WO2019017377A1 - Gas sensor - Google Patents

Gas sensor Download PDF

Info

Publication number
WO2019017377A1
WO2019017377A1 PCT/JP2018/026876 JP2018026876W WO2019017377A1 WO 2019017377 A1 WO2019017377 A1 WO 2019017377A1 JP 2018026876 W JP2018026876 W JP 2018026876W WO 2019017377 A1 WO2019017377 A1 WO 2019017377A1
Authority
WO
WIPO (PCT)
Prior art keywords
noble metal
adsorption
detection electrode
solid electrolyte
gas sensor
Prior art date
Application number
PCT/JP2018/026876
Other languages
French (fr)
Japanese (ja)
Inventor
恵里子 前田
拓巳 岡本
伊藤 誠
鈴木 洋介
大介 河合
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2018095766A external-priority patent/JP6753433B2/en
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Publication of WO2019017377A1 publication Critical patent/WO2019017377A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/403Cells and electrode assemblies
    • G01N27/406Cells and probes with solid electrolytes
    • G01N27/407Cells and probes with solid electrolytes for investigating or analysing gases
    • G01N27/409Oxygen concentration cells
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/403Cells and electrode assemblies
    • G01N27/406Cells and probes with solid electrolytes
    • G01N27/407Cells and probes with solid electrolytes for investigating or analysing gases
    • G01N27/41Oxygen pumping cells

Definitions

  • the present disclosure relates to an electromotive force or current gas sensor, in particular, to a configuration of a detection electrode in contact with an exhaust gas.
  • An electromotive force type gas sensor is disposed, for example, in an exhaust pipe of an internal combustion engine, and whether the air-fuel ratio of exhaust gas exhausted from the internal combustion engine to the exhaust pipe is on the rich side or the lean side with respect to the theoretical air fuel ratio It is used to detect.
  • the air-fuel ratio of the exhaust gas indicates the air-fuel ratio when combustion of fuel and air is performed in the internal combustion engine.
  • a sensor element provided with a detection electrode exposed to the exhaust gas and a reference electrode exposed to the atmosphere is used for the solid electrolyte body. Then, according to the difference in oxygen concentration between the atmosphere contacting the reference electrode and the exhaust gas contacting the detection electrode, the electromotive force generated between the electrodes is detected via the solid electrolyte body.
  • a current type gas sensor is disposed, for example, in an exhaust pipe of an internal combustion engine, and is used to quantitatively detect an air-fuel ratio of an exhaust gas exhausted from the internal combustion engine to the exhaust pipe.
  • the solid electrolyte body is provided with a detection electrode exposed to the exhaust gas and a reference electrode exposed to the atmosphere, and the detection electrode is disposed in the gas chamber into which the exhaust gas is introduced through the diffusion resistance layer. Use the sensor element. Then, a voltage is applied between the detection electrode and the reference electrode, and the limiting current characteristic when exhaust gas is introduced into the gas chamber through the diffusion resistance layer is used to generate the current generated between the detection electrode and the reference electrode. Detects the air-fuel ratio of the exhaust gas.
  • the electromotive force type gas sensor when the air-fuel ratio of the exhaust gas changes from the lean side to the rich side, oxygen moves from the reference electrode to the detection electrode in order to react unburned components in the exhaust gas reaching the detection electrode, A large electromotive force will occur between the electrodes. Therefore, by detecting the change in the electromotive force, it is determined whether the air-fuel ratio of the exhaust gas is rich or lean with respect to the stoichiometric air-fuel ratio.
  • the direction of the current flowing between the detection electrode and the reference electrode changes depending on whether the air fuel ratio is on the rich side or the lean side with respect to the theoretical air fuel ratio, and the air fuel ratio is on the rich side. Whether it is on the lean side or not is detected.
  • Patent Document 1 describes that, as a method of manufacturing a catalyst material used as an electrode of a gas sensor, calculation of adsorption energy of gas by a simulation model of atoms is described.
  • Patent Document 1 it is described that the adsorptivity of a gas to the surface of a catalyst material is enhanced and the chemical reaction of the gas is promoted by replacing a base material atom with a substitution atom.
  • the air-fuel ratio of the exhaust gas is on the lean side
  • information that the air-fuel ratio of the exhaust gas is on the rich side is transmitted from the gas sensor to the control device of the internal combustion engine.
  • the gas sensor detects that the air-fuel ratio of the exhaust gas is on the rich side until CO adsorbed on the detection electrode is desorbed by NO or the like contained in the exhaust gas.
  • the control device of the internal combustion engine controls the air-fuel ratio to be leaner even though the air-fuel ratio is on the lean side. Therefore, the air-fuel ratio controlled by the control device of the internal combustion engine may shift from the stoichiometric air-fuel ratio to the lean side, and the emission amount of NOx may increase.
  • the adsorption energy of CO on the detection electrode is high, the catalytic action of the detection electrode on CO is more activated, and when the air-fuel ratio of the exhaust gas changes from the lean side to the rich side, the gas sensor quickly makes the rich side It can be detected.
  • the air-fuel ratio of the exhaust gas changes from the rich side to the lean side, as a result of intensive studies by the inventors, it has been found that it is necessary to consider the dissociative adsorption energy of NO on the detection electrode.
  • Patent Document 1 describes that the reaction promoting effect of the detection electrode is enhanced in consideration of the adsorption energy of unburned gas such as CO to the detection electrode.
  • the dissociative adsorption energy of NO is not considered at all. Therefore, in Patent Document 1, no measure is taken to improve the response as the detection performance of the gas sensor when the air-fuel ratio of the exhaust gas changes from the rich side to the lean side.
  • positioned directly on each of a base material atom and a substitution atom (on top site) is calculated.
  • adsorption sites where gas can be adsorbed on the surface of an electrode as a catalyst material, in addition to on-top sites.
  • adsorption energy which shows easiness of adsorption of gas may be larger (it is easy to adsorb) in adsorption sites other than on top site, and it is insufficient to calculate only adsorption energy on on top site. I found that.
  • the present disclosure has been obtained in an attempt to provide a gas sensor capable of enhancing responsiveness as detection performance when the air-fuel ratio of exhaust gas changes from the rich side to the lean side.
  • a first aspect of the present disclosure is a sensor element having a solid electrolyte body, a detection electrode provided on the solid electrolyte body and in contact with exhaust gas, and a reference electrode provided on the solid electrolyte body and in contact with the atmosphere.
  • a gas sensor for detecting an electromotive force generated according to a difference in oxygen concentration in the reference electrode and the detection electrode, or a current generated between the reference electrode and the detection electrode.
  • the noble metal component of the detection electrode is made of a mixture or alloy of Pt and one or more kinds of noble metal elements other than Pt,
  • the Pt and the noble metal element have an on-top site which is a position immediately above one coordination, a bridge site which is a bridging position of two coordinations, a recessed site of three coordinations and a hexagonal outermost position where a lower layer exists.
  • the adsorption energy of the CO molecule of at least one of the four adsorption sites in the noble metal element in the noble metal element is: Smaller than the adsorption energy of CO molecules of at least one of the four types of adsorption sites, And / or dissociative adsorption energy of NO of at least one of the four types of adsorption sites in the noble metal element when the same adsorption sites in the Pt and the noble metal element are compared with each other,
  • a second aspect of the present disclosure is a sensor element having a solid electrolyte body, a detection electrode provided on the solid electrolyte body and in contact with exhaust gas, and a reference electrode provided on the solid electrolyte body and in contact with the atmosphere.
  • a gas sensor for detecting an electromotive force generated according to a difference in oxygen concentration in the reference electrode and the detection electrode, or a current generated between the reference electrode and the detection electrode.
  • the noble metal component of the detection electrode is made of a mixture or alloy of Pt and one or more kinds of noble metal elements other than Pt,
  • the Pt and the noble metal element have an on-top site which is a position immediately above one coordination, a bridge site which is a bridging position of two coordinations, a recessed site of three coordinations and a hexagonal outermost position where a lower layer exists.
  • the maximum value of the adsorption energy of the CO molecules of the four types of adsorption sites in the noble metal element is smaller than the maximum value of the adsorption energies of the CO molecules of the four types of adsorption sites in the Pt,
  • And / or the maximum value among the dissociative adsorption energies of NO of the four types of adsorption sites in the noble metal element is from the maximum value of the dissociative adsorption energies of NO of the four types of adsorption sites in the Pt
  • a third aspect of the present disclosure is a sensor element including a solid electrolyte body, a detection electrode provided on the solid electrolyte body and in contact with exhaust gas, and a reference electrode provided on the solid electrolyte body and in contact with the atmosphere.
  • a gas sensor for detecting an electromotive force generated according to a difference in oxygen concentration in the reference electrode and the detection electrode, or a current generated between the reference electrode and the detection electrode.
  • the noble metal component of the detection electrode comprises a mixture or alloy of two or more kinds of noble metal elements other than Pt, Pt and the noble metal element are on-top sites which are directly above one coordination, bridge sites which are two-coordination bridge positions, three-coordination depression positions where a lower layer is present and hexagonal close-packed Of four kinds of adsorption sites of hollow-site of the type, and face-centered cubic hollow-site of the tricoordinated hollow position where the lower layer is not present,
  • the adsorption energy of the CO molecule of at least one of the four types of adsorption sites in the noble metal element is the same as in 4 in Pt.
  • the gas sensor has a dissociative adsorption energy greater than that of NO of at least one of the four types of adsorption sites.
  • a fourth aspect of the present disclosure is a sensor element including a solid electrolyte body, a detection electrode provided on the solid electrolyte body and in contact with exhaust gas, and a reference electrode provided on the solid electrolyte body and in contact with the atmosphere.
  • a gas sensor for detecting an electromotive force generated according to a difference in oxygen concentration in the reference electrode and the detection electrode, or a current generated between the reference electrode and the detection electrode.
  • the noble metal component of the detection electrode comprises a mixture or alloy of two or more kinds of noble metal elements other than Pt, Pt and the noble metal element are on-top sites which are directly above one coordination, bridge sites which are two-coordination bridge positions, three-coordination depression positions where a lower layer is present and hexagonal close-packed Of four kinds of adsorption sites of hollow-site of the type, and face-centered cubic hollow-site of the tricoordinated hollow position where the lower layer is not present,
  • the maximum value among the adsorption energies of the CO molecules of the four types of adsorption sites in the noble metal element is smaller than the maximum value of the adsorption energies of the CO molecules of the four types of adsorption sites in Pt, And / or the maximum value among the dissociative adsorption energies of NO of the four types of adsorption sites in the noble metal element is higher than the maximum value of the dissociative adsorption energies of NO of the four types of adsorption sites in Pt Large, in the
  • a fifth aspect of the present disclosure is a method of manufacturing a gas sensor, A paste-like electrode material containing noble metal particles of an alloy of Pt and the noble metal element is disposed on the solid electrolyte body, the solid electrolyte body and the electrode material are fired, and the detection is performed on the surface of the solid electrolyte body.
  • a method of manufacturing a gas sensor wherein an average particle diameter of the noble metal particles is 2 ⁇ m or less.
  • the gas sensor of the first aspect has a detection electrode containing Pt (platinum) and one or more kinds of noble metal elements other than Pt.
  • Pt platinum
  • noble metal elements other than Pt are simply referred to as noble metal elements.
  • the precious metal element mixed or alloyed with Pt has an electromotive force in consideration of the adsorption energy of CO (carbon monoxide) molecules and the dissociative adsorption energy of NO (nitrogen monoxide) at four types of adsorption sites. It is selected by comparison with Pt frequently used as an electrode of a gas sensor of the formula or current type.
  • the adsorption energy of the CO molecule is a value representing the ease of adsorption of the CO molecule to the detection electrode, the strength of the adsorption force (the difficulty of separation), etc.
  • "adsorption energy of CO molecules” is used as an index. CO molecules are present as unburned gas in the exhaust gas when the air-fuel ratio of the exhaust gas whose electromotive force or current is detected by the gas sensor is on the rich side.
  • the dissociation adsorption energy of NO is a value representing the ease of adsorption of NO to the detection electrode, the strength of adsorption power (the difficulty of separation), etc. The larger the adsorption energy, the easier the adsorption and the stronger the adsorption power. It means that.
  • NO is dissociated into N (nitrogen) and O (oxygen)
  • it is adsorbed by the noble metal component of the detection electrode which is a catalyst, and therefore “dissociation adsorption energy of NO” is used as an index.
  • “Dissociation" of dissociative adsorption energy means that NO is decomposed into N and O.
  • the NO molecules are present in the exhaust gas when the air-fuel ratio of the exhaust gas whose electromotive force or current is detected by the gas sensor is on the lean side.
  • the CO molecule of the detection electrode in which the noble metal component is a mixture or alloy of Pt and a noble metal element compared to this detection electrode And / or at least one of enhancing the dissociative adsorption performance for NO.
  • the adsorption performance of CO molecules is represented by the adsorption energy of CO molecules
  • the dissociative adsorption performance of NO is represented by the dissociative adsorption energy of NO.
  • the same kind of adsorption sites among four kinds of adsorption sites are compared.
  • the adsorption energy of CO molecule by the noble metal element is smaller than the adsorption energy of CO molecule by Pt
  • the dissociative adsorption energy of NO by the noble metal element is at at least one adsorption site.
  • the noble metal element to be a mixture or alloy with Pt is selected so that at least one of the adsorption energy of NO by Pt and the adsorption energy of NO is satisfied.
  • the CO molecules are easily released from the detection electrode when the air-fuel ratio of the exhaust gas changes from the rich side to the lean side.
  • the phenomenon that CO molecules continue to be adsorbed to the detection electrode can be alleviated, and the change to the lean side can be detected rapidly by the gas sensor.
  • the gas sensor according to the first aspect focuses on four types of adsorption sites, and also focuses on the adsorption energy of CO molecules and the dissociative adsorption energy of NO. Then, the noble metal element having any of the adsorption sites having smaller adsorption energy of CO molecules than Pt or any adsorption sites having larger dissociative adsorption energy of NO than Pt is contained in the detection electrode as a mixture or alloy with Pt By doing this, it is possible to enhance the responsiveness as the detection performance of the gas sensor when the air-fuel ratio of the exhaust gas changes from the rich side to the lean side.
  • the gas sensor of the first aspect it is possible to enhance the response as the detection performance when the air-fuel ratio of the exhaust gas changes from the rich side to the lean side.
  • the maximum value of the adsorption energy of CO molecules by the noble metal element is smaller than the maximum value of the adsorption energy of CO molecules by Pt, and the maximum value of the adsorption energy of NO by the noble metal elements is the dissociative adsorption of NO by Pt
  • the noble metal element to be mixed with or alloyed with Pt is selected so that at least one of the fact that it is larger than the maximum value of energy is satisfied.
  • the responsiveness as the detection performance when the air-fuel ratio of the exhaust gas changes from the rich side to the lean side can be enhanced.
  • the detection electrode is formed of a mixture or alloy of two or more kinds of noble metal elements other than Pt. Then, based on the adsorption energy of CO molecules by Pt and the dissociative adsorption energy of NO, two types of the noble metal components of the detection electrode are formed by comparing the same adsorption sites among the four types of adsorption sites with this reference. The above precious metal elements are selected.
  • the responsiveness as the detection performance when the air-fuel ratio of the exhaust gas changes from the rich side to the lean side can be enhanced.
  • the detection electrode is formed of a mixture or alloy of two or more kinds of noble metal elements other than Pt. Then, based on the adsorption energy of CO molecules by Pt and the dissociative adsorption energy of NO for two or more kinds of precious metal elements, the maximum value of the dissociative adsorption energy of CO molecules and the dissociative adsorption energy of NO with this reference is compared The two or more types of noble metal elements constituting the noble metal component of the detection electrode are selected.
  • the responsiveness as the detection performance when the air-fuel ratio of the exhaust gas changes from the rich side to the lean side can be enhanced.
  • a gas sensor in the method of manufacturing a gas sensor according to the fifth aspect, can be manufactured which can more remarkably obtain the effect of enhancing the response when the air-fuel ratio of the exhaust gas changes from the rich side to the lean side.
  • the average particle diameter of the noble metal particles in the electrode material for forming the detection electrode is set to 2 ⁇ m or less.
  • the surface of the detection electrode formed by firing the electrode material together with the solid electrolyte body can be smoothed. Therefore, it is possible to form a state in which CO molecules and NO are less likely to be adsorbed on the surface of the detection electrode, as compared to the detection electrode formed of an electrode material containing noble metal particles having an average particle diameter of more than 2 ⁇ m.
  • the effect of enhancing the responsiveness of the gas sensor of the first to fourth aspects can be more significantly obtained.
  • the surface of the detection electrode is densified by using noble metal particles having an average particle diameter of 2 ⁇ m or less.
  • the adsorption performance of the detection electrode for CO molecules and NO, and the reaction rate at which the CO molecules and NO are decomposed can be enhanced.
  • FIG. 6 is a graph showing adsorption energy [eV] of CO molecules at four types of adsorption sites of Pt, Rh, Ir and Pd metal atoms according to Embodiment 1.
  • FIG. 6 is a graph showing dissociative adsorption energy [eV] of NO at four types of adsorption sites of Pt, Rh, Ir and Pd metal atoms according to Embodiment 1.
  • Explanatory drawing which shows the periphery of the exhaust pipe of an internal combustion engine by which the gas sensor concerning Embodiment 1 is arrange
  • the graph which shows the relationship between the air fuel ratio and the purification rate [%] of a three-way catalyst concerning Embodiment 1.
  • FIG. which shows the cross section of the other sensor element concerning Embodiment 1.
  • FIG. Explanatory drawing which shows the method of calculation of the adsorption energy of CO molecule using simulation model concerning Embodiment 1.
  • FIG. 1 which shows how to calculate the dissociative adsorption energy of NO using a simulation model concerning Embodiment 1.
  • FIG. The graph which shows the relationship between the air fuel ratio and the electromotive force [V] between electrodes concerning Embodiment 1.
  • FIG. According to Example 1, a graph showing relative temperature of the detecting electrode, NO, the behavior of the gases CO and CO 2.
  • the graph which shows change of electromotive force [V] between electrodes to NO concentration in exhaust gas concerning Example 1.
  • FIG. which shows the change of the sensor output detected when changing the air fuel ratio of waste gas, when the average particle diameter of the noble metal particle of a detection electrode concerning Example 2 is 7.4 micrometers.
  • the graph which shows the change of the sensor output detected when changing the air fuel ratio of waste gas, when the average particle diameter of the noble metal particle of a detection electrode concerning Example 2 is 2 micrometers.
  • the graph which shows the change of the sensor output detected when changing the air fuel ratio of waste gas, when the average particle diameter of the noble metal particle of a detection electrode concerning Example 2 is 1 micrometer.
  • the graph which shows an air fuel ratio in case a sensor output is set to 0.65 V about a case where average particle diameter of precious metal particles of detection electrode 22 concerning Example 2 is 7.4 micrometers, 2 micrometers, and 1 micrometers.
  • the gas sensor 1 of this embodiment is provided with a solid electrolyte body 21, a detection electrode 22 provided on the solid electrolyte body 21 and in contact with the exhaust gas G, and provided on the solid electrolyte body 21
  • a sensor element 2 having a reference electrode 23 in contact with A is provided to detect an electromotive force generated in accordance with the difference in oxygen concentration between the reference electrode 23 and the detection electrode 22.
  • the noble metal component of the detection electrode 22 is made of a mixture or alloy of Pt and one or more kinds of noble metal elements other than Pt. In the following description, noble metal elements other than Pt are simply referred to as noble metal elements.
  • Pt and a noble metal element are, as shown in FIG. 3, an on-top site S1 which is a position directly above one coordination, a bridge site S2 which is a bridging position of two coordination, and a recess position of three coordination, and the lower layer is It has four kinds of adsorption sites of the hexagonal close-packed hollow site S3 which is the existing position, and the face-centered cubic hollow site S4 which is the tricoordinated recessed position and the position where the lower layer is not present.
  • the adsorption site refers to an adsorption site of atoms capable of adsorbing the gas contained in the exhaust gas G.
  • the noble metal element satisfies at least one of the following first and second conditions.
  • the first condition is that, as shown in FIG. 4, when the same adsorption sites in Pt and the noble metal element are compared with each other, CO molecules of at least one of the four adsorption sites in the noble metal element are compared in the noble metal element.
  • the adsorption energy is set to be smaller than the adsorption energy of CO molecules of at least one of four adsorption sites in Pt.
  • the second condition as shown in FIG. 5, when the same adsorption sites in Pt and the noble metal element are compared with each other, dissociation of NO of at least one of the four adsorption sites in the noble metal element is performed.
  • the adsorption energy is set to be larger than the dissociative adsorption energy of NO of at least one of the four adsorption sites in Pt.
  • the gas sensor 1 of the present embodiment is also referred to as an oxygen sensor, and is disposed in the exhaust pipe 41 of the internal combustion engine 4 such as a vehicle, and the air fuel ratio of the exhaust gas G flowing through the exhaust pipe 41 is rich or lean To detect which of the The air-fuel ratio of the exhaust gas G indicates the air-fuel ratio of the internal combustion engine 4 detected from the exhaust gas G.
  • the three-way catalyst 42 is disposed in the exhaust pipe 41, and the gas sensor 1 as an oxygen sensor is disposed downstream of the position where the three-way catalyst 42 is disposed in the exhaust pipe 41. Then, the gas sensor 1 detects whether the exhaust gas G purified by the three-way catalyst 42 is on the rich side or the lean side.
  • an air-fuel ratio sensor 1X that quantitatively detects an air-fuel ratio which is a mixing ratio of fuel and air in the internal combustion engine 4 is disposed.
  • a control unit (ECU) 40 controls an air-fuel ratio in the internal combustion engine 4 using values detected by the gas sensor 1 and the air-fuel ratio sensor 1X.
  • a catalyst or the like for storing and reducing NOx may be disposed in the exhaust pipe 41.
  • the gas sensor 1 can be used to detect the presence or absence of exudation of CO, NOx, etc. from the three-way catalyst 42 or other catalysts.
  • the three-way catalyst 42 purifies HC (hydrocarbon), CO (carbon monoxide) and NOx (nitrogen oxide) in the exhaust gas G.
  • the air amount is determined by the opening degree of the throttle valve 44 disposed in the intake pipe 43, and the air amount ratio of the air amount and the fuel amount is determined by the fuel amount injected from the fuel injection valve 45 Is adjusted.
  • the gas sensor 1 is provided with a heater 24 disposed on the inner peripheral side of the sensor element 2, a housing 31 attached to the exhaust pipe 41 and holding the sensor element 2.
  • a distal end side cover 32 attached to the distal end side of the sensor element 2 and the proximal end side cover 33 attached to the proximal end side of the housing 31 and covering the sensor element 2 and terminals 34 for electrical wiring of the heater 24; Have.
  • the sensor element 2 of this embodiment includes a solid electrolyte body 21 having a bottomed cylindrical shape (cup shape), and a detection electrode 22 provided on the outer peripheral surface 201 of the solid electrolyte body 21. And a reference electrode 23 provided on the inner circumferential surface 202 of the solid electrolyte body 21.
  • the detection electrode 22 is exposed to the exhaust gas G flowing into the distal end side cover 32 through the flow hole 321 provided in the distal end side cover 32, and the reference electrode 23 is introduced to the proximal end side cover 33. It is exposed to the atmosphere A flowing from the inside of the base end side cover 33 to the inner peripheral side of the solid electrolyte body 21 through the hole 331.
  • the heater 24 generates heat when energized, and heats the solid electrolyte body 21 and the electrodes 22 and 23 to an activation temperature.
  • the detection electrode 22 includes a detection portion 221 provided on the entire periphery of the outer peripheral surface 201 near the front end side where the bottom portion 211 of the solid electrolyte body 21 is located, and a base end from the detection portion 221 It has a lead portion 222 pulled out to the side, and a connection portion 223 provided at the base end of the lead portion 222.
  • the detection unit 221 is a portion that is exposed to the exhaust gas G and performs gas detection with the reference electrode 23.
  • the connection portion 223 is a portion connected to the terminal 34 to which the lead wire 35 is connected.
  • the reference electrode 23 is provided on substantially the entire inner peripheral surface 202 of the solid electrolyte body 21. Other than this, the reference electrode 23 can also be partially provided on the inner circumferential surface 202 in the same manner as the detection electrode 22.
  • the sensor element 2 is also a laminated type in which the detection electrode 22 is provided on one surface of the plate-shaped solid electrolyte body 21 and the reference electrode 23 is provided on the other surface. Good.
  • the heating element 24A constituting the heater 24 is stacked on the solid electrolyte body 21 via the insulator 25.
  • the detection electrode 22 is disposed in the gas chamber 28 into which the exhaust gas G is introduced through the flow hole 321 of the front end side cover 32, the porous protective layer 26, and the diffusion resistance layer 27, and the reference electrode 23 is It is disposed in the duct 29 into which the atmosphere A is introduced from the proximal end side via the introduction hole 331 of the proximal end cover 33.
  • the stacked sensor element 2 can be used as an air-fuel ratio sensor 1X as a current type (limit current type) gas sensor.
  • the air-fuel ratio sensor 1X is used to quantitatively detect the air-fuel ratio of the exhaust gas G.
  • a DC voltage is applied between the detection electrode 22 and the reference electrode 23 with the reference electrode 23 on the positive side (high voltage side).
  • the solid electrolyte body 21 has the property of conducting oxygen ions at its activation temperature.
  • the solid electrolyte body 21 is formed as a sintered body of a zirconia material as a metal oxide.
  • the zirconia material of this embodiment comprises yttria partially stabilized zirconia.
  • the zirconia material can be composed of various materials based on zirconia. As the zirconia material, stabilized zirconia or partially stabilized zirconia in which a part of zirconia is replaced by a rare earth noble metal element or an alkaline earth noble metal element can be used.
  • the detection electrode 22 of the present embodiment has catalytic activity for oxygen, CO, NO, and the like.
  • the noble metal component of the detection electrode 22 is made of, in addition to Pt, a mixture or an alloy with one or more kinds of noble metal elements selected from Rh, Ir and Pd.
  • each noble metal element of Rh, Ir or Pd at least makes the adsorption energy of CO molecules smaller than Pt or makes the dissociative adsorption energy of NO larger than Pt. For the purpose, it is added to the detection electrode 22.
  • the detection electrode 22 may or may not contain the same zirconia material as that of the solid electrolyte body 21.
  • the detection electrode 22 may not contain any zirconia material.
  • the detection electrode 22 is provided by applying and baking a paste material to the solid electrolyte body 21, even if the detection electrode 22 contains a zirconia material which is a common material with the solid electrolyte body 21. Good.
  • the adsorption energy of CO molecules and the dissociative adsorption energy of NO are values calculated by setting a simulation model M of atoms and molecules in software operated by a computer.
  • the number of vertical and horizontal alignments (number of cells) in each layer of metal atoms of Pt, Rh, Ir or Pd is 3 ⁇ 3 cells, and the number of layers of metal atoms in the height direction is 3 It was a layer.
  • the metal atom of the first layer is indicated by K1
  • the metal atom of the second layer is indicated by K2
  • the metal atom of the third layer is indicated by K3.
  • the first layer may be denoted by K1 and the second layer may be denoted by K2.
  • a vacuum layer of 20 angstroms (10 -10 m) was provided between the layers of the arrangement of metal atoms, and the layer of metal atoms was a face of a face-centered cubic lattice structure as the most stable face.
  • the metal atom Pt, Rh, Ir, Pd are appropriately selected, and the adsorption site where the CO molecule is disposed is the on-top site S1, the bridge site S2, the hexagonal close-packed hollow site S3 or the face-centered cubic type It set suitably as hollow site S4.
  • the CO molecule is adsorbed to the metal atom via C (carbon).
  • metal atoms Pt, Rh, Ir, and Pd are appropriately selected, and adsorption sites where N and O are respectively disposed are on top site S1, bridge site S2, hexagonal close-packed hollow site S3 or face-centered cubic cube It set suitably as a type
  • Table 1 shows the adsorption energy (eV) of CO molecules by Pt, Rh, Ir, and Pd.
  • Table 2 shows the dissociative adsorption energy (eV) of NO by Pt, Rh, Ir, and Pd.
  • eV dissociative adsorption energy
  • top indicates the on-top site (on-top site S1), and the most surface is the atomic arrangement of metals such as Pt, Rh, Ir or Pd. It shows the free energy when CO molecules, or N and O are adsorbed at a position directly above the metal atom of one coordination that means the surface of the metal atom in the atomic arrangement (first layer K1) located on the side.
  • bridge indicates a bridge site (bridge site S2) or two-hold site, and when looking at an atomic arrangement of a metal that is Pt, Rh, Ir or Pd, It shows the free energy when CO molecules, or N and O are adsorbed at the bridging position of the bicoordinated metal atom which means between two metal atoms in the first layer K1.
  • hcp hollow indicates a hexagonal close-packed hollow site (hexagonal close-packed hollow site S3) or three-hold site, and is Pt, Rh, Ir or Pd.
  • a tricoordinate metal atom that means between three metal atoms in the first layer K1, below the depressed position, inside the first layer K1. This indicates the free energy when CO molecules or N and O are adsorbed at the position where the metal atom of the second layer K2 is located.
  • fcc hollow indicates face-centered cubic hollow site (face-centered cubic hollow site S4) or three-hold site as shown in the same figure, and is Pt, Rh, Ir or Pd.
  • Pt, Rh, Ir or Pd When looking at the atomic arrangement of metals, it is a depressed position of a tricoordinate metal atom that means between three metal atoms in the first layer K1, and the metal atom of the second layer K2 below this depressed position Indicates the free energy when CO molecules or N and O are adsorbed at the position where is not present.
  • the adsorption energy of the CO molecule at the on top site S1 of Rh and Pd is smaller than the adsorption energy of the CO molecule at the on top site S1 of Pt.
  • the bridge sites S2 of Rh, Ir and Pd, and hexagonal close-packed The adsorption energy of the CO molecule in each of the type and face centered cubic type hollow sites S3 and S4 is small.
  • Rh, Ir and Pd are selected as noble metal elements that satisfy the first condition.
  • the adsorption energy of CO molecules at the on-top site S1 of Ir is larger than the adsorption energy of the CO molecules at the on-top site S1 of Pt.
  • adsorption energy of CO molecule at each adsorption site of Rh, Ir, and Pd one smaller than adsorption energy of CO molecule at the same adsorption site of Pt is shown surrounded by a horizontally long circle.
  • Rh and Ir on top sites are compared with dissociative adsorption energies of NO on Pt on top site S1, bridge site S2, and hexagonal close-packed and face-centered cubic hollow sites S3 and S4, respectively.
  • the dissociative adsorption energy of NO in each of S1, bridge site S2, and hexagonal close-packed and face-centered cubic hollow sites S3, S4 is large.
  • Rh and Ir are selected as noble metal elements that satisfy the second condition.
  • dissociative adsorption energy of NO of Rh and Ir on top site S1 is larger than the dissociative adsorption energy of NO of Pt on top site S1, since the absolute value of this energy is small, it is surrounded by a horizontally long circle. Not.
  • Rh, Ir and Pd are suitable as noble metal elements that satisfy at least the first condition or the second condition and form a mixture or alloy with Pt.
  • the noble metal element forming a mixture or alloy with Pt preferably satisfies both the first condition and the second condition. Therefore, the noble metal element forming a mixture or alloy with Pt is preferably at least one of Rh and Ir.
  • the noble metal component of the detection electrode 22 is a mixture or alloy of Pt and Rh, a mixture or alloy of Pt and Ir, a mixture or alloy of Pt and Pd, a mixture or alloy of Pt and Rh and Ir, Pt and Rh and Pd. It can be a mixture or alloy, a mixture or alloy of Pt, Ir and Pd, or a mixture or alloy of Pt, Rh, Ir and Pd.
  • the mixture means that the metals are not mixed at the atomic level, and for example, particles, lumps, and other metals are dispersed.
  • the alloy refers to a solid solution in which the metals are completely dissolved, a eutectic in which each metal is independent at the crystal level, an intermetallic compound bonded at a constant rate at the atomic level, and the like.
  • the noble metal element forming a mixture or alloy with Pt as the noble metal component of the detection electrode 22 is preferably Rh, Ir, or Pd.
  • the noble metal component of the reference electrode 23 is made of Pt or the like as in the conventional case.
  • the configuration of the gas sensor 1 of the present embodiment can also be understood as a method of manufacturing the gas sensor 1. Specifically, in selecting a noble metal element to form a mixture or alloy with Pt in the detection electrode 22, this noble metal element is selected to satisfy at least one of the first condition and the second condition.
  • the first condition and the second condition are as described above.
  • the detection electrode 22 and the reference electrode 23 can be formed by performing a plating process or a baking process.
  • a sol containing solid electrolyte particles is attached to the formation portion of the electrode in the solid electrolyte body 21, and this sol is heated.
  • a porous precipitation portion having an uneven surface can be formed on the surface of the solid electrolyte body 21.
  • a detection electrode 22 containing Pt and a noble metal element is formed on the deposition portion.
  • the plating solution is impregnated into the porous deposition part, and the detection electrode 22 in which Pt and a noble metal element are deposited is also formed inside the deposition part.
  • an electrolytic plating method, an electroless-plating method etc. in the formation method of the electrode using a plating solution, for example.
  • an electrode material is prepared in which noble metal particles of Pt and a noble metal component, or noble metal particles alloyed with Pt are made into a paste.
  • the paste-like electrode material may be a mixture of noble metal particles and a solid electrolyte to be a co-material.
  • the electrode material is applied to the surface of the solid electrolyte body 21 by pad printing, screen printing, hand coating or the like, and the solid electrolyte body 21 and the electrode material are fired in a temperature environment of 600 to 1450 ° C.
  • the detection electrode 22 can be formed on the surface of the body 21.
  • the detection electrode 22 can also be formed by performing both plating treatment and baking treatment.
  • the detection electrode 22 formed by plating on the solid electrolyte body 21 is formed of an iridium nitrate solution, an iridium chloride acid acid solution, an iridium chloride hydrochloric acid solution, a rhodium nitrate solution, a rhodium chloride acid solution, and rhodium chloride hydrochloride
  • the solid electrolyte body 21 and the detection electrode 22 can be fired in a temperature environment of 600 to 1450 ° C. after being immersed in at least one solution among the solutions.
  • the electromotive force type gas sensor 1 of the present embodiment improves the response when the air-fuel ratio of the exhaust gas G changes from the rich side to the lean side.
  • the air-fuel ratio indicating the mixing ratio of fuel and air in the internal combustion engine 4 the case where the mixing ratio of fuel is larger than the stoichiometric air-fuel ratio when the fuel and air are completely burned is the rich side
  • the side with less mixing ratio is called the lean side.
  • unburned gas such as CO molecules due to the fuel not burned remains in the exhaust gas G.
  • the air-fuel ratio of the exhaust gas G is on the lean side, the exhaust gas G contains nitrogen oxides (NOx) such as NO molecules in which oxygen in the air and nitrogen react with each other.
  • NOx nitrogen oxides
  • the electromotive force which is the output of the electromotive force type gas sensor, becomes higher on the rich side and lower on the lean side, when the air-fuel ratio is at 14.5 as the theoretical air-fuel ratio. .
  • the oxygen concentration of the atmosphere in contact with the reference electrode 23 is higher than the oxygen concentration of the exhaust gas G in contact with the detection electrode 22. Moves, and a small electromotive force is generated between the electrodes 22 and 23.
  • the gas sensor 1 of the present embodiment has a detection electrode 22 containing Pt (platinum) and one or more kinds of precious metal elements.
  • Pt platinum
  • the precious metal element mixed or alloyed with Pt has an electromotive force in consideration of the adsorption energy of CO (carbon monoxide) molecules and the dissociative adsorption energy of NO (nitrogen monoxide) at four types of adsorption sites. It is selected by comparison with Pt frequently used as an electrode of the gas sensor 1 of the formula.
  • the CO molecule of the detection electrode 22 whose noble metal component is a mixture or alloy of Pt and a noble metal element is compared with this detection electrode. And / or at least one of enhancing the dissociative adsorption performance for NO.
  • the adsorption energy of CO molecules and the dissociative adsorption energy of NO of the adsorption sites of the same kind among the four kinds of adsorption sites are compared for Pt and the noble metal element.
  • one or two or more kinds of precious metal elements which satisfy at least one of the 1st condition and the 2nd condition form a mixture or alloy with Pt.
  • the noble metal element satisfies the first condition
  • the adsorption performance of the detection electrode 22 for CO molecules is weakened, and when the air-fuel ratio of the exhaust gas G changes from the rich side to the lean side, the CO molecules are released from the detection electrode 22 It will be easier.
  • the phenomenon that CO molecules continue to be adsorbed to the detection electrode 22 can be alleviated, and the change to the lean can be detected rapidly by the gas sensor 1 .
  • the dissociative adsorption performance for NO of the detection electrode 22 is enhanced, and NO in the exhaust gas G is N when the air fuel ratio of the exhaust gas G changes from rich to lean. And dissociate into O and become easy to be adsorbed to the detection electrode 22.
  • NO facilitates CO molecule detachment from the detection electrode 22, and the gas sensor 1 can quickly detect the change to the lean side.
  • the gas sensor 1 of the present embodiment attention is paid to four types of adsorption sites, and attention is paid to the adsorption energy of CO molecules and the dissociative adsorption energy of NO. Then, the noble metal element having any adsorption site having smaller adsorption energy of CO molecules than Pt or any adsorption site having larger dissociative adsorption energy of NO than Pt is used as a mixture or alloy with Pt to the detection electrode 22 By including it, the responsiveness as the detection performance of the gas sensor 1 when the air-fuel ratio of the exhaust gas G changes from the rich side to the lean side can be enhanced.
  • the gas sensor 1 of the present embodiment it is possible to enhance the responsiveness as the detection performance when the air-fuel ratio of the exhaust gas G changes from the rich side to the lean side.
  • the detection electrodes are compared by comparing the maximum values among the adsorption energy of CO molecules of the four types of adsorption sites and the maximum values among the dissociative adsorption energies of NO of the four adsorption sites.
  • the noble metal element which forms a mixture or alloy with 22 Pt is selected.
  • the first condition for selecting the noble metal element of this embodiment is that, among the noble metal element, the maximum value of the adsorption energy of the CO molecules of the four adsorption sites is the adsorption of the CO molecules of the four adsorption sites in Pt. It shall be smaller than the maximum value of energy.
  • the second condition for selecting the noble metal element of this embodiment is that, among the noble metal elements, the maximum value among the dissociative adsorption energy of NO at four types of adsorption sites is the number of NO at four types of adsorption sites at Pt. Assume that it is larger than the maximum value of the dissociative adsorption energy. Then, a noble metal element to be a mixture or alloy with Pt is selected so that at least one of the first condition and the second condition is satisfied.
  • the noble metal component is selected by comparing the maximum values of adsorption energy of Pt and the noble metal component.
  • the dissociative adsorption performance of NO on the detection electrode 22 is considered to be greatly affected by the maximum value of dissociative adsorption energy of NO among the four types of adsorption sites. Therefore, the noble metal component is selected by comparing the maximum values of the dissociative adsorption energy for Pt and the noble metal component.
  • the adsorption energy of CO molecules of the on-top site S1 is the largest.
  • the adsorption energy of CO molecules of hexagonal close-packed and face-centered cubic hollow sites S3 and S4 is the largest.
  • Rh and Pd are selected as a noble metal element which satisfy
  • the maximum value of the adsorption energy of CO molecules at the four adsorption sites of Pt, Rh, Ir and Pd is shown with (max) attached.
  • dissociative adsorption energy of NO at four kinds of adsorption sites of Pt, Rh and Ir dissociative adsorption energy of NO of bridge site S2 is the largest.
  • dissociative adsorption energy of NO of the bridge site S2 and the face-centered cubic hollow site S4 is the largest.
  • Rh and Ir are selected as a noble metal element which satisfy
  • the maximum value of dissociative adsorption energy of NO at four adsorption sites of Pt, Rh, Ir and Pd is shown with (max) attached.
  • Rh, Ir, and Pd are selected as the noble metal elements forming a mixture or alloy with Pt that satisfies at least one of the first condition and the second condition. Also in the gas sensor 1 of the present embodiment, as in the case of the first embodiment, the responsiveness as the detection performance when the air-fuel ratio of the exhaust gas G changes from the rich side to the lean side can be enhanced.
  • the detection electrode 22 is formed of a mixture or alloy of two or more types of noble metal elements other than Pt.
  • the adsorption energy of CO molecules by Pt and the dissociative adsorption energy of NO are the same, and the same among the four types of adsorption sites with this reference.
  • Two or more types of noble metal elements constituting the noble metal component of the detection electrode 22 are selected by comparing the adsorption sites.
  • the selection of the two or more types of noble metal elements is performed in the same manner as in the first embodiment, and Rh, Ir, and Pd are selected.
  • the noble metal component of the detection electrode 22 of this embodiment is selected as a mixture or alloy of Rh and Ir, a mixture or alloy of Rh and Pd, a mixture or alloy of Ir and Pd, or a mixture or alloy of Rh, Ir and Pd. Ru.
  • the detection electrode 22 is formed of a mixture or alloy of two or more types of noble metal elements other than Pt. Further, in the gas sensor 1 of the present embodiment, as in the case of the second embodiment, among the adsorption energies of CO molecules of four types of adsorption sites, among the maximum values of the adsorption energies of NO and of dissociative adsorption energies of NO of four types of adsorption sites The noble metal elements which form a mixture or alloy with Pt of the detection electrode 22 are selected by comparing the maximum values of. Also in this embodiment, as in the second embodiment, Rh, Ir, and Pd are selected as the noble metal elements constituting the noble metal component of the detection electrode 22.
  • the present embodiment shows a case where the noble metal component of the detection electrode 22 is formed by noble metal particles of an alloy of Pt and a noble metal element.
  • the noble metal element is composed of one or more noble metal elements selected from Rh, Ir and Pd.
  • the noble metal element of this embodiment is composed of Rh.
  • the average particle diameter of the noble metal particle which comprises the noble metal component of the detection electrode 22 is 2 micrometers or less.
  • the detection electrode 22 is formed as a sintered body of noble metal particles.
  • the particle diameter of at least 90% or more of the noble metal particles in the entire electrode material is preferably 2 ⁇ m or less. Further, the particle diameter of the noble metal particles in the entire electrode material is more preferably 2 ⁇ m or less.
  • the average particle diameter of the noble metal particles in the electrode material can be, for example, 0.05 ⁇ m or more. Further, from the viewpoint of the effect of reducing the hysteresis generated in the sensor output, the average particle diameter of the noble metal particles in the electrode material can be set to, for example, 0.5 ⁇ m or more.
  • the noble metal component of the reference electrode 23 is formed of noble metal particles of Pt.
  • the average particle diameter of the noble metal particles constituting the noble metal component of the reference electrode 23 is 0.5 to 3 ⁇ m.
  • the reference electrode 23 is formed as a sintered body of noble metal particles.
  • the particle size of the noble metal particles refers to the maximum particle size which is the length of the longest portion of the noble metal particles in any shape.
  • the maximum particle size of the noble metal particle means, for example, the diameter of the noble metal particle when it is spherical, and the length of the longest part when the noble metal particle has a complicated shape.
  • the average particle diameter of the noble metal particles refers to the average value of the particle size distribution of the noble metal particles, and more specifically, the number average particle diameter when the maximum particle diameter of 100 noble metal particles is arbitrarily measured can do.
  • the maximum particle size of the noble metal particles can be measured by observation using an optical microscope or an electron microscope.
  • the maximum particle size can be measured by, for example, exposing the cross section of the detection electrode 22 by ion beam processing or the like and observing the cross section by SEM (scanning electron microscopy) or the like.
  • the noble metal particles contained in the detection electrode 22 and the reference electrode 23 are in a state in which adjacent particles are joined by firing the detection electrode 22 and the reference electrode 23 at a predetermined temperature. However, even if adjacent particles are joined, the outer shape of each particle can be observed by observation using an optical microscope or an electron microscope. Therefore, the maximum particle size of the noble metal particles in each of the electrodes 22 and 23 can be measured, and the average particle size can be obtained based on the measured maximum particle size.
  • the average particle size of the noble metal particles can also be determined by laser diffraction / scattering method.
  • the average particle diameter can be determined by the volume average diameter as the arithmetic average diameter of the particle diameter distribution.
  • the solid electrolyte body 21 of this embodiment is a plate-like one shown in FIG. 8 of the first embodiment.
  • the sensor element 2 is a laminated type, and each of the electrodes 22 and 23 is formed by firing a paste-like electrode material.
  • Each of the electrodes 22 and 23 contains the same components of the solid electrolyte as the solid electrolyte body 21 in addition to the noble metal particles.
  • the components of this solid electrolyte can be constituted by solid electrolyte particles.
  • the solid electrolyte body 21 is formed as a sintered body of a zirconia material.
  • Each of the electrodes 22 and 23 is formed as a sintered body of noble metal particles and solid electrolyte particles.
  • a method of manufacturing the gas sensor of the present embodiment will be described.
  • a paste-like electrode material containing noble metal particles of an alloy of Pt and a noble metal element is prepared.
  • the electrode material includes, in addition to the noble metal particles, a solid electrolyte constituting the solid electrolyte body 21, a solvent, and the like.
  • the average particle diameter of the noble metal particle in an electrode material shall be 2 micrometers or less.
  • the electrode material is disposed on the solid electrolyte body 21 by printing or the like, and the solid electrolyte body 21 and the electrode material are fired.
  • the electrode material constituting the reference electrode 23 is disposed on the solid electrolyte body 21 by printing or the like, and the insulator 25, the heating element 24 A and the like are laminated to form the sensor element 2.
  • the plurality of precious metal particles and the plurality of solid electrolyte particles in the detection electrode 22 are combined with each other, and the gap in the detection electrode 22 is filled as much as possible. Further, the plurality of noble metal particles and the plurality of solid electrolyte particles in the detection electrode 22 are combined with the plurality of solid electrolyte particles in the solid electrolyte body 21.
  • the average particle diameter of the noble metal particles constituting the detection electrode 22 is 2 ⁇ m or less, so that at least one of the gas adsorption surface amount and the reaction interface amount at the time of electrode formation of the detection electrode 22 is adjusted. It is preferable because it is easy.
  • the detection electrode 22 can form a state in which CO molecules and NO are less likely to be adsorbed on the surface of the detection electrode 22 as compared to the detection electrode 22 including noble metal particles having an average particle diameter exceeding 2 ⁇ m. As a result, the effect of enhancing the responsiveness of the gas sensor 1 can be obtained more significantly.
  • the amount of adsorption of CO molecules and NO of the detection electrode 22 is reduced.
  • the speed at which CO molecules and NO molecules are substituted on the electrode surface of the detection electrode 22 can be increased, potential change or current change in the detection electrode 22 easily occurs, and responsiveness of the gas sensor 1 is improved.
  • the hysteresis can be reduced between the sensor output when the air-fuel ratio of the exhaust gas G changes from the lean side to the rich side and the sensor output when the air-fuel ratio of the exhaust gas G changes from the rich side to the lean side. Further, it is possible to improve the response (sensitivity) when the air-fuel ratio of the exhaust gas G changes from the lean side to the rich side and when the air-fuel ratio of the exhaust gas G changes from the rich side to the lean side.
  • Example 1 In this example, the practical products 1 to 5 which are the gas sensor 1 provided with the detection electrode 22 containing the noble metal component selected based on the first to fourth embodiments are shown. Then, the NO-CO reaction start temperature and the NO concentration in the exhaust gas G when the air-fuel ratio of the exhaust gas G contacting the detection electrode 22 changed from the rich side to the lean side were measured. Further, for comparison, the same measurement was performed also on Comparative Products 1 to 4, which are gas sensors provided with a detection electrode containing a noble metal element alone. Moreover, in the measurement result, it was confirmed whether the noble metal component of the detection electrode 22 is improved as compared with the case of only Pt as compared with the case of only Pt.
  • the detection electrode 22 contains Pt as a noble metal component
  • the detection electrode 22 contains Ir as a noble metal component
  • the comparative product 3 is one in which the detection electrode 22 contains Rh as a noble metal component
  • the comparative product 4 is one in which the detection electrode 22 contains Pd as a noble metal component.
  • the solid electrolyte body 21 provided with the detection electrode 22 and the reference electrode 23 is yttria stabilized zirconia (YSZ), and the noble metal component of the reference electrode 23 is Pt. .
  • the NO-CO reaction start temperature is brought into contact with He (helium) as a base gas containing 200 ppm each of NO and CO at 20 ° C.
  • He helium
  • the temperature was raised from 100 ° C. to 800 ° C. at a temperature rising rate of 1 / min, it was measured as the temperature at which NO and CO started to react.
  • the NO-CO reaction when the air-fuel ratio of the exhaust gas G in contact with the detection electrode 22 changes from the rich side to the lean side, CO adsorbed and remaining on the detection electrode 22 is contained in the exhaust gas G on the lean side. It occurs when it reacts with. Since a large amount of CO 2 is generated when CO and NO react, it is possible to confirm the progress of the reaction between CO and NO by monitoring the amount of CO 2 generated.
  • the behavior of each gas of NO, CO, and CO 2 with respect to the temperature [° C.] of the detection electrode 22 in the gas sensor 1 is measured using a mass spectrometer for an example of measuring the NO-CO reaction start temperature. It shows by the measurement result.
  • the behavior of each gas is shown as the ion current [A] measured by the mass spectrometer.
  • NO and CO react at a temperature higher than around 200 ° C. to generate CO 2 .
  • the NO-CO reaction start temperature in this case can be understood to be 200 ° C.
  • the NO concentration in the exhaust gas G in contact with the detection electrode 22 brings a base gas at 600 ° C. containing 200 ppm of CO into contact with the detection electrode 22 and NO is gradually added to the base gas. It was measured as the concentration of NO when the electromotive force was lower than the threshold value of 0.6V.
  • the gas sensor 1 detects a change from the rich side to the lean side of the air-fuel ratio of the exhaust gas G, the electromotive force (voltage) between the electrodes 22 and 23 drops. The lower the concentration of NO when the electromotive force falls, the more NO reaches the detection electrode 22 so that the NO—CO reaction occurs and the electromotive force is lowered. Therefore, it can be said that the change of the air-fuel ratio from the rich side to the lean side of the detection electrode 22 is more easily detected as the concentration of NO is lower.
  • FIG. 13 shows a change in the electromotive force [V] between the electrodes 22 and 23 with respect to the NO concentration [ppm] in an example in which the NO concentration in the exhaust gas G was measured.
  • the electromotive force drops across the 0.6 V threshold.
  • the NO concentration in the exhaust gas G in this case can be considered to be 200 ppm.
  • Table 3 shows the measurement results in this example.
  • the NO-CO reaction start temperature of the comparative product 1 in which the noble metal component of the detection electrode 22 is Pt was 550 ° C.
  • the NO-CO reaction start temperature of the products 1 to 5 was lower than 550 ° C.
  • the concentration of NO is 210 ppm when the electromotive force of the comparative product 1 falls below the threshold value of 0.6 V
  • the electromotive force of the implemented products 1 to 5 falls below 0.6 V
  • the concentration of NO was lower than 210 ppm. From this result, it can be said that the practical products 1 to 5 can easily detect the change of the air-fuel ratio from the rich side to the lean side as compared with the case of the detection electrode of the comparative product 1 having Pt as a noble metal component.
  • the NO-CO reaction start temperature and the concentration of NO are the lowest and the air-fuel ratio from the rich side to the lean side is It turned out that the change was most easily detected.
  • the content ratio of Pt, Rh, and Ir in the noble metal component of the detection electrode 22 is, based on 100 mass% of the entire noble metal component, Pt: 20 to 90 mass%, Rh: 5 to 60 mass%, Ir: 1 to 20 It is preferable to contain mass%.
  • the content of Pt is greater than the content of Rh, and the content of Rh is greater than the content of Ir.
  • the oxygen releasability of the detection electrode 22 is deteriorated (oxygen is less likely to be separated from the detection electrode 22), and the air fuel ratio of the exhaust gas changes from the lean side to the rich side There is a risk that responsiveness when doing
  • the content of Pt is more than 90% by mass, the effect of improving the catalytic activity of the detection electrode 22 may be lowered.
  • the content of Rh is less than 5% by mass, the effect of improving the catalytic activity of the detection electrode 22 may be reduced.
  • the content of Rh is more than 60% by mass, the oxygen releasability of the detection electrode 22 is deteriorated, and the responsiveness when the air-fuel ratio of the exhaust gas changes from the lean side to the rich side may be deteriorated. is there.
  • the content of Ir When the content of Ir is less than 1% by mass, the effect of improving the catalytic activity of the detection electrode 22 may be reduced. On the other hand, when the content of Ir is more than 20% by mass, the oxygen releasability of the detection electrode 22 is deteriorated, and the responsiveness when the air-fuel ratio of the exhaust gas changes from the lean side to the rich side may be deteriorated. is there.
  • Response is checked when the air-fuel ratio of the exhaust gas G changes from the stoichiometric air-fuel ratio (stoichiometric) to the rich side, and when the air-fuel ratio of the exhaust gas G changes from the stoichiometric air-fuel ratio (stoichiometric) to the lean side 63% response It went by time.
  • the 63% response time is from when the air fuel ratio of the exhaust gas G changes when the air fuel ratio of the exhaust gas G changes in a step-like manner, until the current value of the air fuel ratio sensor 1X becomes 63% of the final value It was measured as the time of
  • the situation where the air-fuel ratio of the exhaust gas G changes from stoichiometric to rich side was realized by including 800 ppm of CO in the model gas in the stoichiometric state.
  • the situation where the air-fuel ratio of the exhaust gas G changes from stoichiometric to lean was realized by including 800 ppm of NO in the model gas in the stoichiometric state.
  • the flow velocity of the exhaust gas G supplied to the air-fuel ratio sensor 1X was 1 [m / s].
  • the 63% response time was also measured for the air-fuel ratio sensor of the comparative product 1 in which the noble metal component of the detection electrode is made of Pt.
  • Example 2 In the present example, with regard to the electromotive force type gas sensor 1, changes in the sensor output when changing the average particle diameter of the noble metal particles constituting the detection electrode 22 were confirmed.
  • the solid electrolyte body 21 yttria partially stabilized zirconia is used, and the average particle diameter of the noble metal particles constituting the reference electrode 23 is 2.2 ⁇ m.
  • the noble metal component of the reference electrode 23 was composed of Pt.
  • the gas sensor 1 is disposed downstream of the flow of the exhaust gas G with respect to the three-way catalyst 42 in the exhaust pipe 41 of the internal combustion engine 4.
  • the average particle diameter [ ⁇ m] of the noble metal particles of the detection electrode 22 was changed to three types of 7.4 ⁇ m, 2 ⁇ m, and 1 ⁇ m. Then, in each gas sensor 1 using the three types of detection electrodes 22, change in sensor output [V] when the air-fuel ratio of exhaust gas to be brought into contact with gas sensor 1 is changed between rich side R and lean side L It was confirmed.
  • FIGS. 14 to 16 show changes in the sensor output [V] detected when the air fuel ratio [A / F] of the exhaust gas is changed.
  • FIG. 14 shows the case where the average particle size of the noble metal particles of the detection electrode 22 is 7.4 ⁇ m
  • FIG. 15 shows the case where the average particle size of the noble metal particles of the detection electrode 22 is 2 ⁇ m
  • FIG. The case where the average particle diameter of the noble metal particles of the detection electrode 22 is 1 ⁇ m is shown.
  • the theoretical air-fuel ratio is assumed to be 14.5, and the sensor output changes largely around 14.5.
  • the sensor output line L1 when the air-fuel ratio of the exhaust gas changes from the lean side L to the rich side R, and the air-fuel ratio of the exhaust gas is rich It was confirmed that the hysteresis with the sensor output line L2 when changing from R to the lean side L is increased. Further, it was confirmed that the hysteresis between the sensor output line L1 and the sensor output line L2 is reduced when the average particle diameter of the noble metal particles of the detection electrode 22 is 2 ⁇ m and 1 ⁇ m. Moreover, it was confirmed that this hysteresis becomes smaller as the average particle diameter of the noble metal particles of the detection electrode 22 becomes smaller.
  • FIG. 17 shows the air-fuel ratio when the sensor output [V] is 0.65 V when the average particle size [ ⁇ m] of the noble metal particles of the detection electrode 22 is 7.4 ⁇ m, 2 ⁇ m, and 1 ⁇ m.
  • the sensor output is 0.65 V, it is expressed as a threshold value of the change of the sensor output from H (High) to L (Low).
  • the air-fuel ratio changes from the lean side L to the rich side R
  • the larger the air-fuel ratio the better the sensitivity of CO of the detection electrode 22 is.
  • the air-fuel ratio changes from the rich side R to the lean side L it indicates that the sensitivity of NOx of the detection electrode 22 is better as the air-fuel ratio becomes smaller.
  • both the sensitivity of CO of the detection electrode 22 and the sensitivity of NOx of the detection electrode 22 increase as the average particle size of the noble metal particles of the detection electrode 22 decreases. From this result, the hysteresis of the sensor output is improved by setting the average particle diameter of the noble metal particles of the detection electrode 22 to 2 ⁇ m or less, and in particular, when the air fuel ratio of the exhaust gas G changes from the rich side R to the lean side L It has been confirmed that the responsiveness is high.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Molecular Biology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Measuring Oxygen Concentration In Cells (AREA)

Abstract

A noble metal constituent of a detection electrode of this gas sensor comprises a mixture or an alloy of platinum and one or more noble metal elements other than platinum. The platinum and the noble metal elements have four types of adsorption sites, namely an ontop site (S1), a bridge site (S2), a hexagonal close-packed hollow site (S3), and a face-centered cubic hollow site (S4). The CO molecule adsorption energy of the noble metal at at least one of the four types of adsorption sites is less than that of the platinum at the same adsorption site. Moreover, the NO dissociative adsorption energy of the noble metal at at least one of the four types of adsorption sites is greater than that of the platinum at the same adsorption site.

Description

ガスセンサGas sensor 関連出願の相互参照Cross-reference to related applications
 本出願は、2018年5月17日に出願された日本の特許出願番号2018-95766号に基づくものであり、その記載内容を援用する。 This application is based on Japanese Patent Application No. 2018-95766 filed May 17, 2018, the contents of which are incorporated herein by reference.
 本開示は、起電力式又は電流式のガスセンサにおいて、特に排ガスと接触する検出電極の構成に関する。 The present disclosure relates to an electromotive force or current gas sensor, in particular, to a configuration of a detection electrode in contact with an exhaust gas.
 起電力式のガスセンサは、例えば、内燃機関の排気管に配置され、内燃機関から排気管に排気される排ガスの空燃比が、理論空燃比に対してリッチ側にあるかリーン側にあるかを検出するために用いられる。排ガスの空燃比とは、内燃機関において燃料と空気の燃焼が行われた際の空燃比のことを示す。起電力式のガスセンサにおいては、固体電解質体に、排ガスに晒される検出電極と大気に晒される基準電極とが設けられたセンサ素子を用いる。そして、基準電極に接触する大気と検出電極に接触する排ガスとの酸素濃度の差に応じて、固体電解質体を介して電極間に生じる起電力を検出している。 An electromotive force type gas sensor is disposed, for example, in an exhaust pipe of an internal combustion engine, and whether the air-fuel ratio of exhaust gas exhausted from the internal combustion engine to the exhaust pipe is on the rich side or the lean side with respect to the theoretical air fuel ratio It is used to detect. The air-fuel ratio of the exhaust gas indicates the air-fuel ratio when combustion of fuel and air is performed in the internal combustion engine. In the electromotive force type gas sensor, a sensor element provided with a detection electrode exposed to the exhaust gas and a reference electrode exposed to the atmosphere is used for the solid electrolyte body. Then, according to the difference in oxygen concentration between the atmosphere contacting the reference electrode and the exhaust gas contacting the detection electrode, the electromotive force generated between the electrodes is detected via the solid electrolyte body.
 また、電流式のガスセンサは、例えば、内燃機関の排気管に配置され、内燃機関から排気管に排気される排ガスの空燃比を定量的に検出するために用いられる。電流式のガスセンサにおいては、固体電解質体に、排ガスに晒される検出電極と大気に晒される基準電極とが設けられ、検出電極が、拡散抵抗層を介して排ガスが導入されるガス室内に配置されたセンサ素子を用いる。そして、検出電極と基準電極との間に電圧を印加し、拡散抵抗層を介してガス室内に排ガスが導入される際の限界電流特性を利用し、検出電極と基準電極との間に生じる電流によって排ガスの空燃比を検出している。 Further, a current type gas sensor is disposed, for example, in an exhaust pipe of an internal combustion engine, and is used to quantitatively detect an air-fuel ratio of an exhaust gas exhausted from the internal combustion engine to the exhaust pipe. In the current type gas sensor, the solid electrolyte body is provided with a detection electrode exposed to the exhaust gas and a reference electrode exposed to the atmosphere, and the detection electrode is disposed in the gas chamber into which the exhaust gas is introduced through the diffusion resistance layer. Use the sensor element. Then, a voltage is applied between the detection electrode and the reference electrode, and the limiting current characteristic when exhaust gas is introduced into the gas chamber through the diffusion resistance layer is used to generate the current generated between the detection electrode and the reference electrode. Detects the air-fuel ratio of the exhaust gas.
 起電力式のガスセンサにおいて、排ガスの空燃比がリーン側からリッチ側に変化するときには、検出電極に到達する排ガス中の未燃成分を反応させるために、基準電極から検出電極へ酸素が移動し、各電極間には大きな起電力が生じることになる。そのため、この起電力の変化を検出することにより、排ガスの空燃比が理論空燃比に対してリッチ側にあるかリーン側にあるかが判定される。電流式のガスセンサにおいては、空燃比が理論空燃比に対してリッチ側にあるかリーン側にあるかによって、検出電極と基準電極との間に流れる電流の向きが変わり、空燃比がリッチ側にあるかリーン側にあるかが検出される。 In the electromotive force type gas sensor, when the air-fuel ratio of the exhaust gas changes from the lean side to the rich side, oxygen moves from the reference electrode to the detection electrode in order to react unburned components in the exhaust gas reaching the detection electrode, A large electromotive force will occur between the electrodes. Therefore, by detecting the change in the electromotive force, it is determined whether the air-fuel ratio of the exhaust gas is rich or lean with respect to the stoichiometric air-fuel ratio. In the current type gas sensor, the direction of the current flowing between the detection electrode and the reference electrode changes depending on whether the air fuel ratio is on the rich side or the lean side with respect to the theoretical air fuel ratio, and the air fuel ratio is on the rich side. Whether it is on the lean side or not is detected.
 また、排ガスの空燃比がリッチ側にあるときには、排ガス中のCO(一酸化炭素)、HC(炭化水素)等の未燃ガスが検出電極に吸着しつつ、化学反応を行ってCO2(二酸化炭素)、H2O(水)等に変換される。そして、排ガスの空燃比がリッチ側からリーン側に変化するときには、排ガス中のNO(一酸化窒素)等のNOx(窒素酸化物)が検出電極に到達する。このとき、特に、検出電極に吸着して残存するCOは、NOと反応することによって検出電極から離脱する。また、NOは、NとOに解離されて検出電極に吸着し、N2、O2等に変換される。 In addition, when the air-fuel ratio of the exhaust gas is rich, unburned gas such as CO (carbon monoxide) and HC (hydrocarbon) in the exhaust gas is adsorbed to the detection electrode while performing a chemical reaction to CO 2 (dioxide Converted to carbon), H 2 O (water), etc. Then, when the air-fuel ratio of the exhaust gas changes from the rich side to the lean side, NOx (nitrogen oxide) such as NO (nitrogen monoxide) in the exhaust gas reaches the detection electrode. At this time, in particular, CO adsorbed and remaining on the detection electrode is released from the detection electrode by reacting with NO. In addition, NO is dissociated into N and O, adsorbed to the detection electrode, and converted to N 2 , O 2 and the like.
 例えば、特許文献1においては、ガスセンサの電極として用いられる触媒材料を製造する方法として、原子のシミュレーションモデルによるガスの吸着エネルギーを算出することが記載されている。特許文献1においては、母材原子を置換原子によって置換することにより、触媒材料表面へのガスの吸着性を高め、ガスの化学反応を促進することが記載されている。 For example, Patent Document 1 describes that, as a method of manufacturing a catalyst material used as an electrode of a gas sensor, calculation of adsorption energy of gas by a simulation model of atoms is described. In Patent Document 1, it is described that the adsorptivity of a gas to the surface of a catalyst material is enhanced and the chemical reaction of the gas is promoted by replacing a base material atom with a substitution atom.
特開2008-43943号公報JP 2008-43943 A
 発明者らの鋭意研究の結果、ガスセンサによって検出する排ガスの空燃比がリッチ側からリーン側に変化したにも拘わらず、ガスセンサの電極間における起電力が降下せず、又はガスセンサの電極間に流れる電流が逆転せず、ガスセンサの出力がリッチ側を示す場合があることが判明した。この理由は、検出電極にNO等のNOxが到達しているものの、COの吸着性が強く、検出電極にCOが吸着した状態が維持されやすいためであることが分かった。 As a result of intensive studies by the inventors, although the air-fuel ratio of the exhaust gas detected by the gas sensor changes from rich to lean, the electromotive force between the electrodes of the gas sensor does not drop or flows between the electrodes of the gas sensor It has been found that the current does not reverse and the output of the gas sensor may indicate the rich side. It was found that the reason for this is that although NOx such as NO has reached the detection electrode, the adsorptivity of CO is strong and the state where CO is adsorbed to the detection electrode is easily maintained.
 この場合には、排ガスの空燃比がリーン側にあるにも拘わらず、ガスセンサから内燃機関の制御装置へは排ガスの空燃比がリッチ側にあるとの情報が送信される。そして、排ガスに含まれるNO等によって、検出電極に吸着したCOが離脱されるまでは、ガスセンサによって排ガスの空燃比がリッチ側にあると検出される。その結果、内燃機関の制御装置は、空燃比がリーン側にあるにもかかわらず、空燃比がさらにリーン側になるように制御することになる。そのため、内燃機関の制御装置によって制御される空燃比が、理論空燃比からリーン側にシフトし、NOxの排出量が多くなるおそれがある。 In this case, although the air-fuel ratio of the exhaust gas is on the lean side, information that the air-fuel ratio of the exhaust gas is on the rich side is transmitted from the gas sensor to the control device of the internal combustion engine. The gas sensor detects that the air-fuel ratio of the exhaust gas is on the rich side until CO adsorbed on the detection electrode is desorbed by NO or the like contained in the exhaust gas. As a result, the control device of the internal combustion engine controls the air-fuel ratio to be leaner even though the air-fuel ratio is on the lean side. Therefore, the air-fuel ratio controlled by the control device of the internal combustion engine may shift from the stoichiometric air-fuel ratio to the lean side, and the emission amount of NOx may increase.
 一般的に、検出電極に対するCOの吸着エネルギーが高ければ、COに対する検出電極の触媒作用がより活性化され、排ガスの空燃比がリーン側からリッチ側へ変化するときには、ガスセンサがリッチ側を迅速に検出することができる。しかし、排ガスの空燃比がリッチ側からリーン側へ変化するときには、発明者らの鋭意研究の結果、検出電極に対するNOの解離吸着エネルギーを考慮する必要があることが分かった。 In general, if the adsorption energy of CO on the detection electrode is high, the catalytic action of the detection electrode on CO is more activated, and when the air-fuel ratio of the exhaust gas changes from the lean side to the rich side, the gas sensor quickly makes the rich side It can be detected. However, when the air-fuel ratio of the exhaust gas changes from the rich side to the lean side, as a result of intensive studies by the inventors, it has been found that it is necessary to consider the dissociative adsorption energy of NO on the detection electrode.
 特許文献1においては、検出電極に対するCO等の未燃ガスの吸着エネルギーを考慮して、検出電極の反応促進効果を高めることが記載されている。しかし、特許文献1においては、NOの解離吸着エネルギーについては一切考慮されていない。従って、特許文献1においては、排ガスの空燃比がリッチ側からリーン側に変化するときの、ガスセンサの検出性能としての応答性を高める工夫はなされていない。 Patent Document 1 describes that the reaction promoting effect of the detection electrode is enhanced in consideration of the adsorption energy of unburned gas such as CO to the detection electrode. However, in Patent Document 1, the dissociative adsorption energy of NO is not considered at all. Therefore, in Patent Document 1, no measure is taken to improve the response as the detection performance of the gas sensor when the air-fuel ratio of the exhaust gas changes from the rich side to the lean side.
 また、特許文献1においては、ガスの原子又は分子が母材原子及び置換原子のそれぞれの直上(オントップサイト)に配置された場合の吸着エネルギーを算出している。しかし、触媒材料としての電極の表面にガスが吸着することができる吸着サイトは、オントップサイト以外にもある。そして、ガスの吸着のしやすさを示す吸着エネルギーは、オントップサイト以外の吸着サイトの方が大きい(吸着しやすい)こともあり、オントップサイトの吸着エネルギーを計算するだけでは不十分であることが分かった。 Moreover, in patent document 1, the adsorption energy in case the atom or molecule | numerator of gas is arrange | positioned directly on each of a base material atom and a substitution atom (on top site) is calculated. However, there are adsorption sites where gas can be adsorbed on the surface of an electrode as a catalyst material, in addition to on-top sites. And adsorption energy which shows easiness of adsorption of gas may be larger (it is easy to adsorb) in adsorption sites other than on top site, and it is insufficient to calculate only adsorption energy on on top site. I found that.
 本開示は、排ガスの空燃比がリッチ側からリーン側へ変化するときの検出性能としての応答性を高めることができるガスセンサを提供しようとして得られたものである。 The present disclosure has been obtained in an attempt to provide a gas sensor capable of enhancing responsiveness as detection performance when the air-fuel ratio of exhaust gas changes from the rich side to the lean side.
 本開示の第1の態様は、固体電解質体と、前記固体電解質体に設けられて排ガスと接触する検出電極と、前記固体電解質体に設けられて大気と接触する基準電極とを有するセンサ素子を備え、前記基準電極と前記検出電極とにおける酸素濃度の差に応じて生じる起電力、又は前記基準電極と前記検出電極との間に生じる電流を検出するガスセンサにおいて、
 前記検出電極の貴金属成分は、Ptと、Pt以外の1種類又は2種類以上の貴金属元素との混合物又は合金からなり、
 前記Pt及び前記貴金属元素は、一配位の直上位置であるオントップサイト、二配位の橋掛け位置であるブリッジサイト、三配位の窪み位置であって下層が存在する位置である六方最密型のホローサイト、及び三配位の窪み位置であって下層が存在しない位置である面心立方型のホローサイトの4種類の吸着サイトを有し、
 前記Ptと前記貴金属元素とにおける、同じ吸着サイト同士を比較した際に、前記貴金属元素における、前記4種類の吸着サイトのうちの少なくとも1つの吸着サイトのCO分子の吸着エネルギーは、前記Ptにおける、前記4種類の吸着サイトのうちの少なくとも1つの吸着サイトのCO分子の吸着エネルギーよりも小さく、
 及び/又は、前記Ptと前記貴金属元素とにおける、同じ吸着サイト同士を比較した際に、前記貴金属元素における、前記4種類の吸着サイトのうちの少なくとも1つの吸着サイトのNOの解離吸着エネルギーは、前記Ptにおける、前記4種類の吸着サイトのうちの少なくとも1つの吸着サイトのNOの解離吸着エネルギーよりも大きい、ガスセンサにある。
A first aspect of the present disclosure is a sensor element having a solid electrolyte body, a detection electrode provided on the solid electrolyte body and in contact with exhaust gas, and a reference electrode provided on the solid electrolyte body and in contact with the atmosphere. A gas sensor for detecting an electromotive force generated according to a difference in oxygen concentration in the reference electrode and the detection electrode, or a current generated between the reference electrode and the detection electrode.
The noble metal component of the detection electrode is made of a mixture or alloy of Pt and one or more kinds of noble metal elements other than Pt,
The Pt and the noble metal element have an on-top site which is a position immediately above one coordination, a bridge site which is a bridging position of two coordinations, a recessed site of three coordinations and a hexagonal outermost position where a lower layer exists. It has four kinds of adsorption sites of dense hollow sites and face-centered cubic hollow sites which are tridentate recessed positions and positions where the lower layer does not exist,
When the same adsorption sites in the Pt and the noble metal element are compared with each other, the adsorption energy of the CO molecule of at least one of the four adsorption sites in the noble metal element in the noble metal element is: Smaller than the adsorption energy of CO molecules of at least one of the four types of adsorption sites,
And / or dissociative adsorption energy of NO of at least one of the four types of adsorption sites in the noble metal element when the same adsorption sites in the Pt and the noble metal element are compared with each other, There is a gas sensor that is larger than the dissociative adsorption energy of NO of at least one of the four types of adsorption sites in the Pt.
 本開示の第2の態様は、固体電解質体と、前記固体電解質体に設けられて排ガスと接触する検出電極と、前記固体電解質体に設けられて大気と接触する基準電極とを有するセンサ素子を備え、前記基準電極と前記検出電極とにおける酸素濃度の差に応じて生じる起電力、又は前記基準電極と前記検出電極との間に生じる電流を検出するガスセンサにおいて、
 前記検出電極の貴金属成分は、Ptと、Pt以外の1種類又は2種類以上の貴金属元素との混合物又は合金からなり、
 前記Pt及び前記貴金属元素は、一配位の直上位置であるオントップサイト、二配位の橋掛け位置であるブリッジサイト、三配位の窪み位置であって下層が存在する位置である六方最密型のホローサイト、及び三配位の窪み位置であって下層が存在しない位置である面心立方型のホローサイトの4種類の吸着サイトを有し、
 前記貴金属元素における、前記4種類の吸着サイトのCO分子の吸着エネルギーのうちの最大値は、前記Ptにおける、前記4種類の吸着サイトのCO分子の吸着エネルギーのうちの最大値よりも小さく、
 及び/又は、前記貴金属元素における、前記4種類の吸着サイトのNOの解離吸着エネルギーのうちの最大値は、前記Ptにおける、前記4種類の吸着サイトのNOの解離吸着エネルギーのうちの最大値よりも大きい、ガスセンサにある。
A second aspect of the present disclosure is a sensor element having a solid electrolyte body, a detection electrode provided on the solid electrolyte body and in contact with exhaust gas, and a reference electrode provided on the solid electrolyte body and in contact with the atmosphere. A gas sensor for detecting an electromotive force generated according to a difference in oxygen concentration in the reference electrode and the detection electrode, or a current generated between the reference electrode and the detection electrode.
The noble metal component of the detection electrode is made of a mixture or alloy of Pt and one or more kinds of noble metal elements other than Pt,
The Pt and the noble metal element have an on-top site which is a position immediately above one coordination, a bridge site which is a bridging position of two coordinations, a recessed site of three coordinations and a hexagonal outermost position where a lower layer exists. It has four kinds of adsorption sites of dense hollow sites and face-centered cubic hollow sites which are tridentate recessed positions and positions where the lower layer does not exist,
The maximum value of the adsorption energy of the CO molecules of the four types of adsorption sites in the noble metal element is smaller than the maximum value of the adsorption energies of the CO molecules of the four types of adsorption sites in the Pt,
And / or the maximum value among the dissociative adsorption energies of NO of the four types of adsorption sites in the noble metal element is from the maximum value of the dissociative adsorption energies of NO of the four types of adsorption sites in the Pt There is also a large, gas sensor.
 本開示の第3の態様は、固体電解質体と、前記固体電解質体に設けられて排ガスと接触する検出電極と、前記固体電解質体に設けられて大気と接触する基準電極とを有するセンサ素子を備え、前記基準電極と前記検出電極とにおける酸素濃度の差に応じて生じる起電力、又は前記基準電極と前記検出電極との間に生じる電流を検出するガスセンサにおいて、
 前記検出電極の貴金属成分は、Pt以外の2種類以上の貴金属元素の混合物又は合金からなり、
 Pt及び前記貴金属元素は、一配位の直上位置であるオントップサイト、二配位の橋掛け位置であるブリッジサイト、三配位の窪み位置であって下層が存在する位置である六方最密型のホローサイト、及び三配位の窪み位置であって下層が存在しない位置である面心立方型のホローサイトの4種類の吸着サイトを有し、
 Ptと前記貴金属元素とにおける、同じ吸着サイト同士を比較した際に、前記貴金属元素における、前記4種類の吸着サイトのうちの少なくとも1つの吸着サイトのCO分子の吸着エネルギーは、Ptにおける、前記4種類の吸着サイトのうちの少なくとも1つの吸着サイトのCO分子の吸着エネルギーよりも小さく、
 及び/又は、Ptと前記貴金属元素とにおける、同じ吸着サイト同士を比較した際に、前記貴金属元素における、前記4種類の吸着サイトのうちの少なくとも1つの吸着サイトのNOの解離吸着エネルギーは、Ptにおける、前記4種類の吸着サイトのうちの少なくとも1つの吸着サイトのNOの解離吸着エネルギーよりも大きい、ガスセンサにある。
A third aspect of the present disclosure is a sensor element including a solid electrolyte body, a detection electrode provided on the solid electrolyte body and in contact with exhaust gas, and a reference electrode provided on the solid electrolyte body and in contact with the atmosphere. A gas sensor for detecting an electromotive force generated according to a difference in oxygen concentration in the reference electrode and the detection electrode, or a current generated between the reference electrode and the detection electrode.
The noble metal component of the detection electrode comprises a mixture or alloy of two or more kinds of noble metal elements other than Pt,
Pt and the noble metal element are on-top sites which are directly above one coordination, bridge sites which are two-coordination bridge positions, three-coordination depression positions where a lower layer is present and hexagonal close-packed Of four kinds of adsorption sites of hollow-site of the type, and face-centered cubic hollow-site of the tricoordinated hollow position where the lower layer is not present,
When the same adsorption sites in Pt and the noble metal element are compared with each other, the adsorption energy of the CO molecule of at least one of the four types of adsorption sites in the noble metal element is the same as in 4 in Pt. Smaller than the adsorption energy of CO molecules in at least one of the adsorption sites of
And / or dissociative adsorption energy of NO of at least one of the four types of adsorption sites in the noble metal element is Pt when comparing the same adsorption sites between Pt and the noble metal element. The gas sensor has a dissociative adsorption energy greater than that of NO of at least one of the four types of adsorption sites.
 本開示の第4の態様は、固体電解質体と、前記固体電解質体に設けられて排ガスと接触する検出電極と、前記固体電解質体に設けられて大気と接触する基準電極とを有するセンサ素子を備え、前記基準電極と前記検出電極とにおける酸素濃度の差に応じて生じる起電力、又は前記基準電極と前記検出電極との間に生じる電流を検出するガスセンサにおいて、
 前記検出電極の貴金属成分は、Pt以外の2種類以上の貴金属元素の混合物又は合金からなり、
 Pt及び前記貴金属元素は、一配位の直上位置であるオントップサイト、二配位の橋掛け位置であるブリッジサイト、三配位の窪み位置であって下層が存在する位置である六方最密型のホローサイト、及び三配位の窪み位置であって下層が存在しない位置である面心立方型のホローサイトの4種類の吸着サイトを有し、
 前記貴金属元素における、前記4種類の吸着サイトのCO分子の吸着エネルギーのうちの最大値は、Ptにおける、前記4種類の吸着サイトのCO分子の吸着エネルギーのうちの最大値よりも小さく、
 及び/又は、前記貴金属元素における、前記4種類の吸着サイトのNOの解離吸着エネルギーのうちの最大値は、Ptにおける、前記4種類の吸着サイトのNOの解離吸着エネルギーのうちの最大値よりも大きい、ガスセンサにある。
A fourth aspect of the present disclosure is a sensor element including a solid electrolyte body, a detection electrode provided on the solid electrolyte body and in contact with exhaust gas, and a reference electrode provided on the solid electrolyte body and in contact with the atmosphere. A gas sensor for detecting an electromotive force generated according to a difference in oxygen concentration in the reference electrode and the detection electrode, or a current generated between the reference electrode and the detection electrode.
The noble metal component of the detection electrode comprises a mixture or alloy of two or more kinds of noble metal elements other than Pt,
Pt and the noble metal element are on-top sites which are directly above one coordination, bridge sites which are two-coordination bridge positions, three-coordination depression positions where a lower layer is present and hexagonal close-packed Of four kinds of adsorption sites of hollow-site of the type, and face-centered cubic hollow-site of the tricoordinated hollow position where the lower layer is not present,
The maximum value among the adsorption energies of the CO molecules of the four types of adsorption sites in the noble metal element is smaller than the maximum value of the adsorption energies of the CO molecules of the four types of adsorption sites in Pt,
And / or the maximum value among the dissociative adsorption energies of NO of the four types of adsorption sites in the noble metal element is higher than the maximum value of the dissociative adsorption energies of NO of the four types of adsorption sites in Pt Large, in the gas sensor.
 本開示の第5の態様は、ガスセンサを製造する方法であって、
 Ptと前記貴金属元素との合金の貴金属粒子を含むペースト状の電極材料を、前記固体電解質体に配置し、前記固体電解質体及び前記電極材料を焼成して、前記固体電解質体の表面に前記検出電極を形成するに当たり、
 前記貴金属粒子の平均粒径を2μm以下とする、ガスセンサの製造方法にある。
A fifth aspect of the present disclosure is a method of manufacturing a gas sensor,
A paste-like electrode material containing noble metal particles of an alloy of Pt and the noble metal element is disposed on the solid electrolyte body, the solid electrolyte body and the electrode material are fired, and the detection is performed on the surface of the solid electrolyte body. In forming the electrode,
A method of manufacturing a gas sensor, wherein an average particle diameter of the noble metal particles is 2 μm or less.
(第1の態様)
 前記第1の態様のガスセンサは、Pt(白金)と、Pt以外の1種類又は2種類以上の貴金属元素とを含む検出電極を有する。以下の説明において、Pt以外の貴金属元素のことを単に貴金属元素という。また、Ptと混合又は合金化された貴金属元素は、4種類の吸着サイトにおけるCO(一酸化炭素)分子の吸着エネルギー及びNO(一酸化窒素)の解離吸着エネルギーの大きさを考慮し、起電力式又は電流式のガスセンサの電極として多用されるPtとの比較によって選択されたものである。
(First aspect)
The gas sensor of the first aspect has a detection electrode containing Pt (platinum) and one or more kinds of noble metal elements other than Pt. In the following description, noble metal elements other than Pt are simply referred to as noble metal elements. In addition, the precious metal element mixed or alloyed with Pt has an electromotive force in consideration of the adsorption energy of CO (carbon monoxide) molecules and the dissociative adsorption energy of NO (nitrogen monoxide) at four types of adsorption sites. It is selected by comparison with Pt frequently used as an electrode of a gas sensor of the formula or current type.
 CO分子の吸着エネルギーは、検出電極へのCO分子の吸着のしやすさ、吸着力の強さ(離れにくさ)等を表す値であり、吸着エネルギーが小さいほど、吸着しにくく、吸着力が弱いことを意味する。なお、COは、分子の状態で、触媒である検出電極の貴金属成分に吸着されるため、「CO分子の吸着エネルギー」を指標として用いる。CO分子は、ガスセンサによって起電力又は電流を検出する排ガスの空燃比がリッチ側にあるときに、排ガス中に未燃ガスとして存在する。 The adsorption energy of the CO molecule is a value representing the ease of adsorption of the CO molecule to the detection electrode, the strength of the adsorption force (the difficulty of separation), etc. The smaller the adsorption energy, the harder the adsorption and the adsorption force It means weak. In addition, since CO is adsorbed to the noble metal component of the detection electrode which is a catalyst in the state of molecules, "adsorption energy of CO molecules" is used as an index. CO molecules are present as unburned gas in the exhaust gas when the air-fuel ratio of the exhaust gas whose electromotive force or current is detected by the gas sensor is on the rich side.
 NOの解離吸着エネルギーは、検出電極へのNOの吸着のしやすさ、吸着力の強さ(離れにくさ)等を表す値であり、吸着エネルギーが大きいほど、吸着しやすく、吸着力が強いことを意味する。なお、NOは、N(窒素)とO(酸素)に解離された状態で、触媒である検出電極の貴金属成分に吸着されるため、「NOの解離吸着エネルギー」を指標として用いる。解離吸着エネルギーの「解離」とは、NOがNとOに分解されることを意味する。NO分子は、ガスセンサによって起電力又は電流を検出する排ガスの空燃比がリーン側にあるときに、排ガス中に存在する。 The dissociation adsorption energy of NO is a value representing the ease of adsorption of NO to the detection electrode, the strength of adsorption power (the difficulty of separation), etc. The larger the adsorption energy, the easier the adsorption and the stronger the adsorption power. It means that. In addition, since NO is dissociated into N (nitrogen) and O (oxygen), it is adsorbed by the noble metal component of the detection electrode which is a catalyst, and therefore “dissociation adsorption energy of NO” is used as an index. "Dissociation" of dissociative adsorption energy means that NO is decomposed into N and O. The NO molecules are present in the exhaust gas when the air-fuel ratio of the exhaust gas whose electromotive force or current is detected by the gas sensor is on the lean side.
 第1の態様のガスセンサにおいては、貴金属成分としてPtのみを含有する検出電極を基準とし、この検出電極に比べて、貴金属成分がPtと貴金属元素との混合物又は合金からなる検出電極の、CO分子に対する吸着性能を弱めることと、NOに対する解離吸着性能を高めることとの少なくとも一方を行う。 In the gas sensor of the first aspect, based on the detection electrode containing only Pt as a noble metal component, the CO molecule of the detection electrode in which the noble metal component is a mixture or alloy of Pt and a noble metal element compared to this detection electrode And / or at least one of enhancing the dissociative adsorption performance for NO.
 具体的には、第1の態様のガスセンサにおいては、CO分子の吸着性能は、CO分子の吸着エネルギーによって表し、NOの解離吸着性能は、NOの解離吸着エネルギーによって表す。そして、Pt及び貴金属元素について、4種類の吸着サイトのうちの同じ種類の吸着サイト同士を比較する。このとき、少なくとも1種類の吸着サイトにおいて、貴金属元素によるCO分子の吸着エネルギーがPtによるCO分子の吸着エネルギーよりも小さいことと、少なくとも1種類の吸着サイトにおいて、貴金属元素によるNOの解離吸着エネルギーがPtによるNOの解離吸着エネルギーよりも大きいこととの少なくとも一方が満たされるよう、Ptとの混合物又は合金となる貴金属元素が選択されている。 Specifically, in the gas sensor of the first aspect, the adsorption performance of CO molecules is represented by the adsorption energy of CO molecules, and the dissociative adsorption performance of NO is represented by the dissociative adsorption energy of NO. And about Pt and a precious metal element, the same kind of adsorption sites among four kinds of adsorption sites are compared. At this time, in at least one type of adsorption site, the adsorption energy of CO molecule by the noble metal element is smaller than the adsorption energy of CO molecule by Pt, and the dissociative adsorption energy of NO by the noble metal element is at at least one adsorption site. The noble metal element to be a mixture or alloy with Pt is selected so that at least one of the adsorption energy of NO by Pt and the adsorption energy of NO is satisfied.
 検出電極のCO分子に対する吸着性能が弱まることにより、排ガスの空燃比がリッチ側からリーン側に変化するときに、検出電極からCO分子が離脱しやすくなる。これにより、排ガスの空燃比がリッチ側からリーン側へ変化したときには、CO分子が検出電極に吸着し続ける現象を緩和し、ガスセンサによってリーン側への変化を迅速に検出することができる。 As the adsorption performance of the detection electrode to CO molecules is weakened, the CO molecules are easily released from the detection electrode when the air-fuel ratio of the exhaust gas changes from the rich side to the lean side. As a result, when the air-fuel ratio of the exhaust gas changes from the rich side to the lean side, the phenomenon that CO molecules continue to be adsorbed to the detection electrode can be alleviated, and the change to the lean side can be detected rapidly by the gas sensor.
 検出電極のNOに対する解離吸着性能が高まることにより、排ガスの空燃比がリッチ側からリーン側に変化するときに、排ガス中のNOがNとOに解離して(分解されて)検出電極に吸着しやすくなる。これにより、排ガスの空燃比がリッチ側からリーン側へ変化するときには、NOによって検出電極からCO分子が離脱しやすくし、ガスセンサによってリーン側への変化を迅速に検出することができる。 When the air-fuel ratio of the exhaust gas changes from the rich side to the lean side because the dissociative adsorption performance for NO of the detection electrode is increased, the NO in the exhaust gas is dissociated into N and O (decomposed) and adsorbed on the detection electrode It becomes easy to do. Thus, when the air-fuel ratio of the exhaust gas changes from the rich side to the lean side, NO facilitates CO molecule detachment from the detection electrode, and the gas sensor can quickly detect the change to the lean side.
 第1の態様のガスセンサにおいては、4種類の吸着サイトに着目するとともに、CO分子の吸着エネルギー及びNOの解離吸着エネルギーに着目している。そして、PtよりもCO分子の吸着エネルギーが小さいいずれかの吸着サイト又はPtよりもNOの解離吸着エネルギーが大きいいずれかの吸着サイトを有する貴金属元素を、Ptとの混合物又は合金として検出電極に含有させることにより、排ガスの空燃比がリッチ側からリーン側へ変化するときのガスセンサの検出性能としての応答性を高めることができる。 The gas sensor according to the first aspect focuses on four types of adsorption sites, and also focuses on the adsorption energy of CO molecules and the dissociative adsorption energy of NO. Then, the noble metal element having any of the adsorption sites having smaller adsorption energy of CO molecules than Pt or any adsorption sites having larger dissociative adsorption energy of NO than Pt is contained in the detection electrode as a mixture or alloy with Pt By doing this, it is possible to enhance the responsiveness as the detection performance of the gas sensor when the air-fuel ratio of the exhaust gas changes from the rich side to the lean side.
 それ故、第1の態様のガスセンサによれば、排ガスの空燃比がリッチ側からリーン側へ変化するときの検出性能としての応答性を高めることができる。 Therefore, according to the gas sensor of the first aspect, it is possible to enhance the response as the detection performance when the air-fuel ratio of the exhaust gas changes from the rich side to the lean side.
(第2の態様)
 第2の態様のガスセンサにおいては、検出電極の貴金属成分を構成するPt及び貴金属元素について、4種類の吸着サイトのCO分子の吸着エネルギーのうちの最大値同士及び4種類の吸着サイトのNOの解離吸着エネルギーのうちの最大値同士を比較する。そして、貴金属元素によるCO分子の吸着エネルギーの最大値が、PtによるCO分子の吸着エネルギーの最大値よりも小さいことと、貴金属元素によるNOの解離吸着エネルギーの最大値が、PtによるNOの解離吸着エネルギーの最大値よりも大きいこととの少なくとも一方が満たされるよう、Ptとの混合物又は合金となる貴金属元素が選択されている。
(Second aspect)
In the gas sensor of the second aspect, with respect to Pt and the noble metal element constituting the noble metal component of the detection electrode, the dissociation of NO between the maximum values among the adsorption energy of CO molecules of four types of adsorption sites and four types of adsorption sites The maximum values of the adsorption energy are compared with each other. And, the maximum value of the adsorption energy of CO molecules by the noble metal element is smaller than the maximum value of the adsorption energy of CO molecules by Pt, and the maximum value of the adsorption energy of NO by the noble metal elements is the dissociative adsorption of NO by Pt The noble metal element to be mixed with or alloyed with Pt is selected so that at least one of the fact that it is larger than the maximum value of energy is satisfied.
 それ故、第2の態様のガスセンサによっても、第1の態様の場合と同様にして、排ガスの空燃比がリッチ側からリーン側へ変化するときの検出性能としての応答性を高めることができる。 Therefore, even with the gas sensor of the second aspect, as in the case of the first aspect, the responsiveness as the detection performance when the air-fuel ratio of the exhaust gas changes from the rich side to the lean side can be enhanced.
(第3の態様)
 第3の態様のガスセンサにおいては、Pt以外の2種類以上の貴金属元素の混合物又は合金によって検出電極を形成する。そして、PtによるCO分子の吸着エネルギー及びNOの解離吸着エネルギーを基準とし、この基準との、4種類の吸着サイトのうちの同じ吸着サイト同士の比較によって、検出電極の貴金属成分を構成する2種類以上の貴金属元素が選定されている。
(Third aspect)
In the gas sensor of the third aspect, the detection electrode is formed of a mixture or alloy of two or more kinds of noble metal elements other than Pt. Then, based on the adsorption energy of CO molecules by Pt and the dissociative adsorption energy of NO, two types of the noble metal components of the detection electrode are formed by comparing the same adsorption sites among the four types of adsorption sites with this reference. The above precious metal elements are selected.
 それ故、第3の態様のガスセンサによっても、第1の態様の場合と同様にして、排ガスの空燃比がリッチ側からリーン側へ変化するときの検出性能としての応答性を高めることができる。 Therefore, even with the gas sensor of the third aspect, as in the case of the first aspect, the responsiveness as the detection performance when the air-fuel ratio of the exhaust gas changes from the rich side to the lean side can be enhanced.
(第4の態様)
 第4の態様のガスセンサにおいては、Pt以外の2種類以上の貴金属元素の混合物又は合金によって検出電極を形成する。そして、2種類以上の貴金属元素について、PtによるCO分子の吸着エネルギー及びNOの解離吸着エネルギーを基準とし、この基準との、CO分子の吸着エネルギー及びNOの解離吸着エネルギーの最大値同士の比較によって、検出電極の貴金属成分を構成する2種類以上の貴金属元素が選定されている。
(Fourth aspect)
In the gas sensor of the fourth aspect, the detection electrode is formed of a mixture or alloy of two or more kinds of noble metal elements other than Pt. Then, based on the adsorption energy of CO molecules by Pt and the dissociative adsorption energy of NO for two or more kinds of precious metal elements, the maximum value of the dissociative adsorption energy of CO molecules and the dissociative adsorption energy of NO with this reference is compared The two or more types of noble metal elements constituting the noble metal component of the detection electrode are selected.
 それ故、第4の態様のガスセンサによっても、第1の態様の場合と同様にして、排ガスの空燃比がリッチ側からリーン側へ変化するときの検出性能としての応答性を高めることができる。 Therefore, even with the gas sensor of the fourth aspect, as in the case of the first aspect, the responsiveness as the detection performance when the air-fuel ratio of the exhaust gas changes from the rich side to the lean side can be enhanced.
(第5の態様)
 第5の態様のガスセンサの製造方法においては、排ガスの空燃比がリッチ側からリーン側へ変化するときの応答性を高める効果がより顕著に得られるガスセンサを製造する。具体的には、検出電極を形成するための電極材料における貴金属粒子の平均粒径を2μm以下とする。これにより、電極材料が固体電解質体とともに焼成されて形成された検出電極の表面を滑らかにすることができる。そのため、平均粒径が2μm超過である貴金属粒子を含む電極材料によって形成された検出電極に比べて、検出電極の表面に、CO分子及びNOが吸着しにくい状態を形成することができる。この結果、第1~第4の態様のガスセンサによる応答性を高める効果をより顕著に得ることができる。
(Fifth aspect)
In the method of manufacturing a gas sensor according to the fifth aspect, a gas sensor can be manufactured which can more remarkably obtain the effect of enhancing the response when the air-fuel ratio of the exhaust gas changes from the rich side to the lean side. Specifically, the average particle diameter of the noble metal particles in the electrode material for forming the detection electrode is set to 2 μm or less. Thus, the surface of the detection electrode formed by firing the electrode material together with the solid electrolyte body can be smoothed. Therefore, it is possible to form a state in which CO molecules and NO are less likely to be adsorbed on the surface of the detection electrode, as compared to the detection electrode formed of an electrode material containing noble metal particles having an average particle diameter of more than 2 μm. As a result, the effect of enhancing the responsiveness of the gas sensor of the first to fourth aspects can be more significantly obtained.
 また、平均粒径が2μm以下である貴金属粒子を用いることにより、検出電極の表面が緻密化される。これにより、検出電極のCO分子及びNOに対する吸着性能、CO分子及びNOが分解される反応速度等を高めることができる。そして、排ガスの空燃比がリーン側かリッチ側へ変化するときのセンサ出力と、排ガスの空燃比がリッチ側からリーン側へ変化するときのセンサ出力とのヒステリシスを低減させることができる。また、排ガスの空燃比がリーン側からリッチ側へ変化するとき、及び排ガスの空燃比がリッチ側からリーン側へ変化するときの応答性(感度)を向上させることができる。 Further, the surface of the detection electrode is densified by using noble metal particles having an average particle diameter of 2 μm or less. As a result, the adsorption performance of the detection electrode for CO molecules and NO, and the reaction rate at which the CO molecules and NO are decomposed can be enhanced. Further, it is possible to reduce the hysteresis between the sensor output when the air fuel ratio of the exhaust gas changes to the lean side or the rich side and the sensor output when the air fuel ratio of the exhaust gas changes from the rich side to the lean side. In addition, it is possible to improve responsiveness (sensitivity) when the air-fuel ratio of the exhaust gas changes from the lean side to the rich side and when the air-fuel ratio of the exhaust gas changes from the rich side to the lean side.
 なお、本開示の各態様において示す各構成要素のカッコ書きの符号は、実施形態における図中の符号との対応関係を示すが、各構成要素を実施形態の内容のみに限定するものではない。 In addition, the code in parentheses in each component shown in each aspect of the present disclosure indicates the correspondence with the reference symbol in the drawings in the embodiment, but each component is not limited to the contents of the embodiment.
 本開示についての目的、特徴、利点等は、添付の図面を参照する下記の詳細な記述により、より明確になる。本開示の図面を以下に示す。
実施形態1にかかる、ガスセンサの断面を示す説明図。 実施形態1にかかる、センサ素子の断面を示す説明図。 実施形態1にかかる、金属原子のシミュレーションモデルを示す説明図。 実施形態1にかかる、Pt、Rh、Ir及びPdの各金属原子の4種類の吸着サイトにおけるCO分子の吸着エネルギー[eV]を示すグラフ。 実施形態1にかかる、Pt、Rh、Ir及びPdの各金属原子の4種類の吸着サイトにおけるNOの解離吸着エネルギー[eV]を示すグラフ。 実施形態1にかかる、ガスセンサが配置された、内燃機関の排気管の周辺を示す説明図。 実施形態1にかかる、空燃比と三元触媒の浄化率[%]との関係を示すグラフ。 実施形態1にかかる、他のセンサ素子の断面を示す説明図。 実施形態1にかかる、シミュレーションモデルを用いたCO分子の吸着エネルギーの算出の仕方を示す説明図。 実施形態1にかかる、シミュレーションモデルを用いたNOの解離吸着エネルギーの算出の仕方を示す説明図。 実施形態1にかかる、空燃比と電極間の起電力[V]との関係を示すグラフ。 実施例1にかかる、検出電極の温度に対する、NO、CO及びCO2の各ガスの挙動を示すグラフ。 実施例1にかかる、排ガスにおけるNO濃度に対する、電極間の起電力[V]の変化を示すグラフ。 実施例2にかかる、検出電極の貴金属粒子の平均粒径が7.4μmである場合に、排ガスの空燃比を変化させたときに検出されたセンサ出力の変化を示すグラフ。 実施例2にかかる、検出電極の貴金属粒子の平均粒径が2μmである場合に、排ガスの空燃比を変化させたときに検出されたセンサ出力の変化を示すグラフ。 実施例2にかかる、検出電極の貴金属粒子の平均粒径が1μmである場合に、排ガスの空燃比を変化させたときに検出されたセンサ出力の変化を示すグラフ。 実施例2にかかる、検出電極22の貴金属粒子の平均粒径が7.4μm、2μm、1μmである場合について、センサ出力が0.65Vとなるときの空燃比を示すグラフ。
The objects, features, advantages and the like of the present disclosure will become more apparent from the following detailed description with reference to the attached drawings. The drawings of the present disclosure are shown below.
Explanatory drawing which shows the cross section of the gas sensor concerning Embodiment 1. FIG. Explanatory drawing which shows the cross section of a sensor element concerning Embodiment 1. FIG. Explanatory drawing which shows the simulation model of the metal atom concerning Embodiment 1. FIG. 6 is a graph showing adsorption energy [eV] of CO molecules at four types of adsorption sites of Pt, Rh, Ir and Pd metal atoms according to Embodiment 1. FIG. 6 is a graph showing dissociative adsorption energy [eV] of NO at four types of adsorption sites of Pt, Rh, Ir and Pd metal atoms according to Embodiment 1. Explanatory drawing which shows the periphery of the exhaust pipe of an internal combustion engine by which the gas sensor concerning Embodiment 1 is arrange | positioned. The graph which shows the relationship between the air fuel ratio and the purification rate [%] of a three-way catalyst concerning Embodiment 1. FIG. Explanatory drawing which shows the cross section of the other sensor element concerning Embodiment 1. FIG. Explanatory drawing which shows the method of calculation of the adsorption energy of CO molecule using simulation model concerning Embodiment 1. FIG. Explanatory drawing which shows how to calculate the dissociative adsorption energy of NO using a simulation model concerning Embodiment 1. FIG. The graph which shows the relationship between the air fuel ratio and the electromotive force [V] between electrodes concerning Embodiment 1. FIG. According to Example 1, a graph showing relative temperature of the detecting electrode, NO, the behavior of the gases CO and CO 2. The graph which shows change of electromotive force [V] between electrodes to NO concentration in exhaust gas concerning Example 1. FIG. The graph which shows the change of the sensor output detected when changing the air fuel ratio of waste gas, when the average particle diameter of the noble metal particle of a detection electrode concerning Example 2 is 7.4 micrometers. The graph which shows the change of the sensor output detected when changing the air fuel ratio of waste gas, when the average particle diameter of the noble metal particle of a detection electrode concerning Example 2 is 2 micrometers. The graph which shows the change of the sensor output detected when changing the air fuel ratio of waste gas, when the average particle diameter of the noble metal particle of a detection electrode concerning Example 2 is 1 micrometer. The graph which shows an air fuel ratio in case a sensor output is set to 0.65 V about a case where average particle diameter of precious metal particles of detection electrode 22 concerning Example 2 is 7.4 micrometers, 2 micrometers, and 1 micrometers.
 前述したガスセンサにかかる好ましい実施形態について、図面を参照して説明する。
<実施形態1>
 本形態のガスセンサ1は、図1及び図2に示すように、固体電解質体21と、固体電解質体21に設けられて排ガスGと接触する検出電極22と、固体電解質体21に設けられて大気Aと接触する基準電極23とを有するセンサ素子2を備え、基準電極23と検出電極22とにおける酸素濃度の差に応じて生じる起電力を検出するものである。検出電極22の貴金属成分は、Ptと、Pt以外の1種類又は2種類以上の貴金属元素との混合物又は合金からなる。以下の説明において、Pt以外の貴金属元素のことを単に貴金属元素という。
A preferred embodiment of the aforementioned gas sensor will be described with reference to the drawings.
First Embodiment
As shown in FIGS. 1 and 2, the gas sensor 1 of this embodiment is provided with a solid electrolyte body 21, a detection electrode 22 provided on the solid electrolyte body 21 and in contact with the exhaust gas G, and provided on the solid electrolyte body 21 A sensor element 2 having a reference electrode 23 in contact with A is provided to detect an electromotive force generated in accordance with the difference in oxygen concentration between the reference electrode 23 and the detection electrode 22. The noble metal component of the detection electrode 22 is made of a mixture or alloy of Pt and one or more kinds of noble metal elements other than Pt. In the following description, noble metal elements other than Pt are simply referred to as noble metal elements.
 Pt及び貴金属元素は、図3に示すように、一配位の直上位置であるオントップサイトS1、二配位の橋掛け位置であるブリッジサイトS2、三配位の窪み位置であって下層が存在する位置である六方最密型のホローサイトS3、及び三配位の窪み位置であって下層が存在しない位置である面心立方型のホローサイトS4の4種類の吸着サイトを有する。吸着サイトとは、排ガスGに含まれるガスを吸着することができる原子の吸着部位のことをいう。 Pt and a noble metal element are, as shown in FIG. 3, an on-top site S1 which is a position directly above one coordination, a bridge site S2 which is a bridging position of two coordination, and a recess position of three coordination, and the lower layer is It has four kinds of adsorption sites of the hexagonal close-packed hollow site S3 which is the existing position, and the face-centered cubic hollow site S4 which is the tricoordinated recessed position and the position where the lower layer is not present. The adsorption site refers to an adsorption site of atoms capable of adsorbing the gas contained in the exhaust gas G.
 貴金属元素は、以下の第1条件及び第2条件の少なくともいずれかを満たす。第1条件は、図4に示すように、Ptと貴金属元素とにおける、同じ吸着サイト同士を比較した際に、貴金属元素における、4種類の吸着サイトのうちの少なくとも1つの吸着サイトのCO分子の吸着エネルギーは、Ptにおける、4種類の吸着サイトのうちの少なくとも1つの吸着サイトのCO分子の吸着エネルギーよりも小さいことを条件とする。第2条件は、図5に示すように、Ptと貴金属元素とにおける、同じ吸着サイト同士を比較した際に、貴金属元素における、4種類の吸着サイトのうちの少なくとも1つの吸着サイトのNOの解離吸着エネルギーは、Ptにおける、4種類の吸着サイトのうちの少なくとも1つの吸着サイトのNOの解離吸着エネルギーよりも大きいことを条件とする。 The noble metal element satisfies at least one of the following first and second conditions. The first condition is that, as shown in FIG. 4, when the same adsorption sites in Pt and the noble metal element are compared with each other, CO molecules of at least one of the four adsorption sites in the noble metal element are compared in the noble metal element. The adsorption energy is set to be smaller than the adsorption energy of CO molecules of at least one of four adsorption sites in Pt. As the second condition, as shown in FIG. 5, when the same adsorption sites in Pt and the noble metal element are compared with each other, dissociation of NO of at least one of the four adsorption sites in the noble metal element is performed. The adsorption energy is set to be larger than the dissociative adsorption energy of NO of at least one of the four adsorption sites in Pt.
 以下に、本形態のガスセンサ1について詳説する。
(ガスセンサ1)
 図6に示すように、本形態のガスセンサ1は、酸素センサとも呼ばれ、車両等の内燃機関4の排気管41に配置され、排気管41を流れる排ガスGの空燃比がリッチ側又はリーン側のいずれにあるかを検出するものである。なお、排ガスGの空燃比とは、排ガスGから検出される内燃機関4の空燃比のことを示す。排気管41には、三元触媒42が配置されており、酸素センサとしてのガスセンサ1は、排気管41における三元触媒42の配置位置の下流側に配置される。そして、ガスセンサ1は、三元触媒42によって浄化された後の排ガスGが、リッチ側にあるかリーン側にあるかを検出する。
Hereinafter, the gas sensor 1 of the present embodiment will be described in detail.
(Gas sensor 1)
As shown in FIG. 6, the gas sensor 1 of this embodiment is also referred to as an oxygen sensor, and is disposed in the exhaust pipe 41 of the internal combustion engine 4 such as a vehicle, and the air fuel ratio of the exhaust gas G flowing through the exhaust pipe 41 is rich or lean To detect which of the The air-fuel ratio of the exhaust gas G indicates the air-fuel ratio of the internal combustion engine 4 detected from the exhaust gas G. The three-way catalyst 42 is disposed in the exhaust pipe 41, and the gas sensor 1 as an oxygen sensor is disposed downstream of the position where the three-way catalyst 42 is disposed in the exhaust pipe 41. Then, the gas sensor 1 detects whether the exhaust gas G purified by the three-way catalyst 42 is on the rich side or the lean side.
 また、排気管41における三元触媒42の配置位置の上流側には、内燃機関4における燃料と空気との混合比である空燃比を定量的に検出する空燃比センサ1Xが配置されている。制御装置(ECU)40は、ガスセンサ1及び空燃比センサ1Xによる検出値を用いて、内燃機関4における空燃比を制御する。排気管41内には、三元触媒42の他に、NOxを吸蔵して還元するための触媒等が配置されていてもよい。そして、ガスセンサ1は、三元触媒42又は他の触媒からのCO、NOx等のしみ出しの有無を検出するために用いることができる。 Further, on the upstream side of the position where the three-way catalyst 42 is disposed in the exhaust pipe 41, an air-fuel ratio sensor 1X that quantitatively detects an air-fuel ratio which is a mixing ratio of fuel and air in the internal combustion engine 4 is disposed. A control unit (ECU) 40 controls an air-fuel ratio in the internal combustion engine 4 using values detected by the gas sensor 1 and the air-fuel ratio sensor 1X. In the exhaust pipe 41, in addition to the three-way catalyst 42, a catalyst or the like for storing and reducing NOx may be disposed. The gas sensor 1 can be used to detect the presence or absence of exudation of CO, NOx, etc. from the three-way catalyst 42 or other catalysts.
 図7に示すように、三元触媒42は、排ガスG中のHC(炭化水素)、CO(一酸化炭素)及びNOx(窒素酸化物)を浄化するものである。三元触媒42によるHC、CO、NOxの浄化率は、理論空燃比(A/F=14.5)の近傍において最大になる。そして、内燃機関4においては、吸気管43内に配置されたスロットルバルブ44の開度によって空気量が決定され、燃料噴射弁45から噴射される燃料量によって、空気量と燃料量との空燃比が調整される。 As shown in FIG. 7, the three-way catalyst 42 purifies HC (hydrocarbon), CO (carbon monoxide) and NOx (nitrogen oxide) in the exhaust gas G. The purification rates of HC, CO, and NOx by the three-way catalyst 42 become maximum near the theoretical air fuel ratio (A / F = 14.5). In the internal combustion engine 4, the air amount is determined by the opening degree of the throttle valve 44 disposed in the intake pipe 43, and the air amount ratio of the air amount and the fuel amount is determined by the fuel amount injected from the fuel injection valve 45 Is adjusted.
 図1に示すように、ガスセンサ1は、センサ素子2の他に、センサ素子2の内周側に配置されたヒータ24、排気管41に取り付けられてセンサ素子2を保持するハウジング31、ハウジング31の先端側に取り付けられてセンサ素子2を覆う先端側カバー32、ハウジング31の基端側に取り付けられてセンサ素子2及びヒータ24の電気配線用の端子34等を覆う基端側カバー33等を有する。 As shown in FIG. 1, in addition to the sensor element 2, the gas sensor 1 is provided with a heater 24 disposed on the inner peripheral side of the sensor element 2, a housing 31 attached to the exhaust pipe 41 and holding the sensor element 2. A distal end side cover 32 attached to the distal end side of the sensor element 2 and the proximal end side cover 33 attached to the proximal end side of the housing 31 and covering the sensor element 2 and terminals 34 for electrical wiring of the heater 24; Have.
 図1及び図2に示すように、本形態のセンサ素子2は、有底円筒形状(コップ形状)を有する固体電解質体21と、固体電解質体21の外周面201に設けられた検出電極22と、固体電解質体21の内周面202に設けられた基準電極23とを有するコップ型のものである。検出電極22は、先端側カバー32に設けられた流通孔321を介して先端側カバー32内に流入する排ガスGに晒されており、基準電極23は、基端側カバー33に設けられた導入孔331を介して基端側カバー33内から固体電解質体21の内周側に流入する大気Aに晒されている。ヒータ24は、通電によって発熱するものであり、固体電解質体21及び各電極22,23を活性温度に加熱するものである。 As shown in FIGS. 1 and 2, the sensor element 2 of this embodiment includes a solid electrolyte body 21 having a bottomed cylindrical shape (cup shape), and a detection electrode 22 provided on the outer peripheral surface 201 of the solid electrolyte body 21. And a reference electrode 23 provided on the inner circumferential surface 202 of the solid electrolyte body 21. The detection electrode 22 is exposed to the exhaust gas G flowing into the distal end side cover 32 through the flow hole 321 provided in the distal end side cover 32, and the reference electrode 23 is introduced to the proximal end side cover 33. It is exposed to the atmosphere A flowing from the inside of the base end side cover 33 to the inner peripheral side of the solid electrolyte body 21 through the hole 331. The heater 24 generates heat when energized, and heats the solid electrolyte body 21 and the electrodes 22 and 23 to an activation temperature.
 検出電極22は、固体電解質体21の底部211が位置する先端側付近における外周面201の全周に設けられた検知部221と、外周面201の周方向の一部において検知部221から基端側に引き出されたリード部222と、リード部222の基端部に設けられた接続部223とを有する。検知部221は、排ガスGに晒されており、基準電極23とともにガス検出を行う部位である。接続部223は、リード線35が接続された端子34に接続される部位である。
 また、基準電極23は、固体電解質体21の内周面202の略全体に設けられている。これ以外にも、基準電極23は、検出電極22と同様に内周面202に部分的に設けることもできる。
The detection electrode 22 includes a detection portion 221 provided on the entire periphery of the outer peripheral surface 201 near the front end side where the bottom portion 211 of the solid electrolyte body 21 is located, and a base end from the detection portion 221 It has a lead portion 222 pulled out to the side, and a connection portion 223 provided at the base end of the lead portion 222. The detection unit 221 is a portion that is exposed to the exhaust gas G and performs gas detection with the reference electrode 23. The connection portion 223 is a portion connected to the terminal 34 to which the lead wire 35 is connected.
The reference electrode 23 is provided on substantially the entire inner peripheral surface 202 of the solid electrolyte body 21. Other than this, the reference electrode 23 can also be partially provided on the inner circumferential surface 202 in the same manner as the detection electrode 22.
 また、図8に示すように、センサ素子2は、板形状の固体電解質体21の一方の表面に検出電極22が設けられ、他方の表面に基準電極23が設けられた積層型のものとしてもよい。この場合には、ヒータ24を構成する発熱体24Aが、絶縁体25を介して固体電解質体21に積層される。また、検出電極22は、先端側カバー32の流通孔321、多孔質の保護層26及び拡散抵抗層27を経由して排ガスGが導入されるガス室28内に配置され、基準電極23は、基端側カバー33の導入孔331を経由して基端側から大気Aが導入されるダクト29内に配置される。 Further, as shown in FIG. 8, the sensor element 2 is also a laminated type in which the detection electrode 22 is provided on one surface of the plate-shaped solid electrolyte body 21 and the reference electrode 23 is provided on the other surface. Good. In this case, the heating element 24A constituting the heater 24 is stacked on the solid electrolyte body 21 via the insulator 25. Further, the detection electrode 22 is disposed in the gas chamber 28 into which the exhaust gas G is introduced through the flow hole 321 of the front end side cover 32, the porous protective layer 26, and the diffusion resistance layer 27, and the reference electrode 23 is It is disposed in the duct 29 into which the atmosphere A is introduced from the proximal end side via the introduction hole 331 of the proximal end cover 33.
 積層型のセンサ素子2は、電流式(限界電流式)のガスセンサとしての空燃比センサ1Xとして用いることができる。空燃比センサ1Xは、排ガスGの空燃比を定量的に検出するために用いられる。空燃比センサ1Xにおいては、検出電極22と基準電極23との間に、基準電極23をプラス側(電圧が高い側)として直流電圧が印加される。そして、検出電極22と基準電極23との間に直流電圧を印加して電流を流す際に、拡散抵抗層27を介してガス室28内に導入される排ガスGの流量が飽和するときの限界電流特性を利用し、排ガスGの状態の変化に応じて検出電極22と基準電極23との間に生じる電流によって排ガスGの空燃比が検出される。 The stacked sensor element 2 can be used as an air-fuel ratio sensor 1X as a current type (limit current type) gas sensor. The air-fuel ratio sensor 1X is used to quantitatively detect the air-fuel ratio of the exhaust gas G. In the air-fuel ratio sensor 1 </ b> X, a DC voltage is applied between the detection electrode 22 and the reference electrode 23 with the reference electrode 23 on the positive side (high voltage side). Then, when a direct current voltage is applied between the detection electrode 22 and the reference electrode 23 to flow a current, the limit when the flow rate of the exhaust gas G introduced into the gas chamber 28 via the diffusion resistance layer 27 is saturated Using the current characteristics, the air-fuel ratio of the exhaust gas G is detected by the current generated between the detection electrode 22 and the reference electrode 23 according to the change of the state of the exhaust gas G.
 固体電解質体21は、その活性化温度において、酸素イオンを伝導させる性質を有する。固体電解質体21は、金属酸化物としてのジルコニア材料の焼結体として形成されている。本形態のジルコニア材料は、イットリア部分安定化ジルコニアからなる。ジルコニア材料は、ジルコニアを主成分とする種々の材料によって構成することができる。ジルコニア材料には、希土類貴金属元素もしくはアルカリ土類貴金属元素によってジルコニアの一部を置換させた安定化ジルコニア又は部分安定化ジルコニアを用いることができる。 The solid electrolyte body 21 has the property of conducting oxygen ions at its activation temperature. The solid electrolyte body 21 is formed as a sintered body of a zirconia material as a metal oxide. The zirconia material of this embodiment comprises yttria partially stabilized zirconia. The zirconia material can be composed of various materials based on zirconia. As the zirconia material, stabilized zirconia or partially stabilized zirconia in which a part of zirconia is replaced by a rare earth noble metal element or an alkaline earth noble metal element can be used.
 本形態の検出電極22は、酸素、CO、NO等に対する触媒活性を有するものである。検出電極22の貴金属成分は、Ptの他に、Rh、Ir及びPdのうちから選ばれる1種類又は2種類以上の貴金属元素との混合物又は合金からなる。Rh、Ir又はPdの各貴金属元素は、起電力式のガスセンサ1において、少なくとも、Ptに比べてCO分子の吸着エネルギーを小さくするか、又はPtに比べてNOの解離吸着エネルギーを大きくするかを目的として、検出電極22に添加されたものである。 The detection electrode 22 of the present embodiment has catalytic activity for oxygen, CO, NO, and the like. The noble metal component of the detection electrode 22 is made of, in addition to Pt, a mixture or an alloy with one or more kinds of noble metal elements selected from Rh, Ir and Pd. In the electromotive force type gas sensor 1, each noble metal element of Rh, Ir or Pd at least makes the adsorption energy of CO molecules smaller than Pt or makes the dissociative adsorption energy of NO larger than Pt. For the purpose, it is added to the detection electrode 22.
 検出電極22は、固体電解質体21を構成するジルコニア材料と同様のジルコニア材料を含有する場合と含有しない場合とがある。検出電極22が固体電解質体21にめっき処理等によって設けられた場合には、検出電極22がジルコニア材料をほとんど含有していなくてもよい。一方、検出電極22が固体電解質体21にペースト材料の塗布及び焼成等を行って設けられた場合には、検出電極22は固体電解質体21との共材となるジルコニア材料を含有していてもよい。 The detection electrode 22 may or may not contain the same zirconia material as that of the solid electrolyte body 21. When the detection electrode 22 is provided on the solid electrolyte body 21 by plating or the like, the detection electrode 22 may not contain any zirconia material. On the other hand, when the detection electrode 22 is provided by applying and baking a paste material to the solid electrolyte body 21, even if the detection electrode 22 contains a zirconia material which is a common material with the solid electrolyte body 21. Good.
 図3に示すように、CO分子の吸着エネルギー及びNOの解離吸着エネルギーは、コンピュータによって動作するソフトウェアにおいて、原子及び分子のシミュレーションモデルMを設定して計算された値である。シミュレーションモデルMにおいては、Pt、Rh、Ir又はPdである金属原子の各層における縦方向及び横方向の配列数(セル数)を3×3セルとし、金属原子の高さ方向の層数を3層とした。同図において、第1層の金属原子をK1で示し、第2層の金属原子をK2で示し、第3層の金属原子をK3で示す。以下の説明においては、第1層をK1、第2層をK2で示すことがある。また、金属原子の配列の層間には20オングストローム(10-10m)の真空層を設け、金属原子の層は、最も安定な面としての面心立方格子構造の面とした。 As shown in FIG. 3, the adsorption energy of CO molecules and the dissociative adsorption energy of NO are values calculated by setting a simulation model M of atoms and molecules in software operated by a computer. In the simulation model M, the number of vertical and horizontal alignments (number of cells) in each layer of metal atoms of Pt, Rh, Ir or Pd is 3 × 3 cells, and the number of layers of metal atoms in the height direction is 3 It was a layer. In the figure, the metal atom of the first layer is indicated by K1, the metal atom of the second layer is indicated by K2, and the metal atom of the third layer is indicated by K3. In the following description, the first layer may be denoted by K1 and the second layer may be denoted by K2. In addition, a vacuum layer of 20 angstroms (10 -10 m) was provided between the layers of the arrangement of metal atoms, and the layer of metal atoms was a face of a face-centered cubic lattice structure as the most stable face.
(CO分子の吸着エネルギー及びNOの解離吸着エネルギー)
 図9に示すように、CO分子の吸着エネルギーEcは、シミュレーションモデルMの金属原子にCO分子が吸着(配置)されたときの自由エネルギーをE1、シミュレーションモデルMの金属原子のみの自由エネルギーをE2、及びシミュレーションモデルMのCO分子のみの自由エネルギーをE3としたとき、Ec=E1-E2-E3から算出した。金属原子には、Pt、Rh、Ir、Pdが適宜選択され、CO分子が配置される吸着サイトは、オントップサイトS1、ブリッジサイトS2、六方最密型のホローサイトS3又は面心立方型のホローサイトS4として適宜設定した。なお、CO分子は、C(炭素)を介して金属原子に吸着される。
(Adsorption energy of CO molecule and dissociative adsorption energy of NO)
As shown in FIG. 9, the adsorption energy Ec of the CO molecule is the free energy E1 when the CO molecule is adsorbed (placed) on the metal atom of the simulation model M, and the free energy of only the metal atom of the simulation model M E2 And when the free energy of only the CO molecule of the simulation model M is E3, Ec = E1-E2-E3. As the metal atom, Pt, Rh, Ir, Pd are appropriately selected, and the adsorption site where the CO molecule is disposed is the on-top site S1, the bridge site S2, the hexagonal close-packed hollow site S3 or the face-centered cubic type It set suitably as hollow site S4. The CO molecule is adsorbed to the metal atom via C (carbon).
 図10に示すように、NOの解離吸着エネルギーEnは、シミュレーションモデルMの金属原子にNOから解離したNが吸着(配置)されたときの自由エネルギーをE4、シミュレーションモデルMの金属原子にNOから解離したOが吸着(配置)されたときの自由エネルギーをE5、シミュレーションモデルMの金属原子のみの自由エネルギーをE6、及びシミュレーションモデルMのNO分子のみの自由エネルギーをE7としたとき、En=E4+E5-2×E6-E7から算出した。金属原子には、Pt、Rh、Ir、Pdが適宜選択され、N及びOがそれぞれ配置される吸着サイトは、オントップサイトS1、ブリッジサイトS2、六方最密型のホローサイトS3又は面心立方型のホローサイトS4として適宜設定した。 As shown in FIG. 10, the dissociative adsorption energy En of NO is E4 as free energy when N dissociated from NO is adsorbed (arranged) to metal atoms of the simulation model M, and from NO to metal atoms of the simulation model M Assuming that the free energy when dissociated O is adsorbed (arranged) is E5, the free energy of only metal atoms of the simulation model M is E6, and the free energy of only NO molecules of the simulation model M is E7, En = E4 + E5 Calculated from -2 × E6-E7. As metal atoms, Pt, Rh, Ir, and Pd are appropriately selected, and adsorption sites where N and O are respectively disposed are on top site S1, bridge site S2, hexagonal close-packed hollow site S3 or face-centered cubic cube It set suitably as a type | mold hollow site S4.
 表1には、Pt、Rh、Ir、PdによるCO分子の吸着エネルギー(eV)を示す。同表において、マイナスの数値が小さくなるほど、吸着エネルギーが小さく、すなわちCO分子を吸着しにくく、CO分子の吸着力が弱まることを示す。 Table 1 shows the adsorption energy (eV) of CO molecules by Pt, Rh, Ir, and Pd. In the table, the smaller the negative value is, the smaller the adsorption energy, that is, the harder it is to adsorb CO molecules, and the weaker the adsorptive power of CO molecules.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表2には、Pt、Rh、Ir、PdによるNOの解離吸着エネルギー(eV)を示す。同表において、マイナスの数値が大きくなるほど、吸着エネルギーが大きく、すなわちNOを吸着しやすく、NOの吸着力が強まることを示す。 Table 2 shows the dissociative adsorption energy (eV) of NO by Pt, Rh, Ir, and Pd. In the table, the larger the negative value, the larger the adsorption energy, that is, the easier it is to adsorb NO, and the stronger the adsorption capacity of NO.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 また、「top」は、図3に示すように、On-top site(オントップサイトS1)のことを示し、Pt、Rh、Ir又はPdである金属の原子配列を見たときに、最も表面側に位置する原子配列(第1層K1)における金属原子の表面を意味する一配位の金属原子の直上位置にCO分子、又はN及びOが吸着される場合の自由エネルギーのことを示す。 In addition, as shown in FIG. 3, “top” indicates the on-top site (on-top site S1), and the most surface is the atomic arrangement of metals such as Pt, Rh, Ir or Pd. It shows the free energy when CO molecules, or N and O are adsorbed at a position directly above the metal atom of one coordination that means the surface of the metal atom in the atomic arrangement (first layer K1) located on the side.
 また、「bridge」は、同図に示すように、bridge site(ブリッジサイトS2)又はtwo-hold siteのことを示し、Pt、Rh、Ir又はPdである金属の原子配列を見たときに、第1層K1における2つの金属原子間を意味する二配位の金属原子の橋掛け位置にCO分子、又はN及びOが吸着される場合の自由エネルギーのことを示す。 In addition, as shown in the figure, “bridge” indicates a bridge site (bridge site S2) or two-hold site, and when looking at an atomic arrangement of a metal that is Pt, Rh, Ir or Pd, It shows the free energy when CO molecules, or N and O are adsorbed at the bridging position of the bicoordinated metal atom which means between two metal atoms in the first layer K1.
 また、「hcp hollow」は、同図に示すように、hexagonal close-packed hollow site(六方最密型のホローサイトS3)又はthree-hold siteのことを示し、Pt、Rh、Ir又はPdである金属の原子配列を見たときに、第1層K1における3つの金属原子間を意味する三配位の金属原子の窪み位置であって、この窪み位置の下方に、第1層K1の内側に位置する第2層K2の金属原子が存在する位置に、CO分子、又はN及びOが吸着される場合の自由エネルギーのことを示す。 Also, as shown in the figure, "hcp hollow" indicates a hexagonal close-packed hollow site (hexagonal close-packed hollow site S3) or three-hold site, and is Pt, Rh, Ir or Pd. When looking at the atomic arrangement of metals, it is a depressed position of a tricoordinate metal atom that means between three metal atoms in the first layer K1, below the depressed position, inside the first layer K1. This indicates the free energy when CO molecules or N and O are adsorbed at the position where the metal atom of the second layer K2 is located.
 また、「fcc hollow」は、同図に示すように、face-centered cubic hollow site(面心立方型のホローサイトS4)又はthree-hold siteのことを示し、Pt、Rh、Ir又はPdである金属の原子配列を見たときに、第1層K1における3つの金属原子間を意味する三配位の金属原子の窪み位置であって、この窪み位置の下方に、第2層K2の金属原子が存在しない位置に、CO分子、又はN及びOが吸着される場合の自由エネルギーのことを示す。 Also, “fcc hollow” indicates face-centered cubic hollow site (face-centered cubic hollow site S4) or three-hold site as shown in the same figure, and is Pt, Rh, Ir or Pd. When looking at the atomic arrangement of metals, it is a depressed position of a tricoordinate metal atom that means between three metal atoms in the first layer K1, and the metal atom of the second layer K2 below this depressed position Indicates the free energy when CO molecules or N and O are adsorbed at the position where is not present.
 表1において、PtのオントップサイトS1におけるCO分子の吸着エネルギーに比べて、Rh及びPdのオントップサイトS1におけるCO分子の吸着エネルギーは小さい。また、PtのブリッジサイトS2、並びに六方最密型及び面心立方型のホローサイトS3,S4のそれぞれにおけるCO分子の吸着エネルギーに比べて、Rh、Ir及びPdのブリッジサイトS2、並びに六方最密型及び面心立方型のホローサイトS3,S4のそれぞれにおけるCO分子の吸着エネルギーは小さい。そして、Rh、Ir及びPdは、第1条件を満たす貴金属元素として選定される。 In Table 1, the adsorption energy of the CO molecule at the on top site S1 of Rh and Pd is smaller than the adsorption energy of the CO molecule at the on top site S1 of Pt. In addition, compared with the adsorption energy of CO molecule in the bridge site S2 of Pt, and the hollow sites S3 and S4 of hexagonal close-packed and face-centered cubic type respectively, the bridge sites S2 of Rh, Ir and Pd, and hexagonal close-packed The adsorption energy of the CO molecule in each of the type and face centered cubic type hollow sites S3 and S4 is small. Then, Rh, Ir and Pd are selected as noble metal elements that satisfy the first condition.
 一方、PtのオントップサイトS1におけるCO分子の吸着エネルギーに比べて、IrのオントップサイトS1におけるCO分子の吸着エネルギーは大きい。
 同表において、Rh,Ir,Pdの各吸着サイトにおけるCO分子の吸着エネルギーのうち、Ptの同吸着サイトにおけるCO分子の吸着エネルギーに比べて小さいものを、横長の丸で囲って示す。
On the other hand, the adsorption energy of CO molecules at the on-top site S1 of Ir is larger than the adsorption energy of the CO molecules at the on-top site S1 of Pt.
In the same table, among adsorption energy of CO molecule at each adsorption site of Rh, Ir, and Pd, one smaller than adsorption energy of CO molecule at the same adsorption site of Pt is shown surrounded by a horizontally long circle.
 表2において、PtのオントップサイトS1、ブリッジサイトS2、並びに六方最密型及び面心立方型のホローサイトS3,S4のそれぞれにおけるNOの解離吸着エネルギーに比べて、Rh及びIrのオントップサイトS1、ブリッジサイトS2、並びに六方最密型及び面心立方型のホローサイトS3,S4のそれぞれにおけるNOの解離吸着エネルギーは大きい。そして、Rh及びIrは、第2条件を満たす貴金属元素として選定される。 In Table 2, Rh and Ir on top sites are compared with dissociative adsorption energies of NO on Pt on top site S1, bridge site S2, and hexagonal close-packed and face-centered cubic hollow sites S3 and S4, respectively. The dissociative adsorption energy of NO in each of S1, bridge site S2, and hexagonal close-packed and face-centered cubic hollow sites S3, S4 is large. Then, Rh and Ir are selected as noble metal elements that satisfy the second condition.
 一方、PtのオントップサイトS1、ブリッジサイトS2、並びに六方最密型及び面心立方型のホローサイトS3,S4のそれぞれにおけるNOの解離吸着エネルギーに比べて、PdのオントップサイトS1、ブリッジサイトS2、並びに六方最密型及び面心立方型のホローサイトS3,S4のそれぞれにおけるNOの解離吸着エネルギーは小さい。
 同表において、Rh,Ir,Pdの各吸着サイトにおけるNOの解離吸着エネルギーのうち、Ptの同吸着サイトにおけるNOの解離吸着エネルギーに比べて大きいものを、横長の丸で囲って示す。なお、Rh、IrのオントップサイトS1のNOの解離吸着エネルギーは、PtのオントップサイトS1のNOの解離吸着エネルギーに比べて大きいが、このエネルギーの絶対値が小さいため、横長の丸で囲っていない。
On the other hand, compared with the dissociative adsorption energy of NO in Pt on top site S1, bridge site S2, and hexagonal close-packed and face-centered cubic hollow sites S3 and S4, Pd on top site S1 and bridge site The dissociative adsorption energy of NO in each of S2, and hexagonal close-packed and face-centered cubic hollow sites S3, S4 is small.
In the same table, among dissociative adsorption energies of NO at each adsorption site of Rh, Ir and Pd, ones larger than dissociative adsorption energy of NO at the same adsorption site of Pt are shown surrounded by horizontally long circles. In addition, although the dissociative adsorption energy of NO of Rh and Ir on top site S1 is larger than the dissociative adsorption energy of NO of Pt on top site S1, since the absolute value of this energy is small, it is surrounded by a horizontally long circle. Not.
 こうして、Rh、Ir及びPdは、少なくとも第1条件又は第2条件を満たし、Ptとの混合物又は合金を形成する貴金属元素として適切である。
 また、Ptとの混合物又は合金を形成する貴金属元素は、第1条件及び第2条件の両方を満たす方が好ましい。従って、Ptとの混合物又は合金を形成する貴金属元素は、Rh及びIrの少なくとも一方とすることが好ましい。
Thus, Rh, Ir and Pd are suitable as noble metal elements that satisfy at least the first condition or the second condition and form a mixture or alloy with Pt.
The noble metal element forming a mixture or alloy with Pt preferably satisfies both the first condition and the second condition. Therefore, the noble metal element forming a mixture or alloy with Pt is preferably at least one of Rh and Ir.
 また、検出電極22の貴金属成分は、PtとRhの混合物又は合金、PtとIrの混合物又は合金、PtとPdの混合物又は合金、PtとRhとIrの混合物又は合金、PtとRhとPdの混合物又は合金、PtとIrとPdの混合物又は合金、又はPtとRhとIrとPdの混合物又は合金とすることができる。 The noble metal component of the detection electrode 22 is a mixture or alloy of Pt and Rh, a mixture or alloy of Pt and Ir, a mixture or alloy of Pt and Pd, a mixture or alloy of Pt and Rh and Ir, Pt and Rh and Pd. It can be a mixture or alloy, a mixture or alloy of Pt, Ir and Pd, or a mixture or alloy of Pt, Rh, Ir and Pd.
 混合物とは、金属が原子のレベルでは混ざり合っておらず、例えば、粒子状、塊状等の金属が分散されたものをいう。合金とは、金属同士が完全に溶け込んでいる固溶体、結晶のレベルにおいては各金属がそれぞれ独立している共晶、原子のレベルにおいて一定割合で結合した金属間化合物等のことをいう。 The mixture means that the metals are not mixed at the atomic level, and for example, particles, lumps, and other metals are dispersed. The alloy refers to a solid solution in which the metals are completely dissolved, a eutectic in which each metal is independent at the crystal level, an intermetallic compound bonded at a constant rate at the atomic level, and the like.
 また、貴金属には、金(Au)、銀(Ag)、白金(Pt)、パラジウム(Pd)、ロジウム(Rh)、イリジウム(Ir)、ルテニウム(Ru)、オスミウム(Os)の8種類の元素がある。これらの元素の中でも、検出電極22の貴金属成分として、Ptとの混合物又は合金を形成する貴金属元素は、Rh、Ir、Pdとすることが好ましい。 In addition, eight kinds of elements including noble metals such as gold (Au), silver (Ag), platinum (Pt), palladium (Pd), rhodium (Rh), iridium (Ir), ruthenium (Ru), and osmium (Os) There is. Among these elements, the noble metal element forming a mixture or alloy with Pt as the noble metal component of the detection electrode 22 is preferably Rh, Ir, or Pd.
 本形態においては、排ガスG中のCO分子及びNO分子に対する触媒活性を、起電力式のガスセンサ1に適した状態にするために、検出電極22の貴金属成分の選択の仕方に工夫をしている。一方、基準電極23は、排ガスGに接触するものではないため、基準電極23の貴金属成分は、従来と同様にPt等によって構成する。 In this embodiment, in order to make the catalytic activity for CO molecules and NO molecules in the exhaust gas G suitable for the electromotive force type gas sensor 1, a method of selecting a noble metal component of the detection electrode 22 is devised . On the other hand, since the reference electrode 23 is not in contact with the exhaust gas G, the noble metal component of the reference electrode 23 is made of Pt or the like as in the conventional case.
(製造方法)
 本形態のガスセンサ1の構成は、ガスセンサ1の製造方法として捉えることもできる。
 具体的には、検出電極22におけるPtとの混合物又は合金を形成する貴金属元素を選定するに当たって、この貴金属元素は、第1条件及び第2条件の少なくとも一方を満たすように選定する。第1条件及び第2条件については前述したとおりである。
(Production method)
The configuration of the gas sensor 1 of the present embodiment can also be understood as a method of manufacturing the gas sensor 1.
Specifically, in selecting a noble metal element to form a mixture or alloy with Pt in the detection electrode 22, this noble metal element is selected to satisfy at least one of the first condition and the second condition. The first condition and the second condition are as described above.
 また、検出電極22及び基準電極23は、めっき処理又は焼成処理を行って形成することができる。
 めっき処理を行って検出電極22を形成するに当たっては、まず、固体電解質体21における電極の形成部に、固体電解質粒子を含有するゾルを付着させ、このゾルを加熱する。これにより、多数の固体電解質粒子が凝集して互いに接合し、固体電解質体21の表面に、凹凸の表面を有する多孔質の析出部を形成することができる。
Further, the detection electrode 22 and the reference electrode 23 can be formed by performing a plating process or a baking process.
In forming the detection electrode 22 by performing a plating process, first, a sol containing solid electrolyte particles is attached to the formation portion of the electrode in the solid electrolyte body 21, and this sol is heated. As a result, a large number of solid electrolyte particles are aggregated and bonded to each other, and a porous precipitation portion having an uneven surface can be formed on the surface of the solid electrolyte body 21.
 次いで、めっき液を用いて析出部上にPt及び貴金属元素を含む検出電極22を形成する。このとき、めっき液が多孔質の析出部に含浸され、析出部の内部にもPt及び貴金属元素が析出した検出電極22が形成される。なお、めっき液を用いた電極の形成方法には、例えば、電解めっき法、無電解めっき法等がある。
Next, using a plating solution, a detection electrode 22 containing Pt and a noble metal element is formed on the deposition portion. At this time, the plating solution is impregnated into the porous deposition part, and the detection electrode 22 in which Pt and a noble metal element are deposited is also formed inside the deposition part. In addition, there exist an electrolytic plating method, an electroless-plating method etc. in the formation method of the electrode using a plating solution, for example.
 また、焼成処理を行って検出電極22を形成するに当たっては、Pt及び貴金属成分の貴金属粒子、又はPtと合金化された貴金属粒子を、ペースト状にした電極材料を準備する。その際、必要に応じて、ペースト状の電極材料は、貴金属粒子と、共材となる固体電解質とを混合したものとしてもよい。そして、電極材料を、パット印刷、スクリーン印刷、手塗り等によって固体電解質体21の表面に塗布し、固体電解質体21及び電極材料を、600~1450℃の温度環境下において焼成して、固体電解質体21の表面に検出電極22を形成することができる。 Further, in forming the detection electrode 22 by performing a firing process, an electrode material is prepared in which noble metal particles of Pt and a noble metal component, or noble metal particles alloyed with Pt are made into a paste. At that time, if necessary, the paste-like electrode material may be a mixture of noble metal particles and a solid electrolyte to be a co-material. Then, the electrode material is applied to the surface of the solid electrolyte body 21 by pad printing, screen printing, hand coating or the like, and the solid electrolyte body 21 and the electrode material are fired in a temperature environment of 600 to 1450 ° C. The detection electrode 22 can be formed on the surface of the body 21.
 また、検出電極22は、めっき処理及び焼成処理の両方を行って形成することもできる。
 具体的には、固体電解質体21にめっき処理によって形成された検出電極22を、硝酸イリジウム溶液、塩化イリジウム酸塩酸溶液、塩化イリジウム塩酸溶液、硝酸ロジウム溶液、塩化ロジウム酸塩酸溶液、及び塩化ロジウム塩酸溶液のうち少なくとも1種類以上の溶液に浸漬した後に、この固体電解質体21及び検出電極22を600~1450℃の温度環境下において焼成することができる。
The detection electrode 22 can also be formed by performing both plating treatment and baking treatment.
Specifically, the detection electrode 22 formed by plating on the solid electrolyte body 21 is formed of an iridium nitrate solution, an iridium chloride acid acid solution, an iridium chloride hydrochloric acid solution, a rhodium nitrate solution, a rhodium chloride acid solution, and rhodium chloride hydrochloride The solid electrolyte body 21 and the detection electrode 22 can be fired in a temperature environment of 600 to 1450 ° C. after being immersed in at least one solution among the solutions.
(作用効果)
 本形態の起電力式のガスセンサ1は、排ガスGの空燃比がリッチ側からリーン側へ変化するときの応答性を改善したものである。
 ここで、内燃機関4における燃料と空気との混合比率を示す空燃比において、燃料と空気とが完全燃焼するときの理論空燃比に比べて、燃料の混合比率が多い場合をリッチ側、燃料の混合比率が少ない側をリーン側という。そして、排ガスGの空燃比がリッチ側にあるときには、排ガスG中に、燃焼されなかった燃料による、CO分子等の未燃ガスが残存する。一方、排ガスGの空燃比がリーン側にあるときには、排ガスG中に、空気における酸素と窒素とが反応した、NO分子等の窒素酸化物(NOx)が存在する。
(Action effect)
The electromotive force type gas sensor 1 of the present embodiment improves the response when the air-fuel ratio of the exhaust gas G changes from the rich side to the lean side.
Here, in the air-fuel ratio indicating the mixing ratio of fuel and air in the internal combustion engine 4, the case where the mixing ratio of fuel is larger than the stoichiometric air-fuel ratio when the fuel and air are completely burned is the rich side The side with less mixing ratio is called the lean side. Then, when the air-fuel ratio of the exhaust gas G is on the rich side, unburned gas such as CO molecules due to the fuel not burned remains in the exhaust gas G. On the other hand, when the air-fuel ratio of the exhaust gas G is on the lean side, the exhaust gas G contains nitrogen oxides (NOx) such as NO molecules in which oxygen in the air and nitrogen react with each other.
 図11に示すように、起電力式のガスセンサの出力である起電力は、空燃比が理論空燃比としての14.5にあるときを境にして、リッチ側において高くなり、リーン側において低くなる。排ガスGの空燃比がリーン側にあるときには、基準電極23に接触する大気の酸素濃度が、検出電極22に接触する排ガスGの酸素濃度よりも高いことにより、基準電極23から検出電極22へ酸素が移動し、各電極22,23間には小さな起電力が生じる。一方、排ガスGの空燃比がリーン側からリッチ側に変化するときには、検出電極22に到達する排ガスG中の未燃成分を反応させるための大量の酸素が基準電極23から検出電極22へ移動し、各電極22,23間には大きな起電力が生じる。そのため、この起電力の大きさの変化を検出することにより、排ガスGの空燃比が理論空燃比に対してリッチ側にあるかリーン側にあるかが判定される。 As shown in FIG. 11, the electromotive force, which is the output of the electromotive force type gas sensor, becomes higher on the rich side and lower on the lean side, when the air-fuel ratio is at 14.5 as the theoretical air-fuel ratio. . When the air-fuel ratio of the exhaust gas G is on the lean side, the oxygen concentration of the atmosphere in contact with the reference electrode 23 is higher than the oxygen concentration of the exhaust gas G in contact with the detection electrode 22. Moves, and a small electromotive force is generated between the electrodes 22 and 23. On the other hand, when the air-fuel ratio of the exhaust gas G changes from the lean side to the rich side, a large amount of oxygen for reacting unburned components in the exhaust gas G reaching the detection electrode 22 moves from the reference electrode 23 to the detection electrode 22 A large electromotive force is generated between the electrodes 22 and 23. Therefore, by detecting the change in magnitude of the electromotive force, it is determined whether the air-fuel ratio of the exhaust gas G is rich or lean with respect to the stoichiometric air-fuel ratio.
 本形態のガスセンサ1は、Pt(白金)と、1種類又は2種類以上の貴金属元素とを含む検出電極22を有する。また、Ptと混合又は合金化された貴金属元素は、4種類の吸着サイトにおけるCO(一酸化炭素)分子の吸着エネルギー及びNO(一酸化窒素)の解離吸着エネルギーの大きさを考慮し、起電力式のガスセンサ1の電極として多用されるPtとの比較によって選択されたものである。 The gas sensor 1 of the present embodiment has a detection electrode 22 containing Pt (platinum) and one or more kinds of precious metal elements. In addition, the precious metal element mixed or alloyed with Pt has an electromotive force in consideration of the adsorption energy of CO (carbon monoxide) molecules and the dissociative adsorption energy of NO (nitrogen monoxide) at four types of adsorption sites. It is selected by comparison with Pt frequently used as an electrode of the gas sensor 1 of the formula.
 本形態のガスセンサ1においては、貴金属成分としてPtのみを含有する検出電極を基準とし、この検出電極に比べて、貴金属成分がPtと貴金属元素との混合物又は合金からなる検出電極22の、CO分子に対する吸着性能を弱めることと、NOに対する解離吸着性能を高めることとの少なくとも一方を行う。
 本形態のガスセンサ1においては、Pt及び貴金属元素について、4種類の吸着サイトのうちの同じ種類の吸着サイト同士のCO分子の吸着エネルギー及びNOの解離吸着エネルギーを比較する。
In the gas sensor 1 of the present embodiment, based on the detection electrode containing only Pt as a noble metal component, the CO molecule of the detection electrode 22 whose noble metal component is a mixture or alloy of Pt and a noble metal element is compared with this detection electrode. And / or at least one of enhancing the dissociative adsorption performance for NO.
In the gas sensor 1 of the present embodiment, the adsorption energy of CO molecules and the dissociative adsorption energy of NO of the adsorption sites of the same kind among the four kinds of adsorption sites are compared for Pt and the noble metal element.
 そして、本形態の検出電極22においては、第1条件及び第2条件の少なくとも一方を満たす1種類又は2種類以上の貴金属元素が、Ptとの混合物又は合金を形成する。
 貴金属元素が第1条件を満たす場合には、検出電極22のCO分子に対する吸着性能が弱まり、排ガスGの空燃比がリッチ側からリーン側に変化するときに、検出電極22からCO分子が離脱しやすくなる。これにより、排ガスGの空燃比がリッチ側からリーン側へ変化するときには、CO分子が検出電極22に吸着し続ける現象を緩和し、ガスセンサ1によってリーン側への変化を迅速に検出することができる。
And in detection electrode 22 of this form, one or two or more kinds of precious metal elements which satisfy at least one of the 1st condition and the 2nd condition form a mixture or alloy with Pt.
When the noble metal element satisfies the first condition, the adsorption performance of the detection electrode 22 for CO molecules is weakened, and when the air-fuel ratio of the exhaust gas G changes from the rich side to the lean side, the CO molecules are released from the detection electrode 22 It will be easier. As a result, when the air-fuel ratio of the exhaust gas G changes from rich to lean, the phenomenon that CO molecules continue to be adsorbed to the detection electrode 22 can be alleviated, and the change to the lean can be detected rapidly by the gas sensor 1 .
 また、貴金属元素が第2条件を満たす場合には、検出電極22のNOに対する解離吸着性能が高まり、排ガスGの空燃比がリッチ側からリーン側に変化するときに、排ガスG中のNOがNとOに解離して検出電極22に吸着しやすくなる。これにより、排ガスGの空燃比がリッチ側からリーン側へ変化するときには、NOによって検出電極22からCO分子が離脱しやすくし、ガスセンサ1によってリーン側への変化を迅速に検出することができる。 When the noble metal element satisfies the second condition, the dissociative adsorption performance for NO of the detection electrode 22 is enhanced, and NO in the exhaust gas G is N when the air fuel ratio of the exhaust gas G changes from rich to lean. And dissociate into O and become easy to be adsorbed to the detection electrode 22. As a result, when the air-fuel ratio of the exhaust gas G changes from the rich side to the lean side, NO facilitates CO molecule detachment from the detection electrode 22, and the gas sensor 1 can quickly detect the change to the lean side.
 本形態のガスセンサ1においては、4種類の吸着サイトに着目するとともに、CO分子の吸着エネルギー及びNOの解離吸着エネルギーに着目している。そして、PtよりもCO分子の吸着エネルギーが小さいいずれかの吸着サイト又はPtよりもNOの解離吸着エネルギーが大きいいずれかの吸着サイトを有する貴金属元素を、Ptとの混合物又は合金として検出電極22に含有させることにより、排ガスGの空燃比がリッチ側からリーン側へ変化するときのガスセンサ1の検出性能としての応答性を高めることができる。 In the gas sensor 1 of the present embodiment, attention is paid to four types of adsorption sites, and attention is paid to the adsorption energy of CO molecules and the dissociative adsorption energy of NO. Then, the noble metal element having any adsorption site having smaller adsorption energy of CO molecules than Pt or any adsorption site having larger dissociative adsorption energy of NO than Pt is used as a mixture or alloy with Pt to the detection electrode 22 By including it, the responsiveness as the detection performance of the gas sensor 1 when the air-fuel ratio of the exhaust gas G changes from the rich side to the lean side can be enhanced.
 それ故、本形態のガスセンサ1によれば、排ガスGの空燃比がリッチ側からリーン側へ変化するときの検出性能としての応答性を高めることができる。 Therefore, according to the gas sensor 1 of the present embodiment, it is possible to enhance the responsiveness as the detection performance when the air-fuel ratio of the exhaust gas G changes from the rich side to the lean side.
<実施形態2>
 本形態のガスセンサ1においては、4種類の吸着サイトのCO分子の吸着エネルギーのうちの最大値同士及び4種類の吸着サイトのNOの解離吸着エネルギーのうちの最大値同士を比較して、検出電極22のPtとの混合物又は合金を形成する貴金属元素を選定する。
Second Embodiment
In the gas sensor 1 of the present embodiment, the detection electrodes are compared by comparing the maximum values among the adsorption energy of CO molecules of the four types of adsorption sites and the maximum values among the dissociative adsorption energies of NO of the four adsorption sites. The noble metal element which forms a mixture or alloy with 22 Pt is selected.
 本形態の貴金属元素を選定する際の第1条件は、貴金属元素における、4種類の吸着サイトのCO分子の吸着エネルギーのうちの最大値が、Ptにおける、4種類の吸着サイトのCO分子の吸着エネルギーのうちの最大値よりも小さいこととする。また、本形態の貴金属元素を選定する際の第2条件は、貴金属元素における、4種類の吸着サイトのNOの解離吸着エネルギーのうちの最大値が、Ptにおける、4種類の吸着サイトのNOの解離吸着エネルギーのうちの最大値よりも大きいこととする。そして、第1条件及び第2条件の少なくとも一方が満たされるよう、Ptとの混合物又は合金となる貴金属元素が選定される。 The first condition for selecting the noble metal element of this embodiment is that, among the noble metal element, the maximum value of the adsorption energy of the CO molecules of the four adsorption sites is the adsorption of the CO molecules of the four adsorption sites in Pt. It shall be smaller than the maximum value of energy. The second condition for selecting the noble metal element of this embodiment is that, among the noble metal elements, the maximum value among the dissociative adsorption energy of NO at four types of adsorption sites is the number of NO at four types of adsorption sites at Pt. Assume that it is larger than the maximum value of the dissociative adsorption energy. Then, a noble metal element to be a mixture or alloy with Pt is selected so that at least one of the first condition and the second condition is satisfied.
 排ガスG中のCO分子が検出電極22に吸着するときには、CO分子の吸着エネルギーが大きい吸着サイトほど、CO分子が先に吸着されやすいと考えられる。そして、検出電極22へのCO分子の吸着性能は、4種類の吸着サイトのうちのCO分子の吸着エネルギーの最大値による影響を大きく受けると考えられる。そのため、本形態においては、Ptと貴金属成分とについての吸着エネルギーの最大値同士の比較によって、貴金属成分を選定する。 When CO molecules in the exhaust gas G are adsorbed to the detection electrode 22, it is considered that the CO molecules are more likely to be adsorbed earlier at the adsorption site where the adsorption energy of the CO molecules is larger. And, the adsorption performance of the CO molecule to the detection electrode 22 is considered to be largely influenced by the maximum value of the adsorption energy of the CO molecule among the four types of adsorption sites. Therefore, in the present embodiment, the noble metal component is selected by comparing the maximum values of adsorption energy of Pt and the noble metal component.
 また、排ガスG中のNOがNとOに解離して検出電極22に吸着するときには、NOの解離吸着エネルギーが大きい吸着サイトほど、N及びOが先に吸着されやすいと考えられる。そして、検出電極22へのNOの解離吸着性能は、4種類の吸着サイトのうちのNOの解離吸着エネルギーの最大値による影響を大きく受けると考えられる。そのため、Ptと貴金属成分とについての解離吸着エネルギーの最大値同士の比較によって、貴金属成分を選定する。 Further, when NO in the exhaust gas G is dissociated into N and O and adsorbed to the detection electrode 22, it is considered that N and O tend to be adsorbed earlier as the adsorption site has a larger energy for dissociative adsorption of NO. Then, the dissociative adsorption performance of NO on the detection electrode 22 is considered to be greatly affected by the maximum value of dissociative adsorption energy of NO among the four types of adsorption sites. Therefore, the noble metal component is selected by comparing the maximum values of the dissociative adsorption energy for Pt and the noble metal component.
 具体的には、実施形態1の表1に示すように、Pt、Rh及びIrの4種類の吸着サイトのCO分子の吸着エネルギーにおいては、オントップサイトS1のCO分子の吸着エネルギーが最も大きい。また、Pdの4種類の吸着サイトにおいては、六方最密型及び面心立方型のホローサイトS3,S4のCO分子の吸着エネルギーが最も大きい。そして、PtとRh、Ir又はPdとについて、CO分子の吸着エネルギーの最大値同士を比較すると、第1条件を満たす貴金属元素としては、Rh及びPdが選定される。
 同表において、Pt、Rh、Ir及びPdの4つの吸着サイトにおけるCO分子の吸着エネルギーの最大値には、(max)を付して示す。
Specifically, as shown in Table 1 of the first embodiment, in the adsorption energy of CO molecules of four types of adsorption sites of Pt, Rh and Ir, the adsorption energy of CO molecules of the on-top site S1 is the largest. In addition, at the four types of adsorption sites of Pd, the adsorption energy of CO molecules of hexagonal close-packed and face-centered cubic hollow sites S3 and S4 is the largest. And when Pt and Rh, Ir, or Pd and the maximum value of the adsorption energy of CO molecule are compared, Rh and Pd are selected as a noble metal element which satisfy | fills the 1st condition.
In the table, the maximum value of the adsorption energy of CO molecules at the four adsorption sites of Pt, Rh, Ir and Pd is shown with (max) attached.
 一方、実施形態1の表2に示すように、Pt、Rh及びIrの4種類の吸着サイトのNOの解離吸着エネルギーにおいては、ブリッジサイトS2のNOの解離吸着エネルギーが最も大きい。また、Pdの4種類の吸着サイトにおいては、ブリッジサイトS2及び面心立方型のホローサイトS4のNOの解離吸着エネルギーが最も大きい。そして、PtとRh、Ir又はPdとについて、NOの解離吸着エネルギーの最大値同士を比較すると、第2条件を満たす貴金属元素としては、Rh及びIrが選定される。
 同表において、Pt、Rh、Ir及びPdの4つの吸着サイトにおけるNOの解離吸着エネルギーの最大値には、(max)を付して示す。
On the other hand, as shown in Table 2 of the first embodiment, in dissociative adsorption energy of NO at four kinds of adsorption sites of Pt, Rh and Ir, dissociative adsorption energy of NO of bridge site S2 is the largest. In addition, in the four adsorption sites of Pd, the dissociative adsorption energy of NO of the bridge site S2 and the face-centered cubic hollow site S4 is the largest. And when Pt and Rh, Ir, or Pd and the maximum value of the dissociative adsorption energy of NO are compared, Rh and Ir are selected as a noble metal element which satisfy | fills the 2nd condition.
In the same table, the maximum value of dissociative adsorption energy of NO at four adsorption sites of Pt, Rh, Ir and Pd is shown with (max) attached.
 こうして、第1条件及び第2条件の少なくとも一方を満たす、Ptとの混合物又は合金を形成する貴金属元素として、Rh、Ir及びPdが選定される。
 本形態のガスセンサ1によっても、実施形態1の場合と同様にして、排ガスGの空燃比がリッチ側からリーン側へ変化するときの検出性能としての応答性を高めることができる。
Thus, Rh, Ir, and Pd are selected as the noble metal elements forming a mixture or alloy with Pt that satisfies at least one of the first condition and the second condition.
Also in the gas sensor 1 of the present embodiment, as in the case of the first embodiment, the responsiveness as the detection performance when the air-fuel ratio of the exhaust gas G changes from the rich side to the lean side can be enhanced.
 本形態のガスセンサ1におけるその他の構成、作用効果等については、実施形態1の場合と同様である。また、本形態においても、実施形態1に示した符号と同一の符号が示す構成要素は、実施形態1の場合と同様である。 The other configuration, effects, and the like of the gas sensor 1 of the present embodiment are the same as those of the first embodiment. Also in this embodiment, the constituent elements indicated by the same reference numerals as the reference numerals in the first embodiment are the same as those in the first embodiment.
<実施形態3>
 本形態のガスセンサ1においては、Pt以外の2種類以上の貴金属元素の混合物又は合金によって検出電極22を形成する。また、本形態のガスセンサ1においては、実施形態1の場合と同様に、PtによるCO分子の吸着エネルギー及びNOの解離吸着エネルギーを基準とし、この基準との、4種類の吸着サイトのうちの同じ吸着サイト同士の比較によって、検出電極22の貴金属成分を構成する2種類以上の貴金属元素を選定する。
Embodiment 3
In the gas sensor 1 of the present embodiment, the detection electrode 22 is formed of a mixture or alloy of two or more types of noble metal elements other than Pt. In the gas sensor 1 of the present embodiment, as in the case of the first embodiment, the adsorption energy of CO molecules by Pt and the dissociative adsorption energy of NO are the same, and the same among the four types of adsorption sites with this reference. Two or more types of noble metal elements constituting the noble metal component of the detection electrode 22 are selected by comparing the adsorption sites.
 この2種類以上の貴金属元素の選定は、実施形態1の場合と同様に行われ、Rh、Ir及びPdが選定される。そして、本形態の検出電極22の貴金属成分は、Rh及びIrの混合物又は合金、Rh及びPdの混合物又は合金、Ir及びPdの混合物又は合金、又はRh、Ir及びPdの混合物又は合金として選定される。 The selection of the two or more types of noble metal elements is performed in the same manner as in the first embodiment, and Rh, Ir, and Pd are selected. The noble metal component of the detection electrode 22 of this embodiment is selected as a mixture or alloy of Rh and Ir, a mixture or alloy of Rh and Pd, a mixture or alloy of Ir and Pd, or a mixture or alloy of Rh, Ir and Pd. Ru.
 本形態のガスセンサ1におけるその他の構成、作用効果等については、実施形態1の場合と同様である。また、本形態においても、実施形態1に示した符号と同一の符号が示す構成要素は、実施形態1の場合と同様である。 The other configuration, effects, and the like of the gas sensor 1 of the present embodiment are the same as those of the first embodiment. Also in this embodiment, the constituent elements indicated by the same reference numerals as the reference numerals in the first embodiment are the same as those in the first embodiment.
<実施形態4>
 本形態のガスセンサ1においては、実施形態3の場合と同様に、Pt以外の2種類以上の貴金属元素の混合物又は合金によって検出電極22を形成する。また、本形態のガスセンサ1においては、実施形態2の場合と同様に、4種類の吸着サイトのCO分子の吸着エネルギーのうちの最大値同士及び4種類の吸着サイトのNOの解離吸着エネルギーのうちの最大値同士を比較して、検出電極22のPtとの混合物又は合金を形成する貴金属元素を選定する。
 本形態においても、実施形態2と同様に、検出電極22の貴金属成分を構成する貴金属元素として、Rh、Ir及びPdが選定される。
Fourth Embodiment
In the gas sensor 1 of the present embodiment, as in the case of the third embodiment, the detection electrode 22 is formed of a mixture or alloy of two or more types of noble metal elements other than Pt. Further, in the gas sensor 1 of the present embodiment, as in the case of the second embodiment, among the adsorption energies of CO molecules of four types of adsorption sites, among the maximum values of the adsorption energies of NO and of dissociative adsorption energies of NO of four types of adsorption sites The noble metal elements which form a mixture or alloy with Pt of the detection electrode 22 are selected by comparing the maximum values of.
Also in this embodiment, as in the second embodiment, Rh, Ir, and Pd are selected as the noble metal elements constituting the noble metal component of the detection electrode 22.
 本形態のガスセンサ1におけるその他の構成、作用効果等については、実施形態1の場合と同様である。また、本形態においても、実施形態1に示した符号と同一の符号が示す構成要素は、実施形態1の場合と同様である。 The other configuration, effects, and the like of the gas sensor 1 of the present embodiment are the same as those of the first embodiment. Also in this embodiment, the constituent elements indicated by the same reference numerals as the reference numerals in the first embodiment are the same as those in the first embodiment.
<実施形態5>
 本形態は、検出電極22の貴金属成分が、Ptと貴金属元素との合金の貴金属粒子によって形成される場合について示す。
 貴金属元素は、Rh、Ir及びPdのうちから選ばれる1種類又は2種類以上の貴金属元素からなる。本形態の貴金属元素は、Rhによって構成されている。また、検出電極22の貴金属成分を構成する貴金属粒子の平均粒径は2μm以下である。検出電極22は、貴金属粒子の焼結体として形成されている。
Fifth Embodiment
The present embodiment shows a case where the noble metal component of the detection electrode 22 is formed by noble metal particles of an alloy of Pt and a noble metal element.
The noble metal element is composed of one or more noble metal elements selected from Rh, Ir and Pd. The noble metal element of this embodiment is composed of Rh. Moreover, the average particle diameter of the noble metal particle which comprises the noble metal component of the detection electrode 22 is 2 micrometers or less. The detection electrode 22 is formed as a sintered body of noble metal particles.
 また、電極材料の全体における少なくとも90%以上の貴金属粒子の粒径は、2μm以下であることが好ましい。また、電極材料の全体における貴金属粒子の粒径が、2μm以下であることがさらに好ましい。 In addition, the particle diameter of at least 90% or more of the noble metal particles in the entire electrode material is preferably 2 μm or less. Further, the particle diameter of the noble metal particles in the entire electrode material is more preferably 2 μm or less.
 電極材料における貴金属粒子の平均粒径は小さくなるほど、検出電極22の電極形成時のガス吸着面量及び反応界面量の少なくとも一方を調整しやすいため好ましい。また、電位式のガスセンサ1においては、ガス吸着面量及び反応界面量が少なくなることが好ましい。一方、電流式のガスセンサ1においては、吸着面量が少なく反応界面量が多くなることが好ましい。電極材料における貴金属粒子の平均粒径が大きくなると、ガス吸着面量が多く反応界面量が少なくなる。そのため、電極材料における貴金属粒子の平均粒径は小さい方が好ましい。ただし、製造上等の観点から、電極材料における貴金属粒子の平均粒径は、例えば、0.05μm以上とすることができる。また、センサ出力に生じるヒステリシスを少なくするという効果の観点からは、電極材料における貴金属粒子の平均粒径は、例えば、0.5μm以上とすることもできる。 The smaller the average particle diameter of the noble metal particles in the electrode material, the more preferable because at least one of the gas adsorption surface amount and the reaction interface amount when forming the detection electrode 22 is easily adjusted. Further, in the potential type gas sensor 1, it is preferable that the amount of gas adsorption surface and the amount of reaction interface be reduced. On the other hand, in the current type gas sensor 1, it is preferable that the amount of adsorption surface is small and the amount of reaction interface is large. As the average particle diameter of the noble metal particles in the electrode material increases, the amount of gas adsorption surface increases and the amount of reaction interface decreases. Therefore, it is preferable that the average particle diameter of the noble metal particles in the electrode material be smaller. However, from the viewpoint of production and the like, the average particle diameter of the noble metal particles in the electrode material can be, for example, 0.05 μm or more. Further, from the viewpoint of the effect of reducing the hysteresis generated in the sensor output, the average particle diameter of the noble metal particles in the electrode material can be set to, for example, 0.5 μm or more.
 また、基準電極23の貴金属成分は、Ptの貴金属粒子によって形成されている。基準電極23の貴金属成分を構成する貴金属粒子の平均粒径は、0.5~3μmである。基準電極23は、貴金属粒子の焼結体として形成されている。 The noble metal component of the reference electrode 23 is formed of noble metal particles of Pt. The average particle diameter of the noble metal particles constituting the noble metal component of the reference electrode 23 is 0.5 to 3 μm. The reference electrode 23 is formed as a sintered body of noble metal particles.
 貴金属粒子の粒径とは、貴金属粒子がいかなる形状であっても、最も長くなる部分の長さである最大粒径のことをいう。貴金属粒子の最大粒径とは、例えば、貴金属粒子が球状である場合には、その直径のことをいい、貴金属粒子が複雑な形状である場合には、最も長くなる部分の長さのことをいう。 The particle size of the noble metal particles refers to the maximum particle size which is the length of the longest portion of the noble metal particles in any shape. The maximum particle size of the noble metal particle means, for example, the diameter of the noble metal particle when it is spherical, and the length of the longest part when the noble metal particle has a complicated shape. Say.
 また、貴金属粒子の平均粒径とは、貴金属粒子の粒度分布の平均値のことをいい、具体的には、任意に100個の貴金属粒子の最大粒子径を測定した場合の数平均粒径とすることができる。 Further, the average particle diameter of the noble metal particles refers to the average value of the particle size distribution of the noble metal particles, and more specifically, the number average particle diameter when the maximum particle diameter of 100 noble metal particles is arbitrarily measured can do.
 貴金属粒子の最大粒径は、光学顕微鏡又は電子顕微鏡を用いた観察によって測定することができる。この最大粒径は、例えば、イオンビーム加工等によって検出電極22の断面を露出させ、この断面をSEM(走査電子顕微鏡法)等によって観察して測定することができる。 The maximum particle size of the noble metal particles can be measured by observation using an optical microscope or an electron microscope. The maximum particle size can be measured by, for example, exposing the cross section of the detection electrode 22 by ion beam processing or the like and observing the cross section by SEM (scanning electron microscopy) or the like.
 検出電極22及び基準電極23に含まれる貴金属粒子は、検出電極22及び基準電極23が所定の温度で焼成されていることにより、隣り合う粒子同士が接合された状態にある。ただし、隣り合う粒子同士が接合されていても、光学顕微鏡又は電子顕微鏡を用いた観察によって1つ1つの粒子の外形を観測することができる。そのため、各電極22,23における貴金属粒子の最大粒径を測定し、測定した最大粒径に基づいて、平均粒径を求めることができる。 The noble metal particles contained in the detection electrode 22 and the reference electrode 23 are in a state in which adjacent particles are joined by firing the detection electrode 22 and the reference electrode 23 at a predetermined temperature. However, even if adjacent particles are joined, the outer shape of each particle can be observed by observation using an optical microscope or an electron microscope. Therefore, the maximum particle size of the noble metal particles in each of the electrodes 22 and 23 can be measured, and the average particle size can be obtained based on the measured maximum particle size.
 また、貴金属粒子の平均粒径は、レーザ回析・散乱法によって求めることもできる。この場合に、平均粒径は、粒径分布の算術平均径としての体積平均径によって求めることができる。 The average particle size of the noble metal particles can also be determined by laser diffraction / scattering method. In this case, the average particle diameter can be determined by the volume average diameter as the arithmetic average diameter of the particle diameter distribution.
 本形態の固体電解質体21は、実施形態1の図8に示した板状のものである。また、センサ素子2は積層型のものであり、各電極22,23は、ペースト状の電極材料が焼成されて形成されたものである。各電極22,23には、貴金属粒子の他に、固体電解質体21と同じ固体電解質の成分が含まれる。この固体電解質の成分は、固体電解質粒子によって構成することができる。固体電解質体21は、ジルコニア材料の焼結体として形成されている。各電極22,23は、貴金属粒子及び固体電解質粒子の焼結体として形成されている。 The solid electrolyte body 21 of this embodiment is a plate-like one shown in FIG. 8 of the first embodiment. Further, the sensor element 2 is a laminated type, and each of the electrodes 22 and 23 is formed by firing a paste-like electrode material. Each of the electrodes 22 and 23 contains the same components of the solid electrolyte as the solid electrolyte body 21 in addition to the noble metal particles. The components of this solid electrolyte can be constituted by solid electrolyte particles. The solid electrolyte body 21 is formed as a sintered body of a zirconia material. Each of the electrodes 22 and 23 is formed as a sintered body of noble metal particles and solid electrolyte particles.
 次に、本形態のガスセンサの製造方法について示す。
 固体電解質体21の表面に検出電極22を形成するに当たっては、Ptと貴金属元素との合金の貴金属粒子を含むペースト状の電極材料を準備する。電極材料には、貴金属粒子の他に、固体電解質体21を構成する固体電解質及び溶媒等が含まれる。また、電極材料における貴金属粒子の平均粒径は、2μm以下とする。
Next, a method of manufacturing the gas sensor of the present embodiment will be described.
In forming the detection electrode 22 on the surface of the solid electrolyte body 21, a paste-like electrode material containing noble metal particles of an alloy of Pt and a noble metal element is prepared. The electrode material includes, in addition to the noble metal particles, a solid electrolyte constituting the solid electrolyte body 21, a solvent, and the like. Moreover, the average particle diameter of the noble metal particle in an electrode material shall be 2 micrometers or less.
 次いで、電極材料を固体電解質体21に印刷等によって配置し、固体電解質体21及び電極材料を焼成する。また、この焼成を行う際には、固体電解質体21に、基準電極23を構成する電極材料を印刷等によって配置し、また、絶縁体25、発熱体24A等を積層して、センサ素子2の中間体を形成する。 Next, the electrode material is disposed on the solid electrolyte body 21 by printing or the like, and the solid electrolyte body 21 and the electrode material are fired. When the firing is performed, the electrode material constituting the reference electrode 23 is disposed on the solid electrolyte body 21 by printing or the like, and the insulator 25, the heating element 24 A and the like are laminated to form the sensor element 2. Form an intermediate.
 そして、中間体が焼成されてセンサ素子2が形成されたときには、検出電極22における複数の貴金属粒子及び複数の固体電解質粒子のそれぞれが互いに結合され、検出電極22における隙間が極力埋められる。また、検出電極22における複数の貴金属粒子及び複数の固体電解質粒子が、固体電解質体21における複数の固体電解質粒子と結合される。 Then, when the intermediate body is fired to form the sensor element 2, the plurality of precious metal particles and the plurality of solid electrolyte particles in the detection electrode 22 are combined with each other, and the gap in the detection electrode 22 is filled as much as possible. Further, the plurality of noble metal particles and the plurality of solid electrolyte particles in the detection electrode 22 are combined with the plurality of solid electrolyte particles in the solid electrolyte body 21.
 本形態のガスセンサ1においては、検出電極22を構成する貴金属粒子の平均粒径が2μm以下であることにより、検出電極22の電極形成時のガス吸着面量及び反応界面量の少なくとも一方を調整しやすいため好ましい。この検出電極22により、平均粒径が2μm超過である貴金属粒子を含む検出電極22に比べて、検出電極22の表面に、CO分子及びNOが吸着しにくい状態を形成することができる。この結果、ガスセンサ1による応答性を高める効果をより顕著に得ることができる。 In the gas sensor 1 of the present embodiment, the average particle diameter of the noble metal particles constituting the detection electrode 22 is 2 μm or less, so that at least one of the gas adsorption surface amount and the reaction interface amount at the time of electrode formation of the detection electrode 22 is adjusted. It is preferable because it is easy. The detection electrode 22 can form a state in which CO molecules and NO are less likely to be adsorbed on the surface of the detection electrode 22 as compared to the detection electrode 22 including noble metal particles having an average particle diameter exceeding 2 μm. As a result, the effect of enhancing the responsiveness of the gas sensor 1 can be obtained more significantly.
 また、平均粒径が2μm以下である貴金属粒子を用いることにより、検出電極22のCO分子及びNOの吸着量が低減される。これにより、検出電極22の電極表面におけるCO分子とNO分子とが置換される速度を速めることができ、検出電極22における電位変化又は電流変化が起きやすくなり、ガスセンサ1の応答性が向上する。そして、排ガスGの空燃比がリーン側からリッチ側へ変化するときのセンサ出力と、排ガスGの空燃比がリッチ側からリーン側へ変化するときのセンサ出力とのヒステリシスを低減させることができる。また、排ガスGの空燃比がリーン側からリッチ側へ変化するとき、及び排ガスGの空燃比がリッチ側からリーン側へ変化するときの応答性(感度)を向上させることができる。 In addition, by using noble metal particles having an average particle diameter of 2 μm or less, the amount of adsorption of CO molecules and NO of the detection electrode 22 is reduced. As a result, the speed at which CO molecules and NO molecules are substituted on the electrode surface of the detection electrode 22 can be increased, potential change or current change in the detection electrode 22 easily occurs, and responsiveness of the gas sensor 1 is improved. The hysteresis can be reduced between the sensor output when the air-fuel ratio of the exhaust gas G changes from the lean side to the rich side and the sensor output when the air-fuel ratio of the exhaust gas G changes from the rich side to the lean side. Further, it is possible to improve the response (sensitivity) when the air-fuel ratio of the exhaust gas G changes from the lean side to the rich side and when the air-fuel ratio of the exhaust gas G changes from the rich side to the lean side.
<実施例1>
 本例においては、実施形態1~4に基づいて選定される貴金属成分を含有する検出電極22を備えたガスセンサ1である実施品1~5を示す。そして、NO-CO反応開始温度、及び検出電極22に接触する排ガスGの空燃比がリッチ側からリーン側へ変化したときの排ガスGにおけるNO濃度について測定した。また、比較のために、貴金属元素を単体で含有する検出電極を備えたガスセンサである比較品1~4についても、同様の測定を行った。また、測定結果においては、検出電極22の貴金属成分がPtのみである場合と比較して、Ptのみの場合よりも改善されているかを確認した。
Example 1
In this example, the practical products 1 to 5 which are the gas sensor 1 provided with the detection electrode 22 containing the noble metal component selected based on the first to fourth embodiments are shown. Then, the NO-CO reaction start temperature and the NO concentration in the exhaust gas G when the air-fuel ratio of the exhaust gas G contacting the detection electrode 22 changed from the rich side to the lean side were measured. Further, for comparison, the same measurement was performed also on Comparative Products 1 to 4, which are gas sensors provided with a detection electrode containing a noble metal element alone. Moreover, in the measurement result, it was confirmed whether the noble metal component of the detection electrode 22 is improved as compared with the case of only Pt as compared with the case of only Pt.
 実施品1は、検出電極22が貴金属成分としてPt及びIrを含有し、PtとIrの含有比率を、質量比で、Pt:Ir=6:1としたものである。実施品2は、検出電極22が貴金属成分としてPt及びRhを含有し、PtとRhの含有比率を、質量比で、Pt:Rh=6:4としたものである。
 実施品3は、検出電極22が貴金属成分としてPt及びPdを含有し、PtとPdの含有比率を、質量比で、Pt:Pd=6:4としたものである。実施品4は、検出電極22が貴金属成分としてPt、Rh及びIrを含有し、PtとRhとIrの含有比率を、質量比で、Pt:Rh:Ir=6:4:1としたものである。実施品5は、検出電極22が貴金属成分としてRh及びIrを含有し、RhとIrの含有比率を、質量比で、Rh:Ir=4:1としたものである。
In the product 1, the detection electrode 22 contains Pt and Ir as noble metal components, and the content ratio of Pt and Ir is Pt: Ir = 6: 1 in mass ratio. In the product 2, the detection electrode 22 contains Pt and Rh as noble metal components, and the content ratio of Pt and Rh is Pt: Rh = 6: 4 in mass ratio.
In the product 3, the detection electrode 22 contains Pt and Pd as noble metal components, and the content ratio of Pt and Pd is Pt: Pd = 6: 4 in mass ratio. In the product 4, the detection electrode 22 contains Pt, Rh and Ir as noble metal components, and the content ratio of Pt, Rh and Ir is Pt: Rh: Ir = 6: 4: 1 by mass ratio. is there. In the practical product 5, the detection electrode 22 contains Rh and Ir as noble metal components, and the content ratio of Rh and Ir is set to Rh: Ir = 4: 1 in mass ratio.
 また、比較品1は、検出電極22が貴金属成分としてPtを含有するものであり、比較品2は、検出電極22が貴金属成分としてIrを含有するものである。比較品3は、検出電極22が貴金属成分としてRhを含有するものであり、比較品4は、検出電極22が貴金属成分としてPdを含有するものである。 Further, in the comparative product 1, the detection electrode 22 contains Pt as a noble metal component, and in the comparative product 2, the detection electrode 22 contains Ir as a noble metal component. The comparative product 3 is one in which the detection electrode 22 contains Rh as a noble metal component, and the comparative product 4 is one in which the detection electrode 22 contains Pd as a noble metal component.
 実施品1~5及び比較品1~4においては、検出電極22及び基準電極23が設けられた固体電解質体21は、イットリア安定化ジルコニア(YSZ)とし、基準電極23の貴金属成分はPtとした。 In the practical products 1 to 5 and the comparative products 1 to 4, the solid electrolyte body 21 provided with the detection electrode 22 and the reference electrode 23 is yttria stabilized zirconia (YSZ), and the noble metal component of the reference electrode 23 is Pt. .
 また、NO-CO反応開始温度は、昇温反応法(TPR)に基づき、NO及びCOのそれぞれが200ppmずつ含まれる、ベースガスとしてのHe(ヘリウム)を、検出電極22に接触させ、20℃/分の昇温速度で100℃から800℃まで昇温したときに、NOとCOが反応を開始する温度として測定した。NO-CO反応は、検出電極22に接触する排ガスGの空燃比が、リッチ側からリーン側へ変化するとき、検出電極22に吸着して残存するCOが、リーン側の排ガスGに含まれるNOと反応するときに生じる。COとNOが反応したときには多くのCO2が発生するため、CO2の発生量を監視することによって、COとNOの反応の進行状態を確認することができる。 In addition, based on the temperature rising reaction method (TPR), the NO-CO reaction start temperature is brought into contact with He (helium) as a base gas containing 200 ppm each of NO and CO at 20 ° C. When the temperature was raised from 100 ° C. to 800 ° C. at a temperature rising rate of 1 / min, it was measured as the temperature at which NO and CO started to react. In the NO-CO reaction, when the air-fuel ratio of the exhaust gas G in contact with the detection electrode 22 changes from the rich side to the lean side, CO adsorbed and remaining on the detection electrode 22 is contained in the exhaust gas G on the lean side. It occurs when it reacts with. Since a large amount of CO 2 is generated when CO and NO react, it is possible to confirm the progress of the reaction between CO and NO by monitoring the amount of CO 2 generated.
 COとNOが反応を開始する温度が低いほど、ガスセンサ1の温度が低い状態においても、検出電極22に残存するCOが検出電極22に到達するNOと反応しやすいことを意味し、検出電極22が、リッチ側からリーン側への空燃比の変化を検出しやすいと言える。 As the temperature at which CO and NO start reaction is lower, it means that CO remaining in the detection electrode 22 is more likely to react with NO reaching the detection electrode 22 even when the temperature of the gas sensor 1 is low. However, it can be said that it is easy to detect the change of the air-fuel ratio from the rich side to the lean side.
 また、図12には、NO-CO反応開始温度の測定を行った一例について、ガスセンサ1における検出電極22の温度[℃]に対する、NO、CO及びCO2の各ガスの挙動を質量分析計によって計測した結果によって示す。各ガスの挙動は、質量分析計によって計測されるイオン電流[A]として示す。同図においては、200℃付近よりも高い温度において、NOとCOが反応して、CO2が発生していることが分かる。この場合のNO-CO反応開始温度は200℃であると捉えることができる。 Further, in FIG. 12, the behavior of each gas of NO, CO, and CO 2 with respect to the temperature [° C.] of the detection electrode 22 in the gas sensor 1 is measured using a mass spectrometer for an example of measuring the NO-CO reaction start temperature. It shows by the measurement result. The behavior of each gas is shown as the ion current [A] measured by the mass spectrometer. In the figure, it can be seen that NO and CO react at a temperature higher than around 200 ° C. to generate CO 2 . The NO-CO reaction start temperature in this case can be understood to be 200 ° C.
 検出電極22に接触する排ガスGにおけるNO濃度は、COが200ppm含まれる、600℃のベースガスを検出電極22に接触させ、このベースガスにNOを徐々に加えていき、電極22,23間の起電力が閾値である0.6Vよりも低くなるときのNOの濃度として測定した。ガスセンサ1が、排ガスGの空燃比のリッチ側からリーン側への変化を検出したときには、電極22,23間の起電力(電圧)が降下する。起電力が降下するときのNOの濃度が低いほど、より少ないNOの検出電極22への到達によって、NO-CO反応が起こり、起電力が降下したことになる。従って、このNOの濃度が低いほど、検出電極22がリッチ側からリーン側への空燃比の変化を検出しやすいと言える。 The NO concentration in the exhaust gas G in contact with the detection electrode 22 brings a base gas at 600 ° C. containing 200 ppm of CO into contact with the detection electrode 22 and NO is gradually added to the base gas. It was measured as the concentration of NO when the electromotive force was lower than the threshold value of 0.6V. When the gas sensor 1 detects a change from the rich side to the lean side of the air-fuel ratio of the exhaust gas G, the electromotive force (voltage) between the electrodes 22 and 23 drops. The lower the concentration of NO when the electromotive force falls, the more NO reaches the detection electrode 22 so that the NO—CO reaction occurs and the electromotive force is lowered. Therefore, it can be said that the change of the air-fuel ratio from the rich side to the lean side of the detection electrode 22 is more easily detected as the concentration of NO is lower.
 また、図13には、排ガスGにおけるNO濃度の測定を行った一例について、NO濃度[ppm]に対する、電極22,23間の起電力[V]の変化を示す。同図においては、NO濃度が200ppm付近にあるときに、起電力が0.6Vの閾値を跨いで降下していることが分かる。この場合の排ガスGにおけるNO濃度は200ppmであると捉えることができる。 Further, FIG. 13 shows a change in the electromotive force [V] between the electrodes 22 and 23 with respect to the NO concentration [ppm] in an example in which the NO concentration in the exhaust gas G was measured. In the figure, it can be seen that when the NO concentration is around 200 ppm, the electromotive force drops across the 0.6 V threshold. The NO concentration in the exhaust gas G in this case can be considered to be 200 ppm.
 表3に、本例における測定結果を示す。
Figure JPOXMLDOC01-appb-T000003
Table 3 shows the measurement results in this example.
Figure JPOXMLDOC01-appb-T000003
 検出電極22の貴金属成分がPtである比較品1のNO-CO反応開始温度が550℃であったことに対し、実施品1~5のNO-CO反応開始温度は550℃よりも低くなった。また、比較品1の起電力が閾値である0.6Vよりも降下するときのNOの濃度が210ppmであったことに対し、実施品1~5の起電力が0.6Vよりも降下するときのNOの濃度は210ppmよりも低くなった。この結果より、実施品1~5は、Ptを貴金属成分とする比較品1の検出電極の場合に比べて、リッチ側からリーン側への空燃比の変化を検出しやすいと言える。 While the NO-CO reaction start temperature of the comparative product 1 in which the noble metal component of the detection electrode 22 is Pt was 550 ° C., the NO-CO reaction start temperature of the products 1 to 5 was lower than 550 ° C. . Also, when the concentration of NO is 210 ppm when the electromotive force of the comparative product 1 falls below the threshold value of 0.6 V, when the electromotive force of the implemented products 1 to 5 falls below 0.6 V The concentration of NO was lower than 210 ppm. From this result, it can be said that the practical products 1 to 5 can easily detect the change of the air-fuel ratio from the rich side to the lean side as compared with the case of the detection electrode of the comparative product 1 having Pt as a noble metal component.
 また、特に、検出電極22の貴金属成分が、Pt、Rh及びIrを含有する実施品4については、NO-CO反応開始温度及びNOの濃度が最も低く、リッチ側からリーン側への空燃比の変化を最も検出しやすいことが分かった。
 検出電極22の貴金属成分におけるPt、Rh及びIrの含有比率は、貴金属成分の全体を100質量%としたとき、Pt:20~90質量%、Rh:5~60質量%、Ir:1~20質量%含有することが好ましい。Ptの含有量はRhの含有量よりも多く、Rhの含有量はIrの含有量よりも多いことが好ましい。
In particular, in the working product 4 in which the noble metal component of the detection electrode 22 contains Pt, Rh and Ir, the NO-CO reaction start temperature and the concentration of NO are the lowest and the air-fuel ratio from the rich side to the lean side is It turned out that the change was most easily detected.
The content ratio of Pt, Rh, and Ir in the noble metal component of the detection electrode 22 is, based on 100 mass% of the entire noble metal component, Pt: 20 to 90 mass%, Rh: 5 to 60 mass%, Ir: 1 to 20 It is preferable to contain mass%. Preferably, the content of Pt is greater than the content of Rh, and the content of Rh is greater than the content of Ir.
 Ptの含有量が20質量%未満である場合には、検出電極22の酸素離脱性が悪化し(検出電極22から酸素が離脱しにくくなり)、排ガスの空燃比がリーン側からリッチ側へ変化するときの応答性が悪化するおそれがある。一方、Ptの含有量が90質量%超過である場合には、検出電極22の触媒活性を向上させる効果が低くなるおそれがある。 When the content of Pt is less than 20% by mass, the oxygen releasability of the detection electrode 22 is deteriorated (oxygen is less likely to be separated from the detection electrode 22), and the air fuel ratio of the exhaust gas changes from the lean side to the rich side There is a risk that responsiveness when doing On the other hand, when the content of Pt is more than 90% by mass, the effect of improving the catalytic activity of the detection electrode 22 may be lowered.
 Rhの含有量が5質量%未満である場合には、検出電極22の触媒活性を向上させる効果が低くなるおそれがある。一方、Rhの含有量が60質量%超過である場合には、検出電極22の酸素離脱性が悪化し、排ガスの空燃比がリーン側からリッチ側へ変化するときの応答性が悪化するおそれがある。 When the content of Rh is less than 5% by mass, the effect of improving the catalytic activity of the detection electrode 22 may be reduced. On the other hand, when the content of Rh is more than 60% by mass, the oxygen releasability of the detection electrode 22 is deteriorated, and the responsiveness when the air-fuel ratio of the exhaust gas changes from the lean side to the rich side may be deteriorated. is there.
 Irの含有量が1質量%未満である場合には、検出電極22の触媒活性を向上させる効果が低くなるおそれがある。一方、Irの含有量が20質量%超過である場合には、検出電極22の酸素離脱性が悪化し、排ガスの空燃比がリーン側からリッチ側へ変化するときの応答性が悪化するおそれがある。 When the content of Ir is less than 1% by mass, the effect of improving the catalytic activity of the detection electrode 22 may be reduced. On the other hand, when the content of Ir is more than 20% by mass, the oxygen releasability of the detection electrode 22 is deteriorated, and the responsiveness when the air-fuel ratio of the exhaust gas changes from the lean side to the rich side may be deteriorated. is there.
 また、本例においては、実施品4(Pt:Rh:Ir=6:4:1)を、電流式のガスセンサとしての空燃比センサ1X(実施形態1)として用いる場合の応答性について確認した。応答性の確認は、排ガスGの空燃比が理論空燃比(ストイキ)からリッチ側に変化するとき、及び排ガスGの空燃比が理論空燃比(ストイキ)からリーン側に変化するときの63%応答時間によって行った。63%応答時間は、排ガスGの空燃比がステップ状に変化したときに、排ガスGの空燃比が変化したときから、空燃比センサ1Xの電流値が最終値の63%の大きさになるまでの時間として測定した。 Further, in this example, the responsiveness in the case of using the practical product 4 (Pt: Rh: Ir = 6: 4: 1) as the air-fuel ratio sensor 1X (embodiment 1) as a current-type gas sensor was confirmed. Response is checked when the air-fuel ratio of the exhaust gas G changes from the stoichiometric air-fuel ratio (stoichiometric) to the rich side, and when the air-fuel ratio of the exhaust gas G changes from the stoichiometric air-fuel ratio (stoichiometric) to the lean side 63% response It went by time. The 63% response time is from when the air fuel ratio of the exhaust gas G changes when the air fuel ratio of the exhaust gas G changes in a step-like manner, until the current value of the air fuel ratio sensor 1X becomes 63% of the final value It was measured as the time of
 また、排ガスGの空燃比がストイキからリッチ側に変化する状況は、ストイキ状態にあるモデルガスにCOを800ppm含ませることによって実現した。また、排ガスGの空燃比がストイキからリーン側に変化する状況は、ストイキ状態にあるモデルガスにNOを800ppm含ませることによって実現した。空燃比センサ1Xに供給される排ガスGの流速は1[m/s]とした。また、比較のために、検出電極の貴金属成分がPtからなる比較品1の空燃比センサについても63%応答時間を測定した。 In addition, the situation where the air-fuel ratio of the exhaust gas G changes from stoichiometric to rich side was realized by including 800 ppm of CO in the model gas in the stoichiometric state. In addition, the situation where the air-fuel ratio of the exhaust gas G changes from stoichiometric to lean was realized by including 800 ppm of NO in the model gas in the stoichiometric state. The flow velocity of the exhaust gas G supplied to the air-fuel ratio sensor 1X was 1 [m / s]. Further, for comparison, the 63% response time was also measured for the air-fuel ratio sensor of the comparative product 1 in which the noble metal component of the detection electrode is made of Pt.
 63%応答時間を測定した結果、ストイキからリッチ側に変化するとき及びストイキからリーン側に変化するときのいずれにおいても、比較品1の空燃比センサの63%応答時間に対して、実施品4の空燃比センサ1Xの63%応答時間は約30%程度短縮されることが確認された。この結果より、電流式のガスセンサにおいても、排ガスGの空燃比がリッチ側からリーン側へ変化するときの応答性が良好であることが確認された。 As a result of measuring the 63% response time, in any of the change from the stoichiometric to the rich side and the change from the stoichiometric to the lean side, the actual product 4 for the 63% response time of the air fuel ratio sensor of the comparative product 1 It has been confirmed that the 63% response time of the air-fuel ratio sensor 1X is shortened by about 30%. From this result, it was also confirmed that the response when the air-fuel ratio of the exhaust gas G changes from the rich side to the lean side is good also in the current type gas sensor.
<実施例2>
 本例においては、起電力式のガスセンサ1について、検出電極22を構成する貴金属粒子の平均粒径を変化させたときのセンサ出力の変化を確認した。
 固体電解質体21には、イットリア部分安定化ジルコニアを用い、基準電極23を構成する貴金属粒子の平均粒径は、2.2μmとした。検出電極22の貴金属成分は、Pt-Rh-Ir合金(Pt:Rh:Ir=6:4:1)によって構成した。基準電極23の貴金属成分は、Ptによって構成した。ガスセンサ1は、内燃機関4の排気管41における、三元触媒42に対する排ガスGの流れの下流側に配置した。
Example 2
In the present example, with regard to the electromotive force type gas sensor 1, changes in the sensor output when changing the average particle diameter of the noble metal particles constituting the detection electrode 22 were confirmed.
For the solid electrolyte body 21, yttria partially stabilized zirconia is used, and the average particle diameter of the noble metal particles constituting the reference electrode 23 is 2.2 μm. The noble metal component of the detection electrode 22 was constituted by a Pt-Rh-Ir alloy (Pt: Rh: Ir = 6: 4: 1). The noble metal component of the reference electrode 23 was composed of Pt. The gas sensor 1 is disposed downstream of the flow of the exhaust gas G with respect to the three-way catalyst 42 in the exhaust pipe 41 of the internal combustion engine 4.
 検出電極22の貴金属粒子の平均粒径[μm]は、7.4μm、2μm、1μmの3種類に変化させた。そして、3種類の検出電極22をそれぞれ用いた各ガスセンサ1において、ガスセンサ1に接触させる排ガスの空燃比をリッチ側Rとリーン側Lとの間で変化させたときのセンサ出力[V]の変化を確認した。 The average particle diameter [μm] of the noble metal particles of the detection electrode 22 was changed to three types of 7.4 μm, 2 μm, and 1 μm. Then, in each gas sensor 1 using the three types of detection electrodes 22, change in sensor output [V] when the air-fuel ratio of exhaust gas to be brought into contact with gas sensor 1 is changed between rich side R and lean side L It was confirmed.
 図14~図16には、排ガスの空燃比[A/F]を変化させたときに検出されたセンサ出力[V]の変化を示す。図14は、検出電極22の貴金属粒子の平均粒径が7.4μmである場合を示し、図15は、検出電極22の貴金属粒子の平均粒径が2μmである場合を示し、図16は、検出電極22の貴金属粒子の平均粒径が1μmである場合を示す。理論空燃比は、14.5であるとし、センサ出力は14.5の付近を境に大きく変化する。 FIGS. 14 to 16 show changes in the sensor output [V] detected when the air fuel ratio [A / F] of the exhaust gas is changed. FIG. 14 shows the case where the average particle size of the noble metal particles of the detection electrode 22 is 7.4 μm, FIG. 15 shows the case where the average particle size of the noble metal particles of the detection electrode 22 is 2 μm, and FIG. The case where the average particle diameter of the noble metal particles of the detection electrode 22 is 1 μm is shown. The theoretical air-fuel ratio is assumed to be 14.5, and the sensor output changes largely around 14.5.
 検出電極22の貴金属粒子の平均粒径が7.4μmである場合には、排ガスの空燃比がリーン側Lからリッチ側Rへ変化するときのセンサ出力ラインL1と、排ガスの空燃比がリッチ側Rからリーン側Lへ変化するときのセンサ出力ラインL2とのヒステリシスが大きくなることが確認された。また、検出電極22の貴金属粒子の平均粒径が2μmである場合及び1μmである場合には、センサ出力ラインL1とセンサ出力ラインL2とのヒステリシスが小さくなることが確認された。また、このヒステリシスは、検出電極22の貴金属粒子の平均粒径が小さくなるほど小さくなることが確認された。 When the average particle diameter of the noble metal particles of the detection electrode 22 is 7.4 μm, the sensor output line L1 when the air-fuel ratio of the exhaust gas changes from the lean side L to the rich side R, and the air-fuel ratio of the exhaust gas is rich It was confirmed that the hysteresis with the sensor output line L2 when changing from R to the lean side L is increased. Further, it was confirmed that the hysteresis between the sensor output line L1 and the sensor output line L2 is reduced when the average particle diameter of the noble metal particles of the detection electrode 22 is 2 μm and 1 μm. Moreover, it was confirmed that this hysteresis becomes smaller as the average particle diameter of the noble metal particles of the detection electrode 22 becomes smaller.
 図17には、検出電極22の貴金属粒子の平均粒径[μm]が7.4μm、2μm、1μmである場合について、センサ出力[V]が0.65Vとなるときの空燃比を示す。センサ出力が0.65Vである場合は、センサ出力がH(High)の状態からL(Low)の状態へ変化したことの閾値として表される。空燃比がリーン側Lからリッチ側Rへ変化するときには、空燃比は大きくなるほど検出電極22のCOの感度が良いことを示す。また、空燃比がリッチ側Rからリーン側Lへ変化するときには、空燃比は小さくなるほど検出電極22のNOxの感度が良いことを示す。 FIG. 17 shows the air-fuel ratio when the sensor output [V] is 0.65 V when the average particle size [μm] of the noble metal particles of the detection electrode 22 is 7.4 μm, 2 μm, and 1 μm. When the sensor output is 0.65 V, it is expressed as a threshold value of the change of the sensor output from H (High) to L (Low). When the air-fuel ratio changes from the lean side L to the rich side R, the larger the air-fuel ratio, the better the sensitivity of CO of the detection electrode 22 is. Further, when the air-fuel ratio changes from the rich side R to the lean side L, it indicates that the sensitivity of NOx of the detection electrode 22 is better as the air-fuel ratio becomes smaller.
 同図に示すように、検出電極22の貴金属粒子の平均粒径が小さくなるにつれて、検出電極22のCOの感度及び検出電極22のNOxの感度がともに上昇することが確認された。この結果より、検出電極22の貴金属粒子の平均粒径を2μm以下とすることにより、センサ出力のヒステリシスが改善され、特に、排ガスGの空燃比がリッチ側Rからリーン側Lへ変化するときの応答性が高くなることが確認された。 As shown in the figure, it was confirmed that both the sensitivity of CO of the detection electrode 22 and the sensitivity of NOx of the detection electrode 22 increase as the average particle size of the noble metal particles of the detection electrode 22 decreases. From this result, the hysteresis of the sensor output is improved by setting the average particle diameter of the noble metal particles of the detection electrode 22 to 2 μm or less, and in particular, when the air fuel ratio of the exhaust gas G changes from the rich side R to the lean side L It has been confirmed that the responsiveness is high.
 本開示は、各実施形態のみに限定されるものではなく、その要旨を逸脱しない範囲においてさらに異なる実施形態を構成することが可能である。また、本開示は、様々な変形例、均等範囲内の変形例等を含む。 The present disclosure is not limited to only the embodiments, and may be configured in different embodiments without departing from the scope of the invention. In addition, the present disclosure includes various modifications, modifications within the equivalent range, and the like.

Claims (9)

  1.  固体電解質体(21)と、前記固体電解質体に設けられて排ガス(G)と接触する検出電極(22)と、前記固体電解質体に設けられて大気(A)と接触する基準電極(23)とを有するセンサ素子(2)を備え、前記基準電極と前記検出電極とにおける酸素濃度の差に応じて生じる起電力、又は前記基準電極と前記検出電極との間に生じる電流を検出するガスセンサ(1)において、
     前記検出電極の貴金属成分は、Ptと、Pt以外の1種類又は2種類以上の貴金属元素との混合物又は合金からなり、
     前記Pt及び前記貴金属元素は、一配位の直上位置であるオントップサイト(S1)、二配位の橋掛け位置であるブリッジサイト(S2)、三配位の窪み位置であって下層が存在する位置である六方最密型のホローサイト(S3)、及び三配位の窪み位置であって下層が存在しない位置である面心立方型のホローサイト(S4)の4種類の吸着サイトを有し、
     前記Ptと前記貴金属元素とにおける、同じ吸着サイト同士を比較した際に、前記貴金属元素における、前記4種類の吸着サイトのうちの少なくとも1つの吸着サイトのCO分子の吸着エネルギーは、前記Ptにおける、前記4種類の吸着サイトのうちの少なくとも1つの吸着サイトのCO分子の吸着エネルギーよりも小さく、
     及び/又は、前記Ptと前記貴金属元素とにおける、同じ吸着サイト同士を比較した際に、前記貴金属元素における、前記4種類の吸着サイトのうちの少なくとも1つの吸着サイトのNOの解離吸着エネルギーは、前記Ptにおける、前記4種類の吸着サイトのうちの少なくとも1つの吸着サイトのNOの解離吸着エネルギーよりも大きい、ガスセンサ。
    A solid electrolyte body (21), a detection electrode (22) provided on the solid electrolyte body and in contact with the exhaust gas (G), and a reference electrode (23) provided on the solid electrolyte body and in contact with the atmosphere (A) And a sensor element (2) having a sensor element (2) to detect an electromotive force generated according to a difference in oxygen concentration between the reference electrode and the detection electrode, or a gas sensor for detecting a current generated between the In 1),
    The noble metal component of the detection electrode is made of a mixture or alloy of Pt and one or more kinds of noble metal elements other than Pt,
    The Pt and the noble metal element are an on-top site (S1) which is a position immediately above one coordination, a bridge site (S2) which is a bridging position of two coordination, and a recess of three coordination, and a lower layer is present There are four kinds of adsorption sites: hexagonal close-packed hollow site (S3), and face-centered cubic hollow site (S4), which is a three-coordinate recessed position and the lower layer does not exist. And
    When the same adsorption sites in the Pt and the noble metal element are compared with each other, the adsorption energy of the CO molecule of at least one of the four adsorption sites in the noble metal element in the noble metal element is: Smaller than the adsorption energy of CO molecules of at least one of the four types of adsorption sites,
    And / or dissociative adsorption energy of NO of at least one of the four types of adsorption sites in the noble metal element when the same adsorption sites in the Pt and the noble metal element are compared with each other, A gas sensor having a dissociative adsorption energy of NO in at least one of the four types of adsorption sites in the Pt.
  2.  固体電解質体(21)と、前記固体電解質体に設けられて排ガス(G)と接触する検出電極(22)と、前記固体電解質体に設けられて大気(A)と接触する基準電極(23)とを有するセンサ素子(2)を備え、前記基準電極と前記検出電極とにおける酸素濃度の差に応じて生じる起電力、又は前記基準電極と前記検出電極との間に生じる電流を検出するガスセンサ(1)において、
     前記検出電極の貴金属成分は、Ptと、Pt以外の1種類又は2種類以上の貴金属元素との混合物又は合金からなり、
     前記Pt及び前記貴金属元素は、一配位の直上位置であるオントップサイト(S1)、二配位の橋掛け位置であるブリッジサイト(S2)、三配位の窪み位置であって下層が存在する位置である六方最密型のホローサイト(S3)、及び三配位の窪み位置であって下層が存在しない位置である面心立方型のホローサイト(S4)の4種類の吸着サイトを有し、
     前記貴金属元素における、前記4種類の吸着サイトのCO分子の吸着エネルギーのうちの最大値は、前記Ptにおける、前記4種類の吸着サイトのCO分子の吸着エネルギーのうちの最大値よりも小さく、
     及び/又は、前記貴金属元素における、前記4種類の吸着サイトのNOの解離吸着エネルギーのうちの最大値は、前記Ptにおける、前記4種類の吸着サイトのNOの解離吸着エネルギーのうちの最大値よりも大きい、ガスセンサ。
    A solid electrolyte body (21), a detection electrode (22) provided on the solid electrolyte body and in contact with the exhaust gas (G), and a reference electrode (23) provided on the solid electrolyte body and in contact with the atmosphere (A) And a sensor element (2) having a sensor element (2) to detect an electromotive force generated according to a difference in oxygen concentration between the reference electrode and the detection electrode, or a gas sensor for detecting a current generated between the In 1),
    The noble metal component of the detection electrode is made of a mixture or alloy of Pt and one or more kinds of noble metal elements other than Pt,
    The Pt and the noble metal element are an on-top site (S1) which is a position immediately above one coordination, a bridge site (S2) which is a bridging position of two coordination, and a recess of three coordination, and a lower layer is present There are four kinds of adsorption sites: hexagonal close-packed hollow site (S3), and face-centered cubic hollow site (S4), which is a three-coordinate recessed position and the lower layer does not exist. And
    The maximum value of the adsorption energy of the CO molecules of the four types of adsorption sites in the noble metal element is smaller than the maximum value of the adsorption energies of the CO molecules of the four types of adsorption sites in the Pt,
    And / or the maximum value among the dissociative adsorption energies of NO of the four types of adsorption sites in the noble metal element is from the maximum value of the dissociative adsorption energies of NO of the four types of adsorption sites in the Pt Also big, gas sensors.
  3.  固体電解質体(21)と、前記固体電解質体に設けられて排ガス(G)と接触する検出電極(22)と、前記固体電解質体に設けられて大気(A)と接触する基準電極(23)とを有するセンサ素子(2)を備え、前記基準電極と前記検出電極とにおける酸素濃度の差に応じて生じる起電力、又は前記基準電極と前記検出電極との間に生じる電流を検出するガスセンサ(1)において、
     前記検出電極の貴金属成分は、Pt以外の2種類以上の貴金属元素の混合物又は合金からなり、
     Pt及び前記貴金属元素は、一配位の直上位置であるオントップサイト(S1)、二配位の橋掛け位置であるブリッジサイト(S2)、三配位の窪み位置であって下層が存在する位置である六方最密型のホローサイト(S3)、及び三配位の窪み位置であって下層が存在しない位置である面心立方型のホローサイト(S4)の4種類の吸着サイトを有し、
     Ptと前記貴金属元素とにおける、同じ吸着サイト同士を比較した際に、前記貴金属元素における、前記4種類の吸着サイトのうちの少なくとも1つの吸着サイトのCO分子の吸着エネルギーは、Ptにおける、前記4種類の吸着サイトのうちの少なくとも1つの吸着サイトのCO分子の吸着エネルギーよりも小さく、
     及び/又は、Ptと前記貴金属元素とにおける、同じ吸着サイト同士を比較した際に、前記貴金属元素における、前記4種類の吸着サイトのうちの少なくとも1つの吸着サイトのNOの解離吸着エネルギーは、Ptにおける、前記4種類の吸着サイトのうちの少なくとも1つの吸着サイトのNOの解離吸着エネルギーよりも大きい、ガスセンサ。
    A solid electrolyte body (21), a detection electrode (22) provided on the solid electrolyte body and in contact with the exhaust gas (G), and a reference electrode (23) provided on the solid electrolyte body and in contact with the atmosphere (A) And a sensor element (2) having a sensor element (2) to detect an electromotive force generated according to a difference in oxygen concentration between the reference electrode and the detection electrode, or a gas sensor for detecting a current generated between the In 1),
    The noble metal component of the detection electrode comprises a mixture or alloy of two or more kinds of noble metal elements other than Pt,
    Pt and the noble metal element are the on-top site (S1) which is a position immediately above one coordination, the bridge site (S2) which is a bridging position of two coordination, and a recess position of three coordination, and the lower layer is present It has four kinds of adsorption sites: hexagonal close-packed hollowsite (S3), which is a position, and face-centered cubic hollowsite (S4), which is a three-coordinate recessed position and a lower layer does not exist. ,
    When the same adsorption sites in Pt and the noble metal element are compared with each other, the adsorption energy of the CO molecule of at least one of the four types of adsorption sites in the noble metal element is the same as in 4 in Pt. Smaller than the adsorption energy of CO molecules in at least one of the adsorption sites of
    And / or dissociative adsorption energy of NO of at least one of the four types of adsorption sites in the noble metal element is Pt when comparing the same adsorption sites between Pt and the noble metal element. In the above, a gas sensor having a dissociation energy of NO of at least one of the four types of adsorption sites greater than the adsorption energy of NO.
  4.  固体電解質体(21)と、前記固体電解質体に設けられて排ガス(G)と接触する検出電極(22)と、前記固体電解質体に設けられて大気(A)と接触する基準電極(23)とを有するセンサ素子(2)を備え、前記基準電極と前記検出電極とにおける酸素濃度の差に応じて生じる起電力、又は前記基準電極と前記検出電極との間に生じる電流を検出するガスセンサ(1)において、
     前記検出電極の貴金属成分は、Pt以外の2種類以上の貴金属元素の混合物又は合金からなり、
     Pt及び前記貴金属元素は、一配位の直上位置であるオントップサイト(S1)、二配位の橋掛け位置であるブリッジサイト(S2)、三配位の窪み位置であって下層が存在する位置である六方最密型のホローサイト(S3)、及び三配位の窪み位置であって下層が存在しない位置である面心立方型のホローサイト(S4)の4種類の吸着サイトを有し、
     前記貴金属元素における、前記4種類の吸着サイトのCO分子の吸着エネルギーのうちの最大値は、Ptにおける、前記4種類の吸着サイトのCO分子の吸着エネルギーのうちの最大値よりも小さく、
     及び/又は、前記貴金属元素における、前記4種類の吸着サイトのNOの解離吸着エネルギーのうちの最大値は、Ptにおける、前記4種類の吸着サイトのNOの解離吸着エネルギーのうちの最大値よりも大きい、ガスセンサ。
    A solid electrolyte body (21), a detection electrode (22) provided on the solid electrolyte body and in contact with the exhaust gas (G), and a reference electrode (23) provided on the solid electrolyte body and in contact with the atmosphere (A) And a sensor element (2) having a sensor element (2) to detect an electromotive force generated according to a difference in oxygen concentration between the reference electrode and the detection electrode, or a gas sensor for detecting a current generated between the In 1),
    The noble metal component of the detection electrode comprises a mixture or alloy of two or more kinds of noble metal elements other than Pt,
    Pt and the noble metal element are the on-top site (S1) which is a position immediately above one coordination, the bridge site (S2) which is a bridging position of two coordination, and a recess position of three coordination, and the lower layer is present It has four kinds of adsorption sites: hexagonal close-packed hollowsite (S3), which is a position, and face-centered cubic hollowsite (S4), which is a three-coordinate recessed position and a lower layer does not exist. ,
    The maximum value among the adsorption energies of the CO molecules of the four types of adsorption sites in the noble metal element is smaller than the maximum value of the adsorption energies of the CO molecules of the four types of adsorption sites in Pt,
    And / or the maximum value among the dissociative adsorption energies of NO of the four types of adsorption sites in the noble metal element is higher than the maximum value of the dissociative adsorption energies of NO of the four types of adsorption sites in Pt Big, gas sensor.
  5.  前記貴金属元素は、Rh、Ir及びPdのうちから選ばれる1種類又は2種類以上の貴金属元素からなる、請求項1又は2に記載のガスセンサ。 The gas sensor according to claim 1, wherein the noble metal element is made of one or more kinds of noble metal elements selected from Rh, Ir and Pd.
  6.  前記貴金属元素は、Rh、Ir及びPdのうちから選ばれる2種類以上の貴金属元素からなる、請求項3又は4に記載のガスセンサ。 The gas sensor according to claim 3, wherein the noble metal element comprises two or more kinds of noble metal elements selected from Rh, Ir and Pd.
  7.  前記貴金属元素は、Rh及びIrであり、
     前記検出電極の貴金属成分は、その全体を100質量%としたとき、前記Ptを20~90質量%、前記Rhを5~60質量%、Irを1~20質量%含有する、請求項1又は2に記載のガスセンサ。
    The noble metal elements are Rh and Ir,
    The noble metal component of the detection electrode contains 20 to 90% by mass of Pt, 5 to 60% by mass of Rh, and 1 to 20% by mass of Ir, based on 100% by mass of the whole. The gas sensor according to 2.
  8.  前記検出電極は、前記貴金属成分として、Ptと前記貴金属元素との合金の貴金属粒子を含有し、
     前記貴金属粒子の平均粒径は2μm以下である、請求項1、2、5及び7のうちのいずれか1項に記載のガスセンサ。
    The detection electrode contains, as the noble metal component, noble metal particles of an alloy of Pt and the noble metal element,
    The gas sensor according to any one of claims 1, 2, 5 and 7, wherein an average particle size of the noble metal particles is 2 μm or less.
  9.  請求項1、2、5及び7のうちのいずれか1項に記載のガスセンサを製造する方法であって、
     Ptと前記貴金属元素との合金の貴金属粒子を含むペースト状の電極材料を、前記固体電解質体に配置し、前記固体電解質体及び前記電極材料を焼成して、前記固体電解質体の表面に前記検出電極を形成するに当たり、
     前記貴金属粒子の平均粒径を2μm以下とする、ガスセンサの製造方法。
    A method of manufacturing the gas sensor according to any one of claims 1, 2, 5 and 7.
    A paste-like electrode material containing noble metal particles of an alloy of Pt and the noble metal element is disposed on the solid electrolyte body, the solid electrolyte body and the electrode material are fired, and the detection is performed on the surface of the solid electrolyte body. In forming the electrode,
    The manufacturing method of the gas sensor which sets the average particle diameter of the said noble metal particle to 2 micrometers or less.
PCT/JP2018/026876 2017-07-20 2018-07-18 Gas sensor WO2019017377A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2017-140894 2017-07-20
JP2017140894 2017-07-20
JP2018-095766 2018-05-17
JP2018095766A JP6753433B2 (en) 2017-07-20 2018-05-17 Gas sensor

Publications (1)

Publication Number Publication Date
WO2019017377A1 true WO2019017377A1 (en) 2019-01-24

Family

ID=65016023

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/026876 WO2019017377A1 (en) 2017-07-20 2018-07-18 Gas sensor

Country Status (1)

Country Link
WO (1) WO2019017377A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50132990A (en) * 1974-04-05 1975-10-21
JPS5175497A (en) * 1974-12-25 1976-06-30 Fuji Electric Co Ltd
JPS51142389A (en) * 1975-06-03 1976-12-07 Nissan Motor Co Ltd Oxygen senser
JPS52123292A (en) * 1976-04-08 1977-10-17 Nissan Motor Oxygen sensor
JPS5330386A (en) * 1976-09-01 1978-03-22 Nippon Denso Co Ltd Oxygen concentration detector
JPH06331593A (en) * 1993-05-18 1994-12-02 Unisia Jecs Corp Oxygen sensor
JP2008043943A (en) * 2006-07-21 2008-02-28 Nippon Soken Inc Catalyst material, electrode for gas sensor including the same, gas sensor and manufacturing method for them

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50132990A (en) * 1974-04-05 1975-10-21
JPS5175497A (en) * 1974-12-25 1976-06-30 Fuji Electric Co Ltd
JPS51142389A (en) * 1975-06-03 1976-12-07 Nissan Motor Co Ltd Oxygen senser
JPS52123292A (en) * 1976-04-08 1977-10-17 Nissan Motor Oxygen sensor
JPS5330386A (en) * 1976-09-01 1978-03-22 Nippon Denso Co Ltd Oxygen concentration detector
JPH06331593A (en) * 1993-05-18 1994-12-02 Unisia Jecs Corp Oxygen sensor
JP2008043943A (en) * 2006-07-21 2008-02-28 Nippon Soken Inc Catalyst material, electrode for gas sensor including the same, gas sensor and manufacturing method for them

Similar Documents

Publication Publication Date Title
JPH08510840A (en) Sensor for measuring the concentration of gas components in a mixture
JPH10239276A (en) Carbon monoxide gas sensor and measuring device using it
JP5938133B1 (en) Detection electrode of gas sensor, gas sensor, and method of manufacturing gas sensor
JP6478719B2 (en) Gas sensor element and gas sensor
JPS6130760A (en) Oxygen sensor and manufacture thereof
JPH05502719A (en) Resistance measurement sensor for gas composition detection and method for manufacturing this resistance measurement sensor
US9964507B2 (en) NOx gas sensor including nickel oxide
JP6186051B1 (en) Gas sensor
JP2018173398A (en) Combustible gas concentration measuring device, combustible gas concentration measuring system, exhaust gas processing system, and combustible gas concentration measuring method and derivation method of constant
JP2018173397A (en) Ammonia concentration measuring device, ammonia concentration measuring system, exhaust gas processing system, and ammonia concentration measuring method
JP6667192B2 (en) Ammonia sensor element
JP4858342B2 (en) Catalyst material manufacturing method, gas sensor electrode manufacturing method, and gas sensor manufacturing method
JP2010038600A (en) Gas sensor element
JP4456839B2 (en) NOx detection cell, manufacturing method thereof, and NOx detection apparatus including the cell
JP4982552B2 (en) Noble metal catalyst powder and gas sensor element and gas sensor using the same
JP6753433B2 (en) Gas sensor
JP5278499B2 (en) Gas sensor element and gas sensor using the same
JP2011069705A (en) Ammonia sensor element and manufacturing method of proton conductive solid electrolyte
WO2019017377A1 (en) Gas sensor
JP4587855B2 (en) Method for processing gas sensor element
JP4874764B2 (en) Ammonia gas sensor and manufacturing method thereof
JP2012037509A (en) Ammonia gas sensor
JP2010043905A (en) Gas sensor
JP6907687B2 (en) Gas sensor
KR102518560B1 (en) A sensor element for detecting at least one property of a measuring gas in the measuring gas chamber

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18835401

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18835401

Country of ref document: EP

Kind code of ref document: A1