WO2019014925A1 - 限飞区规划方法、飞行控制方法及智能终端、控制装置 - Google Patents

限飞区规划方法、飞行控制方法及智能终端、控制装置 Download PDF

Info

Publication number
WO2019014925A1
WO2019014925A1 PCT/CN2017/093872 CN2017093872W WO2019014925A1 WO 2019014925 A1 WO2019014925 A1 WO 2019014925A1 CN 2017093872 W CN2017093872 W CN 2017093872W WO 2019014925 A1 WO2019014925 A1 WO 2019014925A1
Authority
WO
WIPO (PCT)
Prior art keywords
grid
area
map
mesh
flight
Prior art date
Application number
PCT/CN2017/093872
Other languages
English (en)
French (fr)
Inventor
邵建伙
王庶
朱锐意
Original Assignee
深圳市大疆创新科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市大疆创新科技有限公司 filed Critical 深圳市大疆创新科技有限公司
Priority to CN202210181964.5A priority Critical patent/CN114518769A/zh
Priority to CN201780004779.6A priority patent/CN108475067A/zh
Priority to PCT/CN2017/093872 priority patent/WO2019014925A1/zh
Publication of WO2019014925A1 publication Critical patent/WO2019014925A1/zh
Priority to US16/745,772 priority patent/US20200159401A1/en

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/10Simultaneous control of position or course in three dimensions
    • G05D1/101Simultaneous control of position or course in three dimensions specially adapted for aircraft
    • G05D1/106Change initiated in response to external conditions, e.g. avoidance of elevated terrain or of no-fly zones
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/10Simultaneous control of position or course in three dimensions
    • G05D1/101Simultaneous control of position or course in three dimensions specially adapted for aircraft
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/048Interaction techniques based on graphical user interfaces [GUI]
    • G06F3/0484Interaction techniques based on graphical user interfaces [GUI] for the control of specific functions or operations, e.g. selecting or manipulating an object, an image or a displayed text element, setting a parameter value or selecting a range
    • G06F3/04847Interaction techniques to control parameter settings, e.g. interaction with sliders or dials

Definitions

  • the invention relates to the technical field of flight control, in particular to a method for processing a flight limited area, a flight control method, an intelligent terminal and a control device.
  • UAVs Unmanned Aerial Vehicles
  • UAVs Unmanned Aerial Vehicles
  • UAVs Unmanned Aerial Vehicles
  • the restricted area is often planned for specific areas.
  • the planned flight-limited zone may restrict or completely prohibit aerial equipment from flying in the area indicated in the restricted zone. How to determine the information of the restricted flight area intuitively and quickly becomes a hot issue.
  • the embodiment of the invention provides a flight limited area planning and processing method, a flight control method, an intelligent terminal and a control device, which can determine the limited flight zone intuitively and quickly for subsequent flight control.
  • an embodiment of the present invention provides a method for processing a flight limited area, including: processing a map according to a preset meshing strategy; and performing marking processing on the determined mesh according to the input information;
  • the map area associated with the processed grid is planned to obtain a restricted area. Areas outside the restricted area are considered to be flightable areas.
  • an embodiment of the present invention further provides a flight control method, including:
  • the number set includes a plurality of mesh numbers, each mesh number is used to uniquely indicate a mesh, and each mesh is associated with a fixed map area in the map;
  • the aircraft is controlled to fly based on at least a portion of the determined flightable area.
  • Non-flyable areas can be considered as restricted areas.
  • an embodiment of the present invention provides a flight control method, including:
  • Obtain a numbered collection of the restricted area which includes multiple grid numbers, each of which The grid number is used to uniquely indicate a grid, and each grid is associated with a fixed map area in the map;
  • the drone is marked on the displayed map based on the current location information of the drone.
  • an embodiment of the present invention further provides an intelligent terminal, including:
  • the storage device is configured to store a running instruction, and when the processor executes the running instruction, the smart terminal is configured to:
  • the map is processed according to a preset gridding strategy
  • the restricted flight area is planned.
  • the embodiment of the present invention further provides a flight control device, including:
  • the storage device is configured to store a running instruction, and when the processor executes the running instruction, the flight control device is configured to:
  • the number set includes a plurality of mesh numbers, each mesh number is used to uniquely indicate a mesh, and each mesh is associated with a fixed map area in the map;
  • the aircraft is controlled to fly based on at least a portion of the determined flightable area.
  • an embodiment of the present invention provides another flight control apparatus, including:
  • the storage device is configured to store a running instruction, and when the processor executes the running instruction, the flight control device is configured to:
  • the number set includes a plurality of mesh numbers, each mesh number is used to uniquely indicate a mesh, and each mesh is associated with a fixed map area in the map;
  • the limited area is each The map area associated with the grid indicated by the grid number;
  • the drone is marked on the displayed map based on the current location information of the drone.
  • an embodiment of the present invention provides a computer storage medium, where the computer storage medium stores a running instruction, where the running instruction is used to implement the method according to the first aspect, or the second aspect The method described or the method described in the third aspect.
  • FIG. 1 is a schematic diagram of an interface after performing grid processing on a displayed map in an embodiment of the present invention
  • FIG. 2 is a schematic view showing a meshing effect presented after the scale is reduced on the basis of FIG. 1;
  • FIG. 3 is a schematic view showing a meshing effect presented after the scale is enlarged on the basis of FIG. 1;
  • FIG. 4a is a schematic diagram of a gridding process on a map according to an embodiment of the present invention.
  • FIG. 4b is a schematic diagram of another embodiment of the present invention after meshing processing on a map
  • 4c is a schematic diagram of another embodiment of the present invention after performing meshing processing on a map
  • FIG. 5 is a schematic flowchart diagram of a method for processing a flight limited area according to an embodiment of the present invention
  • FIG. 6 is a schematic flow chart of another method for planning a flight limited area according to an embodiment of the present invention.
  • FIG. 7 is a schematic diagram of a base mesh and a sub-grid in an embodiment of the present invention.
  • FIG. 8 is a schematic flow chart of a flight control method according to an embodiment of the present invention.
  • FIG. 9 is a schematic flow chart of another flight control method according to an embodiment of the present invention.
  • FIG. 10 is a schematic structural diagram of an intelligent terminal according to an embodiment of the present invention.
  • FIG. 11 is a schematic structural view of a flight control device according to an embodiment of the present invention.
  • Figure 12 is a schematic structural view of an aircraft according to an embodiment of the present invention.
  • Figure 13 is a block diagram showing the structure of another flight control device according to an embodiment of the present invention.
  • the networked airspace control mainly divides the entire area displayed on the user interface into a grid, and associates the information of the relevant map area of each grid in advance, and for each network.
  • the grid sets a different number, which is the grid number of the corresponding grid, and a grid number is used to uniquely represent a grid.
  • the grid can be directly clicked and selected, and the limited flight area can be determined by marking the grid selected by clicking and recording the grid number.
  • the grid corresponding to the area where the sensitive building is located can be directly selected, and a new limited flying area can be added. As shown in FIG.
  • FIG. 1 it is a schematic diagram of an interface after performing grid processing on a displayed map in the embodiment of the present invention.
  • the overlay is based on the originally displayed map.
  • a grid of the corresponding size is displayed.
  • the grid number can be a pure number, for example, the grid is numbered in the order of 1, 2, 3, ..., n.
  • the grid may be assigned a practical meaning, and may be numbered using an abbreviation of an administrative division, such as CN-GD-SZ-XXX (China-Guangdong-Shenzhen-XXX), where XXX may be a number. In one embodiment, it can also be carried out by international telephone number + other numbers: 0860755XXX (Shenzhen, China).
  • This numbering method makes the grid correspond to the actual administrative area, which is convenient for visually determining the corresponding grid number. The administrative area to which the grid belongs. It is also convenient to search for the corresponding grid number.
  • the number may be further combined with the scale displayed on the map, for example, on the map corresponding to the target geographical location including "Shenzhen" according to the number, corresponding to the geographical location of the target
  • the grid on the map based on the numbering based on numbers, for the case where the scaling scale is 1:10000000, the prefix 1100000 for representing the scaling scale is added, that is, the grid number of the first grid is 11000001.
  • the grid number of the second grid is 11000002.
  • a base grid size can be set, for example, a base grid corresponding to a geographic area of 1 km * 1 km.
  • the size is 1cm*1cm
  • the grid with the basic mesh size is the base mesh.
  • the scale can be dynamically scaled with the map, and the size of the base mesh can be adjusted to obtain a new grid size grid.
  • the map is overlaid with a grid showing the new grid size.
  • the map when the map is displayed on a reduced scale, the map will display a larger area, and a larger grid can be used to render the grid effect, for example, at a scale of 1:100,000. Shrink to 1:200000, based on the original base mesh size 1cm*1cm The size enlargement process is performed, and the obtained mesh with a target mesh size of 2 cm*2 cm is obtained.
  • FIG. 2 it is a schematic diagram of the meshing effect presented after the scale is reduced on the basis of FIG.
  • the map when the map is displayed on an enlarged scale, the map will display more details of the local area, and a smaller size grid can be used to render the mesh effect, for example, at a scale of 1:
  • a smaller size grid can be used to render the mesh effect, for example, at a scale of 1:
  • the size is reduced based on the original basic mesh size of 1cm*1cm, and the obtained target mesh size is 0.5cm*0.5cm.
  • Figure 3 which is in Figure 1.
  • the limited flight area can be planned by clicking the grid, and the map area corresponding to the selected grid is planned to be the limited flight area.
  • the grid 101, the grid 102, the grid 103, and the grid 104, which are marked with a specified color, are corresponding to the map area, and the grid is indicated by a slanted line.
  • FIG. 1 , FIG. 2 and FIG. 3 are only exemplary illustrations for comparing grids of different scaling ratios according to an embodiment of the present invention. In actual operation, after the scaling scale, based on the basic grid size, The grid is accurately calculated and finally rendered to the corresponding size, and the display of the grid can also be other display modes.
  • each grid in the flight-limit zone is set with a corresponding attribute identifier, and the attribute identifier of the grid is mainly used to indicate whether the grid is a grid of the limited-fly zone.
  • the subgrid under each of the underlying grids inherits the attribute identifier of the underlying grid, and the subgrid below the subgrid inherits the attribute identifier of the sublayer of the previous layer.
  • the attribute identifier can be set separately. For example, when the attribute identifier indicates that a sub-grid is a fly-limited area grid, if the sub-network is clicked again, the sub-network is selected.
  • the sub-grid attribute identifier can be set separately, and the attribute identifier adjustment of the sub-grid is modified to indicate that the sub-grid is a non-limited flight area grid.
  • the attribute identifier is saved as the attribute information of the grid.
  • the attribute information of the grid includes the area content information included in the map area corresponding to the grid, for example, the area content information is an iconic building name, indicating that the attribute information is saved.
  • the map area corresponding to the grid includes landmark buildings.
  • the grid on the final display interface is a grid overlaid on the map at the same height (or height range), based on The limited flight zone of the grid plan also refers to the height (or height range) The limited flight area on the inner side, for example, the interface shown in FIG.
  • the restricted area formed by the map area refers to the limited flight area within 1 km of the high altitude position.
  • the user can enter a new height or height range on the user interface displaying the map, and then perform grid processing on the map again based on the new height or height range. In order to allow the user to set a limited flight zone within a new height or height range on the new interface including the grid and the map.
  • the limited flight area can be determined based on the grid number.
  • only a set of numbers consisting of grid numbers identifying the attributes of the restricted area grid may be generated and sent to the drone, and when the drone is flying, based on the number set
  • the grid number determines the map area corresponding to the grid indicated by the grid number, and then determines the flight limited area or the area that can fly.
  • the number set may also be sent to another terminal, and the other terminal determines the map area corresponding to the grid indicated by the grid number according to the grid number in the number set, and further determines the limited flight.
  • the other terminal determines the map area corresponding to the grid indicated by the grid number according to the grid number in the number set, and further determines the limited flight.
  • the grid shape settings can include a variety of.
  • the meshing of the spatial domain may be based on geographic ground information, the meshed regions of which may be arbitrary polygons, and/or circular, and/or irregular graphics.
  • FIG. 4a it is a schematic diagram of a meshing process on a map according to an embodiment of the present invention, which shows that a grid display interface can be presented by a hexagonal manner, as shown in FIG. 4b. Shown is another schematic diagram of the embodiment of the present invention after gridding on a map, which shows that the grid display interface can be presented by a triangle, as shown in FIG. 4c. It is a schematic diagram of another embodiment of the present invention after meshing processing on a map, which shows that a grid display interface with a grid can be presented by an irregular shape.
  • the retrieval time is different for the technical means needed to retrieve different grids.
  • the selected mesh will be displayed as part of the fly-limited zone and will be grayed out.
  • the map-based scale also dynamically scales the grid. Select a standard mesh size as the base mesh to dynamically display the mesh effect at different scales. After zooming the map, the mesh will also be displayed dynamically, but the base mesh may not be displayed.
  • the subgrid can inherit the attribute ID of the underlying grid. After zooming in on the scale of the map and rendering the subgrid that inherits the underlying grid, the attribute identifier of the subgrid is consistent with the underlying grid by default. The subgrid under the subgrid inherits the attribute identifier of the subnet. . When you need to set properties separately for a sub-grid or even a lower-level sub-grid, you can also perform a user's click selection operation to operate on a grid or sub-grid separately.
  • the embodiment of the invention can conveniently set the limit flight area on the displayed map by means of the grid, so that the setting of the fly-limited area is intuitive and easy to operate, and the set fly-limited area can better avoid unnecessary area setting.
  • the aircraft user can be controlled to control the flight of the aircraft while ensuring the restricted flight zone.
  • FIG. 5 is a schematic flowchart of a method for processing a flight-limited area according to an embodiment of the present invention.
  • the method in the embodiment of the present invention may be implemented by an intelligent terminal, which may be a smart phone or a tablet.
  • a terminal with a display such as a personal computer, and the smart terminal can also be a dedicated control device with a display.
  • the method of the embodiment of the invention comprises the following steps.
  • the map is processed according to a preset gridding strategy.
  • the preset meshing strategy mainly includes: processing instructions on the size and shape of the mesh when performing meshing processing, and may also include processing instructions on the grid under parameters such as height, scaling scale and the like.
  • the map can be displayed on the user interface, on which the user can perform zoom display processing and position drag processing on the map through touch screen operations.
  • processing the map based on the meshing strategy includes displaying the grid overlays of polygons of a specified shape and size on the map, each grid corresponding to a fixed map area on the map.
  • zooming the map you can adjust the size of the grid.
  • the resized grid is a new grid, and the new grid will uniquely correspond to a new fixed map area.
  • the input information may be a click selection process performed on the grid displayed after the mesh processing in S501, for example, by clicking a touch screen of a touch object such as a finger, clicking on a grid displayed on the user interface.
  • the grid number of the selected mesh It can also be the grid number of a grid directly input by the user, based on the grid number. You can uniquely identify a grid and then tag the confirmed grid.
  • Marking the confirmed mesh includes: performing color processing on the confirmed mesh on the displayed user interface, filling the mesh according to a specified color; or setting the property identifier of the mesh in the background
  • attribute identifier used to indicate that the grid is a grid of the fly-limited area of course, other processing may be included, and the marking processing of the determined grid is mainly used to determine the grid as a limited flight area.
  • the restricted flight area is planned. All the marked grids are determined as the fly-limited area grid, and the area where the fly-limited area is located can be displayed correspondingly on the user interface with the specified fill color. Further, the grid number of each markedly processed grid can be recorded, and the limited flight area can be determined based on the grid number.
  • a number set consisting of the mesh numbers of the marked processed meshes may be transmitted to the aircraft, and the aircraft determines the flightable area and the restricted flight area according to the respective mesh numbers in the number set, so as to facilitate flight control. .
  • the embodiment of the invention can conveniently set the limit flight area on the displayed map by means of the grid, so that the setting of the fly-limited area is intuitive and easy to operate, and the set fly-limited area can better avoid setting unnecessary areas to
  • the flight-limited zone can facilitate the aircraft user to control the flight of the aircraft while ensuring the flight-limited zone.
  • FIG. 6 it is a schematic flowchart of another method for planning a flight-limited area according to an embodiment of the present invention.
  • the method of the embodiment of the present invention may be implemented by an intelligent terminal, which may be a smart phone or a tablet.
  • a terminal with a display such as a computer or a personal computer, and the smart terminal can also be a dedicated control device with a display.
  • the method of the embodiment of the invention comprises the following steps.
  • S601 Display a map on the user interface.
  • the user interface is mainly used for displaying a map and receiving user operations of the user, such as a zooming operation on the map on the user interface, an enlargement operation, and the like. It is also used to display the grid and receive user clicks on the grid.
  • S602 Perform meshing processing on the displayed map according to a preset gridding policy, wherein each grid is associated with a fixed map area in the map. After the meshing process, the corresponding grid is displayed on the user interface. Further, for each grid, a grid number is set, and each grid number is used to uniquely indicate a grid; the grid number of each grid and the map area associated with the grid are stored in association. The grid number and the map area associated with the grid can be sent to other devices, such as aircraft, to facilitate subsequent aircraft to determine the restricted zone and the flightable area based on the grid number and the map area associated with the grid.
  • the gridding process may be further combined with the map area and the airspace height, and the corresponding grid number may be set.
  • the same fixed map area in the map has different associations at different heights.
  • the grid, and the grid numbers of the different grids associated with the fixed map area are not the same.
  • the different heights can be said to be within a different height range.
  • the 602 may specifically include: performing gridding on the displayed map according to a grid size indicated in a preset gridding policy.
  • a grid size indicated in a preset gridding policy.
  • the grid size can be preset. You can set a base mesh size first, then size or reduce the size based on the base mesh size to get the mesh size of the new mesh.
  • the dimensions of the different grids correspond to different map display scales, and a grid size can be configured for each height and/or scale.
  • the 602 may specifically include: performing gridding on the displayed map according to the grid size and the grid shape indicated in the preset gridding strategy. That is to say, in addition to indicating the corresponding mesh size as described above, the specific shape of the mesh may also be configured in the meshing strategy, for example, may be a square, a rectangle, various polygons, or even a circle. And irregular polygons. Based on the mesh size and mesh shape indicated by the meshing strategy, all the map areas of the map need to be covered in the grid during the meshing process, so that the user can set each map area required. Flight limited area.
  • the 602 may specifically include: determining a zoom scale when the map is displayed on the user interface; determining a grid corresponding to the zoom scale according to an indication of a preset gridding policy Dimensions; meshing the displayed map according to the grid corresponding to the determined grid size. That is to say, the sizes of the grids are not the same according to different scaling scales. In other embodiments, the size and/or shape of the grid may be different for different zoom scales.
  • Determining a mesh size corresponding to the scaling scale includes: determining a target mesh size according to the scaling scale; the target mesh is in accordance with an indication of a meshing policy, based on the scaling scale and the a relationship between the basic scales, a size of the mesh determined after the size is enlarged or reduced according to the basic mesh size, and the relationship between the scaling scale and the basic scale includes: a scaling scale/base scale , which is the ratio between the two.
  • the base scale is 1:100,000, if the user increases the scale and gets a scale of 1:20000, then To determine that the map has been magnified 5 times, based on the adjusted scale and the base scale to determine that the map is magnified 5 times (you can see more details of the local area), then the corresponding base size in the base grid On the top, the mesh size is reduced, for example, from 1 cm * 1 cm to 0.2 cm * 0.2 cm.
  • the basic mesh size is preset, or a mesh size indicated in the meshing strategy, the basic mesh size is used to determine a basic mesh; When the scale is displayed on the user interface, the displayed map is meshed according to the basic grid corresponding to the basic grid size.
  • S603 Perform marking processing on the determined grid according to the input information, where the input information includes a grid number of a grid selected by the first selection operation received on the user interface.
  • the input information includes a grid number of a grid selected by the first selection operation received on the user interface.
  • the restricted flight area is planned. After the planned flight zone is planned, the area where the flight limited zone is located is prompted on the user interface, and the prompt is completed according to changing the color of the mesh included in the flight limited zone. Specifically, all the marked and processed grids are determined as the limited-flying area grid, and the area where the restricted-limit area is located can be correspondingly displayed on the user interface with the specified filling color, and all the networks covered by the planned limited-flying area are recorded. The grid number of the grid.
  • the attribute identifiers of all the grids in the limited flight area are used to indicate that the corresponding grid is the grid of the limited fly zone.
  • the target grid size is determined according to the scale of the enlarged map.
  • the mesh determined by the target mesh size is a sub-grid corresponding to the basic mesh, and the attribute identifier of each sub-grid is the same as the attribute identifier of the basic mesh corresponding to the sub-grid, and the attribute identifier is used by Indicates whether the grid is a grid of restricted zones.
  • the area enclosed by the solid line portion is the base mesh, and the four meshes separated by two broken lines are the sub-grids of the base mesh.
  • the sub-grid 701, the sub-grid 702, the sub-grid 703, and the sub-grid 704 are shown therein, and the four sub-grids correspond to one basic grid.
  • the attribute identifier of each of the four sub-grids is the same as that of the base grid. If the attribute identifier of the base grid indicates that the grid is a fly-limited area grid, the sub-grid 701 and the sub-grid 702
  • the attribute identifiers of the sub-grid 703 and the sub-grid 704 are also automatically configured to indicate that the sub-grid is an attribute identifier of the fly-limited area grid.
  • the user can only receive the operation of the user in the limited-fly zone.
  • the embodiment of the present invention may further update the flight-limited zone.
  • the S605 Perform an update process on the grid where the flight limited zone is located according to the first modification information, to perform area update on the limited flight zone.
  • the S605 may specifically include: receiving a second selection operation on the user interface, the second selection operation refers to an operation on a grid included in the planned flight-limited area; and determining first modification information according to the second selection operation
  • the first modification information includes a grid number of the grid selected by the second selection operation; and the grid selected by the second selection operation is marked according to the grid number.
  • the embodiment of the present invention may also initiate a user operation for the sub grid.
  • S606 Perform an update process on the sub-grid included in the grid in which the flight-restricted zone is located according to the second modification information, to perform regional update on the restricted-flight zone.
  • the third selection operation refers to an operation on a sub-grid of the grid included in the planned flight-limited area; according to the third selection operation Determining second modification information, the second modification information includes a sub-mesh number of the sub-grid selected by the third selection operation; and performing the sub-grid selected by the third selection operation according to the sub-grid number Tag update processing.
  • the sub-grid refers to a grid that is determined after the size reduction based on the base mesh size.
  • the embodiment of the invention can conveniently set the limit flight area on the displayed map by means of the grid, so that the setting of the fly-limited area is intuitive and easy to operate, and the set fly-limited area can better avoid setting unnecessary areas to
  • the flight-limited zone can facilitate the aircraft user to control the flight of the aircraft while ensuring the flight-limited zone.
  • the embodiment of the present invention further provides a computer storage medium, where the computer storage medium stores a running instruction, and when the running instruction is executed, the method for implementing the limited flight area planning method of the embodiment corresponding to FIG. 5 or FIG. 6 is implemented. .
  • FIG. 8 it is a schematic flowchart of a flight control method according to an embodiment of the present invention.
  • the method in the embodiment of the present invention may be implemented by an intelligent terminal, which may be a smart phone, a tablet computer, or a personal computer.
  • the smart terminal can also be a dedicated control device with a display.
  • the intelligent terminal is wirelessly connected to the aircraft to facilitate control of aircraft flight.
  • the method of the embodiment of the present invention may also be performed by a UAV, and the UAV performs autonomous flight control based on the method.
  • the method of the embodiment of the invention comprises the following steps.
  • the number set includes multiple mesh numbers, each mesh number is used to uniquely indicate a mesh, and each mesh is associated with a fixed map area in the map.
  • the number set may include only specific grid numbers, and the specific grid numbers may be the grid number of the grid marked as the fly-limited area, or the number set.
  • the attribute identifiers of the grids indicated by all grid numbers in the middle indicate that the grid is a grid of restricted areas.
  • the number set includes a set of sub-numbers composed of a plurality of target mesh numbers, and the map area corresponding to the grid indicated by the plurality of target mesh numbers constitutes a fly-limited area.
  • the numbering set may also include only the grid number marked as the non-limited flight area grid, so as to directly determine the flightable area of the aircraft.
  • S802 Determine at least a part of the flightable area according to the map area associated with the grid indicated by each grid number. According to the mesh number of the limited flight zone mentioned above, the mesh corresponding to the part of the mesh number is excluded, and the remaining meshes are non-limited flight zone meshes, and the map area corresponding to the non-limited flight zone mesh can be found. The found map area is determined as the flightable area.
  • Each grid number and a map area corresponding to each grid number may be stored in advance.
  • S803 Control aircraft flight according to at least a part of the determined flightable area. Controlling the flight of the aircraft in the determined flightable area, prohibiting the aircraft from flying in the restricted flight zone, or restricting the flight of the aircraft in the restricted flight zone in accordance with a flight restriction strategy preset for the restricted flight zone, for example, flying the aircraft
  • the height is limited to a certain height.
  • the aircraft or intelligent terminal can receive and store a set of numbers set by the control terminal regarding the flight limited zone.
  • the control terminal plans to obtain the restricted area refer to the description in the above embodiment.
  • the method may further include: receiving a first flight limited area update request; deleting the corresponding one of the limited flight area sets according to one or more mesh numbers in the first limited fly area update request Grid numbering to complete the update of the restricted zone. That is to say, it is possible that some of the grids are modified by the user to be non-capable fly-field grids, and the number set can be updated by sending the first fly-by zone update request.
  • the method may further include: receiving a second flight limited area update request; determining the sub mesh number according to the subgrid number of the subgrid included in the second limited fly area update request a mesh number of the base mesh of the corresponding mesh; replacing a sub-mesh number of the sub-grid with a mesh number of the base mesh in the set of fly-limited zones to complete the restricted flight zone Update.
  • the sub-grid refers to a grid that is determined after the size reduction based on the base mesh size. A detailed description of the sub-mesh can be referred to the description in the above embodiment. After the user modifies some sub-grids into a non-capable area grid, the number set can be updated by sending a second limited area update request.
  • Embodiments of the present invention are capable of directly determining a flightable area and corresponding non-flyable based on a grid number
  • the limited flight area because the grid is convenient for the user to set the limited flight area on the displayed map, the setting of the limited flight area is intuitive and easy to operate. Therefore, the set flight limited area is more accurate, and the drone is in flight. It is also possible to quickly determine the flightable area based on the grid number to facilitate the aircraft user to control the flight of the aircraft.
  • the embodiment of the present invention further provides a computer storage medium, where the computer storage medium stores a running instruction, and when the running instruction is executed, the flight control method of the embodiment corresponding to FIG. 8 is implemented.
  • FIG. 9 is a schematic flowchart of another flight control method according to an embodiment of the present invention.
  • the method in the embodiment of the present invention may be implemented by a flight control device, and the flight control device may be a smart phone or a tablet computer.
  • the flight control device can also be a dedicated control device with a display.
  • the method of the embodiment of the invention comprises the following steps.
  • the number set includes multiple mesh numbers, each mesh number is used to uniquely indicate a mesh, and each mesh is associated with a fixed map area in the map.
  • the number set may include only specific mesh numbers, and the specific mesh numbers may be mesh numbers of meshes marked as fly-limited zones, or all meshes in the numbered set.
  • the attribute identifiers of the grid indicated by the number are attribute identifiers indicating that the grid is a grid of the restricted area.
  • the number set includes a set of sub-numbers composed of a plurality of target mesh numbers, and the map area corresponding to the grid indicated by the plurality of target mesh numbers constitutes a fly-limited area.
  • the numbering set may also include only the grid number marked as the non-limited flight area grid, so as to directly determine the flightable area of the aircraft.
  • S902 Mark the restricted area on the displayed map according to the number set of the restricted area, where the limited area is a map area associated with the grid indicated by each grid number.
  • the map area corresponding to each grid number can be retrieved and confirmed, and then the map area is marked, and the marked limited area is shown by the hatched portion in FIG.
  • the manner of marking may be to adjust the display color of the determined map area to a specified color display, for example, using gray to display each determined map area, and the map area without marking needs to be used with gray. Different common map colors are displayed.
  • S903 Mark the drone on the displayed map according to the current location information of the drone.
  • the drone can communicate with the flight control device wirelessly, send the position coordinates of the drone in real time, and display the icon set for the drone on the displayed map according to the position coordinate, for example, on the display map.
  • the icon for "Paper Plane" is displayed.
  • the update request when receiving the update request, displaying, by the update request, a display update of the limited flight area identified on the displayed map; the update request includes a grid number, and the identifier on the displayed map Performing the display update of the restricted flight zone includes: canceling the mark of the grid indicated by the mesh number in the update request in the flight limited zone.
  • the grid number included in the update request may be the grid number of a base grid, or the grid number of the sub-grid, and the corresponding map regions are determined according to the grid numbers, and the display manners of the map regions are performed. Update, for example, to update the map area displayed in gray to the map area displayed in the usual map color.
  • an alarm prompt is issued when it is detected that the distance between the drone and the fly-limited area is less than a preset distance threshold.
  • Alarm prompts can be acoustic, optical, electrical, and mechanical vibration prompts.
  • the embodiment of the invention can directly determine the limited flight area and the corresponding flightable area based on the grid number, and can more intuitively display the relative positional relationship between the drone and the limited flight area to facilitate the user to better control.
  • UAVs fly in the flightable area, improving flight safety.
  • the embodiment of the present invention further provides a computer storage medium, where the computer storage medium stores a running instruction, and when the running instruction is executed, the flight control method of the embodiment corresponding to FIG. 9 is implemented.
  • the smart terminal according to the embodiment of the present invention may include a power module, various shell structures, buttons, and the like as needed, and further includes The processor 1002 and the memory 1003.
  • a user interface 1001 can also be included.
  • the user interface 1001, the processor 1002, and the memory 1003 are connected to each other to transfer data between each other.
  • the user interface 1001 may be a touch display screen, a physical button, or an interface for receiving user operations sent by a device such as a mouse.
  • the user interface 1001 is a touch display screen, and the touch display screen may be used to display a user interface including a map, receive a user operation on the user interface, and transmit a corresponding user operation time.
  • the processor 1002 is provided.
  • the memory 1003 may include a volatile memory such as a random-access memory (RAM); the memory 1003 may also include a non-volatile memory such as a flash memory. 1003 (flash memory), hard disk (hard disk Drive, HDD) or solid-state drive (SSD); the memory 1003 may also include a combination of the above types of memory.
  • the processor 1002 can be a central processing unit (CPU).
  • the processor 1002 may further include a hardware chip.
  • the hardware chip may be an application-specific integrated circuit (ASIC), a programmable logic device (PLD), or a combination thereof.
  • the PLD may be a complex programmable logic device (CPLD), a field-programmable gate array (FPGA), a general array logic (GAL), or any combination thereof.
  • the memory 1003 is further configured to store a running instruction.
  • the processor 1002 can invoke the running instruction to implement the method of limiting the flight area planning as shown in the embodiments of FIG. 5 and FIG. 6 of the present application.
  • the processor 1002 when the processor executes the running instruction, the processor 1002 is configured to process the map according to a preset gridding policy; and perform marking processing on the determined grid according to the input information; Mark the map area associated with the processed grid and plan to get the restricted area.
  • the grid number of the corresponding flight zone corresponding to the grid may be stored in the memory 1003.
  • the processor 1002 is specifically configured to display a map on a user interface when the map is processed according to a preset gridding policy; and displayed according to a preset gridding policy.
  • the maps are meshed, wherein each grid is associated with a fixed map area in the map.
  • the grid number of the grid and the corresponding map area may be stored in the memory 1003.
  • the input information includes a grid number of a grid selected by the first selection operation received on the user interface.
  • the user interface 1001 is transmitted to the processor 1002 during the first selection operation.
  • the processor 1002 is further configured to set a grid number, each grid number is used to uniquely indicate a grid; a grid number of each grid and a map associated with the grid The area is associated and stored in the memory 1003.
  • the same fixed map area in the map has different grids associated with different heights, and the grid numbers of different grids associated with the fixed map area are different.
  • the processor 1002 is configured to perform a gridding policy according to a preset
  • the displayed map is meshed, and is specifically used for meshing the displayed map according to the grid size indicated in the preset gridding strategy.
  • the user interface 1001 displays the gridded processed image, including a map and a plurality of grids overlaid on the map.
  • the processor 1002 performs meshing processing on the displayed map according to a preset gridding policy, specifically for the grid indicated in the preset gridding policy. Dimensions and mesh shapes to mesh the displayed map.
  • the user interface 1001 displays the gridded processed image, including a map and a plurality of grids overlaid on the map.
  • the processor 1002 is specifically configured to determine that the map is displayed on the user interface when the grid is processed according to a preset gridding policy. a scaling scale; determining a mesh size corresponding to the scaling scale according to an indication of a preset meshing strategy; and meshing the displayed map according to the determined mesh corresponding to the mesh size.
  • the user interface 1001 displays the gridded processed image, including a map and a plurality of grids overlaid on the map.
  • the processor 1002 is further configured to set a base mesh size, where the base mesh size is used to determine a base mesh; when the map is displayed on the user interface with a basic scale The displayed map is meshed according to the base mesh corresponding to the base mesh size.
  • the user interface 1001 displays the gridded processed image, including a map and a plurality of grids overlaid on the map.
  • the processor 1002 is configured to determine a target mesh size according to the scaling scale when determining a mesh size corresponding to the scaling scale; the target mesh is Based on the relationship between the scale bar and the base scale, the mesh size determined after the size is enlarged or reduced in size based on the base mesh size.
  • the mesh determined by the target mesh size is a corresponding map region.
  • the sub-grid of the basic grid, the attribute identifier of each sub-grid is the same as the attribute identifier of the basic grid corresponding to the sub-grid, and the attribute identifier is used to indicate whether the grid is a limited-flying area grid.
  • the processor 1002 is further configured to perform an update process on the grid in which the flight limited area is located according to the first modification information, to perform area update on the limited flight area.
  • the processor 1002 is configured to receive a second selection on the user interface when performing an update process on a grid in which the flight limited area is located according to the first modification information. Selecting an operation, the second selection operation refers to an operation on a grid included in the planned flight limited area; determining first modification information according to the second selection operation, the first modification information including The mesh number of the selected mesh of the second selection operation is performed; and the mesh selected by the second selection operation is subjected to mark cancellation processing according to the mesh number.
  • the second selection operation is received by the user interface 1001 and transmitted to the processor 1002.
  • the processor 1002 is further configured to perform an update process on the sub-grid included in the grid in which the fly-limited area is located according to the second modification information, to perform an area on the limited-flying area. Update.
  • the processor 1002 is further configured to: when the sub-grid included in the grid in which the fly-limited area is located is updated according to the second modification information, specifically for receiving the user a third selection operation on the interface, the third selection operation refers to an operation on a sub-grid of the grid included in the planned flight-limited area; determining second modification information according to the third selection operation
  • the second modification information includes a sub-mesh number of the sub-grid selected by the third selection operation; and the sub-mesh selected by the third selection operation is subjected to a tag update process according to the sub-mesh number.
  • the third selection operation is received by the user interface 1001 and transmitted to the processor 1002.
  • the sub-grid refers to a grid that is determined after downsizing based on the base grid size.
  • the processor 1002 is further configured to prompt, on the user interface, an area where the limited flight area is located, where the prompt is completed according to changing a color of a grid included in the limited flight area. .
  • the grid after the color setting is displayed is updated on the user interface 1001.
  • processor 1002 in the embodiment of the present invention may refer to the description of the corresponding content in the foregoing various embodiments.
  • the embodiment of the invention can conveniently set the limit flight area on the displayed map by means of the grid, so that the setting of the fly-limited area is intuitive and easy to operate, and the set fly-limited area can better avoid setting unnecessary areas to
  • the flight-limited zone can facilitate the aircraft user to control the flight of the aircraft while ensuring the flight-limited zone.
  • FIG. 11 is a schematic structural diagram of a flight control device according to an embodiment of the present invention.
  • the flight control device according to the embodiment of the present invention may include a power module, various shell structures, buttons, and the like as needed, and includes The processor 1102 and the memory 1103. Further optionally, a communication interface 1101 can also be included.
  • the communication interface 1101, the processor 1102, and the memory 1103 Even, you can transfer data between each other.
  • the communication interface 1101 may be a WiFi hotspot-based communication interface 1101, or a wireless communication interface 1101 such as radio frequency communication. Based on the communication interface 1101, the smart terminal may be connected to an aircraft to be controlled to control aircraft flight.
  • the memory 1103 may include a volatile memory 1103, such as a RAM.
  • the memory 1103 may also include a non-volatile memory 1103, such as a flash memory 1103 (flash memory), an HDD or an SSD.
  • flash memory 1103 flash memory
  • the memory 1103 may also include a combination of the above types of memories 1103.
  • the processor 1102 can be a CPU.
  • the processor 1102 can also further include a hardware chip.
  • the memory 1103 is further configured to store a running instruction.
  • the processor 1102 can invoke the run command to implement a flight control method as shown in the embodiment of FIG. 8 of the present application.
  • the processor 1102 is configured to invoke a program stored in the memory 1103, and obtain a number set about a fly-limited area, where the number set includes multiple grid numbers, and each grid The number is used to uniquely indicate a grid, each grid is associated with a fixed map area in the map; at least a portion of the flightable area is determined according to the map area associated with the grid indicated by each grid number; At least a portion of the flightable area generates control commands for controlling flight of the aircraft; the communication interface 1101 transmits the control directly to the aircraft.
  • the numbering set of the limited-flying area may be determined by the manner in which the limited-capacity area is configured on the map by using the grid in the smart terminal.
  • the number set of the restricted area may also be received from other intelligent terminals, and the number set of the restricted area is determined by the intelligent terminal in the previous embodiment, and sent to the embodiment of the present invention.
  • the intelligent terminal may also be received from other intelligent terminals, and the number set of the restricted area is determined by the intelligent terminal in the previous embodiment, and sent to the embodiment of the present invention.
  • the number set includes a set of sub-numbers composed of a plurality of target mesh numbers, and the map area indicated by the plurality of target mesh numbers constitutes a fly-limited area.
  • the processor 1102 is further configured to receive and store, by using the communication interface 1101, a set of numbers set by the control terminal regarding the fly-limited area.
  • the set of numbers is stored in the memory 1103.
  • the processor 1102 is further configured to receive, by using the communication interface 1101, a first flight limited area update request, and delete according to one or more mesh numbers in the first limited fly area update request.
  • the limited flight zone sets a corresponding grid number to complete the update of the restricted flight zone.
  • the processor 1102 is further configured to receive, by using the communication interface 1101, a second flight limited area update request; according to the sub-grid number of the sub-grid included in the second limited-flying area update request And determining a mesh number of the base mesh of the mesh corresponding to the sub-grid number; replacing the sub-mesh number of the sub-grid with the mesh number of the basic mesh in the set of the limited-flying zone, To complete the update of the restricted flight zone.
  • the sub-grid refers to a grid that is determined after downsizing based on the base grid size.
  • processor 1102 in the embodiment of the present invention may refer to the description of the corresponding content in the foregoing various embodiments.
  • the embodiment of the invention can directly determine the flightable area and the corresponding non-flyable limited flight area based on the grid number. Because the manner of the grid is convenient for the user to set the limited flight area on the displayed map, the setting of the limited flight area is intuitive and easy. Operation, therefore, the set fly-limited area is more accurate, and the drone can quickly determine the flightable area based on the grid number when flying, so that the aircraft user can control the flight of the aircraft.
  • FIG. 12 it is a schematic structural diagram of an aircraft according to an embodiment of the present invention.
  • the aircraft of the embodiment of the present invention includes a power source, a casing structure, and various loads, for example, a load including a pan/tilt, a camera, and the like.
  • the aircraft also includes a power component 1201, a flight controller 1202, a memory 1203, and a communication interface 1204.
  • the aircraft may be a fixed-wing aircraft, and the aircraft may also be a multi-rotor aircraft such as a quadrotor or a six-rotor.
  • the communication interface 1204 is configured to communicate with other aircraft or smart terminals or remote controls to receive corresponding data or control commands to facilitate the flight controller 1202 to control flight of the aircraft.
  • the power assembly 1201 includes an electronic governor, a motor, and a propeller, and the like, the power assembly 1201 is for providing flight power.
  • the memory 1203 may include a volatile memory 1203 such as a RAM; the memory 1203 may also include a non-volatile memory, such as a flash memory 1203, an HDD or an SSD.
  • the memory 1203 may also include a combination of the above types of memories 1203.
  • the flight controller 1202 can be a dedicated CPU.
  • the flight controller 1202 may further include a hardware chip.
  • the above hardware chip may be an ASIC, a PLD, or a combination thereof.
  • the above PLD may be a CPLD, an FPGA, a GAL, or any combination thereof.
  • the flight controller 1202 is configured to obtain a set of numbers regarding the flight limited zone
  • the number set includes a plurality of grid numbers, each grid number is used to uniquely indicate a grid, and each grid is associated with a fixed map area in the map; the network is indicated according to each grid number
  • a map area associated with the grid defines at least a portion of the flightable area; and based on the determined at least a portion of the flightable area, generating control commands are sent to the power assembly 1201 to facilitate control of aircraft flight.
  • the number set includes a set of sub-numbers composed of a plurality of target mesh numbers, and the map area indicated by the plurality of target mesh numbers constitutes a fly-limited area.
  • the flight controller 1202 is further configured to receive, by the communication interface 1204, a set of numbers set by the control terminal regarding the fly-limited area.
  • the flight controller 1202 can store the received set of numbers into the memory 1203.
  • the flight controller 1202 is further configured to receive, by the communication interface 1204, a first flight limited area update request; according to one or more mesh numbers in the first limited flight area update request, Deleting the grid number corresponding to the limited flight zone set to complete the update of the restricted flight zone.
  • the flight controller 1202 is further configured to receive, by the communication interface 1204, a second flight limited area update request; according to the sub-grid of the sub-grid included in the second limited flight area update request Number, the mesh number of the base mesh of the mesh corresponding to the sub-grid number is determined; the sub-mesh number of the sub-grid is replaced with the mesh number of the base mesh in the set of the limited-flying zone To complete the update of the restricted flight zone.
  • the sub-grid refers to a grid that is determined after downsizing based on the base grid size.
  • flight controller 1202 in the embodiment of the present invention may refer to the description of the corresponding content in the foregoing various embodiments.
  • the embodiment of the invention can directly determine the flightable area and the corresponding non-flyable limited flight area based on the grid number. Because the manner of the grid is convenient for the user to set the limited flight area on the displayed map, the setting of the limited flight area is intuitive and easy. Operation, therefore, the set fly-limited area is more accurate, and the drone can quickly determine the flightable area based on the grid number when flying, so that the aircraft user can control the flight of the aircraft.
  • FIG. 13 it is a schematic structural diagram of another flight control device according to an embodiment of the present invention.
  • the flight control device according to the embodiment of the present invention may include a power module, various shell structures, buttons, and the like as needed.
  • a processor 1301 can be included; and a storage device 1302 coupled to the processor 1301.
  • the storage device 1302 may include a volatile memory such as a RAM; the storage device 1302 may also include a non-volatile memory such as a flash memory, an HDD or an SSD; The storage device 1302 may also include a combination of the above types of memories.
  • the processor 1301 may be a CPU.
  • the processor 1301 may further include a hardware chip. The processor 1301 can invoke the run command to implement the flight control method as shown in the embodiment of FIG. 9 of the present application.
  • the processor 1301 when the processor 1301 executes the running instruction, the processor 1301 is configured to acquire a number set about the limited fly zone, where the number set includes multiple mesh numbers, and each mesh number is used for Uniquely indicating a grid, each grid is associated with a fixed map area in the map; according to the numbered set of the restricted area, the restricted area is marked on the displayed map, and the limited area is numbered for each grid The map area associated with the indicated grid; the drone is marked on the displayed map based on the current location information of the drone.
  • the flight control device can also include a display screen on which the processor 1301 displays the map and associated information.
  • the number set includes a set of sub-numbers composed of a plurality of target mesh numbers, and the map area corresponding to the indicated mesh of the plurality of target mesh numbers constitutes a fly-limited area.
  • the processor 1301 is configured to: when the update request is received, perform display display update on the displayed limited area on the displayed map according to the update request; the update request includes a grid number, Displaying the update of the restricted area identified on the displayed map includes canceling a flag of the grid indicated by the grid number in the update request in the restricted area.
  • the processor 1301 is configured to issue an alarm prompt when detecting that the distance between the drone and the fly-limited area is less than a preset distance threshold.
  • processor 1301 in the embodiment of the present invention may refer to the description of the corresponding content in the foregoing various embodiments.
  • the embodiment of the invention can directly determine the limited flight area and the corresponding flightable area based on the grid number, and can more intuitively display the relative positional relationship between the drone and the limited flight area to facilitate the user to better control.
  • UAVs fly in the flightable area, improving flight safety.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Automation & Control Theory (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Instructional Devices (AREA)

Abstract

一种限飞区规划处理方法、飞行控制方法及智能终端、控制装置,其中,方法包括按照预置的网格化策略对地图进行处理(S501);根据输入信息,对确定的网格进行标记处理(S502);根据各个标记处理后的网格所关联的地图区域,规划得到限飞区(S503)。限飞区以外的区域则认为是可飞行的区域。采用本方法可直观、快捷地确定限飞区以便于后续进行飞行控制。

Description

限飞区规划方法、飞行控制方法及智能终端、控制装置 技术领域
本发明涉及飞行控制技术领域,尤其涉及一种限飞区规划处理方法、飞行控制方法及智能终端、控制装置。
背景技术
随着低空空域放开,小型智能化空中设备例如UAV(Unmanned Aerial Vehicle,无人机)也逐渐地增多,需要考虑这些空中设备在飞行时对机场、特殊设施、敏感建筑所在区域构成的潜在安全问题。政府层面往往会针对特殊地区规划限飞区。规划得到的限飞区可以限制或完全禁止空中设备在该限飞区所指示区域飞行。而如何直观、快捷地确定出限飞区信息成为研究的热点问题。
发明内容
本发明实施例提供了一种限飞区规划处理方法、飞行控制方法及智能终端、控制装置,可直观、快捷地确定限飞区以便于后续进行飞行控制。
第一方面,本发明实施例提供了一种限飞区规划处理方法,包括:按照预置的网格化策略对地图进行处理;根据输入信息,对确定的网格进行标记处理;根据各个标记处理后的网格所关联的地图区域,规划得到限飞区。限飞区以外的区域则认为是可飞行的区域。
第二方面,本发明实施例还提供了一种飞行控制方法,其特征在于,包括:
获取关于限飞区的编号集合,该编号集合中包括多个网格编号,每一个网格编号用于唯一指示一个网格,每一个网格与所述地图中一块固定的地图区域关联;
根据各个网格编号所指示网格关联的地图区域,确定出至少一部分可飞行区域;
根据确定出的至少一部分可飞行区域,控制飞行器飞行。不可飞行的区域则可以认为是限飞区。
第三方面,本发明实施例还提供了一种飞行控制方法,包括:
获取关于限飞区的编号集合,该编号集合中包括多个网格编号,每一个网 格编号用于唯一指示一个网格,每一个网格与所述地图中一块固定的地图区域关联;
根据限飞区的编号集合,在显示的地图上标记限飞区,所述限飞区为各个网格编号所指示网格关联的地图区域;
根据无人机的当前位置信息,在显示的地图上标记所述无人机。
第四方面,本发明实施例还提供了一种智能终端,包括:
一个处理器;以及
一个与处理器连接的存储装置,所述存储装置用于存储运行指令,当处理器执行运行指令时,所述智能终端,用于
按照预置的网格化策略对地图进行处理;
根据输入信息,对确定的网格进行标记处理;
根据各个标记处理后的网格所关联的地图区域,规划得到限飞区。
第五方面,本发明实施例还提供了一种飞行控制装置,其特征在于,包括:
一处理器;以及
一个与处理器连接的存储装置,所述存储装置用于存储运行指令,当处理器执行运行指令时,所述飞行控制装置,用于
获取关于限飞区的编号集合,该编号集合中包括多个网格编号,每一个网格编号用于唯一指示一个网格,每一个网格与所述地图中一块固定的地图区域关联;
根据各个网格编号所指示网格关联的地图区域,确定出至少一部分可飞行区域;
根据确定出的至少一部分可飞行区域,控制飞行器飞行。
第六方面,本发明实施例还提供了另一种飞行控制装置,包括:
一个处理器;以及
一个与处理器连接的存储装置,所述存储装置用于存储运行指令,当处理器执行运行指令时,所述飞行控制装置,用于
获取关于限飞区的编号集合,该编号集合中包括多个网格编号,每一个网格编号用于唯一指示一个网格,每一个网格与所述地图中一块固定的地图区域关联;
根据限飞区的编号集合,在显示的地图上标记限飞区,所述限飞区为各个 网格编号所指示网格关联的地图区域;
根据无人机的当前位置信息,在显示的地图上标记所述无人机。
第七方面,本发明实施例提供了一种计算机存储介质,该计算机存储介质中存储有运行指令,该运行指令被执行时,用于实现上述第一方面所述的方法、或者第二方面所述的方法、或者第三方面所述的方法。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本发明实施例中在显示的地图上进行网格处理后的界面示意图;
图2是在图1基础上缩小比例尺后呈现的网格化效果的示意图;
图3是在图1基础上放大比例尺后呈现的网格化效果的示意图;
图4a是本发明实施例的一种在地图上进行网格化处理后的示意图;
图4b是本发明实施例的另一种在地图上进行网格化处理后的示意图;
图4c是本发明实施例的又一种在地图上进行网格化处理后的示意图;
图5是本发明实施例的一种限飞区规划处理方法的流程示意图;
图6是本发明实施例的另一种限飞区规划处方法的流程示意图;
图7是本发明实施例中基础网格和子网格的示意图;
图8是本发明实施例的一种飞行控制方法的流程示意图;
图9是本发明实施例的另一种飞行控制方法的流程示意图;
图10是本发明实施例的一种智能终端的结构示意图;
图11是本发明实施例的一种飞行控制装置的结构示意图;
图12是本发明实施例的一种飞行器的结构示意图;
图13是本发明实施例的另一种飞行控制装置的结构示意图。
具体实施方式
在本发明实施例中,网络化空域管制主要是将用户界面上显示的整个地域以网格化划分,提前关联好每一个网格的相关地图区域的信息,并为每一个网 格设置不同的编号,该编号即为对应网格的网格编号,一个网格编号用于唯一表示一个网格。当需要划定限飞区时,则可以直接对网格进行点击选择等操作,通过对点击选择的网格进行标记,并记录其网格编号,来确定出限飞区。当需要增加某一敏感建筑并对其设置限飞区时,可以直接对该敏感建筑所在区域对应的网格进行选择,添加得到新的限飞区。如图1所示,是本发明实施例中在显示的地图上进行网格处理后的界面示意图,按照预置的网格化策略对地图进行处理后,在原来显示的地图的基础上,覆盖显示了相应尺寸的网格。
网格编号可以为纯数字的编号,例如把网格按照1,2,3,……,n等数字顺序进行编号。在一个实施例中,可以赋予网格编号实际的意义,可以用行政区划的缩写来进行排列编号,例如CN-GD-SZ-XXX(中国-广东-深圳-XXX),其中XXX可以为数字。在一个实施例中,还可以以国际电话号+其他的数字来进行:0860755XXX(中国深圳),这种编号方式使网格以实际的行政区域对应,便于直观地确定某个网格编号所对应网格所属的行政区域。也方便检索查找对应网格编号,例如想要查找关于“深圳”的网格时,可以输入CN-GD-SZ进行查找。在一个实施例中,还可以进一步结合地图显示的比例尺来进行编号,例如,在上述按照数字对包括“深圳”在内的目标地理位置区域所对应的地图上,针对覆盖该目标地理位置区域对应的地图上的网格,在基于数字进行顺序编号的基础上,针对缩放比例尺为1:100000的情况下,增加用于表示缩放比例尺的前缀1100000,即第一个网格的网格编号为11000001、第二个网格的网格编号为11000002。
为方便对用户界面上所显示的地图的查看,网格显示可以根据需要进行调整,在一个实施例中,可以设定一个基础网格尺寸,例如对应于1km*1km的地理区域设置基础网格尺寸1cm*1cm,具有该基础网格尺寸的网格为基础网格,例如请参考上述图1所示的网格。在基础网格尺寸的基础上,当地图按照某个缩放比例尺显示时,可以动态随地图缩放比例尺,在基础网格尺寸的基础上进行尺寸调整,得到新的网格尺寸的网格,并在地图上覆盖显示新的网格尺寸的网格。
在一个实施例中,当地图按照缩小的比例尺显示时,地图将会显示更大面积的区域,此时可以采用较大尺寸的网格来呈现网格化效果,例如,在比例尺由1:100000缩小到1:200000时,在原来的基础网格尺寸1cm*1cm的基础 上进行尺寸放大处理,得到的目标网格尺寸为2cm*2cm的网格,请参见图2,是在图1的基础上缩小比例尺后呈现的网格化效果的示意图。
在一个实施例中,将地图按照放大的比例尺显示时,地图将会显示更多局部区域的细节,此时可以采用较小尺寸的网格来呈现网格化效果,例如,在比例尺由1:100000放大到1:50000时,在原来的基础网格尺寸1cm*1cm的基础上进行尺寸缩小,得到的目标网格尺寸为0.5cm*0.5cm的网格,请参考图3,是在图1的基础上放大比例尺后呈现的网格化效果的示意图。
在图1、图2以及图3的界面上,均可通过点击网格的方式来规划限飞区,被点击选中的网格所对应的地图区域会被规划为限飞区。例如,在图1中,被标记了指定颜色的网格101、网格102、网格103以及网格104对对应的地图区域为限飞区,图中以斜线表示该网格具有指定颜色。可以理解的是,图1、图2以及图3仅为对本发明实施例对不同缩放比例下的网格进行对比的示例性说明,在实际操作中,在缩放比例尺后,基于基础网格尺寸可以进行精确地计算并最终呈现出相应尺寸的网格,且网格的显示还可以为其他显示方式。
在规划得到限飞区后,该限飞区中的各个网格被设置了相应的属性标识,网格的属性标识主要用于表示网格是否为限飞区网格。在一个实施例中,每一个基础网格之下的子网格将会继承基础网格的属性标识,而子网格之下的子网格又会继承上一层子网格的属性标识,并且当需对特定子网格或者更下层的子网格进行操作时,其属性标识可以单独设定,例如属性标识指示某个子网格为限飞区网格时,如果再次点击选择该子网格,则可以单独对该子网格属性标识进行设置,将该子网格的属性标识调整修改为表示该子网格为非限飞区网格。属性标识作为网格的属性信息被保存,网格的属性信息除了包括属性标识外,还包括该网格所对应地图区域包括的区域内容信息,例如区域内容信息为标志性建筑物名称,表明该网格所对应地图区域包括标志性建筑物。
为了便于立体空域的划分,对于地图上同一块固定的地图区域,在不同的高度上可以关联不同的网格,且该固定的地图区域所关联的不同的网格的网格编号不相同,在对网格进行编号时进一步可以考虑高度数据进行编号,例如添加高度信息作为原有编号的前缀。在每一次基于预置的网格化策略对显示的地图进行网格化处理时,最终显示界面上的网格是在同一个高度(或高度范围内)上覆盖在地图上的网格,基于网格规划的限飞区也是指在该高度(或高度范围 内)上的限飞区,例如上述提到的图1所示的界面中,可以是在1km高空位置对应的网格,点击选择若干个网格后,规划得到的由该若干个网格对应的地图区域构成的限飞区是指在1km高空位置以内的限飞区。在设置完某个高度或者高度范围内的限飞区后,用户可以在显示地图的用户界面上输入新的高度或者高度范围,基于该新的高度或高度范围,再次对地图进行网格处理,以便于用户在新的包括网格和地图的界面上,设置在新的高度或高度范围内的限飞区。
在设置好限飞区后,只需要保存每一高度下网格的网格编号,基于网格编号和每一个网格编号的属性标识,由于已经将每个网格编号和该网格编号所指示网格对应的固定地图区域关联存储,后续基于网格编号即可确定出限飞区。在一个实施例中,可以仅生成一个由表示限飞区网格的属性标识的网格编号构成的编号集合,并将编号集合发送给无人机,无人机飞行时,基于该编号集合中的网格编号,确定网格编号指示的网格对应的地图区域,进而确定出限飞区或可以飞行的区域。在一个实施例中,也可以将所述编号集合发送给另一终端,另一终端根据该编号集合中的网格编号,确定网格编号指示的网格对应的地图区域,进而确定出限飞区或可以飞行的区域,以便于在该另一终端的界面上呈现给用户限飞区或者做其他用途。
网格形状的设置可以包括多种。在一个实施例中,对于空域的网格划分,可以基于地域地面信息进行,其网格划分的区域可是任意多边形,和/或圆形,和/或不规则图形。如图4a所示,是本发明实施例的一种在地图上进行网格化处理后的示意图,其示出了可以通过六边形的方式来呈现带网格的地图显示界面,如图4b所示,是本发明实施例的另一种在地图上进行网格化处理后的示意图,其示出了可以通过三边形的方式来呈现带网格的地图显示界面,如图4c所示,是本发明实施例的又一种在地图上进行网格化处理后的示意图,其示出了可以通过不规则形状的方式来呈现带网格的地图显示界面。
对于网格的网格编号的设置,可采用多种方式,对检索不同网格需要的技术手段,检索时间都不同。在立体化的网格中,需要基于地理位置和高度综合考虑对网格设置网格编号,确保每一个网格编号只对于一个网格,而每一个网格仅对应于一个固定的地图区域。
如何判断此网格化的限飞管制状态,可以通过在显示的界面上标记不同的 颜色来识别,也需要对此区域内的地理信息进行判断。例如,被选择的网格作为限飞区的一部分,会被显示未灰色。
基于地图的比例尺同样可以动态缩放网格。选择一个标准的网格大小为基础网格,动态显示不同比例下的网格效果,在缩放了地图后,网格也会动态显示,而关于基础网格可以不显示。
子网格可以继承基础网格的属性标识。放大地图的比例尺、呈现继承基础网格的子网格后,其子网格的属性标识默认与基础网格保持一致,子网格下的子网格,将会继承上一层子网的属性标识。当需要对某一子网格甚至更底层子网格单独设置属性,也同样可以进行用户的点击选择操作,以单独对某个网格或者子网格进行操作。
本发明实施例能够通过网格的方式方便用户在显示的地图上设置限飞区,使得限飞区的设置直观、易操作,并且设置的限飞区可以较好地避免将不必要的区域设置到限飞区,在保证了限飞区的情况下,又能方便飞行器用户控制飞行器飞行。
再请参见图5,是本发明实施例的一种限飞区规划处理方法的流程示意图,本发明实施例的所述方法可以由一个智能终端来实现,智能终端具体可以是智能手机、平板电脑、个人电脑等带显示屏的终端,智能终端也可以为一个专用的带显示屏的控制设备。本发明实施例的所述方法包括如下步骤。
S501:按照预置的网格化策略对地图进行处理。预置的网格化策略主要包括:进行网格化处理时,对网格的尺寸、形状等参数的处理指示,还可以包括关于高度,缩放比例尺等参数下对网格的处理指示。地图可以显示在用户界面上,在该用户界面上,用户可以通过触屏操作对地图进行缩放显示处理以及位置拖动处理等。在一个实施例中,基于网格化策略对地图进行处理包括以指定形状和尺寸的多边形构成的网格覆盖显示在地图上,每一个网格对应于地图上的一个固定地图区域。另外,在缩放地图时,可以对网格的尺寸进行调整,调整尺寸后的网格为新的网格,该新的网格会唯一对应一个新的固定地图区域。
S502:根据输入信息,对确定的网格进行标记处理。在一个实施例中,所述的输入信息可以是对在S501中进行网格处理后显示的网格进行的点击选择处理后,例如通过手指等接触物触屏点击用户界面上显示的网格,该选择的网格的网格编号。也可以是用户直接输入的某个网格的网格编号,基于网格编号 可以唯一确定出一个网格,然后对确认的网格进行标记处理。对确认的网格进行标记处理包括:在显示的用户界面上,对该确认的网格进行颜色处理,将该网格按照指定的颜色进行填充处理;或者在后台将该网格的属性标识设置为用于表示该网格为限飞区网格的属性标识,当然,还可以包括其他处理,对确定的网格进行标记处理主要用于将该网格确定为限飞区。
S503:根据各个标记处理后的网格所关联的地图区域,规划得到限飞区。将所有被标记处理的网格确定为限飞区网格,可以在用户界面上以指定的填充颜色对应显示出限飞区所在的区域。进一步地可以记录每个被标记处理后的网格的网格编号,后续基于网格编号,即可确定出限飞区域。可以将由被标记处理后的网格的网格编号组成的编号集合发送给飞行器,由飞行器根据编号集合中的各个网格编号,确定出可以飞行的区域和限制飞行的区域,以便于进行飞行控制。
本发明实施例能够通过网格的方式方便用户在显示的地图上设置限飞区使得限飞区的设置直观、易操作,并且设置的限飞区可以较好地避免将不必要的区域设置到限飞区,在保证了限飞区的情况下,又能方便飞行器用户控制飞行器飞行。
再请参见图6,是本发明实施例的另一种限飞区规划处方法的流程示意图,本发明实施例的所述方法可以由一个智能终端来实现,智能终端具体可以是智能手机、平板电脑、个人电脑等带显示屏的终端,智能终端也可以为一个专用的带显示屏的控制设备。本发明实施例的所述方法包括如下步骤。
S601:在用户界面上显示地图。该用户界面主要用于显示地图,并接收用户的用户操作,例如在用户界面上对地图的缩小操作、放大操作等。还用于显示网格并接收用户对网格的点击选择操作。
S602:按照预置的网格化策略对所显示的地图进行网格化处理,其中,每一个网格与所述地图中一块固定的地图区域关联。在网格化处理后,会在所述用户界面上显示相应的网格。进一步地,针对每一个网格,设置网格编号,每一个网格编号用于唯一指示一个网格;将每一个网格的网格编号以及该网格所关联的地图区域进行关联存储。网格编号以及该网格所关联的地图区域可以发送给其他设备,例如飞行器,方便后续飞行器能够基于网格编号以及该网格所关联的地图区域来确定限飞区和可以飞行的区域。
还可以进一步地结合地图区域和空域高度来进行网格化处理,并设置对应的网格编号,在一个实施例中,所述地图中同一块固定的地图区域,在不同的高度上关联有不同的网格,且该固定的地图区域所关联的不同的网格的网格编号不相同。所说的不同高度可以是指在一个不同的高度范围内。
在一个实施例中,所述602具体可以包括:按照预置的网格化策略中指示的网格尺寸,对所显示的地图进行网格化处理。网格化策略中可以仅指示一个网格尺寸,在进行网格化处理时,最终得到的所有网格的尺寸相同。网格尺寸可以预设设置,可以先设置一个基础网格尺寸,然后基于该基础网格尺寸再进行尺寸放大或者尺寸缩小,得到新的网格的网格尺寸。不同网格的尺寸对应于不同的地图显示缩放比例尺,所述网格化策略中可以为每一个高度和/或缩放比例尺对应配置一个网格尺寸。
在一个实施例中,所述602具体可以包括:按照预置的网格化策略中指示的网格尺寸和网格形状,对所显示的地图进行网格化处理。也就是说,除了如上述描述的那样指示有相应的网格尺寸外,网格化策略中还可以配置网格的具体形状,例如可以是正方形、长方形、各种多边形,甚至还可以为圆形和不规则的多边形。基于网格化策略所指示的网格尺寸和网格形状,在进行网格化处理时,需要将地图的所有地图区域均覆盖在网格内,方便用户能够对所需的每一个地图区域设置限飞区。
在一个实施例中,所述602具体可以包括:确定所述地图在所述用户界面上显示时的缩放比例尺;按照预置的网格化策略的指示,确定与所述缩放比例尺对应的网格尺寸;按照确定出的网格尺寸所对应网格对显示的所述地图进行网格化处理。也即是说,根据不同的缩放比例尺,网格的尺寸并不相同,在其他实施例中,针对不同的缩放显示的缩放比例尺,网格的尺寸和/或形状都可以不相同。
所述确定与所述缩放比例尺对应的网格尺寸,包括:根据所述缩放比例尺,确定出目标网格尺寸;所述目标网格是按照网格化策略的指示,基于所述缩放比例尺与所述基础比例尺之间的关系,以所述基础网格尺寸为基准进行尺寸放大或者尺寸缩小后确定的网格尺寸,所述缩放比例尺和所述基础比例尺之间的关系包括:缩放比例尺/基础比例尺,即两者之间的比值。例如,基础比例尺是1:100000,如果用户增大比例尺,得到缩放比例尺为1:20000时,则可 以确定地图被放大了5倍,当基于调整后的比例尺和基础比例尺确定出地图被放大了5倍显示(可以看到更多局部区域的细节)时,则对应的在基础网格尺寸的基础上,缩小网格尺寸,例如从1cm*1cm缩小为0.2cm*0.2cm。本发明实施例中,所述基础网格尺寸是预先设置的,或者所述网格化策略中指示的网格尺寸,所述基础网格尺寸用于确定基础网格;在所述地图以基础比例尺在所述用户界面上显示时,是根据基础网格尺寸对应的基础网格对所显示的地图进行网格化处理。
S603:根据输入信息,对确定的网格进行标记处理,所述输入信息包括在所述用户界面上接收到的第一选择操作所选择的网格的网格编号。所述输入信息包括在所述用户界面上接收到的第一选择操作所选择的网格的网格编号。
S604:根据各个标记处理后的网格所关联的地图区域,规划得到限飞区。在规划得到限飞区后在所述用户界面上提示关于限飞区所在的区域,所述提示是根据更改所述限飞区所包括的网格的颜色完成的。具体将所有被标记处理的网格确定为限飞区网格,可以在用户界面上以指定的填充颜色对应显示出限飞区所在的区域,并记录规划得到的限飞区所涵盖的所有网格的网格编号。
限飞区内所有网格的属性标识用于表示对应网格为限飞区网格,当放大比例尺对所述地图进行放大处理时,按照放大后的地图的缩放比例尺确定出目标网格尺寸后,以该目标网格尺寸确定的网格为对应基础网格的子网格,每一个子网格的属性标识与该子网格所对应的基础网格的属性标识相同,所述属性标识用于指示网格是否为限飞区网格。如图7所示,实线部分围合的区域是基础网格,而其中的通过两条虚线隔开的4个网格则为该基础网格的子网格。具体的,其中示出了其中的子网格701、子网格702、子网格703以及子网格704,该四个子网格对应于一个基础网格。该四个子网格中每一个子网格的属性标识均与基础网格的相同,如果基础网格的属性标识表示该网格为限飞区网格,则子网格701、子网格702、子网格703以及子网格704的属性标识也自动被配置为表示子网格为限飞区网格的属性标识。
可选地,在确定了限飞区后,还可以在用户界面上接收只能对限飞区的用户操作,本发明实施例还可以对限飞区进行进一步更新。
S605:根据第一修改信息,对所述限飞区所在的网格进行更新处理,以对所述限飞区进行区域更新。在一个实施例中,所述S605具体可以包括:接收 在所述用户界面上的第二选择操作,所述第二选择操作是指在所述规划得到的限飞区所包括的网格上的操作;根据所述第二选择操作确定第一修改信息,所述第一修改信息包括所述第二选择操作所选择的网格的网格编号;根据网格编号对所述第二选择操作所选择的网格进行标记。
可选地,在确定了限飞区并在对用户界面上显示的地图进行缩放显示后,本发明实施例还可以针对子网格发起用户操作。
S606:根据第二修改信息,对所述限飞区所在的网格中包括的子网格进行更新处理,以对所述限飞区进行区域更新。接收在所述用户界面上的第三选择操作,所述第三选择操作是指在所述规划得到的限飞区所包括的网格的子网格上的操作;根据所述第三选择操作确定第二修改信息,所述第二修改信息包括所述第三选择操作所选择的子网格的子网格编号;根据子网格编号对所述第三选择操作所选择的子网格进行标记更新处理。所述子网格是指以所述基础网格尺寸为基准进行尺寸缩小后确定的网格。
本发明实施例能够通过网格的方式方便用户在显示的地图上设置限飞区使得限飞区的设置直观、易操作,并且设置的限飞区可以较好地避免将不必要的区域设置到限飞区,在保证了限飞区的情况下,又能方便飞行器用户控制飞行器飞行。
本发明实施例还提供了一种计算机存储介质,该计算机存储介质上存储有运行指令,该运行指令被运行时,用于实现上述图5或图6所对应实施例的限飞区规划处方法。
再请参见图8,是本发明实施例的一种飞行控制方法的流程示意图,本发明实施例的所述方法可以由一个智能终端来实现,智能终端具体可以是智能手机、平板电脑、个人电脑等带显示屏的终端,智能终端也可以为一个专用的带显示屏的控制设备。智能终端通过无线的方式与飞行器相连,以便于控制飞行器飞行。当然,本发明实施例的所述方法也可以由UAV来执行,UAV基于该方法进行自主飞行控制。本发明实施例的所述方法包括如下步骤。
S801:获取关于限飞区的编号集合,该编号集合中包括多个网格编号,每一个网格编号用于唯一指示一个网格,每一个网格与所述地图中一块固定的地图区域关联。在一个实施例中,该编号集合中可以仅包括特定的网格编号,这些特定的网格编号可以是被标记为限飞区的网格的网格编号,或者说该编号集 合中所有网格编号所指示网格的属性标识均为表明网格为限飞区网格。在一个实施例中,编号集合中包括由多个目标网格编号构成的子编号集合,所述多个目标网格编号所指示网格对应的地图区域构成限飞区。当然,所述编号集合中也可以仅包括被标记为非限飞区网格的网格编号,以便于后续直接确定出飞行器的可飞行区域。
S802:根据各个网格编号所指示网格关联的地图区域,确定出至少一部分可飞行区域。根据上述提及的限飞区的网格编号,排除这部分网格编号所对应的网格,其余网格则为非限飞区网格,可以找到非限飞区网格对应的地图区域,将找到的地图区域确定为可飞行区域。可以预先存储各个网格编号以及个网格编号所对应的地图区域。
S803:根据确定出的至少一部分可飞行区域,控制飞行器飞行。控制飞行器在确定出的可飞行区域飞行,禁止飞行器在限飞区中飞行,或者按照为该限飞区预置的限飞策略,限制飞行器在该限飞区中飞行,例如,将飞行器的飞行高度限制在一定的高度以下。
在本发明实施例中,飞行器或智能终端可以接收并存储由控制终端设置的关于限飞区的编号集合。控制终端规划得到限飞区的方式可参考上述实施例中的描述。
在一个实施例中,所述方法还可以包括:接收第一限飞区更新请求;根据该第一限飞区更新请求中的一个或者多个网格编号,删除所述限飞区集合对应的网格编号,以完成对所述限飞区的更新。也就是说,可能某些网格被用户修改为非限飞区网格,此时可以通过发送第一限飞区更新请求的方式来对所述编号集合进行更新。
在一个实施例中,所述方法还可以包括:接收第二限飞区更新请求;根据该第二限飞区更新请求中包括的子网格的子网格编号,确定出该子网格编号所对应网格的基础网格的网格编号;将所述子网格的子网格编号替换所述限飞区集合中所述基础网格的网格编号,以完成对所述限飞区的更新。所述子网格是指以所述基础网格尺寸为基准进行尺寸缩小后确定的网格。子网格的具体描述可以参考上述实施例中的描述。用户将某些子网格修改为非限飞区网格后,可以通过发送第二限飞区更新请求的方式来对所述编号集合进行更新。
本发明实施例能够基于网格编号直接确定可飞行区域和对应的不可飞行 的限飞区,由于通过网格的方式方便用户在显示的地图上设置限飞区使得限飞区的设置直观、易操作,因此,设置的限飞区更准确,无人机在飞行时,也能够快速地基于网格编号来确定可飞行区域,方便飞行器用户控制飞行器飞行。
本发明实施例还提供了一种计算机存储介质,该计算机存储介质上存储有运行指令,该运行指令被运行时,用于实现上述图8所对应实施例的飞行控制方法。
再请参见图9,是本发明实施例的另一种飞行控制方法的流程示意图,本发明实施例的所述方法可以由一个飞行控制装置来实现,飞行控制装置具体可以是智能手机、平板电脑、个人电脑等带显示屏的终端,飞行控制装置也可以为一个专用的带显示屏的控制设备。本发明实施例的所述方法包括如下步骤。
S901:获取关于限飞区的编号集合,该编号集合中包括多个网格编号,每一个网格编号用于唯一指示一个网格,每一个网格与所述地图中一块固定的地图区域关联。在一个实施例中,该编号集合中可以仅包括特定的网格编号,这些特定的网格编号可以是被标记为限飞区的网格的网格编号,或者说该编号集合中所有网格编号所指示网格的属性标识均为表明网格为限飞区网格的属性标识。在一个实施例中,编号集合中包括由多个目标网格编号构成的子编号集合,所述多个目标网格编号所指示网格对应的地图区域构成限飞区。当然,所述编号集合中也可以仅包括被标记为非限飞区网格的网格编号,以便于后续直接确定出飞行器的可飞行区域。
S902:根据限飞区的编号集合,在显示的地图上标记限飞区,所述限飞区为各个网格编号所指示网格关联的地图区域。可以根据网格编号与地图区域的对应关系,检索并确认各个网格编号对应的地图区域,然后对地图区域进行标记,标记的限飞区如图1中带斜线部分所示。在一个实施例中,标记的方式可以是将确定出的地图区域的显示颜色调整为指定的颜色显示,例如使用灰色来显示各个确定出的地图区域,而不需要标记的地图区域则使用与灰色不相同的常用地图颜色进行显示。
S903:根据无人机的当前位置信息,在显示的地图上标记所述无人机。无人机可以通过无线的方式与本飞行控制装置通信,实时发送无人机的位置坐标,根据位置坐标在所述显示的地图叠加显示为所述无人机设置的图标,例如在显示地图上显示“纸飞机”的图标。
在一个实施例中,在接收到更新请求时,根据更新请求对所述显示的地图上标识的限飞区进行显示更新;所述更新请求中包括网格编号,对所述显示的地图上标识的限飞区进行显示更新包括:取消对所述限飞区中所述更新请求中的网格编号所指示网格的标记。更新请求中包括的网格编号可以为一个基础网格的网格编号,或者为子网格的网格编号,根据这些网格编号来确定对应的地图区域,并对这些地图区域的显示方式进行更新,例如将灰色显示的地图区域更新为按照常用地图颜色显示的地图区域。
在一个实施例中,在检测到所述无人机与所述限飞区的距离小于预设距离阈值时,发出报警提示。报警提示可以是声、光、电以及机械振动提示。
需要说明的是,本发明实施例中各个步骤中的一些特征的具体实现可参考上述各个实施例中的描述,在此不赘述。
本发明实施例能够基于网格编号来直接确定出限飞区和对应的可飞行区域,能够更为直观地向用户展示无人机与限飞区的相对位置关系,方便了用户更好地控制无人机在可飞行区域飞行,提高了飞行安全。
本发明实施例还提供了一种计算机存储介质,该计算机存储介质上存储有运行指令,该运行指令被运行时,用于实现上述图9所对应实施例的飞行控制方法。
再请参见图10,是本发明实施例的一种智能终端的结构示意图,本发明实施例的所述智能终端可以根据需要包括电源模块、各种壳体结构、按键等结构,进一步还包括了处理器1002以及存储器1003。可选地还可以包括一用户接口1001。所述用户接口1001、处理器1002以及存储器1003之间相连,可以相互之间传输数据。
所述用户接口1001可以是触摸显示屏、物理按键或者用于接收鼠标等设备发送的用户操作的接口。在本发明实施例中,所述用户接口1001以触摸显示屏,所述触摸显示屏可以用于显示包括地图的用户界面,接收对该用户界面上的用户操作,并将相应的用户操作时间传输给所述处理器1002。所述存储器1003可以包括易失性存储器(volatile memory),例如随机存取存储器(random-access memory,RAM);存储器1003也可以包括非易失性存储器(non-volatile memory),例如快闪存储器1003(flash memory),硬盘(hard disk  drive,HDD)或固态硬盘(solid-state drive,SSD);存储器1003还可以包括上述种类的存储器的组合。
所述处理器1002可以是中央处理器(central processing unit,CPU)。所述处理器1002还可以进一步包括硬件芯片。上述硬件芯片可以是专用集成电路(application-specific integrated circuit,ASIC),可编程逻辑器件(programmable logic device,PLD)或其组合。上述PLD可以是复杂可编程逻辑器件(complex programmable logic device,CPLD),现场可编程逻辑门阵列(field-programmable gate array,FPGA),通用阵列逻辑(generic array logic,GAL)或其任意组合。
可选地,所述存储器1003还用于存储运行指令。所述处理器1002可以调用所述运行指令,实现如本申请图5,6实施例中所示的限飞区规划处方法。
在一个实施例中,当处理器执行运行指令时,所述处理器1002,用于按照预置的网格化策略对地图进行处理;根据输入信息,对确定的网格进行标记处理;根据各个标记处理后的网格所关联的地图区域,规划得到限飞区。可以将限飞区对应网格的网格编号存储到所述存储器1003中。
在一个实施例中,所述处理器1002,在用于按照预置的网格化策略对地图进行处理时,具体用于在用户界面上显示地图;按照预置的网格化策略对所显示的地图进行网格化处理,其中,每一个网格与所述地图中一块固定的地图区域关联。可以将网格的网格编号与对应的地图区域存储到所述存储器1003中。
在一个实施例中,所述输入信息包括在所述用户界面上接收到的第一选择操作所选择的网格的网格编号。所述第一选择操作时所述用户接口1001传输给所述处理器1002的。
在一个实施例中,所述处理器1002,还用于设置网格编号,每一个网格编号用于唯一指示一个网格;将每一个网格的网格编号以及该网格所关联的地图区域进行关联存储到所述存储器1003中。
在一个实施例中,所述地图中同一块固定的地图区域,在不同的高度上关联有不同的网格,且该固定的地图区域所关联的不同的网格的网格编号不相同。
在一个实施例中,所述处理器1002,在用于按照预置的网格化策略对所 显示的地图进行网格化处理,具体用于按照预置的网格化策略中指示的网格尺寸,对所显示的地图进行网格化处理。所述用户接口1001显示网格化处理后的图像,包括地图和覆盖在所述地图上的多个网格。
在一个实施例中,所述处理器1002,在用于按照预置的网格化策略对所显示的地图进行网格化处理,具体用于按照预置的网格化策略中指示的网格尺寸和网格形状,对所显示的地图进行网格化处理。所述用户接口1001显示网格化处理后的图像,包括地图和覆盖在所述地图上的多个网格。
在一个实施例中,所述处理器1002,在用于按照预置的网格化策略对所显示的地图进行网格化处理时,具体用于确定所述地图在所述用户界面上显示时的缩放比例尺;按照预置的网格化策略的指示,确定与所述缩放比例尺对应的网格尺寸;按照确定出的网格尺寸所对应网格对显示的所述地图进行网格化处理。所述用户接口1001显示网格化处理后的图像,包括地图和覆盖在所述地图上的多个网格。
在一个实施例中,所述处理器1002,还用于设置基础网格尺寸,所述基础网格尺寸用于确定基础网格;在所述地图以基础比例尺在所述用户界面上显示时是根据基础网格尺寸对应的基础网格对所显示的地图进行网格化处理。所述用户接口1001显示网格化处理后的图像,包括地图和覆盖在所述地图上的多个网格。
在一个实施例中,所述处理器1002,在用于确定与所述缩放比例尺对应的网格尺寸时,具体用于根据所述缩放比例尺,确定出目标网格尺寸;所述目标网格是基于所述缩放比例尺与所述基础比例尺之间的关系,以所述基础网格尺寸为基准进行尺寸放大或者尺寸缩小后确定的网格尺寸。
在一个实施例中,当所述目标网格尺寸为以所述基础网格尺寸为基准进行尺寸缩小后确定的网格尺寸时,以该目标网格尺寸确定的网格为对应地图区域所在的基础网格的子网格,每一个子网格的属性标识与该子网格所对应的基础网格的属性标识相同,所述属性标识用于指示网格是否为限飞区网格。
在一个实施例中,所述处理器1002,还用于根据第一修改信息,对所述限飞区所在的网格进行更新处理,以对所述限飞区进行区域更新。
在一个实施例中,所述处理器1002,在用于根据第一修改信息,对所述限飞区所在的网格进行更新处理时,具体用于接收在所述用户界面上的第二选 择操作,所述第二选择操作是指在所述规划得到的限飞区所包括的网格上的操作;根据所述第二选择操作确定第一修改信息,所述第一修改信息包括所述第二选择操作所选择的网格的网格编号;根据网格编号对所述第二选择操作所选择的网格进行标记取消处理。所述第二选择操作是所述用户接口1001接收并传输给所述处理器1002的。
在一个实施例中,所述处理器1002,还用于根据第二修改信息,对所述限飞区所在的网格中包括的子网格进行更新处理,以对所述限飞区进行区域更新。
在一个实施例中,所述处理器1002,还用于根据第二修改信息,对所述限飞区所在的网格中包括的子网格进行更新处理时,具体用于接收在所述用户界面上的第三选择操作,所述第三选择操作是指在所述规划得到的限飞区所包括的网格的子网格上的操作;根据所述第三选择操作确定第二修改信息,所述第二修改信息包括所述第三选择操作所选择的子网格的子网格编号;根据子网格编号对所述第三选择操作所选择的子网格进行标记更新处理。所述第三选择操作是所述用户接口1001接收并传输给所述处理器1002的。
在一个实施例中,所述子网格是指以所述基础网格尺寸为基准进行尺寸缩小后确定的网格。
在一个实施例中,所述处理器1002,还用于在所述用户界面上提示关于限飞区所在的区域,所述提示是根据更改所述限飞区所包括的网格的颜色完成的。在所述用户接口1001上更新显示进行颜色设定后的网格。
需要说明的是,本发明实施例中所述处理器1002的具体实现可参考上述各个实施例中相应内容的描述。
本发明实施例能够通过网格的方式方便用户在显示的地图上设置限飞区使得限飞区的设置直观、易操作,并且设置的限飞区可以较好地避免将不必要的区域设置到限飞区,在保证了限飞区的情况下,又能方便飞行器用户控制飞行器飞行。
再请参见图11,是本发明实施例的一种飞行控制装置的结构示意图,本发明实施例的所述飞行控制装置可以根据需要包括电源模块、各种壳体结构、按键等结构,还包括了处理器1102以及存储器1103。进一步可选地还可以包括通信接口1101。所述通信接口1101、处理器1102以及存储器1103之间相 连,可以相互之间传输数据。
所述通信接口1101可以是基于WiFi热点的通信接口1101,或者诸如射频通信等无线通信接口1101,基于该通信接口1101,所述智能终端可以与待控制的飞行器相连,控制飞行器飞行。所述存储器1103可以包括易失性存储器1103(volatile memory),例如RAM;存储器1103也可以包括非易失性存储器1103(non-volatile memory),例如快闪存储器1103(flash memory),HDD或SSD;存储器1103还可以包括上述种类的存储器1103的组合。
所述处理器1102可以是CPU。所述处理器1102还可以进一步包括硬件芯片。可选地,所述存储器1103还用于存储运行指令。所述处理器1102可以调用所述运行指令,实现如本申请图8实施例中所示的飞行控制方法。
在一个实施例中,所述处理器1102,用于调用所述存储器1103中存储的程序,用于获取关于限飞区的编号集合,该编号集合中包括多个网格编号,每一个网格编号用于唯一指示一个网格,每一个网格与所述地图中一块固定的地图区域关联;根据各个网格编号所指示网格关联的地图区域,确定出至少一部分可飞行区域;根据确定出的至少一部分可飞行区域,生成用于控制飞行器飞行的控制指令;所述通信接口1101将所述控制直接发送给所述飞行器。所述关于限飞区的编号集合可以是在本智能终端中通过网格来在地图上配置限飞区的方式来获取确定的,具体的实现方式可参考上述各个实施例中相关内容的描述。所述关于限飞区的编号集合也可以是从其他智能终端中接收到的,由诸如上一实施例中的智能终端确定出关于限飞区的编号集合,并发送给本发明实施例中的所述智能终端。
在一个实施例中,所述编号集合中包括由多个目标网格编号构成的子编号集合,所述多个目标网格编号所对应指示的地图区域构成限飞区。
在一个实施例中,所述处理器1102,还用于通过所述通信接口1101接收并存储由控制终端设置的关于限飞区的编号集合。所述编号集合存储在所述存储器1103中。
在一个实施例中,所述处理器1102,还用于通过所述通信接口1101接收第一限飞区更新请求;根据该第一限飞区更新请求中的一个或者多个网格编号,删除所述限飞区集合对应的网格编号,以完成对所述限飞区的更新。
在一个实施例中,所述处理器1102,还用于通过所述通信接口1101接收第二限飞区更新请求;根据该第二限飞区更新请求中包括的子网格的子网格编号,确定出该子网格编号所对应网格的基础网格的网格编号;将所述子网格的子网格编号替换所述限飞区集合中所述基础网格的网格编号,以完成对所述限飞区的更新。
在一个实施例中,所述子网格是指以所述基础网格尺寸为基准进行尺寸缩小后确定的网格。
需要说明的是,本发明实施例中所述处理器1102的具体实现可参考上述各个实施例中相应内容的描述。
本发明实施例能够基于网格编号直接确定可飞行区域和对应的不可飞行的限飞区,由于通过网格的方式方便用户在显示的地图上设置限飞区使得限飞区的设置直观、易操作,因此,设置的限飞区更准确,无人机在飞行时,也能够快速地基于网格编号来确定可飞行区域,方便飞行器用户控制飞行器飞行。
再请参见图12,是本发明实施例的一种飞行器的结构示意图,本发明实施例的所述飞行器包括电源、壳体结构以及各种负载,例如包括云台,摄像机等负载。所述飞行器还包括动力组件1201、飞行控制器1202、存储器1203以及通信接口1204。所述飞行器可以为固定翼飞行器,所述飞行器也可以为四旋翼、六旋翼等多旋翼飞行器。
所述通信接口1204用于与其他飞行器或者智能终端或者遥控器进行通信,接收相应的数据或者控制指令,以便于所述飞行控制器1202来控制飞行器的飞行。所述动力组件1201包括电子调速器、电机以及螺旋桨等结构,所述动力组件1201用于提供飞行动力。
所述存储器1203可以包括易失性存储器1203(volatile memory),例如RAM;存储器1203也可以包括非易失性存储器1203(non-volatile memory),例如快闪存储器1203(flash memory),HDD或SSD;存储器1203还可以包括上述种类的存储器1203的组合。
所述飞行控制器1202可以是一个专用的CPU。所述飞行控制器1202还可以进一步包括硬件芯片。上述硬件芯片可以是ASIC,PLD或其组合。上述PLD可以是CPLD,FPGA,GAL或其任意组合。
在一个实施例中,所述飞行控制器1202,用于获取关于限飞区的编号集 合,该编号集合中包括多个网格编号,每一个网格编号用于唯一指示一个网格,每一个网格与所述地图中一块固定的地图区域关联;根据各个网格编号所指示网格关联的地图区域,确定出至少一部分可飞行区域;根据确定出的至少一部分可飞行区域,生成控制指令发送给所述动力组件1201,以便于控制飞行器飞行。
在一个实施例中,所述编号集合中包括由多个目标网格编号构成的子编号集合,所述多个目标网格编号所对应指示的地图区域构成限飞区。
在一个实施例中,所述飞行控制器1202,还用于通过所述通信接口1204接收由控制终端设置的关于限飞区的编号集合。所述飞行控制器1202可以将接收到的编号集合存储到所述存储器1203中。
在一个实施例中,所述飞行控制器1202,还用于通过所述通信接口1204接收第一限飞区更新请求;根据该第一限飞区更新请求中的一个或者多个网格编号,删除所述限飞区集合对应的网格编号,以完成对所述限飞区的更新。
在一个实施例中,所述飞行控制器1202,还用于通过所述通信接口1204接收第二限飞区更新请求;根据该第二限飞区更新请求中包括的子网格的子网格编号,确定出该子网格编号所对应网格的基础网格的网格编号;将所述子网格的子网格编号替换所述限飞区集合中所述基础网格的网格编号,以完成对所述限飞区的更新。
在一个实施例中,所述子网格是指以所述基础网格尺寸为基准进行尺寸缩小后确定的网格。
需要说明的是,本发明实施例中所述飞行控制器1202的具体实现可参考上述各个实施例中相应内容的描述。
本发明实施例能够基于网格编号直接确定可飞行区域和对应的不可飞行的限飞区,由于通过网格的方式方便用户在显示的地图上设置限飞区使得限飞区的设置直观、易操作,因此,设置的限飞区更准确,无人机在飞行时,也能够快速地基于网格编号来确定可飞行区域,方便飞行器用户控制飞行器飞行。
再请参见图13,是本发明实施例的另一种飞行控制装置的结构示意图,本发明实施例的所述飞行控制装置可以根据需要包括电源模块、各种壳体结构、按键等结构,还可以包括处理器1301;以及一个与处理器1301连接的存储装置1302。
所述存储装置1302可以包括易失性存储器(volatile memory),例如RAM;存储装置1302也可以包括非易失性存储器(non-volatile memory),例如快闪存储器(flash memory),HDD或SSD;存储装置1302还可以包括上述种类的存储器的组合。所述处理器1301可以是CPU。所述处理器1301还可以进一步包括硬件芯片。所述处理器1301可以调用所述运行指令,实现如本申请图9实施例中所示的飞行控制方法。
在一个实施例中,当处理器1301执行运行指令时,所述处理器1301,用于获取关于限飞区的编号集合,该编号集合中包括多个网格编号,每一个网格编号用于唯一指示一个网格,每一个网格与所述地图中一块固定的地图区域关联;根据限飞区的编号集合,在显示的地图上标记限飞区,所述限飞区为各个网格编号所指示网格关联的地图区域;根据无人机的当前位置信息,在显示的地图上标记所述无人机。所述飞行控制装置还可以包括显示屏,所述处理器1301在所述显示屏上显示所述地图以及相关的信息。
在一个实施例中,所述编号集合中包括由多个目标网格编号构成的子编号集合,所述多个目标网格编号所指示网格对应的地图区域构成限飞区。
在一个实施例中,所述处理器1301,用于在接收到更新请求时,根据更新请求对所述显示的地图上标识的限飞区进行显示更新;所述更新请求中包括网格编号,对所述显示的地图上标识的限飞区进行显示更新包括:取消对所述限飞区中所述更新请求中的网格编号所指示网格的标记。
在一个实施例中,所述处理器1301,用于在检测到所述无人机与所述限飞区的距离小于预设距离阈值时,发出报警提示。
需要说明的是,本发明实施例中所述处理器1301的具体实现可参考上述各个实施例中相应内容的描述。
本发明实施例能够基于网格编号来直接确定出限飞区和对应的可飞行区域,能够更为直观地向用户展示无人机与限飞区的相对位置关系,方便了用户更好地控制无人机在可飞行区域飞行,提高了飞行安全。
以上所揭露的仅为本发明部分实施例而已,当然不能以此来限定本发明之权利范围,因此依本发明权利要求所作的等同变化,仍属本发明所涵盖的范围。

Claims (59)

  1. 一种限飞区规划处理方法,其特征在于,包括:
    按照预置的网格化策略对地图进行处理;
    根据输入信息,对确定的网格进行标记处理;
    根据各个标记处理后的网格所关联的地图区域,规划得到限飞区。
  2. 如权利要求1所述的方法,其特征在于,所述按照预置的网格化策略对地图进行处理,包括:
    在用户界面上显示地图;
    按照预置的网格化策略对所显示的地图进行网格化处理,其中,每一个网格与所述地图中一块固定的地图区域关联。
  3. 如权利要求2所述的方法,其特征在于,所述输入信息包括在所述用户界面上接收到的第一选择操作所选择的网格的网格编号。
  4. 如权利要求1-3任一项所述的方法,其特征在于,所述方法还包括:
    设置网格编号,每一个网格编号用于唯一指示一个网格;
    将每一个网格的网格编号以及该网格所关联的地图区域进行关联存储。
  5. 如权利要求4所述的方法,其特征在于,所述设置网格编号,包括:
    获取当前各个待编号的网格对应的地图区域所属的行政区域,并根据该所属行政区域的名称对该各个带编号的网格进行编号,得到各个带编号网格的网格编号;和/或
    获取当前各个待编号的网格所对应的地图当前使用的比例尺,并根据该比例尺对该各个带编号的网格进行编号,得到各个带编号网格的网格编号。
  6. 如权利要求4所述的方法,其特征在于,所述地图中同一块固定的地图区域,在不同的高度上关联有不同的网格,且该固定的地图区域所关联的不同的网格的网格编号不相同。
  7. 如权利要求1-6任一项所述的方法,其特征在于,所述按照预置的网格化策略对所显示的地图进行网格化处理,包括:
    按照预置的网格化策略中指示的网格尺寸,对所显示的地图进行网格化处理。
  8. 如权利要求1-6任一项所述的方法,其特征在于,所述按照预置的网格化策略对所显示的地图进行网格化处理,包括:
    按照预置的网格化策略中指示的网格尺寸和网格形状,对所显示的地图进行网格化处理。
  9. 如权利要求1所述的方法,其特征在于,所述按照预置的网格化策略对所显示的地图进行网格化处理,包括:
    确定所述地图在所述用户界面上显示时的缩放比例尺;
    按照预置的网格化策略的指示,确定与所述缩放比例尺对应的网格尺寸;
    按照确定出的网格尺寸所对应网格对显示的所述地图进行网格化处理。
  10. 如权利要求9所述的方法,其特征在于,还包括:
    设置基础网格尺寸,所述基础网格尺寸用于确定基础网格;在所述地图以基础比例尺在所述用户界面上显示时是根据基础网格尺寸对应的基础网格对所显示的地图进行网格化处理。
  11. 如权利要求10所述的方法,其特征在于,所述确定与所述缩放比例尺对应的网格尺寸,包括:
    根据所述缩放比例尺,确定出目标网格尺寸;
    所述目标网格是基于所述缩放比例尺与所述基础比例尺之间的关系,以所述基础网格尺寸为基准进行尺寸放大或者尺寸缩小后确定的网格尺寸。
  12. 如权利要求11所述的方法,其特征在于,当所述目标网格尺寸为以所述基础网格尺寸为基准进行尺寸缩小后确定的网格尺寸时,以该目标网格尺 寸确定的网格为对应地图区域所在的基础网格的子网格,每一个子网格的属性标识与该子网格所对应的基础网格的属性标识相同,所述属性标识用于指示网格是否为限飞区网格。
  13. 如权利要求1~12任一项所述的方法,其特征在于,还包括:
    根据第一修改信息,对所述限飞区所在的网格进行更新处理,以对所述限飞区进行区域更新。
  14. 如权利要求13所述的方法,其特征在于,所述根据第一修改信息,对所述限飞区所在的网格进行更新处理,包括:
    接收在所述用户界面上的第二选择操作,所述第二选择操作是指在所述规划得到的限飞区所包括的网格上的操作;
    根据所述第二选择操作确定第一修改信息,所述第一修改信息包括所述第二选择操作所选择的网格的网格编号;
    根据网格编号对所述第二选择操作所选择的网格进行标记取消处理。
  15. 如权利要求1~10任一项所述的方法,其特征在于,还包括:
    根据第二修改信息,对所述限飞区所在的网格中包括的子网格进行更新处理,以对所述限飞区进行区域更新。
  16. 如权利要求15所述的方法,其特征在于,所述根据第二修改信息,对所述限飞区所在的网格中包括的子网格进行更新处理,包括:
    接收在所述用户界面上的第三选择操作,所述第三选择操作是指在所述规划得到的限飞区所包括的网格的子网格上的操作;
    根据所述第三选择操作确定第二修改信息,所述第二修改信息包括所述第三选择操作所选择的子网格的子网格编号;
    根据子网格编号对所述第三选择操作所选择的子网格进行标记更新处理。
  17. 如权利要求16所述的方法,其特征在于,所述子网格是指以所述基础网格尺寸为基准进行尺寸缩小后确定的网格。
  18. 如权利要求1~17任一项所述的方法,其特征在于,还包括:
    在所述用户界面上提示关于限飞区所在的区域,所述提示是根据更改所述限飞区所包括的网格的颜色完成的。
  19. 一种飞行控制方法,其特征在于,包括:
    获取关于限飞区的编号集合,该编号集合中包括多个网格编号,每一个网格编号用于唯一指示一个网格,每一个网格与所述地图中一块固定的地图区域关联;
    根据各个网格编号所指示网格关联的地图区域,确定出至少一部分可飞行区域;
    根据确定出的至少一部分可飞行区域,控制飞行器飞行。
  20. 如权利要求19所述的方法,其特征在于,所述编号集合中包括由多个目标网格编号构成的子编号集合,所述多个目标网格编号所指示网格对应的地图区域构成限飞区。
  21. 如权利要求19或20所述的方法,其特征在于,还包括:
    接收并存储由控制终端设置的关于限飞区的编号集合。
  22. 如权利要求19-21任一项所述的方法,其特征在于,还包括:
    接收第一限飞区更新请求;
    根据该第一限飞区更新请求中的一个或者多个网格编号,删除所述限飞区集合对应的网格编号,以完成对所述限飞区的更新。
  23. 如权利要求19-21任一项所述的方法,其特征在于,还包括:
    接收第二限飞区更新请求;
    根据该第二限飞区更新请求中包括的子网格的子网格编号,确定出该子网格编号所对应网格的基础网格的网格编号;
    将所述子网格的子网格编号替换所述限飞区集合中所述基础网格的网格 编号,以完成对所述限飞区的更新。
  24. 如权利要求23所述的方法,其特征在于,所述子网格是指以所述基础网格尺寸为基准进行尺寸缩小后确定的网格。
  25. 一种飞行控制方法,其特征在于,包括:
    获取关于限飞区的编号集合,该编号集合中包括多个网格编号,每一个网格编号用于唯一指示一个网格,每一个网格与所述地图中一块固定的地图区域关联;
    根据限飞区的编号集合,在显示的地图上标记限飞区,所述限飞区为各个网格编号所指示网格关联的地图区域;
    根据无人机的当前位置信息,在显示的地图上标记所述无人机。
  26. 如权利要求25所述的方法,其特征在于,所述编号集合中包括由多个目标网格编号构成的子编号集合,所述多个目标网格编号所指示网格对应的地图区域构成限飞区。
  27. 如权利要求25或26所述的方法,其特征在于,还包括:
    在接收到更新请求时,根据更新请求对所述显示的地图上标识的限飞区进行显示更新;
    所述更新请求中包括网格编号,对所述显示的地图上标识的限飞区进行显示更新包括:取消对所述限飞区中所述更新请求中的网格编号所指示网格的标记。
  28. 如权利要求27所述的方法,其特征在于,还包括:
    在检测到所述无人机与所述限飞区的距离小于预设距离阈值时,发出报警提示。
  29. 一种智能终端,其特征在于,包括:
    一个处理器;以及
    一个与处理器连接的存储装置,所述存储装置用于存储运行指令,当处理器执行运行指令时,所述处理器,用于
    按照预置的网格化策略对地图进行处理;
    根据输入信息,对确定的网格进行标记处理;
    根据各个标记处理后的网格所关联的地图区域,规划得到限飞区。
  30. 如权利要求29所述的智能终端,其特征在于,所述处理器,用于
    在用户界面上显示地图;
    按照预置的网格化策略对所显示的地图进行网格化处理,其中,每一个网格与所述地图中一块固定的地图区域关联。
  31. 如权利要求30所述的智能终端,其特征在于,所述输入信息包括在所述用户界面上接收到的第一选择操作所选择的网格的网格编号。
  32. 如权利要求29-31任一项所述的智能终端,其特征在于,所述处理器,用于
    设置网格编号,每一个网格编号用于唯一指示一个网格;
    将每一个网格的网格编号以及该网格所关联的地图区域进行关联存储。
  33. 如权利要求32所述的智能终端,其特征在于,所述处理器,用于
    获取当前各个待编号的网格对应的地图区域所属的行政区域,并根据该所属行政区域的名称对该各个带编号的网格进行编号,得到各个带编号网格的网格编号;和/或
    获取当前各个待编号的网格所对应的地图当前使用的比例尺,并根据该比例尺对该各个带编号的网格进行编号,得到各个带编号网格的网格编号。
  34. 如权利要求32所述的智能终端,其特征在于,所述地图中同一块固定的地图区域,在不同的高度上关联有不同的网格,且该固定的地图区域所关联的不同的网格的网格编号不相同。
  35. 如权利要求29-34任一项所述的智能终端,其特征在于,所述处理器,用于
    按照预置的网格化策略中指示的网格尺寸,对所显示的地图进行网格化处理。
  36. 如权利要求29-34任一项所述的智能终端,其特征在于,所述处理器,用于
    按照预置的网格化策略中指示的网格尺寸和网格形状,对所显示的地图进行网格化处理。
  37. 如权利要求29所述的智能终端,其特征在于,所述处理器,用于
    确定所述地图在所述用户界面上显示时的缩放比例尺;
    按照预置的网格化策略的指示,确定与所述缩放比例尺对应的网格尺寸;
    按照确定出的网格尺寸所对应网格对显示的所述地图进行网格化处理。
  38. 如权利要求37所述的智能终端,其特征在于,所述处理器,用于
    设置基础网格尺寸,所述基础网格尺寸用于确定基础网格;在所述地图以基础比例尺在所述用户界面上显示时是根据基础网格尺寸对应的基础网格对所显示的地图进行网格化处理。
  39. 如权利要求38所述的智能终端,其特征在于,所述处理器,用于
    根据所述缩放比例尺,确定出目标网格尺寸;
    所述目标网格是基于所述缩放比例尺与所述基础比例尺之间的关系,以所述基础网格尺寸为基准进行尺寸放大或者尺寸缩小后确定的网格尺寸。
  40. 如权利要求39所述的智能终端,其特征在于,当所述目标网格尺寸为以所述基础网格尺寸为基准进行尺寸缩小后确定的网格尺寸时,以该目标网格尺寸确定的网格为对应地图区域所在的基础网格的子网格,每一个子网格的属性标识与该子网格所对应的基础网格的属性标识相同,所述属性标识用于指示网格是否为限飞区网格。
  41. 如权利要求29-40任一项所述的智能终端,其特征在于,所述处理器,用于
    根据第一修改信息,对所述限飞区所在的网格进行更新处理,以对所述限飞区进行区域更新。
  42. 如权利要求41所述的智能终端,其特征在于,所述处理器,用于
    接收在所述用户界面上的第二选择操作,所述第二选择操作是指在所述规划得到的限飞区所包括的网格上的操作;
    根据所述第二选择操作确定第一修改信息,所述第一修改信息包括所述第二选择操作所选择的网格的网格编号;
    根据网格编号对所述第二选择操作所选择的网格进行标记取消处理。
  43. 如权利要求29~38任一项所述的智能终端,其特征在于,所述处理器,用于
    根据第二修改信息,对所述限飞区所在的网格中包括的子网格进行更新处理,以对所述限飞区进行区域更新。
  44. 如权利要求43所述的智能终端,其特征在于,所述处理器,用于
    接收在所述用户界面上的第三选择操作,所述第三选择操作是指在所述规划得到的限飞区所包括的网格的子网格上的操作;
    根据所述第三选择操作确定第二修改信息,所述第二修改信息包括所述第三选择操作所选择的子网格的子网格编号;
    根据子网格编号对所述第三选择操作所选择的子网格进行标记更新处理。
  45. 如权利要求44所述的智能终端,其特征在于,所述子网格是指以所述基础网格尺寸为基准进行尺寸缩小后确定的网格。
  46. 如权利要求29~45任一项所述的智能终端,其特征在于,所述处理器,用于
    在所述用户界面上提示关于限飞区所在的区域,所述提示是根据更改所述限飞区所包括的网格的颜色完成的。
  47. 一种飞行控制装置,其特征在于,包括:
    一处理器;以及
    一个与处理器连接的存储装置,所述存储装置用于存储运行指令,当处理器执行运行指令时,所述处理器,用于
    获取关于限飞区的编号集合,该编号集合中包括多个网格编号,每一个网格编号用于唯一指示一个网格,每一个网格与所述地图中一块固定的地图区域关联;
    根据各个网格编号所指示网格关联的地图区域,确定出至少一部分可飞行区域;
    根据确定出的至少一部分可飞行区域,控制飞行器飞行。
  48. 如权利要求47所述的飞行控制装置,其特征在于,所述编号集合中包括由多个目标网格编号构成的子编号集合,所述多个目标网格编号所指示网格对应的地图区域构成限飞区。
  49. 如权利要求47或48所述的飞行控制装置,其特征在于,所述处理器,用于
    接收并存储由控制终端设置的关于限飞区的编号集合。
  50. 如权利要求47-49任一项所述的飞行控制装置,其特征在于,所述处理器,用于
    接收第一限飞区更新请求;
    根据该第一限飞区更新请求中的一个或者多个网格编号,删除所述限飞区集合对应的网格编号,以完成对所述限飞区的更新。
  51. 如权利要求47-49任一项所述的飞行控制装置,其特征在于,所述处理器,用于
    接收第二限飞区更新请求;
    根据该第二限飞区更新请求中包括的子网格的子网格编号,确定出该子网格编号所对应网格的基础网格的网格编号;
    将所述子网格的子网格编号替换所述限飞区集合中所述基础网格的网格编号,以完成对所述限飞区的更新。
  52. 如权利要求51所述的飞行控制装置,其特征在于,所述子网格是指以所述基础网格尺寸为基准进行尺寸缩小后确定的网格。
  53. 一种飞行控制装置,其特征在于,包括:
    一个处理器;以及
    一个与处理器连接的存储装置,所述存储装置用于存储运行指令,当处理器执行运行指令时,所述处理器,用于
    获取关于限飞区的编号集合,该编号集合中包括多个网格编号,每一个网格编号用于唯一指示一个网格,每一个网格与所述地图中一块固定的地图区域关联;
    根据限飞区的编号集合,在显示的地图上标记限飞区,所述限飞区为各个网格编号所指示网格关联的地图区域;
    根据无人机的当前位置信息,在显示的地图上标记所述无人机。
  54. 如权利要求53所述的方法,其特征在于,所述编号集合中包括由多个目标网格编号构成的子编号集合,所述多个目标网格编号所指示网格对应的地图区域构成限飞区。
  55. 如权利要求53或54所述的方法,其特征在于,所述处理器,用于
    在接收到更新请求时,根据更新请求对所述显示的地图上标识的限飞区进行显示更新;
    所述更新请求中包括网格编号,对所述显示的地图上标识的限飞区进行显示更新包括:取消对所述限飞区中所述更新请求中的网格编号所指示网格的标记。
  56. 如权利要求55所述的方法,其特征在于,所述处理器,用于
    在检测到所述无人机与所述限飞区的距离小于预设距离阈值时,发出报警提示。
  57. 一种计算机存储介质,其特征在于,该计算机存储介质中存储有运行指令,该程序被执行时,用于实现权利要求1-18所述的限飞区规划处理方法方法。
  58. 一种计算机存储介质,其特征在于,该计算机存储介质中存储有运行指令,该程序被执行时,用于实现权利要求19-24所述的飞行控制方法。
  59. 一种计算机存储介质,其特征在于,该计算机存储介质中存储有运行指令,该程序被执行时,用于实现权利要求25-28所述的飞行控制方法。
PCT/CN2017/093872 2017-07-21 2017-07-21 限飞区规划方法、飞行控制方法及智能终端、控制装置 WO2019014925A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202210181964.5A CN114518769A (zh) 2017-07-21 2017-07-21 限飞区规划方法、飞行控制方法及智能终端、控制装置
CN201780004779.6A CN108475067A (zh) 2017-07-21 2017-07-21 限飞区规划方法、飞行控制方法及智能终端、控制装置
PCT/CN2017/093872 WO2019014925A1 (zh) 2017-07-21 2017-07-21 限飞区规划方法、飞行控制方法及智能终端、控制装置
US16/745,772 US20200159401A1 (en) 2017-07-21 2020-01-17 Method for planning restricted fly zone, flight control method, smart terminal, and control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/093872 WO2019014925A1 (zh) 2017-07-21 2017-07-21 限飞区规划方法、飞行控制方法及智能终端、控制装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/745,772 Continuation US20200159401A1 (en) 2017-07-21 2020-01-17 Method for planning restricted fly zone, flight control method, smart terminal, and control device

Publications (1)

Publication Number Publication Date
WO2019014925A1 true WO2019014925A1 (zh) 2019-01-24

Family

ID=63265985

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/093872 WO2019014925A1 (zh) 2017-07-21 2017-07-21 限飞区规划方法、飞行控制方法及智能终端、控制装置

Country Status (3)

Country Link
US (1) US20200159401A1 (zh)
CN (2) CN108475067A (zh)
WO (1) WO2019014925A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2560393B (en) * 2017-07-31 2019-01-30 Matthew Russell Iain Unmanned aerial vehicles
CN109559567B (zh) * 2018-12-12 2020-11-24 四川九洲空管科技有限责任公司 一种双层网格化空域资源动态状态管理方法及***
CN110296703A (zh) * 2019-06-21 2019-10-01 中国人民解放军陆军工程大学 一种应用于大规模无人机群***中的地理位置编码方法
WO2021068268A1 (zh) * 2019-10-12 2021-04-15 深圳市大疆创新科技有限公司 数据处理方法、处理及存储设备、飞行设备和控制***
WO2021134607A1 (zh) * 2019-12-31 2021-07-08 深圳市大疆创新科技有限公司 无人机的飞行控制方法、设备、***和计算机可读介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006071192A (ja) * 2004-09-02 2006-03-16 Toshiba Corp 防空シミュレーションシステム
EP1857904A1 (en) * 2006-04-20 2007-11-21 Saab Ab Emergency flight plan
CN103941744A (zh) * 2013-01-18 2014-07-23 通用电气航空***有限责任公司 用于确定飞行路径的方法
CN106403954A (zh) * 2016-09-28 2017-02-15 深圳高科新农技术有限公司 无人机自动航迹生成方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104932525B (zh) * 2015-05-28 2019-03-01 深圳一电航空技术有限公司 无人机的控制方法、装置、地面控制***及无人机

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006071192A (ja) * 2004-09-02 2006-03-16 Toshiba Corp 防空シミュレーションシステム
EP1857904A1 (en) * 2006-04-20 2007-11-21 Saab Ab Emergency flight plan
CN103941744A (zh) * 2013-01-18 2014-07-23 通用电气航空***有限责任公司 用于确定飞行路径的方法
CN106403954A (zh) * 2016-09-28 2017-02-15 深圳高科新农技术有限公司 无人机自动航迹生成方法

Also Published As

Publication number Publication date
US20200159401A1 (en) 2020-05-21
CN114518769A (zh) 2022-05-20
CN108475067A (zh) 2018-08-31

Similar Documents

Publication Publication Date Title
WO2019014925A1 (zh) 限飞区规划方法、飞行控制方法及智能终端、控制装置
US10540902B2 (en) Flight planning and communication
CN108521788B (zh) 生成模拟航线的方法、模拟飞行的方法、设备及存储介质
US20090183083A1 (en) Method and system for displaying information on a map
CN104981748B (zh) 一种飞行指示方法、装置及飞行器
US9170125B2 (en) Presenting weather information on a display
US9355484B2 (en) System and method of tile management
US10684756B2 (en) Avionics picture-in-picture display
JP6496671B2 (ja) 情報処理装置、端末装置、情報処理方法及びプログラム
CN105518487A (zh) 飞行器的位置提示方法及装置
US20130086215A1 (en) Managing large datasets obtained through a survey-data-acquisition process
JP6090321B2 (ja) 情報処理装置及びプログラム
WO2018187889A1 (zh) 一种飞行处理方法及控制设备
CN110362102B (zh) 一种无人机航线生成的方法、装置和***
CN105518415A (zh) 一种飞行航线设置方法及装置
WO2014130072A1 (en) Geo-fence creation on touch-enabled devices
US11042961B2 (en) Spatial processing for map geometry simplification
EP3537276B1 (en) User interface for orienting a camera view toward surfaces in a 3d map and devices incorporating the user interface
JP6455158B2 (ja) 情報処理プログラムおよび情報処理装置
US11521501B2 (en) Method, apparatus and system for operating waypoint, ground station and computer readable storage medium
KR101615504B1 (ko) 휴대용 단말기에서 컨텐츠를 저장하고 검색하는 방법 및 장치
CN111210516A (zh) 一种用于航电设备综合显示控制的软件平台
WO2018053768A1 (zh) 一种航线生成方法、装置及终端
KR102012361B1 (ko) 무인비행체의 안전 운항을 위한 디지털 무빙 맵 서비스 제공 방법 및 장치
US10802685B2 (en) Vehicle marking in vehicle management systems

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17918506

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17918506

Country of ref document: EP

Kind code of ref document: A1