WO2019021909A1 - 電池外筒缶用鋼板、電池外筒缶および電池 - Google Patents

電池外筒缶用鋼板、電池外筒缶および電池 Download PDF

Info

Publication number
WO2019021909A1
WO2019021909A1 PCT/JP2018/026935 JP2018026935W WO2019021909A1 WO 2019021909 A1 WO2019021909 A1 WO 2019021909A1 JP 2018026935 W JP2018026935 W JP 2018026935W WO 2019021909 A1 WO2019021909 A1 WO 2019021909A1
Authority
WO
WIPO (PCT)
Prior art keywords
less
steel plate
battery
diffusion layer
battery outer
Prior art date
Application number
PCT/JP2018/026935
Other languages
English (en)
French (fr)
Inventor
幹人 須藤
洋一郎 山中
清志 立花
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to KR1020207002376A priority Critical patent/KR102339193B1/ko
Priority to CN201880049187.0A priority patent/CN110945155B/zh
Priority to JP2018553267A priority patent/JP6451919B1/ja
Priority to US16/633,009 priority patent/US11946121B2/en
Publication of WO2019021909A1 publication Critical patent/WO2019021909A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/116Primary casings; Jackets or wrappings characterised by the material
    • H01M50/124Primary casings; Jackets or wrappings characterised by the material having a layered structure
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/004Very low carbon steels, i.e. having a carbon content of less than 0,01%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/08Ferrous alloys, e.g. steel alloys containing nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/26Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C10/00Solid state diffusion of only metal elements or silicon into metallic material surfaces
    • C23C10/28Solid state diffusion of only metal elements or silicon into metallic material surfaces using solids, e.g. powders, pastes
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C10/00Solid state diffusion of only metal elements or silicon into metallic material surfaces
    • C23C10/60After-treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/02Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/02Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material
    • C23C28/021Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material including at least one metal alloy layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/102Primary casings; Jackets or wrappings characterised by their shape or physical structure
    • H01M50/107Primary casings; Jackets or wrappings characterised by their shape or physical structure having curved cross-section, e.g. round or elliptic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/116Primary casings; Jackets or wrappings characterised by the material
    • H01M50/117Inorganic material
    • H01M50/119Metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/116Primary casings; Jackets or wrappings characterised by the material
    • H01M50/124Primary casings; Jackets or wrappings characterised by the material having a layered structure
    • H01M50/126Primary casings; Jackets or wrappings characterised by the material having a layered structure comprising three or more layers
    • H01M50/128Primary casings; Jackets or wrappings characterised by the material having a layered structure comprising three or more layers with two or more layers of only inorganic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/131Primary casings; Jackets or wrappings characterised by physical properties, e.g. gas permeability, size or heat resistance
    • H01M50/133Thickness
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a steel plate for battery outer can, a battery outer can and a battery.
  • a primary battery such as an alkaline manganese battery
  • a secondary battery such as a lithium ion battery mounted on a notebook computer or a hybrid vehicle; etc. are known.
  • Ni plating is applied to the surface of the steel plate constituting the outer can (battery outer can) used for these batteries, and a Ni layer is formed.
  • Patent Document 1 states, “A surface having an inner surface of 0.5 ⁇ m or more and 4 ⁇ m or less on the inner surface of the container by press molding further on the thickness 0.25 ⁇ m or more thereof, having the following Ni layer 4 [mu] m, the surface to be the outer surface of the container attachment amount 0.05 g / m 2 or more, has a 1.5 g / m 2 less than Ni, the A Ni-plated steel plate for a container, characterized in that Ni is diffused inside and the surface Ni / (Fe + Ni) mass ratio is 0.1 or more and 0.9 or less is disclosed (claim 1 ).
  • such a steel plate for battery outer cans Ni plated steel plate for container
  • Ni plating is applied to the outer surface using a method such as barrel plating.
  • Patent No. 4995140 gazette
  • a cemented carbide is often used as a material of a mold (mold) used for press forming of the post plating method
  • a relatively brittle hardened steel may be used.
  • Repeated press forming of the steel plate for battery outer cylinder can (Ni-plated steel plate for container) of Patent Document 1 using the forming die made of hardened steel causes damage to the forming die gradually, resulting in forming May damage the steel sheet for battery outer cans. In this case, since the battery outer can obtained is damaged, it may be inferior in corrosion resistance.
  • the filling amount of the contents is increased and the performance is enhanced by thinning the side wall portion of the battery outer cylindrical can (for example, cylindrical battery outer cylindrical can).
  • the battery outer cylinder can is filled with the contents and the bottom of the can is wound and tightened, a load is applied in the height direction of the battery outer cylinder can.
  • buckling may occur in this side wall portion.
  • buckling can be avoided, but in that case, the above-mentioned scratching at the time of forming tends to occur.
  • the present invention is a steel plate for battery outer cans used in the post-plating method, and the occurrence of scratching is suppressed even when press forming is repeated using a forming die made of hardened steel, and
  • An object of the present invention is to provide a steel sheet for battery outer cans excellent in corrosion resistance and buckling resistance of the obtained battery outer can, and a battery outer can and a battery using the same.
  • the present invention provides the following [1] to [10].
  • An Fe-Ni diffusion layer is provided on the surface layer on both sides of the steel plate, the Nb content of the steel plate is 0.010 mass% or more and 0.050 mass% or less, and the Fe-Ni diffusion layer is adhesion amount of Ni in terms of per side of the steel sheet, 50 mg / m 2 or more 500 mg / m 2 or less, the steel sheet for a battery outer cylindrical can.
  • the Ni ratio is the ratio of the Ni amount to the total of the Fe amount and the Ni amount on the outermost surface of the Fe-Ni diffusion layer, and the unit of the Fe amount and the Ni amount is atomic%. .
  • the steel plate for battery outer can according to the above [1] or [2], wherein the thickness of the Fe-Ni diffusion layer is 0.010 ⁇ m or more and less than 0.500 ⁇ m.
  • the above steel sheet is, by mass%, C: 0.010% or less, Si: 0.02% or less, Mn: 0.60% or less, P: 0.020% or less, S: 0.020% or less , Ni: not more than 0.05%, N: not more than 0.0050%, Nb: not less than 0.010% to not more than 0.050%, Cr: not more than 1.0%, and the balance is composed of Fe and unavoidable impurities
  • the steel plate for battery outer according to any one of the above [1] to [3], which has [5]
  • a battery has a Fe-Ni diffusion layer on the surface layer of the inner and outer surfaces of the outer can, and a Ni layer is further provided on the Fe-Ni diffusion layer on the outer surface of the steel plate,
  • the Nb content of the steel plate is 0.010% by mass or more and 0.050% by mass or less, and a part of the Fe-Ni diffusion layer on the outer surface side of the steel plate is the adhesion amount in Ni conversion per one side of the steel
  • the battery can according to the above [5], wherein the Ni ratio in the outermost surface of the Fe-Ni diffusion layer A is 1.0% or more and less than 20.0%. However, the Ni ratio is the ratio of the Ni amount to the total of the Fe amount and the Ni amount on the outermost surface of the Fe-Ni diffusion layer, and the unit of the Fe amount and the Ni amount is atomic%. .
  • the battery can according to the above [5] or [6], wherein the thickness of the Fe-Ni diffusion layer A is 0.010 ⁇ m or more and less than 0.500 ⁇ m.
  • the battery case according to any one of the above [5] to [7], wherein the thickness of the Ni layer is 1 ⁇ m or more.
  • the above steel sheet is, by mass%, C: 0.010% or less, Si: 0.02% or less, Mn: 0.60% or less, P: 0.020% or less, S: 0.020% or less , Ni: not more than 0.05%, N: not more than 0.0050%, Nb: not less than 0.010% to not more than 0.050%, Cr: not more than 1.0%, and the balance is composed of Fe and unavoidable impurities
  • the battery outer can according to any one of the above [5] to [8].
  • a battery comprising: the battery outer cylindrical can according to any one of the above [5] to [9]; an electrolytic solution disposed inside the battery outer cylindrical can; an electrode; and a separator.
  • the steel sheet for battery outer cans used in the post-plating method and even when the press forming is repeated using the forming die made of hardened steel, the occurrence of damage is suppressed, and
  • the steel plate for battery outer cans which is excellent in corrosion resistance and buckling resistance of the obtained battery outer can, and the battery outer can and battery using the same can be provided.
  • the steel plate for battery outer cylindrical can according to the present invention (hereinafter, also simply referred to as “steel plate for can according to the present invention”) has an Fe-Ni diffusion layer on the surface layer on both sides of the steel plate. .010 or less mass% to 0.050 mass%, the Fe-Ni diffusion layer, the amount of deposition of Ni in terms of per side of the steel plate (hereinafter, also referred to as "Ni deposition amount”) is, 50 mg / m 2 It is a steel plate for battery outer cans which is 500 mg / m 2 or less.
  • the steel plate for cans of the present invention is a steel plate for battery outer cans used in the post plating method, and generation of scratches is suppressed even when press forming is repeated using a forming die made of hardened steel. Also, the corrosion resistance and buckling resistance of the battery outer can obtained are excellent. The reason is presumed as follows.
  • the steel plate for battery outer can used in the post-plating method described in Patent Document 1 has “an Fe—Ni diffusion layer with a thickness of 0.5 ⁇ m or more on the surface that becomes the inner surface of the container by press molding”.
  • the amount of Ni attached to this Fe—Ni diffusion layer is, as converted, at least 4500 mg / m 2 .
  • Such a steel sheet for battery outer cans of Patent Document 1 becomes hard because the amount of Ni attached to the Fe-Ni diffusion layer is too large, and a process of repeatedly pressing a forming die made of a relatively brittle hardened steel So, I will be hurt gradually. Then, since the scratched mold is used, the steel plate for battery outer cans to be molded is scratched.
  • the Fe—Ni diffusion layer of the steel sheet for cans according to the present invention has a Ni deposition amount as small as 500 mg / m 2 or less, and is soft enough not to damage the mold made of hardened steel. For this reason, generation
  • the steel sheet for cans according to the present invention has a suitably large amount of Ni attached to the Fe-Ni diffusion layer of 50 mg / m 2 or more, so the corrosion resistance when used as a battery outer can (hereinafter simply referred to as “corrosion resistance”) Is good. More specifically, since the Fe-Ni diffusion layer is electrochemically stable on the inner surface of the battery outer can, the contents can be compared to the case where the Fe-Ni diffusion layer is absent or too small. Corrosion resistance is improved.
  • Ni plating is applied by barrel plating or the like after molding to form a Ni layer.
  • this Ni layer some pinholes are present, from which corrosion progresses.
  • the potential difference between the Ni layer and the underlayer can be reduced as compared with the case where the Fe-Ni diffusion layer is absent or too small, and corrosion resistance Improve.
  • the present invention a steel plate having a specific composition is used. More specifically, the Nb content of the steel plate is set to 0.010% by mass or more and 0.050% by mass or less.
  • the steel plate for cans of the present invention is hardened to the lower limit region where no buckling occurs, and the buckling resistance when the battery outer cylinder can is formed (hereinafter, also simply referred to as "buckling resistance”) Good scratch resistance is also obtained.
  • a steel plate for cans of the present invention a steel plate having an Nb content of 0.010% by mass or more and 0.050% by mass or less is used. If the Nb content of the steel plate is within the above range, as described above, both the scratch resistance and the buckling resistance are excellent.
  • the Nb content of the steel plate is preferably 0.020% by mass or more and less than 0.040% by mass because the buckling resistance is more excellent.
  • an extremely low carbon steel (C: 0.010% by mass or less) to which Nb of 0.010% by mass or more and 0.050% by mass or less is added is exemplified. Is, by mass%, C: 0.010% or less, Si: 0.02% or less, Mn: 0.60% or less, P: 0.020% or less, S: 0.020% or less, Ni: 0.
  • the larger the amount of C solid-solved in the steel the larger the yield elongation, which tends to cause age hardening, stretcher strain during processing, and the like.
  • C content of a steel plate 0.010 mass% or less is preferable.
  • the Si content of the steel plate is preferably 0.02 mass% or less.
  • Mn may excessively harden the steel sheet, the Mn content of the steel sheet is preferably 0.60% by mass or less.
  • P is added in a large amount, it may cause hardening of the steel, deterioration of corrosion resistance, etc.
  • the P content of the steel plate is preferably 0.020 mass% or less.
  • S combines with Mn in steel to form MnS, and the precipitation of a large amount of MnS may lower the hot ductility of the steel.
  • S content of a steel plate 0.020 mass% or less is preferable.
  • Ni is an element that improves the corrosion resistance of the steel, but since it is a rare element, containing it in the entire steel leads to an increase in alloy cost. Therefore, the Ni content of the steel sheet is preferably 0.05% by mass or less.
  • the steel hardens as the amount of N increases. However, considering the inevitable mixing of N, the variation in hardness of the steel sheet becomes large.
  • the N content of the steel sheet is preferably 0.0050% by mass or less, which hardly affects the hardening.
  • the Nb content is as described above.
  • Cr is an element that improves the corrosion resistance of the steel, but on the other hand hardens the steel to lower the formability or forms Cr oxide on the surface of the steel sheet at the time of annealing, failing to obtain a desired surface state There is a risk of For this reason, 1.0 mass% or less of Cr content of a steel plate is preferable.
  • the manufacturing method of the steel plate is not particularly limited. For example, it is manufactured through a process such as hot rolling, pickling, cold rolling, annealing, temper rolling, etc. from a normal billet manufacturing process.
  • Ni plating is applied to the non-annealed steel plate after cold rolling, and Ni plating is diffused inside the steel plate together with annealing treatment of the steel plate. Above, the most efficient. For this reason, as a steel plate used for formation of a Fe-Ni diffused layer, the steel plate of the unannealed after cold rolling is preferable.
  • the steel sheet for cans of the present invention has an Fe—Ni diffusion layer on the surface layer on both sides of the steel sheet.
  • Ni adhesion amount in Ni conversion per one side of the steel plate is 50 mg / m 2 or more and 500 mg / m 2 or less.
  • the steel plate for cans of this invention is excellent in both flaw resistance and corrosion resistance.
  • Ni deposition amount of Fe-Ni diffusion layer is preferably 350 mg / m 2 or less, 300 mg / m 2 or less is more preferable.
  • the amount of Ni attached to the Fe-Ni diffusion layer can be measured by surface analysis by fluorescent X-ray analysis.
  • a calibration curve relating to the Ni deposition amount is specified in advance using a Ni deposition sample of which the Ni deposition amount is known, and the Ni deposition amount is quantified using the calibration curve.
  • the fluorescent X-ray analysis is performed, for example, under the following conditions.
  • ⁇ Device Rigaku fluorescent X-ray analyzer System 3270 ⁇ Measurement diameter: 30 mm ⁇ Measurement atmosphere: Vacuum ⁇ Spectrum: Ni-K ⁇ ⁇ Slit: COARSE Spectroscopic crystal: TAP
  • the peak count number of Ni—K ⁇ in the fluorescent X-ray analysis of the Fe—Ni diffusion layer measured under the above conditions is used.
  • a calibration curve regarding the adhesion amount of Ni is specified in advance, and the adhesion amount of Ni is determined using the calibration curve.
  • the thickness of the Fe-Ni diffusion layer is 0.010 ⁇ m or more and 0 or more, because it is easy to maintain the Fe-Ni diffusion layer even after forming, and is more excellent in scratch resistance and corrosion resistance. Less than 500 ⁇ m is preferable, and 0.400 ⁇ m or less is more preferable, and 0.380 ⁇ m or less is more preferable because the scratch resistance is further excellent.
  • the thickness of the Fe-Ni diffusion layer can be measured by GDS (glow discharge emission analysis). Specifically, first, sputtering is performed from the surface of the Fe—Ni diffusion layer toward the inside of the steel plate, and analysis in the depth direction is performed to determine the sputtering time at which the strength of Ni becomes 1/10 of the maximum value. Next, pure iron is used to determine the relationship between sputtering depth by GDS and sputtering time. Using this relationship, the sputtering depth is calculated in terms of pure iron from the sputtering time at which the strength of Ni previously obtained is 1/10 of the maximum value, and the calculated value is taken as the thickness of the Fe—Ni diffusion layer. GDS was carried out under the following conditions.
  • Ni ratio (hereinafter, also simply referred to as “Ni ratio”) on the outermost surface of the Fe—Ni diffusion layer is 1.0% or more because of better scratch resistance and corrosion resistance. Less than 0% is preferred.
  • the Ni ratio of the outermost surface of the Fe-Ni diffusion layer is important because Ni on the outermost surface of the Fe-Ni diffusion layer has a direct effect on the corrosion resistance, but Ni diffused in the steel has a small effect of improving the corrosion resistance. .
  • the preferable range of the Ni ratio is 1.0% or more and less than 20.0% described above.
  • the Ni ratio is more preferably 3.0% or more because the scratch resistance is further excellent. For the same reason, the Ni ratio is more preferably 15.0% or more, and still more preferably 13.0% or more.
  • the Ni ratio (unit:%) at the outermost surface of the Fe-Ni diffusion layer is the ratio of the amount of Ni to the sum of the amount of Fe and the amount of Ni at the outermost surface of the Fe-Ni diffusion layer. (Fe amount + Ni amount) ⁇ 100 ”.
  • the unit of the amount of Fe and the amount of Ni is atomic%.
  • the amount of Fe (unit: atomic%) and the amount of Ni (unit: atomic%) on the outermost surface of the Fe-Ni diffusion layer were determined after ultrasonic cleaning of the steel sheet on which the Fe-Ni diffusion layer was formed in acetone for 10 minutes This can be measured by performing Auger electron spectroscopy measurement without sputtering.
  • Auger electron spectroscopy measurement measurement is performed at 10 locations in different fields of view in the same sample, and the amounts of Fe and Ni are the average of the results of 10 measurements. Auger electron spectroscopy measurement was performed under the following conditions.
  • ⁇ Device PHI 660 manufactured by ULVAC-PHI ⁇ Observation and analysis conditions: acceleration voltage 10.0kV, current value 0.5 ⁇ A Observation magnification 1,000 times, measurement range 540 to 900 eV
  • the method of forming the Fe—Ni diffusion layer on the surface layer on both sides of the steel plate is not particularly limited, but the following method may be mentioned as an example.
  • pre-treatment defatting, pickling, etc.
  • conditions such as current density are appropriately adjusted using a Ni plating bath.
  • Ni plating examples include a watt bath, a sulfamic acid bath, a borofluoride bath and a chloride bath.
  • the adhesion amount of Ni plating is 50 mg / m 2 or more and 500 mg / m 2 or less per one side of the steel plate.
  • the amount of Ni attached to the formed Fe—Ni diffusion layer can be 50 mg / m 2 or more and 500 mg / m 2 or less.
  • annealing for the purpose of recrystallization treatment of the steel plate is performed on the Ni-plated steel plate.
  • Ni plating diffuses into the inside of the steel plate to form an Fe—Ni diffusion layer.
  • the soaking temperature is preferably 600 ° C. to 800 ° C.
  • the holding time at the soaking temperature is preferably 10 seconds to 60 seconds. The shorter the holding time at the soaking temperature, the more difficult it is for Ni to diffuse in the steel and the larger the Ni ratio on the outermost surface. From the viewpoint of corrosion resistance, the holding time at the soaking temperature is more preferably less than 30 seconds .
  • the thickness of the formed Fe-Ni diffusion layer is 0.010 ⁇ m or more and less than 0.500 ⁇ m, and the Ni ratio in the outermost surface is 1.0% or more and less than 20.0%. It is preferable because it can be done.
  • shape correction, surface roughness adjustment and the like may be performed by temper rolling, if necessary.
  • the manufacturing method of the present invention includes, for example, a step of forming the steel sheet for cans of the present invention into a battery outer cylindrical can shape (for example, a cylindrical shape) by press molding using a molding die, and thereafter forming the battery outer cylindrical can shape. And Ni forming a Ni layer on the outer surface of the formed steel sheet for cans according to the present invention.
  • the method of molding is not particularly limited, and general methods used for molding battery outer cans may be mentioned.
  • the steel sheet for cans of the present invention is punched into a circular shape, drawn into a cup shape, and formed into a cylindrical shape or the like by a drawing and re-drawing and DI (drawing and ironing) process.
  • a cemented carbide is often used as the material of the mold used, but a relatively brittle hardened steel may be used.
  • the Fe-Ni diffusion layer of the steel plate for cans according to the present invention is considered not to damage the mold made of hardened steel, so the generation of scratches on the steel plate for battery outer cans formed is suppressed Ru.
  • the Ni adhesion amount, thickness and Ni ratio of the press-formed Fe—Ni diffusion layer can be changed without maintaining the state before press-forming.
  • at least a part of the part on the outer surface side of the battery outer cylindrical can (for example, the part to be the end surface of the protrusion on the plus side of the battery outer cylindrical can) is not press-formed It is processed as it is. Therefore, at least a part of the outer surface side of the battery outer can (the battery outer can of the present invention) obtained by using the steel sheet for can of the present invention is the Fe-Ni diffusion in the steel sheet for can according to the present invention before press forming.
  • the Ni loading, thickness and Ni ratio of the layer are maintained as they are.
  • Ni plating after forming into a battery outer cylinder can shape The method of applying Ni plating is not particularly limited, and conventionally known methods can be used.
  • Ni plating is applied to the steel sheet for cans of the present invention, which is formed into a battery outer cylindrical can shape, by using a Ni plating bath, adjusting the conditions such as current density as appropriate, and by barrel plating.
  • the Ni plating bath include a watt bath, a sulfamic acid bath, a borofluoride bath and a chloride bath.
  • Ni plating is applied on at least the outer surface side of the Fe—Ni diffusion layer of the steel sheet for cans of the present invention, which is formed into a battery outer cylindrical can shape, to form a Ni layer.
  • Ni plating hardly penetrates inside thereof, and Ni is formed on the inner surface of the steel plate for cans of the present invention.
  • Plating is difficult to apply.
  • Ni plating may be applied to the inner surface of the steel plate for cans of the present invention in the form of a battery outer cylinder as well as the outer surface to form a Ni layer.
  • the thickness of the Ni plating (Ni layer) formed on the Fe-Ni diffusion layer is preferably 1 ⁇ m or more, and more preferably 2 ⁇ m or more from the viewpoint of corrosion resistance.
  • the upper limit of the thickness of the Ni layer is not particularly limited, for example, from the viewpoint of economy, the thickness of the Ni layer is preferably 7 ⁇ m or less.
  • the battery outer can of the present invention is a battery outer can obtained using the steel sheet for cans of the present invention. More specifically, the battery outer cylinder can of the present invention is a battery outer cylinder can having a Ni layer on the outer surface of the steel plate for cans of the present invention press-formed into a battery outer cylinder can shape. That is, the battery outer can of the present invention has an Fe-Ni diffusion layer on the surface layer of the inner and outer surfaces of the battery outer can-shaped steel plate, and further on the Fe-Ni diffusion layer on the outer surface side of the steel plate.
  • a Ni layer, the Nb content of the steel plate is 0.010% by mass or more and 0.050% by mass or less, and a part of the Fe-Ni diffusion layer on the outer surface side of the steel plate is It is a battery outer cylindrical can, which is an Fe—Ni diffusion layer A having an adhesion amount of Ni conversion of 50 mg / m 2 or more and 500 mg / m 2 or less per one side.
  • a steel plate is formed into a battery outer cylinder can shape by press molding, and the surface layer on both sides (inner surface and outer surface) of this steel plate is the same as the steel plate for cans of the present invention
  • An Fe-Ni diffusion layer is formed.
  • Ni plating is applied on the Fe—Ni diffusion layer on at least the outer surface side of the steel plate to form a Ni layer.
  • At least a part of the Fe-Ni diffusion layer on the outer surface side of the battery outer can of the present invention is the Fe-Ni diffusion layer (Ni adhesion amount in the steel plate for can of the present invention before press forming). : 50 mg / m 2 or more and 500 mg / m 2 or less) is maintained as it is.
  • the Fe-Ni diffusion layer on the outer surface side of the battery outer can-shaped steel plate is the Fe-Ni diffusion layer A having a Ni adhesion amount of 50 mg / m 2 or more and 500 mg / m 2 or less.
  • the preferable range of the Ni adhesion amount, thickness and Ni ratio of the Fe-Ni diffusion layer A in the battery outer can of the present invention is the Ni adhesion amount, thickness and Ni of the Fe-Ni diffusion layer in the steel plate for can of the present invention It is similar to the ratio.
  • the thickness of the Ni layer on the Fe—Ni diffusion layer is as described above, preferably 1 ⁇ m or more, and more preferably 2 ⁇ m or more.
  • the upper limit is not particularly limited, but is preferably 7 ⁇ m or less.
  • the battery of the present invention is a battery comprising the battery outer can of the present invention, an electrolytic solution disposed inside the battery outer can of the present invention, an electrode and a separator. That is, in the battery of the present invention, at least the electrolyte, the electrode, and the separator, which are components necessary for the battery, are filled inside the battery outer cylinder can of the present invention. It may be filled.
  • the battery of the present invention is excellent in corrosion resistance since it uses the battery outer can of the present invention.
  • the steel plate after the pretreatment was subjected to Ni plating using a watt bath. At this time, conditions such as the current density were appropriately adjusted so as to obtain the amount of attached Ni (unit: mg / m 2 ) described in Table 1 below.
  • a Ni-plated steel plate was introduced into a continuous annealing line to anneal the steel plate, and Ni was diffused inside the steel plate to form Fe—Ni diffusion layers on the surface layer on both sides of the steel plate.
  • the annealing conditions soaking temperature and holding time
  • the thickness (unit: ⁇ m) and the Ni ratio (unit:%) of the Fe-Ni diffusion layer are as shown in Table 1 below. It was made to become the numerical value described in.
  • temper rolling is performed to obtain test material No. 1 to 30 steel plates for battery outer cans were obtained.
  • Ni plating is applied by barrel plating on at least the outer surface of the battery outer can steel plate formed into the battery outer can shape to form a Ni layer having a thickness of 4 ⁇ m. Thus, a battery case was obtained.
  • Buckling resistance The contents were filled in the obtained cylindrical battery outer cylindrical can, and the bottom of the can was wound and tightened. At this time, it was confirmed whether or not buckling occurred in the battery case.
  • test material No. 1 in which the amount of Ni attached to the Fe—Ni diffusion layer exceeds 500 mg / m 2 . 10 to 11 and 22 to 23 were inferior in scratch resistance.
  • No. 29 was inferior in buckling resistance.
  • No. 30 had good buckling resistance but poor scratch resistance.
  • the Nb content of the steel plate is 0.010 mass% or more and 0.050 mass% or less
  • the Ni adhesion amount of the Fe-Ni diffusion layer is 50 mg / m 2 or more and 500 mg / m 2 or less
  • Test material No. 1 to 9, 13 to 21 and 25 to 28 were all excellent in corrosion resistance, scratch resistance and buckling resistance.
  • test material No. 1 in which the Ni ratio in the outermost surface of the Fe-Ni diffusion layer is 1.0% or more and less than 20.0%.
  • Test materials No. 1 to 9 and 13 to 21 and 26 to 27 each have a Ni ratio of 20.0% or more. Scratch resistance was better than 25 and 28.
  • Test material No. The test materials No. 1 to 9 are compared. Test material No. 5 having a lower Ni ratio than 5 to 7 The scratch resistance was further better in the cases of 1 to 4 and 8 to 9. Similarly, test material No. Test materials No. 13 to 21 are compared. Test material No. 1 having a lower Ni ratio than 17 to 19 In the cases of 13 to 16 and 20 to 21, the scratch resistance was further better.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Electroplating Methods And Accessories (AREA)
  • Sealing Battery Cases Or Jackets (AREA)

Abstract

後めっき法に用いる電池外筒缶用鋼板であって、焼入れ鋼で作られた成形型を使用してプレス成形を繰り返し行なう場合にも傷付きの発生が抑制され、かつ、得られる電池外筒缶の耐食性および耐座屈性にも優れる電池外筒缶用鋼板、ならびに、これを用いた電池外筒缶および電池を提供する。上記電池外筒缶用鋼板は、鋼板の両面の表層にFe-Ni拡散層を有し、上記鋼板のNb含有量が、0.010質量%以上0.050質量%以下であり、上記Fe-Ni拡散層は、上記鋼板の片面あたりのNi換算の付着量が、50mg/m2以上500mg/m2以下である。

Description

電池外筒缶用鋼板、電池外筒缶および電池
 本発明は、電池外筒缶用鋼板、電池外筒缶および電池に関する。
 電池として、例えば、アルカリマンガン電池などの一次電池;ノート型パソコンまたはハイブリッド型自動車などに搭載されているリチウムイオン電池などの二次電池;等が知られている。
 これらの電池に使用される外筒缶(電池外筒缶)を構成する鋼板の表面には、耐食性の観点から、Niめっきが付与されて、Ni層が形成されている。
 Niめっきを付与する工程の違いから、電池外筒缶には、2種類の製造方法がある。1つは、Niめっきが付与された鋼板を電池外筒缶にプレス成形して、その後、めっき処理しない先めっき法である。もう1つは、プレス成形後の電池外筒缶の表面に、バレルめっき等の手法を用いて、Niめっきを付与する後めっき法である。
 後めっき法に用いる電池外筒缶用鋼板として、例えば、特許文献1には、「プレス成型により容器内面となる面に厚さ0.5μm以上、4μm以下のFe-Ni拡散層を有し、さらにその上に厚さ0.25μm以上、4μm以下のNi層を有し、容器外面となる面に付着量0.05g/m2以上、1.5g/m2未満のNiを有し、そのNiが内部に拡散しており、表層のNi/(Fe+Ni)質量比が0.1以上、0.9以下であることを特徴とする容器用Niめっき鋼板」が開示されている(請求項1)。
 特許文献1においては、このような電池外筒缶用鋼板(容器用Niめっき鋼板)をプレス成形して電池外筒缶にした後、バレルめっき等の手法を用いて、外面にNiめっきを付与する。
特許第4995140号公報
 後めっき法のプレス成形に使用する成形型(金型)の材料としては、超硬合金が用いられることが多いが、比較的もろい焼入れ鋼が使用される場合もある。
 焼入れ鋼で作られた成形型を使用して、特許文献1の電池外筒缶用鋼板(容器用Niめっき鋼板)のプレス成形を繰り返し行なうと、次第に成形型に傷が付き、その結果、成形される電池外筒缶用鋼板に傷を与えてしまう場合がある。この場合、得られる電池外筒缶は、傷を有するため、耐食性に劣るおそれがある。
 ところで、近年の高性能電池に対する需要の高まりから、電池外筒缶(例えば、円筒状の電池外筒缶)の側壁部を薄肉化することにより、内容物の充填量を増やして高性能化する試みがなされている。電池外筒缶に内容物を充填し、缶底部を巻き締める際に、電池外筒缶の高さ方向に荷重が加わる。このとき、電池外筒缶の側壁部を薄肉化していると、この側壁部において座屈が発生する場合がある。硬質な鋼板を用いることにより、このような座屈は回避し得るが、その場合、上述した成形時の傷付きが発生しやすくなる。
 そこで、本発明は、後めっき法に用いる電池外筒缶用鋼板であって、焼入れ鋼で作られた成形型を使用してプレス成形を繰り返し行なう場合にも傷付きの発生が抑制され、かつ、得られる電池外筒缶の耐食性および耐座屈性にも優れる電池外筒缶用鋼板、ならびに、これを用いた電池外筒缶および電池を提供することを目的とする。
 本発明者らが、鋭意検討した結果、特定の組成を有する鋼板を用い、かつ、この鋼板の両面の表層に特定のFe-Ni拡散層を有する電池外筒缶用鋼板を用いることによって、上記目的が達成されることを見出し、本発明を完成させた。
 すなわち、本発明は、以下の[1]~[10]を提供する。
 [1]鋼板の両面の表層にFe-Ni拡散層を有し、上記鋼板のNb含有量が、0.010質量%以上0.050質量%以下であり、上記Fe-Ni拡散層は、上記鋼板の片面あたりのNi換算の付着量が、50mg/m2以上500mg/m2以下である、電池外筒缶用鋼板。
 [2]上記Fe-Ni拡散層の最表面におけるNi比率が、1.0%以上20.0%未満である、上記[1]に記載の電池外筒缶用鋼板。ただし、上記Ni比率は、上記Fe-Ni拡散層の最表面における、Fe量とNi量との合計に対する上記Ni量の割合であり、上記Fe量および上記Ni量の単位は、原子%である。
 [3]上記Fe-Ni拡散層の厚さが、0.010μm以上0.500μm未満である、上記[1]または[2]に記載の電池外筒缶用鋼板。
 [4]上記鋼板は、質量%で、C:0.010%以下、Si:0.02%以下、Mn:0.60%以下、P:0.020%以下、S:0.020%以下、Ni:0.05%以下、N:0.0050%以下、Nb:0.010%以上0.050%以下、Cr:1.0%以下を含み、残部がFeおよび不可避的不純物からなる組成を有する、上記[1]~[3]のいずれかに記載の電池外筒缶用鋼板。
 [5]電池外筒缶形状の鋼板の内面および外面の表層にFe-Ni拡散層を有し、上記鋼板の外面側の上記Fe-Ni拡散層上に、更に、Ni層を有し、上記鋼板のNb含有量が、0.010質量%以上0.050質量%以下であり、上記鋼板の外面側の上記Fe-Ni拡散層の一部が、上記鋼板の片面あたりのNi換算の付着量が50mg/m2以上500mg/m2以下のFe-Ni拡散層Aである、電池外筒缶。
 [6]上記Fe-Ni拡散層Aの最表面におけるNi比率が、1.0%以上20.0%未満である、上記[5]に記載の電池外筒缶。ただし、上記Ni比率は、上記Fe-Ni拡散層の最表面における、Fe量とNi量との合計に対する上記Ni量の割合であり、上記Fe量および上記Ni量の単位は、原子%である。
 [7]上記Fe-Ni拡散層Aの厚さが、0.010μm以上0.500μm未満である、上記[5]または[6]に記載の電池外筒缶。
 [8]上記Ni層の厚さが、1μm以上である、上記[5]~[7]のいずれかに記載の電池外筒缶。
 [9]上記鋼板は、質量%で、C:0.010%以下、Si:0.02%以下、Mn:0.60%以下、P:0.020%以下、S:0.020%以下、Ni:0.05%以下、N:0.0050%以下、Nb:0.010%以上0.050%以下、Cr:1.0%以下を含み、残部がFeおよび不可避的不純物からなる組成を有する、上記[5]~[8]のいずれかに記載の電池外筒缶。
 [10]上記[5]~[9]のいずれかに記載の電池外筒缶と、上記電池外筒缶の内部に配置された電解液、電極およびセパレータと、を備える電池。
 本発明によれば、後めっき法に用いる電池外筒缶用鋼板であって、焼入れ鋼で作られた成形型を使用してプレス成形を繰り返し行なう場合にも傷付きの発生が抑制され、かつ、得られる電池外筒缶の耐食性および耐座屈性にも優れる電池外筒缶用鋼板、ならびに、これを用いた電池外筒缶および電池を提供できる。
[電池外筒缶用鋼板]
 本発明の電池外筒缶用鋼板(以下、単に「本発明の缶用鋼板」ともいう)は、鋼板の両面の表層にFe-Ni拡散層を有し、上記鋼板のNb含有量が、0.010質量%以上0.050質量%以下であり、上記Fe-Ni拡散層は、上記鋼板の片面あたりのNi換算の付着量(以下、「Ni付着量」ともいう)が、50mg/m2以上500mg/m2以下である、電池外筒缶用鋼板である。
 本発明の缶用鋼板は、後めっき法に用いる電池外筒缶用鋼板であって、焼入れ鋼で作られた成形型を使用してプレス成形を繰り返し行なう場合にも傷付きの発生が抑制され、かつ、得られる電池外筒缶の耐食性および耐座屈性にも優れる。
 その理由は、以下のように推測される。
 まず、特許文献1に記載された、後めっき法に用いる電池外筒缶用鋼板は、「プレス成型により容器内面となる面に厚さ0.5μm以上…のFe-Ni拡散層」を有する。このFe-Ni拡散層のNi付着量は、換算すると、4500mg/m2以上となる。
 このような特許文献1の電池外筒缶用鋼板は、Fe-Ni拡散層のNi付着量が多すぎて硬くなり、比較的もろい焼入れ鋼で作られた成形型を、プレス成形を繰り返し行なう過程で、次第に傷付ける。そして、傷の付いた成形型が使用されるので、成形される電池外筒缶用鋼板に傷を与える。
 しかしながら、本発明の缶用鋼板のFe-Ni拡散層は、そのNi付着量が500mg/m2以下と適度に少なく、焼入れ鋼で作られた成形型を傷付けない程度に軟らかい。このため、成形される電池外筒缶用鋼板の傷発生が抑制される(以下、「耐傷性に優れる」ともいう)。そして、本発明の缶用鋼板は、このように耐傷性に優れるから、得られる電池外筒缶の耐食性も優れる。
 本発明の缶用鋼板のFe-Ni拡散層のNi付着量が少なすぎる場合、得られる電池外筒缶の耐食性に劣ることが懸念される。しかし、本発明の缶用鋼板は、Fe-Ni拡散層のNi付着量が50mg/m2以上と適度に多いため、電池外筒缶にしたときの耐食性(以下、単に「耐食性」ともいう)が良好となる。
 より詳細には、電池外筒缶にしたとき、その内面においては、Fe-Ni拡散層は電気化学的に安定なため、Fe-Ni拡散層が無い場合または少なすぎる場合と比べて、内容物に対する耐食性が向上する。
 一方、外面においては、成形後にバレルめっき等によってNiめっきが付与されてNi層が形成されるが、このNi層には、ピンホールが多少なりとも存在し、ここから腐食が進行する。しかし、Ni層の下地層として適度にFe-Ni拡散層があることで、Ni層と下地層との電位差を、Fe-Ni拡散層が無い場合または少なすぎる場合と比べて、縮小でき、耐食性が向上する。
 ところで、上述したように、電池外筒缶に内容物を充填し、缶底部を巻き締める際に、電池外筒缶の高さ方向に荷重が加わる。このとき、電池外筒缶の側壁部を薄肉化していると、この側壁部において座屈が発生する場合がある。硬質な鋼板を用いることにより、このような座屈は回避し得るが、一方で、上述した耐傷性が不十分となる場合がある。
 そこで、本発明においては、特定の組成を有する鋼板を用いる。より詳細には、鋼板のNb含有量を0.010質量%以上0.050質量%以下にする。これにより、本発明の缶用鋼板においては、座屈が生じない下限域まで鋼板が硬質化し、電池外筒缶にしたときの耐座屈性(以下、単に「耐座屈性」ともいう)が良好になると共に、良好な耐傷性も得られる。
 以下、本発明の缶用鋼板が備える各部について、より詳細に説明する。
 〈鋼板〉
 本発明の缶用鋼板には、Nb含有量が0.010質量%以上0.050質量%以下である鋼板を用いる。鋼板のNb含有量が上記範囲内であれば、上述したように、耐傷性および耐座屈性が共に優れる。
 耐座屈性がより優れるという理由から、鋼板のNb含有量は、0.020質量%以上0.040質量%未満が好ましい。
 このような鋼板としては、例えば、極低炭素鋼(C:0.010質量%以下)に0.010質量%以上0.050質量%以下のNbを添加したものが挙げられ、その具体例としては、質量%で、C:0.010%以下、Si:0.02%以下、Mn:0.60%以下、P:0.020%以下、S:0.020%以下、Ni:0.05%以下、N:0.0050%以下、Nb:0.010%以上0.050%以下、Cr:1.0%以下を含み、残部がFeおよび不可避的不純物からなる組成を有する鋼板が好適に挙げられる。
 一般に、鋼中に固溶しているCの量が多いほど降伏伸びが大きくなり、時効硬化、加工時のストレッチャーストレイン等の原因となりやすい。このため、鋼板のC含有量は0.010質量%以下が好ましい。
 Siを多量に添加すると、鋼板の表面処理性および耐食性が不十分となる場合があることから、鋼板のSi含有量は0.02質量%以下が好ましい。
 Mnは、過度に鋼板を硬質化する場合があることから、鋼板のMn含有量は0.60質量%以下が好ましい。
 Pは、多量に添加すると、鋼の硬質化、耐食性の低下等を引き起こす場合があることから、鋼板のP含有量は、0.020質量%以下が好ましい。
 Sは、鋼中でMnと結合してMnSを形成し、MnSが多量に析出することにより鋼の熱間延性を低下させる場合がある。このため、鋼板のS含有量は、0.020質量%以下が好ましい。
 Niは、鋼の耐食性を向上させる元素であるが、一方で希少元素であるため鋼全体に含有させることは合金コストの上昇を招く。このため、鋼板のNi含有量は、0.05質量%以下が好ましい。
 Nの量が多くなるほど鋼は硬質化する。しかし、Nが不可避的に混入する分を考慮すると鋼板の硬さのバラつきが大きくなる。このため、Nは、本発明において所望される硬さ制御には不向きである。したがって、鋼板のN含有量は、硬質化にほぼ影響のない0.0050質量%以下が好ましい。
 Nb含有量については、上述したとおりである。
 Crは、鋼の耐食性を向上させる元素であるが、一方で鋼を硬化させて成形性を低下させたり、焼鈍時に鋼板の表面にCr酸化物を形成して、所望の表面状態を得られなくさせたりする恐れがある。このため、鋼板のCr含有量は、1.0質量%以下が好ましい。
 鋼板の製造方法は特に限定されない。例えば、通常の鋼片製造工程から熱間圧延、酸洗、冷間圧延、焼鈍、調質圧延等の工程を経て製造される。
 本発明においては、Fe-Ni拡散層の形成が必須となるから、冷間圧延後の未焼鈍の鋼板にNiめっきを施し、鋼板の焼鈍処理と共にNiめっきを鋼板内部に拡散させることが、生産上、最も効率が良い。このため、Fe-Ni拡散層の形成に用いる鋼板としては、冷間圧延後の未焼鈍の鋼板が好ましい。
 〈Fe-Ni拡散層〉
 本発明の缶用鋼板は、鋼板の両面の表層に、Fe-Ni拡散層を有する。
 《Ni付着量》
 Fe-Ni拡散層は、鋼板の片面あたりのNi換算の付着量(Ni付着量)が、50mg/m2以上500mg/m2以下である。これにより、本発明の缶用鋼板は、上述したように、耐傷性および耐食性が共に優れる。耐傷性がより優れるという理由から、Fe-Ni拡散層のNi付着量は、350mg/m2以下が好ましく、300mg/m2以下がより好ましい。
 Fe-Ni拡散層のNi付着量は、蛍光X線分析により表面分析して測定できる。この場合、Ni付着量既知のNi付着サンプルを用いて、Ni付着量に関する検量線をあらかじめ特定しておき、同検量線を用いてNi付着量を定量する。蛍光X線分析は、例えば、下記条件により実施される。
 ・装置:リガク社製蛍光X線分析装置System3270
 ・測定径:30mm
 ・測定雰囲気:真空
 ・スペクトル:Ni-Kα
 ・スリット:COARSE
 ・分光結晶:TAP
 上記条件により測定したFe-Ni拡散層の蛍光X線分析のNi-Kαのピークカウント数を用いる。重量法で付着量を測定した付着量既知の標準サンプルを用いて、Ni付着量に関する検量線をあらかじめ特定しておき、同検量線を用いてNi付着量を求める。
 《厚さ》
 本発明の缶用鋼板において、Fe-Ni拡散層の厚さは、成形後においてもFe-Ni拡散層を維持しやすく、かつ、耐傷性および耐食性がより優れるという理由から、0.010μm以上0.500μm未満が好ましく、耐傷性が更に優れるという理由から、0.400μm以下がより好ましく、0.380μm以下が更に好ましい。
 Fe-Ni拡散層の厚さは、GDS(グロー放電発光分析)によって測定できる。具体的には、まず、Fe-Ni拡散層の表面から鋼板の内部に向かって、スパッタリングし、深さ方向の分析を行ない、Niの強度が最大値の1/10となるスパッタリング時間を求める。次いで、純鉄を用いてGDSによるスパッタリング深さとスパッタリング時間との関係を求める。この関係を用いて、先に求めたNiの強度が最大値の1/10となるスパッタリング時間から純鉄換算でスパッタリング深さを算出し、算出した値をFe-Ni拡散層の厚さとする。GDSは、下記に条件において実施したものである。
 ・装置:リガク社製GDA750
 ・陽極内径:4mm
 ・分析モード:高周波低電圧モード
 ・放電電力:40W
 ・制御圧力:2.9hPa
 ・検出器:フォトマル
 ・検出波長:Ni=341.4nm
 《Ni比率》
 本発明の缶用鋼板において、Fe-Ni拡散層の最表面におけるNi比率(以下、単に「Ni比率」ともいう)は、耐傷性および耐食性がより優れるという理由から、1.0%以上20.0%未満が好ましい。
 Fe-Ni拡散層の最表面のNi比率が重要なのは、Fe-Ni拡散層の最表面のNiは耐食性に直接効果があるが、鋼中に拡散したNiは耐食性向上の効果が小さいからである。一方、Ni比率が高すぎると最表面が硬くなり耐傷性が不十分となる場合がある。このため、Ni比率の好適範囲は、上述した1.0%以上20.0%未満である。
 耐傷性が更に優れるという理由から、Ni比率は、3.0%以上がより好ましい。同様の理由から、Ni比率は、15.0%以上がより好ましく、13.0%以上が更に好ましい。
 Fe-Ni拡散層の最表面におけるNi比率(単位:%)は、Fe-Ni拡散層の最表面における、Fe量とNi量との合計に対するNi量の割合であり、すなわち式「Ni量/(Fe量+Ni量)×100」で算出される。Fe量およびNi量の単位は、原子%である。
 Fe-Ni拡散層の最表面におけるFe量(単位:原子%)およびNi量(単位:原子%)は、Fe-Ni拡散層が形成された鋼板を、アセトン中で10分間超音波洗浄した後、スパッタを行なうことなく、オージェ電子分光測定を行なうことにより測定できる。オージェ電子分光測定は同一試料中の別視野で10箇所測定を行ない、Fe量およびNi量はそれぞれ10箇所測定結果の平均値を用いる。オージェ電子分光測定は下記条件において実施したものである。
 ・装置:ULVAC-PHI社製PHI660
 ・観察および分析条件:加速電圧10.0kV、電流値0.5μA
          観察倍率1,000倍、測定範囲540~900eV
 《Fe-Ni拡散層の形成方法》
 鋼板の両面の表層にFe-Ni拡散層を形成する方法は、特に限定されないが、一例として、次の方法が挙げられる。
 まず、冷間圧延後の未焼鈍の鋼板に対して、必要に応じて前処理(脱脂および酸洗など)を施した後、Niめっき浴を用いて、電流密度等の条件を適宜調整して、Niめっきを施す。Niめっき浴としては、例えば、ワット浴、スルファミン酸浴、ほうフッ化物浴および塩化物浴などが挙げられる。
 このとき、Niめっきの付着量は、鋼板の片面あたり、50mg/m2以上500mg/m2以下とする。これにより、形成されるFe-Ni拡散層のNi付着量を、50mg/m2以上500mg/m2以下にできる。
 次に、Niめっきを施した鋼板に対して、鋼板の再結晶処理を目的とした焼鈍(好ましくは連続焼鈍)を行なう。鋼板の焼鈍に伴って、Niめっきが鋼板内部に拡散し、Fe-Ni拡散層が形成される。
 焼鈍条件としては、均熱温度は600℃以上800℃以下が好ましく、この均熱温度での保持時間は10秒以上60秒以下が好ましい。均熱温度での保持時間が短いほど鋼中にNiが拡散しにくくなり、最表面のNi比率が大きくなることから、耐食性の観点から、均熱温度での保持時間は30秒未満がより好ましい。
 この焼鈍条件であれば、形成されるFe-Ni拡散層について、その厚さを0.010μm以上0.500μm未満にし、かつ、最表面におけるNi比率を1.0%以上20.0%未満にできるため、好ましい。
 Fe-Ni拡散層を形成した後、必要に応じて、調質圧延することによって、形状矯正および表面粗度調整などを行なってもよい。
[電池外筒缶の製造方法]
 次に、本発明の缶用鋼板を用いた電池外筒缶の製造方法(以下、便宜的に「本発明の製造方法」ともいう)について説明する。
 本発明の製造方法は、例えば、本発明の缶用鋼板を、成形型を用いたプレス成形によって電池外筒缶形状(例えば、円筒状)に成形する工程と、その後、電池外筒缶形状に成形された本発明の缶用鋼板の外面に、Niめっきを施すことによってNi層を形成する工程と、を備える方法が挙げられる。
 〈成形(プレス成形)〉
 成形(プレス成形)の方法は、特に限定されず、電池外筒缶の成形に用いられている一般的な方法が挙げられる。例えば、本発明の缶用鋼板を円形に打ち抜くと共に、カップ状に絞り、再絞りおよびDI(Drawing and Ironing)工程によって、円筒状等の形状に成形する。
 このとき、使用される成形型の材料としては、超硬合金が用いられることが多いが、比較的もろい焼入れ鋼が使用されてもよい。上述したように、本発明の缶用鋼板のFe-Ni拡散層は、焼入れ鋼で作られた成形型を傷付けないと考えられるため、成形される電池外筒缶用鋼板の傷発生が抑制される。
 プレス成形を受けたFe-Ni拡散層のNi付着量、厚さおよびNi比率は、プレス成形前の状態は維持されず、変更され得る。
 しかしながら、本発明の缶用鋼板において、電池外筒缶の外面側となる部分の少なくとも一部(例えば、電池外筒缶のプラス側の突起の端面となる部分)は、プレス成形されず、無加工のままである。
 したがって、本発明の缶用鋼板を用いて得られる電池外筒缶(本発明の電池外筒缶)の外面側の少なくとも一部は、プレス成形前の本発明の缶用鋼板におけるFe-Ni拡散層のNi付着量、厚さおよびNi比率が、そのまま維持されている。
 〈電池外筒缶形状に成形した後のNiめっき〉
 Niめっきを施す方法は、特に限定されず、従来公知の方法を使用できる。例えば、電池外筒缶形状に成形された本発明の缶用鋼板に対して、Niめっき浴を用いて、電流密度等の条件を適宜調整して、バレルめっき法によって、Niめっきを施す。Niめっき浴としては、例えば、ワット浴、スルファミン酸浴、ほうフッ化物浴および塩化物浴などが挙げられる。
 これにより、電池外筒缶形状に成形された本発明の缶用鋼板の少なくとも外面側のFe-Ni拡散層上に、Niめっきが施されて、Ni層が形成される。
 このとき、本発明の缶用鋼板は、電池外筒缶形状に成形されているため、その内部にNiめっきが侵入しにくく、電池外筒缶形状の本発明の缶用鋼板の内面にはNiめっきは施されにくい。もっとも、電池外筒缶形状の本発明の缶用鋼板の内面にも、外面と同様に、Niめっきが施されてNi層が形成されてもよい。
 Fe-Ni拡散層上に形成されるNiめっき(Ni層)の厚さは、耐食性の観点から、1μm以上が好ましく、2μm以上がより好ましい。Ni層の厚さの上限は特に限定されないが、例えば、経済性の観点から、Ni層の厚さは7μm以下が好ましい。
[電池外筒缶]
 本発明の電池外筒缶は、本発明の缶用鋼板を用いて得られる電池外筒缶である。
 より詳細には、本発明の電池外筒缶は、電池外筒缶形状にプレス成形された本発明の缶用鋼板の外面にNi層を有する電池外筒缶である。
 すなわち、本発明の電池外筒缶は、電池外筒缶形状の鋼板の内面および外面の表層にFe-Ni拡散層を有し、上記鋼板の外面側の上記Fe-Ni拡散層上に、更に、Ni層を有し、上記鋼板のNb含有量が、0.010質量%以上0.050質量%以下であり、上記鋼板の外面側の上記Fe-Ni拡散層の一部が、上記鋼板の片面あたりのNi換算の付着量が50mg/m2以上500mg/m2以下のFe-Ni拡散層Aである、電池外筒缶である。
 本発明の電池外筒缶は、まず、プレス成形によって鋼板が電池外筒缶形状に成形されており、この鋼板の両面(内面および外面)の表層に、本発明の缶用鋼板と同様に、Fe-Ni拡散層が形成されている。そして、鋼板の少なくとも外面側のFe-Ni拡散層上に、Niめっきが施されて、Ni層が形成されている。
 ここで、上述したように、本発明の電池外筒缶の外面側の少なくとも一部のFe-Ni拡散層は、プレス成形前の本発明の缶用鋼板におけるFe-Ni拡散層(Ni付着量:50mg/m2以上500mg/m2以下)が、そのまま維持されている。
 すなわち、本発明の電池外筒缶においては、電池外筒缶形状の鋼板の外面側のFe-Ni拡散層の少なくとも一部(プレス成形前の本発明の缶用鋼板におけるFe-Ni拡散層が維持されている部分)が、Ni付着量が50mg/m2以上500mg/m2以下のFe-Ni拡散層Aである。
 本発明の電池外筒缶におけるFe-Ni拡散層AのNi付着量、厚さおよびNi比率の好適範囲は、本発明の缶用鋼板におけるFe-Ni拡散層のNi付着量、厚さおよびNi比率と同様である。
 本発明の電池外筒缶において、Fe-Ni拡散層上のNi層の厚さは、上述したとおりであり、1μm以上が好ましく、2μm以上がより好ましい。上限は特に限定されないが、7μm以下が好ましい。
[電池]
 本発明の電池は、本発明の電池外筒缶と、本発明の電池外筒缶の内部に配置された電解液、電極およびセパレータと、を備える電池である。
 すなわち、本発明の電池は、本発明の電池外筒缶の内部に、電池として必要な構成である電解液、電極およびセパレータが少なくとも充填されており、更に、必要に応じて、その他の構成が充填されていてもよい。
 本発明の電池は、本発明の電池外筒缶を使用しているため、耐食性に優れる。
 以下に、実施例を挙げて本発明を具体的に説明する。ただし、本発明は以下の実施例に限定されない。
 〈電池外筒缶用鋼板の製造〉
 鋼板として、板厚0.25mmの冷間圧延後の未焼鈍状態のNb添加極低炭素鋼(鋼組成は、質量%で、C:0.002%、Si:0.02%、Mn:0.15%、P:0.010%、S:0.008%、Ni:0.03%、N:0.0030%、Nb:下記表1に示す含有量、Cr:0.5%)を用いた。この鋼板に、脱脂および酸洗を含む前処理を施した。
 前処理後の鋼板に対して、ワット浴を用いて、Niめっきを施した。このとき、下記表1に記載のNi付着量(単位:mg/m2)となるように、電流密度などの条件を適宜調整した。
 次いで、Niめっきを施した鋼板を、連続焼鈍ラインに導入して、鋼板を焼鈍すると共に、鋼板内部にNiを拡散させて、鋼板の両面の表層にFe-Ni拡散層を形成した。このとき、下記表1に記載の焼鈍条件(均熱温度および保持時間)にすることによって、Fe-Ni拡散層の厚さ(単位:μm)およびNi比率(単位:%)が、下記表1に記載の数値になるようにした。
 Fe-Ni拡散層を形成した後、調質圧延を施して、試験材No.1~30の電池外筒缶用鋼板を得た。
 〈電池外筒缶の製造〉
 《成形》
 得られた電池外筒缶用鋼板を、円形に打ち抜くと共に、カップ状に絞り、再絞りおよびDI工程によって、円筒状である18650型の電池外筒缶形状に成形した。側壁部分の板厚は、DI工程により薄肉化し、0.15mmとした。
 《Niめっき》
 その後、電池外筒缶形状に成形された電池外筒缶用鋼板の少なくとも外面に、バレルめっき法によって、Niめっきを施し、厚さ4μmのNi層を形成した。こうして、電池外筒缶を得た。
 〈評価〉
 《耐食性》
 塩化ナトリウム5gおよび30%過酸化水素水1.5ccを純水100gに混合して得られた水溶液を準備した。この水溶液に、得られた電池外筒缶を、室温下で16時間浸漬した。浸漬後、電池外筒缶を引き上げて、穴あきの有無を目視で確認し、穴あきが確認された場合には「B」を、穴あきが確認されなかった場合には「A」を、下記表1に記載した。「A」であれば耐食性に優れる。
 《耐傷性》
 焼入れ鋼で作られた成形型を用いて、上述した成形を繰り返し行ない、電池外筒缶形状に成形された電池外筒缶用鋼板の表面に目視で傷が確認されるまでの回数(製缶数)をカウントした。
 傷が確認されるまでの製缶数が50,000缶以下であった場合には「D」を、50,000缶超70,000缶以下であった場合には「C」を、70,000缶超100,000缶以下であった場合には「B」を、製缶数が100,000缶を超えても傷が確認されなかった場合は「A」を、下記表1に記載した。
 「A」、「B」または「C」であれば耐傷性に優れる。実用上、「A」または「B」が好ましく、「A」がより好ましい。
 《耐座屈性》
 得られた円筒状の電池外筒缶に内容物を充填し、缶底部を巻き締めた。このとき、電池外筒缶に座屈が生じたか否かを確認した。1,000缶あたりの座屈缶(座屈が生じた電池外筒缶)の発生率(単位:%)を求めた。座屈缶発生率が10%以上であった場合には「D」を、3%以上10%未満であった場合には「C」を、1%以上3%未満であった場合には「B」を、1%未満であった場合は「A」を、下記表1に記載した。
 「A」または「B」であれば耐座屈性に優れる。
Figure JPOXMLDOC01-appb-T000001
 上記表1に示すように、Fe-Ni拡散層のNi付着量が500mg/m2を超える試験材No.10~11および22~23は、耐傷性が劣っていた。
 Fe-Ni拡散層のNi付着量が50mg/m2未満である試験材No.12および24は、耐食性が劣っていた。
 鋼板のNb含有量が0.010質量%未満である試験材No.29は、耐座屈性が劣っていた。鋼板のNb含有量が0.050質量%超である試験材No.30は、耐座屈性は良好だが耐傷性は劣っていた。
 これに対して、鋼板のNb含有量が0.010質量%以上0.050質量%以下であり、かつ、Fe-Ni拡散層のNi付着量が50mg/m2以上500mg/m2以下である試験材No.1~9、13~21および25~28は、耐食性、耐傷性および耐座屈性がいずれも良好であった。
 試験材No.1~9、13~21および25~28を対比すると、Fe-Ni拡散層の最表面におけるNi比率が1.0%以上20.0%未満である試験材No.1~9、13~21および26~27は、Ni比率が20.0%以上である試験材No.25および28よりも、耐傷性がより良好であった。
 試験材No.1~9を対比すると、試験材No.5~7よりも、Ni比率がより低い試験材No.1~4および8~9の方が、耐傷性が更に良好であった。
 同様に、試験材No.13~21を対比すると、試験材No.17~19よりも、Ni比率がより低い試験材No.13~16および20~21の方が、耐傷性が更に良好であった。
 試験材No.25と試験材No.28とを対比すると、鋼板のNb含有量が0.040質量%である試験材No.28よりも、鋼板のNb含有量が0.020質量%である試験材No.25の方が、耐座屈性がより良好であった。

Claims (10)

  1.  鋼板の両面の表層にFe-Ni拡散層を有し、
     前記鋼板のNb含有量が、0.010質量%以上0.050質量%以下であり、
     前記Fe-Ni拡散層は、前記鋼板の片面あたりのNi換算の付着量が、50mg/m2以上500mg/m2以下である、電池外筒缶用鋼板。
  2.  前記Fe-Ni拡散層の最表面におけるNi比率が、1.0%以上20.0%未満である、請求項1に記載の電池外筒缶用鋼板。
     ただし、前記Ni比率は、前記Fe-Ni拡散層の最表面における、Fe量とNi量との合計に対する前記Ni量の割合であり、前記Fe量および前記Ni量の単位は、原子%である。
  3.  前記Fe-Ni拡散層の厚さが、0.010μm以上0.500μm未満である、請求項1または2に記載の電池外筒缶用鋼板。
  4.  前記鋼板は、質量%で、C:0.010%以下、Si:0.02%以下、Mn:0.60%以下、P:0.020%以下、S:0.020%以下、Ni:0.05%以下、N:0.0050%以下、Nb:0.010%以上0.050%以下、Cr:1.0%以下を含み、残部がFeおよび不可避的不純物からなる組成を有する、請求項1~3のいずれか1項に記載の電池外筒缶用鋼板。
  5.  電池外筒缶形状の鋼板の内面および外面の表層にFe-Ni拡散層を有し、
     前記鋼板の外面側の前記Fe-Ni拡散層上に、更に、Ni層を有し、
     前記鋼板のNb含有量が、0.010質量%以上0.050質量%以下であり、
     前記鋼板の外面側の前記Fe-Ni拡散層の一部が、前記鋼板の片面あたりのNi換算の付着量が50mg/m2以上500mg/m2以下のFe-Ni拡散層Aである、電池外筒缶。
  6.  前記Fe-Ni拡散層Aの最表面におけるNi比率が、1.0%以上20.0%未満である、請求項5に記載の電池外筒缶。
     ただし、前記Ni比率は、前記Fe-Ni拡散層の最表面における、Fe量とNi量との合計に対する前記Ni量の割合であり、前記Fe量および前記Ni量の単位は、原子%である。
  7.  前記Fe-Ni拡散層Aの厚さが、0.010μm以上0.500μm未満である、請求項5または6に記載の電池外筒缶。
  8.  前記Ni層の厚さが、1μm以上である、請求項5~7のいずれか1項に記載の電池外筒缶。
  9.  前記鋼板は、質量%で、C:0.010%以下、Si:0.02%以下、Mn:0.60%以下、P:0.020%以下、S:0.020%以下、Ni:0.05%以下、N:0.0050%以下、Nb:0.010%以上0.050%以下、Cr:1.0%以下を含み、残部がFeおよび不可避的不純物からなる組成を有する、請求項5~8のいずれか1項に記載の電池外筒缶。
  10.  請求項5~9のいずれか1項に記載の電池外筒缶と、
     前記電池外筒缶の内部に配置された電解液、電極およびセパレータと、を備える電池。
PCT/JP2018/026935 2017-07-28 2018-07-18 電池外筒缶用鋼板、電池外筒缶および電池 WO2019021909A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020207002376A KR102339193B1 (ko) 2017-07-28 2018-07-18 전지 외통캔용 강판, 전지 외통캔 및 전지
CN201880049187.0A CN110945155B (zh) 2017-07-28 2018-07-18 电池外筒罐用钢板、电池外筒罐及电池
JP2018553267A JP6451919B1 (ja) 2017-07-28 2018-07-18 電池外筒缶用鋼板、電池外筒缶および電池
US16/633,009 US11946121B2 (en) 2017-07-28 2018-07-18 Steel sheet for battery outer tube cans, battery outer tube can and battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017146401 2017-07-28
JP2017-146401 2017-07-28

Publications (1)

Publication Number Publication Date
WO2019021909A1 true WO2019021909A1 (ja) 2019-01-31

Family

ID=65040084

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/026935 WO2019021909A1 (ja) 2017-07-28 2018-07-18 電池外筒缶用鋼板、電池外筒缶および電池

Country Status (2)

Country Link
US (1) US11946121B2 (ja)
WO (1) WO2019021909A1 (ja)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04187741A (ja) * 1990-11-22 1992-07-06 Kawasaki Steel Corp 缶用鋼板およびその製法ならびに3ピース缶の製法
JPH062104A (ja) * 1992-06-22 1994-01-11 Toyo Kohan Co Ltd 高耐食性ニッケルめっき鋼帯およびその製造法
JP2009263727A (ja) * 2008-04-25 2009-11-12 Nippon Steel Corp 容器用Niめっき鋼板とそれにより製造した容器およびその製造方法
JP2010257927A (ja) * 2009-03-31 2010-11-11 Nippon Steel Corp 金属溶出による電圧低下の少ないリチウムイオン電池の金属外装ケース用素材および金属外装ケースならびにリチウムイオン電池
WO2010143374A1 (ja) * 2009-06-09 2010-12-16 東洋鋼鈑株式会社 Niめっき鋼板及びそのNiめっき鋼板を用いた電池缶の製造方法
WO2016013572A1 (ja) * 2014-07-22 2016-01-28 新日鐵住金株式会社 蓄電デバイス容器用鋼箔、蓄電デバイス用容器及び蓄電デバイス、並びに蓄電デバイス容器用鋼箔の製造方法
WO2017094919A1 (ja) * 2015-12-03 2017-06-08 東洋鋼鈑株式会社 電池容器用表面処理鋼板
JP2017122281A (ja) * 2011-06-30 2017-07-13 東洋鋼鈑株式会社 表面処理鋼板の製造方法、および電池缶の製造方法
WO2017221763A1 (ja) * 2016-06-24 2017-12-28 Jfeスチール株式会社 電池外筒缶用鋼板、電池外筒缶および電池

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1160163C (zh) * 1996-03-15 2004-08-04 杰富意钢铁株式会社 超薄钢板及其制造方法
JP3900639B2 (ja) 1997-12-24 2007-04-04 Jfeスチール株式会社 深絞り加工によって形成される2ピース電池缶用鋼板およびその製造方法
DE19937271C2 (de) * 1999-08-06 2003-01-09 Hille & Mueller Gmbh & Co Verfahren zur Herstellung von tiefzieh- oder abstreckziehfähigem, veredeltem Kaltband, sowie Kaltband, vorzugsweise zur Herstellung von zylindrischen Behältern und insbesondere Batteriebehältern
JP2007335205A (ja) 2006-06-14 2007-12-27 Jfe Steel Kk 耐漏液性能及び重負荷放電性能に優れた電池缶形成用鋼板、その製造方法、電池缶およびアルカリ乾電池
JP2008041527A (ja) 2006-08-09 2008-02-21 Matsushita Electric Ind Co Ltd 電池缶及びそれを用いた電池
US20110108307A1 (en) 2008-07-22 2011-05-12 Yoshihiro Arita Non-oriented electrical steel sheet and method of manufacturing the same
EP2416400A1 (en) 2009-03-31 2012-02-08 Nippon Steel Corporation Material for metallic outer case for secondary battery utilizing non-aqueous electrolyte, metallic outer case, secondary battery, and process for production of material for metallic outer case
US20130209867A1 (en) 2010-01-08 2013-08-15 Toyo Kohan Co., Ltp Ni-plated steel sheet with excellent pressability for battery can
JP5786296B2 (ja) 2010-03-25 2015-09-30 Jfeスチール株式会社 表面処理鋼板、その製造方法およびそれを用いた樹脂被覆鋼板
TWI449813B (zh) 2010-06-29 2014-08-21 Nippon Steel & Sumitomo Metal Corp 容器用鋼板及其製造方法
EP3000917B1 (en) 2013-05-21 2020-03-11 Nippon Steel Corporation Steel sheet for containers, and method for producing steel sheet for container
TWI604089B (zh) 2015-08-28 2017-11-01 Nippon Steel & Sumitomo Metal Corp Fuel tank with surface treatment of steel
JP2017078221A (ja) 2015-10-21 2017-04-27 株式会社神戸製鋼所 鋼板及び接合体

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04187741A (ja) * 1990-11-22 1992-07-06 Kawasaki Steel Corp 缶用鋼板およびその製法ならびに3ピース缶の製法
JPH062104A (ja) * 1992-06-22 1994-01-11 Toyo Kohan Co Ltd 高耐食性ニッケルめっき鋼帯およびその製造法
JP2009263727A (ja) * 2008-04-25 2009-11-12 Nippon Steel Corp 容器用Niめっき鋼板とそれにより製造した容器およびその製造方法
JP2010257927A (ja) * 2009-03-31 2010-11-11 Nippon Steel Corp 金属溶出による電圧低下の少ないリチウムイオン電池の金属外装ケース用素材および金属外装ケースならびにリチウムイオン電池
WO2010143374A1 (ja) * 2009-06-09 2010-12-16 東洋鋼鈑株式会社 Niめっき鋼板及びそのNiめっき鋼板を用いた電池缶の製造方法
JP2017122281A (ja) * 2011-06-30 2017-07-13 東洋鋼鈑株式会社 表面処理鋼板の製造方法、および電池缶の製造方法
WO2016013572A1 (ja) * 2014-07-22 2016-01-28 新日鐵住金株式会社 蓄電デバイス容器用鋼箔、蓄電デバイス用容器及び蓄電デバイス、並びに蓄電デバイス容器用鋼箔の製造方法
WO2017094919A1 (ja) * 2015-12-03 2017-06-08 東洋鋼鈑株式会社 電池容器用表面処理鋼板
WO2017221763A1 (ja) * 2016-06-24 2017-12-28 Jfeスチール株式会社 電池外筒缶用鋼板、電池外筒缶および電池

Also Published As

Publication number Publication date
US11946121B2 (en) 2024-04-02
US20200227691A1 (en) 2020-07-16

Similar Documents

Publication Publication Date Title
JP6803852B2 (ja) 電池缶用ニッケルめっき熱処理鋼板
JP5570078B2 (ja) Niめっき鋼板及びそのNiめっき鋼板を用いた電池缶の製造方法
CN111699567B (zh) 电池容器用表面处理钢板和电池容器用表面处理钢板的制造方法
JP7187469B2 (ja) 表面処理鋼板およびその製造方法
JP6729821B2 (ja) 表面処理鋼板および表面処理鋼板の製造方法
EP2626440A1 (en) Ferritic stainless steel having excellent corrosion resistance and electrical conductivity, method for producing same, solid polymer fuel cell separator, and solid polymer fuel cell
JP6729822B2 (ja) 表面処理鋼板および表面処理鋼板の製造方法
CN113748225B (zh) 表面处理钢板和其制造方法
JP4995140B2 (ja) 容器用Niめっき鋼板とそれにより製造した容器およびその製造方法
JP6260752B1 (ja) 電池外筒缶用鋼板、電池外筒缶および電池
JP2007335205A (ja) 耐漏液性能及び重負荷放電性能に優れた電池缶形成用鋼板、その製造方法、電池缶およびアルカリ乾電池
JP6451919B1 (ja) 電池外筒缶用鋼板、電池外筒缶および電池
WO2019198820A1 (ja) Ni拡散めっき鋼板及びNi拡散めっき鋼板の製造方法
WO2019021909A1 (ja) 電池外筒缶用鋼板、電池外筒缶および電池
JP4698205B2 (ja) 電池ケース用鋼板、電池ケース用表面処理鋼板、電池ケースおよび電池
WO2022215642A1 (ja) 表面処理鋼板

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018553267

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18838971

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20207002376

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18838971

Country of ref document: EP

Kind code of ref document: A1