WO2019021969A1 - Vibration generating device - Google Patents

Vibration generating device Download PDF

Info

Publication number
WO2019021969A1
WO2019021969A1 PCT/JP2018/027339 JP2018027339W WO2019021969A1 WO 2019021969 A1 WO2019021969 A1 WO 2019021969A1 JP 2018027339 W JP2018027339 W JP 2018027339W WO 2019021969 A1 WO2019021969 A1 WO 2019021969A1
Authority
WO
WIPO (PCT)
Prior art keywords
vibration
vibrating body
elastic support
vibrator
generating device
Prior art date
Application number
PCT/JP2018/027339
Other languages
French (fr)
Japanese (ja)
Inventor
和宇慶 朝邦
隆 荻原
Original Assignee
アルプス電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by アルプス電気株式会社 filed Critical アルプス電気株式会社
Publication of WO2019021969A1 publication Critical patent/WO2019021969A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B06GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS IN GENERAL
    • B06BMETHODS OR APPARATUS FOR GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS OF INFRASONIC, SONIC, OR ULTRASONIC FREQUENCY, e.g. FOR PERFORMING MECHANICAL WORK IN GENERAL
    • B06B1/00Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency
    • B06B1/02Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy
    • B06B1/04Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with electromagnetism
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K33/00Motors with reciprocating, oscillating or vibrating magnet, armature or coil system
    • H02K33/16Motors with reciprocating, oscillating or vibrating magnet, armature or coil system with polarised armatures moving in alternate directions by reversal or energisation of a single coil system

Definitions

  • the present disclosure relates to a vibration generator.
  • vibration generating devices capable of vibrating in two directions and having different resonant frequencies in different directions.
  • the two directions are both linear directions
  • two types of vibrations can be realized, for example, when the vibration in one of the two directions is restricted due to the mounting method. difficult.
  • the vibration generating device is attached to a flat plate
  • the vibration in the in-plane direction of the flat plate is restricted, so that only the vibration (one type of vibration) in the direction perpendicular to the flat plate (direct direction) can be realized.
  • the present invention aims to enable transmission of vibrations in two directions without depending largely on the mounting method.
  • the housing A vibrator housed in the housing; An elastic support that vibratably supports the vibrator; A magnetic drive unit having a first magnetic field generating unit disposed on the vibrator side and a second magnetic field generating unit disposed on the housing side, and driving the vibrator using magnetic force; , A vibration generating device comprising The elastic support portion has a first natural vibration in which the vibrator vibrates in a first direction, and a second natural vibration in which the vibrator vibrates in a non-linear second direction. There is provided a vibration generating device supporting the vibrating body such that the direction of the direction intersects the first direction.
  • FIG. 2 is an exploded perspective view of the vibration generator 1;
  • FIG. 2 is a perspective view of a vibrating body 20 of the vibration generating device 1;
  • FIG. 6 is an explanatory view of a holding portion 30 and an elastic support portion 40 of the vibration generator 1;
  • FIG. 6 is an explanatory view of a holding portion 30 and an elastic support portion 40 of the vibration generator 1;
  • FIG. 6 is a side view of the holding portion 30 and the elastic support portion 40.
  • FIG. 2 is a plan view of a permanent magnet 70 of the vibration generator 1; It is explanatory drawing which shows the drive direction of a magnetic drive part. It is explanatory drawing which shows the drive direction of a magnetic drive part.
  • FIG. 1 is a perspective view showing the configuration of a vibration generating apparatus 1 according to an embodiment.
  • FIG. 2 is an exploded perspective view of the vibration generator 1.
  • FIG. 3 is a perspective view of the vibrating body 20 of the vibration generating device 1.
  • FIGS. 4A-4B and FIG. 5 are explanatory views of the holding portion 30 and the elastic support portion 40 of the vibration generating device 1.
  • FIG. 4A is a perspective view of the holding portion 30 and the elastic support portion 40
  • FIG. 4B is a front view of the holding portion 30 and the elastic support portion 40.
  • FIG. 5 is a side view of the holding portion 30 and the elastic support portion 40.
  • FIG. 6 is a plan view of the permanent magnet 70 of the vibration generator 1.
  • FIGS. 7A-7B are explanatory diagrams showing the driving direction of the magnetic drive unit.
  • 7A shows the direction of the magnetic force exerted by the permanent magnet 70 on the magnetic core 61 when the magnetic core 61 is magnetized to the N pole
  • FIG. 7B shows the permanent magnet 70 as the magnetic core 61 when the magnetic core 61 is magnetized to the S pole.
  • FIGS. 7A-7B solid arrows indicate the direction of the magnetic force exerted on the magnetic core 61.
  • FIGS. 8A-8B are explanatory views showing the vibration direction of the vibrator, and are diagrams when the vibrator 20, the holding portion 30, and the elastic support portion 40 are viewed from the front.
  • 8A shows the vibration direction of the vibrating body 20 when the electromagnet 60 generates an alternating magnetic field having the same frequency as the first natural frequency
  • FIG. 8B shows the same as the second natural frequency.
  • the vibration direction of the vibrator 20 is shown when an alternating magnetic field of frequency is generated.
  • the solid line arrow indicates the direction in which the vibrating body 20 easily vibrates, that is, the vibrating direction of the vibrating body 20, and the dotted line arrow indicates the direction in which the vibrating body 20 hardly vibrates.
  • X1 is left, X2 is right, Y1 is front, Y2 is back, Z1 is top, and Z2 is bottom.
  • the up and down direction is an example of the “first direction”
  • the front and back direction is an example of the “third direction”.
  • the vibration generating device 1 is a vibration generating device mounted on an electronic device such as a portable information terminal or a game machine.
  • the vibration generating device 1 may be mounted in an operating device such as a vehicle.
  • the vibration generated by the vibration generator 1 is used, for example, as a vibration for notifying an incoming call at a portable information terminal, a vibration for tactile feedback in a game machine, or the like.
  • the vibration generating device 1 includes a housing 10, a vibrating body 20, a holding unit 30, two elastic supporting units 40, and a magnetic driving unit 50.
  • the housing 10 is configured by combining the main body 11 and the lid 12 as shown in FIGS. 1 and 2.
  • the main body portion 11 is a substantially rectangular box-shaped member formed by processing a metal plate, and has a housing portion 11 a which is a concave portion of a substantially rectangular parallelepiped concave downward from the upper end portion of the main body portion 11.
  • the lid 12 is a substantially rectangular plate-like member formed by processing a metal plate, and is attached to the upper end of the main body 11 to cover the housing 11 a from above.
  • the vibrating body 20 is a substantially rectangular parallelepiped member housed in the housing portion 11a of the housing 10, as shown in FIG.
  • a permanent magnet 70 which is a part of the magnetic drive unit 50 is disposed on the vibrating body 20.
  • the vibrating body 20 is provided with a substantially rectangular parallelepiped weight 21 and a permanent magnet 70.
  • the permanent magnets 70 are provided at the front and rear ends of the weight 21 respectively.
  • the weight 21 is formed of, for example, tungsten.
  • the holding portion 30 and the elastic support portion 40 are integrally formed by processing a metal plate having a spring property into a predetermined shape.
  • the holding portion 30 is a box-shaped portion having a substantially rectangular parallelepiped shape as shown in FIGS. 4A-4B and 5. As shown in FIGS. 1 and 2, the lower portion of the vibrating body 20 is accommodated and held in the holding portion 30.
  • the elastic support portion 40 is a plate spring formed by bending a metal plate extending in the left-right direction a plurality of times so that a fold line extends in the front-rear direction.
  • One of the two elastic support portions 40 extends leftward from the left end of the holding portion 30, and the other extends rightward from the right end of the holding portion 30.
  • the elastic supporting portion 40 extending leftward from the left end of the holding portion 30 is abbreviated as the elastic supporting portion 40 on the left side
  • the elastic supporting portion 40 extending rightward from the right end of the holding portion 30 is The elastic support portion 40 is abbreviated.
  • the elastic support portion 40 has three bent portions 41, two flat portions 42, and an attachment portion 43.
  • the folding portion 41 is a portion folded along the fold line.
  • the flat portion 42 is a substantially rectangular portion extending from one of the three bent portions 41 to another, and a side along the direction of the fold and a side along the extending direction have.
  • the elastic support portion 40 has a dimension along the direction of the fold of the flat portion 42 (hereinafter referred to as the width dimension and abbreviation of the flat portion 42) and a dimension along the extension direction of the flat portion 42 (hereinafter referred to as the flat portion 42). Is formed to be larger than the length dimension and abbreviation).
  • the leaf spring of the bending structure like the elastic support part 40 has the characteristic of being easy to be elastically deformed in the direction (left and right direction and up and down direction) orthogonal to the fold. That is, such a leaf spring can be elastically deformed in the lateral direction by expansion and contraction, and can be elastically deformed in the vertical direction by bending.
  • such a leaf spring is also characterized in that it is difficult to deform in the direction along the fold (in the front-rear direction), so it is suitable as a member for suppressing movement in the front-rear direction.
  • the ease of deformation is usually different between elastic deformation along the vertical direction due to bending and elastic deformation along the horizontal direction due to expansion and contraction. Therefore, assuming that the elastic modulus of the elastic supporting portion 40 in the left-right direction is a first elastic modulus, and the elastic modulus of the elastic supporting portion 40 in the vertical direction is a second elastic modulus, the first elastic modulus and the second elastic modulus Is different from.
  • the attachment portion 43 is formed at the tip of the elastic support portion 40.
  • a fixed portion 43 a is formed at a predetermined position of the attachment portion 43. Then, the elastic support portion 40 is attached to the housing 10 by fixing the fixed portion 43 a to the main body portion 11 of the housing 10.
  • the elastic support portion 40 elastically supports the vibrating body 20 so as to be capable of vibrating in the lateral direction and the vertical direction by elastically deforming in the lateral direction and the vertical direction.
  • the vibrating body 20 is supported by the elastic support portion 40, and vibrates in the lateral direction at a first natural frequency determined corresponding to the first elastic coefficient and the mass of the vibrating body 20, and the second elastic coefficient And it vibrates along an up-down direction with the 2nd intrinsic frequency decided according to the mass of vibrating body 20. Then, since the first elastic coefficient and the second elastic coefficient are different values, the first natural frequency and the second natural frequency have different values.
  • the magnetic drive units 50 are respectively provided to the front and rear ends of the vibrating body 20.
  • the magnetic drive unit 50 includes two permanent magnets 70 disposed on the vibrating body 20 side and two electromagnets 60 disposed on the housing 10 side.
  • the electromagnets 60 are respectively disposed on the front end side and the rear end side of the housing 10.
  • the electromagnet 60 has a magnetic core (coil core) 61, insulating sheets 62a and 62b, and a coil 63.
  • the magnetic core 61 is a prismatic member made of a ferromagnetic material, and extends along the front-rear direction.
  • the insulating sheet 62 a is an annular member made of an insulator, and is fitted to the outer peripheral portion of the magnetic core 61.
  • the insulating sheet 62 b is an annular member made of an insulator, and is provided between the coil 63 and the vibrator 20. Both ends of the coil 63 are electrically connected to terminals (not shown). The terminals connect both ends of the coil 63 to an external circuit (not shown) via a wiring member 80 (see FIGS. 1 and 2).
  • the wiring member 80 is a flexible printed circuit (FPC), but may be a flat cable or the like.
  • a drive signal is applied to the electromagnet 60 from the external circuit.
  • the drive signal is, for example, a rectangular wave (pulse wave), and is applied at a predetermined duty ratio.
  • the predetermined duty ratio is, for example, about 50% or about 50%, but may be variable.
  • the electromagnet 60 generates a magnetic field in the front-rear direction by passing a current according to a drive signal to the coil 63, and magnetizes the front end portion and the rear end portion of the magnetic core 61 into different magnetic poles.
  • the drive signal is applied at a predetermined duty ratio significantly larger than 0% and smaller than 100%, the magnetic field generated by the electromagnet 60 has the direction of the magnetic field corresponding to the change in the direction of the current. It becomes an alternating magnetic field.
  • the timing at which the electromagnet 60 generates an alternating magnetic field and the frequency of the alternating magnetic field are controlled via the above-described drive signal from the external circuit.
  • the permanent magnet 70 is a substantially rectangular parallelepiped plate-like magnet as shown in FIGS. 2, 3 and 6.
  • the front end portion side and the rear end of the weight portion 21 are positioned such that the two permanent magnets 70 are positioned on an extension line in the front-rear direction of the magnetic core 61 of the electromagnet 60 (hereinafter abbreviated as an extension line of the vibrating body 20 in the front-rear direction) It is disposed on the department side respectively.
  • the permanent magnet 70 is formed with a substantially rectangular magnetization surface 71 having sides extending in the left-right direction and the up-down direction. The magnetizing surface 71 of the permanent magnet 70 and the magnetic core 61 of the electromagnet 60 are opposed to each other in the front-rear direction.
  • the magnetization plane 71 is divided into two magnetization areas 73 by oblique division lines 72 (explanation lines) as schematically shown in FIG. 6, and the two magnetization areas 73 have different magnetic poles. It is magnetized by That is, the permanent magnet 70 has different poles through the boundary line which is oblique when viewed in the front-rear direction. Thus, the permanent magnet 70 is magnetized such that different magnetic poles are aligned along the left-right direction and the up-down direction.
  • the permanent magnet 70 disposed on the front end side of the housing 10 is referred to as the front permanent magnet 70
  • the permanent magnet 70 disposed on the rear end side of the weight portion 21 is referred to as the permanent on the rear side.
  • magnet 70 Abbreviated as magnet 70.
  • the lower left region is taken as a first magnetization region 73a
  • the upper right region is taken as a second magnetization region 73b.
  • the first magnetization area 73a is an N pole and the second magnetization area 73b is an S pole, and in the permanent magnet 70 on the rear side, the first magnetization area 73a is S
  • the second magnetization region 73b is magnetized so as to become an N pole.
  • a yoke made of a ferromagnetic material may be attached to the permanent magnet 70 to direct the magnetic field generated by the permanent magnet 70 to the electromagnet 60 side. Further, by arranging two rod-like permanent magnets respectively in the left and right direction and the up and down direction, magnetization regions equivalent to the two magnetization regions 73 partitioned by the dividing line 72 in the oblique direction may be realized.
  • the magnetic drive unit 50 includes the two permanent magnets 70 disposed on the vibrating body 20 side and the two electromagnets 60 disposed on the housing 10 side.
  • the electromagnet 60 generates an alternating magnetic field by passing an alternating current through the coil 63 to magnetize the front end portion and the rear end portion of the magnetic core 61.
  • the permanent magnet 70 is disposed on the housing 10 so as to face the electromagnet 60 in the front-rear direction.
  • a first magnetization region 73a and a second magnetization region 73b are formed on the magnetization surface 71 of the permanent magnet 70 so as to have different magnetic poles.
  • FIGS. 7A-7B are schematic views when viewing Y2 side from Y1 side.
  • FIG. 7A when the front end of the rear magnetic core 61 is magnetized to the N pole, the front end of the magnetic core 61 attracts the first magnetization region 73a of the rear permanent magnet 70, and the second Repel the magnetization area 73b.
  • the rear end of the magnetic core 61 on the front side is magnetized to the S pole, the rear end of the magnetic core 61 attracts the first magnetization area 73a of the permanent magnet 70 on the front side, and the second magnetization area 73b Repel each other.
  • a magnetic force acts on the vibrating body 20 in the left direction and the lower direction.
  • the magnetic core 61 of the electromagnet 60 attracts or repels the first magnetization region 73a of the permanent magnet 70 each time the direction of the magnetic field generated by the electromagnet 60 is thus reversed. And the second magnetization region 73b.
  • the magnetic drive part 50 is driving the vibrating body 20 to the left-right direction and the up-down direction using the magnetic force between such an electromagnet 60 and the permanent magnet 70.
  • the two electromagnets 60 are controlled such that the front end portion of the rear magnetic core 61 and the rear end portion of the front magnetic core 61 are synchronously inverted between the S pole and the N pole.
  • the vibrating body 20 is supported by the elastic support portion 40 so as to be capable of vibrating in the lateral direction and the vertical direction.
  • the vibrating body 20 vibrates in the lateral direction at a first natural frequency determined corresponding to the first elastic coefficient and the mass of the vibrating body 20, and corresponds to the mass of the second elastic coefficient and the vibrating body 20. It vibrates up and down at a second natural frequency determined by
  • FIG. 8A when the electromagnet 60 generates an alternating magnetic field having the same frequency as the first natural frequency, the vibrating body 20 easily vibrates in the left-right direction. As a result, the vibrating body 20 vibrates largely in the left-right direction.
  • FIG. 8B when the electromagnet 60 generates an alternating magnetic field having the same frequency as the second natural frequency, the vibrating body 20 easily vibrates in the vertical direction. As a result, the vibrating body 20 vibrates largely in the vertical direction.
  • the magnetic drive unit 50 uses the relationship between the frequency of the alternating magnetic field and the ease of vibration of the vibrating body 20 to align the vibrating body 20 in the left-right direction by the alternating magnetic field having the same frequency as the first natural frequency.
  • the vibrating body 20 is vibrated in the vertical direction by an alternating magnetic field having the same frequency as the second natural frequency.
  • oscillating the vibrating body 20 along the lateral direction by the alternating magnetic field having the same frequency as the first natural frequency is abbreviated as driving the vibrating body 20 in the lateral direction with the first natural frequency
  • the vibration of the vibrating body 20 along the vertical direction by the alternating magnetic field having the same frequency as the natural frequency of the above is abbreviated as driving the vibrating body 20 in the vertical direction at the second natural frequency.
  • the vibrator vibrates in the vertical direction and in the horizontal direction.
  • a frequency close to the first natural frequency it vibrates more in the lateral direction than in the vertical direction
  • a frequency close to the second natural frequency it vibrates larger in the vertical direction than in the lateral direction.
  • harmonics of a given frequency also contribute to vibration, so that the frequency at which the harmonics match or approximate the first natural frequency, specifically the first frequency.
  • the frequency is 1 / N times the natural frequency (where N is an integer, for example 3, the same applies below), it vibrates largely in the left-right direction, and the frequency 1 / M times the second natural frequency (but M is an integer, and for example, if it is 3 or less, it vibrates largely in the vertical direction.
  • N is an integer, for example 3, the same applies below
  • M is an integer, and for example, if it is 3 or less, it vibrates largely in the vertical direction.
  • the leaf spring having the bending structure such as the elastic support portion 40 is characterized in that it is easily elastically deformed in the direction orthogonal to the fold, but is not easily deformed in the direction along the fold. Therefore, in the present embodiment, the deformation of the elastic support portion 40 in the front-rear direction is suppressed by utilizing the characteristics of the leaf spring having such a bending structure. And thereby, the vibration body 20 suppresses the movement along the front-back direction, and the vibration operation along the left-right direction and the up-down direction of the vibration body 20 is stabilized.
  • the elastic supporting portion 40 is formed so that the width dimension of the flat portion 42 is larger than the length dimension of the flat portion 42 by utilizing the feature of the leaf spring having such a bending structure.
  • the deformation of the elastic support portion 40 in the front-rear direction can be easily suppressed.
  • the elastic support portion 40 is bent so that the fold line extends along the front-rear direction (third direction) orthogonal to the left-right direction and the vertical direction (first direction). It is a leaf spring in which a plurality of bent portions 41 and two substantially rectangular flat portions 42 extending from one of the plurality of bent portions 41 to the other are formed.
  • the leaf spring having such a bending structure is characterized in that it is easily elastically deformed in the direction orthogonal to the fold, but is not easily deformed in the direction along the fold. Therefore, the elastic support portion 40 can be easily elastically deformed in the lateral direction and the vertical direction, and the deformation of the elastic support portion 40 in the front-rear direction can be suppressed.
  • the magnetic drive unit 50 drives the vibrating body 20 at the first natural frequency corresponding to the first elastic coefficient and the mass of the vibrating body 20, thereby the vibrating body 20 can be made easy to vibrate in the left-right direction, and can be made difficult to vibrate in the vertical direction. Further, the magnetic drive unit 50 drives the vibrating body 20 at the second natural frequency corresponding to the second elastic coefficient and the mass of the vibrating body 20, thereby making the vibrating body 20 easily vibrated in the vertical direction, Vibration in the lateral direction can be made difficult. As a result, it is possible to realize a desired vibration operation in the lateral direction and the vertical direction of the vibration body 20 while stabilizing the vibration operation of the vibration body 20.
  • FIG. 9 is an explanatory view of the vibration in the left and right direction of the vibrating body 20. As shown in FIG. FIG. 9 is a view of the vibrating body 20 and the elastic support portion 40 in the front-rear direction. In FIG. 9, a force point center C1 of the elastic support portion 40 and a center of gravity G1 of the vibrating body 20 are shown.
  • the force point center C1 of the elastic support portion 40 is on the same XZ plane (the plane formed by the vertical direction and the horizontal direction) as the gravity center G1 of the vibrating body 20 and , Located above the center of gravity (center of mass) G1 of the vibrating body 20.
  • the vibrating body 20 vibrates in the non-linear direction R1 (an example of the second direction) as the natural vibration (an example of the second natural vibration).
  • the non-linear direction R1 is a direction on the same plane as the vertical direction. For example, as shown in FIG.
  • the non-linear direction R1 is an arc-shaped direction whose radial direction is the vertical direction. Therefore, the natural vibration in the non-linear direction R1 has not only the component in the left-right direction but also the component in the vertical direction.
  • vertical vibration can also be caused. That is, by shifting the center of gravity G1 of the vibrating body 20 and the force point center C1 of the elastic support portion 40 up and down, it is possible to cause vertical vibration as well as the horizontal vibration of the vibrating body 20.
  • the vibrating body 20 can have the natural vibration that vibrates in the non-linear direction R1. Therefore, even if it is intended to vibrate the surface (attachment surface) on which the bottom surface of the vibration generator 1 is fixed by bonding or the like, the vertical vibration at the first natural frequency and the vibration at the second natural frequency are Vibration due to the vertical component and two types of vibration can be generated in the vertical direction. As a result, according to the present embodiment, it is possible to transmit vibrations to the user over a wide range of frequencies.
  • the point of force center C1 is conceptually a point at which each force that the elastic support portion 40 acts on the vibrating body 20 always passes through.
  • the force applied to the vibrating body 20 by the left elastic supporting portion 40 is F1
  • the distance from the center of gravity G1 of the vibrating body 20 to the point of application of the force F1 is r1
  • the right elastic supporting portion 40 applies to the vibrating body 20
  • the moment M generated in the vibrating body 20 is as follows.
  • the center of force point C1 is shifted upward with respect to the center of gravity G1 of the vibrating body 20, but may be reversed as shown in FIG. That is, in the example shown in FIG. 10, the elastic support portion 40A is configured such that the force point center C1 is shifted downward with respect to the center of gravity G1 of the vibrating body 20. In this case, as shown by an arc-shaped arrow R2 in FIG. 10, the vibrating body 20 can vibrate in the non-linear direction R2 (an example of the second direction).
  • a substantially rectangular opening may be formed at a position away from the outer peripheral portion of the flat portion 42.
  • the outer peripheral portion of the flat portion 42 greatly affects the deformation resistance in the direction along the fold of the elastic support portion 40, but the influence of the portion (the portion closer to the central portion) avoiding the outer peripheral portion of the flat portion 42 , Small compared to the influence of the outer peripheral portion of the flat portion 42.
  • an opening is formed at a position away from the outer periphery of the flat portion 42 by utilizing the feature of the leaf spring having such a bending structure, whereby the elastic support 40 is deformed in the front-rear direction. It can be made easy to elastically deform in the left-right direction and the up-down direction, suppressing becoming easy. Then, by adjusting the size of the opening, the ease of elastic deformation of the elastic support portion 40 in the left-right direction and the up-down direction can be adjusted.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Mechanical Engineering (AREA)
  • Power Engineering (AREA)
  • Apparatuses For Generation Of Mechanical Vibrations (AREA)
  • Reciprocating, Oscillating Or Vibrating Motors (AREA)

Abstract

Disclosed is a vibration generating device provided with: a casing; a vibrating body housed in the casing; an elastic support portion which supports the vibrating body in a vibratable manner; and a magnetic driving unit which has a first magnetic field generating means disposed on the vibrating body side and a second magnetic field generating means disposed on the casing side and which drives the vibrating body by using a magnetic force, wherein the elastic support portion supports the vibrating body such that the vibrating body has first unique vibration in which the vibrating body vibrates in a first direction and second unique vibration in which the vibrating body vibrates in a non-linear second direction, and the second direction intersects the first direction.

Description

振動発生装置Vibration generator
 本開示は、振動発生装置に関する。 The present disclosure relates to a vibration generator.
 2方向に振動が可能でありかつ方向ごとに共振周波数が異なる振動発生装置が知られている。 There are known vibration generating devices capable of vibrating in two directions and having different resonant frequencies in different directions.
特開2016-096677号公報JP, 2016-096677, A
 しかしながら、上記の従来技術では、2方向が共に直線方向であるので、例えば取り付け方に起因して2方向のうちの一方の方向の振動が規制されると、2種類の振動を実現することが難しい。例えば、振動発生装置が平板に取り付けられると、平板の面内の方向の振動が規制されるので、平板に垂直な方向(面直な方向)の振動(1種類の振動)だけしか実現できない。 However, in the above-mentioned prior art, since the two directions are both linear directions, two types of vibrations can be realized, for example, when the vibration in one of the two directions is restricted due to the mounting method. difficult. For example, when the vibration generating device is attached to a flat plate, the vibration in the in-plane direction of the flat plate is restricted, so that only the vibration (one type of vibration) in the direction perpendicular to the flat plate (direct direction) can be realized.
 そこで、1つの側面では、本発明は、取り付け方に大きく依存することなく2方向の振動を伝達可能とすることを目的とする。 Therefore, in one aspect, the present invention aims to enable transmission of vibrations in two directions without depending largely on the mounting method.
 1つの側面では、筐体と、
 前記筐体に収容された振動体と、
 前記振動体を振動可能に支持する弾性支持部と、
 前記振動体側に配設された第1の磁界発生手段と、前記筐体側に配設された第2の磁界発生手段とを有して、前記振動体を磁力を用いて駆動する磁気駆動部と、
を備える振動発生装置であって、
 前記弾性支持部は、前記振動体が第1の方向に振動する第1の固有振動と、前記振動体が非直線の第2の方向に振動する第2の固有振動を有し、前記第2の方向は、前記第1の方向と交差する方向であるように前記振動体を支持している、振動発生装置が提供される。
In one aspect, the housing
A vibrator housed in the housing;
An elastic support that vibratably supports the vibrator;
A magnetic drive unit having a first magnetic field generating unit disposed on the vibrator side and a second magnetic field generating unit disposed on the housing side, and driving the vibrator using magnetic force; ,
A vibration generating device comprising
The elastic support portion has a first natural vibration in which the vibrator vibrates in a first direction, and a second natural vibration in which the vibrator vibrates in a non-linear second direction. There is provided a vibration generating device supporting the vibrating body such that the direction of the direction intersects the first direction.
 1つの側面では、本発明によれば、取り付け方に大きく依存することなく2方向の振動を伝達することが可能となる。 In one aspect, according to the present invention, it is possible to transmit vibrations in two directions without depending largely on the mounting method.
一実施例による振動発生装置1の構成を示す斜視図である。It is a perspective view which shows the structure of the vibration generator 1 by one Example. 振動発生装置1の分解斜視図である。FIG. 2 is an exploded perspective view of the vibration generator 1; 振動発生装置1の振動体20の斜視図である。FIG. 2 is a perspective view of a vibrating body 20 of the vibration generating device 1; 振動発生装置1の保持部30と弾性支持部40の説明図である。FIG. 6 is an explanatory view of a holding portion 30 and an elastic support portion 40 of the vibration generator 1; 振動発生装置1の保持部30と弾性支持部40の説明図である。FIG. 6 is an explanatory view of a holding portion 30 and an elastic support portion 40 of the vibration generator 1; 保持部30と弾性支持部40との側面図である。FIG. 6 is a side view of the holding portion 30 and the elastic support portion 40. 振動発生装置1の永久磁石70の平面図である。FIG. 2 is a plan view of a permanent magnet 70 of the vibration generator 1; 磁気駆動部の駆動方向を示す説明図である。It is explanatory drawing which shows the drive direction of a magnetic drive part. 磁気駆動部の駆動方向を示す説明図である。It is explanatory drawing which shows the drive direction of a magnetic drive part. 振動体の振動方向を示す説明図である。It is explanatory drawing which shows the vibration direction of a vibrating body. 振動体の振動方向を示す説明図である。It is explanatory drawing which shows the vibration direction of a vibrating body. 振動体の重心G1と弾性支持部の力点中心C1とのずれの説明図である。It is explanatory drawing of the shift | offset | difference of the gravity center G1 of a vibrating body and the power point center C1 of an elastic support part. 振動体の重心G1と弾性支持部の力点中心C1とのずれの説明図である。It is explanatory drawing of the shift | offset | difference of the gravity center G1 of a vibrating body and the power point center C1 of an elastic support part.
 以下、添付図面を参照しながら各実施例について詳細に説明する。 Hereinafter, each example will be described in detail with reference to the attached drawings.
 図1は、一実施例による振動発生装置1の構成を示す斜視図である。図2は、振動発生装置1の分解斜視図である。図3は、振動発生装置1の振動体20の斜視図である。図4A-4B及び図5は、振動発生装置1の保持部30と弾性支持部40の説明図である。図4Aは、保持部30と弾性支持部40との斜視図であり、図4Bは、保持部30と弾性支持部40との正面図である。図5は、保持部30と弾性支持部40との側面図である。図6は、振動発生装置1の永久磁石70の平面図である。 FIG. 1 is a perspective view showing the configuration of a vibration generating apparatus 1 according to an embodiment. FIG. 2 is an exploded perspective view of the vibration generator 1. FIG. 3 is a perspective view of the vibrating body 20 of the vibration generating device 1. FIGS. 4A-4B and FIG. 5 are explanatory views of the holding portion 30 and the elastic support portion 40 of the vibration generating device 1. FIG. 4A is a perspective view of the holding portion 30 and the elastic support portion 40, and FIG. 4B is a front view of the holding portion 30 and the elastic support portion 40. FIG. 5 is a side view of the holding portion 30 and the elastic support portion 40. As shown in FIG. FIG. 6 is a plan view of the permanent magnet 70 of the vibration generator 1.
 図7A-7Bは、磁気駆動部の駆動方向を示す説明図である。図7Aは、磁心61がN極に磁化された時の永久磁石70が磁心61に及ぼす磁力の方向を示し、図7Bは、磁心61がS極に磁化された時の永久磁石70が磁心61に及ぼす磁力の方向を示している。図7A-7Bにおいて、実線の矢印は、磁心61に及ぼす磁力の方向である。 7A-7B are explanatory diagrams showing the driving direction of the magnetic drive unit. 7A shows the direction of the magnetic force exerted by the permanent magnet 70 on the magnetic core 61 when the magnetic core 61 is magnetized to the N pole, and FIG. 7B shows the permanent magnet 70 as the magnetic core 61 when the magnetic core 61 is magnetized to the S pole. Indicates the direction of the magnetic force exerted on the In FIGS. 7A-7B, solid arrows indicate the direction of the magnetic force exerted on the magnetic core 61.
 図8A-8Bは、振動体の振動方向を示す説明図であり、振動体20と保持部30と弾性支持部40とを前から見た場合の説明図となっている。図8Aは、電磁石60が第1の固有振動数と同じ周波数の交番磁界を発生させた時の、振動体20の振動方向を示し、図8Bは、電磁石60が第2の固有振動数と同じ周波数の交番磁界を発生させた時の、振動体20の振動方向を示している。図8A-8Bにおいて、実線の矢印は、振動体20が振動し易くなる方向、すなわち振動体20の振動方向であり、点線の矢印は、振動体20が振動し難くなる方向である。 FIGS. 8A-8B are explanatory views showing the vibration direction of the vibrator, and are diagrams when the vibrator 20, the holding portion 30, and the elastic support portion 40 are viewed from the front. 8A shows the vibration direction of the vibrating body 20 when the electromagnet 60 generates an alternating magnetic field having the same frequency as the first natural frequency, and FIG. 8B shows the same as the second natural frequency. The vibration direction of the vibrator 20 is shown when an alternating magnetic field of frequency is generated. In FIGS. 8A-8B, the solid line arrow indicates the direction in which the vibrating body 20 easily vibrates, that is, the vibrating direction of the vibrating body 20, and the dotted line arrow indicates the direction in which the vibrating body 20 hardly vibrates.
 尚、各図における方向は、X1を左、X2を右、Y1を前、Y2を後、Z1を上、Z2を下とする。そして、本実施例では、上下方向が「第1の方向」の一例であり、前後方向が「第3の方向」の一例である。 In the drawings, X1 is left, X2 is right, Y1 is front, Y2 is back, Z1 is top, and Z2 is bottom. In the present embodiment, the up and down direction is an example of the “first direction”, and the front and back direction is an example of the “third direction”.
 振動発生装置1は、携帯情報端末やゲーム機等の電子機器に搭載される振動発生装置である。振動発生装置1は、車両等の操作装置内に搭載されてもよい。振動発生装置1が発生させる振動は、例えば、携帯情報端末での着信を知らせるための振動や、ゲーム機での触覚フィードバック用の振動等に利用される。振動発生装置1は、図1及び図2に示すように、筐体10と、振動体20と、保持部30と、2つの弾性支持部40と、磁気駆動部50とを備えている。 The vibration generating device 1 is a vibration generating device mounted on an electronic device such as a portable information terminal or a game machine. The vibration generating device 1 may be mounted in an operating device such as a vehicle. The vibration generated by the vibration generator 1 is used, for example, as a vibration for notifying an incoming call at a portable information terminal, a vibration for tactile feedback in a game machine, or the like. As shown in FIGS. 1 and 2, the vibration generating device 1 includes a housing 10, a vibrating body 20, a holding unit 30, two elastic supporting units 40, and a magnetic driving unit 50.
 筐体10は、図1及び図2に示すように、本体部11と蓋部12とを組み合わせて構成される。本体部11は、金属板を加工してできた略直方体の箱状の部材であり、本体部11の上端部から下方に凹となる略直方体の凹部である収容部11aを有している。蓋部12は、金属板を加工してできた略長方形の板状の部材であり、本体部11の上端部に取り付けられて収容部11aを上から覆っている。 The housing 10 is configured by combining the main body 11 and the lid 12 as shown in FIGS. 1 and 2. The main body portion 11 is a substantially rectangular box-shaped member formed by processing a metal plate, and has a housing portion 11 a which is a concave portion of a substantially rectangular parallelepiped concave downward from the upper end portion of the main body portion 11. The lid 12 is a substantially rectangular plate-like member formed by processing a metal plate, and is attached to the upper end of the main body 11 to cover the housing 11 a from above.
 振動体20は、図3に示すように、筐体10の収容部11aに収容された略直方体の部材である。振動体20には、磁気駆動部50の一部となる永久磁石70が配設されている。具体的には、振動体20は、略直方体の錘部21と、永久磁石70とを備える。永久磁石70は、錘部21の前後端にそれぞれ設けられる。錘部21は、例えばタングステンにより形成される。 The vibrating body 20 is a substantially rectangular parallelepiped member housed in the housing portion 11a of the housing 10, as shown in FIG. A permanent magnet 70 which is a part of the magnetic drive unit 50 is disposed on the vibrating body 20. Specifically, the vibrating body 20 is provided with a substantially rectangular parallelepiped weight 21 and a permanent magnet 70. The permanent magnets 70 are provided at the front and rear ends of the weight 21 respectively. The weight 21 is formed of, for example, tungsten.
 保持部30と弾性支持部40とは、ばね性を有した金属板を所定の形状に加工して一体で形成される。保持部30は、図4A-4B及び図5に示すように、略直方体の箱状の部分である。保持部30には、図1及び図2に示すように、振動体20の下部が収容されて保持される。 The holding portion 30 and the elastic support portion 40 are integrally formed by processing a metal plate having a spring property into a predetermined shape. The holding portion 30 is a box-shaped portion having a substantially rectangular parallelepiped shape as shown in FIGS. 4A-4B and 5. As shown in FIGS. 1 and 2, the lower portion of the vibrating body 20 is accommodated and held in the holding portion 30.
 弾性支持部40は、図4A-4B及び図5に示すように、左右方向に延びる金属板を、折り目が前後方向に沿うように複数回折り曲げて形成された板ばねである。2つの弾性支持部40のうちの一方は保持部30の左端部から左側に延出し、他方は保持部30の右端部から右側に延出している。以下、保持部30の左端部から左側に延出する弾性支持部40を、左側の弾性支持部40と略称し、保持部30の右端部から右側に延出する弾性支持部40を、右側の弾性支持部40と略称する。 As shown in FIGS. 4A-4B and 5, the elastic support portion 40 is a plate spring formed by bending a metal plate extending in the left-right direction a plurality of times so that a fold line extends in the front-rear direction. One of the two elastic support portions 40 extends leftward from the left end of the holding portion 30, and the other extends rightward from the right end of the holding portion 30. Hereinafter, the elastic supporting portion 40 extending leftward from the left end of the holding portion 30 is abbreviated as the elastic supporting portion 40 on the left side, and the elastic supporting portion 40 extending rightward from the right end of the holding portion 30 is The elastic support portion 40 is abbreviated.
 また、弾性支持部40は、図4A-4B及び図5に示すように、3つの折り曲げ部41と、2つの平坦部42と、取り付け部43とを有している。折り曲げ部41は、折り目に沿って折り曲げられた部分である。平坦部42は、3つの折り曲げ部41のうちの1つから他の1つに向かって延出する略長方形の部分であり、折り目の方向に沿った辺と、延出方向に沿った辺とを有している。そして、弾性支持部40は、平坦部42の折り目の方向に沿った寸法(以下、平坦部42の幅寸法と略称)が、平坦部42の延出方向に沿った寸法(以下、平坦部42の長さ寸法と略称)よりも大きくなるように形成されている。 Further, as shown in FIGS. 4A-4B and FIG. 5, the elastic support portion 40 has three bent portions 41, two flat portions 42, and an attachment portion 43. The folding portion 41 is a portion folded along the fold line. The flat portion 42 is a substantially rectangular portion extending from one of the three bent portions 41 to another, and a side along the direction of the fold and a side along the extending direction have. The elastic support portion 40 has a dimension along the direction of the fold of the flat portion 42 (hereinafter referred to as the width dimension and abbreviation of the flat portion 42) and a dimension along the extension direction of the flat portion 42 (hereinafter referred to as the flat portion 42). Is formed to be larger than the length dimension and abbreviation).
 尚、弾性支持部40のような折り曲げ構造の板ばねは、折り目と直交する方向(左右方向及び上下方向)には弾性変形し易いという特徴を有する。すなわち、このような板ばねは、伸縮によって左右方向に弾性変形し、撓みによって上下方向に弾性変形することができる。一方、このような板ばねは、折り目に沿った方向(前後方向)には変形し難いという特徴も有しているので、前後方向に沿った移動を抑制するための部材として好適である。 In addition, the leaf spring of the bending structure like the elastic support part 40 has the characteristic of being easy to be elastically deformed in the direction (left and right direction and up and down direction) orthogonal to the fold. That is, such a leaf spring can be elastically deformed in the lateral direction by expansion and contraction, and can be elastically deformed in the vertical direction by bending. On the other hand, such a leaf spring is also characterized in that it is difficult to deform in the direction along the fold (in the front-rear direction), so it is suitable as a member for suppressing movement in the front-rear direction.
 また、このような折り曲げ構造の板ばねでは、通常、撓みによる上下方向に沿った弾性変形と、伸縮による左右方向に沿った弾性変形とでは変形し易さが異なる。そのため、弾性支持部40の左右方向に対する弾性係数を第1の弾性係数とし、弾性支持部40の上下方向に対する弾性係数を第2の弾性係数とすると、第1の弾性係数と第2の弾性係数とは異なる値となる。 Moreover, in the leaf spring having such a bending structure, the ease of deformation is usually different between elastic deformation along the vertical direction due to bending and elastic deformation along the horizontal direction due to expansion and contraction. Therefore, assuming that the elastic modulus of the elastic supporting portion 40 in the left-right direction is a first elastic modulus, and the elastic modulus of the elastic supporting portion 40 in the vertical direction is a second elastic modulus, the first elastic modulus and the second elastic modulus Is different from.
 取り付け部43は、弾性支持部40の先端部に形成されている。取り付け部43の所定の位置には、被固定部43aが形成されている。そして、被固定部43aが筐体10の本体部11に固定されることによって、弾性支持部40が筐体10に取り付けられる。そして、弾性支持部40は、左右方向及び上下方向に弾性変形することによって、振動体20を左右方向及び上下方向に振動可能に支持するようになる。 The attachment portion 43 is formed at the tip of the elastic support portion 40. A fixed portion 43 a is formed at a predetermined position of the attachment portion 43. Then, the elastic support portion 40 is attached to the housing 10 by fixing the fixed portion 43 a to the main body portion 11 of the housing 10. The elastic support portion 40 elastically supports the vibrating body 20 so as to be capable of vibrating in the lateral direction and the vertical direction by elastically deforming in the lateral direction and the vertical direction.
 尚、振動体20は、弾性支持部40に支持されて、第1の弾性係数及び振動体20の質量に対応して決まる第1の固有振動数で左右方向に振動し、第2の弾性係数及び振動体20の質量に対応して決まる第2の固有振動数で上下方向に沿って振動する。そして、第1の弾性係数と第2の弾性係数とが異なる値なので、第1の固有振動数と第2の固有振動数とも異なる値となる。 The vibrating body 20 is supported by the elastic support portion 40, and vibrates in the lateral direction at a first natural frequency determined corresponding to the first elastic coefficient and the mass of the vibrating body 20, and the second elastic coefficient And it vibrates along an up-down direction with the 2nd intrinsic frequency decided according to the mass of vibrating body 20. Then, since the first elastic coefficient and the second elastic coefficient are different values, the first natural frequency and the second natural frequency have different values.
 磁気駆動部50は、図2に示すように、振動体20の前後端に対してそれぞれ設けられる。磁気駆動部50は、振動体20側に配設された2つの永久磁石70と、筐体10側に配設された2つの電磁石60とを有する。電磁石60は、筐体10の前端部側と後端部側とにそれぞれ配設されている。電磁石60は、図2に示すように、磁心(コイルコア)61と、絶縁シート62a,62bと、コイル63とを有している。磁心61は、強磁性体でできた角柱状の部材であり、前後方向に沿って延びている。絶縁シート62aは、絶縁体でできた円環状の部材であり、磁心61の外周部に嵌められる。絶縁シート62bは、絶縁体でできた円環状の部材であり、コイル63と振動体20の間に設けられる。コイル63は、両端が端子(図示せず)に電気的に接続される。端子は、配線用の部材80(図1、図2参照)を介してコイル63の両端部と図示しない外部回路とを接続している。尚、配線用の部材80は、FPC(Flexible Printed Circuits)であるが、フラットケーブルなどであってもよい。 As shown in FIG. 2, the magnetic drive units 50 are respectively provided to the front and rear ends of the vibrating body 20. The magnetic drive unit 50 includes two permanent magnets 70 disposed on the vibrating body 20 side and two electromagnets 60 disposed on the housing 10 side. The electromagnets 60 are respectively disposed on the front end side and the rear end side of the housing 10. As shown in FIG. 2, the electromagnet 60 has a magnetic core (coil core) 61, insulating sheets 62a and 62b, and a coil 63. The magnetic core 61 is a prismatic member made of a ferromagnetic material, and extends along the front-rear direction. The insulating sheet 62 a is an annular member made of an insulator, and is fitted to the outer peripheral portion of the magnetic core 61. The insulating sheet 62 b is an annular member made of an insulator, and is provided between the coil 63 and the vibrator 20. Both ends of the coil 63 are electrically connected to terminals (not shown). The terminals connect both ends of the coil 63 to an external circuit (not shown) via a wiring member 80 (see FIGS. 1 and 2). The wiring member 80 is a flexible printed circuit (FPC), but may be a flat cable or the like.
 外部回路からは、電磁石60に駆動信号が印加される。駆動信号は、例えば矩形波(パルス波)であり、所定のデューティ比で印加される。所定のデューティ比は、例えば50%又は50%前後であるが、可変されてもよい。電磁石60は、コイル63に駆動信号に係る電流を流すことによって、前後方向に磁界を発生させ、磁心61の前端部と後端部とを異なる磁極に磁化させている。駆動信号が、0%よりも有意に大きくかつ100%よりも有意に小さい所定のデューティ比で印加されると、電磁石60が発生させる磁界は、電流の向きの変化に対応して磁界の向きが変化する交番磁界となる。そして、磁心61の前端部がS極となっている時には後端部がN極となり、磁心61の前端部がN極となっている時には後端部がS極となる。このようにして、電磁石60が交番磁界を発生させるタイミングや交番磁界の周波数は、前述した外部回路からの駆動信号を介して制御されている。 A drive signal is applied to the electromagnet 60 from the external circuit. The drive signal is, for example, a rectangular wave (pulse wave), and is applied at a predetermined duty ratio. The predetermined duty ratio is, for example, about 50% or about 50%, but may be variable. The electromagnet 60 generates a magnetic field in the front-rear direction by passing a current according to a drive signal to the coil 63, and magnetizes the front end portion and the rear end portion of the magnetic core 61 into different magnetic poles. When the drive signal is applied at a predetermined duty ratio significantly larger than 0% and smaller than 100%, the magnetic field generated by the electromagnet 60 has the direction of the magnetic field corresponding to the change in the direction of the current. It becomes an alternating magnetic field. When the front end of the magnetic core 61 is an S pole, the rear end is an N pole, and when the front end of the magnetic core 61 is an N pole, the rear end is an S pole. Thus, the timing at which the electromagnet 60 generates an alternating magnetic field and the frequency of the alternating magnetic field are controlled via the above-described drive signal from the external circuit.
 永久磁石70は、図2、図3、及び図6に示すように、略直方体の板状の磁石である。2つの永久磁石70は、電磁石60が有する磁心61の前後方向における延長線上(以下、前後方向における振動体20の延長線上と略称)に位置するように、錘部21の前端部側と後端部側とにそれぞれ配設されている。また、永久磁石70には、図6に示すように、左右方向及び上下方向に沿った辺を有する略矩形の磁化面71が形成されている。そして、永久磁石70の磁化面71と電磁石60の磁心61とが前後に対向するようになっている。 The permanent magnet 70 is a substantially rectangular parallelepiped plate-like magnet as shown in FIGS. 2, 3 and 6. The front end portion side and the rear end of the weight portion 21 are positioned such that the two permanent magnets 70 are positioned on an extension line in the front-rear direction of the magnetic core 61 of the electromagnet 60 (hereinafter abbreviated as an extension line of the vibrating body 20 in the front-rear direction) It is disposed on the department side respectively. Further, as shown in FIG. 6, the permanent magnet 70 is formed with a substantially rectangular magnetization surface 71 having sides extending in the left-right direction and the up-down direction. The magnetizing surface 71 of the permanent magnet 70 and the magnetic core 61 of the electromagnet 60 are opposed to each other in the front-rear direction.
 磁化面71は、図6に模式的に示すように、斜め方向の分割ライン72(説明用のライン)によって2つの磁化領域73に分割され、2つの磁化領域73は、互いに異なる磁極となるように着磁されている。即ち、永久磁石70は、前後方向に視て斜めになる境界線を介して異なる極を有する。永久磁石70は、このようにして、左右方向と上下方向とに沿ってそれぞれ異なる磁極が並ぶように着磁されている。 The magnetization plane 71 is divided into two magnetization areas 73 by oblique division lines 72 (explanation lines) as schematically shown in FIG. 6, and the two magnetization areas 73 have different magnetic poles. It is magnetized by That is, the permanent magnet 70 has different poles through the boundary line which is oblique when viewed in the front-rear direction. Thus, the permanent magnet 70 is magnetized such that different magnetic poles are aligned along the left-right direction and the up-down direction.
 以下、筐体10の前端部側に配設された永久磁石70を、前側の永久磁石70と略称し、錘部21の後端部側に配設された永久磁石70を、後側の永久磁石70と略称する。また、2つの磁化領域73のうち、左下側の領域を第1磁化領域73aとし、右上側の領域を第2磁化領域73bとする。そして、前側の永久磁石70では、第1磁化領域73aがN極となり、第2磁化領域73bがS極となるように着磁され、後側の永久磁石70では、第1磁化領域73aがS極となり、第2磁化領域73bがN極となるように着磁されているものとして説明を進める。 Hereinafter, the permanent magnet 70 disposed on the front end side of the housing 10 is referred to as the front permanent magnet 70, and the permanent magnet 70 disposed on the rear end side of the weight portion 21 is referred to as the permanent on the rear side. Abbreviated as magnet 70. Of the two magnetization regions 73, the lower left region is taken as a first magnetization region 73a, and the upper right region is taken as a second magnetization region 73b. Then, in the permanent magnet 70 on the front side, the first magnetization area 73a is an N pole and the second magnetization area 73b is an S pole, and in the permanent magnet 70 on the rear side, the first magnetization area 73a is S The description will be made on the assumption that the second magnetization region 73b is magnetized so as to become an N pole.
 尚、変形例では、永久磁石70には、永久磁石70が発生させた磁界を電磁石60側に向わせるための、強磁性体でできた部材であるヨークが取り付けられてもよい。また、棒状の永久磁石を2本、左右方向と上下方向とにそれぞれ配置することで、斜め方向の分割ライン72によって仕切られる2つの磁化領域73と同等の磁化領域が実現されてもよい。 In the modification, a yoke made of a ferromagnetic material may be attached to the permanent magnet 70 to direct the magnetic field generated by the permanent magnet 70 to the electromagnet 60 side. Further, by arranging two rod-like permanent magnets respectively in the left and right direction and the up and down direction, magnetization regions equivalent to the two magnetization regions 73 partitioned by the dividing line 72 in the oblique direction may be realized.
 次に、振動発生装置1の動作について、図7A-7B及び図8A-8Bを用いて説明する。磁気駆動部50は、前述したように、振動体20側に配設された2つの永久磁石70と、筐体10側に配設された2つの電磁石60とを有している。そして、電磁石60は、コイル63に交流の電流を流すことによって交番磁界を発生させ、磁心61の前端部と後端部とを磁化させている。また、永久磁石70は、電磁石60と前後に対向するように筐体10側に配設されている。そして、永久磁石70の磁化面71には、互いに異なる磁極となるように着磁された第1磁化領域73aと第2磁化領域73bとが形成されている。 Next, the operation of the vibration generator 1 will be described with reference to FIGS. 7A-7B and 8A-8B. As described above, the magnetic drive unit 50 includes the two permanent magnets 70 disposed on the vibrating body 20 side and the two electromagnets 60 disposed on the housing 10 side. The electromagnet 60 generates an alternating magnetic field by passing an alternating current through the coil 63 to magnetize the front end portion and the rear end portion of the magnetic core 61. The permanent magnet 70 is disposed on the housing 10 so as to face the electromagnet 60 in the front-rear direction. A first magnetization region 73a and a second magnetization region 73b are formed on the magnetization surface 71 of the permanent magnet 70 so as to have different magnetic poles.
 ここでは、代表として後側の永久磁石70と電磁石60との相互作用について、図7A-7Bを参照して説明する。図7A-7Bは、Y1側からY2側を視たときの概略図である。図7Aに示すように、後側の磁心61の前端部がN極に磁化された時には、磁心61の前端部が、後側の永久磁石70の第1磁化領域73aと吸引し合い、第2磁化領域73bと反発し合う。図示しないが、前側の磁心61の後端部がS極に磁化された時には、磁心61の後端部が、前側の永久磁石70の第1磁化領域73aと吸引し合い、第2磁化領域73bと反発し合う。その結果、振動体20には左方向及び下方向に向かって磁力が働く。 Here, the interaction between the rear permanent magnet 70 and the electromagnet 60 will be described as a representative with reference to FIGS. 7A-7B. 7A-7B are schematic views when viewing Y2 side from Y1 side. As shown in FIG. 7A, when the front end of the rear magnetic core 61 is magnetized to the N pole, the front end of the magnetic core 61 attracts the first magnetization region 73a of the rear permanent magnet 70, and the second Repel the magnetization area 73b. Although not shown, when the rear end of the magnetic core 61 on the front side is magnetized to the S pole, the rear end of the magnetic core 61 attracts the first magnetization area 73a of the permanent magnet 70 on the front side, and the second magnetization area 73b Repel each other. As a result, a magnetic force acts on the vibrating body 20 in the left direction and the lower direction.
 また、図7Bに示すように、後側の磁心61の前端部がS極に磁化された時には、後側の磁心61の前端部が、後側の永久磁石70の第1磁化領域73aと反発し合い、第2磁化領域73bと吸引し合う。図示しないが、前側の磁心61の後端部がN極に磁化された時には、磁心61の後端部が、前側の永久磁石70の第1磁化領域73aと反発し合い、第2磁化領域73bと吸引し合う。その結果、振動体20には右方向及び上方向に向かって磁力が働く。 Further, as shown in FIG. 7B, when the front end of the rear magnetic core 61 is magnetized to the S pole, the front end of the rear magnetic core 61 repels the first magnetization region 73a of the rear permanent magnet 70. The second magnetization region 73b is attracted to each other. Although not shown, when the rear end of the magnetic core 61 on the front side is magnetized to the N pole, the rear end of the magnetic core 61 repels the first magnetization area 73a of the permanent magnet 70 on the front side, and the second magnetization area 73b Suction with each other. As a result, a magnetic force acts on the vibrating body 20 in the rightward and upward directions.
 磁気駆動部50では、このように、電磁石60が発生させる磁界の向きが反転する度に、電磁石60の磁心61が、永久磁石70の第1磁化領域73aと吸引し合ったり反発し合ったりし、第2磁化領域73bと反発し合ったり吸引し合ったりする。そして、磁気駆動部50は、このような電磁石60と永久磁石70との間の磁力を利用して、振動体20を左右方向及び上下方向に駆動している。2つの電磁石60は、後側の磁心61の前端部と、前側の磁心61の後端部とが、同期してS極及びN極間で反転するように制御される。 In the magnetic drive unit 50, the magnetic core 61 of the electromagnet 60 attracts or repels the first magnetization region 73a of the permanent magnet 70 each time the direction of the magnetic field generated by the electromagnet 60 is thus reversed. And the second magnetization region 73b. And the magnetic drive part 50 is driving the vibrating body 20 to the left-right direction and the up-down direction using the magnetic force between such an electromagnet 60 and the permanent magnet 70. As shown in FIG. The two electromagnets 60 are controlled such that the front end portion of the rear magnetic core 61 and the rear end portion of the front magnetic core 61 are synchronously inverted between the S pole and the N pole.
 一方、振動体20は、前述したように、弾性支持部40によって、左右方向及び上下方向に振動可能に支持されている。そして、振動体20は、第1の弾性係数及び振動体20の質量に対応して決まる第1の固有振動数で左右方向に振動し、第2の弾性係数及び振動体20の質量に対応して決まる第2の固有振動数で上下方向に沿って振動する。 On the other hand, as described above, the vibrating body 20 is supported by the elastic support portion 40 so as to be capable of vibrating in the lateral direction and the vertical direction. The vibrating body 20 vibrates in the lateral direction at a first natural frequency determined corresponding to the first elastic coefficient and the mass of the vibrating body 20, and corresponds to the mass of the second elastic coefficient and the vibrating body 20. It vibrates up and down at a second natural frequency determined by
 そのため、図8Aに示すように、電磁石60が第1の固有振動数と同じ周波数の交番磁界を発生させた時には、振動体20は、左右方向に対して振動し易くなる。その結果、振動体20は、左右方向に大きく振動するようになる。また、図8Bに示すように、電磁石60が第2の固有振動数と同じ周波数の交番磁界を発生させた時には、振動体20は、上下方向に対して振動し易くなる。その結果、振動体20は、上下方向に大きく振動するようになる。 Therefore, as shown in FIG. 8A, when the electromagnet 60 generates an alternating magnetic field having the same frequency as the first natural frequency, the vibrating body 20 easily vibrates in the left-right direction. As a result, the vibrating body 20 vibrates largely in the left-right direction. Further, as shown in FIG. 8B, when the electromagnet 60 generates an alternating magnetic field having the same frequency as the second natural frequency, the vibrating body 20 easily vibrates in the vertical direction. As a result, the vibrating body 20 vibrates largely in the vertical direction.
 磁気駆動部50は、このような交番磁界の周波数と振動体20の振動し易さとの関係を利用して、第1の固有振動数と同じ周波数の交番磁界によって振動体20を左右方向に沿って振動させ、第2の固有振動数と同じ周波数の交番磁界によって振動体20を上下方向に沿って振動させている。以下、第1の固有振動数と同じ周波数の交番磁界によって振動体20を左右方向に沿って振動させることを、第1の固有振動数で振動体20を左右方向に駆動すると略称し、第2の固有振動数と同じ周波数の交番磁界によって振動体20を上下方向に沿って振動させることを、第2の固有振動数で振動体20を上下方向に駆動すると略称する。 The magnetic drive unit 50 uses the relationship between the frequency of the alternating magnetic field and the ease of vibration of the vibrating body 20 to align the vibrating body 20 in the left-right direction by the alternating magnetic field having the same frequency as the first natural frequency. The vibrating body 20 is vibrated in the vertical direction by an alternating magnetic field having the same frequency as the second natural frequency. Hereinafter, oscillating the vibrating body 20 along the lateral direction by the alternating magnetic field having the same frequency as the first natural frequency is abbreviated as driving the vibrating body 20 in the lateral direction with the first natural frequency, and The vibration of the vibrating body 20 along the vertical direction by the alternating magnetic field having the same frequency as the natural frequency of the above is abbreviated as driving the vibrating body 20 in the vertical direction at the second natural frequency.
 また、第1の固有振動数とも第2の固有振動数とも一致しない周波数での交番磁界を発生させた場合でも、振動体は上下方向、左右方向に振動する。第1の固有振動数に近い周波数の場合には上下方向よりも左右方向に大きく振動し、第2の固有振動数に近い周波数の場合には左右方向よりも上下方向に大きく振動する。また、パルス波による交番磁界の場合には、与えた周波数の高調波も振動に寄与するため、高調波が第1の固有振動数に一致する、または近くなる周波数、具体的には第1の固有振動数の1/N倍の周波数(ただしNは整数であり、例えば3、以下同じ)であれば、左右方向に大きく振動し、第2の固有振動数の1/M倍の周波数(ただしMは整数であり、例えば3、以下同じ)であれば、上下方向に大きく振動する。尚、左右方向の振動については、後に図9を参照して、更に詳説する。 In addition, even when an alternating magnetic field is generated at a frequency that does not match either the first natural frequency nor the second natural frequency, the vibrator vibrates in the vertical direction and in the horizontal direction. In the case of a frequency close to the first natural frequency, it vibrates more in the lateral direction than in the vertical direction, and in the case of a frequency close to the second natural frequency, it vibrates larger in the vertical direction than in the lateral direction. Also, in the case of an alternating magnetic field due to pulse waves, harmonics of a given frequency also contribute to vibration, so that the frequency at which the harmonics match or approximate the first natural frequency, specifically the first frequency. If the frequency is 1 / N times the natural frequency (where N is an integer, for example 3, the same applies below), it vibrates largely in the left-right direction, and the frequency 1 / M times the second natural frequency (but M is an integer, and for example, if it is 3 or less, it vibrates largely in the vertical direction. The vibration in the left-right direction will be described in more detail later with reference to FIG.
 次に、振動体20の振動動作を安定させる方法について説明する。弾性支持部40のような折り曲げ構造の板ばねは、前述したように、折り目と直交する方向には弾性変形し易いが、折り目に沿った方向には変形し難いという特徴を有する。そのため、本実施例では、このような折り曲げ構造の板ばねの特徴を利用して、弾性支持部40の前後方向に沿った変形を抑制している。そして、それによって、振動体20が前後方向に沿った移動を抑制し、振動体20の左右方向及び上下方向に沿った振動動作を安定させている。 Next, a method of stabilizing the vibration operation of the vibration body 20 will be described. As described above, the leaf spring having the bending structure such as the elastic support portion 40 is characterized in that it is easily elastically deformed in the direction orthogonal to the fold, but is not easily deformed in the direction along the fold. Therefore, in the present embodiment, the deformation of the elastic support portion 40 in the front-rear direction is suppressed by utilizing the characteristics of the leaf spring having such a bending structure. And thereby, the vibration body 20 suppresses the movement along the front-back direction, and the vibration operation along the left-right direction and the up-down direction of the vibration body 20 is stabilized.
 また、このような折り曲げ構造の板ばねでは、平坦部42の幅寸法が平坦部42の長さ寸法よりも大きい程、折り目に沿った方向に変形し難くなる。本実施例では、このような折り曲げ構造の板ばねの特徴を利用して、平坦部42の幅寸法が平坦部42の長さ寸法よりも大きくなるように、弾性支持部40を形成し、それによって、弾性支持部40の前後方向に沿った変形を抑制し易くしている。 Further, in the leaf spring having such a bending structure, as the width dimension of the flat portion 42 is larger than the length dimension of the flat portion 42, deformation in the direction along the fold becomes more difficult. In this embodiment, the elastic supporting portion 40 is formed so that the width dimension of the flat portion 42 is larger than the length dimension of the flat portion 42 by utilizing the feature of the leaf spring having such a bending structure. Thus, the deformation of the elastic support portion 40 in the front-rear direction can be easily suppressed.
 前述したように、本実施例の振動発生装置1では、弾性支持部40は、折り目が左右方向及び上下方向(第1の方向)と直交する前後方向(第3の方向)に沿うように折り曲げられた複数の折り曲げ部41と、複数の折り曲げ部41のうちの1つから他の1つに向かって延出する略長方形の2つの平坦部42とが形成された板ばねである。このような折り曲げ構造の板ばねは、折り目と直交する方向には弾性変形し易いが、折り目に沿った方向には変形し難いという特徴を有する。そのため、弾性支持部40を左右方向及び上下方向に弾性変形し易くし、且つ、弾性支持部40の前後方向に沿った変形を抑制することができる。その結果、電磁石60と永久磁石70との間の磁力によって振動体20に前後方向に沿った力が加わっても、振動体20の前後方向に沿った移動を抑制することができ、振動体20の左右方向及び上下方向に沿った振動動作を安定させることができる。 As described above, in the vibration generating device 1 of the present embodiment, the elastic support portion 40 is bent so that the fold line extends along the front-rear direction (third direction) orthogonal to the left-right direction and the vertical direction (first direction). It is a leaf spring in which a plurality of bent portions 41 and two substantially rectangular flat portions 42 extending from one of the plurality of bent portions 41 to the other are formed. The leaf spring having such a bending structure is characterized in that it is easily elastically deformed in the direction orthogonal to the fold, but is not easily deformed in the direction along the fold. Therefore, the elastic support portion 40 can be easily elastically deformed in the lateral direction and the vertical direction, and the deformation of the elastic support portion 40 in the front-rear direction can be suppressed. As a result, even if a force along the back and forth direction is applied to the vibrating body 20 by the magnetic force between the electromagnet 60 and the permanent magnet 70, the movement of the vibrating body 20 along the back and forth direction can be suppressed. The vibration operation along the left and right direction and the up and down direction can be stabilized.
 また、本実施例の振動発生装置1では、磁気駆動部50が、第1の弾性係数及び振動体20の質量に対応した第1の固有振動数で振動体20を駆動することによって、振動体20を左右方向に振動し易くし、上下方向に振動し難くすることができる。また、磁気駆動部50が、第2の弾性係数及び振動体20の質量に対応した第2の固有振動数で振動体20を駆動することによって、振動体20を上下方向に振動し易くし、左右方向に振動し難くすることができる。その結果、振動体20の振動動作を安定させつつ、振動体20の左右方向及び上下方向に所望の振動動作を実現することができる。 Further, in the vibration generating device 1 of the present embodiment, the magnetic drive unit 50 drives the vibrating body 20 at the first natural frequency corresponding to the first elastic coefficient and the mass of the vibrating body 20, thereby the vibrating body 20 can be made easy to vibrate in the left-right direction, and can be made difficult to vibrate in the vertical direction. Further, the magnetic drive unit 50 drives the vibrating body 20 at the second natural frequency corresponding to the second elastic coefficient and the mass of the vibrating body 20, thereby making the vibrating body 20 easily vibrated in the vertical direction, Vibration in the lateral direction can be made difficult. As a result, it is possible to realize a desired vibration operation in the lateral direction and the vertical direction of the vibration body 20 while stabilizing the vibration operation of the vibration body 20.
 次に、振動体20の左右方向の振動について更に詳しく説明する。 Next, the vibration in the left-right direction of the vibrating body 20 will be described in more detail.
 図9は、振動体20の左右方向の振動の説明図である。図9は、前後方向に振動体20及び弾性支持部40を視た図である。図9には、弾性支持部40の力点中心C1と、振動体20の重心G1とが示される。 FIG. 9 is an explanatory view of the vibration in the left and right direction of the vibrating body 20. As shown in FIG. FIG. 9 is a view of the vibrating body 20 and the elastic support portion 40 in the front-rear direction. In FIG. 9, a force point center C1 of the elastic support portion 40 and a center of gravity G1 of the vibrating body 20 are shown.
 本実施例では、図9に示すように、弾性支持部40の力点中心C1は、振動体20の重心G1と同一のXZ平面(上下方向と左右方向で形成される平面)上であり、かつ、振動体20の重心(質量中心)G1よりも上側に位置する。これにより、図9にて円弧状の矢印R1で示すように、振動体20は、非直線の方向R1(第2の方向の一例)に振動する固有振動(第2の固有振動の一例)を有する。非直線の方向R1は、上下方向と同一平面上の方向である。例えば、非直線の方向R1は、図9に示すように、上下方向を半径方向とする円弧状の方向である。従って、非直線の方向R1の固有振動は、左右方向の成分のみならず、上下方向の成分をも有する。この結果、本実施例によれば、振動体20の左右方向の振動に伴って、上下方向の振動をも起こさせることができる。即ち、振動体20の重心G1と弾性支持部40の力点中心C1を上下にずらすことで、振動体20の左右方向の振動に伴って、上下方向の振動をも起こさせることができる。 In the present embodiment, as shown in FIG. 9, the force point center C1 of the elastic support portion 40 is on the same XZ plane (the plane formed by the vertical direction and the horizontal direction) as the gravity center G1 of the vibrating body 20 and , Located above the center of gravity (center of mass) G1 of the vibrating body 20. Thus, as shown by the arc-shaped arrow R1 in FIG. 9, the vibrating body 20 vibrates in the non-linear direction R1 (an example of the second direction) as the natural vibration (an example of the second natural vibration). Have. The non-linear direction R1 is a direction on the same plane as the vertical direction. For example, as shown in FIG. 9, the non-linear direction R1 is an arc-shaped direction whose radial direction is the vertical direction. Therefore, the natural vibration in the non-linear direction R1 has not only the component in the left-right direction but also the component in the vertical direction. As a result, according to the present embodiment, along with the horizontal vibration of the vibrating body 20, vertical vibration can also be caused. That is, by shifting the center of gravity G1 of the vibrating body 20 and the force point center C1 of the elastic support portion 40 up and down, it is possible to cause vertical vibration as well as the horizontal vibration of the vibrating body 20.
 ところで、振動発生装置1の底面を接着などで固定した面(以下、「取付面」と称する)を振動させようとした場合、左右方向に平行な直線的な振動は取付面と平行な向きの振動であるが故に、振動が抑制されてしまう。 By the way, when trying to vibrate the surface (hereinafter referred to as "mounting surface") on which the bottom surface of the vibration generating device 1 is fixed by bonding or the like, linear vibration parallel to the left and right direction is parallel to the mounting surface. Because of the vibration, the vibration is suppressed.
 これに対して、本実施例によれば、上述のように、振動体20は、非直線の方向R1に振動する固有振動を有することができる。従って、振動発生装置1の底面を接着などで固定した面(取付面)を振動させようとした場合でも、第1の固有振動数における上下方向の振動と、第2の固有振動数における振動の上下方向成分による振動と、2種類の振動を上下方向に発生させることができる。この結果、本実施例によれば、幅広い周波数でユーザーに振動を伝えることがが可能である。 On the other hand, according to the present embodiment, as described above, the vibrating body 20 can have the natural vibration that vibrates in the non-linear direction R1. Therefore, even if it is intended to vibrate the surface (attachment surface) on which the bottom surface of the vibration generator 1 is fixed by bonding or the like, the vertical vibration at the first natural frequency and the vibration at the second natural frequency are Vibration due to the vertical component and two types of vibration can be generated in the vertical direction. As a result, according to the present embodiment, it is possible to transmit vibrations to the user over a wide range of frequencies.
 ここで、力点中心C1とは、以下の通り定義できる。力点中心C1とは、概念的には、弾性支持部40が振動体20に作用する各力が常に通る点である。例えば、左側の弾性支持部40が振動体20に与える力をF1とし、振動体20の重心G1から力F1の作用点までの距離をr1とし、右側の弾性支持部40が振動体20に与える力をF2とし、振動体20の重心G1から力F2の作用点までの距離をr2とすると、振動体20に生じるモーメントMは、以下のとおりである。
M=F1×r1+F2×r2
このとき、振動体20の重心G1から力点中心C1までの距離をr3とし、力点中心C1に作用する荷重をF3とすると、以下のとおり表すことができる。
r3=(F1×r1+F2×r2)/F3
ここで、r3>0であれば、力点中心C1が振動体20の重心G1からずれる関係となる。これにより、振動体20の重心G1まわりに偶力が発生し、上述の非直線の方向R1の固有振動を実現できる。
Here, the power point center C1 can be defined as follows. The point of force center C1 is conceptually a point at which each force that the elastic support portion 40 acts on the vibrating body 20 always passes through. For example, the force applied to the vibrating body 20 by the left elastic supporting portion 40 is F1, the distance from the center of gravity G1 of the vibrating body 20 to the point of application of the force F1 is r1, and the right elastic supporting portion 40 applies to the vibrating body 20 Assuming that the force is F2 and the distance from the center of gravity G1 of the vibrating body 20 to the point of application of the force F2 is r2, the moment M generated in the vibrating body 20 is as follows.
M = F1 × r1 + F2 × r2
At this time, assuming that the distance from the center of gravity G1 of the vibrating body 20 to the force point center C1 is r3 and the load acting on the force point center C1 is F3, it can be expressed as follows.
r3 = (F1 × r1 + F2 × r2) / F3
Here, if r3> 0, the power point center C1 is shifted from the center of gravity G1 of the vibrating body 20. As a result, a couple is generated around the center of gravity G1 of the vibrating body 20, and the natural vibration in the non-linear direction R1 described above can be realized.
 尚、本実施例では、図9に示すように、振動体20の重心G1に対して力点中心C1が上側にずれているが、図10に示すように、逆であってもよい。即ち、図10に示す例では、弾性支持部40Aは、力点中心C1が振動体20の重心G1に対して下側にずれるように構成される。この場合、図10にて円弧状の矢印R2で示すように、振動体20は、非直線の方向R2(第2の方向の一例)に振動できる。 In the present embodiment, as shown in FIG. 9, the center of force point C1 is shifted upward with respect to the center of gravity G1 of the vibrating body 20, but may be reversed as shown in FIG. That is, in the example shown in FIG. 10, the elastic support portion 40A is configured such that the force point center C1 is shifted downward with respect to the center of gravity G1 of the vibrating body 20. In this case, as shown by an arc-shaped arrow R2 in FIG. 10, the vibrating body 20 can vibrate in the non-linear direction R2 (an example of the second direction).
 以上、各実施例について詳述したが、特定の実施例に限定されるものではなく、特許請求の範囲に記載された範囲内において、種々の変形及び変更が可能である。また、前述した実施例の構成要素を全部又は複数を組み合わせることも可能である。 As mentioned above, although each Example was explained in full detail, it is not limited to a specific example, A various deformation | transformation and change are possible within the range described in the claim. In addition, it is also possible to combine all or a plurality of the components of the above-described embodiment.
 例えば、上述した実施例において、平坦部42の外周部を避けた位置には、略長方形の開口部(図示せず)が形成されてもよい。平坦部42の外周部は、弾性支持部40の折り目に沿った方向への変形し難さに大きく影響するが、平坦部42の外周部を避けた部分(中央部寄りの部分)の影響は、平坦部42の外周部の影響と比較して小さい。一方、平坦部42の外周部を避けた部分に開口部を形成することによって、平坦部42の折り目と直交する方向(左右方向及び上下方向)に対する機械強度を低下させ、弾性支持部40を折り目と直交する方向に弾性変形し易くすることができる。かかる変形例では、このような折り曲げ構造の板ばねの特徴を利用して、平坦部42の外周部を避けた位置に開口部を形成し、それによって、弾性支持部40が前後方向に変形し易くなるのを抑制しつつ、左右方向かつ上下方向に弾性変形し易くすることができる。そして、開口部の寸法を調節することによって、弾性支持部40の左右方向及び上下方向に沿った弾性変形し易さが調節可能となる。 For example, in the embodiment described above, a substantially rectangular opening (not shown) may be formed at a position away from the outer peripheral portion of the flat portion 42. The outer peripheral portion of the flat portion 42 greatly affects the deformation resistance in the direction along the fold of the elastic support portion 40, but the influence of the portion (the portion closer to the central portion) avoiding the outer peripheral portion of the flat portion 42 , Small compared to the influence of the outer peripheral portion of the flat portion 42. On the other hand, by forming an opening in a portion other than the outer peripheral portion of the flat portion 42, the mechanical strength in the direction (left and right direction and vertical direction) orthogonal to the fold of the flat portion 42 is reduced to fold the elastic support portion 40 It can be easily elastically deformed in the direction orthogonal to In such a modification, an opening is formed at a position away from the outer periphery of the flat portion 42 by utilizing the feature of the leaf spring having such a bending structure, whereby the elastic support 40 is deformed in the front-rear direction. It can be made easy to elastically deform in the left-right direction and the up-down direction, suppressing becoming easy. Then, by adjusting the size of the opening, the ease of elastic deformation of the elastic support portion 40 in the left-right direction and the up-down direction can be adjusted.
 本特許出願は2017年7月27日に出願した日本国特許出願第2017-145777号に基づきその優先権を主張するものであり、日本国特許出願第2017-145777号の全内容を本願に援用する。 This patent application claims the priority based on Japanese Patent Application No. 201-145777 filed on July 27, 2017, and the entire content of Japanese Patent Application No. 201-145777 is incorporated herein by reference. Do.
1 振動発生装置
10 筐体
11 本体部
11a 収容部
12 蓋部
20 振動体
21 錘部
30 保持部
40 弾性支持部
40A 弾性支持部
41 折り曲げ部
42 平坦部
43 取り付け部
43a 被固定部
50 磁気駆動部
60 電磁石
61 磁心
62a 絶縁シート
62b 絶縁シート
63 コイル
70 永久磁石
71 磁化面
72 分割ライン
73 磁化領域
73a 第1磁化領域
73b 第2磁化領域
80 配線用の部材
DESCRIPTION OF SYMBOLS 1 Vibration generating device 10 Case 11 Body 11a Housing 12 Lid 20 Vibration body 21 Weight 30 Holding portion 40 Elastic support 40A Elastic support 41 Bending 42 Flat 43 Mounting part 43a Fixed part 50 Magnetic drive part 60 electromagnet 61 magnetic core 62a insulation sheet 62b insulation sheet 63 coil 70 permanent magnet 71 magnetization surface 72 division line 73 magnetization area 73a first magnetization area 73b second magnetization area 80 member for wiring

Claims (6)

  1.  筐体と、
     前記筐体に収容された振動体と、
     前記振動体を振動可能に支持する弾性支持部と、
     前記振動体側に配設された第1の磁界発生手段と、前記筐体側に配設された第2の磁界発生手段とを有して、前記振動体を磁力を用いて駆動する磁気駆動部と、
    を備える振動発生装置であって、
     前記弾性支持部は、前記振動体が第1の方向に振動する第1の固有振動と、前記振動体が非直線の第2の方向に振動する第2の固有振動を有し、前記第2の方向は、前記第1の方向と交差する方向であるように前記振動体を支持している、振動発生装置。
    And
    A vibrator housed in the housing;
    An elastic support that vibratably supports the vibrator;
    A magnetic drive unit having a first magnetic field generating unit disposed on the vibrator side and a second magnetic field generating unit disposed on the housing side, and driving the vibrator using magnetic force; ,
    A vibration generating device comprising
    The elastic support portion has a first natural vibration in which the vibrator vibrates in a first direction, and a second natural vibration in which the vibrator vibrates in a non-linear second direction. A vibration generating device supporting the vibrator so that the direction of the direction intersects the first direction.
  2.  前記第2の方向は、前記第1の方向を半径方向とする円弧状の方向である、請求項1に記載の振動発生装置。 The vibration generating device according to claim 1, wherein the second direction is an arc-shaped direction whose radial direction is the first direction.
  3.  前記第1の方向と前記第2の方向を含む平面上において前記弾性支持部による力点の中心と前記振動体の重心がずれている、請求項1又は2に記載の振動発生装置。 The vibration generating device according to claim 1 or 2, wherein the center of the force point by the elastic support and the center of gravity of the vibrating body are deviated on a plane including the first direction and the second direction.
  4.  前記弾性支持部は、前記第1の方向と前記第2の方向を含む平面に垂直な第3の方向を長手方向とし、前記第3の方向に沿って曲げられた曲げ部を有する板ばねである、請求項1~3のうちのいずれか1項に記載の振動発生装置。 The elastic support portion is a leaf spring having a third direction perpendicular to a plane including the first direction and the second direction as a longitudinal direction and having a bending portion bent along the third direction. The vibration generator according to any one of claims 1 to 3, wherein
  5.  前記第1の磁界発生手段は、永久磁石であり、
     前記永久磁石は、前記第3の方向に視て前記第1の方向及び前記第2の方向の双方に対して斜めになる境界線を介して異なる極を有する、請求項4に記載の振動発生装置。
    The first magnetic field generating means is a permanent magnet,
    5. The vibration generation according to claim 4, wherein said permanent magnet has different poles through boundaries which are oblique with respect to both said first direction and said second direction when viewed in said third direction. apparatus.
  6.  前記第2の磁界発生手段は、電磁石である、請求項1~5のうちのいずれか1項に記載の振動発生装置。 The vibration generating device according to any one of claims 1 to 5, wherein the second magnetic field generating means is an electromagnet.
PCT/JP2018/027339 2017-07-27 2018-07-20 Vibration generating device WO2019021969A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017145777A JP2020157171A (en) 2017-07-27 2017-07-27 Vibration generator
JP2017-145777 2017-07-27

Publications (1)

Publication Number Publication Date
WO2019021969A1 true WO2019021969A1 (en) 2019-01-31

Family

ID=65040133

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/027339 WO2019021969A1 (en) 2017-07-27 2018-07-20 Vibration generating device

Country Status (2)

Country Link
JP (1) JP2020157171A (en)
WO (1) WO2019021969A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN214281180U (en) * 2020-12-22 2021-09-24 瑞声光电科技(常州)有限公司 Vibration motor
WO2024122281A1 (en) * 2022-12-08 2024-06-13 アルプスアルパイン株式会社 Vibrating body
KR102557860B1 (en) * 2023-02-03 2023-07-21 에이유에스피코리아 주식회사 Haptic actuator

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004297923A (en) * 2003-03-27 2004-10-21 Nippon Signal Co Ltd:The Planar electromagnetic actuator
JP2010082498A (en) * 2008-09-29 2010-04-15 Sanyo Electric Co Ltd Vibration motor and portable terminal device using the same
JP2013056309A (en) * 2011-09-09 2013-03-28 Alps Electric Co Ltd Vibration generator
JP2016096677A (en) * 2014-11-14 2016-05-26 アルプス電気株式会社 Oscillation generating device
JP2017074584A (en) * 2015-10-15 2017-04-20 エーエーシー テクノロジーズ ピーティーイー リミテッドAac Technologies Pte.Ltd. Double resonance vibration motor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004297923A (en) * 2003-03-27 2004-10-21 Nippon Signal Co Ltd:The Planar electromagnetic actuator
JP2010082498A (en) * 2008-09-29 2010-04-15 Sanyo Electric Co Ltd Vibration motor and portable terminal device using the same
JP2013056309A (en) * 2011-09-09 2013-03-28 Alps Electric Co Ltd Vibration generator
JP2016096677A (en) * 2014-11-14 2016-05-26 アルプス電気株式会社 Oscillation generating device
JP2017074584A (en) * 2015-10-15 2017-04-20 エーエーシー テクノロジーズ ピーティーイー リミテッドAac Technologies Pte.Ltd. Double resonance vibration motor

Also Published As

Publication number Publication date
JP2020157171A (en) 2020-10-01

Similar Documents

Publication Publication Date Title
JP6253157B2 (en) Vibration generator
CN110337778B (en) Vibration generating device and electronic apparatus
CN215580857U (en) Haptic actuator
WO2019021969A1 (en) Vibration generating device
JP2019025390A (en) Vibration generation device
CN111316543B (en) Vibration generating device
WO2019098249A1 (en) Vibration generating device
JP6539714B2 (en) Vibration generator
JP6499261B2 (en) Vibration generator
WO2019013085A1 (en) Vibration generating device
JP6526162B2 (en) Vibration generator
WO2019013083A1 (en) Vibration generating device
JP2018029483A (en) Oscillation generating device
JP6815487B2 (en) Electronic device
JP6539715B2 (en) Vibration generator
JP6416364B2 (en) Vibration generator
CN115427160B (en) Vibration generating device
JP2019081158A (en) Vibration generator
KR20190057948A (en) Vibration motor
JP2019009872A (en) Linear vibration motor and electronic apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18837262

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18837262

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP