JP2014065357A - ハイブリッド車両用駆動装置 - Google Patents

ハイブリッド車両用駆動装置 Download PDF

Info

Publication number
JP2014065357A
JP2014065357A JP2012210421A JP2012210421A JP2014065357A JP 2014065357 A JP2014065357 A JP 2014065357A JP 2012210421 A JP2012210421 A JP 2012210421A JP 2012210421 A JP2012210421 A JP 2012210421A JP 2014065357 A JP2014065357 A JP 2014065357A
Authority
JP
Japan
Prior art keywords
engine
speed
shift
rotational speed
automatic transmission
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012210421A
Other languages
English (en)
Inventor
Toshiaki Ishiguro
稔昌 石黒
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aisin Corp
Original Assignee
Aisin Seiki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisin Seiki Co Ltd filed Critical Aisin Seiki Co Ltd
Priority to JP2012210421A priority Critical patent/JP2014065357A/ja
Publication of JP2014065357A publication Critical patent/JP2014065357A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles

Landscapes

  • Hybrid Electric Vehicles (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)

Abstract

【課題】フロントクラッチの同期中に、新たな変速指令が認識された際に、フロントクラッチの係合時間を短縮する。
【解決手段】回転速度同期手段は、切断状態にあるフロントクラッチを係合させる場合において、エンジンの回転速度Neを回転制御することにより入力部材の回転速度を出力部材の回転速度に同期させる際に、自動変速機の変速段を変速する第一変速指令が出力され、自動変速機において第一変速指令による変速段への変速が完了していない状態で、更に、自動変速機の変速段を変速する第二変速指令が認識された場合には、入力部材の回転速度が、自動変速機が前記認識された第二変速指令による変速段に変速された状態の出力部材の回転速度となるようにエンジンの回転速度Neを制御する。
【選択図】図3

Description

本発明は、車輪がエンジンとモータによって駆動されるハイブリッド車両用の駆動装置に関する。
車輪がエンジンとモータジェネレータによって駆動されるハイブリッド車両用の駆動装置に関する従来技術がある(例えば、特許文献1参照)。特許文献1に示されるハイブリッド車両用の駆動装置は、エンジン、フロントクラッチ、モータジェネレータ、及び、自動変速機が直列に接続され、エンジンとモータジェネレータとを併用した車両の走行を可能にしている。
特許文献1に示される駆動装置においては、例えば、車両が停車状態から発進する場合、モータジェネレータによって車輪を駆動し、走行中に加速をする場合には、エンジンとモータジェネレータとの間に配置されたフロントクラッチを接続して、エンジンの駆動力が加えられるようになっている。
そして、特許文献1には、自動変速機の入力軸の回転速度とエンジンの出力軸の回転速度を同期させる制御を行い、フロントクラッチの係合ショックを抑制する技術が開示されている。
特開2011−73483号公報
しかしながら、特許文献1に示されるような駆動装置では、フロントクラッチの係合制御と自動変速機の変速制御が同時に実行されると、双方の制御に悪影響が及び、例えばフロントクラッチの係合時にショックが発生したり、自動変速機において変速ショックが発生したりしてしまうおそれがあった。
そこで、フロントクラッチの係合制御と自動変速機の変速制御に優先順位をつけて、一方の制御を禁止することも考えられる。しかしながら、フロントクラッチを同期させるためにモータジェネレータの回転速度とエンジンの出力軸の回転速度を同期している間に、変速指令が出力されて、自動変速機が変速してしまうと、当該自動変速機の変速によってモータジェネレータの回転速度とエンジンの出力軸の回転速度が乖離してしまう。すると、上記したフロントクラッチの同期が長時間となり、この結果フロントクラッチの係合時間が長時間となってしまうという問題が生じてしまう。また、フロントクラッチの同期のためにエンジンによって無駄に燃料を消費してしまい、結果としてハイブリッド車両の燃費が悪化してしまうという問題が生じてしまう。
本発明は上記事情に鑑みてなされたものであり、その目的は、フロントクラッチの同期中に、新たな変速指令が認識された際に、フロントクラッチの係合時間を短縮することができるハイブリッド車両用駆動装置を提供することにある。
上述した課題を解決するためになされた、請求項1に係る発明によると、駆動輪に回転駆動力を付与するエンジンと、前記エンジンと前記駆動輪との間に設けられ、前記駆動輪に回転駆動力を付与するモータと、前記エンジンと前記モータとの間に設けられ、前記エンジンに回転連結された入力部材と、前記モータに回転連結された出力部材とを有し、前記入力部材と前記出力部材を係合又は切断するフロントクラッチと、前記モータと前記駆動輪との間に設けられ、前記モータからの回転駆動力が入力される入力軸と、前記駆動輪に回転連結された出力軸とを有し、前記入力軸の回転速度を前記出力軸の回転速度で除した変速比がそれぞれ異なる複数の変速段を選択的に切り替えて変速を実行する自動変速機と、を備え、切断状態にある前記フロントクラッチを係合させる場合において、前記エンジンの回転速度を回転制御することにより前記入力部材の回転速度を前記出力部材の回転速度に同期させる際に、前記自動変速機の変速段を変速する第一変速指令が出力され、前記自動変速機において前記第一変速指令による変速段への変速が完了していない状態で、更に、前記自動変速機の変速段を変速する第二変速指令が認識される場合には、前記入力部材の回転速度が、前記自動変速機が前記認識された第二変速指令による変速段に変速された状態の前記出力部材の回転速度となるように前記エンジンの回転速度を制御する回転速度同期手段を有する。
請求項2に係る発明は、請求項1において、前記回転速度同期手段は、前記第二変速指令が、前記変速比が小さくなるアップ変速の場合には、前記エンジンの回転速度を前記自動変速機が前記認識された第二変速指令による変速段に変速された状態の前記出力部材の回転速度に基づいて算出された回転速度に低下させたうえで、前記入力部材の回転速度が、前記自動変速機が前記認識された第二変速指令による変速段に変速された状態の前記出力部材の回転速度となるように前記エンジンの回転速度を制御する。
請求項1に係る発明によれば、回転速度同期手段は、入力部材の回転速度が、自動変速機が認識された第二変速指令による変速段に変速された状態の出力部材の回転速度となるようにエンジンの回転速度を制御する。これにより、エンジンの回転速度が、直接、自動変速機が認識された第二変速指令による変速段に変速された状態の入力部材の回転速度となるように制御されるので、入力部材と出力部材の同期時間を短縮することができ、フロントクラッチの係合時間を短縮させることができる。また、入力部材と出力部材の同期時間を短縮することができるので、同期中のエンジンの燃料消費を低減することができ、ハイブリッド車両の燃費を向上させることができる。
請求項2に係る発明によれば、回転速度同期手段は、認識された第二変速指令が、変速比が小さくなるアップ変速の場合には、エンジンの回転速度を、自動変速機が認識された第二変速指令による変速段に変速された状態の出力部材の回転速度に基づいて算出された回転速度に低下させる。これにより、エンジンの回転速度を低下させた分、エンジンの燃料消費を低減させることができる。
本発明の一実施形態によるハイブリッド車両用駆動装置が搭載されたハイブリッド車両の説明図である。 横軸を変速機出力軸回転速度、縦軸をアクセル開度としたグラフであり、自動変速機の変速線の説明図である。 横軸を経過時間、縦軸を、モータジェネレータ回転速度、入力軸回転速度、エンジン回転速度としたグラフであり、ハイブリッド車両の走行時の駆動装置の各種状態を表した説明図である。 図1に示した変速機ECUにて実行される制御プログラムであるフロントクラッチ・自動変速機協調制御処理のフローチャートである。 横軸を経過時間、縦軸を、モータジェネレータ回転速度、入力軸回転速度、エンジン回転速度とした比較例のグラフであり、比較例のハイブリッド車両の走行時の駆動装置の各種状態を表した説明図である。
(ハイブリッド車両の説明)
図1〜図4に基づき、本発明の実施形態による駆動装置1について説明する。図1は、エンジン2及びモータジェネレータ6を備えたハイブリッド車両(以下、車両と略す)の駆動装置1の概略を示している。図1において、太線は各装置間の機械的な接続を示し、破線による矢印は制御用の信号線を示し、一点鎖線による矢印は車両の電力の供給線を示している。
図1に示すように、車両には、エンジン2、フロントクラッチ5、モータジェネレータ6、自動変速機8、デファレンシャル装置17が、この順番に、直列に配設されている。また、デファレンシャル装置17には、車両の右駆動輪18R及び左駆動輪18Lが接続されている。以下、右駆動輪18R及び左駆動輪18Lを包括して駆動輪18R、18Lという。なお、駆動輪18R、18Lは、車両の前輪又は後輪、或いは、前後輪である。
エンジン2は、ガソリンや軽油等の炭化水素系燃料を使用するガソリンエンジンやディーゼルエンジン等である。エンジン2は、出力軸21、スロットルバルブ22、及び、エンジン回転センサ23を有し、エンジンECU10によって制御される。出力軸21は、ピストンにより回転駆動されるクランク軸と一体的に回転して回転駆動力を出力する。スロットルバルブ22は、エンジン2の内部に空気を取り込む経路の途中に配設されており、その開度SはエンジンECU10により可変に制御される。
エンジン回転センサ23は、出力軸21の近傍に配設されている。エンジン回転センサ23は、出力軸21の回転速度であるエンジン回転速度Neを検出してその検出信号をエンジンECU10に出力する。なお、本実施形態では、エンジン2の出力軸21は、後述するフロントクラッチ5の入力部材である駆動側部材51に接続している。このため、エンジン回転速度Neは、駆動側部材51の回転速度である「入力部材回転速度」と同一回転速度である。
エンジンECU10は、アクセルペダル31の操作量を検出するアクセルセンサ32から、前記操作量の相対値を意味するアクセル開度Acの情報を取得する。
エンジンECU10は、ドライバのアクセルペダル31の操作に基づくアクセルセンサ32から増速指令を受信すると、スロットルバルブ22の開度Sを増大させて吸気量を増加させる。これにより、燃料を含んだ混合気の供給量が増加し、エンジン回転速度Neが増加するようになっている。また、エンジンECU10は、ドライバのアクセルペダル31の操作に基づくアクセルセンサ32から減速指令を受信すると、スロットルバルブ22の開度Sを減少させて、これによりエンジン回転速度Neが減少するようになっている。
モータジェネレータ6は、ロータ及びステータを有して駆動輪18L、18Rを駆動するとともに減速時に発電して車両に回生制動力を付与する。モータジェネレータ6には、ステータコアのスロットにステータ巻線を巻回形成したステータを外周側に配置し、ロータコアに永久磁石を埋め込んだロータを軸心に配置した三相同期機を用いることができる。
ロータは、フロントクラッチ5の従動側部材52に回転連結されて一体的に回転し、更に自動変速機8の入力側にも回転連結されて一体的に回転する。ロータの近傍にはモータ回転センサ61が配設されている。モータ回転センサ61はロータの回転速度であるモータジェネレータ回転速度Nmを検出してその検出信号をモータECU14に出力する。なお、本実施形態では、モータジェネレータ6のロータは、後述するフロントクラッチ5の出力部材である従動側部材52に接続している。このため、モータジェネレータ回転速度Nmは、従動側部材52の回転速度である「出力部材回転速度」と同一回転速度である。
モータECU14は、インバータ装置15の動作を制御することで、モータジェネレータ6の駆動モードと発電モードの切り替え制御、ならびにモータジェネレータ回転速度Nmの制御を行う。モータECU14は、ハイブリッドECU11から駆動指令を受信すると、インバータ装置15を制御してバッテリ16からモータジェネレータ6に駆動電力を供給し、かつ制御目標とする要求モータジェネレータ回転速度Nmrに合わせて駆動電圧の周波数及び実効値を可変に制御する。
モータECU14は、ハイブリッドECU11から回生指令を受信すると、インバータ装置15を制御してモータジェネレータ6からの回生電力でバッテリ16を充電するように制御する。
フロントクラッチ5は、モータジェネレータ6のロータとエンジン2の出力軸21とを接続及び切断可能に回転連結する。フロントクラッチ5は、エンジン2の出力軸21に回転連結された入力部材である駆動側部材51と、ロータに回転連結された出力部材である従動側部材52を備えている。フロントクラッチ5には、駆動側部材51と従動側部材52との間を係合状態及び切断状態に切り替え動作するクラッチアクチュエータ53とを備える湿式多板摩擦クラッチや乾式単板摩擦クラッチを用いることができる。
クラッチアクチュエータ53は、本実施形態では、オイルポンプを用いて動作油を移動することにより駆動側部材51と従動側部材52との接続及び切断を切り替える油圧動作機構を用いる。本実施形態では、動作油の油圧であるクラッチ圧Pcが生じていないときに係合状態となり、クラッチ圧Pcの発生によって切断状態に切り替えられるノーマルクローズタイプのフロントクラッチ5を用いる。
自動変速機8は、入力軸81と出力軸82との間において変速比がそれぞれ異なる複数の変速段を選択的に切り替える変速機構(不図示)を有している有段変速機である。自動変速機8は、変速機ECU13からの指令に基づいて変速機変速機構を作動させるアクチュエータ85を備えている。
自動変速機8は、周知のトルクコンバータ8aを有している。自動変速機8の入力軸81は、トルクコンバータ8aを介してモータジェネレータ6のロータに回転連結され、出力軸82は、デファレンシャル装置17に回転連結されている。トルクコンバータ8aは、モータジェネレータ6のロータに回転連結されたポンププレート8bと、自動変速機8の入力軸81に回転連結されたタービンプレート8cとを有している。また、トルクコンバータ8aは、ポンププレート8bとタービンプレート8cとをメカニカルに結合して同期回転を維持したロックアップ状態とするロックアップクラッチ(不図示)を有している。
出力軸82の近傍には、出力軸82の回転速度(変速機出力軸回転速度No)を検出する出力軸回転速度センサ83が設けられている。出力軸回転速度センサ83によって検出された変速機出力軸回転速度Noは、変速機ECU13に出力される。なお、変速機出力軸回転速度Noは、車速Vと比例関係にある。
ハイブリッドECU11は、車両の発進、走行、停止、及び、加減速を総括的に制御する制御装置である、ハイブリッドECU11は、エンジンECU10、モータECU14、クラッチECU12、及び、変速機ECU13の上位制御装置として機能し、下位の各ECU10、12、13、14に対して指令を出力するとともに必要な情報を授受する。
クラッチECU12は、クラッチアクチュエータ53に接続されている。クラッチECU12は、ハイブリッドECU11から出力された「接続指令」又は「切断指令」、或いは、CANバスラインから取得する、モータECU14から出力されるモータジェネレータ回転速度Nmや他の情報に基づき、クラッチアクチュエータ53を作動させて、フロントクラッチ5を係合状態又は切断状態にし、エンジン2の出力軸21とモータジェネレータ6のロータとを接続又は切断する。このように、フロントクラッチ5が、エンジン2の出力軸21とモータジェネレータ6のロータを接続又は切断することにより、(1)駆動輪18R、18Lを、自動変速機8を介してモータジェネレータ6のみにより駆動する場合と、(2)エンジン2のみにより駆動する場合と、(3)エンジン2及びモータジェネレータ6により駆動する場合のうちから選択する。
変速機ECU13は、CANバスラインからアクセル開度Acの情報及び出力回転センサ83から変速機出力軸回転速度Noの情報を取得し、それらからなる車両の走行状態を、後述の「変速マップデータ」(図2示)に参照させることにより、自動変速機8の最適な変速段を判断する。そして、変速機ECU13は、アクチュエータ85を制御し、自動変速機8の変速段を変更する(変速)。
本実施形態では、エンジンECU10、ハイブリッドECU11、クラッチECU12、変速機ECU13、及び、モータECU14は、CAN(Controller Area Network)のバスに接続され、相互に通信可能となっている。
エンジン2、フロントクラッチ5、モータジェネレータ6、自動変速機8、インバータ装置15、バッテリ16、エンジンECU10、ハイブリッドECU11、クラッチECU12(回転速度同期手段)、変速機ECU13、及び、モータECU14を包括した構成が、駆動装置1に該当する。
(変速マップデータの説明)
次に、図2を用いて「変速マップデータ」の説明をする。「変速マップデータ」は、変速機ECU13が、自動変速機8における変速の実行の基準となるデータである。図2に示すように、「変速マップデータ」は、アクセル開度Aと変速機出力軸回転速度Noとの関係を表した「変速線」を複数有している。増速方向に向かって(変速機出力軸回転速度Noが低い方から高い方に向かって)順に、第2速アップ変速線、第3速アップ変速線(図2の実線で示す)が設定されている。また、減速方向に向かって(変速機出力軸回転速度Noが高い方から低い方に向かって)順に、第2速ダウン変速線、第1速ダウン変速線(図2の破線で示す)が設定されている。これ以上の変速段についても、同様に、「変速線」が設定されている。
図2で、車両が、自動変速機8の変速段が第1速で走行している状態(P0の状態)において、変速機出力軸回転速度Noが徐々に増加等して、車両の走行状態が第2速アップ変速線上の点P1に到達すると、変速機ECU13は、第1速から第2速に「認識変速段」(図3示)を変更する。一方で、車両が、自動変速機8の変速段が第2速で走行している状態(P2の状態)において、変速機出力軸回転速度Noが徐々に減少等して、車両の走行状態が第1速ダウン変速線上の点P3に到達すると、変速機ECU13は、第2速から第1速に「認識変速段」を変更する。変速機ECU13は、上述した「認識変速段」の変速段となるように、「出力変速段」(図3示)の変速信号をアクチュエータ85に出力する。アクチュエータ85は、「出力変速段」の変速段に自動変速機8を変速する。
(ハイブリッド車両の走行方法及びフロントクラッチの動作の説明)
以下、図1に示した車両における一般的な走行方法及びフロントクラッチ5の動作について、図2及び図3を用いて説明する。図3において、細実線は、モータジェネレータ回転速度Nm(「出力部材回転速度」)である。太実線は、本発明実施時のエンジン回転速度Ne(「入力部材回転速度」)である。太一点鎖線は、後述する比較例(従来技術)のエンジン回転速度Ne(「入力部材回転速度」)である。破線は、入力軸81の回転速度を表す変速機入力軸回転速度Niであり、図3におけるタービン回転速度Ntに相当する。
車両の発進時には、フロントクラッチ5が切断された状態で、モータジェネレータ6の回転駆動力により自動変速機8を介して駆動輪18R、18Lを駆動させる。ハイブリッドECU11は、所定の回転駆動力が出力されるようにモータジェネレータ6を制御する。モータジェネレータ6の回転駆動力は、自動変速機8に伝達されたうえで、デファレンシャル装置17を介して駆動輪18R、18Lに伝達され、車両がモータジェネレータ6の回転駆動力によって走行する。
なお、車両の発進時には、自動変速機8は、第1速が形成されていて、車両は、第1速で走行する。車両の発進後、車両の車速の増速に伴って、モータジェネレータ回転速度Nmの回転速度が徐々に上昇するとともに(図3の(1))、入力軸回転速度Niが徐々に上昇する(図3の(2))。なお、モータジェネレータ6の回転駆動力のみで、車両が走行している際には、図3に示すように、エンジン2は、停止しているか、又は、アイドリング回転速度で回転している。
車両の走行中において、バッテリ16の残量が低下した場合や、アクセルペダル31が深く踏み込まれて、車両が加速する必要が生じ、エンジン2の回転駆動力をモータジェネレータ6のロータに加える必要がある。この場合には、まず、フロントクラッチ5の駆動側部材51(入力部材)と従動側部材52(出力部材)の回転速度を同期させるために、エンジン回転速度Neをモータジェネレータ回転速度Nmに同期させ、エンジン回転速度Neを上昇させる制御が実行される(図3の(3))。次に、エンジン回転速度Neとモータジェネレータ回転速度Nmの同期が完了した場合には(図3の(20))、切断状態にあるフロントクラッチ5を係合状態(図3の(24))にする。
(フロントクラッチ・自動変速機協調制御処理の説明)
次に、駆動装置1の作動について図4に示すフローチャートを参照して説明する。車両が走行可能な状態となると、プログラムはS11に進む。
S11において、ハイブリッドECU11が、フロントクラッチ5の「係合要求」が有ると判断した場合には(S11:YES)(図3の(4))、「係合要求」をクラッチECU12に出力する。ここで、クラッチECU12は、エンジン2の制御を「通常制御」から「回転速度制御」に変更するようエンジンECU10に要求し(図3の(5))、プログラムをS31に進める。一方で、ハイブリッドECU11が、フロントクラッチ5の「係合要求」が無いと判断した場合には(S11:NO)、プログラムをS21に進める。なお、ハイブリッドECU11は、上述したように、エンジン2の回転駆動力をモータジェネレータ6のロータに加える必要が生じたと判断した場合に、フロントクラッチ5の「係合要求」が有ると判断する。
S21において、変速機ECU13が、「認識変速段」の変更が有ると判断した場合には(S21:YES)、プログラムをS22に進め、「認識変速段」の変更が無いと判断した場合には(S21:NO)、プログラムをS11に戻す。
S22において、変速機ECU13は、アクチュエータ85に「変速指令」を出力して、アクチュエータ85を制御し、自動変速機8を「出力変速段」の変速段に変速する。なお、以下の説明において、変速状態に無い自動変速機8を変速する指令を「第一変速指令」(図3の(14))とし、自動変速機8において「第一変速指令」による変速段への変速が完了していない状態で、更に、自動変速機8を変速する指令を「第二変速指令」(図3の(15))とする。S22が終了すると、プログラムはS11に戻る。
S31において、クラッチECU12は、エンジン回転速度制御における目標となるエンジン2の回転速度である目標エンジン回転速度Netを演算するための変速段Gtを、現在の自動変速機8の変速段Gnに変更する。S31が終了すると、プログラムは、S32に進む。
S32において、クラッチECU12は、目標エンジン回転速度Netを演算し、エンジン回転速度Neが、目標エンジン回転速度Netとなるような指令をエンジンECU10に出力する。クラッチECU12から、前記指令が入力されたエンジンECU10は、エンジン回転速度Neが目標エンジン回転速度Netとなるように、スロットルバルブ22の開度S等を制御する(図3の(3)、(11))。なお、クラッチECU12は、変速機出力軸回転速度No及び変速段Gtに基づいて、目標エンジン回転速度Netを、モータジェネレータ回転速度Nmと同じ回転速度、或いは、モータジェネレータ回転速度Nmと殆ど同一の回転速度に演算する。
なお、S31において、変速段Gtが、変速比が小さくなるアップ変速に変更された場合には、燃料の無駄な消費を防止するために、目標エンジン回転速度Netは、図3の(12)に示すように、モータジェネレータ回転速度Nmと、「第二変速指令」による変速段Gjとに基づき演算されたモータジェネレータ回転速度Nm’まで落とした回転速度に設定される。そして、目標エンジン回転速度Netは、図3の(13)に示すように、前記モータジェネレータ回転速度Nmまで回転速度が落ちた後は、当該回転速度が維持されるように設定される。なお、クラッチECU12が、前記モータジェネレータ回転速度Nmまで、エンジン回転速度Neを落とす際に、エンジン2の燃料噴射を停止させる(フューエルカット)ことが、燃料消費を低減させる観点から好ましい。S32が終了すると、プログラムは、S33に進む。
S33において、変速機ECU13が、「認識変速段」に変更が有ると判断した場合には(S33:YES)(図3の(6))、プログラムをS34に進め、「認識変速段」に変更が無いと判断した場合には(S33:NO)、プログラムをS71に進める。
S34において、変速機ECU13は、認識変速段フラグFjを1加算する。なお、認識変速段フラグFjが0の場合には、「認識変速段」に変更が無かったことを表している。つまり、認識変速段フラグFjが0の場合には、自動変速機8の現在の変速段と「認識変速段」が一致し、既に自動変速機8の変速が完了していることを表している。
認識変速段フラグFjが1の場合には、認識変速段フラグFjが0の状態、つまり、自動変速機8が変速制御中で無い状態において、「認識変速段」に変更が有ったことを表している。認識変速段フラグFjが2の場合には、認識変速段フラグFjが1の状態、つまり、自動変速機8が変速制御中であり未だ変速が完了していない状態において、更に、「認識変速段」に変更が有ったことを表している。S34が終了すると、プログラムはS35に進む。
S35において、変速機ECU13が、実エンジン回転速度Neが、目標エンジン回転速度Netと殆ど同一となったと判断した場合には(S35:YES)、プログラムをS51に進め、実エンジン回転速度Neが、目標エンジン回転速度Netと殆ど同一となっていないと判断した場合には(S35:NO)、プログラムをS52に進める。
S51において、ハイブリッドECU11は、クラッチECU12への「係合要求」の出力を、「係合待機」の指令へ変更してクラッチECU12に出力する(図3の(8))。「係合待機」の指令が入力されたクラッチECU12は、フロントクラッチ5の係合準備を開始させるが、フロントクラッチ5の係合は実行しない。具体的には、クラッチECU12は、クラッチアクチュエータ53に制御信号を出力することにより、直ちにフロントクラッチ5の係合が開始できるように、クラッチアクチュエータ53の油圧回路を切り替える等の係合準備動作を実行し、この状態を維持して、フロントクラッチ5を係合待機状態にする。なお、既に、「係合待機」の指令が出力されている場合には、ハイブリッドECU11は、クラッチECU12に継続して「係合待機」の指令を出力する(図3の(9))。S51が終了すると、プログラムは、S52に進む。
S52において、変速機ECU13は、アクチュエータ85に「変速指令」を出力して、(図3の(14)、(15))、アクチュエータ85を制御し、自動変速機8を変更された「認識変速段」の変速段Gjとなるように「出力変速段」の変速信号を出力する。S52が終了すると、プログラムはS53に進む。
S53において、変速機ECU13は、自動変速機8において変速が完了したと判断した場合には(S53:YES)、プログラムをS54に進め、自動変速機8において変速が完了していないと判断した場合には(S53:NO)、プログラムをS55に進める。
S54において、変速機ECU13は、認識変速段フラグFjを0にする。S54が終了すると、プログラムはS55に進む。
S55において、変速機ECU13が、認識変速段フラグFjが2であると判断した場合には(S55:YES)、プログラムをS56に進め、認識変速段フラグFjが2であないと判断した場合には(S55:NO)、プログラムをS32に戻す。
S56において、変速機ECU13は、目標エンジン回転速度Netを演算するための変速段Gtを、変更された「認識変速段」の変速段Gjに変更する。S56が終了すると、プログラムは、S32に戻る。そして、クラッチECU12は、S32において、変更された「認識変速段」の変速段Gjとモータジェネレータ回転速度Nmとに基づき目標エンジン回転速度Netを演算し、当該目標エンジン回転速度NetとなるようにエンジンEGを制御する。
S71において、クラッチECU12は、エンジン回転速度Neが目標エンジン回転速度Netと同一であると判断した場合には(S71:YES)(図5の(20))、プログラムをS72に進め、エンジン回転速度Neが目標エンジン回転速度Netと同一でないと判断した場合には(S71:NO)、プログラムをS53に進める。
S72において、クラッチECU12は、フロントクラッチ5を係合させる指令である「係合指令」をクラッチアクチュエータ53に出力する(図3の(21))。S72が終了すると、プログラムは、S73に進む。
S73において、クラッチECU12が、フロントクラッチ5の係合が完了したと判断した場合には(S73:YES)、エンジン2の制御権をハイブリッドECU11に渡し、エンジン2の制御を「回転速度制御」から「通常制御」に変更して(図3の(22))、プログラムをS74に進める。クラッチECU12が、フロントクラッチ5の係合が完了したと判断していないと場合には(S73:NO)、プログラムをS11に戻す。
S74において、変速機ECU13は、認識変速段フラグFjを0にする。S74が終了すると、プログラムはS11に進む。
(比較例の説明)
以下に図5を用いて、比較例を説明する。図5に示す比較例では、切断状態にあるフロントクラッチ5を係合させる場合において、自動変速機8の変速段を変更する「第一変速指令」が出力され(図5の(1))、自動変速機8において「第一変速指令」による変速段への変速が完了していない状態で、更に、自動変速機8の変速段を変更する「第二変速指令」が出力される場合(図5の(2))であっても、クラッチECU12は、エンジン回転速度Neを、自動変速機8が「第一変速指令」による変速段である第2速段に変速された状態のモータジェネレータ回転速度Nmに制御している(図5の(3))。このため、「第二変速指令」が出力されると(図5の(2))、不要なエンジン回転速度Neの同期制御が実行され(図5の(4))、せっかくモータジェネレータ回転速度Nmに同期させたエンジン回転速度Neが、自動変速機8の変速の実行により、モータジェネレータ回転速度Nmから乖離してしまう(図5の(5))。そして、モータジェネレータ回転速度Nmから乖離したエンジン回転速度Neを、再び、モータジェネレータ回転速度Nmに同期させる(図5の(6))ため、フロントクラッチ5の同期時間(図5の(3)及び(6))が、無駄に長くなってしまう。
(本実施形態の効果)
一方で、上述した説明から明らかなように、本実施形態では、クラッチECU12(回転速度同期手段)は、フロントクラッチ5の「入力部材回転速度」であるエンジン回転速度Neが、自動変速機8が「第二変速指令」(図3の(15))の変速段に変速された状態の「出力部材回転速度」であるモータジェネレータ回転速度Nmとなるようにエンジン回転速度Neを制御する(図3の(11)、図4のS32)。
つまり、図3に示す実施形態では、第1速から第2速に変速する「第一変速指令」(図3の(14))が出力された後において、クラッチECU12は、「認識変速段」が第2速から第3速に変更されたことを認識することにより(図4のS33)、将来第2速から第3速に変速する「第二変速指令」が出力されること(図4のS52)を認識する。そして、クラッチECU12は、直接、自動変速機8が「第二変速指令」(図3の(15))の変速段に変速された状態の「出力部材回転速度」であるモータジェネレータ回転速度Nmとなるようにエンジン回転速度Neを制御する(図3の(11))。このため、エンジン回転速度Neとモータジェネレータ回転速度Nmの同期時間、つまり、駆動側部材51(入力部材)と従動側部材52(出力部材)の同期時間を短縮することができ、フロントクラッチ5の係合時間を短縮させることができ、フロントクラッチ5の係合応答を向上させることができる(図3の(23))。また、駆動側部材51と従動側部材52の同期時間を短縮することができるので、フロントクラッチ5の同期中(図3の(11))のエンジン2の燃料消費を低減することができ(図3の斜線で示す領域)、ハイブリッド車両の燃費を向上させることができる。
また、クラッチECU12(回転速度同期手段)は、「第二変速指令」が、自動変速機8の変速比が小さくなるアップ変速の場合には、図3の(12)に示すように、エンジン回転速度Ne(「入力部材回転速度」)を、自動変速機8が「第二変速指令」による変速段に変速された状態のモータジェネレータ回転速度Nm(「出力部材回転速度」)に基づいて算出された回転速度(図3の(13))に低下させる。これにより、図3に示すように、比較例のエンジン回転速度Ne(図3の(25))と比較して、本実施形態では、図4に示すS32の処理によって、エンジン回転速度Ne(図3の(12)、(13))が、低い回転速度となる。これにより、エンジン2の回転速度を低下させた分、エンジン2の燃料消費を低減させることができる。
また、図4のS33において、変速機ECU13が、「認識変速段」の変更が有ると判断した場合には(S33:YES)(図3の(6))、S51において、フロントクラッチ5は係合待機状態にされ、フロントクラッチ5の係合が実行されない。これにより、自動変速機8の変速制御と、フロントクラッチ5の係合制御が同時に実行されない。このため、双方の制御に悪影響が及ぶことが無く、フロントクラッチ5の係合時のショックの発生や、自動変速機8の変速ショックの発生を防止することができる。
(別の実施形態の説明)
以上説明した実施形態では、駆動装置1は、エンジンECU10、ハイブリッドECU11、クラッチECU12、変速機ECU13、モータECU14を有している。しかし、これらのECUが一体となったECUや、これらのうち何れかが一体となったECUが、図4に示すフローチャートの制御処理を実行する実施形態であっても差し支え無い。また、上記したECUのうち、以上説明した実施形態と異なるECUが、図4に示すフローチャートの制御処理を実行する実施形態であっても差し支え無い。
なお、以上説明した実施形態では、フロントクラッチ5は、ノーマルクローズタイプのフロントクラッチ5であるが、動作油の油圧であるクラッチ圧Pcが生じていないときに切断状態となり、クラッチ圧Pcの発生によって接続状態に切り替えられるノーマルオープンタイプのフロントクラッチ5であっても差し支え無い。また、以上説明した実施形態では、クラッチアクチュエータ53は、油圧動作機構を用いたものであるが、電動式のクラッチアクチュエータ53であっても差し支え無い。
以上説明した実施形態では、駆動側部材51(入力部材)は、直接エンジン2の出力軸21に接続され、従動側部材52(出力部材)は、直接モータジェネレータ6のロータに接続されている。しかし、駆動側部材51と出力軸21の間に、ギヤ等の機械要素が設けられ、当該機械要素を介して駆動側部材51が出力軸21に接続されている実施形態であっても差し支え無い。また、従動側部材52とモータジェネレータ6のロータの間に、ギヤ等の機械要素が設けられ、当該機械要素を介して従動側部材52がロータに接続されている実施形態であっても差し支え無い。
以上説明した実施形態では、クラッチECU12は、「第二変速指令」が、自動変速機8の変速比が小さくなるアップ変速の場合には、図3の(12)に示すように、エンジン回転速度Neを、自動変速機8が「第二変速指令」による変速段に変速された状態のモータジェネレータ回転速度Nm(「出力部材回転速度」)に基づいて算出する回転速度として、回転速度を「変速指令」において変更された変速段Gjのモータジェネレータ回転速度Nmまで落とした回転速度に設定している。しかし、エンジン回転速度Neを、エンジン2のアイドリング回転数等、上記モータジェネレータ回転速度Nmよりも更に低い回転速度に低下させた後に、上記モータジェネレータ回転速度Nmまで上昇させる実施形態であっても差し支え無い。この実施形態の場合には、よりエンジン2において燃料の消費を低減させることができる。
図4のフローチャートにおいて、S35を省略し、「認識変速段」の変化が有った時点で、フロントクラッチ5が係合待機となる(図4のS51と同一の制御)実施形態で有っても差し支え無い。
以上説明した実施形態では、「第二変速指令」による変速段と「第一変速指令」による変速段は、1速しか違わない。しかし、「第二変速指令」による変速段と「第一変速指令」による変速段が、2速以上違う実施形態であっても差し支え無い。
以上説明した実施形態では、変速機ECU13は、アクセル開度Ac及び変速機出力軸回転速度Noを、図2に示す「変速マップデータ」に参照させることにより、自動変速機8の「認識変速段」を判断している。しかし、変速機ECU13が、アクセル開度Ac及び車速Vを、アクセル開度Acと車速Vとの関係を表した「変速マップデータ」に参照させることにより、自動変速機8の「認識変速段」を判断する実施形態で有っても差し支え無い。この実施形態の場合には、車速Vは変速機出力軸回転速度Noや車輪速度を検出するセンサの検出信号に基づいて演算される。
以上の説明では、駆動輪18L、18Rに回転駆動力を付与するモータとして作動するとともに、発電機としても作動するモータジェネレータ6を用いた実施形態について本発明を説明したが、モータと発電機が別体の実施形態であっても差し支え無い。
また、以上説明した実施形態では、自動変速機8は、プラネタリギヤ機構、摩擦係合要素を用いたものであるが、自動変速機8は、これに限定されない。つまり、自動変速機8が、デュアルクラッチトランスミッション(DCT)、オートメーテッド・マニュアルトランスミッション(AMT)等であるハイブリッド車両用駆動装置にも、本発明の技術思想が適用可能なことは言うまでもない。
なお、以上説明した実施形態では、自動変速機8はトルクコンバータ8aを有している。このため、「第二変速指令」に基づく変更された「認識変速段」とモータジェネレータ回転速度Nmとに基づき目標エンジン回転速度Netを演算する場合には、トルクコンバータ8aのスリップ(速度比)を考慮に入れる必要が有る。その演算方法は周知であるため省略する。
1…駆動装置、 2…エンジン、 5…フロントクラッチ、 6…モータジェネレータ、 8…自動変速機、 12…クラッチECU(回転速度同期手段)、 18L、18R…駆動輪、 21…出力軸、 51…駆動側部材(入力部材)、 52…従動側部材(出力部材)、 81…入力軸、 82…出力軸

Claims (2)

  1. 駆動輪に回転駆動力を付与するエンジンと、
    前記エンジンと前記駆動輪との間に設けられ、前記駆動輪に回転駆動力を付与するモータと、
    前記エンジンと前記モータとの間に設けられ、前記エンジンに回転連結された入力部材と、前記モータに回転連結された出力部材とを有し、前記入力部材と前記出力部材を係合又は切断するフロントクラッチと、
    前記モータと前記駆動輪との間に設けられ、前記モータからの回転駆動力が入力される入力軸と、前記駆動輪に回転連結された出力軸とを有し、前記入力軸の回転速度を前記出力軸の回転速度で除した変速比がそれぞれ異なる複数の変速段を選択的に切り替えて変速を実行する自動変速機とを備え、
    切断状態にある前記フロントクラッチを係合させる場合において、前記エンジンの回転速度を回転制御することにより前記入力部材の回転速度を前記出力部材の回転速度に同期させる際に、前記自動変速機の変速段を変速する第一変速指令が出力され、前記自動変速機において前記第一変速指令による変速段への変速が完了していない状態で、更に、前記自動変速機の変速段を変速する第二変速指令が認識される場合には、前記入力部材の回転速度が、前記自動変速機が前記認識された第二変速指令による変速段に変速された状態の前記出力部材の回転速度となるように前記エンジンの回転速度を制御する回転速度同期手段を有するハイブリッド車両用駆動装置。
  2. 請求項1において、
    前記回転速度同期手段は、前記第二変速指令が、前記変速比が小さくなるアップ変速の場合には、前記エンジンの回転速度を前記自動変速機が前記認識された第二変速指令による変速段に変速された状態の前記出力部材の回転速度に基づいて算出された回転速度に低下させたうえで、前記入力部材の回転速度が、前記自動変速機が前記認識された第二変速指令による変速段に変速された状態の前記出力部材の回転速度となるように前記エンジンの回転速度を制御するハイブリッド車両用駆動装置。
JP2012210421A 2012-09-25 2012-09-25 ハイブリッド車両用駆動装置 Pending JP2014065357A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012210421A JP2014065357A (ja) 2012-09-25 2012-09-25 ハイブリッド車両用駆動装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012210421A JP2014065357A (ja) 2012-09-25 2012-09-25 ハイブリッド車両用駆動装置

Publications (1)

Publication Number Publication Date
JP2014065357A true JP2014065357A (ja) 2014-04-17

Family

ID=50742202

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012210421A Pending JP2014065357A (ja) 2012-09-25 2012-09-25 ハイブリッド車両用駆動装置

Country Status (1)

Country Link
JP (1) JP2014065357A (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107387594A (zh) * 2017-07-14 2017-11-24 上海电气电站设备有限公司 一种具备低速保护功能的自动同步离合器低速同步方法
US9855954B2 (en) 2016-05-17 2018-01-02 Hyundai Motor Company Shift control apparatus and method of vehicle
CN113710528A (zh) * 2019-05-07 2021-11-26 舍弗勒技术股份两合公司 混动模块以及用于机动车的驱动装置

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002340172A (ja) * 2001-05-18 2002-11-27 Toyota Motor Corp 車両用駆動制御装置
JP2005231585A (ja) * 2004-02-23 2005-09-02 Nissan Motor Co Ltd ハイブリッド車両の駆動力制御装置
JP2006062418A (ja) * 2004-08-24 2006-03-09 Toyota Motor Corp 無段変速機を搭載した車両の制御装置
JP2006315484A (ja) * 2005-05-11 2006-11-24 Nissan Motor Co Ltd 車両用ハイブリッド駆動装置のモード切り替え制御装置
US20080132378A1 (en) * 2006-11-30 2008-06-05 Nicolas Louis Bouchon Method and apparatus for starting an engine in a hybrid vehicle
JP2008231992A (ja) * 2007-03-19 2008-10-02 Nissan Motor Co Ltd 車両の駆動制御装置
JP2010149714A (ja) * 2008-12-25 2010-07-08 Nissan Motor Co Ltd ハイブリッド車両の制御装置
JP2011020660A (ja) * 2009-07-21 2011-02-03 Nissan Motor Co Ltd 電動車両の制御装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002340172A (ja) * 2001-05-18 2002-11-27 Toyota Motor Corp 車両用駆動制御装置
JP2005231585A (ja) * 2004-02-23 2005-09-02 Nissan Motor Co Ltd ハイブリッド車両の駆動力制御装置
JP2006062418A (ja) * 2004-08-24 2006-03-09 Toyota Motor Corp 無段変速機を搭載した車両の制御装置
JP2006315484A (ja) * 2005-05-11 2006-11-24 Nissan Motor Co Ltd 車両用ハイブリッド駆動装置のモード切り替え制御装置
US20080132378A1 (en) * 2006-11-30 2008-06-05 Nicolas Louis Bouchon Method and apparatus for starting an engine in a hybrid vehicle
JP2008231992A (ja) * 2007-03-19 2008-10-02 Nissan Motor Co Ltd 車両の駆動制御装置
JP2010149714A (ja) * 2008-12-25 2010-07-08 Nissan Motor Co Ltd ハイブリッド車両の制御装置
JP2011020660A (ja) * 2009-07-21 2011-02-03 Nissan Motor Co Ltd 電動車両の制御装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9855954B2 (en) 2016-05-17 2018-01-02 Hyundai Motor Company Shift control apparatus and method of vehicle
CN107387594A (zh) * 2017-07-14 2017-11-24 上海电气电站设备有限公司 一种具备低速保护功能的自动同步离合器低速同步方法
CN113710528A (zh) * 2019-05-07 2021-11-26 舍弗勒技术股份两合公司 混动模块以及用于机动车的驱动装置

Similar Documents

Publication Publication Date Title
JP4466514B2 (ja) ハイブリッド車両のエンジン始動制御装置
JP4862624B2 (ja) ハイブリッド車両の制御装置
JP5704148B2 (ja) 車両の走行制御装置
JP5371200B2 (ja) ハイブリッド車両のエンジン始動制御装置及びハイブリッド車両のエンジン始動制御方法。
JP5825357B2 (ja) ハイブリッド車両の制御装置
JP6015774B2 (ja) ハイブリッド車両の制御装置
JP5900642B2 (ja) 車両の走行制御装置
JP5975115B2 (ja) ハイブリッド車両の制御装置
JP2009208700A (ja) ハイブリッド車両の制御装置
JP6004010B2 (ja) ハイブリッド車両の制御装置
JP6485292B2 (ja) 電動車両の電力制御方法および電力制御装置
JP5212199B2 (ja) ハイブリッド車両のクラッチ制御装置
JP5929163B2 (ja) ハイブリッド車両用駆動装置
JP6015773B2 (ja) ハイブリッド車両の制御装置
JP5630116B2 (ja) 車両の制御装置
JP6492908B2 (ja) ハイブリッド車両の制御装置
JP5381120B2 (ja) ハイブリッド車両の変速制御装置および変速制御方法
JP2014065357A (ja) ハイブリッド車両用駆動装置
KR20180070341A (ko) 하이브리드 자동차 및 그를 위한 모드 전환 제어 방법
JP5338473B2 (ja) エンジン始動制御装置
JP2012086722A (ja) ハイブリッド車両の制御装置
JP2012092975A (ja) 自動変速機
JP5550524B2 (ja) 自動変速機
JP6322906B2 (ja) ハイブリッド車両用駆動装置
JP5333405B2 (ja) 車両の制御装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150805

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160527

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160607

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20161206