量为0.5cm-1cm。
优选的,在上述制造方法中,上述正极极耳以及上述负极极耳的厚度为0.1mm-0.5mm,宽度为3cm-10cm。
优选的,在上述制造方法中,上述步骤1)中所制成的电芯单体,在电芯单体的长度方向上,上述负极极片上的涂层两端均超出上述正极极片上的涂层,上述隔膜的两端均超出上述负极极片上的涂层。
优选的,在上述制造方法中,上述步骤2)中采用超声波焊接上述正极极耳和上述负极极耳。
优选的,在上述制造方法中,上述正极极耳为铝金属片,上述负极极耳为镍金属片、镍镀铜金属片或铜镍合金金属片中的一种。
由上述技术方案可以看出,本发明中所公开的软包锂离子电池的电芯总成是由多个相互并联的电芯单体形成的,而每一个电芯单体均为卷绕式电芯单体,也就是说,电芯单体为卷芯,并且由这些电芯单体所形成的电芯总成的厚度大于1cm。
相比于叠片式的生产方式而言,卷绕式的电芯单体其生产效率更高,生产成本也更低,多个电芯单体并联方式层叠在一起的结构一方面可以避免卷绕式结构电芯内阻较高的问题,另一方面可以解决厚卷芯结构在后期充放电过程总出现的平整性较差的问题;多个电芯单体并联后所形成的电芯总成厚度大于1cm,这使得电芯总成具有更大的容量,因此由这种电芯 单体所制成的软包锂离子电池不仅生产效率高、生产成本低,而且还具有能量密度高、电池容量大的特点,并且还可以提高电池大电流充放电性能。
附图说明
构成本申请的一部分的说明书附图用来提供对本申请的进一步理解,本申请的示意性实施例及其说明用于解释本申请,并不构成对本申请的不当限定。在附图中:
图1为本发明实施例中所公开的正极极片或负极极片的结构示意图;
图2为本发明第一实施例中卷芯卷绕正负极以及隔膜放置位置示意图;
图3为第一实施例中单个电芯单体卷绕完成后的结构示意图;
图4为图3中所示的电芯单体裁剪掉边缘处极耳焊接区后的结构示意图;
图5为第一实施例中三个电芯单体并联示意图;
图6为第一实施例中三个电芯单体并联形成的电芯总成焊接大极耳后的结构示意图;
图7为图6中的电芯总成完成二次封装后的结构示意图;
图8为本发明第二实施例中卷芯卷绕正负极以及隔膜放置位置示意图;
图9为第二实施例中的电芯总成焊接大极耳后的结构示意图;
图10为图9中的电芯总成完成二次封装后的结构示意图。
其中,1为涂层,2为留白区,3为正极极片,4为负极极片,5为隔膜,6为正极焊接区,7为负极焊接区,8为正极极耳,9为负极极耳。
具体实施方式
本发明的核心之一是提供一种软包锂离子电池,以便能够降低大容量软包锂离子电池的生产成本,同时能够使得大容量软包电池具有优良的平整性以及理想的循环寿命。
本发明的另一核心在于提供一种软包锂离子电池的制造方法。
为了使本技术领域的人员更好地理解本发明方案,下面结合附图和具体实施方式对本发明作进一步的详细说明。
本发明中所公开的软包锂离子电池,包括电芯总成和软包外壳,其中,电芯总成由多个相互并联的电芯单体形成,相邻两个电芯单体相互叠合,并且任意一个电芯单体均为采用卷绕方式生产的卷绕式电芯单体,该种电芯单体也可简称为卷芯,由多个电芯单体并联所形成的电芯总成的厚度大于1cm。
相比于叠片式的生产方式而言,卷绕式的电芯单体其生产效率更高,生产成本也更低, 多个电芯单体并联方式层叠在一起的结构一方面可以避免卷绕式结构电芯内阻较高的问题,另一方面可以解决厚卷芯结构在后期充放电过程总出现的平整性较差的问题;多个电芯单体并联后所形成的电芯总成厚度大于1cm,这使得电芯总成具有更大的容量,因此由这种电芯单体所制成的软包锂离子电池不仅生产效率高、生产成本低,而且还具有能量密度高、电池容量大的特点,并且还可以提高电池大电流充放电性能。
本发明实施例中所公开的软包锂离子电池中,虽然电芯总成的厚度大于1cm,但是任意一个电芯单体的厚度均不大于1cm,多个电芯单体叠合且并联的组装方式具有较大优势,这可以有效解决目前厚电芯所存在的后期充放电过程中出现的平整性较差的问题。
需要进行说明的是,本发明实施例中的软包锂离子电池对电芯单体的极耳方式不作限定,极耳可以为单极耳、多极耳或者全极耳中的任意一种,即极耳可以为单极耳、多极耳或者全极耳,当然,为了能够有效提高软包锂离子电池整体的倍率性能,本实施例中的电芯单体的极耳优选的采用全极耳。
在实际生产过程中,电芯单体的卷制是依赖特定的卷针而形成的,卷针本身决定了电芯单体的宽度,因此,电芯单体与卷制方向相同的边通常情况下为电芯单体的宽度边,而与电芯单体卷制方向垂直的边通常为电芯单体的长度边。电芯单体完成卷制后通常呈矩形,并且电芯单体的正极极耳8和负极极耳9可以对称分布在电芯单体长度方向上的两侧,也可以是正极极耳8和负极极耳9均位于电芯单体的一个侧面上,如图6和图9中所示。
根据电芯单体的电容量以及实际使用需求,可以将2~7个电芯单体并联形成电芯总成,然后经过后续的冲壳、顶侧封、注液、热冷压、化成、夹具烘烤、二次封装以及分容等工序,制成结构为多个电芯单体并联的大容量软包锂离子电池。
本发明中还提供了公开了一种软包锂离子电池的制造方法,该制造方法具体包括如下步骤:
步骤1)将正极极片3、隔膜5和负极极片4叠放好后卷绕制成上述电芯单体,为了防止析锂而引起的安全性问题,在叠放过程中需要保证负极极片4的涂层1在电芯单体长度方向上的两端均超过正极极片3的涂层1在长度方向上的两端,也就是说,负极极片4的涂层1需要覆盖住正极极片3的涂层1,为了防止正负极相互接触而造成短路,隔膜5在电芯单体长度方向上的两端要超过负极极片4的涂层1在长度方向上的两端。需要进行说明的是,本实施例中的“电芯单体长度方向”具体是指与电池卷制方向垂直的方向。实际上,正极极片3、负极极片4以及隔膜5的来料均呈长条状,卷制方向实际是沿着来料的正极极片3、负极极片4以及隔膜5的长度方向进行的,而与卷制方向垂直的方向,实际为正极极片3、负极极片4以及隔膜5来料的宽度方向,因此本领域技术人员需要注意该处描述中的方向转变,卷制完成的电芯单体的长度方向,实际为正极极片3、负极极片4以及隔膜5来料的宽度方向;
步骤2)将至少两个上述步骤中的电芯单体叠合后并联形成整体,然后在该整体的正极焊接区6焊接正极极耳,负极焊接区7焊接负极极耳后形成电芯总成,并且该电芯总成的厚度大于1cm,以保证电芯总成的容量;
步骤3)将电芯总成通过后续处理制成软包锂离子电池,所谓后续处理通常包括冲壳、顶侧封、注液、冷热压、化成、夹具烘烤、二次封装以及分容等工艺,由于上述工艺为目前软包锂离子电池生产过程中的成熟工艺,因此本实施例中对上述工艺不再进行赘述。
通过上述方法所制成的软包锂离子电池,电芯总成由多个相互并联的电芯单体形成,而电芯单体是通过卷绕的方式生产,并且电芯总成的厚度大于1cm,卷绕式的电芯单体生产效率高,生产成本低,多个电芯单体并联方式层叠在一起的结构一方面可以避免卷绕式结构电芯内阻较高的问题,另一方面可以解决厚卷芯结构在后期充放电过程总出现的平整性较差的问题;多个电芯单体并联后所形成的电芯总成厚度大于1cm,这使得电芯总成具有更大的容量,因此由上述实施例中所公开的软包锂离子电池的制造方法所所制成的软包锂离子电池不仅生产效率高、生产成本低,而且还具有能量密度高、电池容量大的特点,并且还可以提高电池大电流充放电性能。
上述实施例的步骤1)中所制成的电芯单体的厚度通常为5mm-10mm,宽度为5cm-15cm(该数值通常根据卷针的不同而发生变化),长度为10cm-25cm(该数值根据正极极片、负极极片以及隔膜来料的宽度不同而发生变化),上述数值区间均包括端点值。
请参考图1、图2和图8,正极极片3和负极极片4上除了涂层1之外还有留白区2,在完成卷之后的全极耳电芯单体中,正极留白区为正极焊接区6,负极留白区为负极焊接区7,在步骤1)中还包括:在电芯单体的宽度方向上,对正极焊接区6以及负极焊接区7的两端均进行剪裁,剪裁尺寸为0.5cm-1cm。
正极极耳8和负极极耳9的厚度为0.1mm-0.5mm,宽度为3cm-10cm,极耳宽度方向与电芯单体的宽度方向一致。即正极极耳8的厚度在0.1mm-0.5mm之间,宽度在3cm-10cm之间,且负极极耳9的厚度在0.1mm-0.5mm之间,宽度在3cm-10cm之间。
在步骤2)中,正极极耳8和负极极耳9的焊接优选的采用超声波焊接,正极极耳8为铝金属片,负极极耳9为镍金属片、镍镀铜金属片或铜镍合金金属片中的一种,即负极极耳9为镍金属片、镍镀铜金属片或铜镍合金金属片。
以下以具体制造实施例对上述软包锂离子电池的制造方法进行进一步详细阐述,如图2至图7中所示,图2中的左右方向为宽度方向,上下方向为长度方向,电芯单体沿长度方向卷绕。
第一个具体制造实施例:
将涂层宽度为134mm、留白区宽度为12mm的正极极片、涂层宽度为140mm、留白区宽度为11mm的负极极片和宽度为144.5mm的隔膜卷绕成卷芯,使a为2mm,b为4mm,c为3mm和d为1.5mm,获得的电芯单体的宽度为8cm,长度为16.1cm,厚度为8mm。把边缘留白区切掉1cm,然后并联3个全极耳电芯单体,把厚度为0.15mm、宽度5cm的铝大金属极耳超声波焊接到正极焊接区,把厚度为0.15mm、宽度5cm的镍镀铜大金属极耳超声波焊接到负极焊接区。之后,通过冲壳、顶侧封、注液、热冷压、化成、夹具烘烤、二次封装和分容, 获得结构为多个全极耳电芯单体并联的大容量软包电池,正负极对称分布在电池的两端。所制成的电芯单体的容量为16.2Ah,3个并联形成的电芯总成厚度为27mm,容量为48.6Ah,内阻为3.0mΩ,1.5C放电容量为0.2C的98%。
需要进行说明的是,上述实施例中,a为负极涂层在一端超出正极涂层的大小,b为负极涂层在另一端超出正极涂层的大小,c为隔膜在一端超出负极涂层的大小,d为隔膜在另一端超出负极涂层的大小。
第二个具体制造实施例:
如图2至图7中所示,图2中的左右方向为宽度方向,上下方向为长度方向,电芯单体沿长度方向卷绕。
将涂层宽度为120mm、留白区宽度为14mm的正极极片、涂层宽度为126mm、留白区宽度为10mm的负极极片和宽度为132mm的隔膜卷绕成电芯单体,使a为2mm,b为4mm,c为3mm和d为3mm,获得的电芯单体的宽度为8.2cm,长度为14.8cm,厚度为5.5mm。把边缘留白区切掉1cm,然后并联4个全极耳电芯单体,把厚度为0.2mm、宽度6cm的铝大金属极耳超声波焊接到正极焊接区,把厚度为0.2mm、宽度6cm的镍镀铜大金属极耳超声波焊接到负极焊接区。之后,通过冲壳、顶侧封、注液、热冷压、化成、夹具烘烤、二次封装和分容,获得结构为多个全极耳电芯单体并联的大容量软包锂离子电池,正负极对称分布在电池的两端。制造形成的单个电芯单体的容量为10.1Ah,4个并联的形成的电芯总成厚度为26mm,容量为40.4Ah,内阻为1.8mΩ,1.5C放电容量为0.2C的98.5%。
该具体制造实施例中a、b、c、d所代表的含义与第一个具体制造实施例相同。
第三个具体实施例:
如图8至图10中所示,图8中的上下方向为宽度方向,左右方向为长度方向,电芯单体沿长度方向卷绕。
把正极涂层宽度为71mm、留白宽度为9mm的正极极片进行模切,使留白区的金属焊接区宽度为5cm;把负极涂层宽度为74mm、留白宽度为7mm的负极极片进行模切,使留白区的金属焊接区宽度为5cm,然后把宽度为80mm的隔膜,正负极极片进行卷绕,使a为2mm,b为1mm,c为4mm,d为2mm,获得宽度为80mm,长度为140mm,厚度为5.5mm的电芯单体。通过并联的方式,把4个电芯单体重叠,在正负极极耳焊接区通过超声波焊接的方式,焊接正负极极耳。极耳尺寸为:厚度0.2mm,宽度为4mm,正极极耳为铝极耳,负极极耳为镍镀铜极耳。之后通过冲壳、顶侧封、注液、热冷压、化成、夹具烘烤、二次封装和分容,获得结构为多个由模切方式进行极耳设计的电芯单体并联的大容量软包电池,正负极极耳分布在电池的同一侧,如图9和图10中所示。
需要进行说明的是,正极极片、负极极片和隔膜应当重叠方式,图2和图8中只是为了便于清楚的展示三者尺寸上的关系,各个部件仅错开截取了一截进行表示。
以上对本发明所提供的软包锂离子电池及其制造方法进行了详细介绍。本文中应用了具体个例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的方法及其核心思想。应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以对本发明进行若干改进和修饰,这些改进和修饰也落入本发明权利要求的保护范围内。

Claims (14)

  1. 一种软包锂离子电池,包括电芯总成和软包外壳,其特征在于,所述电芯总成包括多个相互并联的电芯单体,且所述电芯单体为卷绕式电芯单体,所述电芯总成的厚度大于1cm。
  2. 根据权利要求1所述的软包锂离子电池,其特征在于,任意一所述电芯单体的厚度均不大于1cm。
  3. 根据权利要求1所述的软包锂离子电池,其特征在于,所述电芯单体的极耳为全极耳、多极耳或单极耳中的任意一种。
  4. 根据权利要求1所述的软包锂离子电池,其特征在于,所述电芯单体呈矩形,所述电芯单体的正极极耳和负极极耳分别对称分布在所述电芯单体长度方向上的两侧。
  5. 根据权利要求1所述的软包锂离子电池,其特征在于,所述电芯单体呈矩形,所述电芯单体的正极极耳和负极极耳均位于所述电芯单体的一个侧边上。
  6. 根据权利要求1-5任意一项所述的软包锂离子电池,其特征在于,所述电芯总成中包括2~7个相互并联的所述电芯单体。
  7. 一种软包锂离子电池的制造方法,其特征在于,包括步骤:
    步骤1)将正极极片、隔膜和负极极片叠放好后卷绕制成电芯单体;
    步骤2)将至少两个所述电芯单体叠合后并联形成整体,然后在该所述整体的正极焊接区焊接正极极耳,负极焊接区焊接负极极耳后形成电芯总成,所述电芯总成的厚度大于1cm;
    步骤3)将所述电芯总成通过后续处理制成软包锂离子电池。
  8. 根据权利要求7所述的制造方法,其特征在于,所述后续处理包括:冲壳、顶侧封、注液、热冷压、化成、夹具烘烤、二次封装以及分容。
  9. 根据权利要求7所述的制造方法,其特征在于,所述步骤1)中制成的电芯单体呈矩形,所述电芯单体的厚度为5mm-10mm,宽度为5cm-15cm,长度为10cm-25cm。
  10. 根据权利要求9所述的制造方法,其特征在于,所述电芯单体中,正极留白区为正极极耳焊接区,负极留白区为负极极耳焊接区,所述步骤1)中还包括,在所述电芯单体的宽度方向上,对所述正极极耳焊接区以及所述负极极耳焊接区的两端进行剪裁,剪裁量为0.5cm-1cm。
  11. 根据权利要求9所述的制造方法,其特征在于,所述正极极耳以及所述负极极耳的厚度为0.1mm-0.5mm,宽度为3cm-10cm。
  12. 根据权利要求7所述的制造方法,其特征在于,所述步骤1)中所制成的电芯单体,在电芯单体的长度方向上,所述负极极片上的涂层两端均超出所述正极极片上的涂层,所述隔膜的两端均超出所述负极极片上的涂层。
  13. 根据权利要求7所述的制造方法,其特征在于,所述步骤2)中采用超声波焊接所述正极极耳和所述负极极耳。
  14. 根据权利要求7所述的制造方法,其特征在于,所述正极极耳为铝金属片,所述负极极耳为镍金属片、镍镀铜金属片或铜镍合金金属片中的一种。
PCT/CN2018/098068 2017-08-01 2018-08-01 一种软包锂离子电池及其制造方法 WO2019024873A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710647960.0A CN107293809A (zh) 2017-08-01 2017-08-01 一种软包锂离子电池及其制造方法
CN201710647960.0 2017-08-01

Publications (1)

Publication Number Publication Date
WO2019024873A1 true WO2019024873A1 (zh) 2019-02-07

Family

ID=60104556

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/098068 WO2019024873A1 (zh) 2017-08-01 2018-08-01 一种软包锂离子电池及其制造方法

Country Status (2)

Country Link
CN (1) CN107293809A (zh)
WO (1) WO2019024873A1 (zh)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111081964A (zh) * 2019-12-24 2020-04-28 Oppo广东移动通信有限公司 用于终端设备的电池组件和具有其的终端设备
CN111786010A (zh) * 2020-07-23 2020-10-16 福建巨电新能源股份有限公司 倍率型锂离子电池
CN112542663A (zh) * 2019-09-20 2021-03-23 南京德朔实业有限公司 电池包及采用该电池包的电动工具
CN113036230A (zh) * 2021-03-18 2021-06-25 广东邦普循环科技有限公司 一种钴酸锂软包电池的制备方法及其应用
CN113540652A (zh) * 2020-03-30 2021-10-22 北京小米移动软件有限公司 电池及终端设备
CN113725498A (zh) * 2021-07-30 2021-11-30 东莞锂微电子科技有限公司 一种软包扣式电芯的制作方法及软包扣式电池
CN114041232A (zh) * 2021-03-01 2022-02-11 深圳汝原科技有限公司 电芯组件、电池模组及手持式电器设备
CN114373996A (zh) * 2021-12-31 2022-04-19 惠州市恒泰科技股份有限公司 锂离子电芯制作方法以及锂离子电池
CN114497695A (zh) * 2022-01-12 2022-05-13 广州小鹏汽车科技有限公司 软包锂电池和电动汽车
CN114566614A (zh) * 2022-03-04 2022-05-31 上海兰钧新能源科技有限公司 锂电池极片及其制备方法、锂电池电芯及其制备方法
CN117913376B (zh) * 2024-01-16 2024-06-11 广州融捷能源科技有限公司 卷芯结构及电池

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107293809A (zh) * 2017-08-01 2017-10-24 珠海格力电器股份有限公司 一种软包锂离子电池及其制造方法
EP3907775A4 (en) 2019-01-09 2022-02-23 BYD Company Limited PERFORMANCE BATTERY PACK AND ELECTRIC VEHICLE
CN110948111B (zh) * 2019-12-09 2022-02-15 多氟多新能源科技有限公司 一种软包锂离子电池的极耳复合焊接方法
CN111725552A (zh) * 2020-08-05 2020-09-29 广州鹏辉能源科技股份有限公司 纽扣电池及其制造方法
CN112349950A (zh) * 2020-11-30 2021-02-09 蜂巢能源科技有限公司 Hev软包电芯及电池包
CN112531295A (zh) * 2020-12-22 2021-03-19 厦门海辰新能源科技有限公司 一种锂离子电池结构及极耳电连接方法
CN113078407B (zh) * 2021-04-29 2023-12-26 武汉蔚能电池资产有限公司 小容量电芯双重并联的高容量电池模组及其回收利用方法
CN114069127A (zh) * 2021-12-08 2022-02-18 欣旺达电动汽车电池有限公司 电芯模组

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101567470A (zh) * 2008-07-08 2009-10-28 周雨方 聚合物锂离子电池及其制造方法
CN106450497A (zh) * 2016-12-08 2017-02-22 东莞市迈科新能源有限公司 一种多卷芯双极耳软包电池的制备方法及其电池
CN107293809A (zh) * 2017-08-01 2017-10-24 珠海格力电器股份有限公司 一种软包锂离子电池及其制造方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101286577A (zh) * 2008-05-23 2008-10-15 清华大学 一种大功率的锂离子动力电池
CN201383526Y (zh) * 2009-03-04 2010-01-13 优科能源(漳州)有限公司 新型结构动力型锂离子电池及其电芯
CN201629378U (zh) * 2010-01-11 2010-11-10 东莞市金源电池科技有限公司 一种双电芯电池
CN205543110U (zh) * 2016-03-18 2016-08-31 中山市众旺德新能源科技有限公司 一种方形动力电池

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101567470A (zh) * 2008-07-08 2009-10-28 周雨方 聚合物锂离子电池及其制造方法
CN106450497A (zh) * 2016-12-08 2017-02-22 东莞市迈科新能源有限公司 一种多卷芯双极耳软包电池的制备方法及其电池
CN107293809A (zh) * 2017-08-01 2017-10-24 珠海格力电器股份有限公司 一种软包锂离子电池及其制造方法

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112542663A (zh) * 2019-09-20 2021-03-23 南京德朔实业有限公司 电池包及采用该电池包的电动工具
CN111081964B (zh) * 2019-12-24 2022-08-09 Oppo广东移动通信有限公司 用于终端设备的电池组件和具有其的终端设备
CN111081964A (zh) * 2019-12-24 2020-04-28 Oppo广东移动通信有限公司 用于终端设备的电池组件和具有其的终端设备
CN113540652A (zh) * 2020-03-30 2021-10-22 北京小米移动软件有限公司 电池及终端设备
CN111786010A (zh) * 2020-07-23 2020-10-16 福建巨电新能源股份有限公司 倍率型锂离子电池
CN111786010B (zh) * 2020-07-23 2024-03-08 福建巨电新能源股份有限公司 倍率型锂离子电池
CN114041232B (zh) * 2021-03-01 2024-04-12 深圳汝原科技有限公司 电芯组件、电池模组及手持式电器设备
CN114041232A (zh) * 2021-03-01 2022-02-11 深圳汝原科技有限公司 电芯组件、电池模组及手持式电器设备
CN113036230A (zh) * 2021-03-18 2021-06-25 广东邦普循环科技有限公司 一种钴酸锂软包电池的制备方法及其应用
CN113036230B (zh) * 2021-03-18 2023-01-13 广东邦普循环科技有限公司 一种钴酸锂软包电池的制备方法及其应用
CN113725498B (zh) * 2021-07-30 2023-11-07 东莞锂微电子科技有限公司 一种软包扣式电芯的制作方法及软包扣式电池
CN113725498A (zh) * 2021-07-30 2021-11-30 东莞锂微电子科技有限公司 一种软包扣式电芯的制作方法及软包扣式电池
CN114373996A (zh) * 2021-12-31 2022-04-19 惠州市恒泰科技股份有限公司 锂离子电芯制作方法以及锂离子电池
CN114497695A (zh) * 2022-01-12 2022-05-13 广州小鹏汽车科技有限公司 软包锂电池和电动汽车
CN114566614A (zh) * 2022-03-04 2022-05-31 上海兰钧新能源科技有限公司 锂电池极片及其制备方法、锂电池电芯及其制备方法
CN117913376B (zh) * 2024-01-16 2024-06-11 广州融捷能源科技有限公司 卷芯结构及电池

Also Published As

Publication number Publication date
CN107293809A (zh) 2017-10-24

Similar Documents

Publication Publication Date Title
WO2019024873A1 (zh) 一种软包锂离子电池及其制造方法
JP5079782B2 (ja) ソフトパッケージ大容量リチウムイオン電池およびその製造方法
CN203800133U (zh) 卷绕式电芯及电化学装置
WO2020078081A1 (zh) 叠片电芯及其制作方法、锂电池
CN103155226A (zh) 集成式电池极耳
CN105261781B (zh) 一种电化学电池及其制备方法
CN214428747U (zh) 一种多极耳电芯及电池
WO2016187810A1 (zh) 卷绕式锂离子电池
CN112531142A (zh) 一种软包纽扣电池用极片、纽扣电池及其制备方法
AU2012370347B2 (en) Lithium-ion battery
CN114975864A (zh) 极片、电芯结构、锂电池以及电子设备
CN112349949A (zh) 无极耳焊接的电池及制备方法
CN202454681U (zh) 高效率锂离子电池
CN213816201U (zh) 一种软包纽扣电池用极片及纽扣电池
CN213520071U (zh) 无极耳焊接的电池
CN113299879A (zh) 软包方形电池电极结构、电池、电子设备及制备工艺
CN217114709U (zh) 一种电池
CN217485538U (zh) 一种卷绕式电芯
CN215911557U (zh) 电芯极片、电芯极组和电芯
CN214043711U (zh) 一种微型锂离子电池多极耳电极结构
KR101308294B1 (ko) 두께평탄부재가 구비된 전극조립체 및 이를 이용한 이차전지
CN103346353B (zh) 一种电池电芯、其制造方法及其电池
CN210443619U (zh) 一种高能量密度电芯
CN110419133B (zh) 电极组件及其制造方法
CN202758957U (zh) 一种新型高倍率充放电电池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18842364

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18842364

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 18/11/2020)

122 Ep: pct application non-entry in european phase

Ref document number: 18842364

Country of ref document: EP

Kind code of ref document: A1