WO2019011325A1 - 一种具备低速保护功能的自动同步离合器低速同步方法 - Google Patents

一种具备低速保护功能的自动同步离合器低速同步方法 Download PDF

Info

Publication number
WO2019011325A1
WO2019011325A1 PCT/CN2018/095620 CN2018095620W WO2019011325A1 WO 2019011325 A1 WO2019011325 A1 WO 2019011325A1 CN 2018095620 W CN2018095620 W CN 2018095620W WO 2019011325 A1 WO2019011325 A1 WO 2019011325A1
Authority
WO
WIPO (PCT)
Prior art keywords
speed
low speed
automatic
input end
rotational speed
Prior art date
Application number
PCT/CN2018/095620
Other languages
English (en)
French (fr)
Inventor
张立建
刘冀
冯磊
陈倪
阳虹
何阿平
虎煜
Original Assignee
上海电气电站设备有限公司
上海汽轮机厂有限公司
上海电气燃气轮机有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海电气电站设备有限公司, 上海汽轮机厂有限公司, 上海电气燃气轮机有限公司 filed Critical 上海电气电站设备有限公司
Priority to EP18832531.0A priority Critical patent/EP3653900B1/en
Publication of WO2019011325A1 publication Critical patent/WO2019011325A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D48/00External control of clutches
    • F16D48/06Control by electric or electronic means, e.g. of fluid pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D41/00Freewheels or freewheel clutches
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2500/00External control of clutches by electric or electronic means
    • F16D2500/10System to be controlled
    • F16D2500/104Clutch
    • F16D2500/10443Clutch type
    • F16D2500/10493One way clutch
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2500/00External control of clutches by electric or electronic means
    • F16D2500/30Signal inputs
    • F16D2500/304Signal inputs from the clutch
    • F16D2500/3041Signal inputs from the clutch from the input shaft
    • F16D2500/30415Speed of the input shaft
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2500/00External control of clutches by electric or electronic means
    • F16D2500/30Signal inputs
    • F16D2500/304Signal inputs from the clutch
    • F16D2500/3042Signal inputs from the clutch from the output shaft
    • F16D2500/30426Speed of the output shaft
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2500/00External control of clutches by electric or electronic means
    • F16D2500/30Signal inputs
    • F16D2500/316Other signal inputs not covered by the groups above
    • F16D2500/3166Detection of an elapsed period of time
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2500/00External control of clutches by electric or electronic means
    • F16D2500/50Problem to be solved by the control system
    • F16D2500/502Relating the clutch
    • F16D2500/50239Soft clutch engagement
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2500/00External control of clutches by electric or electronic means
    • F16D2500/70Details about the implementation of the control system
    • F16D2500/704Output parameters from the control unit; Target parameters to be controlled
    • F16D2500/70402Actuator parameters
    • F16D2500/7041Position
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2500/00External control of clutches by electric or electronic means
    • F16D2500/70Details about the implementation of the control system
    • F16D2500/704Output parameters from the control unit; Target parameters to be controlled
    • F16D2500/70422Clutch parameters
    • F16D2500/70432From the input shaft
    • F16D2500/70436Input shaft speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2500/00External control of clutches by electric or electronic means
    • F16D2500/70Details about the implementation of the control system
    • F16D2500/704Output parameters from the control unit; Target parameters to be controlled
    • F16D2500/70422Clutch parameters
    • F16D2500/70438From the output shaft
    • F16D2500/70442Output shaft speed

Definitions

  • the present invention relates to the field of clutch technology, and more particularly to an automatic synchronous clutch low speed synchronization method with a low speed protection function.
  • the automatic synchronizing clutch also known as the SSS (Synchro-Self-Shifting) clutch, is a fully automatic one-way overrunning clutch that transmits power through gear components. It can automatically switch according to the input and output speeds: when the input is raised relative to the output, the automatic synchronizing clutch automatically engages; when the input end is decelerated relative to the output, the automatic synchronizing clutch is automatically disengaged. That is, when the input end speed has a tendency to exceed the output end speed, the automatic synchronizing clutch automatically engages; when the input end speed has a tendency lower than the output end speed, the automatic synchronizing clutch automatically disengages.
  • SSS Synchro-Self-Shifting
  • the automatic synchronizing clutch with low speed protection function will activate the pawl effective speed more than a certain value, that is, the pawl increases with the increase of the input end speed, and the centrifugal force increases.
  • the centrifugal force is greater than the centrifugal force of the pawl tail, the pawl It can fly under the action of centrifugal force against the force of the spring and combine with the ratchet. Therefore, the automatic synchronizing clutch having the low speed protection function has a critical speed range from the inactive state to the active state of the pawl, and the critical speed interval can be measured by a factory test. In this interval, the pawl is not fully open, and its state is uncertain. If the rotational speed of the input end and the output end intersect within the interval, and the rotational speed of the input end exceeds the rotational speed of the output end, the automatic synchronizing clutch will be caused. damage.
  • the automatic synchronizing clutch automatic meshing synchronization method with low speed protection function is: firstly, the output speed is raised to and maintained at the synchronous target speed m rpm, and then the input end speed is also Raised to m revolutions per minute, the automatic synchronizing clutch will automatically engage when the speed of the input has a tendency to exceed the output.
  • the output terminal speed will be removed. Usually, when the output terminal trips, the input terminal also trips, because the output speed decreases.
  • the rotation speed curve is steeper than the input end, so the output and input speeds are likely to intersect in the critical speed range n1 ⁇ n2 rev / min, there is a risk of damage to the automatic synchronizing clutch, especially when synchronizing
  • the target rotational speed m rpm is close to the upper limit n2 rpm of the critical speed range n1 to n2 rpm of the automatic synchronizing clutch, the possibility of causing the automatic synchronizing clutch to be damaged under the faulty condition is greater.
  • the synchronous target speed m rev / min should be much higher than the upper limit of the automatic synchronizing clutch's critical speed range n1 ⁇ n2 rev / min n2 rev / min, without allowing the auto synchronizing clutch in its critical speed range n1 Synchronization in the low speed range close to ⁇ n2 rpm to avoid the intersection of the output and input speeds during the critical speed range n1 ⁇ n2 rpm.
  • the automatic synchronizing clutch with low speed protection function applied to the gas-steam single-shaft combined cycle unit has an effective flying speed of 700 rpm in the acceleration process of the pawl, and the effective retracting speed of the deceleration process is 350 rpm, so its critical speed range is 350-700 rpm. Since there is a large safety hazard in synchronization at the speed close to the critical speed range, synchronization at a low speed close to the critical speed range is not allowed.
  • the automatic synchronizing clutch in the gas-steam single-shaft combined cycle unit is only allowed to rotate at 3000 rpm. Synchronization at /minus speed results in a greater impact on the flexibility of the unit.
  • the technical problem to be solved by the present invention is to provide a low-speed synchronization method for an automatic synchronizing clutch with a low-speed protection function, which can prevent the output end and the input end rotation speed from being within the critical speed range of the automatic synchronizing clutch when the output end is tripped during the low-speed synchronization process.
  • a low-speed synchronization method for an automatic synchronizing clutch with a low-speed protection function which can prevent the output end and the input end rotation speed from being within the critical speed range of the automatic synchronizing clutch when the output end is tripped during the low-speed synchronization process.
  • the risk of damage to the automatic synchronizing clutch at low speed synchronization is eliminated to overcome the above-mentioned drawbacks of the prior art.
  • an automatic synchronous clutch low speed synchronization method with low speed protection function determining the critical speed range of the automatic synchronous clutch is n1 ⁇ n2 revolutions / minute, setting the input end and the output end
  • the synchronous target speed is M rev / min, and meets M>n2; firstly, the output speed is raised to and maintained at M rev / min, then the speed of the input end is increased, when the input end speed has a tendency to exceed the output end speed,
  • the automatic synchronizing clutch is automatically engaged; when the speed of the input end is raised to n rpm, and the output end is tripped when n1 ⁇ n ⁇ n2 is satisfied, the speed of the input end is accelerated and the speed of the control input is from n rpm.
  • the time required to increase to n2 rpm is less than the time required for the output speed to decrease from M rev / min to n 2 rev / min, so that the input end speed and the output end speed intersect at a speed greater than n2 rev / min.
  • the input terminal is tripped when the rotational speed of the input terminal is increased to n revolutions per minute and the output terminal is tripped when n ⁇ n1 is satisfied.
  • the rotational speed of the input end is increased to n rpm, and the output terminal is tripped when n ⁇ n2 is satisfied, the rotational speed of the input end is continuously increased, so that the rotational speed of the input end and the rotational speed of the output end are greater than n 2 rpm. Intersect at the speed to achieve automatic engagement of the automatic synchronizing clutch.
  • the input end is a steam turbine in a gas-steam single-shaft combined cycle unit
  • the output end is a gas turbine and a generator in a gas-steam single-shaft combined cycle unit.
  • n1 and n2 satisfy: 200 ⁇ n1 ⁇ 500, 500 ⁇ n2 ⁇ 1000.
  • M satisfies: 600 ⁇ M ⁇ 2000.
  • M satisfies: 800 ⁇ M ⁇ 1000.
  • M 900.
  • the low-speed synchronous method of the automatic synchronizing clutch with the low-speed protection function of the present invention even if the synchronous target rotational speed M rpm is close to the lower synchronous speed of the automatic synchronous clutch critical speed range n1 to n2 rpm, the process of increasing the speed at the input end
  • the input can continue to rise and can intersect with the output speed at a speed greater than n2 rpm to achieve synchronization.
  • FIG. 1 is a schematic diagram of a synchronization process for realizing automatic meshing of an automatic synchronizing clutch in the prior art.
  • Fig. 2 is a schematic view showing the occurrence of a tripping condition in the automatic synchronizing clutch synchronization process in the prior art.
  • FIG. 3 is a schematic diagram of a synchronization process of an automatic synchronous clutch low speed synchronization method with a low speed protection function according to an embodiment of the present invention.
  • FIG. 4 is a schematic diagram of the automatic synchronizing clutch low speed synchronization method with low speed protection function in the embodiment of the present invention, when the output end speed n ⁇ n1 occurs during the synchronization process, the output terminal trips.
  • FIG. 5 is a schematic diagram of a synchronization process when the output end trips when the speed n of the input end satisfies n1 ⁇ n ⁇ n2 in the synchronous process of the automatic synchronous clutch low speed synchronization method with the low speed protection function according to the embodiment of the present invention.
  • FIG. 3 to FIG. 5 an embodiment of the automatic synchronizing clutch low speed synchronizing method with low speed protection function of the present invention is shown.
  • the low-speed synchronization method of the automatic synchronizing clutch with the low speed protection function of the embodiment is: measuring the critical speed range of the automatic synchronizing clutch is n1 to n2 revolutions/minute, and n1 and n2 should satisfy 0 ⁇ n1 ⁇ n2.
  • the synchronous target rotational speed M rpm of the input end and the output end is smaller than the rated working rotational speed of the automatic synchronous clutch, that is, the automatic synchronous clutch low speed synchronous method of the embodiment is to make the automatic synchronous clutch work below the rated speed.
  • the output speed is first raised and maintained at M rev / min, and then the input end speed is increased.
  • the automatic synchronizing clutch automatically engages. That is, when the rotational speed of the input end is increased to be equal to the rotational speed of the output end, and the upward trend is maintained, so that the rotational speed of the input end exceeds the rotational speed of the output end and there is a relative speed difference between the rotational speed of the output end, the automatic connection of the output end and the input end
  • the synchronizing clutch will automatically engage. As shown in Fig.
  • the rotational speed of the input terminal is raised to n rpm, and the output terminal is tripped when n1 ⁇ n ⁇ n2 is satisfied, the rotational speed of the input terminal is accelerated, and the rotational speed of the control input terminal is from n rpm.
  • the time required to increase to n2 rpm is less than the time required for the output speed to decrease from M revolutions per minute to n2 revolutions per minute. That is, the acceleration capability of the control input is such that the rotational speed of the input end is first raised to n2 rpm before the rotational speed of the output end is reduced to n2 rpm, so that the rotational speed of the input end and the rotational speed of the output end are greater than n2 rpm.
  • the lower intersection that is, the input end speed is equal to the output end speed, and the automatic synchronizing clutch is automatically engaged. This ensures that the rotational speed of the input end and the rotational speed of the output end do not intersect within the critical synchronizing clutch critical speed range n1 to n2 rpm, and the automatic synchronizing clutch is not damaged.
  • the rotational speed at the input end can continue to increase the speed and can intersect the output end speed at a speed greater than n2 rpm to achieve synchronization.
  • the low-speed synchronous method of the automatic synchronous clutch with the low-speed protection function of the embodiment can be applied to the gas-steam single-shaft combined cycle unit, and is particularly suitable for the steam-turbine and gas turbine and the generator of the gas-steam single-shaft combined cycle unit at low speed. Synchronize.
  • the input end of the automatic synchronous clutch is a steam turbine in the gas-steam single-shaft combined cycle unit, and the automatic synchronization is performed.
  • the output of the clutch is a gas turbine and generator in a gas-steam single-shaft combined cycle unit.
  • the automatic synchronizing clutch critical speed range n1 to n2 revolutions per minute satisfies: 200 ⁇ n1 ⁇ 500, 500 ⁇ n2 ⁇ 1000.
  • the automatic synchronizing clutch critical speed range n1 to n2 revolutions per minute is 350-700 revolutions per minute.
  • the automatic synchronizing clutch in the gas-steam single-shaft combined cycle unit is only allowed to synchronize at 3000 rpm.
  • the synchronization target rotational speed M rpm is satisfied: 600 ⁇ M ⁇ 2000.
  • the synchronization target rotational speed M revolutions per minute satisfies: 800 ⁇ M ⁇ 1000.
  • the synchronous target rotational speed M revolutions per minute is 900 rpm. That is, the automatic synchronizing clutch low speed synchronizing method with the low speed protection function of the embodiment can make the automatic synchronizing clutch have a lower synchronous speed than the allowable synchronous speed of the prior art and close to the critical speed range n1 to n2 revolutions per minute. Underneath synchronization. Therefore, the low-speed synchronization method of the automatic synchronizing clutch with the low-speed protection function of the present embodiment can greatly improve the flexibility of the gas-steam single-shaft combined cycle unit.
  • the low-speed synchronization method of the automatic synchronizing clutch with the low-speed protection function of the embodiment can effectively avoid the intersection of the output end and the input end speed in the critical speed range of the automatic synchronizing clutch when the output end is tripped during the low-speed synchronization. In this case, the risk of damage to the automatic synchronizing clutch at low speed synchronization is eliminated.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Hydraulic Clutches, Magnetic Clutches, Fluid Clutches, And Fluid Joints (AREA)
  • Control Of Eletrric Generators (AREA)

Abstract

一种具有低速保护功能的自动同步离合器低速同步方法,包括:测定其临界转速区间为n1~n2转/分钟,设定同步目标转速为M转/分钟,且满足M>n2;先将输出端的转速提升至并保持在M转/分钟,然后将输入端的转速提升;在输入端的转速提升至n转/分钟,且满足n1<n<n2时输出端发生跳闸的情况下,将输入端的转速加速提升,且控制输入端的转速从n转/分钟提升至n2转/分钟所需的时间小于输出端的转速从M转/分钟降低至n2转/分钟所需的时间,使输入端和输出端的转速在大于n2转/分钟的转速下相交。

Description

一种具备低速保护功能的自动同步离合器低速同步方法
本申请要求申请日为2017年7月14日的中国专利申请CN201710576690.9的优先权。本申请引用上述中国专利申请的全文。
技术领域
本发明涉及离合器技术领域,尤其涉及一种具备低速保护功能的自动同步离合器低速同步方法。
背景技术
自动同步离合器,也称为SSS(Synchro-Self-Shifting,同步自换挡)离合器,是一种通过齿轮元件传递功率的全自动型单向超越离合器。它能够根据输入端、输出端转速的高低自动进行切换:当输入端相对输出端升速时,自动同步离合器自动啮合;当输人端相对输出端降速时,自动同步离合器自动脱开。即当输入端转速有超越输出端转速的趋势时,自动同步离合器自动啮合;当输入端转速有低于输出端转速的趋势时,自动同步离合器自动脱开。具备低速保护功能的自动同步离合器,其棘爪有效转速需超过某一数值才会被激活,即,棘爪随输入端转速的增加,离心力增大,当离心力大于棘爪尾部离心力时,棘爪可在离心力作用下克服弹簧作用力而飞起,与棘轮结合。因此,这种具有低速保护功能的自动同步离合器,其棘爪从无效状态到激活状态存在一个临界转速区间,该临界转速区间可以通过出厂试验测得。在这一区间内棘爪没有完全有效张开,其状态具有不确定性,如若输入端和输出端的转速在该区间内发生相交,且输入端的转速超过输出端的转速,则会导致自动同步离合器的损坏。
如图1所示,现有技术中实现具备低速保护功能的自动同步离合器自动啮合的同步方法为:先将输出端的转速提升至并保持在同步目标转速m转/ 分钟,然后将输入端的转速也提升至m转/分钟,当输入端的转速有超越输出端的趋势时,自动同步离合器将自动啮合。如图2所示,在输入端转速提升的过程中,如若输出端发生跳闸,将导致输出端转速堕走,通常,在输出端发生跳闸时,输入端也随之跳闸,由于输出端转速下降迅速,其转速堕走曲线较出入端更陡,因此输出端和输入端转速很可能会在临界转速区间n1~n2转/分钟内相交,从而存在造成自动同步离合器损坏的风险,特别是当同步目标转速m转/分钟与自动同步离合器的临界转速区间n1~n2转/分钟的上限n2转/分钟相接近时,在故障工况下造成自动同步离合器损坏的可能性更大。
为避免这一风险,要求同步目标转速m转/分钟应远高于自动同步离合器的临界转速区间n1~n2转/分钟的上限n2转/分钟,而不允许自动同步离合器在与其临界转速区间n1~n2转/分钟相近的低速范围内同步,以避免跳闸时输出端和输入端转速在临界转速区间n1~n2转/分钟内相交。但是这样就大大限制了这种具备低速保护功能的自动同步离合器的应用范围。
例如,应用于燃气-蒸汽单轴联合循环机组中的具备低速保护功能的自动同步离合器,其棘爪在加速过程中的有效飞起转速为700转/分钟,在减速过程张的有效收回转速为350转/分钟,因此其临界转速区间为350-700转/分钟。由于在接近临界转速区间的转速下同步存在较大安全隐患,因此在接近临界转速区间的低速下同步是不允许的,目前燃气-蒸汽单轴联合循环机组中的自动同步离合器仅允许在3000转/分钟的转速下同步,导致机组的灵活性受到较大影响。
发明内容
本发明要解决的技术问题是提供一种具备低速保护功能的自动同步离合器低速同步方法,能够避免低速同步过程中输出端出现跳闸时发生输出端和输入端转速在自动同步离合器的临界转速区间内相交的情况,消除自动同 步离合器在低速同步时发生损坏的风险,以克服现有技术的上述缺陷。
为了解决上述技术问题,本发明采用如下技术方案:一种具备低速保护功能的自动同步离合器低速同步方法,测定自动同步离合器的临界转速区间为n1~n2转/分钟,设定输入端和输出端的同步目标转速为M转/分钟,且满足M>n2;先将输出端的转速提升至并保持在M转/分钟,然后将输入端的转速提升,当输入端转速有超越输出端转速的趋势时,自动同步离合器自动啮合;在输入端的转速提升至n转/分钟,且满足n1<n<n2时输出端发生跳闸的情况下,将输入端的转速加速提升,且控制输入端的转速从n转/分钟提升至n2转/分钟所需的时间小于输出端的转速从M转/分钟降低至n2转/分钟所需的时间,使输入端的转速和输出端的转速在大于n2转/分钟的转速下相交,实现自动同步离合器的自动啮合。
优选地,在输入端的转速提升至n转/分钟,且满足n≤n1时输出端发生跳闸的情况下,使输入端跳闸。
优选地,在输入端的转速提升至n转/分钟,且满足n≥n2时输出端发生跳闸的情况下,将输入端的转速继续提升,使输入端的转速和输出端的转速在大于n2转/分钟的转速下相交,实现自动同步离合器的自动啮合。
优选地,输入端为燃气-蒸汽单轴联合循环机组中的汽轮机,输出端为燃气-蒸汽单轴联合循环机组中的燃气轮机和发电机。
优选地,n1和n2满足:200≤n1≤500,500<n2≤1000。
优选地,n1和n2满足:n1=350,n2=700。
优选地,M满足:600≤M≤2000。
优选地,M满足:800≤M≤1000。
优选地,M满足:M=900。
与现有技术相比,本发明具有显著的进步:
采用本发明的具备低速保护功能的自动同步离合器低速同步方法,即使同步目标转速M转/分钟是接近自动同步离合器临界转速区间n1~n2转/分 钟的较低转速,在输入端转速提升的过程中发生输出端跳闸而转速下降的情况下,通过控制输入端的加速能力,使得输入端可以继续升速并且能够在大于n2转/分钟的转速下与输出端转速相交,实现同步。因此可有效避免低速同步过程中输出端出现跳闸时发生输出端和输入端转速在自动同步离合器的临界转速区间内相交的情况,消除自动同步离合器在低速同步时发生损坏的风险。
附图说明
图1是现有技术中实现自动同步离合器自动啮合的同步过程示意图。
图2是现有技术中自动同步离合器同步过程中出现跳闸工况时的示意图。
图3是本发明实施例的具备低速保护功能的自动同步离合器低速同步方法的同步过程示意图。
图4是本发明实施例的具备低速保护功能的自动同步离合器低速同步方法在同步过程中当输入端的转速n<n1时输出端发生跳闸的示意图。
图5是本发明实施例的具备低速保护功能的自动同步离合器低速同步方法在同步过程中当输入端的转速n满足n1<n<n2时输出端发生跳闸时的同步过程示意图。
具体实施方式
下面结合附图对本发明的具体实施方式作进一步详细说明。这些实施方式仅用于说明本发明,而并非对本发明的限制。
如图3至图5所示,本发明的具备低速保护功能的自动同步离合器低速同步方法的一种实施例。
本实施例的具备低速保护功能的自动同步离合器低速同步方法为:测定自动同步离合器的临界转速区间为n1~n2转/分钟,n1和n2应满足0<n1 <n2。设定输入端和输出端的同步目标转速为M转/分钟,且满足M>n2。本实施例中,设定的输入端和输出端的同步目标转速M转/分钟小于自动同步离合器的额定工作转速,即本实施例的自动同步离合器低速同步方法是使自动同步离合器在低于额定工作转速、接近临界转速区间n1~n2转/分钟的较低转速下同步的方法。如图3所示,先将输出端的转速提升至并保持在M转/分钟,然后将输入端的转速提升,当输入端转速有超越输出端转速的趋势时,自动同步离合器自动啮合。即,当输入端的转速提升至与输出端的转速相等,并保持提升趋势,使输入端的转速呈超越输出端转速的趋势而与输出端的转速之间存在相对速差时,连接输出端和输入端的自动同步离合器将自动啮合。如图4所示,在输入端的转速提升至n转/分钟,且满足n1<n<n2时输出端发生跳闸的情况下,将输入端的转速加速提升,且控制输入端的转速从n转/分钟提升至n2转/分钟所需的时间小于输出端的转速从M转/分钟降低至n2转/分钟所需的时间。即,控制输入端的加速能力,使输入端的转速在输出端的转速下降至n2转/分钟之前就已经先提升到了n2转/分钟,从而使输入端的转速和输出端的转速在大于n2转/分钟的转速下相交,即输入端转速与输出端转速相等,实现自动同步离合器的自动啮合。由此可以确保输入端的转速和输出端的转速不会在自动同步离合器临界转速区间n1~n2转/分钟内发生相交,也就不会造成自动同步离合器的损坏。
因此,采用本实施例的具备低速保护功能的自动同步离合器低速同步方法,即使同步目标转速M转/分钟是接近自动同步离合器临界转速区间n1~n2转/分钟的较低转速,在输入端转速提升的过程中发生输出端跳闸而转速下降的情况下,通过控制输入端的加速能力,使得输入端可以继续升速并且能够在大于n2转/分钟的转速下与输出端转速相交,实现同步。因此可有效避免低速同步过程中输出端出现跳闸时发生输出端和输入端转速在自动同步离合器的临界转速区间内相交的情况,消除自动同步离合器在低速同步时发生损坏的风险。
进一步,在输入端的转速提升至n转/分钟,且满足0<n≤n1时输出端发生跳闸的情况下,则使输入端跳闸。如图5所示,由于此时输入端转速n转/分钟还没有达到自动同步离合器临界转速区间n1~n2转/分钟内,因此输入端也随输出端跳闸后,输入端的转速和输出端的转速各自下降,不会在自动同步离合器临界转速区间n1~n2转/分钟内发生转速相交,也就不会造成自动同步离合器的损坏。
进一步,在输入端的转速提升至n转/分钟,且满足n≥n2时输出端发生跳闸的情况下,则将输入端的转速继续提升。由于此时输入端转速n转/分钟已经超过自动同步离合器临界转速区间n1~n2转/分钟,因此输出端跳闸后,输出端转速下降,输出端转速则继续提升,输入端的转速和输出端的转速会在大于n2转/分钟的转速下相交,实现同步,因而不会造成自动同步离合器的损坏。
本实施例的具备低速保护功能的自动同步离合器低速同步方法可以应用到燃气-蒸汽单轴联合循环机组中,尤其适用于燃气-蒸汽单轴联合循环机组的汽轮机和燃气轮机及发电机在低速下的同步。
将本实施例的具备低速保护功能的自动同步离合器低速同步方法应用到燃气-蒸汽单轴联合循环机组中时,自动同步离合器的输入端为燃气-蒸汽单轴联合循环机组中的汽轮机,自动同步离合器的输出端为燃气-蒸汽单轴联合循环机组中的燃气轮机和发电机。自动同步离合器临界转速区间n1~n2转/分钟满足:200≤n1≤500,500<n2≤1000。优选地,自动同步离合器临界转速区间n1~n2转/分钟为350-700转/分钟。
现有技术中,燃气-蒸汽单轴联合循环机组中的自动同步离合器仅允许在3000转/分钟的转速下同步。而本实施例中的同步目标转速M转/分钟满足:600≤M≤2000。优选地,同步目标转速M转/分钟满足:800≤M≤1000。更优地,同步目标转速M转/分钟为900转/分钟。即,本实施例的具备低速保护功能的自动同步离合器低速同步方法可以使自动同步离合器在远低于 现有技术所允许的同步转速、接近其临界转速区间n1~n2转/分钟的较低转速下实现同步。因此,采用本实施例的具备低速保护功能的自动同步离合器低速同步方法,能够大大提高燃气-蒸汽单轴联合循环机组的灵活性。
综上所述,本实施例的具备低速保护功能的自动同步离合器低速同步方法能够有效避免低速同步过程中输出端出现跳闸时发生输出端和输入端转速在自动同步离合器的临界转速区间内相交的情况,消除自动同步离合器在低速同步时发生损坏的风险。
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明技术原理的前提下,还可以做出若干改进和替换,这些改进和替换也应视为本发明的保护范围。

Claims (9)

  1. 一种具备低速保护功能的自动同步离合器低速同步方法,其特征在于,测定自动同步离合器的临界转速区间为n1~n2转/分钟,设定输入端和输出端的同步目标转速为M转/分钟,且满足M>n2;先将所述输出端的转速提升至并保持在M转/分钟,然后将所述输入端的转速提升,当所述输入端转速有超越所述输出端转速的趋势时,所述自动同步离合器自动啮合;
    在所述输入端的转速提升至n转/分钟,且满足n1<n<n2时所述输出端发生跳闸的情况下,将所述输入端的转速加速提升,且控制所述输入端的转速从n转/分钟提升至n2转/分钟所需的时间小于所述输出端的转速从M转/分钟降低至n2转/分钟所需的时间,使所述输入端的转速和所述输出端的转速在大于n2转/分钟的转速下相交,实现所述自动同步离合器的自动啮合。
  2. 根据权利要求1所述的具备低速保护功能的自动同步离合器低速同步方法,其特征在于,在所述输入端的转速提升至n转/分钟,且满足n≤n1时所述输出端发生跳闸的情况下,使所述输入端跳闸。
  3. 根据权利要求1或2所述的具备低速保护功能的自动同步离合器低速同步方法,其特征在于,在所述输入端的转速提升至n转/分钟,且满足n≥n2时所述输出端发生跳闸的情况下,将所述输入端的转速继续提升,使所述输入端的转速和所述输出端的转速在大于n2转/分钟的转速下相交,实现所述自动同步离合器的自动啮合。
  4. 根据权利要求1-3中任一项所述的具备低速保护功能的自动同步离合器低速同步方法,其特征在于,所述输入端为燃气-蒸汽单轴联合循环机组中的汽轮机,所述输出端为燃气-蒸汽单轴联合循环机组中的燃气轮机和发电机。
  5. 根据权利要求1-4中任一项所述的具备低速保护功能的自动同步离合器低速同步方法,其特征在于,所述n1和n2满足:200≤n1≤500,500<n2 ≤1000。
  6. 根据权利要求5所述的具备低速保护功能的自动同步离合器低速同步方法,其特征在于,所述n1和n2满足:n1=350,n2=700。
  7. 根据权利要求1-6中任一项所述的具备低速保护功能的自动同步离合器低速同步方法,其特征在于,所述M满足:600≤M≤2000。
  8. 根据权利要求7所述的具备低速保护功能的自动同步离合器低速同步方法,其特征在于,所述M满足:800≤M≤1000。
  9. 根据权利要求8所述的具备低速保护功能的自动同步离合器低速同步方法,其特征在于,M=900。
PCT/CN2018/095620 2017-07-14 2018-07-13 一种具备低速保护功能的自动同步离合器低速同步方法 WO2019011325A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP18832531.0A EP3653900B1 (en) 2017-07-14 2018-07-13 Low speed synchronization method for synchro-self-shifting clutch having low speed protection function

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710576690.9 2017-07-14
CN201710576690.9A CN107387594B (zh) 2017-07-14 2017-07-14 一种具备低速保护功能的自动同步离合器低速同步方法

Publications (1)

Publication Number Publication Date
WO2019011325A1 true WO2019011325A1 (zh) 2019-01-17

Family

ID=60340633

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/095620 WO2019011325A1 (zh) 2017-07-14 2018-07-13 一种具备低速保护功能的自动同步离合器低速同步方法

Country Status (3)

Country Link
EP (1) EP3653900B1 (zh)
CN (1) CN107387594B (zh)
WO (1) WO2019011325A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107387594B (zh) * 2017-07-14 2019-03-19 上海电气电站设备有限公司 一种具备低速保护功能的自动同步离合器低速同步方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3630067B2 (ja) * 2000-03-22 2005-03-16 三菱自動車工業株式会社 車両用自動変速機のクリープ力制御装置
CN101240819A (zh) * 2007-02-15 2008-08-13 洪中元 空载软启动器
CN201924029U (zh) * 2010-12-10 2011-08-10 成都发动机(集团)有限公司 一种高炉三机组
CN107387594A (zh) * 2017-07-14 2017-11-24 上海电气电站设备有限公司 一种具备低速保护功能的自动同步离合器低速同步方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19530610C2 (de) * 1995-08-21 1998-10-22 Daimler Benz Ag Verfahren zur Steuerung einer automatischen Kupplung
DE19805459B4 (de) * 1997-02-20 2008-02-21 Volkswagen Ag Verfahren zur Steuerung des Einkuppelns einer automatisierten Kupplung eines Kraftfahrzeugs
DE10306934A1 (de) * 2003-02-19 2004-09-02 Zf Friedrichshafen Ag Verfahren zur Anlegepunktbestimmung der Kupplung eines automatisierten Schaltgetriebes
JP2005180370A (ja) * 2003-12-22 2005-07-07 Hitachi Ltd 一軸コンバインドサイクル発電プラント及びその制御方法
DE102007026770A1 (de) * 2007-06-09 2008-12-11 Zf Friedrichshafen Ag Verfahren und Vorrichtung zum Bestimmen des Kupplungsverschleißes
DE102008053387A1 (de) * 2007-11-15 2009-05-20 Luk Lamellen Und Kupplungsbau Beteiligungs Kg Verfahren zur Steuerung einer automatisierten Reibungskupplung
CN103104634A (zh) * 2011-11-11 2013-05-15 董志军 自动离合器控制***
JP2014065357A (ja) * 2012-09-25 2014-04-17 Aisin Seiki Co Ltd ハイブリッド車両用駆動装置
US9752509B2 (en) * 2013-08-27 2017-09-05 Siemens Energy, Inc. Method for controlling coupling of shafts between a first machine and a second machine using rotation speeds and angles
CN206268337U (zh) * 2016-12-19 2017-06-20 华北电力科学研究院有限责任公司 联合循环电厂同步离合器的安全监测***

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3630067B2 (ja) * 2000-03-22 2005-03-16 三菱自動車工業株式会社 車両用自動変速機のクリープ力制御装置
CN101240819A (zh) * 2007-02-15 2008-08-13 洪中元 空载软启动器
CN201924029U (zh) * 2010-12-10 2011-08-10 成都发动机(集团)有限公司 一种高炉三机组
CN107387594A (zh) * 2017-07-14 2017-11-24 上海电气电站设备有限公司 一种具备低速保护功能的自动同步离合器低速同步方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3653900A4

Also Published As

Publication number Publication date
CN107387594A (zh) 2017-11-24
CN107387594B (zh) 2019-03-19
EP3653900B1 (en) 2023-01-04
EP3653900A1 (en) 2020-05-20
EP3653900A4 (en) 2021-01-06

Similar Documents

Publication Publication Date Title
US8232662B2 (en) Wind turbine generator and start-up method of the same
CN101709689B (zh) 两阶段停止风力涡轮机的方法
CN102748213B (zh) 一种风力发电机组紧急停机控制***及方法
AU2010276473B2 (en) Device and method for controlling wind turbine
RU2016140813A (ru) Газотурбинный двигатель, содержащий устройство управляемого механического соединения, вертолет, оснащенный таким газотурбинным двигателем, и способ оптимизации режима сверхмалого газа с нулевой мощностью такого вертолета
WO2019011325A1 (zh) 一种具备低速保护功能的自动同步离合器低速同步方法
RU2016147357A (ru) Способ управления газотурбинным узлом при низкой скорости вращения
EP1000269A1 (en) System and method for controlling acceleration of a load coupled to a gas turbine engine
US20160201501A1 (en) Method for testing an overspeed protection apparatus of a single-shaft system
CN112963304B (zh) 一种包含转矩控制的风电机组超速保护辅助控制方法
JP2015161257A (ja) ターニング装置およびその制御方法
CN107202082B (zh) 具备低速保护功能的自动同步离合器低速同步方法
JP5194175B2 (ja) 火力発電所を制御する方法及びデバイス
RU2629244C2 (ru) Способ испытания защиты от сверхноминальной скорости вращения одновальной газопаротурбинной установки
CN108474345B (zh) 用于控制风能设备的方法
CN108388279A (zh) 一种高速旋转机械设备的控制方法和装置
JP7247071B2 (ja) プラント制御装置、プラント制御方法、および発電プラント
KR101144308B1 (ko) 터빈 바이패스 설비를 갖춘 증기터빈의 과속도 예방 장치에서의 리셋 설정 방법
CN106050980B (zh) 具有安全离合器的驱动系
CN113202737B (zh) 用于核电厂汽轮机顶轴油泵的启停控制电路
JP6944406B2 (ja) 一軸コンバインドサイクルプラント、一軸コンバインドサイクルプラントの試験方法および一軸コンバインドサイクルプラントの制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18832531

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018832531

Country of ref document: EP

Effective date: 20200214