WO2019015094A1 - 电动车、车轮、开关磁阻电机及其铁芯的制造方法 - Google Patents

电动车、车轮、开关磁阻电机及其铁芯的制造方法 Download PDF

Info

Publication number
WO2019015094A1
WO2019015094A1 PCT/CN2017/103418 CN2017103418W WO2019015094A1 WO 2019015094 A1 WO2019015094 A1 WO 2019015094A1 CN 2017103418 W CN2017103418 W CN 2017103418W WO 2019015094 A1 WO2019015094 A1 WO 2019015094A1
Authority
WO
WIPO (PCT)
Prior art keywords
stator
switched reluctance
reluctance motor
teeth
rotor
Prior art date
Application number
PCT/CN2017/103418
Other languages
English (en)
French (fr)
Inventor
李铁才
童恩东
漆亚梅
黄国辉
Original Assignee
深圳市配天电机技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市配天电机技术有限公司 filed Critical 深圳市配天电机技术有限公司
Publication of WO2019015094A1 publication Critical patent/WO2019015094A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P25/00Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details
    • H02P25/02Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the kind of motor
    • H02P25/08Reluctance motors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/14Stator cores with salient poles
    • H02K1/146Stator cores with salient poles consisting of a generally annular yoke with salient poles
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K19/00Synchronous motors or generators
    • H02K19/02Synchronous motors
    • H02K19/10Synchronous motors for multi-phase current
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/14Stator cores with salient poles
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/14Stator cores with salient poles
    • H02K1/146Stator cores with salient poles consisting of a generally annular yoke with salient poles
    • H02K1/148Sectional cores
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/16Stator cores with slots for windings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/24Rotor cores with salient poles ; Variable reluctance rotors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K11/00Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
    • H02K11/20Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection for measuring, monitoring, testing, protecting or switching
    • H02K11/21Devices for sensing speed or position, or actuated thereby
    • H02K11/22Optical devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K11/00Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
    • H02K11/20Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection for measuring, monitoring, testing, protecting or switching
    • H02K11/27Devices for sensing current, or actuated thereby
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K15/00Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
    • H02K15/02Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of stator or rotor bodies
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K15/00Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
    • H02K15/02Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of stator or rotor bodies
    • H02K15/022Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of stator or rotor bodies with salient poles or claw-shaped poles
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K16/00Machines with more than one rotor or stator
    • H02K16/04Machines with one rotor and two stators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K29/00Motors or generators having non-mechanical commutating devices, e.g. discharge tubes or semiconductor devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K29/00Motors or generators having non-mechanical commutating devices, e.g. discharge tubes or semiconductor devices
    • H02K29/03Motors or generators having non-mechanical commutating devices, e.g. discharge tubes or semiconductor devices with a magnetic circuit specially adapted for avoiding torque ripples or self-starting problems
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K29/00Motors or generators having non-mechanical commutating devices, e.g. discharge tubes or semiconductor devices
    • H02K29/06Motors or generators having non-mechanical commutating devices, e.g. discharge tubes or semiconductor devices with position sensing devices
    • H02K29/08Motors or generators having non-mechanical commutating devices, e.g. discharge tubes or semiconductor devices with position sensing devices using magnetic effect devices, e.g. Hall-plates, magneto-resistors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/04Windings characterised by the conductor shape, form or construction, e.g. with bar conductors
    • H02K3/18Windings for salient poles
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/04Windings characterised by the conductor shape, form or construction, e.g. with bar conductors
    • H02K3/18Windings for salient poles
    • H02K3/20Windings for salient poles for auxiliary purposes, e.g. damping or commutating
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K41/00Propulsion systems in which a rigid body is moved along a path due to dynamo-electric interaction between the body and a magnetic field travelling along the path
    • H02K41/02Linear motors; Sectional motors
    • H02K41/03Synchronous motors; Motors moving step by step; Reluctance motors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P25/00Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details
    • H02P25/02Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the kind of motor
    • H02P25/08Reluctance motors
    • H02P25/092Converters specially adapted for controlling reluctance motors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P25/00Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details
    • H02P25/02Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the kind of motor
    • H02P25/08Reluctance motors
    • H02P25/098Arrangements for reducing torque ripple
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/10Arrangements for controlling torque ripple, e.g. providing reduced torque ripple
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/28Arrangements for controlling current
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2213/00Specific aspects, not otherwise provided for and not covered by codes H02K2201/00 - H02K2211/00
    • H02K2213/03Machines characterised by numerical values, ranges, mathematical expressions or similar information
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility

Definitions

  • the invention relates to the technical field of electric machines, and relates to an electric vehicle, a wheel, a switched reluctance motor and a method for manufacturing the same.
  • a conventional switched reluctance motor includes a stator and a rotor, the stator has a stator core, and the rotor has a rotor core.
  • the entire silicon steel sheet is punched and the silicon steel sheets after the punching are stacked. Press to form a stator core or a rotor core. Due to the high price of silicon steel sheets, the cost of conventional switched reluctance motors is high.
  • the present invention provides an electric vehicle, a wheel, a switched reluctance motor, and a method of manufacturing the same.
  • an embodiment of the present invention provides a switched reluctance motor including a stator and a rotor, wherein the stator is axially segmented with at least three stator assemblies, each of which includes an edge a plurality of stator teeth of the stator periodically arranged in a circumferential direction and spaced apart from each other by stator slots; and stator windings on the stator teeth, the stator teeth of the at least three stator assemblies are sequentially arranged along the circumference of the stator Staggered by a predetermined angle, the windings in each of the stator assemblies are in-phase windings, the rotor including a plurality of rotor teeth periodically disposed along a circumference of the rotor and spaced apart from each other by a rotor slot, the switch magnet
  • the material of the iron core of the resistor motor is a ferrosilicon material, and the iron silicon aluminum material is die-cast into the core
  • the iron core of the switched reluctance motor comprises a stator core of the stator, and a side of the stator core is provided with a groove, and the winding is wound in the groove.
  • the iron silicon aluminum material comprises an alloy powder of 85% iron, 9% silicon and 6% aluminum.
  • the predetermined angle is T1/N, wherein the T1 is an angular period of the stator teeth, and the N is the at least three stators The number of components.
  • the number of the stator teeth is an odd number.
  • the rotor is periodically disposed along a circumferential direction of the rotor and is spaced apart from each other by a rotor slot a plurality of rotor teeth, wherein the number of the rotor teeth is the same as the number of the stator teeth, and the width of the rotor teeth is smaller than the width of the stator slot.
  • a width ratio of the stator slot to the stator teeth is 1:0.95-0.85, and a width ratio of the stator teeth to the rotor teeth is 1:1.05-0.95.
  • the switched reluctance motor further comprises a switch drive circuit
  • the switch drive circuit is connected to the DC power supply and the windings of the at least three stator assemblies to periodically control the DC power supply in sequence at the third
  • the driving period corresponding to each of the stator assemblies applies the driving current to the windings, wherein phases of the driving periods of the at least three stator assemblies are staggered from each other.
  • the switched reluctance motor further includes a current detecting circuit, wherein the current detecting circuit is configured to detect a sum of currents flowing through the windings of the at least three stator assemblies, and the switch driving circuit detects the current according to the current The sum of the currents detected by the circuit controls the drive current and the freewheeling current of each of the windings, respectively, such that the sum of the currents maintains a predetermined range.
  • the present invention also provides a method of manufacturing a core for manufacturing a stator core and/or a rotor core of a switched reluctance motor, the manufacturing method comprising:
  • stator core and/or the rotor core of the switched reluctance motor are die-cast using the ferrosilicon material.
  • the iron silicon aluminum material comprises an alloy powder of 85% iron, 9% silicon and 6% aluminum.
  • the switched reluctance motor comprises a stator and a rotor, wherein the stator is axially segmented with at least three stator assemblies, each of the stator assemblies respectively comprising a periodic arrangement along the circumference of the stator and a plurality of stator teeth spaced apart from each other and windings disposed on the stator teeth, the stator teeth of the at least three stator assemblies being sequentially shifted by a predetermined angle in a circumferential direction of the stator, in each of the stator assemblies
  • the windings are all in-phase windings
  • the rotor includes a plurality of rotor teeth periodically disposed in a circumferential direction of the rotor and spaced apart from each other by a rotor slot.
  • stator core of the switched reluctance motor is die-cast by using the ferrosilicon material:
  • a groove is provided on a side of the stator core, and the winding is wound in the groove.
  • the present invention also provides a wheel, the wheel is driven by a hub motor, and the hub motor adopts the structure of the switched reluctance motor of any of the above embodiments.
  • the present invention also provides an electric vehicle, which is a pure electric or hybrid vehicle, and the electric vehicle adopts the structure of the switched reluctance motor of any of the above embodiments.
  • the core of the switched reluctance motor is made of iron silicon aluminum material, iron silicon aluminum material.
  • the die-casting iron core because the iron-silicon-aluminum material does not contain precious metals, the iron-silicon-aluminum material is cheap and reduces the cost; in addition, the iron-silicon-aluminum material has good magnetic properties and can improve the magnetic properties of the stator core.
  • FIG. 1 is a perspective view of a switched reluctance motor according to a first embodiment of the present invention
  • Figure 2 is an exploded perspective view of the switched reluctance motor of Figure 1;
  • FIG. 3 is a perspective view of a three-phase switched reluctance motor of an outer stator inner rotor
  • FIG. 4 is a schematic structural view of the A-phase winding of FIG. 1 wound around the first stator teeth;
  • Figure 5 is a schematic structural view of the first stator tooth, the second stator tooth and the third stator tooth of Figure 1;
  • Figure 6 is a magnetic line diagram of the center of the rotor teeth of Figure 1 coincident with the center of the first stator teeth;
  • Figure 7 is a schematic view showing the structure of the first stator teeth aligned with the rotor slots of Figure 1;
  • Figure 8 is a schematic view showing the magnetic lines of the rotor teeth of Figure 1 offset from the position of the first stator teeth;
  • FIG. 9 is a schematic diagram of an inductance curve of the normal operation of the switched reluctance motor of FIG. 1;
  • FIG. 10 is a schematic structural view showing a chamfering of a rotor tooth of a switched reluctance motor
  • Figure 11 is a circuit diagram of a switch driving circuit
  • Figure 12 is a timing chart of the working principle of the switched reluctance motor
  • Figure 13 is a schematic structural view of a current detecting circuit
  • Figure 14 is a timing chart showing the operation principle of the switched reluctance motor of the fifth embodiment of the present invention.
  • Figure 15 is a schematic structural view of a position sensor
  • Figure 16 is a flow chart showing a method of controlling current of a switched reluctance motor according to a first embodiment of the present invention
  • Figure 17 is a flow chart showing a method of manufacturing a core according to a first embodiment of the present invention.
  • Figure 18 is a schematic cross-sectional view of a stator core.
  • the present invention provides a switched reluctance motor of a first embodiment, the switched reluctance motor 10 comprising a stator 11 and a rotor 12, wherein the stator 11 is provided with at least three stator assemblies in an axial section.
  • Each of the stator assemblies includes a plurality of stator teeth periodically disposed in the circumferential direction of the stator 11 and spaced apart from each other by the stator slots, and windings wound around the stator teeth, that is, a plurality of stator teeth are periodically arranged along the circumference of the stator 11. And spaced apart from each other by a plurality of stator slots.
  • the switched reluctance motor of the embodiment may be a three-phase switched reluctance motor
  • the three-phase switched reluctance motor may be a three-phase switched reluctance motor of an outer rotor inner stator.
  • the stator 11 is provided with three stator assemblies in the axial direction, which are an A-phase stator assembly 111, a B-phase stator assembly 112, and a C-phase stator assembly 113, respectively.
  • the switched reluctance machine can be a three-phase switched reluctance motor 30 of the outer stator inner rotor, as shown in FIG.
  • the A-phase stator assembly 111 includes a plurality of first stator teeth 131, and the plurality of first stator teeth 131 and the plurality of first stator slots 134 are spaced apart from each other. As shown in FIG. 4, the A-phase stator assembly 111 further includes an A-phase winding 137 wound around the first stator tooth 131. When the A-phase winding 137 applies a driving current, the A-phase winding 137 generates a magnetic pole to form a magnetic field. .
  • the B-phase stator assembly 112 includes a plurality of second stator teeth 132 and a B-phase winding wound around the second stator teeth 132.
  • the plurality of second stator teeth 132 and the plurality of second stator slots 135 are spaced apart from each other;
  • the C-phase stator assembly 113 includes a plurality of third stator teeth 133 and a C-phase winding wound around the third stator teeth 133, the plurality of third stator teeth 133 being spaced apart from the plurality of third stator slots 136.
  • the B-phase winding is wound around the second stator tooth 132, and the C-phase winding is wound around the third stator tooth 133 and the A-phase winding 137 is wound around the first stator tooth 131, and details are not described herein.
  • stator teeth of the at least three stator assemblies are sequentially shifted by a predetermined angle along the circumferential direction of the stator 11 to enable the rotor 12 to continuously rotate under the action of a magnetic field generated by driving currents on the windings of the at least three stator assemblies. That is, a drive current is sequentially applied to the windings of at least three stator assemblies, and the rotor 12 continuously rotates under the action of the magnetic field generated by the windings.
  • the second stator teeth 132 and the first stator teeth 131 are sequentially shifted by a predetermined angle along the circumferential direction of the stator, and the third stator teeth 133 and the second stator teeth 132 are sequentially shifted by a predetermined angle along the circumferential direction of the stator;
  • the A-phase stator assembly 111, the B-phase stator assembly 112, and the C-phase stator assembly 113 sequentially apply a drive current, the magnetic field generated by the A-phase winding 137, the magnetic field generated by the B-phase winding, and the magnetic field generated by the C-phase winding are used to rotate the rotor. 12 continuous rotation.
  • the A-phase stator assembly 111 of the present embodiment includes an A-phase winding 137 wound around a first stator tooth 131, and the B-phase stator assembly 112 includes a B-phase winding wound around a second stator tooth 132, a C-phase stator assembly 113 includes a C-phase winding wound around the third stator tooth 133, so that each stator assembly is provided with the same phase winding, and a multi-phase winding is provided with respect to the stator of the conventional switched reluctance motor, due to the turns ratio of the same phase winding Since the number of turns of the multi-phase winding is small, the number of turns of the A-phase winding, the B-phase winding, and the C-phase winding can be reduced, thereby reducing the copper loss of the switched reluctance motor 10 and reducing the cost.
  • the number and width of the stator teeth of the at least three stator assemblies are the same, in particular, the number of the plurality of first stator teeth 131, the number of the plurality of second stator teeth 132, and the number of the plurality of third stator teeth 133 are the same And the width of the first stator tooth 131, the width of the second stator tooth 132, and the width of the third stator tooth 133 are the same. Therefore, the machining processes of the A-phase stator assembly 111, the B-phase stator assembly 112, and the C-phase stator assembly 113 are the same.
  • the preset angle may be T1/N, where T1 is the electrical angular period of the stator teeth and N is the number of at least three stator assemblies.
  • the electrical angle period of the stator teeth is 2 ⁇ /M, where M is the number of stator teeth, ie
  • the angle at which the stator teeth of the at least three stator assemblies are sequentially offset along the circumferential direction of the stator 11 is a mechanical angle.
  • the predetermined angle at which the second stator teeth 132 and the first stator teeth 131 are offset is T1/N, wherein the angular period T1 of the first stator teeth 131 is 2 ⁇ /M, and N is 3, so The angle between the two stator teeth 132 and the first stator teeth 131 is 2 ⁇ /3M.
  • the second stator teeth 132 and the first stator teeth 131 are offset by 1/3 pitch, which is equivalent to the second stator teeth 132 and the first stator.
  • the sub-tooth 131 is offset by an electrical angle of 120°, which may be the distance between two adjacent first stator teeth 131.
  • the predetermined angle at which the third stator teeth 133 and the second stator teeth 132 are staggered is 2 ⁇ /3M, that is, the third stator teeth 133 and the second stator teeth 132 are offset by 1/3 pitch.
  • the predetermined angle at which the first stator tooth 131 and the third stator tooth 133 are staggered is 2 ⁇ /3M, that is, the first stator tooth 131 and the third stator tooth 133 are offset by 1/3 pitch.
  • the rotor 12 includes a plurality of rotor teeth 121 periodically disposed in the circumferential direction of the rotor 12 and spaced apart from each other by the rotor slots 122, that is, a plurality of rotor teeth 121 are periodically disposed along the circumferential direction of the rotor 12, and The plurality of rotor slots 122 are spaced apart from each other.
  • the number of rotor teeth 121 is the same as the number of stator teeth, and the width of the rotor teeth 121 is smaller than the width of the stator slots.
  • the rotor 12 of the present embodiment may be integrally provided.
  • the length of the rotor 12 along the axial direction is greater than or equal to the length of the stator 11 along the axial direction.
  • the length of the stator 11 along the axial direction may be the axial direction of the A-phase stator assembly 111.
  • the length, the length of the B-phase stator assembly 112 along the axial direction, and the length of the C-phase stator assembly 113 along the axial direction to enable the rotor 12 to cover the A-phase stator assembly 111, the B-phase stator assembly 112, and the C-phase stator Component 113.
  • the rotor 12 may be arranged in segments, for example, the rotor is arranged in three segments corresponding to the A-phase stator assembly, the B-phase stator assembly, and the C-phase stator assembly, and the rotor teeth of the three-stage rotor are axially aligned.
  • the number of the rotor teeth 121 is the same as the number of the first stator teeth 131, the number of the second stator teeth 132, and the number of the third stator teeth 133, respectively, at the center of the rotor teeth 121 and the first stator teeth 131. When the centers coincide, as shown in Figure 6.
  • Figure 6 is when the 16 first stator teeth 131 and the 16 rotor teeth 121 of the switched reluctance motor are aligned
  • the magnetic field line of the switched reluctance motor is measured, and the magnetic field of the switched reluctance motor is represented by a magnetic line of force T.
  • the stator 11 is provided with the A-phase stator assembly 111, the B-phase stator assembly 112, and the C-phase stator assembly 113 in sections, the magnetic lines of the T-phase windings generated by the A-phase windings 137 and the magnetic lines generated by the C-phase windings do not interfere with each other. That is, the mutual inductance of the A-phase winding 137, the B-phase winding, and the C-phase winding is zero.
  • the magnetic field lines T generated by the A-phase windings 137 are not entangled, so that the magnetic lines of force T generated by each magnetic pole of the A-phase windings 137 are located within the pole pitch of the magnetic poles, that is, the magnetic lines of force T generated by each magnetic pole of the A-phase windings are not Crossing the center line of adjacent magnetic poles, the three-phase windings of the conventional reluctance motor have mutual inductance, the currents of the energized phases may interact with each other, the nonlinearity of the armature reaction is very serious, and the principle torque ripple that is difficult to overcome is generated, and the present invention provides Since the switched reluctance motor is independent of each stator assembly, the windings of each stator assembly are the same phase winding, so there is no mutual inductance, so the torque fluctuation caused by the mutual inductance is overcome in principle.
  • a three-phase winding is disposed relative to a stator component of a conventional three-phase switched reluctance motor, and a magnetic line generated by each magnetic pole must span three pole pitches, that is, a magnetic line loop generated by any magnetic pole of a conventional three-phase switched reluctance motor.
  • the length of the magnetic flux loop generated by each magnetic pole of the embodiment is three times, the magnetic resistance is large, and the maximum inductance generated by the winding is small, but the magnetic flux T generated by each magnetic pole of the embodiment is constrained to the magnetic pole.
  • the magnetic resistance is small, and the inductance generated by the A-phase winding 137 is large.
  • the magnetic line circuit generated when the B-phase winding and the C-phase winding are applied with the driving current is the same as the magnetic line T circuit generated when the A-phase winding is applied with the driving current, and will not be described again.
  • the conventional three-phase switched reluctance motor can adopt the stator tooth number Zd and the rotor tooth number Zz to satisfy: Zz/Zd can be 4/6 or 8/6; and integer multiples 8/12, 6/12, 12/18, 24/18, 16/24, 32/24, etc., according to the above formula, the winding coefficient is 0.866. That is, since the three phases of the conventional three-phase switched reluctance motor are distributed along the circumference by 120°, the winding coefficient is 0.866.
  • the number of stator teeth Zd and the number of teeth Zz of the switched reluctance motor 10 of the present embodiment are equal, and the winding coefficient is 1 according to the above formula.
  • the switched reluctance motor 10 of the present embodiment belongs to a full range and an integer having a pole angle of 180°.
  • the slot motor, the winding system of the switched reluctance motor 10 is 1, and the winding coefficient of the conventional three-phase switched reluctance motor is 0.866, and the utilization ratio of the winding of the embodiment is improved by 1.155 times, thereby achieving maximum winding utilization.
  • the efficiency of the switched reluctance motor 10 and the torque of the output are increased.
  • the present invention provides a switched reluctance motor of a second embodiment for setting a cogging parameter of a switched reluctance motor, which is described on the basis of the switched reluctance motor of the first embodiment.
  • the ratio of the width of the stator slot to the width of the stator teeth in this embodiment is 1:0.95-0.85, and the ratio of the width of the stator teeth to the width of the rotor teeth is 1:1.05-0.95.
  • the width ratio of the width of the first stator slot 134 to the width of the first stator teeth 131 may be 1:0.95-0.85, that is, the first The width of the stator teeth 131 is smaller than the width of the first stator slot 134, thereby ensuring that the first stator slot 134 has sufficient space to provide the A-phase winding 137.
  • the ratio of the width of the first stator slot 134 to the width of the first stator teeth 131 may be 1:0.85; the ratio of the width of the first stator slot 134 to the width of the first stator teeth 131 may be 1:0.9; The ratio of the width of the first stator slot 134 to the width of the first stator teeth 131 may be 1:0.95.
  • the ratio of the width of the second stator slot 135 to the second stator teeth 132 may be 1:0.95-0.85
  • the ratio of the width of the third stator slot 136 to the third stator teeth 133 may be 1:0.95-0.85.
  • the ratio of the width of the first stator teeth 131 to the width of the rotor teeth 121 is 1:1.05-0.95.
  • the ratio of the width of the first stator teeth 131 to the width of the rotor teeth 121 may be 1:1, that is, the width of the rotor teeth 121 is the same as the width of the first stator teeth 131, and the width of the stator teeth and the width of the rotor teeth 121. the same.
  • the ratio of the width of the first stator teeth 131 to the width of the rotor teeth 121 may be 1:0.95, that is, the width of the rotor teeth 121 is smaller than the width of the first stator teeth 131; the width of the first stator teeth 131 and the width of the rotor teeth 121
  • the width ratio may be 1:1.05, that is, the width of the rotor teeth 121 is greater than the width of the first stator teeth 131, and the width of the rotor teeth 121 is smaller than the width of the first stator slots 134.
  • the ratio of the width of the second stator teeth 132 to the width of the rotor teeth 121 is 1:1.05-0.95
  • the ratio of the width of the third stator teeth to the width of the rotor teeth 121 is 1:1.05-0.95.
  • the ratio of the width of the stator slot is 1:0.95-0.85, the ratio of the width of the stator teeth to the width of the rotor teeth is 1:1.05-0.95, which can make the inductance curve of the switched reluctance motor
  • the position of the rotor teeth changes in a triangular shape as shown in Fig. 9, and the rate of change of the inductance curve is large.
  • the air gap between the rotor 12 and the stator 11 may be 0.1 mm to 3 mm, and the width of the stator slot is The difference in width of the rotor teeth 121 is 8-12 times the air gap, wherein the width of the stator slots is the slot width of the stator slots, and the width of the rotor teeth 121 is the width of the top of the rotor teeth 121. That is, the difference between the width of the first stator slot 134 and the width of the rotor teeth 121 is 8-12 times the air gap, and the difference between the width of the second stator slot 135 and the width of the rotor teeth 121 is 8-12 of the air gap. The difference between the width of the third stator slot 134 and the width of the rotor teeth 121 is 8-12 times the air gap.
  • the air gap between the rotor 12 and the stator 11 is 0.15 mm to 2 mm, and the difference between the width of the stator slot and the width of the rotor teeth 121 may be 10 times that of the air gap, that is, the width of the stator slot is larger than that of the rotor teeth 121.
  • the width is 1.5mm-20mm.
  • the width of the first stator slot 134, the width of the second stator slot 135, and the width of the third stator slot 134 are both greater than the width of the rotor teeth 121 by 1.5 mm to 20 mm.
  • the air gap disclosed in the present embodiment may be 1 mm, in which case the width of the stator slot is 10 mm larger than the width of the rotor tooth 121.
  • the air gap between the rotor 12 and the stator 11 of the present embodiment may be 0.1 mm to 3 mm, and the difference between the width of the stator slot and the width of the rotor teeth 121 is 8-12 times that of the air gap, and the rotor teeth 121 and the stator slots When facing, the gap between the tip of the rotor and the tip of the stator is large. For example, when the rotor tooth 121 is facing the first stator slot 134, the gap between the tip of the rotor tooth 121 and the tip of the first stator tooth 131 is larger. Large, as shown in Figure 7. Therefore, the magnetic resistance is large, so that the minimum inductance generated by the A-phase winding is small, thereby increasing the output torque of the switched reluctance motor.
  • FIG. 8 is a measurement of the magnetic lines of force of the switched reluctance motor when the positions of the 16 first stator teeth 131 and the 16 rotor teeth 121 of the switched reluctance motor are staggered.
  • the first stator slot 134 has not been
  • the rotor teeth 121 are perfectly aligned, and since the gap between the first stator slots 134 and the rotor teeth 121 is large, for example, the width of the first stator slots 134 is 10 mm larger than the width of the rotor teeth 121.
  • the magnetic lines of force T do not entangle and cross, and are subjected to the pressing action of the adjacent magnetic lines of force, the magnetic lines of force T can only form a closed loop through the gap between the current first stator slot 134 and the rotor teeth 121, and the gap is very large. Therefore, the magnetic resistance is large, resulting in a small inductance generated by the A-phase winding 137. When the first stator slot 134 is completely aligned with the rotor teeth 121, the magnetic field lines T cannot be detected.
  • the inductance curve of the A-phase stator assembly is as shown in FIG. 9, and the inductance curve changes in a triangular waveform.
  • the inductance generated by the A-phase winding is the smallest; at the center of the rotor tooth 121 and the center of the first stator tooth 131 Coincidence, that is, corresponding to the second electrical angle a2, the inductance of the A-phase winding is the largest, and the inductance ratio can reach 21.25, while the inductance ratio of the conventional three-phase switched reluctance motor can only reach 2.5-4.5. Due to the output torque of the switched reluctance motor Inductance ratio means high Large, the output torque of the motor is large, which increases the power density of the motor.
  • the number of stator teeth of this embodiment may be an odd number, that is, the total number of first stator teeth 131 and first stator slots 134 is 2N, where N is a natural number. Therefore, the number of first stator teeth 131 and the number of first stator slots 134 can be odd, and natural resonance of the tooth harmonics can be avoided.
  • the number of first stator teeth 131 is three, and the first stator slot 134 The number is 3.
  • the switched reluctance motor of the embodiment can select the number of the first stator teeth 131 and the number of the first stator slots 134 according to different rotation speeds and different moments. It can adapt to different occasions and improve the practicability of the switched reluctance motor.
  • the present invention provides a switched reluctance motor of a third embodiment, which is described on the basis of the switched reluctance motor of the second embodiment.
  • the tooth tip of the rotor tooth 121 in this embodiment is provided with a chamfer 123, and the chamfer 123 may be an arc chamfer having a depth D of less than 0.8 mm and a length L of the chamfer 123. It is smaller than the width of the rotor tooth 121; specifically, the length L of the chamfer 123 is smaller than 1/3 of the width of the rotor tooth 121, and the noise of the motor can be greatly reduced.
  • the tip of the rotor tooth 121 can also be configured as a chamfer with a radius of chamfer less than 1 mm.
  • the tip structure of the first stator tooth 131, the second stator tooth 132, and the third stator tooth of the present embodiment is the same as the tip structure of the rotor tooth 121, and will not be described again.
  • the present invention provides a switched reluctance motor of a fourth embodiment, which is described on the basis of the switched reluctance motor of the first embodiment.
  • the switched reluctance motor further includes a switch drive circuit 21 connected to the DC power source Us and the windings of at least three stator components, that is, the switch drive circuit 21 is connected to the DC power source Us, the A phase winding, and B. Phase winding and phase C winding.
  • the switch driving circuit 21 is configured to periodically apply driving currents to the driving phase windings corresponding to the at least three stator components, and the phases of the driving periods of the at least three stator components are shifted from each other, that is, in the driving phase of the A-phase stator assembly 111.
  • the switch drive circuit 21 applies drive power to the A-phase stator assembly 111. Flow; in the drive phase of the B-phase stator assembly 112, the switch drive circuit 21 applies a drive current to the B-phase stator assembly 112; during the drive phase of the C-phase stator assembly 113, the switch drive circuit 21 applies a drive current to the C-phase stator assembly 113. Accordingly, the phases of the driving periods of the A-phase stator assembly 111, the B-phase stator assembly 112, and the C-phase stator assembly 113 are shifted from each other.
  • the switch drive circuit 21 further releases the energy stored on the windings of the at least three stator assemblies during a subsequent freewheeling period of the drive period corresponding to the at least three stator assemblies to form a freewheeling current. That is, in the freewheeling period subsequent to the driving period of the A-phase stator assembly 111, the switch driving circuit 21 is for releasing the energy stored in the A-phase winding to form a freewheeling current of the A-phase winding; after the driving period of the B-phase stator assembly 112 The freewheeling period, the switch drive circuit 21 is for releasing the energy stored on the B-phase winding to form a freewheeling current of the B-phase winding; and during the subsequent freewheeling period of the driving period of the C-phase stator assembly 113, the switch drive circuit 21 is used for The energy stored on the Phase C winding is released to form a freewheeling current of the Phase C winding.
  • the switch drive circuit 21 includes a controller 23 and at least three switch modules respectively corresponding to at least three stator assemblies, each switch module including a first switch tube, a second switch tube, a first freewheeling diode, and a second freewheeling a diode, wherein a first connection end of the first switch tube is connected to the positive pole of the power source, a second connection end of the first switch tube is connected to the first end of the winding of the corresponding stator assembly, and the first connection end of the second switch tube is connected to the corresponding a second end of the winding of the stator assembly, a second connection end of the second switch tube is connected to the negative pole of the power supply, a positive end of the first freewheeling diode is connected to a second end of the winding of the corresponding stator assembly, and a negative connection of the first freewheeling diode
  • the anode of the power source, the anode of the second freewheeling diode is connected to the cathode of the power supply, and the ca
  • the switch drive circuit 21 includes a controller 23, a first switch module 24 corresponding to the A-phase stator assembly 111, a second switch module 25 corresponding to the B-phase stator assembly 112, and a third corresponding to the C-phase stator assembly 113.
  • the first switch module 24 includes a first switch tube V1, a second switch tube V2, a first freewheeling diode D1, and a second freewheeling diode D2.
  • the second switch module 25 includes a first switch tube V3 and a second switch tube V4.
  • the first freewheeling diode D3 and the second freewheeling diode D4, the third switching module 26 includes a first switching transistor V5, a second switching transistor V6, a first freewheeling diode D5 and a second freewheeling diode D6.
  • the phase difference of the driving period corresponding to the at least three stator components is 2 ⁇ /N, where N is the number of at least three stator components.
  • the phase difference between the driving period of the A-phase stator assembly 111 and the driving period of the B-phase stator assembly 112 is 2 ⁇ /3, that is, the electrical angle 120°, the driving period of the B-phase stator assembly 112 and the phase of the driving period of the C-phase stator assembly 113.
  • the difference is an electrical angle of 120°.
  • the driving period of the phase A stator assembly 111 of the present embodiment is an electrical angle of 0°-120°, and the freewheeling period of the phase A stator assembly 111 is an electrical angle of 120°-180°; the phase B stator assembly 112
  • the driving period is an electrical angle of 120°-240°
  • the freewheeling period of the B-phase stator assembly 112 is an electrical angle of 240°-300°
  • the driving period of the C-phase stator assembly 113 is an electrical angle of 240°-360°, the C-phase stator assembly.
  • the freewheeling period of 113 is an electrical angle of 360°-420°.
  • the freewheeling period of each stator assembly at least partially overlaps with the phase of the driving period of the next driven stator assembly, that is, the phase of the freewheeling period of the A-phase stator assembly 111 and the driving period of the B-phase stator assembly 112 partially overlaps 120°-180°, the freewheeling period of the B-phase stator assembly 112 partially overlaps with the phase of the driving period of the C-phase stator assembly 113 by 240°-300°.
  • the controller 23 simultaneously controls the first switching transistor and the second switching transistor to be intermittently turned on in a pulse width modulation manner, thereby adjusting the magnitude of the driving current.
  • the pulse width modulation mode may be a PWM (Pulse Width Modulation) signal.
  • the controller 23 simultaneously controls the first switching transistor V1 and the second switching transistor V2 through the PWM signal. Pass or close.
  • the controller 23 sends a PWM signal to the first switching transistor V1 and the second switching transistor V2 when the inductance generated by the A-phase winding is minimum; when the first switching transistor V1 and the second switching transistor V2 are simultaneously turned on, the DC power source Us is at A
  • the phase stator assembly 111 applies a drive current; when the first switch tube V1 and the second switch tube V2 are simultaneously turned off, the DC power source Us stops applying a drive current to the A-phase stator assembly 111, thereby avoiding excessive drive current.
  • the controller 23 stops transmitting the PWM signal to the first switching transistor V1 when the inductance generated by the A-phase winding is maximum, the first switching transistor V1 is turned off, and the A-phase stator assembly 111 enters the freewheeling period.
  • the pulse width modulation method may employ a sine wave signal.
  • the controller 23 controls the first switching tube to continuously turn off, and controls the second switching tube to be intermittently turned on in a pulse width modulation manner, thereby adjusting the magnitude of the freewheeling current.
  • the controller 23 can control the DC power supply Us to stop working, and the A-phase winding, the second switch V2, and the second freewheeling diode D2 form a loop, thereby releasing the energy stored in the A-phase winding.
  • Controller 23 The second switching transistor is controlled to be intermittently turned on by the PWM signal to adjust the magnitude of the freewheeling current of the A-phase winding.
  • the switched reluctance motor further includes a current detecting circuit 27 connected to the switch driving circuit 21 for detecting the sum of currents flowing through the windings of at least three stator assemblies, that is, the current detecting circuit 27 Used to detect the sum of currents flowing through the A-phase winding, the B-phase winding, and the C-phase winding.
  • the current detecting circuit 27 includes an annular core 271 having an opening and a magnetic field sensor 272, and windings of at least three stator assemblies are respectively wound around the toroidal core 271, and the magnetic field sensor 272 is disposed at the opening of the toroidal core 271.
  • the annular core 271 may be a C-shaped iron core, and the A-phase winding, the B-phase winding, and the C-phase winding are respectively wound around the toroidal core 271 to form a coil L1, a coil L2 and a coil on the toroidal core 271, respectively. L3.
  • the windings of the respective stator assemblies are wound on the toroidal core 271 in the same number of turns, that is, the number of turns of the coil L1, the number of turns of the coil L2, and the number of turns of the coil L3.
  • the magnetic field sensor 272 can be a linear Hall current sensor.
  • the switched reluctance motor of the present embodiment requires only one magnetic field sensor 272 to detect the sum of currents flowing through the A-phase winding, the B-phase winding, and the C-phase winding, thereby reducing the number of sensors and reducing the cost of the switched reluctance motor.
  • the current sensing circuit 27 can be configured to employ a magnetically balanced current sensor.
  • the switch drive circuit 21 controls the drive current and the freewheeling current of each winding according to the sum i of the currents detected by the current detecting circuit 27, so that the sum of the currents maintains the preset range. Specifically, the switch drive circuit 21 controls the drive current and the freewheeling current of the A-phase winding, the drive current and the freewheeling current of the B-phase winding, the drive current of the C-phase winding, and the freewheeling current according to the current sum i, respectively, so that The sum of currents i remains stable.
  • the controller 23 simultaneously controls the first switching transistor V3 and the second switching transistor V4 to be turned on or off according to the sum of the currents detected by the current detecting circuit 27 through the PWM signal, to the DC power source Us in the B phase.
  • the stator assembly 112 applies a drive current and the sum of currents i remains stable, as shown in FIG.
  • the working principle of the B winding in the driving period and the freewheeling period and the C winding in the driving period and the freewheeling period The working principle of the A winding is the same as that of the A winding in the driving period and the freewheeling period, and will not be described again.
  • the switch drive circuit 21 of the present embodiment controls the drive current and the freewheeling current of each winding according to the sum i of the currents detected by the current detecting circuit 27, so that the sum of the currents maintains the preset range, so the switched reluctance motor of the present embodiment It has the characteristics of servo motor; because the output torque of the switched reluctance motor is stable, the torque ripple and noise of the switched reluctance motor are reduced.
  • the present invention provides a switched reluctance motor of a fifth embodiment, which is different from the switched reluctance motor of the fourth embodiment in that, as shown in FIG. 14, the controller 23 controls the first switch to be continuously turned on, and is pulsed.
  • the wide modulation mode controls the intermittent conduction of the second switching transistor, thereby adjusting the magnitude of the driving current. That is, during the driving period of the A-phase stator assembly 111, the controller 23 controls the first switch V1 to be continuously turned on, and controls the second switching transistor V2 to be intermittently turned on by the PWM signal.
  • the present invention provides a switched reluctance motor of a sixth embodiment, which is described on the basis of the switched reluctance motor of the fourth embodiment: as shown in FIG. 15, the switched reluctance motor further includes a position connected to the switch drive circuit 21.
  • the sensor 28, the position sensor 28 is for measuring the relative position between the rotor 12 and the stator 11 in the switched reluctance motor 10, so that the switch drive circuit 21 changes the energization state according to the relative position between the rotor 12 and the stator 11, that is, the switch drive Circuit 21 changes the energization state based on the maximum inductance and minimum inductance of each stator assembly to drive the switched reluctance motor to operate.
  • the position sensor 28 includes a magnetic encoder or an optical encoder.
  • the present invention provides a method of controlling current of a switched reluctance motor according to an embodiment.
  • the control method of the present embodiment is described on the basis of the switched reluctance motor disclosed in the fourth embodiment. As shown in FIG. 16, the control method includes:
  • step S161 the phase difference of the driving period corresponding to the at least three stator components is further controlled by the controller 23 to be 2 ⁇ /N, where N is the number of at least three stator components. That is, the phase difference between the driving period of the A-phase stator assembly 111 and the driving period of the B-phase stator assembly 112 is 2 ⁇ /3, that is, the electrical angle is 120°, the driving period of the B-phase stator assembly 112 and the driving period of the C-phase stator assembly 113. The phase difference is an electrical angle of 120°.
  • the overlap is ⁇ /N. That is, the phase of the freewheeling period of the A-phase stator assembly 111 and the phase of the driving period of the B-phase stator assembly 112 partially overlap to 120°-180°, and the phase of the freewheeling period of the B-phase stator assembly 112 and the driving period of the C-phase stator assembly 113 Partial overlap is 240°-300°, as shown in Figure 12.
  • the first switching transistor V1 and the second switching transistor V2 are simultaneously turned on or off by the controller 23 in a pulse width modulation manner. That is, the controller 23 sends a PWM signal to the first switching transistor V1 and the second switching transistor V2 when the inductance generated by the A-phase winding is minimum; when the first switching transistor V1 and the second switching transistor V2 are simultaneously turned on, the DC power source Us The driving current is applied to the A-phase stator assembly 111; when the first switching transistor V1 and the second switching transistor V2 are simultaneously turned off, the DC power source Us stops applying a driving current to the A-phase stator assembly 111, and the driving current can be prevented from being excessive.
  • the controller 23 stops transmitting the PWM signal to the first switching transistor V1, the first switching transistor V1 is turned off, and the A-phase stator assembly 111 enters the freewheeling period, and proceeds to step S162.
  • step S162 during the freewheeling period of the A-phase stator assembly 111, the DC power supply Us is controlled to stop by the controller 23, and the first switching transistor V1 is controlled to be continuously turned off, and the second switching transistor V2 is controlled in a pulse width modulation manner. Intermittent conduction, so that the phase A winding, the second switch V2 and the second freewheeling diode D2 form a loop, thereby releasing the energy stored in the phase A winding to adjust the magnitude of the freewheeling current of the phase A winding.
  • the first switching transistor V3 and the second switching transistor V4 of the B winding are controlled to be turned on or off by the controller 23, and the driving current is applied to the B-phase stator assembly 112 by the DC power source Us, wherein the control mode is controlled by the control mode of step S161.
  • the first switch tube V3 and the second switch tube V4 of the winding are not described herein.
  • step S163 the current sum i is obtained from the current detecting circuit 27 through the switch drive circuit 21, and the drive current and the freewheel current are controlled in accordance with the current sum i so that the current sum i is maintained at the preset range.
  • the method for controlling the driving current may adopt step S161
  • the method for controlling the freewheeling current may adopt step S162.
  • the pulse width modulation method of this embodiment may be square wave pulse width modulation or sine wave pulse width modulation.
  • the PWM signal of the above embodiment is square wave pulse width modulation.
  • the A-phase winding generates the smallest inductance, specifically when the rotor teeth 121 are completely aligned with the first stator slot 134; the A-phase winding generates the largest inductance, specifically the rotor teeth 121 and the first stator teeth. When 131 is fully aligned.
  • the conduction phase is in the driving period, that is, when the A-phase winding enters the freewheeling period, the B-phase winding enters the driving period; the free-current of the A-phase and the driving current of the B-phase The sum is kept constant, so the current fluctuation of the switched reluctance motor is small, that is, the sum of the currents of the switched reluctance motor is small, and the fluctuation of the torque is small.
  • the magnetic field strength generated by the winding of the conducting phase is small. Weak, that is, the strength of the magnetic field generated by the B-phase winding is weak, thereby reducing noise.
  • the present invention provides a method of manufacturing a core of the first embodiment, as shown in FIG. 17, which is used for manufacturing the stator core and/or the rotor core of the switched reluctance motor of the above embodiment, which specifically includes the following steps :
  • the iron silicon aluminum material may be a ferrosilicon aluminum alloy magnetic powder, which may be an alloy powder composed of 85% iron, 9% silicon, and 6% aluminum.
  • S172 A stator core and/or a rotor core of a switched reluctance motor die-cast using a ferrosilicon material.
  • the iron silicon aluminum material is made into a powder, and the powdered iron silicon aluminum material is die-cast to form the stator core and/or the rotor core of the switched reluctance motor.
  • the powdered iron silicon aluminum material is die-cast into the stator core of the stator 12 and/or the rotor core of the rotor 11.
  • the switched reluctance motor comprises a stator 12 and a rotor 11, wherein the stator 12 is axially segmented with at least three stator assemblies, each of which includes a periodic arrangement along the circumference of the stator and The plurality of stator teeth spaced apart from each other and the windings disposed on the stator teeth, the stator teeth of the at least three stator assemblies are sequentially shifted by a predetermined angle in the circumferential direction of the stator, and the windings in each stator assembly are in-phase windings, and the rotor 12 includes a plurality of rotor teeth 121 that are periodically disposed in the circumferential direction of the rotor and are spaced apart from each other by the rotor slots 122.
  • a groove 182 is provided on the side surface of the stator core 181, as shown in FIG. 18, and the winding is wound around the groove 182.
  • the side surface of the first stator tooth 131 is provided with a groove 181, and the A-phase winding is wound in the groove 182 to reduce the space occupied by the A-phase stator assembly 111.
  • the stator core and/or the rotor core of the switched reluctance motor are die-cast by using a ferrosilicon material. Since the iron-silicon-aluminum material does not contain a precious metal, the price of the ferrosilicon material is cheap, thereby reducing the cost; The iron-silicon-aluminum material has good magnetic properties and can improve the magnetic properties of the stator core.
  • the material of the iron core of the switched reluctance motor disclosed in the above embodiments is a ferrosilicon material, which is die-cast from a ferrosilicon material.
  • the iron silicon aluminum material is first made into a powder, and then the powdered iron silicon aluminum material is die-cast into the iron core of the switched reluctance motor.
  • the iron core of the switched reluctance motor may include a stator core of the stator 12 and a rotor core of the rotor 11.
  • the ferrosilicon material of this embodiment may be a ferrosilicon aluminum alloy magnetic powder, which may be an alloy powder composed of 85% iron, 9% silicon, and 6% aluminum, and the alloy powder is die-cast into an iron core.
  • the side surface of the stator core 181 is provided with a recess 182 in which the winding is wound.
  • the side surface of the first stator tooth 131 is provided with a groove 181, and the A-phase winding is wound in the groove 182 to reduce the space occupied by the A-phase stator assembly 111.
  • the iron-silicon-aluminum material does not contain precious metals, the price of the iron-silicon-aluminum material is low, thereby reducing the cost; in addition, the ferrosilicon-aluminum material has good magnetic properties and can improve the magnetic properties of the stator core.
  • the present invention also provides a wheel that is driven by a switched reluctance motor that is a switched reluctance motor as described in the previous embodiment.
  • the wheel may comprise a hub-type switched reluctance motor, that is, driven by a hub-type switched reluctance motor, which is a motor structure of the stator in the outer rotor.
  • the present invention also provides an electric vehicle, which may be an electric vehicle, an electric motorcycle, or an electric bicycle.
  • the electric vehicle is a pure electric or hybrid vehicle, and the wheels of the electric vehicle are driven by a switched reluctance motor, which is also a switched reluctance motor as described in the previous embodiment.
  • the driving wheel of the electric vehicle can adopt the wheel structure in the above embodiment, that is, the wheel includes a hub-type switched reluctance motor, and the wheel-type switched reluctance motor drives the wheel to rotate.
  • the application scenario of the switched reluctance motor provided by the embodiment of the present invention is not limited to an electric vehicle, and can also be used as a driving motor for a ship or a large machine.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Electromagnetism (AREA)
  • Synchronous Machinery (AREA)
  • Control Of Electric Motors In General (AREA)

Abstract

一种电动车、车轮、开关磁阻电机及其铁芯的制造方法,该开关磁阻电机(10)包括定子(11)以及转子(12),其中定子(11)沿轴向分段设置有至少三个定子组件(111,112,113),每一定子组件分别包括沿定子(11)的周向周期性设置且由定子槽(134,135,136)彼此间隔的多个定子齿(131,132,133)以及绕设于定子齿(131,132,133)上的绕组,至少三个定子组件(111,112,113)的定子齿(131,132,133)沿定子(11)的周向依次错开预定角度,每个定子组件中的绕组均为同相绕组,开关磁阻电机(10)的铁芯的材料为铁硅铝材料,铁硅铝材料压铸而成铁芯,能够降低成本。

Description

电动车、车轮、开关磁阻电机及其铁芯的制造方法 【技术领域】
本发明涉及电机的技术领域,涉及一种电动车、车轮、开关磁阻电机及其铁芯的制造方法。
【背景技术】
发明人在实践中发现,传统的开关磁阻电机包括定子和转子,定子具有定子铁芯,转子具有转子铁芯,目前通过对整个硅钢片进行冲片,并将冲片后的硅钢片进行叠压,以形成定子铁芯或者转子铁芯。由于硅钢片的价格较高,导致传统的开关磁阻电机的成本高。
【发明内容】
为了解决现有技术中的成本高的问题,本发明提供一电动车、车轮、开关磁阻电机及其铁芯的制造方法。
为解决上述问题,本发明实施例提供了一种开关磁阻电机,其包括定子以及转子,其中所述定子沿轴向分段设置有至少三个定子组件,每一所述定子组件分别包括沿所述定子的周向周期性设置且由定子槽彼此间隔的多个定子齿以及绕设于所述定子齿上的绕组,所述至少三个定子组件的定子齿沿所述定子的周向依次错开预定角度,每个所述定子组件中的所述绕组均为同相绕组,所述转子包括沿所述转子的周向周期性设置且由转子槽彼此间隔的多个转子齿,所述开关磁阻电机的铁芯的材料为铁硅铝材料,所述铁硅铝材料压铸而成所述铁芯
其中,所述开关磁阻电机的铁芯包括所述定子的定子铁芯,所述定子铁芯的侧面设置有凹槽,所述绕组绕设在所述凹槽内。
其中,所述铁硅铝材料包括85%的铁、9%的硅以及6%的铝的合金粉末。
其中,所述至少三个定子组件的定子齿的数量和宽度相同,所述预定角度为T1/N,其中所述T1为所述定子齿的角度周期,所述N为所述至少三个定子组件的数量。
其中,所述定子齿的数量为奇数。
其中,所述转子包括沿所述转子的周向周期性设置且由转子槽彼此间隔的 多个转子齿,其中所述转子齿的数量与所述定子齿的数量相同,且所述转子齿的宽度小于所述定子槽的宽度。
其中,所述定子槽与所述定子齿的宽度比为1∶0.95-0.85,所述定子齿与所述转子齿的宽度比为1∶1.05-0.95。
其中,所述开关磁阻电机进一步包括开关驱动电路,所述开关驱动电路连接直流电源和所述至少三个定子组件的所述绕组上,以周期性控制所述直流电源依次在所述至少三个定子组件所对应的驱动时段向所述绕组上施加所述驱动电流,其中所述至少三个定子组件的所述驱动时段的相位彼此错开。
其中,所述开关磁阻电机进一步包括电流检测电路,其中所述电流检测电路用于检测流经所述至少三个定子组件的所述绕组的电流总和,所述开关驱动电路根据所述电流检测电路所检测的所述电流总和分别对各所述绕组的所述驱动电流和所述续流电流进行控制,以使得所述电流总和保持预设范围。
为解决上述问题,本发明还提供了一种铁芯的制造方法,其用于制造开关磁阻电机的定子铁芯和/或转子铁芯,所述制造方法包括:
提供铁硅铝材料;
利用所述铁硅铝材料压铸而成所述开关磁阻电机的定子铁芯和/或转子铁芯。
其中,所述铁硅铝材料包括85%的铁、9%的硅以及6%的铝的合金粉末。
其中,所述开关磁阻电机包括定子以及转子,其中所述定子沿轴向分段设置有至少三个定子组件,每一所述定子组件分别包括沿所述定子的周向周期性设置且由定子槽彼此间隔的多个定子齿以及绕设于所述定子齿上的绕组,所述至少三个定子组件的定子齿沿所述定子的周向依次错开预定角度,每个所述定子组件中的所述绕组均为同相绕组,所述转子包括沿所述转子的周向周期性设置且由转子槽彼此间隔的多个转子齿。
其中,利用所述铁硅铝材料压铸而成所述开关磁阻电机的定子铁芯包括:
在所述定子铁芯的侧面设置有凹槽,并将所述绕组绕设在所述凹槽内。
为解决上述技术问题,本发明还提供一种车轮,车轮采用轮毂电机驱动,轮毂电机采用上述实施例中任一项开关磁阻电机结构。
为解决上述技术问题,本发明还提供一种电动车,电动车为纯电动或混合动力车,电动车采用上述实施例中任一项开关磁阻电机结构。
与现有技术相比,该开关磁阻电机的铁芯的材料为铁硅铝材料,铁硅铝材 料压铸而成铁芯,由于铁硅铝材料中不含贵金属,因此铁硅铝材料的价格便宜,降低成本;此外,铁硅铝材料的磁性良好,能够提高定子铁芯的磁性。
【附图说明】
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图,也属于本发明保护范畴。
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本发明第一实施例的开关磁阻电机的立体示意图;
图2是图1中开关磁阻电机的分解示意图;
图3是外定子内转子的三相开关磁阻电机的立体示意图;
图4是图1中A相绕组绕设在第一定子齿的结构示意图;
图5是图1中第一定子齿、第二定子齿和第三定子齿的结构示意图;
图6是图1中转子齿的中心与第一定子齿的中心重合的磁力线示意图;
图7是图1中第一定子齿与转子槽对齐的结构示意图;
图8是图1中转子齿与第一定子齿位置错开的磁力线示意图;
图9是图1中开关磁阻电机正常工作的电感曲线的示意图;
图10是开关磁阻电机的转子齿设有削角的结构示意图;
图11是开关驱动电路的电路图;
图12是开关磁阻电机的工作原理的时序图;
图13是电流检测电路的结构示意图;
图14是本发明第五实施例的开关磁阻电机的工作原理的时序图;
图15是位置传感器的结构示意图;
图16是本发明第一实施例的开关磁阻电机的电流的控制方法的流程图;
图17是本发明第一实施例的铁芯的制造方法的流程图;
图18是定子铁芯的剖面示意图。
【具体实施方式】
下面结合附图和实施例,对本发明作进一步的详细描述。特别指出的是,以下实施例仅用于说明本发明,但不对本发明的范围进行限定。同样的,以下实施例仅为本发明的部分实施例而非全部实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其它实施例,都属于本发明保护的范围。
本发明的说明书和权利要求书及上述附图中的术语“第一”、“第二”、“第三”“第四”等(如果存在)是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本发明的实施例例如能够以除了在这里图示或描述的那些以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、***、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
如图1-2所示,本发明提供第一实施例的开关磁阻电机,该开关磁阻电机10包括定子11和转子12,其中定子11沿轴向分段设置有至少三个定子组件,每一定子组件包括沿定子11的周向周期性设置且由定子槽彼此间隔的多个定子齿以及绕设在定子齿上的绕组,即多个定子齿沿着定子11的周向周期性设置,并且与多个定子槽彼此间隔。
举例来说,本实施例的开关磁阻电机具体可为三相开关磁阻电机,该三相开关磁阻电机可为外转子内定子的三相开关磁阻电机。如图2所示,定子11沿轴向分段设置有三个定子组件,分别为A相定子组件111、B相定子组件112和C相定子组件113。在其他实施例中,开关磁阻电机可为外定子内转子的三相开关磁阻电机30,如图3所示。
如图2所示,A相定子组件111包括多个第一定子齿131,多个第一定子齿131与多个第一定子槽134彼此间隔。如图4所示,A相定子组件111进一步包括绕设在第一定子齿131上的A相绕组137,在A相绕组137施加驱动电流时,A相绕组137会产生磁极,进而形成磁场。
B相定子组件112包括多个第二定子齿132和绕设在第二定子齿132上的B相绕组,多个第二定子齿132与多个第二定子槽135彼此间隔;C相定子组件113包括多个第三定子齿133和绕设在第三定子齿133上的C相绕组,多个第三定子齿133与多个第三定子槽136彼此间隔。其中,B相绕组绕设在第二定子齿132上和C相绕组绕设在第三定子齿133上与A相绕组137绕设在第一定子齿131上的结构相同,不再赘述。
至少三个定子组件的定子齿沿着定子11的周向依次错开预设角度,以使得转子12能够在依次施加于至少三个定子组件的绕组上驱动电流所产生的磁场的作用下连续转动,即在至少三个定子组件的绕组上依次施加驱动电流,转子12在绕组所产生的磁场的作用下连续转动。具体地,第二定子齿132和第一定子齿131沿着定子的周向依次错开预设角度,第三定子齿133和第二定子齿132沿着定子的周向依次错开预设角度;当A相定子组件111、B相定子组件112和C相定子组件113依次施加驱动电流,在A相绕组137产生的磁场、B相绕组产生的磁场和C相绕组产生的磁场的作用下,转子12连续转动。
本实施例的A相定子组件111包括绕设在第一定子齿131上的A相绕组137,B相定子组件112包括绕设在第二定子齿132上的B相绕组,C相定子组件113包括绕设在第三定子齿133上的C相绕组,因此每个定子组件均设置同一相绕组,相对于传统的开关磁阻电机的定子设置多相绕组,由于同一相绕组的匝数比多相绕组的匝数少,因此能够减少A相绕组、B相绕组和C相绕组的匝数,进而降低开关磁阻电机10的铜耗,降低成本。
其中,至少三个定子组件的定子齿的数量和宽度相同,具体地,多个第一定子齿131的数量、多个第二定子齿132的数量和多个第三定子齿133的数量相同,并且第一定子齿131的宽度、第二定子齿132的宽度和第三定子齿133的宽度相同。因此,A相定子组件111、B相定子组件112和C相定子组件113的加工工艺相同。
预设角度可为T1/N,其中T1为定子齿的电角度周期,N为至少三个定子组件的数量。该定子齿的电角度周期为2π/M,其中M为定子齿的数量,即该 至少三个定子组件的定子齿沿着定子11的周向依次错开的角度为机械角度。
如图5所示,第二定子齿132和第一定子齿131错开的预设角度为T1/N,其中第一定子齿131的角度周期T1为2π/M,N为3,因此第二定子齿132和第一定子齿131错开的角度为2π/3M。例如,第一定子齿131的数量M为6,则第二定子齿132和第一定子齿131错开的预设角度为2π/3M=20°。由于相邻的两个第一定子齿131之间为一个角度周期,因此第二定子齿132和第一定子齿131错开1/3齿距,相当于第二定子齿132和第一定子齿131错开的电角度为120°,该齿距可为相邻两个第一定子齿131的距离。
此外,第三定子齿133和第二定子齿132错开的预设角度为2π/3M,即第三定子齿133和第二定子齿132错开1/3齿距。第一定子齿131和第三定子齿133错开的预设角度为2π/3M,即第一定子齿131和第三定子齿133错开1/3齿距。
如图2所示,转子12包括沿转子12的周向周期性设置且由转子槽122彼此间隔的多个转子齿121,即多个转子齿121沿着转子12的周向周期性设置,并且与多个转子槽122彼此间隔。转子齿121的数量与定子齿的数量相同,并且转子齿121的宽度小于定子槽的宽度。
本实施的转子12可采用一体设置,转子12沿着轴向的长度大于或者等于定子11沿着轴向的长度,该定子11沿着轴向的长度可为A相定子组件111沿着轴向的长度、B相定子组件112沿着轴向的长度以及C相定子组件113沿着轴向的长度之和,以使转子12能够覆盖A相定子组件111、B相定子组件112和C相定子组件113。
在其他实施例中,转子12可以采用分段设置,例如转子与A相定子组件、B相定子组件和C相定子组件对应设置为三段,三段转子的转子齿沿轴向对齐。
其中,转子齿121的数量分别与第一定子齿131的数量、第二定子齿132的数量和第三定子齿133的数量均相同,在转子齿121的中心与第一定子齿131的中心重合时,如图6所示。
图6是在开关磁阻电机的16个第一定子齿131和16个转子齿121对齐时 测量开关磁阻电机的磁力线,该开关磁阻电机的磁场通过磁力线T来表示。由于定子11分段设置A相定子组件111、B相定子组件112和C相定子组件113,因此A相绕组137产生的磁力线T、B相绕组产生的磁力线和C相绕组产生的磁力线互不干扰,即A相绕组137、B相绕组和C相绕组的互感为零。此外,A相绕组137产生的磁力线T不会纠缠交叉,因此A相绕组137的每磁极产生的磁力线T闭合回路位于该磁极的极距内,即A相绕组的每磁极产生的磁力线T不会跨越相邻磁极的中线,传统磁阻电机三相绕组存在互感,通电相的电流会产生互相影响,电枢反应的非线性非常严重,并且产生难以克服的原理性转矩波动,而本发明提供的开关磁阻电机由于每个定子组件是独立的,每个定子组件的绕组都是同一相绕组,所以不存在互感,因此从原理上克服了因互感造成的转矩波动。请参考图6,相对于传统的三相开关磁阻电机的定子组件设置三相绕组,每磁极产生的磁力线必须跨越3个极距,即传统三相开关磁阻电机的任何磁极产生的磁力线回路的长度都是本实施例的每磁极产生的磁力线回路的长度的3倍,磁阻较大,绕组产生的最大电感较小,但本实施例的每磁极产生的磁力线T被约束在该磁极的极距之内,磁阻小,进而A相绕组137产生的电感大。B相绕组和C相绕组在施加驱动电流时所产生的磁力线回路与A相绕组在施加驱动电流时所产生的磁力线T回路相同,不再赘述。
其中,开关磁阻电机的绕组系数的计算公式为:
Figure PCTCN2017103418-appb-000001
其中,传统的三相开关磁阻电机可以采用的定子齿数Zd和转子齿数Zz满足:Zz/Zd可以为4/6或8/6;以及整数倍8/12、6/12、12/18、24/18、16/24和32/24等等,根据上述公式可得绕组系数均为0.866。也即由于传统的三相开关磁阻电机的三相沿圆周120°分布,导致绕组系数为0.866。而本实施例的开关磁阻电机10的定子齿数Zd和转子齿数Zz相等,根据上述公式可得绕组系数为1。
因此,本实施例的开关磁阻电机10属于极距为180°电角度的整距和整数 槽电机,该开关磁阻电机10的绕组***为1,相对于传统的三相开关磁阻电机的绕组系数为0.866,本实施例的绕组的利用率提高了1.155倍,实现绕组利用率最大化,进而提高开关磁阻电机10的效率和输出的力矩。
本发明提供第二实施例的开关磁阻电机,用于设置开关磁阻电机的齿槽参数,其在第一实施例的开关磁阻电机基础上进行描述。如图7所示,本实施例定子槽的宽度与定子齿的宽度比为1∶0.95-0.85,定子齿的宽度与转子齿的宽度比为1∶1.05-0.95。
以第一定子齿131和转子齿121为例进行说明,如图7所示,第一定子槽134的宽度与第一定子齿131的宽度比可为1∶0.95-0.85,即第一定子齿131的宽度小于第一定子槽134的宽度,进而保证第一定子槽134拥有足够的空间设置A相绕组137。例如:第一定子槽134的宽度与第一定子齿131的宽度比可为1∶0.85;第一定子槽134的宽度与第一定子齿131的宽度比可为1∶0.9;第一定子槽134的宽度与第一定子齿131的宽度比可为1∶0.95。相应地,第二定子槽135的宽度与第二定子齿132的比可为1∶0.95-0.85,第三定子槽136的宽度与第三定子齿133的比可为1∶0.95-0.85。
第一定子齿131的宽度与转子齿121的宽度比为1∶1.05-0.95。其中,第一定子齿131的宽度与转子齿121的宽度比可为1∶1,即转子齿121的宽度与第一定子齿131的宽度相同,定子齿的宽度与转子齿121的宽度相同。第一定子齿131的宽度与转子齿121的宽度比可为1∶0.95,即转子齿121的宽度小于第一定子齿131的宽度;第一定子齿131的宽度与转子齿121的宽度比可为1∶1.05,即转子齿121的宽度大于第一定子齿131的宽度,并且转子齿121的宽度小于第一定子槽134的宽度。相应地,第二定子齿132的宽度与转子齿121的宽度比为1∶1.05-0.95,第三定子齿的宽度与转子齿121的宽度比为1∶1.05-0.95。
本实施例通过设置定子槽的宽度与定子齿的宽度比为1∶0.95-0.85,定子齿的宽度与转子齿的宽度比为1∶1.05-0.95,能够使得开关磁阻电机的电感曲线随着转子齿的位置呈三角波形变化,如图9所示,并且电感曲线的变化率大。
其中,转子12与定子11之间的气隙可为0.1mm~3mm,定子槽的宽度与 转子齿121的宽度的差值为气隙的8-12倍,其中定子槽的宽度为定子槽的槽口宽度,转子齿121的宽度为转子齿121顶部的宽度。即第一定子槽134的宽度与转子齿121的宽度的差值为气隙的8-12倍,第二定子槽135的宽度与转子齿121的宽度的差值为气隙的8-12倍,第三定子槽134的宽度与转子齿121的宽度的差值为气隙的8-12倍。
更进一步,转子12和定子11之间的气隙为0.15mm~2mm,定子槽的宽度与转子齿121的宽度的差值可为气隙的10倍,即定子槽的宽度比转子齿121的宽度大1.5mm-20mm。其中,第一定子槽134的宽度、第二定子槽135的宽度和第三定子槽134的宽度均比转子齿121的宽度大1.5mm-20mm。
本实施所揭示的气隙可以为1mm,此时定子槽的宽度比转子齿121的宽度大10mm。
本实施例的转子12与定子11之间的气隙可为0.1mm~3mm,定子槽的宽度与转子齿121的宽度的差值为气隙的8-12倍,在转子齿121与定子槽正对时,转子齿尖与定子齿尖的间隙较大,例如转子齿121与第一定子槽134正对时,转子齿121的齿尖和第一定子齿131的齿尖的间隙较大,如图7所示。因此磁阻较大,使得A相绕组产生的最小电感较小,从而提高了开关磁阻电机的输出转矩。
请进一步参见图8,图8是在开关磁阻电机的16个第一定子齿131和16个转子齿121位置错开时测量开关磁阻电机的磁力线,此时第一定子槽134尚未与转子齿121完全对齐,由于第一定子槽134和转子齿121之间的间隙较大,例如第一定子槽134的宽度比转子齿121的宽度大10mm。由于磁力线T不会纠缠交叉,并且在受到相邻的磁力线的挤压作用,该磁力线T只能通过当前第一定子槽134和转子齿121之间的间隙形成闭合回路,而该间隙非常大,因此磁阻大,导致A相绕组137产生的电感小。在第一定子槽134与转子齿121完全对齐时,无法检测到磁力线T。
本实施例的开关磁阻电机在正常工作时,A相定子组件的电感曲线如图9所示,该电感曲线呈三角波形变化。在转子齿121的中心与第一定子槽134的 中心重合,即对应于第一电角度a1时,A相绕组产生的电感最小;在转子齿121的中心与第一定子齿131的中心重合,即对应于第二电角度a2时,A相绕组产生的电感最大,电感比可以达到21.25,而传统的三相开关磁阻电机的电感比只能达到2.5-4.5左右。由于开关磁阻电机的输出力矩
Figure PCTCN2017103418-appb-000002
电感比高意味
Figure PCTCN2017103418-appb-000003
大,电机的输出力矩就大,也即提高了电机的功率密度。
本实施例的定子齿的数量可为奇数,即第一定子齿131和第一定子槽134的总数为2N,其中N为自然数。因此第一定子齿131的数量和第一定子槽134的数量均可为奇数,能够避免齿谐波的自然谐振,例如第一定子齿131的数量为3,第一定子槽134的数量为3。相对比传统开关磁阻电机的定子齿的数量为偶数个,本实施例的开关磁阻电机能够根据不同的转速和不同力矩选择第一定子齿131的数量和第一定子槽134的数量,能够适应不同的场合,提高开关磁阻电机的实用性。
本发明提供第三实施例的开关磁阻电机,其在第二实施例的开关磁阻电机的基础上进行描述。如图10所示,本实施例中的转子齿121的齿尖设置有一削角123,削角123可以为弧形削角,该削角123的深度D小于0.8mm,削角123的长度L小于转子齿121的宽度;具体地,削角123的长度L小于转子齿121的宽度的1/3,能够大幅度减小电机的噪声。在其他实施例中,转子齿121的齿尖还可以设置为倒角,其中倒角的半径小于1mm。
本实施例的第一定子齿131、第二定子齿132和第三定子齿的齿尖结构与上述转子齿121的齿尖结构相同,不再赘述。
本发明提供第四实施例的开关磁阻电机,其在第一实施例的开关磁阻电机的基础上进行描述。如图11所示,开关磁阻电机进一步包括开关驱动电路21,开关驱动电路21连接直流电源Us和至少三个定子组件的绕组上,即开关驱动电路21连接直流电源Us、A相绕组、B相绕组和C相绕组上。
开关驱动电路21用于周期性依次在至少三个定子组件所对应的驱动阶段相绕组上施加驱动电流,至少三个定子组件的驱动时段的相位彼此错开,即在A相定子组件111的驱动阶段,开关驱动电路21在A相定子组件111施加驱动电 流;在B相定子组件112的驱动阶段,开关驱动电路21在B相定子组件112施加驱动电流;在C相定子组件113的驱动阶段,开关驱动电路21在C相定子组件113施加驱动电流。相应地,A相定子组件111、B相定子组件112和C相定子组件113的驱动时段的相位彼此错开。
其中,开关驱动电路21进一步在至少三个定子组件对应的驱动时段后续的续流时段释放至少三个定子组件的绕组上存储的能量,以形成续流电流。即在A相定子组件111的驱动时段后续的续流时段,开关驱动电路21用于释放A相绕组上存储的能量,形成A相绕组的续流电流;在B相定子组件112的驱动时段后续的续流时段,开关驱动电路21用于释放B相绕组上存储的能量,形成B相绕组的续流电流;在C相定子组件113的驱动时段后续的续流时段,开关驱动电路21用于释放C相绕组上存储的能量,形成C相绕组的续流电流。
开关驱动电路21包括控制器23以及分别与至少三个定子组件对应的至少三个开关模块,每一开关模块分别包括第一开关管、第二开关管、第一续流二极管和第二续流二极管,其中第一开关管的第一连接端连接电源的正极、第一开关管的第二连接端连接对应的定子组件的绕组的第一端、第二开关管的第一连接端连接对应的定子组件的绕组的第二端,第二开关管的第二连接端连接电源的负极,第一续流二极管的正极连接对应的定子组件的绕组的第二端,第一续流二极管的负极连接电源的正极,第二续流二极管的正极连接电源的负极,第二续流二极管的负极连接对应的定子组件的绕组的第一端。其中,第一开关管和第二开关管与对应的定子组件的绕组串联连接。
具体地,开关驱动电路21包括控制器23、与A相定子组件111对应的第一开关模块24、与B相定子组件112对应的第二开关模块25以及与C相定子组件113对应的第三开关模块26。第一开关模块24包括第一开关管V1、第二开关管V2、第一续流二极管D1和第二续流二极管D2,第二开关模块25包括第一开关管V3、第二开关管V4、第一续流二极管D3和第二续流二极管D4,第三开关模块26包括第一开关管V5、第二开关管V6、第一续流二极管D5和第二续流二极管D6。
其中,至少三个定子组件所对应的驱动时段的相位差为2π/N,其中N为至少三个定子组件的数量。A相定子组件111的驱动时段和B相定子组件112的驱动时段的相位差为2π/3,即电角度120°,B相定子组件112的驱动时段和C相定子组件113的驱动时段的相位差为电角度120°。
如图12所示,本实施例A相定子组件111的驱动时段为电角度0°-120°,A相定子组件111的续流时段为电角度120°-180°;B相定子组件112的驱动时段为电角度120°-240°,B相定子组件112的续流时段为电角度240°-300°;C相定子组件113的驱动时段为电角度240°-360°,C相定子组件113的续流时段为电角度360°-420°。其中,各定子组件的续流时段与下一被驱动的定子组件的驱动时段的相位至少部分重叠,即A相定子组件111的续流时段与B相定子组件112的驱动时段的相位部分重叠为120°-180°,B相定子组件112的续流时段与C相定子组件113的驱动时段的相位部分重叠为240°-300°。
在驱动时段,控制器23以脉宽调制方式同时控制第一开关管和第二开关管间歇性导通,由此调节驱动电流的大小。该脉宽调制方式可为PWM(Pulse Width Modulation,脉冲宽度调制)信号,在A相定子组件111的驱动时段时,控制器23通过PWM信号同时控制第一开关管V1和第二开关管V2导通或者关闭。控制器23在A相绕组产生的电感最小时发送PWM信号至第一开关管V1和第二开关管V2;在第一开关管V1和第二开关管V2同时导通时,直流电源Us在A相定子组件111施加驱动电流;在第一开关管V1和第二开关管V2同时关闭时,直流电源Us停止在A相定子组件111施加驱动电流,能够避免驱动电流过大。控制器23在A相绕组产生的电感最大时停止发送PWM信号至第一开关管V1,第一开关管V1关闭,A相定子组件111进入续流时段。在其他实施例,脉宽调制方式可以采用正弦波信号。
在续流时段,控制器23控制第一开关管持续关闭,并以脉宽调制方式控制第二开关管间歇性导通,由此调节续流电流的大小。在A相定子组件111的续流时段时,控制器23可以控制直流电源Us停止工作,A相绕组、第二开关V2和第二续流二极管D2形成回路,进而释放A相绕组上存储的能量。控制器23 通过PWM信号控制第二开关管间歇性导通,以调节A相绕组的续流电流的大小。
如图13所示,开关磁阻电机进一步包括与开关驱动电路21连接的电流检测电路27,该电流检测电路27用于检测流经至少三个定子组件的绕组的电流总和,即电流检测电路27用于检测流经A相绕组、B相绕组以及C相绕组的电流总和,电流总和为i=ia+ib+ic,ia为流经A相绕组的电流,ib为流经B相绕组的电流,ic为流经C相绕组的电流。
电流检测电路27包括具有一开口的环形铁芯271以及磁场传感器272,至少三个定子组件的绕组分别绕设在环形铁芯271上,磁场传感器272设置于环形铁芯271的开口处。其中,环形铁芯271可为C形铁芯,A相绕组、B相绕组以及C相绕组分别绕设在环形铁芯271上,以分别在环形铁芯271上形成线圈L1、线圈L2和线圈L3。各个定子组件的绕组在环形铁芯271上绕设的匝数相同,即线圈L1的匝数、线圈L2的匝数和线圈L3的匝数相同。其中,磁场传感器272可为线性霍尔电流传感器。本实施例的开关磁阻电机仅需要一个磁场传感器272检测流经A相绕组、B相绕组以及C相绕组的电流总和,因此减少传感器数量,降低开关磁阻电机的成本。在其他实施例中,电流检测电路27可以设置为采用磁平衡式电流传感器。
开关驱动电路21根据电流检测电路27所检测的电流总和i分别对各绕组的驱动电流和续流电流进行控制,以使得电流总和保持预设范围。具体地,开关驱动电路21根据电流总和i分别对A相绕组的驱动电流和续流电流、B相绕组的驱动电流和续流电流、C相绕组的驱动电流和续流电流进行控制,以使得电流总和i保持稳定。
在A绕组的续流时段,控制器23根据电流检测电路27所检测的电流总和i通过PWM信号同时控制第一开关管V3和第二开关管V4导通或者关闭,以直流电源Us在B相定子组件112施加驱动电流,并且电流总和i保持稳定,如图12所示。
B绕组在驱动时段和续流时段的工作原理和C绕组在驱动时段和续流时段 的工作原理与A绕组在驱动时段和续流时段的工作原理相同,不再赘述。
本实施例的开关驱动电路21根据电流检测电路27所检测的电流总和i分别对各绕组的驱动电流和续流电流进行控制,以使得电流总和保持预设范围,因此本实施的开关磁阻电机具有伺服电机的特性;由于开关磁阻电机的输出力矩稳定,进而降低开关磁阻电机的力矩波动和噪音。
本发明提供第五实施例的开关磁阻电机,其于第四实施例的开关磁阻电机的不同之处在于:如图14所示,控制器23控制第一开关持续导通,并且以脉宽调制方式控制第二开关管间歇性导通,由此调节驱动电流的大小。即在A相定子组件111的驱动时段时,控制器23控制第一开关V1持续导通,通过PWM信号控制第二开关管V2间歇性导通。
本发明提供第六实施例的开关磁阻电机,其于第四实施例的开关磁阻电机的基础上进行描述:如图15所示,开关磁阻电机进一步包括与开关驱动电路21连接的位置传感器28,位置传感器28用于测量开关磁阻电机10中转子12与定子11之间的相对位置,以使得开关驱动电路21根据转子12与定子11之间的相对位置改变通电状态,即开关驱动电路21根据每一定子组件的最大电感和最小电感改变通电状态,以驱动开关磁阻电机工作。其中,位置传感器28包括磁编码器或者光编码器。
本发明提供一实施例的开关磁阻电机的电流的控制方法,本实施例的控制方法在第四实施例所揭示的开关磁阻电机的基础上进行描述。如图16所示,该控制方法包括:
S161:在驱动时段,通过控制器23同时控制第一开关管和第二开关管间歇性导通;或者控制第一开关管持续导通,并控制第二开关管间歇性导通,以调节绕组的驱动电流的大小;
S162:在续流时段,通过控制器23控制第一开关管持续关闭,并控制第二开关管间歇性导通,以调节绕组的续流电流的大小;
S163:根据电流总和i控制驱动电流和续流电流,以使电流总和i保持预设范围。
在步骤S161中,进一步通过控制器23控制至少三个定子组件所对应的驱动时段的相位差为2π/N,其中N为至少三个定子组件的数量。即A相定子组件111的驱动时段和B相定子组件112的驱动时段的相位差为2π/3,即电角度120°,B相定子组件112的驱动时段和C相定子组件113的驱动时段的相位差为电角度120°。
通过控制器23控制定子组件的续流时段与下一被驱动的定子组件的驱动时段的相位至少部分重叠,其中定子组件的续流时段与下一被驱动的定子组件的驱动时段的相位至少部分重叠为π/N。即A相定子组件111的续流时段与B相定子组件112的驱动时段的相位部分重叠为120°-180°,B相定子组件112的续流时段与C相定子组件113的驱动时段的相位部分重叠为240°-300°,如图12所示。
其中,在A相定子组件111的驱动时段时,通过控制器23以脉宽调制方式同时控制第一开关管V1和第二开关管V2导通或者关闭。即通过控制器23在A相绕组产生的电感最小时发送PWM信号至第一开关管V1和第二开关管V2;在第一开关管V1和第二开关管V2同时导通时,直流电源Us在A相定子组件111施加驱动电流;在第一开关管V1和第二开关管V2同时关闭时,直流电源Us停止在A相定子组件111施加驱动电流,能够避免驱动电流过大。
通过控制器23在A相绕组产生的电感最大时停止发送PWM信号至第一开关管V1,第一开关管V1关闭,A相定子组件111进入续流时段,进入步骤S162。
在步骤S162中,在A相定子组件111的续流时段时,通过控制器23控制直流电源Us停止工作,并且控制第一开关管V1持续关闭,并以脉宽调制方式控制第二开关管V2间歇性导通,以使A相绕组、第二开关V2和第二续流二极管D2形成回路,进而释放A相绕组上存储的能量,以调节A相绕组的续流电流的大小。
同时,通过控制器23控制B绕组的第一开关管V3和第二开关管V4导通或者关闭,以直流电源Us在B相定子组件112施加驱动电流,其中,通过步骤S161的控制方式控制B绕组的第一开关管V3和第二开关管V4,在此不再赘述。
在步骤S163中,通过开关驱动电路21从电流检测电路27获取电流总和i,并且根据电流总和i控制驱动电流和续流电流,以使电流总和i保持预设范围。其中控制驱动电流的方法可采用步骤S161,控制续流电流的方法可采用步骤S162。
本实施例的脉宽调制方式可以为方波脉宽调制或者正弦波脉宽调制。其中,上述实施例的PWM信号为方波脉宽调制。
在本发明中,A相绕组产生的电感最小,具体可为转子齿121与第一定子槽134完全对齐时;A相绕组产生的电感最大,具体可为转子齿121与第一定子齿131完全对齐时。
本实施例由于前一相在续流时段,导通相在驱动时段,即A相绕组在进入续流时段时,B相绕组在进入驱动时段;A相的续流电流和B相的驱动电流之和保持恒定,因此开关磁阻电机的电流波动小,即开关磁阻电机的电流总和波动小,进而力矩的波动小。由于前一相的续流电流较大,而导通相的驱动电流较小,即A相的续流电流较大,B相的驱动电流较小;因此导通相的绕组所产生的磁场强度弱,即B相绕组所产生的磁场强度弱,进而减小噪声。
本发明提供第一实施例的铁芯的制造方法,如图17所示,该制造方法用于制造上述实施例的开关磁阻电机的定子铁芯和/或转子铁芯,其具体包括以下步骤:
S171:提供铁硅铝材料;
其中,铁硅铝材料可以为铁硅铝合金磁粉,其可以由85%的铁、9%的硅以及6%的铝组成的合金粉末。
S172:利用铁硅铝材料压铸而成开关磁阻电机的定子铁芯和/或转子铁芯。
其中,将铁硅铝材料制成粉状,将粉状的铁硅铝材料进行压铸而成开关磁阻电机的定子铁芯和/或转子铁芯。即将粉状的铁硅铝材料进行压铸而成定子12的定子铁芯和/或者转子11的转子铁芯。
其中,开关磁阻电机包括定子12以及转子11,其中定子12沿轴向分段设置有至少三个定子组件,每一定子组件分别包括沿定子的周向周期性设置且由 定子槽彼此间隔的多个定子齿以及绕设于定子齿上的绕组,至少三个定子组件的定子齿沿定子的周向依次错开预定角度,每个定子组件中的绕组均为同相绕组,转子12包括沿转子的周向周期性设置且由转子槽122彼此间隔的多个转子齿121。
在将粉状的铁硅铝材料进行压铸而成定子12的定子铁芯181时,在定子铁芯181的侧面设置有凹槽182,如图18所示,并将绕组绕设在凹槽182内。以A相绕组为例进行说明,第一定子齿131的侧面设置有凹槽181,A相绕组绕设在该凹槽182内,以减少A相定子组件111所占用的空间。
本实施例利用铁硅铝材料压铸而成开关磁阻电机的定子铁芯和/或转子铁芯,由于铁硅铝材料中不含贵金属,因此铁硅铝材料的价格便宜,进而降低成本;此外,铁硅铝材料的磁性良好,能够提高定子铁芯的磁性。
更进一步,上述实施例所揭示的开关磁阻电机的铁芯的材料为铁硅铝材料,该铁芯由铁硅铝材料压铸而成。其中,首先将铁硅铝材料制成粉状,然后将粉状的铁硅铝材料进行压铸而成开关磁阻电机的铁芯。开关磁阻电机的铁芯可以包括定子12的定子铁芯和转子11的转子铁芯。
该实施例的铁硅铝材料可以为铁硅铝合金磁粉,其可以由85%的铁、9%的硅以及6%的铝组成的合金粉末,合金粉末通过压铸而成铁芯。
在开关磁阻电机的铁芯为定子12的定子铁芯时,如图18所示,定子铁芯181的侧面设置有凹槽182,绕组绕设在凹槽182内。以A相绕组为例进行说明,第一定子齿131的侧面设置有凹槽181,A相绕组绕设在该凹槽182内,以减少A相定子组件111所占用的空间。
由于铁硅铝材料中不含贵金属,因此铁硅铝材料的价格便宜,进而降低成本;此外,铁硅铝材料的磁性良好,能够提高定子铁芯的磁性。
本发明还提供一种车轮,该车轮采用开关磁阻电机驱动,而该开关磁阻电机为如前实施例中所述的开关磁阻电机。
优选地,该车轮可以包括轮毂式开关磁阻电机,即利用轮毂式开关磁阻电机驱动,该轮毂式开关磁阻电机为外转子内定子的电机结构。
进一步地,本发明还提供一种电动车,该电动车可以为电动汽车、电动摩托车或者电动自行车等。该电动车为纯电动或混合动力车,该电动车的车轮采用开关磁阻电机驱动,该开关磁阻电机也为如前实施例中所述的开关磁阻电机。优选的,该电动车的驱动轮可采用上述实施例中的车轮结构,即车轮包括轮毂式开关磁阻电机,利用轮毂式开关磁阻电机驱动车轮转动。
需要说明的是,本发明实施例提供的开关磁阻电机的应用场景不限于电动汽车,还可以作为船舶、大型机械等驱动用电机。
需要说明的是,以上各实施例均属于同一发明构思,各实施例的描述各有侧重,在个别实施例中描述未详尽之处,可参考其他实施例中的描述。
以上对本发明实施例所提供的开关磁阻电机及电动车和车轮进行了详细介绍,本文中应用了具体个例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的方法及其核心思想;同时,对于本领域的一般技术人员,依据本发明的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本发明的限制。

Claims (15)

  1. 一种开关磁阻电机,其特征在于,所述开关磁阻电机包括定子以及转子,其中所述定子沿轴向分段设置有至少三个定子组件,每一所述定子组件分别包括沿所述定子的周向周期性设置且由定子槽彼此间隔的多个定子齿以及绕设于所述定子齿上的绕组,所述至少三个定子组件的定子齿沿所述定子的周向依次错开预定角度,每个所述定子组件中的所述绕组均为同相绕组,所述转子包括沿所述转子的周向周期性设置且由转子槽彼此间隔的多个转子齿,所述开关磁阻电机的铁芯的材料为铁硅铝材料,所述铁硅铝材料压铸而成所述铁芯。
  2. 根据权利要求1所述的开关磁阻电机,其特征在于,所述开关磁阻电机的铁芯包括所述定子的定子铁芯,所述定子铁芯的侧面设置有凹槽,所述绕组绕设在所述凹槽内。
  3. 根据权利要求1所述的开关磁阻电机,其特征在于,所述铁硅铝材料包括85%的铁、9%的硅以及6%的铝的合金粉末。
  4. 根据权利要求1所述的开关磁阻电机,其特征在于,所述至少三个定子组件的定子齿的数量和宽度相同,所述预定角度为T1/N,其中所述T1为所述定子齿的角度周期,所述N为所述至少三个定子组件的数量。
  5. 根据权利要求1所述的开关磁阻电机,其特征在于,所述定子齿的数量为奇数。
  6. 根据权利要求1所述的开关磁阻电机,其特征在于,所述转子齿的数量与所述定子齿的数量相同,且所述转子齿的宽度小于所述定子槽的宽度。
  7. 根据权利要求6所述的开关磁阻电机,其特征在于,所述定子槽与所述定子齿的宽度比为1∶0.95-0.85,所述定子齿与所述转子齿的宽度比为1∶1.05-0.95。
  8. 根据权利要求1所述的开关磁阻电机,其特征在于,所述开关磁阻电机进一步包括开关驱动电路,所述开关驱动电路连接直流电源和所述至少三个定子组件的所述绕组上,以周期性控制所述直流电源依次在所述至少三个定子组件所对应的驱动时段向所述绕组上施加所述驱动电流,其中所述至少三个定子组件的所述驱动时段的相位彼此错开。
  9. 根据权利要求8所述的开关磁阻电机,其特征在于,所述开关磁阻电机进一步包括电流检测电路,其中所述电流检测电路用于检测流经所述至少三个 定子组件的所述绕组的电流总和,所述开关驱动电路根据所述电流检测电路所检测的所述电流总和分别对各所述绕组的所述驱动电流和所述续流电流进行控制,以使得所述电流总和保持预设范围。
  10. 一种铁芯的制造方法,其特征在于,所述制造方法用于制造开关磁阻电机的定子铁芯和/或转子铁芯,所述制造方法包括:
    提供铁硅铝材料;
    利用所述铁硅铝材料压铸而成所述开关磁阻电机的定子铁芯和/或转子铁芯。
  11. 根据权利要求10所述的制造方法,其特征在于,所述铁硅铝材料包括85%的铁、9%的硅以及6%的铝的合金粉末。
  12. 根据权利要求10所述的制造方法,其特征在于,所述开关磁阻电机包括定子以及转子,其中所述定子沿轴向分段设置有至少三个定子组件,每一所述定子组件分别包括沿所述定子的周向周期性设置且由定子槽彼此间隔的多个定子齿以及绕设于所述定子齿上的绕组,所述至少三个定子组件的定子齿沿所述定子的周向依次错开预定角度,每个所述定子组件中的所述绕组均为同相绕组,所述转子包括沿所述转子的周向周期性设置且由转子槽彼此间隔的多个转子齿。
  13. 根据权利要求12所述的制造方法,其特征在于,利用所述铁硅铝材料压铸而成所述开关磁阻电机的定子铁芯包括:
    在所述定子铁芯的侧面设置有凹槽,并将所述绕组绕设在所述凹槽内。
  14. 一种车轮,其特征在于,所述车轮采用轮毂电机驱动,所述轮毂电机为权利要求1-9任一项所述的开关磁阻电机。
  15. 一种电动车,其特征在于,所述电动车为纯电动或混合动力车,所述电动车包括如权利要求1-9任一项所述的开关磁阻电机。
PCT/CN2017/103418 2017-07-21 2017-09-26 电动车、车轮、开关磁阻电机及其铁芯的制造方法 WO2019015094A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CNPCT/CN2017/093928 2017-07-21
CN2017093928 2017-07-21

Publications (1)

Publication Number Publication Date
WO2019015094A1 true WO2019015094A1 (zh) 2019-01-24

Family

ID=62497930

Family Applications (9)

Application Number Title Priority Date Filing Date
PCT/CN2017/100281 WO2019015032A1 (zh) 2017-07-21 2017-09-01 电动车、车轮及其开关磁阻电机
PCT/CN2017/100279 WO2019015030A1 (zh) 2017-07-21 2017-09-01 电动车、车轮及其开关磁阻电机
PCT/CN2017/100280 WO2019015031A1 (zh) 2017-07-21 2017-09-01 电动车、车轮、开关磁阻电机及其电流的控制方法
PCT/CN2017/101004 WO2019015052A1 (zh) 2017-07-21 2017-09-08 电动车、车轮及其开关磁阻电机
PCT/CN2017/101781 WO2019015064A1 (zh) 2017-07-21 2017-09-14 电动车、车轮及其开关磁阻电机
PCT/CN2017/101780 WO2019015063A1 (zh) 2017-07-21 2017-09-14 电动车、车轮、开关磁阻电机及其铁芯的制造方法
PCT/CN2017/101782 WO2019015065A1 (zh) 2017-07-21 2017-09-14 电动车、车轮、开关磁阻电机及其铁芯的制造方法
PCT/CN2017/103418 WO2019015094A1 (zh) 2017-07-21 2017-09-26 电动车、车轮、开关磁阻电机及其铁芯的制造方法
PCT/CN2017/103409 WO2019015093A1 (zh) 2017-07-21 2017-09-26 电动车、车轮及其开关磁阻电机

Family Applications Before (7)

Application Number Title Priority Date Filing Date
PCT/CN2017/100281 WO2019015032A1 (zh) 2017-07-21 2017-09-01 电动车、车轮及其开关磁阻电机
PCT/CN2017/100279 WO2019015030A1 (zh) 2017-07-21 2017-09-01 电动车、车轮及其开关磁阻电机
PCT/CN2017/100280 WO2019015031A1 (zh) 2017-07-21 2017-09-01 电动车、车轮、开关磁阻电机及其电流的控制方法
PCT/CN2017/101004 WO2019015052A1 (zh) 2017-07-21 2017-09-08 电动车、车轮及其开关磁阻电机
PCT/CN2017/101781 WO2019015064A1 (zh) 2017-07-21 2017-09-14 电动车、车轮及其开关磁阻电机
PCT/CN2017/101780 WO2019015063A1 (zh) 2017-07-21 2017-09-14 电动车、车轮、开关磁阻电机及其铁芯的制造方法
PCT/CN2017/101782 WO2019015065A1 (zh) 2017-07-21 2017-09-14 电动车、车轮、开关磁阻电机及其铁芯的制造方法

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/103409 WO2019015093A1 (zh) 2017-07-21 2017-09-26 电动车、车轮及其开关磁阻电机

Country Status (2)

Country Link
CN (19) CN109286290A (zh)
WO (9) WO2019015032A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109286290A (zh) * 2017-07-21 2019-01-29 深圳市配天电机技术有限公司 电动车、车轮及其开关磁阻电机
CN110341503B (zh) * 2019-06-03 2020-09-01 中国矿业大学 一种集成化插电式混合动力汽车开关磁阻电机驱动***

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090021192A1 (en) * 2005-04-08 2009-01-22 Srinivas Kudligi Switched Reluctance Machine And Method Of Operation Thereof
CN101416372A (zh) * 2006-04-04 2009-04-22 丰田自动车株式会社 电动机及用于该电动机的电力供应控制装置
CN101989478A (zh) * 2009-08-07 2011-03-23 石宗培 一类铁磁性材料和顺磁性材料在制造电气设备上的应用
CN103339830A (zh) * 2011-04-02 2013-10-02 日本电产株式会社 转子单元、旋转电机和制造转子单元的方法
US20140210285A1 (en) * 2013-01-25 2014-07-31 Everette Energy, LLC Single phase switched reluctance machine with short flux path
US9692284B2 (en) * 2013-12-13 2017-06-27 Arm Limited Electric motor with plural stator components

Family Cites Families (55)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN85100560A (zh) * 1985-04-01 1986-08-27 浙江大学 外转子水冷凸极同步电机
CN1063782A (zh) * 1991-01-31 1992-08-19 株式会社精工技研 并列设置多个定子的磁阻式电机
FR2744577B1 (fr) * 1996-02-06 1998-04-24 Moulinex Sa Procede pour alimenter un moteur electrique a reluctance variable a commutation electronique, et circuit d'alimentation pour sa mise en oeuvre
KR200143530Y1 (ko) * 1996-06-28 1999-06-15 윤종용 스위치드 릴럭턴스 모터의 구동 전류 제어 장치
KR20000024769A (ko) * 1998-10-01 2000-05-06 윤종용 스위치드 릴럭턴스 모터 구동장치
US6479959B2 (en) * 1999-12-08 2002-11-12 Samsung Kwangju Electronics Co., Ltd. Self-excited reluctance motor
JP2004080983A (ja) * 2002-08-21 2004-03-11 Yoshimitsu Okawa リング状固定子巻線を有するくま取りコイル形単相誘導電動機
CN2671210Y (zh) * 2003-11-22 2005-01-12 李平原 具有螺旋气流槽的电机转子铁芯
CN1302597C (zh) * 2005-01-07 2007-02-28 南京航空航天大学 双定子开关磁阻电机
JP2006304546A (ja) * 2005-04-22 2006-11-02 Toshiba Corp 永久磁石式リラクタンス型回転電機
JP4935115B2 (ja) * 2006-03-03 2012-05-23 日産自動車株式会社 スイッチト・リラクタンス・モータの制御装置及びその制御方法
KR101154994B1 (ko) * 2006-06-26 2012-06-14 엘지전자 주식회사 스테이터 코어
CN201038837Y (zh) * 2007-05-18 2008-03-19 麦德添 漆包铝线绕制的工业缝纫机电机结构
CN100525009C (zh) * 2007-09-21 2009-08-05 东南大学 双通道容错式磁通切换永磁电机及其控制方法
CN100596346C (zh) * 2007-10-19 2010-03-31 河北工业大学 单电流传感器的开关磁阻电机控制装置及其实现方法
CN101227106A (zh) * 2008-01-22 2008-07-23 宁波北斗科技有限公司 一种直列式电机铁芯及其制造方法
JP5022278B2 (ja) * 2008-03-12 2012-09-12 株式会社日立製作所 回転電機用の固定子鉄心およびその製造方法
JP2010141954A (ja) * 2008-12-09 2010-06-24 Daihatsu Motor Co Ltd モータ
DE102009028036A1 (de) * 2009-07-27 2011-02-03 Robert Bosch Gmbh Elektromotor mit Permanentmagnet-Erregung
EP2481142B1 (en) * 2009-09-21 2016-04-20 Höganäs AB Stator device and electrical machine
CN201616800U (zh) * 2009-11-17 2010-10-27 赵东 一种一体化开关磁阻电机
CN101741174A (zh) * 2009-12-24 2010-06-16 哈尔滨工业大学 多输出合成型风力发电装置
CN202042954U (zh) * 2010-10-21 2011-11-16 泰信电机(苏州)有限公司 电机定子
CN202068244U (zh) * 2011-03-11 2011-12-07 浙江博望科技发展有限公司 铁氧体三段式三相永磁电机
CN102214979A (zh) * 2011-05-10 2011-10-12 戴珊珊 一种转矩增强型开关磁阻电动机
CN102280968A (zh) * 2011-08-05 2011-12-14 国电联合动力技术有限公司 大型直驱盘式开关磁阻风力发电机及其***
CN102277526A (zh) * 2011-08-20 2011-12-14 成都晶品科技有限责任公司 一种铁硅铝合金的熔炼、浇铸工艺及***
CN202550853U (zh) * 2012-03-22 2012-11-21 包头钢铁(集团)有限责任公司 采用同心式补偿绕组的电铲直流电机
US20130342040A1 (en) * 2012-06-21 2013-12-26 Ev Motor-Systems Co., Ltd. Switched Reluctance Motor and Switched Reluctance Motor Drive System
CN104584401A (zh) * 2012-06-21 2015-04-29 霍加纳斯股份有限公司 新装置
GB2502385B (en) * 2012-11-15 2014-07-09 Emiliane Trancerie Spa Method and apparatus for producing cores for electrical machines
CN102983694B (zh) * 2012-12-27 2014-11-05 上海交通大学 分段式开关磁阻电机
GB2511082B (en) * 2013-02-22 2016-06-22 Imra Europe S A S Reluctance machines
CN104300752B (zh) * 2014-09-29 2018-04-17 王国仁 多级内转子开关磁阻电机
CN104767430B (zh) * 2015-03-20 2017-10-27 浙江大学 一种基于母线电流采样的开关磁阻电机***及其绕组电流获取方法
CN204810014U (zh) * 2015-07-09 2015-11-25 丛伟滋 一种节能铸铜杆或铸铜管电机转子
CN106559016B (zh) * 2015-09-24 2019-03-12 珠海格力节能环保制冷技术研究中心有限公司 一种开关磁阻电机的电压斩波控制方法和装置
CN205622456U (zh) * 2016-01-17 2016-10-05 顾志强 一种带调角凸齿的外铁芯冲片
CN105429416A (zh) * 2016-01-17 2016-03-23 顾志强 一种带调角凸齿的外铁芯冲片
CN105490402A (zh) * 2016-01-17 2016-04-13 顾志强 一种带调角凸齿的内铁芯冲片
CN105553212A (zh) * 2016-01-22 2016-05-04 顾志强 一种多级轴向布相等极结构开关磁阻电机
CN205304560U (zh) * 2016-01-22 2016-06-08 顾志强 一种多级轴向布相等极结构开关磁阻电机
CN105656267B (zh) * 2016-03-16 2017-11-28 合肥学院 双极性横向磁通永磁同步电机
CN205622458U (zh) * 2016-04-04 2016-10-05 顾志强 一种轴向布相内定子
CN206149116U (zh) * 2016-04-08 2017-05-03 深圳市配天电机技术有限公司 电动车、车轮及其开关磁阻电机、开关磁阻电机***
CN105915152A (zh) * 2016-04-22 2016-08-31 江苏新安电器有限公司 一种开关磁阻电机调速***及转矩脉动抑制方法
CN106160376A (zh) * 2016-07-04 2016-11-23 韦翔 自平衡开关磁阻电机
CN106230212B (zh) * 2016-08-22 2018-09-25 北京理工大学 一种单相多极高频铝绕组电机
CN206060375U (zh) * 2016-10-12 2017-03-29 哈尔滨理工大学 环形绕组感应电动机
CN106655556A (zh) * 2016-11-07 2017-05-10 杨明 周向绕组的功率电机及新能源电动车辆
CN106655666B (zh) * 2016-11-25 2019-02-26 南京邮电大学 一种锥形磁悬浮双通道开关磁阻电机及控制方法
CN106849585B (zh) * 2016-12-30 2019-01-18 南京理工大学 横向磁通开关磁阻电机及其控制方法
CN106707167B (zh) * 2017-01-16 2019-03-29 浙江大学 一种低成本开关磁阻电机绕组电流检测***及其方法
CN106953457B (zh) * 2017-04-11 2018-11-30 南京埃克锐特机电科技有限公司 一种五自由度磁悬浮开关磁阻电机***及其控制方法
CN109286290A (zh) * 2017-07-21 2019-01-29 深圳市配天电机技术有限公司 电动车、车轮及其开关磁阻电机

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090021192A1 (en) * 2005-04-08 2009-01-22 Srinivas Kudligi Switched Reluctance Machine And Method Of Operation Thereof
CN101416372A (zh) * 2006-04-04 2009-04-22 丰田自动车株式会社 电动机及用于该电动机的电力供应控制装置
CN101989478A (zh) * 2009-08-07 2011-03-23 石宗培 一类铁磁性材料和顺磁性材料在制造电气设备上的应用
CN103339830A (zh) * 2011-04-02 2013-10-02 日本电产株式会社 转子单元、旋转电机和制造转子单元的方法
US20140210285A1 (en) * 2013-01-25 2014-07-31 Everette Energy, LLC Single phase switched reluctance machine with short flux path
US9692284B2 (en) * 2013-12-13 2017-06-27 Arm Limited Electric motor with plural stator components

Also Published As

Publication number Publication date
WO2019015031A1 (zh) 2019-01-24
CN109286252A (zh) 2019-01-29
CN109286251A (zh) 2019-01-29
WO2019015093A1 (zh) 2019-01-24
WO2019015032A1 (zh) 2019-01-24
CN207652144U (zh) 2018-07-24
CN207652276U (zh) 2018-07-24
CN109286294A (zh) 2019-01-29
CN109286350A (zh) 2019-01-29
CN207504726U (zh) 2018-06-15
CN207652274U (zh) 2018-07-24
WO2019015030A1 (zh) 2019-01-24
CN109286291A (zh) 2019-01-29
CN109286350B (zh) 2021-06-18
WO2019015065A1 (zh) 2019-01-24
WO2019015052A1 (zh) 2019-01-24
CN207652278U (zh) 2018-07-24
CN207652142U (zh) 2018-07-24
CN109286290A (zh) 2019-01-29
CN207652277U (zh) 2018-07-24
CN109286292A (zh) 2019-01-29
CN109286293A (zh) 2019-01-29
CN109286289A (zh) 2019-01-29
CN207504745U (zh) 2018-06-15
CN207504744U (zh) 2018-06-15
WO2019015064A1 (zh) 2019-01-24
CN207652275U (zh) 2018-07-24
WO2019015063A1 (zh) 2019-01-24

Similar Documents

Publication Publication Date Title
US20130127280A1 (en) Electric rotating machine and electric vehicle using the same
CN101371425B (zh) 方波三相无刷永磁直流电动机
CN107171520B (zh) 轴向永磁辅助磁阻型复合转子高速电机及其控制方法
CN204258453U (zh) 一种定子及其相应的无刷直流电机和三相开关磁阻电机
US11283384B2 (en) Motor system provided with both motor having multiple-phase stator windings and control device controlling the motor
JP2012147653A (ja) スイッチトリラクタンスモータ
WO2019015094A1 (zh) 电动车、车轮、开关磁阻电机及其铁芯的制造方法
CN205178807U (zh) 一种短端部短磁路分块式开关磁阻电机及其控制电路与***
CN108712045B (zh) 一种同步开关磁阻电机
JPWO2014188757A1 (ja) 回転電機の回転子、回転電機、電動駆動システム、及び電動車両
CN107612258B (zh) 一种永磁同步电机
CN2770217Y (zh) 一种新型永磁无刷直流电机
WO2011029235A1 (zh) 大直径型方波三相无刷直流电机及其装配方法
WO2008089591A1 (fr) Système de commande d'un moteur à courant continu sans balais et son procédé de commande
JP2003245000A (ja) 発電機および発電装置
JP2014064339A (ja) 励磁式回転電機の制御装置
CN102868276A (zh) 一种v型径向磁场式定子斜槽混合励磁发电机
WO2011029234A1 (zh) 大直径型方波三相永磁直流电机及其装配方法
WO2011029233A1 (zh) 大直径型方波无刷永磁直流电机及其装配方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17918326

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17918326

Country of ref document: EP

Kind code of ref document: A1