WO2019010746A1 - 资源池配置方法和装置 - Google Patents

资源池配置方法和装置 Download PDF

Info

Publication number
WO2019010746A1
WO2019010746A1 PCT/CN2017/097205 CN2017097205W WO2019010746A1 WO 2019010746 A1 WO2019010746 A1 WO 2019010746A1 CN 2017097205 W CN2017097205 W CN 2017097205W WO 2019010746 A1 WO2019010746 A1 WO 2019010746A1
Authority
WO
WIPO (PCT)
Prior art keywords
time slot
resource
gftr
terminal device
information
Prior art date
Application number
PCT/CN2017/097205
Other languages
English (en)
French (fr)
Inventor
丁志明
庄宏成
杜振国
韩云博
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN201780092245.3A priority Critical patent/CN110754125B/zh
Publication of WO2019010746A1 publication Critical patent/WO2019010746A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation

Definitions

  • the present application relates to the field of communications, and in particular, to a resource pool configuration method and apparatus.
  • LTE Long Term Evolution
  • the terminal device when a terminal device sends data to a network device, an authorization-based data transmission method is usually adopted.
  • the terminal device needs to perform multiple rounds of signaling interaction with the network device before transmitting the uplink data, so as to obtain the dedicated resources needed for transmitting the uplink data from the network device side, that is, obtain the authorization.
  • the terminal device transmits uplink data on the dedicated resource, so that the data transmission is free from interference and the reliability is high.
  • the terminal device and the network device need to perform multiple rounds of signaling interaction, which takes a long time, and in the process of multiple rounds of signaling interaction, more information is transmitted, and the process of the terminal device and the network device analyzing the information content is also time consuming. long.
  • a fifth-generation mobile communication system (5 th Generation, 5G) proposes a free license (Grant-free) uplink data transmission mode, Grant-free is mainly used in the Ultra Reliable Low Latency Communication (URLLC) service in 5G.
  • the network device configures a resource pool for multiple terminal devices. When the data needs to be transmitted, the terminal device does not need to request the transmission resource used in the uplink transmission from the base station, but is in the pre-configured resource. Selecting transmission resources in the pool directly performs uplink data transmission, which reduces the delay of data transmission.
  • a common processing method is to configure a large resource pool for the terminal device to avoid conflicts between multiple terminal devices.
  • the amount of data in the URLLC service in the 5G is uncertain. If the resource pool is too large and the amount of data of the actual URLLC service is small, resources may be wasted.
  • the embodiment of the present application provides a resource pool configuration method and device, which are used to solve the problem of resource waste that may exist when the resource pool is large.
  • the embodiment of the present application provides a resource pool configuration method, which is applied to a network device side, and includes:
  • the terminal device Before performing the uplink data transmission, the terminal device sends the GFTR to the network device to obtain the GFTA information generated by the network device according to the GFTR, where the GFTA information indicates the resource pool used by the terminal device in the unlicensed transmission, as indicated by the GFTA information.
  • the resource pool is obtained by the network device according to the received GFTR, so the size of the resource pool According to the amount of data to be sent, it is avoided that when a small amount of data is configured, a large resource pool is configured, which causes waste of resources, and avoids an increase in competition caused by a resource pool that is too small when the amount of data is too large.
  • the problem of reduced data transmission reliability The embodiment of the present application provides a dynamic resource pool configuration method, and the resource pool configuration is more reasonable.
  • the receiving the GFTR sent by the at least one terminal device includes:
  • the sending the GFTA information to each terminal device includes:
  • the method further includes:
  • the third time slot is not earlier than the second time slot.
  • the generating the GFTA information according to the GFTR includes:
  • the first preset resource includes at least one GFTR transmission unit, and the number of the GFTR is obtained, which specifically includes:
  • the obtaining the quantity of the GFTR specifically includes:
  • the number of the GFTRs is obtained according to the signal strength and the preset power.
  • the first time slot and the second time slot are separated by one time slot.
  • the first time slot and the second time slot are the same time slot or an adjacent time slot, and the first preset resource and the second preset resource are separated by one. Orthogonal Frequency Division Multiplexing OFDM symbols.
  • the third time slot is separated from the second time slot by one time slot.
  • the second time slot and the third time slot are the same time slot or an adjacent time slot, and the second preset resource and the resource pool are separated by one OFDM symbol.
  • the time-frequency resources corresponding to any one of the first time slot, the second time slot, and the third time slot include an uplink time-frequency resource and a downlink time-frequency resource;
  • the uplink time-frequency resource and the downlink time-frequency resource occupy different sub-carriers, or the uplink time-frequency resource and the downlink time-frequency resource occupy different symbols.
  • the GFTA information includes at least one of a number of symbols, a number of start symbols, and a number of termination symbols occupied by the resource pool, and initial subcarrier information occupied by the resource pool. At least one of subband width information and terminating subcarrier information.
  • the embodiment of the present application further provides a resource pool configuration method, which is applied to a terminal device side, and includes:
  • the terminal device sends a GFTR to the network device, where the GFTR is used to indicate to the network device that the terminal device has uplink data to be transmitted;
  • the terminal device receives GFTA information from the network device, where the GFTA information is used to indicate a resource pool used by the terminal device to perform an unlicensed transmission.
  • the terminal device sends the GFTR to the network device, which specifically includes:
  • the terminal device sends the GFTR to the network device on a first preset resource in a first time slot.
  • the terminal device receives the GFTA information from the network device, and specifically includes:
  • the terminal device receives GFTA information from the network device on a second preset resource in a second time slot; the second time slot is not earlier than the first time slot.
  • the method further includes:
  • the terminal device performs the unlicensed transmission of the uplink data on the resource pool in the third time slot; the third time slot is not earlier than the second time slot.
  • the first preset resource includes at least one GFTR transmission unit, and the terminal device sends the GFTR to the network device on the first preset resource in the first time slot, which specifically includes:
  • the terminal device transmits the GFTR to a network device on at least one of the GFTR transmission units in the first time slot.
  • the terminal device sends the GFTR to the network device on the first preset resource in the first time slot, which specifically includes:
  • the terminal device sends the GFTR to the network device by using a first power on the first preset resource in a first time slot; the first power is used to enable the GFTR to reach the network device
  • the signal strength at the time is the preset power.
  • the first time slot and the second time slot are separated by one time slot.
  • the first time slot and the second time slot are the same time slot or an adjacent time slot, and the first preset resource and the second preset resource are separated by one. symbol.
  • the third time slot is separated from the second time slot by one time slot.
  • the second time slot and the third time slot are the same time slot or an adjacent time slot, and the second preset resource and the resource pool are separated by one symbol.
  • the time-frequency resources corresponding to the time slots include uplink time-frequency resources and downlink time-frequency resources;
  • the uplink time-frequency resource and the downlink time-frequency resource occupy different sub-carriers, or the uplink time-frequency resource and the downlink time-frequency resource occupy different symbols.
  • the GFTA information includes at least one of a number of symbols, a number of start symbols, and a number of termination symbols occupied by the resource pool, and initial subcarrier information occupied by the resource pool. At least one of subband width information and terminating subcarrier information.
  • the embodiment of the present application provides a resource pool configuration apparatus, which is a network device, and the resource pool configuration apparatus has a function of implementing the foregoing resource pool configuration method.
  • This function can be implemented in hardware or in hardware by executing the corresponding software.
  • the hardware or software herein includes one or more modules corresponding to the functions described above.
  • the resource pool configuration apparatus includes:
  • a receiving module configured to receive an unauthorized transfer request GFTR sent by at least one terminal device
  • a resource pool configuration module configured to generate an unlicensed transmission resource GFTA information according to the GFTR;
  • a sending module configured to send the GFTA information to each terminal device, where the GFTA information is used to indicate a resource pool used by the terminal device to perform an unlicensed transmission.
  • the receiving module is specifically configured to:
  • the sending module is specifically configured to:
  • the receiving module is further configured to:
  • the third time slot is not earlier than the second time slot.
  • the resource pool configuration module is specifically configured to:
  • the first preset resource includes at least one GFTR transmission unit
  • the resource pool configuration module is specifically configured to:
  • the resource pool configuration module is specifically configured to:
  • the number of the GFTRs is obtained according to the signal strength and the preset power.
  • the first time slot and the second time slot are separated by one time slot.
  • the first time slot and the second time slot are the same time slot or an adjacent time slot, and the first preset resource and the second preset resource are separated by one. Orthogonal Frequency Division Multiplexing OFDM symbols.
  • the third time slot is separated from the second time slot by one time slot.
  • the second time slot and the third time slot are the same time slot or an adjacent time slot, and the second preset resource and the resource pool are separated by one OFDM symbol.
  • the time-frequency resources corresponding to any one of the first time slot, the second time slot, and the third time slot include an uplink time-frequency resource and a downlink time-frequency resource;
  • the uplink time-frequency resource and the downlink time-frequency resource occupy different sub-carriers, or the uplink time-frequency resource and the downlink time-frequency resource occupy different symbols.
  • the GFTA information includes at least one of a number of symbols, a number of start symbols, and a number of termination symbols occupied by the resource pool, and initial subcarrier information occupied by the resource pool. At least one of subband width information and terminating subcarrier information.
  • the embodiment of the present application provides a resource pool configuration apparatus, which is a terminal device, and the resource pool configuration apparatus has a function of implementing the foregoing resource pool configuration method.
  • This function can be implemented in hardware or in hardware by executing the corresponding software.
  • the hardware or software herein includes one or more modules corresponding to the functions described above.
  • the resource pool configuration apparatus includes:
  • a sending module configured to send a GFTR to the network device, where the GFTR is used to indicate to the network device that the terminal device has uplink data to be transmitted;
  • a receiving module configured to receive GFTA information from the network device, where the GFTA information is used to indicate a resource pool used by the terminal device to perform an unlicensed transmission.
  • the sending module is specifically configured to:
  • the receiving module is specifically configured to:
  • the sending module is further configured to:
  • the third time slot is not earlier than the second time slot.
  • the first preset resource includes at least one GFTR transmission unit
  • the sending module is specifically configured to:
  • the GFTR is transmitted to the network device on at least one of the GFTR transmission units.
  • the sending module is specifically configured to:
  • the first time slot and the second time slot are separated by one time slot.
  • the first time slot and the second time slot are the same time slot or an adjacent time slot, and the first preset resource and the second preset resource are separated by one. symbol.
  • the third time slot is separated from the second time slot by one time slot.
  • the second time slot and the third time slot are the same time slot or an adjacent time slot, and the second preset resource and the resource pool are separated by one symbol.
  • the time-frequency resources corresponding to the time slots include uplink time-frequency resources and downlink time-frequency resources;
  • the uplink time-frequency resource and the downlink time-frequency resource occupy different sub-carriers, or the uplink time-frequency resource and the downlink time-frequency resource occupy different symbols.
  • the GFTA information includes at least one of a number of symbols, a number of start symbols, and a number of termination symbols occupied by the resource pool, and initial subcarrier information occupied by the resource pool. At least one of subband width information and terminating subcarrier information.
  • the embodiment of the present application provides a network device, where the network device has a function of implementing the foregoing resource pool configuration method.
  • This function can be implemented in hardware or in hardware by executing the corresponding software.
  • the hardware or software herein includes one or more modules corresponding to the functions described above.
  • the network device includes:
  • a receiver configured to receive an unauthorized transfer request GFTR sent by at least one terminal device
  • a processor configured to generate an unlicensed transmission resource GFTA information according to the GFTR;
  • the transmitter is configured to send the GFTA information to each terminal device, where the GFTA information is used to indicate a resource pool used by the terminal device to perform an unlicensed transmission.
  • the receiver is specifically for:
  • the transmitter is specifically for:
  • the receiver is also used to:
  • the third time slot is not earlier than the second time slot.
  • the processor is specifically used to:
  • the first preset resource includes at least one GFTR transmission unit
  • the processor is specifically configured to:
  • the processor is specifically used to:
  • the number of the GFTRs is obtained according to the signal strength and the preset power.
  • the first time slot and the second time slot are separated by one time slot.
  • the first time slot and the second time slot are the same time slot or an adjacent time slot, and the first preset resource and the second preset resource are separated by one. Orthogonal Frequency Division Multiplexing OFDM symbols.
  • the third time slot is separated from the second time slot by one time slot.
  • the second time slot and the third time slot are the same time slot or an adjacent time slot, and the second preset resource and the resource pool are separated by one OFDM symbol.
  • the time-frequency resources corresponding to any one of the first time slot, the second time slot, and the third time slot include an uplink time-frequency resource and a downlink time-frequency resource;
  • the uplink time-frequency resource and the downlink time-frequency resource occupy different sub-carriers, or the uplink time-frequency resource and the downlink time-frequency resource occupy different symbols.
  • the GFTA information includes at least one of a number of symbols, a number of start symbols, and a number of termination symbols occupied by the resource pool, and initial subcarrier information occupied by the resource pool. At least one of subband width information and terminating subcarrier information.
  • the embodiment of the present application provides a terminal device, where the terminal device has a function of implementing the foregoing resource pool configuration method.
  • This function can be implemented in hardware or in hardware by executing the corresponding software.
  • the hardware or software herein includes one or more modules corresponding to the functions described above.
  • the terminal device includes:
  • a transmitter configured to send, to the network device, a GFTR, where the GFTR is used to indicate to the network device that the terminal device has uplink data to be transmitted;
  • a receiver configured to receive GFTA information from the network device, where the GFTA information is used to indicate a resource pool used by the terminal device to perform an unlicensed transmission.
  • the transmitter is specifically for:
  • the receiver is specifically for:
  • the transmitter is also used to:
  • the third time slot is not earlier than the second time slot.
  • the first preset resource includes at least one GFTR transmission unit, and the transmitter is specifically configured to:
  • the GFTR is transmitted to the network device on at least one of the GFTR transmission units.
  • the transmitter is specifically for:
  • the first time slot and the second time slot are separated by one time slot.
  • the first time slot and the second time slot are the same time slot or an adjacent time slot, and the first preset resource and the second preset resource are separated by one. symbol.
  • the third time slot is separated from the second time slot by one time slot.
  • the second time slot and the third time slot are the same time slot or an adjacent time slot, and the second preset resource and the resource pool are separated by one symbol.
  • the time-frequency resources corresponding to the time slots include uplink time-frequency resources and downlink time-frequency resources;
  • the uplink time-frequency resource and the downlink time-frequency resource occupy different sub-carriers, or the uplink time-frequency resource and the downlink time-frequency resource occupy different symbols.
  • the GFTA information includes at least one of a number of symbols, a number of start symbols, and a number of termination symbols occupied by the resource pool, and initial subcarrier information occupied by the resource pool. At least one of subband width information and terminating subcarrier information.
  • the embodiment of the present application provides a computer readable storage medium, configured to store computer software instructions used by the network device, and includes a program designed to execute the first aspect.
  • the embodiment of the present application provides a computer readable storage medium, configured to store computer software instructions used by the terminal device, and includes a program designed to execute the foregoing second aspect.
  • the embodiment of the present application provides a computer program product, comprising instructions, when executed by a computer, causing a computer to perform the functions performed by the network device in the first aspect.
  • an embodiment of the present application provides a computer program product, comprising instructions, when executed by a computer, causing a computer to perform the functions performed by the terminal device in the second aspect.
  • the embodiment of the present application further provides a chip system, where the chip system includes a processor, and is configured to support The network device is implemented to implement the functions involved in the first aspect described above, for example, to generate or process data and/or information involved in the above methods.
  • the chip system further comprises a memory for storing necessary program instructions and data of the terminal device.
  • the chip system can be composed of chips, and can also include chips and other discrete devices.
  • the embodiment of the present application further provides a chip system, where the chip system includes a processor for supporting a terminal device to implement the functions involved in the foregoing second aspect, for example, generating or processing the method involved in the foregoing method. Data and / or information.
  • the chip system further includes a memory for holding program instructions and data necessary for the network device.
  • the chip system can be composed of chips, and can also include chips and other discrete devices.
  • FIG. 1 shows a network architecture that may be applicable to an embodiment of the present application
  • FIG. 2 is a schematic diagram of a signaling process of a resource pool configuration method according to Embodiment 1 of the present application;
  • FIG. 3 is a schematic diagram of a signaling flow of a resource pool configuration method according to Embodiment 2 of the present application;
  • FIG. 4 shows a subframe structure that may be applicable to an embodiment of the present application
  • FIG. 5 shows another seed frame structure that may be applied to an embodiment of the present application
  • FIG. 6 is a schematic diagram of a signaling flow of a resource pool configuration method according to Embodiment 3 of the present application.
  • FIG. 7 shows still another subframe structure that may be applicable to the embodiment of the present application.
  • FIG. 8 is a schematic diagram of a signaling flow of a resource pool configuration method according to Embodiment 4 of the present application.
  • FIG. 9 is a schematic structural diagram of a resource pool configuration apparatus according to Embodiment 1 of the present application.
  • FIG. 10 is a schematic structural diagram of a resource pool configuration apparatus according to Embodiment 2 of the present application.
  • FIG. 11 is a schematic structural diagram of a network device according to an embodiment of the present disclosure.
  • FIG. 12 is a schematic structural diagram of a terminal device according to an embodiment of the present disclosure.
  • the network architecture and the service scenario described in the embodiments of the present application are for the purpose of more clearly illustrating the technical solutions of the embodiments of the present application, and do not constitute a limitation of the technical solutions provided by the embodiments of the present application.
  • the technical solutions provided by the embodiments of the present application are equally applicable to similar technical problems.
  • FIG. 1 shows a network architecture that may be applicable to an embodiment of the present application.
  • the network architecture provided by this embodiment includes a network device 10 and at least one terminal device 20.
  • the network device 10 is a device that accesses the terminal device to the wireless network, and may be an evolved base station (Evolutional Node B, eNB or eNodeB) in the LTE communication system, or a relay station or an access point, or a future 5G network.
  • the base station, or the macro base station, the micro base station, the hotspot, the home base station, the transmission point, and the like are not limited herein.
  • FIG. 1 is a schematic diagram showing a possible schematic diagram, and the network device is taken as an example for a base station.
  • the terminal device 20 may be a wireless terminal, which may be a device that provides voice and/or other service data connectivity to the user, a handheld device with wireless connectivity, or other processing connected to the wireless modem. device.
  • the wireless terminal can communicate with one or more core networks via a Radio Access Network (RAN), and the wireless terminal can be a mobile terminal, such as a mobile phone (or "cellular" phone), a laptop, a hand. Rings, smart watches, data cards, sensors, and computers with mobile terminals, for example, can be portable, pocket, handheld, computer built, or in-vehicle mobile devices that exchange language and/or data with the wireless access network.
  • RAN Radio Access Network
  • FIG. 1 schematically depicts a possible schematic diagram in which the terminal device is a mobile phone as an example.
  • the wristband can also be regarded as the terminal device 20, and the mobile phone is regarded as a network device.
  • an authorization-based data transmission method is usually adopted.
  • the terminal device needs to perform multiple rounds of signaling interaction with the network device before transmitting the uplink data, so as to obtain the dedicated resources needed for transmitting the uplink data from the network device side, that is, obtain the authorization.
  • the network device transmits uplink data on dedicated resources to avoid interference and ensure the reliability of the transmission.
  • the main services in 5G include enhanced mobile broadband (eMBB) services, URLLC services, and massive machine type of communication (mMTC) services.
  • eMBB enhanced mobile broadband
  • URLLC ultra-reliable low-latency service
  • mMTC massive machine type of communication
  • the eMBB service refers to enhanced mobile broadband services, such as services that use the mobile phone traffic to access the Internet.
  • the URLLC service is an ultra-reliable low-latency service, such as industrial control.
  • the URLLC service is characterized by high latency and reliability for data transmission.
  • the mMTC service refers to a large-scale machine-type communication service in which an intelligent device connects to the Internet without human intervention, automatically performs communication, such as smart meter reading service, and the meter automatically reports data periodically.
  • the URLLC service in 5G puts high demands on the speed of data transmission.
  • the terminal device and the network device need to perform multiple rounds of signaling interaction.
  • more information is transmitted, and information needs to be carried in the high layer signaling.
  • the process of the terminal device and the network device parsing the information from the high layer signaling takes a long time. Therefore, the process delay in obtaining the authorization of the terminal device in the LTE communication system is large. Therefore, the data transmission mode in the LTE communication system cannot meet the requirements of the URLLC service for data transmission speed.
  • an unlicensed uplink data transmission mode is proposed in the 5G.
  • the network device configures a resource pool for multiple terminal devices.
  • the terminal device does not need to request the dedicated resources used in the uplink transmission from the base station, but is in the pre-configured resources. Selecting transmission resources in the pool directly performs uplink data transmission, which reduces the delay of data transmission.
  • multiple terminal devices compete for transmission resources in the resource pool, and there is a possibility of collision, so the unauthorized transmission has the benefit of low latency and reduces reliability.
  • a common processing method is to configure a large resource pool for the terminal device to avoid conflicts between multiple terminal devices.
  • the data volume of the URLLC service in the 5G is uncertain. If the resource pool is too large and the actual URLLC service has a small amount of data, it may cause waste of resources and affect the available resources of the eMBB service and the mMTC service.
  • the embodiment of the present application provides a resource pool configuration method, where each terminal device sends an unauthorized transmission request (Grant Free Transmission Request, GFTR) to the network device before performing data transmission.
  • the network device generates the Grant Free Transmission Area (GFTA) information according to the received GFTR and sends the GFTA information to the terminal device.
  • the GFTA information indicates the resource pool configured by the network device for the terminal device. Therefore, the resource pool used by the terminal device to perform the unlicensed transmission is dynamically configured by the network device according to the received GFTR, so that the size of the resource pool is related to the quantity of data to be transmitted, thereby avoiding resources caused by excessive resource pool. The problem of wasting.
  • FIG. 2 is a schematic diagram of a signaling flow of a resource pool configuration method according to Embodiment 1 of the present application.
  • the execution body of the method is a network device and at least one terminal device.
  • the embodiment relates to a specific process in which a network device receives a GFTR sent by at least one terminal device, and configures a resource pool for the terminal device according to the received GFTR.
  • the method includes:
  • the terminal device sends the GFTR to the network device.
  • the GFTR is configured to indicate to the network device that the terminal device has uplink data to be transmitted.
  • the terminal device when the terminal device has uplink data to be sent, the terminal device sends the GFTR to the network device.
  • the plurality of terminal devices send the GFTR to the network device.
  • the GFTR is used to indicate to the network device that the terminal device has uplink data to be transmitted.
  • the GFTR of different terminal devices may be the same.
  • the GFTR can be sent at the physical layer.
  • the network device receives the GFTR sent by the at least one terminal device, and generates GFTA information according to the GFTR.
  • the GFTA information is used to indicate a resource pool used by the terminal device for the unlicensed transmission.
  • the network device receives the GFTR sent by the at least one terminal device, and when the network device receives the GFTR, it indicates that the terminal device needs to send the uplink data.
  • the network device may determine that there are multiple terminal devices having data to be uplinked. Therefore, the network device can determine, according to the received GFTR, how many terminal devices have uplink data to be sent, so that the resource pool is allocated to the terminal device according to the amount of uplink data to be sent.
  • the GFTR may only be used to indicate that there is data to be transmitted without carrying the identifier of the terminal device that sends the GFTR, and thus the amount of information in the GFTR is small, which can speed up the transmission speed of the GFTR.
  • the network device does not need to determine, according to the GFTR, which terminal device has the uplink data to be transmitted, and determines, according to the received GFTR, how much uplink data to be transmitted exists, and then generates GFTA information according to the amount of uplink data to be transmitted, so that The configuration of the unlicensed resource pool is related to the amount of data to be sent.
  • a large resource pool can be configured to avoid the loss of transmission reliability caused by the competition.
  • a smaller resource pool can be configured to avoid the resource pool. Waste of resources. Therefore, the resource pool configuration method provided by this embodiment is more reasonable.
  • the GFTA information includes size information and/or location information of the resource pool.
  • the resource pool is divided on the time-frequency resource, and the GFTA information includes at least one of the number of symbols occupied by the resource pool, the number of starting symbols, and the number of termination symbols, and the initiator occupied by the resource pool.
  • the network device may send the start, end frequency domain resources and start and end time domain resources occupied by the resource pool to the terminal device, thereby defining the resource pool.
  • the network device can also send the resource pool to the terminal device.
  • the frequency domain bandwidth and the time domain width are determined, and the resource pool is determined according to the initial subcarrier information/terminating subcarrier information, the number of starting symbols/the number of termination symbols of the resource pool preset by the terminal device.
  • the resource pool indicated by the GFTA information includes at least one Grant Free Transmission Uint (GFTU).
  • GFTU Grant Free Transmission Uint
  • the terminal device selects a GFTU in the GFTA information for uplink data transmission.
  • the GFTU may be a basic resource unit when the terminal device performs uplink data transmission, or a resource block composed of several basic resource units.
  • a basic resource unit is uniquely determined by the start of the time domain, the length of the time domain, the start of the frequency domain, and the width of the frequency domain.
  • the basic resource unit can also be extended to be defined as resources in other dimensions. For example, if Sparse Code Multiple Access (SCMA) is used for uplink data transmission, the definition of the basic resource unit can be extended to the code domain.
  • SCMA Sparse Code Multiple Access
  • the basic resource unit is defined as a combination of time-frequency resources and code domain resources.
  • the basic resource unit is defined as a combination of time-frequency resources, SCMA codebooks, and pilot sequences.
  • the GFTU may be a time-frequency resource block defined by a frequency domain or a time domain parameter, or may be a resource unit defined by a frequency domain, a time domain, and a code domain parameter.
  • a code domain parameter defines a GFTU
  • different GFTUs may overlap partially or completely in the frequency domain and/or time domain.
  • the basic resource unit is described as an example of a time-frequency resource block, but it is easy to understand that all embodiments of the present application can be used in the case where the basic resource unit adopts other definitions.
  • the network device sends the GFTA information to each terminal device.
  • the network device generates GFTA information according to the GFTR and transmits the GFTA information to each terminal device.
  • the network device broadcasts the GFTA information.
  • the terminal device sends a GFTR to the network device, where the GFTR is used to indicate to the network device that the terminal device has uplink data to be transmitted; the network device receives the GFTR sent by the at least one terminal device, and according to the GFTR. Generating GFTA information; the network device sends the GFTA information to each terminal device, and the GFTA information is used to indicate a resource pool used by the terminal device for unauthorized transmission.
  • the terminal device sends the GFTR to the network device to obtain the GFTA information generated by the network device according to the GFTR, and the GFTA information indicates that the terminal device uses the license-free transmission.
  • the resource pool is configured by the network device according to the received GFTR, so the size of the resource pool is configured according to the amount of data to be sent, so that a larger resource is configured when the amount of data is small.
  • the pool leads to waste of resources, and also avoids the problem that the resource pool configured when the amount of data is too small increases competition and the reliability of data transmission decreases.
  • the embodiment of the present application provides a dynamic resource pool configuration method, and the resource pool configuration is more reasonable.
  • FIG. 3 is a schematic diagram of a signaling flow of a resource pool configuration method according to Embodiment 2 of the present application.
  • the resource pool configuration method provided by the embodiment of the present application includes:
  • the terminal device sends the GFTR to the network device on the first preset resource in the first time slot.
  • the first preset resource occupies part of the resources in the uplink time-frequency resource corresponding to the first time slot.
  • Time-frequency resources are divided in units of radio frames in the time domain.
  • a radio frame includes 10 subframes, each of which has a time length of 1 millisecond (ms).
  • each subframe includes two slots, and each slot has a time length of 0.5 ms.
  • Each The number of OFDM symbols included in the slot is related to the cyclic prefix (CP) length in the subframe. If the CP is a normal (normal) CP, each slot includes 7 OFDM symbols, and the length of each OFDM symbol is about 71.4 microseconds.
  • CP cyclic prefix
  • each slot is numbered by #0, #1, #2,# 3, #4, #5, #6 OFDM symbol composition.
  • each slot includes 6 OFDM symbols, for example, each slot is composed of OFDM symbols whose sequence numbers are #0, #1, #2, #3, #4, #5, respectively.
  • the resource pool configuration method provided by the present application is described in detail only by including 7 OFDM symbols per slot.
  • the minimum unit of the time-frequency resource in the frequency domain is a sub-carrier, and the sub-carrier has a width of 15 kHz, and the sub-carriers distributed in a time range corresponding to one OFDM symbol constitute a frequency domain resource corresponding to the OFDM symbol.
  • the frequency domain resources corresponding to all OFDM symbols constitute a time-frequency resource.
  • the width of the subcarrier is not limited in the embodiment of the present application.
  • the wider the subcarrier the shorter the length of the OFDM symbol, so that if the length of the subframe remains the same, more slots can be included in one subframe.
  • the length of the OFDM symbol is about 35.7 microseconds. If the 7 OFDM symbols are still a time slot, one subframe may have 4 time slots.
  • the subcarrier width is 60 kHz
  • the length of the OFDM symbol is further shortened by half when the subcarrier width is 30 kHz, and 7 OFDM symbols are used as one slot, and there may be 8 slots in one subframe.
  • FIG. 4 illustrates a subframe structure that may be applicable to embodiments of the present application. As shown in FIG. 4, one subframe includes 8 slots, and each slot includes 7 OFDM symbols.
  • the terminal device sends the information to the network device as the uplink transmission, and the time-frequency resource occupied by the information in the uplink transmission is called the uplink time-frequency resource, and the network device sends the information to the terminal device as the downlink transmission, and is occupied by the downlink transmission.
  • the time-frequency resource is called a downlink time-frequency resource.
  • the uplink time-frequency resource does not overlap with the downlink time-frequency resource.
  • the embodiment of the present application further provides a manner of dividing at least one time-frequency resource.
  • the time-frequency resource corresponding to the time slot includes an uplink time-frequency resource and a downlink time-frequency resource;
  • the uplink time-frequency resource and the downlink time-frequency resource occupy different sub-carriers, or the uplink time-frequency resource and the downlink time-frequency resource occupy different symbols.
  • the uplink and downlink partitioning of the time-frequency resource includes two modes: time division and frequency division.
  • uplink time-frequency resources and downlink time-frequency resources occupy different sub-carriers.
  • the frequency domain resources corresponding to the time slots are divided into uplink subcarriers and downlink subcarriers.
  • the time slots on the uplink subcarriers are used for uplink transmission, and the time slots on the downlink subcarriers are used for downlink. Transmission.
  • FIG. 5 shows another seed frame structure that may be applied to an embodiment of the present application.
  • a subframe structure in a time division system is shown in FIG. 5, and each slot may have partial OFDM symbols for uplink transmission and another portion of OFDM symbols for downlink transmission.
  • Downlink control information and uplink control information may be transmitted in each time slot.
  • the time-frequency resources corresponding to each time slot include downlink time-frequency resources and uplink time-frequency resources.
  • the interval between uplink and downlink transmission switching is shorter than that of the subframe structure in the LTE communication system.
  • the network device and the terminal device in order to ensure that the network device can receive the GFTR sent by the terminal device, the network device and the terminal device set the first preset resource at the same position in the time-frequency resource corresponding to each time slot, for sending the GFTR. And receiving.
  • the terminal device may send the GFTR to the network device by using the first preset resource in a periodically occurring time slot.
  • the network device periodically receives the GFTR on the first preset resource of each time slot.
  • the Ministry The location of the resource on the uplink time-frequency resource corresponding to the first time slot may be a fixed location, and may also be dynamically configured by the network device.
  • the network device can notify the terminal device of the location of the first preset resource in the uplink time-frequency resource corresponding to the first time slot by using the system broadcast information and the high-layer signaling.
  • the terminal device may transmit the GFTR in the first preset resource of the latest first time slot. If the terminal device has missed the first preset resource in the current time slot, the GFTR can only be transmitted on the first preset resource in the next time slot.
  • the first preset resource may occupy all uplink subcarriers corresponding to one or more OFDM symbols in the uplink time-frequency resource corresponding to one time slot.
  • the first preset resource may occupy all OFDM symbols corresponding to one or more sub-bands in the uplink time-frequency resource corresponding to one time slot, and one sub-band includes at least one sub-carrier, as shown in FIG. 4 .
  • one subband contains 6 or 12 subcarriers.
  • the network device receives the GFTR sent by the at least one terminal device on the first preset resource in the first time slot, and generates GFTA information according to the GFTR.
  • the GFTA information is used to indicate a resource pool used by the terminal device for the unlicensed transmission.
  • the network device periodically receives the GFTR on each of the first preset resources, so that the amount of uplink data to be transmitted can be determined according to the received GFTR.
  • the network device does not receive the GFTR, it is considered that there is no data to be transmitted at the current time, so the GFTA information may not be generated.
  • the network device generates GFTA information according to the GFTR, and specifically includes:
  • the network device acquires the number of GFTRs and generates GFTA information according to the number of GFTRs.
  • the manner in which the terminal device sends the GFTR to the network device on the first preset resource in the first time slot and the manner in which the network device acquires the GFTR is described in detail below with reference to the specific embodiment.
  • the first preset resource includes at least one GFTR transmission unit (GFTRU), and the terminal device sends the GFTR to the network device on the at least one GFTR transmission unit.
  • GFTRU GFTR transmission unit
  • the network device acquires the number of GFTRs according to the number of GFTR transmission units in which the GFTR is detected in the first preset resource, and generates GFTA information according to the number of acquired GFTRs.
  • the first preset resource may include multiple GFTRUs, and one GFTRU occupies a small amount of resources.
  • one GFTRU may be a time-frequency resource unit, and may occupy at least one to multiple subcarriers in the frequency domain. Occupying one OFDM symbol in the time domain, or one GFTRU may be a time-frequency code resource unit, which may occupy multiple subcarriers in the frequency domain, for example, 6 or 12 subcarriers, occupying one OFDM symbol in the time domain, in the code A codeword is occupied on the domain.
  • each of the first preset resources (Resource Element, RE) is used as one GFTRU, and one RE occupies one subcarrier and one OFDM symbol.
  • the terminal device can transmit the GFTR on at least one GFTRU.
  • the terminal device randomly selects GFTRU.
  • one or more GFTRUs may be allocated to each terminal device by the network device, and the GFTRUs allocated to different terminal devices are different; or when the number of GFTRUs is insufficient, the same GFTRU is allocated to a group of terminal devices.
  • the network device In the scheme of allocating GFTRU, if the terminal device can only use one GFTU for each unauthorized data transmission, the network device only needs to assign one GFTRU to each terminal device, or multiple GFTRUs allocated by the network device to the terminal device.
  • the terminal device can only use one GFTRU to send the GFTR at a time, and the terminal device can only send one GFTR at a time. If the terminal device can use multiple GFTUs each time an unlicensed data transmission, multiple GFTRUs can be assigned to the terminal device.
  • the GFTR may only contain 1 bit of information, and is only used to indicate that the terminal device has uplink data to be transmitted.
  • the GFTR does not need to carry the identification information of the terminal device, so the GFTR occupies less resources.
  • the carrier bandwidth of the uplink time-frequency resource If the frequency is 20 MHz and the subcarrier width is 60 kHz, then there are about 340 subcarriers in one carrier, and each RE is used as a GFTRU. If the first preset resource occupies all the time-frequency resources corresponding to one OFDM symbol, then a preset is used. Resources can include 340 GFTRUs.
  • the network device receives the GFTR on the first preset resource in the first time slot, detects whether there is a GFTR on each GFTRU, and if the GFTR signal is detected, counts as a GFTR, and if the signal is not detected, the GFTRU is considered to be No GFTR.
  • the network device detects the GFTR on the N GFTRUs of the first preset resource, it may be determined that the N terminal devices need to perform the unlicensed data transmission according to the N, or determine that there are N uplink data to be transmitted.
  • N is a natural number.
  • GFTA information may be generated based on N and a preset correction coefficient a.
  • the preset correction coefficient a may be exemplarily a real number greater than 1, for example, a is at least 1.5, and the number of GFTUs included in the finally determined GFTA may be approximately the product V of N and a.
  • the size of the GFTA is determined by the detected number of GFTRs N and the preset correction coefficient a, which improves the accuracy of the transmission resource configuration.
  • each GFTR occupies one GFTRU for transmission, so that the network device determines the number of terminal devices that send the GFTR according to the number of detected GFTRs, and the GFTR contains less information, which speeds up the detection of the GFTRU by the network device. Whether or not the speed of the GFTR is carried, thereby speeding up the transmission resource configuration.
  • the terminal device sends the GFTR to the network device by using the first power on the first preset resource in the first time slot; the first power is used to enable the GFTR of the terminal device to reach the network device.
  • the signal strength at the time is the preset power.
  • the first power used by each terminal device to transmit the GFTR is not necessarily the same.
  • the network device detects the signal strength on the first preset resource on the first preset resource in the first time slot; obtains the quantity of the GFTR according to the signal strength and the preset power, and generates the GFTA according to the quantity of the GFTR information.
  • the sending of the GFTR may also use energy.
  • the first preset resource may occupy only a small number of REs, for example, only six consecutive REs are used to form the first preset resource.
  • the first preset resource is a common resource, and the terminal device that has data to be sent sends the GFTR on the common resource.
  • the terminal device controls to transmit the transmit power of the GFTR, so that the signal strength when the GFTR signal reaches the network device side is a preset power, that is, the target signal strength.
  • the target signal strengths of the multiple GFTRs on the network device side are superimposed, and the network device only needs to detect the GFTR on the first preset resource.
  • the signal strength pr (denoted as the total strength) and the target signal strength px (ie, the preset power value) of the GFTR at the network device can determine the number N of GFTRs superimposed on the first preset resource, thereby N generates GFTA information.
  • the GFTR since the network device only needs to detect the signal strength without parsing the content carried in the GFTR, the GFTR may not contain any digital information, or the GFTR transmitted by different terminal devices may carry the same 1-bit data. To improve the accuracy of the GFTA information generated by the network device, it is necessary to ensure that the signal strength of the GFTR sent by different terminal devices when reaching the network device is the preset power px.
  • the terminal device transmits the GFTR to the network device by using the first power. The first power is used to make the signal strength when the GFTR reaches the network device is the preset power px. The terminal device generally generates the first power according to the preset power and the path loss between the terminal device and the network device.
  • the terminal device can listen to the signal sent by the network device to estimate the path loss, and the terminal device can measure the received power between the terminal device and the network device according to the received power of the signal sent by the network device. Road damage.
  • the terminal device can adaptively increase the first power of the GFTR, so that the signal strength of the GFTR when reaching the network device is multiples of px, which is equivalent to multiple terminal devices simultaneously.
  • Send GFTR When the network device obtains the number N of GFTRs, the size of the GFTA is estimated.
  • the network device estimates the size of the GFTA, it is considered that the number of N may be smaller than the actual number of GFTR transmissions, and the size of the GFTA is sufficient to meet the requirements of the URLLC for the success rate of these unauthorized data transmissions.
  • the network device can determine the resource pool size according to the number N and the preset correction coefficient.
  • the multiple terminal devices send the GFTR on the common first preset resource, so that the network device detects the total power of all the GFTRs, and controls the transmit power of the GFTR, so that the target signal strength of the GFTR sent by different terminal devices is obtained.
  • the network device may determine the number of GFTRs according to the total power on the first preset resource and the target signal strength of the single GFTR. Since the GFTR sent by each terminal device may be superimposed on the common first preset resource, the first pre- It is less resource-intensive and saves resources.
  • the network device sends the GFTA information to each terminal device.
  • S303 in this embodiment is the same as S203 in the embodiment shown in FIG. 2, and details are not described herein again.
  • the terminal device performs GFTR transmission on the first preset resource in any time slot, and the network device periodically receives the GFTR on the first preset resource of all time slots, thereby ensuring the network device and the terminal device.
  • the reliability of GFTR transmission. Therefore, the network device can generate GFTA information according to the received GFTR, and the size of the resource pool indicated in the GFTA information is configured according to the amount of data to be sent, and the resource pool configuration is more reasonable.
  • FIG. 6 is a schematic diagram of signaling flow of a resource pool configuration method according to Embodiment 3 of the present application.
  • the resource pool configuration method provided by the embodiment of the present application includes:
  • the terminal device sends the GFTR to the network device on the first preset resource in the first time slot.
  • the network device receives the GFTR sent by the at least one terminal device on the first preset resource in the first time slot, and generates GFTA information according to the GFTR.
  • the GFTA information is used to indicate a resource pool used by the terminal device for the unlicensed transmission.
  • S601 and S602 in this embodiment are the same as S301 and S302 in the embodiment shown in FIG. 3, and details are not described herein again.
  • the network device sends the GFTA information to each terminal device on the second preset resource in the second time slot.
  • the second time slot is not earlier than the first time slot.
  • the terminal device receives the GFTA information on the second preset resource in the second time slot.
  • the network device after the network device generates the GFTA information according to the received GFTR, the network device sends the GFTA information to each terminal device on the second preset resource.
  • the terminal device receives the GFTA information on the second preset resource.
  • the second preset resource is a part of resources on the downlink time-frequency resource corresponding to the second time slot, and the second time slot is a time slot not earlier than the first time slot.
  • the location of the part of the resource on the uplink time-frequency resource corresponding to the second time slot may be a fixed location, and may also be dynamically configured by the network device.
  • the network device can notify the terminal device of the location of the second preset resource in the uplink time-frequency resource corresponding to the second time slot by using the system broadcast information and the high-layer signaling.
  • the terminal device sends the GFTR to the network device in the first time slot
  • the terminal device receives the GFTA information on the second preset resource in the downlink time-frequency resource corresponding to the second time slot. If the terminal device does not send the GFTR, the terminal device does not perform GFTA information reception.
  • the first time slot may be any time slot, each time slot is provided with a first preset resource, and each time Each of the first time slots has a corresponding second time slot, and the second time slot is provided with a second preset resource. Therefore, referring to FIG. 4, a second preset resource is set on each time slot.
  • the terminal device needs to switch from the sending state to the receiving state, and after receiving the GFTR, the terminal device needs to generate GFTA information according to the GFTR, and switch from the receiving state to the transmitting state.
  • a time interval exists between the first preset resource and the second preset resource, in order to improve the resource pool configuration efficiency and ensure the success rate of the resource pool configuration. The time interval between the first preset resource and the second preset resource is described in detail below in conjunction with the specific embodiment.
  • the first possible time interval is that one time slot is separated between the first time slot and the second time slot.
  • the time interval between the second time slot and the first time slot is related to the number of time slots included in one subframe and the time required for the terminal device and the network device to process the received information.
  • one subframe includes eight time slots. Since the time length of one subframe is 1 millisecond, the time length of each time slot is 125 microseconds, and the second time slot and the first time can be specified.
  • the slots are separated by one time slot, so that whether the first preset resource is arranged in time domain or in frequency domain (as shown in the horizontal arrangement in FIG. 4), it can be ensured that the network device has at least one time slot after the GFTR is sent, that is, 125 microseconds.
  • the second time processes the received information and generates the GFTA information to be transmitted and implements the transmission, and ensures that the terminal device has enough time to switch from the transmitting state to the receiving state to receive the GFTA information after transmitting the GFTR.
  • the terminal device transmits the GFTR on the first preset resource in the slot 1, and receives the GFTA information on the second preset resource in the slot 3.
  • the network device receives the GFTR on the first preset resource in the time slot 1, and generates GFTA information according to the GFTR before the second preset resource in the time slot 3, and on the second preset resource in the time slot 3 Send GFTA information.
  • the terminal device fails to send the GFTR on the first preset resource in the time slot 1, the terminal device sends the GFTR on the first preset resource in the time slot 2, correspondingly, the terminal device is in the time slot.
  • the GFTA information is received on the second preset resource in 4. Since there is a time slot between the receiving and transmitting of the terminal device and the network device, the reliability of the resource pool configuration is ensured.
  • the terminal device takes 8 time slots in one subframe as an example, the terminal device generates the transmission to be transmitted at this time.
  • the data, to receive the resource pool configured by the network device requires only 4 OFDM symbols at most, and the resource pool configuration has less delay.
  • At least one time slot is separated between the first time slot and the second time slot.
  • the number of time slots between the second time slot and the first time slot may be more.
  • the second time slot and the first time slot may be separated by 2 time slots, and then the terminal device sends the GFTA information after the GFTR is sent, and the terminal device sends the GFTA information.
  • the delay of information passing does not exceed 0.25 milliseconds. If the terminal device and the network device process the received signal more quickly, the second time slot and the first time slot may also be separated by only one time slot, which is more suitable for the delay requirement of the URLLC.
  • the second possible time interval is that the first time slot and the second time slot are the same time slot or an adjacent time slot, and the first preset resource and the second preset resource are separated by one OFDM symbol.
  • the first preset resource and the second preset resource may be further shortened.
  • the time interval is at least one OFDM symbol.
  • FIG. 7 shows another subframe structure that may be applicable to the embodiment of the present application.
  • the subframe in FIG. 7 illustratively includes four time slots, and the subframe in FIG. 7 adopts a frequency division system.
  • the first preset resource may be arranged at an intermediate position of each time slot, and the second preset resource is arranged at a start position of each time slot.
  • the second preset resource of the second time slot and the first preset resource of the first time slot are separated by at least one OFDM symbol, and FIG. 7 is exemplified by only one OFDM symbol.
  • the configuration speed of the resource pool can meet the requirements of the URLLC service.
  • the terminal device and the network device can process the received information and transmit in time when the next resource arrives.
  • the first preset resource is on the left side of the time slot
  • the second preset resource is in the middle of the time slot
  • the first time slot and the second time slot are the same time slot.
  • the terminal device transmits the GFTR on the first preset resource in the first time slot, and the network device receives the GFTR on the first preset resource in the first time slot, and generates GFTA information according to the received GFTR.
  • the network device sends the GFTA information on the second preset resource in the second time slot, ensuring the reliability of the GFTR and GFTA information transmission between the network device and the terminal device. Therefore, the network device can generate GFTA information according to the received GFTR, and the terminal device can use the resource pool indicated in the GFTA information to perform uplink data transmission.
  • the size of the resource pool in this embodiment is configured according to the amount of data to be sent, and the resource pool configuration is more reasonable.
  • the embodiment of the present application further provides a resource pool configuration method.
  • This embodiment relates to a process of transmitting uplink data on a resource pool indicated by the GFTA information after the terminal device receives the GFTA information sent by the network device.
  • FIG. 8 is a schematic diagram of a signaling process of a resource pool configuration method according to Embodiment 4 of the present application.
  • the resource pool configuration method provided by the embodiment of the present application includes:
  • the terminal device sends the GFTR to the network device on the first preset resource in the first time slot.
  • the network device receives the GFTR sent by the at least one terminal device on the first preset resource in the first time slot, and generates GFTA information according to the GFTR.
  • the GFTA information is used to indicate a resource pool used by the terminal device for the unlicensed transmission.
  • the network device sends the GFTA information to each terminal device on the second preset resource in the second time slot.
  • the second time slot is not earlier than the first time slot.
  • S801 to S803 in this embodiment are the same as S601 to S603 in the embodiment shown in FIG. 6, and the details are not described herein again.
  • the terminal device performs the unlicensed transmission of the uplink data on the resource pool in the third time slot.
  • the third time slot is not earlier than the second time slot.
  • the network device receives the uplink data sent by each terminal device on the resource pool in the third time slot.
  • the terminal device after receiving the GFTA information, performs uplink data transmission on the resource pool indicated by the GFTA information.
  • the network device receives the uplink data sent by the terminal device in the resource pool Hassan.
  • the resource pool is a part of resources on the uplink time-frequency resource corresponding to the third time slot, and the third time slot is not earlier than the second time slot.
  • the size of the resource pool in each slot may be different.
  • the time interval between the second preset resource and the third preset resource is described in detail below in conjunction with the specific embodiment.
  • the first possible time interval is that there is one time slot between the third time slot and the second time slot.
  • a time slot may also be separated between the third time slot and the second time slot, so that the second pre- Whether the resources are arranged according to the time domain or the frequency domain can ensure that the terminal device processes the received information at least one time slot, that is, 125 microseconds after receiving the GFTA information, and switches from the receiving state to the transmitting state.
  • the three-slot resource pool is transmitted. For example, if the terminal device generates data in time slot 1 shown in FIG.
  • the network device is The GFTA information is sent in the second preset resource of the time slot 3, and then the terminal device performs the unauthorized data transmission in the resource pool of the time slot 5. If the terminal device misses the opportunity to send the GFTR in the time slot 1, the GFTR is sent in the first preset resource of the time slot 2, and the network device sends the GFTA information in the second preset resource of the time slot 4, where the network device is Unlicensed data transmission is performed in the resource pool of slot 6. At this time, the time from the generation of data from the terminal device to the transmission of data on the resource pool is up to 6 OFDM symbols, 0.75 milliseconds. By setting the time interval between the first preset resource, the second preset resource, and the resource pool, the delay of the resource pool configuration is reduced.
  • At least one time slot is separated between the second time slot and the third time slot.
  • the number of time slots between the second time slot and the third time slot may be more. For example, if one subframe includes 16 time slots, the third time slot and the second time slot may be separated by 2 time slots.
  • the terminal device After receiving the GFTA information sent by the network device, the terminal device still has at least 125 microseconds. The interval is used to determine the resource pool indicated by the GFTA information, and the uplink data is sent on the resource pool to meet the time requirement between the terminal device or the network device in the URLLC service from receiving the information to performing the uplink data transmission, and the terminal device at this time The delay from the generation of data to the uplink data transmission according to the GFTA information does not exceed 0.5 milliseconds. If the terminal device and the network device process the received signal more quickly, the second time slot and the first time slot may also be separated by only one time slot, which is more suitable for the delay requirement of the URLLC.
  • the second possible time interval is that the second time slot and the third time slot are the same time slot or the adjacent time slot, and the second preset resource and the resource pool are separated by one OFDM symbol.
  • the terminal device and the network device process the received data, it does not require too much time, for example, 1 to 2 OFDM.
  • the time of the symbol is sufficient, and no time slot may be needed between the third time slot and the second time slot, and only the space between the resource pool of the third time slot and the second preset resource of the second time slot needs to be separated.
  • the number of symbols required is sufficient, so that the delay of the terminal device from the generation of data to the issuance of data can be shortened to less than 0.5 milliseconds.
  • the first preset resource may be arranged in the middle of each time slot, and the second preset resource is arranged at the beginning of each time slot.
  • the resource pool is arranged on the right side of each time slot, and the second time slot is adjacent to the first time slot, and the third time slot and the second time slot are the same time slot, and the second time slot is the second time slot.
  • the resource and the first preset resource of the first time slot and the resource pool and the second preset resource in the second time slot are separated by at least one OFDM symbol.
  • the time length of one OFDM symbol is long, and the terminal device and the network device only need to perform enough processing to process the received information and timely transmit when the next resource arrives.
  • the first preset resource may be set to the left of the time slot
  • the second preset resource is set in the middle of the time slot
  • the resource pool is set to the left of the time slot
  • the first time slot and the second time slot are The time slot is the same time slot
  • the third time slot is adjacent to the second time slot, and also causes the second preset resource and the first preset resource and the third time in the second time slot (ie, the first time slot)
  • the resource pool of the slot and the second preset resource of the second slot are separated by at least one OFDM symbol.
  • the configuration speed of the resource pool can meet the requirements of the URLLC service.
  • the terminal device performs GFTR transmission on the first preset resource in the first time slot, and the network device sends the GFTA information generated according to the GFTR to the terminal device on the second preset resource in the second time slot, and Data transmission is performed on the resource pool indicated by the GFTA information, ensuring transmission of GFTR, GFTA information, and uplink data between the network device and the terminal device. Therefore, the network device can generate GFTA information according to the received GFTR, and perform data transmission on the resource pool indicated in the GFTA information.
  • the size of the resource pool in this embodiment is configured according to the amount of data to be sent, and the resource pool configuration is more reasonable. .
  • the resource pool configuration method in the foregoing embodiments may also be applied to a subframe in a time division system as shown in FIG. 5.
  • the subframe shown in FIG. 5 includes 8 time slots, and exemplary time-frequency resources corresponding to the left OFDM symbols of each time slot may be specified for downlink transmission, and these OFDM symbols are called downlink OFDM symbols;
  • the time-frequency resources corresponding to several symbols are used for uplink transmission, and these OFDM symbols are called uplink OFDM symbols.
  • the allocation of the number of uplink OFDM symbols and downlink OFDM symbols in each slot may be different.
  • the first preset resource may be a partial time-frequency resource corresponding to the first OFDM symbol on the right side of the uplink OFDM symbol of each time slot, and the second preset resource may be the left side of the downlink OFDM symbol of each time slot.
  • a partial time-frequency resource corresponding to one OFDM symbol, and the resource pool may be a part of resources in a time-frequency resource corresponding to an uplink OFDM symbol of each slot.
  • the other OFDM symbols in the subframe are used for downlink data transmission or uplink data transmission according to the requirements of resources for uplink and downlink transmission (generally, downlink requires more resources than uplink).
  • the interval between the first time slot and the second time slot and the third time slot may be the same as the time interval in the embodiment shown in FIG. 4 or FIG. 7. Only one time slot between each time slot will be exemplarily described below.
  • the terminal device When the terminal device generates URLLC data in time slot 1, the GFTR may be transmitted in the first preset resource of time slot 1.
  • the network device obtains the number N of GFTRs from the first preset resource of the time slot 1, configures a resource pool for the terminal device according to N, generates GFTA information, and then sends the GFTA information on the second preset resource of the time slot 3.
  • the terminal device receives the GFTA information on the second preset resource of the time slot 3, and selects the transmission unit to perform uplink data transmission on the resource pool of the time slot 5 according to the GFTA information.
  • the first time slot and the second time slot may also be adjacent time slots or the same time slot, and the first preset resource and the second preset resource are separated by at least one OFDM symbol.
  • the terminal device fails to send the GFTR on the first preset resource in the time slot 1
  • the terminal device sends the GFTR on the first preset resource in the time slot 2 correspondingly, the terminal device is in the time slot.
  • the second preset resource in 4 receives the GFTA information, and performs uplink data transmission on the resource pool on the time slot 6.
  • the terminal device Since there is a time slot between the receiving and transmitting of the terminal device and the network device, the reliability of the resource pool configuration is ensured. At the same time, taking 8 time slots in one subframe as an example, the terminal device generates the transmission to be transmitted at this time. The data is transmitted to the resource pool configured by the network device for uplink data transmission, and only needs up to 6 OFDM symbols to meet the delay requirement of the URLLC service.
  • the first time slot, the second time slot, and the third time slot in any of the foregoing embodiments may be distributed in different subframes.
  • the first preset resource may be a part of the time-frequency resources occupied by the uplink control channel (PUCCH) in the uplink time-frequency resource corresponding to the first time slot.
  • the second preset resource may be a part of resources in a time-frequency resource occupied by a downlink control channel (PDCCH) in a downlink time-frequency resource corresponding to the second time slot.
  • PUCCH uplink control channel
  • PDCH downlink control channel
  • a further aspect of the present application further provides a resource pool configuration apparatus, which is configured to perform the resource pool configuration method on the network device side in the foregoing embodiment, and has the same technical features and technical effects.
  • FIG. 9 is a schematic structural diagram of a resource pool configuration apparatus according to Embodiment 1 of the present application.
  • the resource pool configuration device may be the network device in the embodiment shown in FIG. 2 to FIG. 8 , and the resource pool configuration device may be implemented by software, hardware, or a combination of software and hardware.
  • the resource pool configuration apparatus may include:
  • the receiving module 11 is configured to receive an unauthorized transfer request GFTR sent by at least one terminal device;
  • a resource pool configuration module 12 configured to generate an unlicensed transmission resource GFTA information according to the GFTR;
  • the sending module 13 is configured to send the GFTA information to each terminal device, where the GFTA information is used to indicate a resource pool used by the terminal device to perform an unlicensed transmission.
  • the receiving module 11 is specifically configured to:
  • the sending module 13 is specifically configured to:
  • the receiving module 11 is further configured to:
  • the third time slot is not earlier than the second time slot.
  • the resource pool configuration module 12 is specifically configured to: acquire the quantity of the GFTR, and generate the GFTA information according to the quantity of the GFTR.
  • the first preset resource includes at least one GFTR transmission unit, where the resource pool configuration module 12 is specifically configured to:
  • the resource pool configuration module 12 is specifically configured to:
  • the number of the GFTRs is obtained according to the signal strength and the preset power.
  • the first time slot and the second time slot are separated by one time slot.
  • the first time slot and the second time slot are the same time slot or an adjacent time slot, and the first preset resource and the second preset resource are separated by an orthogonal frequency division. Multiplexed OFDM symbols.
  • the third time slot is separated from the second time slot by one time slot.
  • the second time slot and the third time slot are the same time slot or an adjacent time slot, and the second preset resource and the resource pool are separated by one OFDM symbol.
  • the time-frequency resource corresponding to any one of the first time slot, the second time slot, and the third time slot includes an uplink time-frequency resource and a downlink time-frequency resource;
  • the uplink time-frequency resource and the downlink time-frequency resource occupy different sub-carriers, or the uplink time-frequency resource and the downlink time-frequency resource occupy different symbols.
  • the GFTA information includes at least one of a number of symbols, a number of start symbols, and a number of termination symbols occupied by the resource pool, and initial subcarrier information and subband width occupied by the resource pool. At least one of information, terminating subcarrier information.
  • FIG. 10 is a schematic structural diagram of a resource pool configuration apparatus according to Embodiment 2 of the present application.
  • the resource pool configuration device may be the terminal device in the embodiment shown in FIG. 2 to FIG. 8 , and the resource pool configuration device may be implemented by software, hardware or a combination of software and hardware.
  • the resource pool configuration apparatus may include:
  • the sending module 21 is configured to send, to the network device, a GFTR, where the GFTR is used to indicate to the network device that the terminal device has uplink data to be transmitted;
  • the receiving module 22 is configured to receive GFTA information from the network device, where the GFTA information is used to indicate a resource pool used by the terminal device to perform an unlicensed transmission.
  • the sending module 21 is specifically configured to:
  • the receiving module 22 is specifically configured to:
  • the sending module 21 is further configured to:
  • the third time slot is not earlier than the second time slot.
  • the first preset resource includes at least one GFTR transmission unit
  • the sending module 21 is specifically configured to:
  • the GFTR is transmitted to the network device on at least one of the GFTR transmission units.
  • the sending module 21 is specifically configured to:
  • the first time slot and the second time slot are separated by one time slot.
  • the first time slot and the second time slot are the same time slot or an adjacent time slot, and the first preset resource and the second preset resource are separated by one symbol.
  • the third time slot is separated from the second time slot by one time slot.
  • the second time slot and the third time slot are the same time slot or an adjacent time slot, and the second preset resource and the resource pool are separated by one symbol.
  • the time-frequency resource corresponding to the time slot includes an uplink time-frequency resource and a downlink time-frequency resource;
  • the uplink time-frequency resource and the downlink time-frequency resource occupy different sub-carriers, or the uplink time-frequency resource and the downlink time-frequency resource occupy different symbols.
  • the GFTA information includes at least one of a number of symbols, a number of start symbols, and a number of termination symbols occupied by the resource pool, and initial subcarrier information and subband width occupied by the resource pool. At least one of information, terminating subcarrier information.
  • a further aspect of the present application further provides a network device, which is configured to perform the resource pool configuration method on the network device side in the foregoing embodiment, and has the same technical features and technical effects.
  • FIG. 11 is a schematic structural diagram of a network device according to an embodiment of the present disclosure.
  • the network device can include a memory 31, a processor 32, at least one communication bus 33, a transmitter 34, and a receiver 35.
  • the communication bus 33 is used to implement a communication connection between components.
  • the memory 31 may include a high speed RAM memory, and may also include a non-volatile memory NVM, such as at least one disk memory, in which various programs may be stored for performing various processing functions and implementing the method steps of the present embodiment.
  • the transmitter 34 may be a radio frequency processing module or a baseband processing module in the base station
  • the receiver 35 may be a radio frequency processing module or a baseband processing module in the base station.
  • the transmitter 34 and the receiver 35 described above may be provided separately, and may also be integrated to form a transceiver, and both the transmitter 34 and the receiver 35 may be coupled to the processor 32.
  • the communication bus 33 may be a Peripheral Component Interconnect (PCI) bus or an Extended Industry Standard Architecture (EISA) bus.
  • PCI Peripheral Component Interconnect
  • EISA Extended Industry Standard Architecture
  • the above communication bus 33 can be divided into an address bus, a data bus, a control bus, and the like. For ease of representation, only one thick line is shown in Figure 11, but it does not mean that there is only one bus or one type of bus.
  • Fig. 11 is a simplified schematic diagram showing one possible design structure of the network device involved in the above embodiment. It will be appreciated that Figure 11 only shows a simplified design of the network device. In practical application The network device may include any number of transmitters, receivers, processors, memories, etc., and all network devices that can implement the present application are within the scope of the present application.
  • the receiver 35 is configured to receive an unauthorized transfer request GFTR sent by at least one terminal device;
  • the processor 32 is configured to generate an unlicensed transmission resource GFTA information according to the GFTR;
  • the sender 34 is configured to send the GFTA information to each terminal device, where the GFTA information is used to indicate a resource pool used by the terminal device to perform an unlicensed transmission.
  • the receiver 35 is specifically configured to:
  • the transmitter 34 is specifically configured to:
  • the receiver 35 is further configured to:
  • the third time slot is not earlier than the second time slot.
  • the processor 32 is specifically configured to:
  • the first preset resource includes at least one GFTR transmission unit, and the processor 32 is specifically configured to:
  • the processor 32 is specifically configured to:
  • the number of the GFTRs is obtained according to the signal strength and the preset power.
  • the first time slot and the second time slot are separated by one time slot.
  • the first time slot and the second time slot are the same time slot or an adjacent time slot, and the first preset resource and the second preset resource are separated by an orthogonal frequency division. Multiplexed OFDM symbols.
  • the third time slot is separated from the second time slot by one time slot.
  • the second time slot and the third time slot are the same time slot or an adjacent time slot, and the second preset resource and the resource pool are separated by one OFDM symbol.
  • the time-frequency resource corresponding to any one of the first time slot, the second time slot, and the third time slot includes an uplink time-frequency resource and a downlink time-frequency resource;
  • the uplink time-frequency resource and the downlink time-frequency resource occupy different sub-carriers, or the uplink time-frequency resource and the downlink time-frequency resource occupy different symbols.
  • the GFTA information includes at least one of a number of symbols, a number of start symbols, and a number of termination symbols occupied by the resource pool, and initial subcarrier information and subband width occupied by the resource pool. At least one of information, terminating subcarrier information.
  • a further aspect of the embodiments of the present application further provides a terminal device, which is configured to perform the resource pool configuration method on the terminal device side in the foregoing embodiment, and has the same technical features and technical effects.
  • FIG. 12 is a schematic structural diagram of a terminal device according to an embodiment of the present disclosure.
  • the terminal device may include a memory 41, The processor 42, the at least one communication bus 43, the transmitter 44, and the receiver 45.
  • Communication bus 43 is used to implement a communication connection between the components.
  • the memory 41 may include a high speed RAM memory, and may also include a non-volatile memory NVM, such as at least one disk memory, in which various programs may be stored for performing various processing functions and implementing the method steps of the present embodiment.
  • the transmitter 44 may be a radio frequency processing module or a baseband processing module in the base station
  • the receiver 45 may be a radio frequency processing module or a baseband processing module in the base station.
  • the transmitter 44 and the receiver 45 described above may be provided separately, and may also be integrated to form a transceiver, and both the transmitter 44 and the receiver 45 may be coupled to the processor 42.
  • the communication bus 43 may be a Peripheral Component Interconnect (PCI) bus or an Extended Industry Standard Architecture (EISA) bus.
  • PCI Peripheral Component Interconnect
  • EISA Extended Industry Standard Architecture
  • the above communication bus 43 can be divided into an address bus, a data bus, a control bus, and the like. For ease of representation, only one thick line is shown in Figure 12, but it does not mean that there is only one bus or one type of bus.
  • Fig. 12 is a simplified schematic diagram showing one possible design structure of the terminal device involved in the above embodiment. It will be understood that Figure 12 only shows a simplified design of the terminal device. In practical applications, the terminal device may include any number of transmitters, receivers 45, processors, memories, etc., and all terminal devices that can implement the present application are within the scope of the present application.
  • the transmitter 44 is configured to send a GFTR to the network device, where the GFTR is used to indicate to the network device that the terminal device has uplink data to be transmitted.
  • the receiver 45 is configured to receive GFTA information from the network device, where the GFTA information is used to indicate a resource pool used by the terminal device to perform an unlicensed transmission.
  • the transmitter 44 is specifically configured to:
  • the receiver 45 is specifically configured to:
  • the transmitter 44 is further configured to:
  • the third time slot is not earlier than the second time slot.
  • the first preset resource includes at least one GFTR transmission unit, and the transmitter 44 is specifically configured to:
  • the GFTR is transmitted to the network device on at least one of the GFTR transmission units.
  • the transmitter 44 is specifically configured to:
  • the first time slot and the second time slot are separated by one time slot.
  • the first time slot and the second time slot are the same time slot or an adjacent time slot, and the first preset resource and the second preset resource are separated by one symbol.
  • the third time slot is separated from the second time slot by one time slot.
  • the second time slot and the third time slot are the same time slot or an adjacent time slot, and the second preset resource and the resource pool are separated by one symbol.
  • the time-frequency resource corresponding to the time slot includes an uplink time-frequency resource and a downlink time-frequency resource;
  • the uplink time-frequency resource and the downlink time-frequency resource occupy different sub-carriers, or the uplink time-frequency resource
  • the source and the downlink time-frequency resource occupy different symbols.
  • the GFTA information includes at least one of a number of symbols, a number of start symbols, and a number of termination symbols occupied by the resource pool, and initial subcarrier information and subband width occupied by the resource pool. At least one of information, terminating subcarrier information.
  • Still another aspect of the embodiments of the present application provides a computer storage medium for storing computer software instructions for use in the network device, including a program for executing the method on the network device side in any of the above embodiments.
  • Embodiments of the present application also provide a computer program product comprising instructions that, when executed by a computer, cause the computer to perform functions performed by the network device.
  • the embodiment of the present application further provides a chip system, where the chip system includes a processor for supporting a network device to implement the functions involved in any of the foregoing embodiments, for example, generating or processing data involved in the foregoing method and/or Or information.
  • the chip system further includes a memory for holding program instructions and data necessary for the network device.
  • the chip system can be composed of chips, and can also include chips and other discrete devices.
  • Still another aspect of the embodiments of the present application provides a computer storage medium for storing computer software instructions for the terminal device, which includes a program for executing the method on the terminal device side in any of the above embodiments.
  • Embodiments of the present application also provide a computer program product comprising instructions that, when executed by a computer, cause the computer to perform functions performed by the terminal device.
  • the embodiment of the present application further provides a chip system, including a processor, for supporting a terminal device to implement the functions involved in any of the foregoing embodiments, for example, generating or processing data involved in the foregoing method and/or Or information.
  • the chip system further comprises a memory for storing necessary program instructions and data of the terminal device.
  • the chip system can be composed of chips, and can also include chips and other discrete devices.
  • the disclosed systems, devices, and methods may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the functions may be stored in a computer readable storage medium if implemented in the form of a software functional unit and sold or used as a standalone product.
  • the technical solution of the present application which is essential or contributes to the prior art, or a part of the technical solution, may be embodied in the form of a software product, which is stored in a storage medium, including
  • the instructions are used to cause a computer device (which may be a personal computer, server, or network device, etc.) to perform all or part of the steps of the methods described in various embodiments of the present application.
  • the foregoing storage medium includes: a U disk, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk, and the like, and the program code can be stored. Medium.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种资源池配置方法和装置,该方法包括:网络设备接收至少一个终端设备发送的免授权传输请求GFTR;根据GFTR生成免授权传输资源GFTA信息(S202),并向各终端设备发送GFTA信息(S203),GFTA信息用于指示终端设备进行免授权传输时所采用的资源池。由于GFTA信息中指示的资源池由网络设备根据接收到的GFTR获得,因此资源池的大小根据待发送的数据量配置,因而可避免在数据量较小时,配置了较大的资源池导致了资源浪费,也可避免在数据量较大时配置的资源池过小而导致的竞争增多,数据传输可靠性降低的问题。上述资源池配置方法和装置,资源池配置更合理。

Description

资源池配置方法和装置
本申请要求于2017年07月13日提交中国专利局、申请号为201710570772.2、申请名称为“一种无线通信***中的数据传输方法和设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信领域,尤其涉及一种资源池配置方法和装置。
背景技术
长期演进(Long Term Evolution,简称LTE)通信***中,终端设备向网络设备发送数据时,通常采用基于授权的数据传输方式。基于授权的数据传输方式中,终端设备在传输上行数据前需要与网络设备进行多轮信令交互,以从网络设备侧获得传输上行数据需要的专用资源,即获得授权。终端设备在专用资源上传输上行数据,使得数据传输免受干扰,可靠性较高。但是,终端设备与网络设备需进行多轮信令交互,耗时较长,且在多轮信令交互过程中,传输的信息较多,终端设备与网络设备解析信息内容的过程耗时也较长。
为解决上述数据传输方式中耗时较长、延时较大的问题,第五代移动通信***(5th Generation,5G)中提出了一种免授权(Grant-free)的上行数据传输方式,Grant-free主要应用在5G中的超可靠低延时(Ultra Reliable Low Latency Communication,URLLC)业务中。在免授权的上行数据传输方式中,网络设备为多个终端设备配置一个资源池,终端设备在有数据需要传输时,无需向基站请求上行传输时采用的传输资源,而是在预先配置的资源池中选择传输资源直接进行上行数据传输,减少了数据传输的延时。
但是,多个终端设备竞争资源池中的传输资源,存在冲突的可能,因此免授权传输在带来低延时的好处的同时也降低了可靠性。为弥补可靠性,常见的处理方式是为终端设备配置较大的资源池,以避免多个终端设备之间的冲突。但是5G中URLLC业务的数据量是不确定的,若资源池过大,而实际URLLC业务的数据量很小,则可能造成资源浪费。
发明内容
本申请实施例提供一种资源池配置方法和装置,用于解决资源池较大时,可能存在的资源浪费问题。
第一方面,本申请实施例提供一种资源池配置方法,应用于网络设备侧,包括:
接收至少一个终端设备发送的免授权传输请求GFTR;根据所述GFTR生成免授权传输资源GFTA信息,并向各终端设备发送所述GFTA信息,所述GFTA信息用于指示终端设备进行免授权传输时所采用的资源池。
终端设备在进行上行数据传输之前,向网络设备发送GFTR,以获取网络设备根据GFTR生成的GFTA信息,GFTA信息中指示了终端设备在免授权传输时所采用的资源池,由于GFTA信息中指示的资源池由网络设备根据接收到的GFTR获得,因此资源池的大小 根据待发送的数据量配置,因而可避免在数据量较小时,配置了较大的资源池导致了资源浪费,也可避免在数据量较大时配置的资源池过小而导致的竞争增多,数据传输可靠性降低的问题。本申请实施例提供了一种动态的资源池配置方法,资源池配置更合理。
在一种可能的设计中,所述接收至少一个终端设备发送的GFTR,具体包括:
在第一时隙内的第一预设资源上,接收至少一个终端设备发送的GFTR。
在一种可能的设计中,所述向各终端设备发送所述GFTA信息,具体包括:
在第二时隙内的第二预设资源上,向各终端设备发送所述GFTA信息;所述第二时隙不早于所述第一时隙。
在一种可能的设计中,所述向各终端设备发送所述GFTA信息之后,所述方法还包括:
在第三时隙内的所述资源池上,接收各终端设备发送的上行数据;所述第三时隙不早于所述第二时隙。
在一种可能的设计中,所述根据所述GFTR生成GFTA信息,具体包括:
获取所述GFTR的数量,根据所述GFTR的数量生成所述GFTA信息。
在一种可能的设计中,所述第一预设资源包含至少一个GFTR传输单元,获取所述GFTR的数量,具体包括:
根据所述第一预设资源中检测到GFTR的GFTR传输单元的数量,获取所述GFTR的数量。
在一种可能的设计中,所述获取所述GFTR的数量,具体包括:
在所述第一预设资源上,检测所述第一预设资源上的信号强度;
根据所述信号强度和预设功率,获取所述GFTR的数量。
在一种可能的设计中,所述第一时隙与所述第二时隙之间间隔一个时隙。
在一种可能的设计中,所述第一时隙与所述第二时隙为同一时隙或相邻时隙,所述第一预设资源与所述第二预设资源之间间隔一个正交频分多路复用OFDM符号。
在一种可能的设计中,所述第三时隙与所述第二时隙之间间隔一个时隙。
在一种可能的设计中,所述第二时隙与所述第三时隙为同一时隙或相邻时隙,所述第二预设资源与所述资源池之间间隔一个OFDM符号。
在一种可能的设计中,所述第一时隙、第二时隙和第三时隙中的任一时隙对应的时频资源包括上行时频资源和下行时频资源;
其中,所述上行时频资源和所述下行时频资源所占的子载波不同,或所述上行时频资源和所述下行时频资源所占的符号不同。
在一种可能的设计中,所述GFTA信息包括所述资源池所占用的符号数量、起始符号数、终止符号数中的至少一项,和所述资源池所占用的起始子载波信息、子带宽度信息、终止子载波信息中的至少一项。
第二方面,本申请实施例还提供一种资源池配置方法,应用于终端设备侧,包括:
终端设备向网络设备发送GFTR,所述GFTR用于向所述网络设备指示所述终端设备存在待传输的上行数据;
所述终端设备从所述网络设备接收GFTA信息,所述GFTA信息用于指示所述终端设备进行免授权传输时所采用的资源池。
在一种可能的设计中,所述终端设备向网络设备发送GFTR,具体包括:
所述终端设备在第一时隙内的第一预设资源上向所述网络设备发送所述GFTR。
在一种可能的设计中,所述终端设备从所述网络设备接收GFTA信息,具体包括:
所述终端设备在第二时隙内的第二预设资源上从所述网络设备接收GFTA信息;所述第二时隙不早于所述第一时隙。
在一种可能的设计中,所述终端设备从所述网络设备接收GFTA信息之后,所述方法还包括:
所述终端设备在第三时隙内的所述资源池上,进行所述上行数据的免授权传输;所述第三时隙不早于所述第二时隙。
在一种可能的设计中,所述第一预设资源包含至少一个GFTR传输单元,所述终端设备在第一时隙内的第一预设资源上向网络设备发送GFTR,具体包括:
所述终端设备在第一时隙内的至少一个所述GFTR传输单元上,向网络设备发送所述GFTR。
在一种可能的设计中,所述终端设备在第一时隙内的第一预设资源上向网络设备发送GFTR,具体包括:
所述终端设备在第一时隙内的所述第一预设资源上,采用第一功率向所述网络设备发送所述GFTR;所述第一功率用于使得所述GFTR到达所述网络设备时的信号强度为预设功率。
在一种可能的设计中,所述第一时隙与所述第二时隙之间间隔一个时隙。
在一种可能的设计中,所述第一时隙与所述第二时隙为同一时隙或相邻时隙,所述第一预设资源与所述第二预设资源之间间隔一个符号。
在一种可能的设计中,所述第三时隙与所述第二时隙之间间隔一个时隙。
在一种可能的设计中,所述第二时隙与所述第三时隙为同一时隙或相邻时隙,所述第二预设资源与所述资源池之间间隔一个符号。
在一种可能的设计中,时隙对应的时频资源包括上行时频资源和下行时频资源;
其中,所述上行时频资源和所述下行时频资源所占的子载波不同,或所述上行时频资源和所述下行时频资源所占的符号不同。
在一种可能的设计中,所述GFTA信息包括所述资源池所占用的符号数量、起始符号数、终止符号数中的至少一项,和所述资源池所占用的起始子载波信息、子带宽度信息、终止子载波信息中的至少一项。
第三方面,为了实现上述第一方面的资源池配置方法,本申请实施例提供了一种资源池配置装置,作为网络设备,该资源池配置装置具有实现上述资源池配置方法的功能。该功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。这里的硬件或软件包括一个或多个与上述功能相对应的模块。
在第三方面的一种可能的实现方式中,资源池配置装置包括:
接收模块,用于接收至少一个终端设备发送的免授权传输请求GFTR;
资源池配置模块,用于根据所述GFTR生成免授权传输资源GFTA信息;
发送模块,用于向各终端设备发送所述GFTA信息,所述GFTA信息用于指示终端设备进行免授权传输时所采用的资源池。
在一种可能的设计中,所述接收模块具体用于:
在第一时隙内的第一预设资源上,接收至少一个终端设备发送的GFTR。
在一种可能的设计中,所述发送模块具体用于:
在第二时隙内的第二预设资源上,向各终端设备发送所述GFTA信息;所述第二时隙不早于所述第一时隙。
在一种可能的设计中,所述接收模块还用于:
在第三时隙内的所述资源池上,接收各终端设备发送的上行数据;所述第三时隙不早于所述第二时隙。
在一种可能的设计中,所述资源池配置模块具体用于:
获取所述GFTR的数量,根据所述GFTR的数量生成所述GFTA信息。
在一种可能的设计中,所述第一预设资源包含至少一个GFTR传输单元,所述资源池配置模块具体用于:
根据所述第一预设资源中检测到GFTR的GFTR传输单元的数量,获取所述GFTR的数量。
在一种可能的设计中,所述资源池配置模块具体用于:
在所述第一预设资源上,检测所述第一预设资源上的信号强度;
根据所述信号强度和预设功率,获取所述GFTR的数量。
在一种可能的设计中,所述第一时隙与所述第二时隙之间间隔一个时隙。
在一种可能的设计中,所述第一时隙与所述第二时隙为同一时隙或相邻时隙,所述第一预设资源与所述第二预设资源之间间隔一个正交频分多路复用OFDM符号。
在一种可能的设计中,所述第三时隙与所述第二时隙之间间隔一个时隙。
在一种可能的设计中,所述第二时隙与所述第三时隙为同一时隙或相邻时隙,所述第二预设资源与所述资源池之间间隔一个OFDM符号。
在一种可能的设计中,所述第一时隙、第二时隙和第三时隙中的任一时隙对应的时频资源包括上行时频资源和下行时频资源;
其中,所述上行时频资源和所述下行时频资源所占的子载波不同,或所述上行时频资源和所述下行时频资源所占的符号不同。
在一种可能的设计中,所述GFTA信息包括所述资源池所占用的符号数量、起始符号数、终止符号数中的至少一项,和所述资源池所占用的起始子载波信息、子带宽度信息、终止子载波信息中的至少一项。
上述第三方面以及第三方面的各可能的设计所提供的方法的有益效果,可以参见上述第一方面的各可能的设计所带来的有益效果,在此不再赘述。
第四方面,为了实现上述第二方面的资源池配置方法,本申请实施例提供了一种资源池配置装置,作为终端设备,该资源池配置装置具有实现上述资源池配置方法的功能。该功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。这里的硬件或软件包括一个或多个与上述功能相对应的模块。
在第四方面的一种可能的实现方式中,资源池配置装置,包括:
发送模块,用于向网络设备发送GFTR,所述GFTR用于向所述网络设备指示所述终端设备存在待传输的上行数据;
接收模块,用于从所述网络设备接收GFTA信息,所述GFTA信息用于指示所述终端设备进行免授权传输时所采用的资源池。
在一种可能的设计中,所述发送模块具体用于:
在第一时隙内的第一预设资源上向所述网络设备发送所述GFTR。
在一种可能的设计中,所述接收模块具体用于:
在第二时隙内的第二预设资源上从所述网络设备接收GFTA信息;所述第二时隙不早于所述第一时隙。
在一种可能的设计中,所述发送模块还用于:
在第三时隙内的所述资源池上,进行所述上行数据的免授权传输;所述第三时隙不早于所述第二时隙。
在一种可能的设计中,所述第一预设资源包含至少一个GFTR传输单元,所述发送模块具体用于:
在至少一个所述GFTR传输单元上,向网络设备发送所述GFTR。
在一种可能的设计中,所述发送模块具体用于:
在所述第一预设资源上,采用第一功率向所述网络设备发送所述GFTR;所述第一功率用于使得所述GFTR到达所述网络设备时的信号强度为预设功率。
在一种可能的设计中,所述第一时隙与所述第二时隙之间间隔一个时隙。
在一种可能的设计中,所述第一时隙与所述第二时隙为同一时隙或相邻时隙,所述第一预设资源与所述第二预设资源之间间隔一个符号。
在一种可能的设计中,所述第三时隙与所述第二时隙之间间隔一个时隙。
在一种可能的设计中,所述第二时隙与所述第三时隙为同一时隙或相邻时隙,所述第二预设资源与所述资源池之间间隔一个符号。
在一种可能的设计中,时隙对应的时频资源包括上行时频资源和下行时频资源;
其中,所述上行时频资源和所述下行时频资源所占的子载波不同,或所述上行时频资源和所述下行时频资源所占的符号不同。
在一种可能的设计中,所述GFTA信息包括所述资源池所占用的符号数量、起始符号数、终止符号数中的至少一项,和所述资源池所占用的起始子载波信息、子带宽度信息、终止子载波信息中的至少一项。
上述第四方面以及第四方面的各可能的设计所提供的方法的有益效果,可以参见上述第二方面的各可能的设计所带来的有益效果,在此不再赘述。
第五方面,为了实现上述第一方面的资源池配置方法,本申请实施例提供了一种网络设备,该网络设备具有实现上述资源池配置方法的功能。该功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。这里的硬件或软件包括一个或多个与上述功能相对应的模块。
在第五方面的一种可能的实现方式中,网络设备包括:
接收器,用于接收至少一个终端设备发送的免授权传输请求GFTR;
处理器,用于根据所述GFTR生成免授权传输资源GFTA信息;
发送器,用于向各终端设备发送所述GFTA信息,所述GFTA信息用于指示终端设备进行免授权传输时所采用的资源池。
在一种可能的设计中,所述接收器具体用于:
在第一时隙内的第一预设资源上,接收至少一个终端设备发送的GFTR。
在一种可能的设计中,所述发送器具体用于:
在第二时隙内的第二预设资源上,向各终端设备发送所述GFTA信息;所述第二时隙不早于所述第一时隙。
在一种可能的设计中,所述接收器还用于:
在第三时隙内的所述资源池上,接收各终端设备发送的上行数据;所述第三时隙不早于所述第二时隙。
在一种可能的设计中,处理器具体用于:
获取所述GFTR的数量,根据所述GFTR的数量生成所述GFTA信息。
在一种可能的设计中,所述第一预设资源包含至少一个GFTR传输单元,处理器具体用于:
根据所述第一预设资源中检测到GFTR的GFTR传输单元的数量,获取所述GFTR的数量。
在一种可能的设计中,处理器具体用于:
在所述第一预设资源上,检测所述第一预设资源上的信号强度;
根据所述信号强度和预设功率,获取所述GFTR的数量。
在一种可能的设计中,所述第一时隙与所述第二时隙之间间隔一个时隙。
在一种可能的设计中,所述第一时隙与所述第二时隙为同一时隙或相邻时隙,所述第一预设资源与所述第二预设资源之间间隔一个正交频分多路复用OFDM符号。
在一种可能的设计中,所述第三时隙与所述第二时隙之间间隔一个时隙。
在一种可能的设计中,所述第二时隙与所述第三时隙为同一时隙或相邻时隙,所述第二预设资源与所述资源池之间间隔一个OFDM符号。
在一种可能的设计中,所述第一时隙、第二时隙和第三时隙中的任一时隙对应的时频资源包括上行时频资源和下行时频资源;
其中,所述上行时频资源和所述下行时频资源所占的子载波不同,或所述上行时频资源和所述下行时频资源所占的符号不同。
在一种可能的设计中,所述GFTA信息包括所述资源池所占用的符号数量、起始符号数、终止符号数中的至少一项,和所述资源池所占用的起始子载波信息、子带宽度信息、终止子载波信息中的至少一项。
上述第五方面以及第五方面的各可能的设计所提供的方法的有益效果,可以参见上述第一方面的各可能的设计所带来的有益效果,在此不再赘述。
第六方面,为了实现上述第二方面的资源池配置方法,本申请实施例提供了一种终端设备,该终端设备具有实现上述资源池配置方法的功能。该功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。这里的硬件或软件包括一个或多个与上述功能相对应的模块。
在第六方面的一种可能的实现方式中,终端设备包括:
发送器,用于向网络设备发送GFTR,所述GFTR用于向所述网络设备指示所述终端设备存在待传输的上行数据;
接收器,用于从所述网络设备接收GFTA信息,所述GFTA信息用于指示所述终端设备进行免授权传输时所采用的资源池。
在一种可能的设计中,所述发送器具体用于:
在第一时隙内的第一预设资源上向所述网络设备发送所述GFTR。
在一种可能的设计中,所述接收器具体用于:
在第二时隙内的第二预设资源上从所述网络设备接收GFTA信息;所述第二时隙不早于所述第一时隙。
在一种可能的设计中,所述发送器还用于:
在第三时隙内的所述资源池上,进行所述上行数据的免授权传输;所述第三时隙不早于所述第二时隙。
在一种可能的设计中,所述第一预设资源包含至少一个GFTR传输单元,所述发送器具体用于:
在至少一个所述GFTR传输单元上,向网络设备发送所述GFTR。
在一种可能的设计中,所述发送器具体用于:
在所述第一预设资源上,采用第一功率向所述网络设备发送所述GFTR;所述第一功率用于使得所述GFTR到达所述网络设备时的信号强度为预设功率。
在一种可能的设计中,所述第一时隙与所述第二时隙之间间隔一个时隙。
在一种可能的设计中,所述第一时隙与所述第二时隙为同一时隙或相邻时隙,所述第一预设资源与所述第二预设资源之间间隔一个符号。
在一种可能的设计中,所述第三时隙与所述第二时隙之间间隔一个时隙。
在一种可能的设计中,所述第二时隙与所述第三时隙为同一时隙或相邻时隙,所述第二预设资源与所述资源池之间间隔一个符号。
在一种可能的设计中,时隙对应的时频资源包括上行时频资源和下行时频资源;
其中,所述上行时频资源和所述下行时频资源所占的子载波不同,或所述上行时频资源和所述下行时频资源所占的符号不同。
在一种可能的设计中,所述GFTA信息包括所述资源池所占用的符号数量、起始符号数、终止符号数中的至少一项,和所述资源池所占用的起始子载波信息、子带宽度信息、终止子载波信息中的至少一项。
上述第六方面以及第六方面的各可能的设计所提供的方法的有益效果,可以参见上述第二方面的各可能的设计所带来的有益效果,在此不再赘述。
第七方面,本申请实施例提供了一种计算机可读存储介质,用于储存上述网络设备所用的计算机软件指令,其包含用于执行上述第一方面所设计的程序。
第八方面,本申请实施例提供了一种计算机可读存储介质,用于储存上述终端设备所用的计算机软件指令,其包含用于执行上述第二方面所设计的程序。
第九方面,本申请实施例提供一种计算机程序产品,其包含指令,当计算机程序被计算机所执行时,该指令使得计算机执行上述第一方面中网络设备所执行的功能。
第十方面,本申请实施例提供一种计算机程序产品,其包含指令,当计算机程序被计算机所执行时,该指令使得计算机执行上述第二方面中终端设备所执行的功能。
第十一方面,本申请实施例还提供了一种芯片***,该芯片***包括处理器,用于支 持网络设备实现上述第一方面中所涉及的功能,例如,生成或处理上述方法中所涉及的数据和/或信息。在一种可能的设计中,该芯片***还包括存储器,所述存储器,用于保存终端设备必要的程序指令和数据。该芯片***,可以由芯片构成,也可以包含芯片和其他分立器件。
第十二方面,本申请实施例还提供了一种芯片***,该芯片***包括处理器,用于支持终端设备实现上述第二方面中所涉及的功能,例如,生成或处理上述方法中所涉及的数据和/或信息。在一种可能的设计中,该芯片***还包括存储器,所述存储器,用于保存网络设备必要的程序指令和数据。该芯片***,可以由芯片构成,也可以包含芯片和其他分立器件。
附图说明
图1示出了本申请实施例可能适用的一种网络架构;
图2为本申请实施例一提供的资源池配置方法的信令流程示意图;
图3为本申请实施例二提供的资源池配置方法的信令流程示意图;
图4示出了本申请实施例可能适用的一种子帧结构;
图5示出了本申请实施例可能适用的另一种子帧结构;
图6为本申请实施例三提供的资源池配置方法的信令流程示意图;
图7示出了本申请实施例可能适用的再一种子帧结构;
图8为本申请实施例四提供的资源池配置方法的信令流程示意图;
图9为本申请实施例一提供的资源池配置装置的结构示意图;
图10为本申请实施例二提供的资源池配置装置的结构示意图;
图11为本申请实施例提供的网络设备的结构示意图;
图12为本申请实施例提供的终端设备的结构示意图。
具体实施方式
本申请实施例描述的网络架构以及业务场景是为了更加清楚的说明本申请实施例的技术方案,并不构成对于本申请实施例提供的技术方案的限定,本领域普通技术人员可知,随着网络架构的演变和新业务场景的出现,本申请实施例提供的技术方案对于类似的技术问题,同样适用。
下面结合图1对本申请实施例的可能的网络架构进行介绍。图1示出了本申请实施例可能适用的一种网络架构。如图1所示,本实施例提供的网络架构包括网络设备10和至少一个终端设备20。
其中,网络设备10是一种将终端设备接入到无线网络的设备可以是LTE通信***中的演进型基站(Evolutional Node B,简称eNB或eNodeB),或者中继站或接入点,或者未来5G网络中的基站,或者宏基站、微基站、热点、家庭基站、传输点等,在此并不限定。图1示意性的绘出了一种可能的示意,以该网络设备为基站为例进行了绘示。
终端设备20可以是无线终端,无线终端可以是指向用户提供语音和/或其他业务数据连通性的设备,具有无线连接功能的手持式设备、或连接到无线调制解调器的其他处理 设备。无线终端可以经无线接入网(Radio Access Network,简称RAN)与一个或多个核心网进行通信,无线终端可以是移动终端,如移动电话(或称为“蜂窝”电话)、笔记本电脑、手环、智能手表、数据卡、传感器和具有移动终端的计算机,例如,可以是便携式、袖珍式、手持式、计算机内置的或者车载的移动装置,它们与无线接入网交换语言和/或数据。例如,个人通信业务(Personal Communication Service,简称PCS)电话、无绳电话、会话发起协议(Session Initiation Protocol,简称SIP)话机、无线本地环路(Wireless Local Loop,简称WLL)站、个人数字助理(Personal Digital Assistant,简称PDA)等设备。无线终端也可以称为***、订户单元(Subscriber Unit)、订户站(Subscriber Station),移动站(Mobile Station)、移动台(Mobile)、远程站(Remote Station)、远程终端(Remote Terminal)、接入终端(Access Terminal)、用户终端(User Terminal)、用户代理(User Agent),在此不作限定。图1示意性的绘出了一种可能的示意,以该终端设备为移动电话为例进行了绘示。示例性的,对于存在副链路的网络架构,例如,手环-手机-基站,也可将手环视为终端设备20,将手机视为网络设备。
LTE通信***中,终端设备向网络设备发送数据时,通常采用基于授权的数据传输方式。基于授权的数据传输方式中,终端设备在传输上行数据前需要与网络设备进行多轮信令交互,以从网络设备侧获得传输上行数据需要的专用资源,即获得授权。网络设备在专用资源上传输上行数据,可避免干扰,确保了传输的可靠性。
但是,随着通信技术的发展,5G技术逐步取代LTE技术。5G中的主要业务包括增强移动宽带(enhanced Mobile Broad Band,eMBB)业务、URLLC业务和大规模机器类通信(massive Machine Type of Communication,mMTC)业务。eMBB业务是指增强的移动宽带业务,例如用手机流量访问互联网的业务。URLLC业务是超可靠低延时业务,例如工业控制等,URLLC业务的特点是对数据传输的延时和可靠性要求很高。mMTC业务指大规模机器类通信业务,该业务中智能设备在无人干预的情况下连接互联网,自动进行通信,例如智能抄表业务,电表自动地周期性上报数据等。
5G中的URLLC业务对数据传输的速度提出了较高的要求。LTE通信***中的数据传输方式中,终端设备与网络设备需进行多轮信令交互。且在多轮信令交互过程中,传输的信息较多,信息均需携带在高层信令中发送,终端设备与网络设备从高层信令中解析出信息的过程耗时也较长。因此,LTE通信***中终端设备获得授权的过程延时较大。故而LTE通信***中的数据传输方式无法满足URLLC业务对数据传输速度的要求。
为解决LTE通信***中数据传输方式存在的耗时较长、延时较大的问题,5G中提出了一种免授权的上行数据传输方式。在免授权的上行数据传输方式中,网络设备为多个终端设备配置一个资源池,终端设备在有数据需要传输时,无需向基站请求上行传输时采用的专用资源,而是在预先配置的资源池中选择传输资源直接进行上行数据传输,减少了数据传输的延时。但是,多个终端设备竞争资源池中的传输资源,存在冲突的可能,因此免授权传输在带来低延时的好处的同时也降低了可靠性。
为弥补可靠性,常见的处理方式是为终端设备配置较大的资源池,以避免多个终端设备之间的冲突。但是5G中URLLC业务的数据量是不确定的,若资源池过大,而实际URLLC业务的数据量很小,则可能造成资源浪费,也影响了eMBB业务和mMTC业务的可用资源。
为解决上述资源池较大造成的资源浪费问题,本申请实施例提供一种资源池配置方法,各终端设备在进行数据传输之前,均向网络设备发送免授权传输请求(Grant Free Transmission Request,GFTR),使得网络设备根据接收到的GFTR生成免授权传输资源(Grant Free Transmission Area,GFTA)信息并将GFTA信息发送给终端设备,GFTA信息中指示了网络设备为终端设备配置的资源池。因此,终端设备在进行免授权传输时采用的资源池是由网络设备根据接收到GFTR动态配置的,使得资源池的大小与待传输的数据的数量相关,从而避免了资源池过大导致的资源浪费的问题。
下面结合具体实施例对本申请提供的资源池配置方法进行详细说明。下面这几个具体的实施例中,对于相同或相似的概念或过程可能在某些实施例不再赘述。
图2为本申请实施例一提供的资源池配置方法的信令流程示意图。该方法的执行主体为网络设备和至少一个终端设备。本实施例涉及的是网络设备接收至少一个终端设备发送的GFTR,根据接收到的GFTR,为终端设备配置资源池的具体过程。如图2所示,该方法包括:
S201、终端设备向网络设备发送GFTR。
其中,GFTR用于向网络设备指示终端设备存在待传输的上行数据。
示例性的,当终端设备存在待发送的上行数据时,终端设备向网络设备发送GFTR。当多个终端设备存在待发送的上行数据时,多个终端设备均向网络设备发送GFTR。参照图2,终端设备1和终端设备2中均存在待发送的上行数据时,终端设备1和终端设备2均向网络设备发送GFTR。GFTR用于向网络设备指示终端设备存在待传输的上行数据。可选的,不同终端设备的GFTR可以相同。可选的,GFTR可在物理层发送。
S202、网络设备接收至少一个终端设备发送的GFTR,根据GFTR生成GFTA信息。
其中,GFTA信息用于指示终端设备进行免授权传输时所采用的资源池。
示例性的,网络设备接收至少一个终端设备发送的GFTR,当网络设备接收到GFTR时,则说明有终端设备需要发送上行数据。当网络设备接收到多个GFTR时,网络设备可确定存在多个终端设备具有待上行发送的数据。因此,网络设备可根据接收到的GFTR,来确定有多少终端设备上存在待发送的上行数据,从而根据待发送的上行数据的量来为终端设备分配资源池。可选的,GFTR可仅用于指示存在待传输的数据,而无需携带发送该GFTR的终端设备的标识,因而GFTR中的信息量较少,可加快GFTR的传输速度。对应的,网络设备无需根据GFTR确定究竟是哪个终端设备存在待传输的上行数据,仅根据接收到的GFTR确定存在多少待传输的上行数据,进而根据待传输的上行数据的量生成GFTA信息,使得免授权的资源池的配置与待发送的数据的量相关。例如,当待传输的数据量较大时,可配置较大的资源池,避免竞争导致的传输可靠性降低,当待传输的数据量较少时,可配置较小的资源池,避免资源池中资源的浪费。因此,本实施例提供的资源池配置方法更为合理。
可选的,GFTA信息包括资源池的大小信息和/或位置信息。示例性的,为在时频资源上划分出该资源池,GFTA信息包括资源池所占用的符号数量、起始符号数、终止符号数中的至少一项,和资源池所占用的起始子载波信息、子带宽度信息、终止子载波信息中的至少一项。示例性的,网络设备可以向终端设备发送资源池所占的起始、终止频域资源和起始、终止时域资源,从而限定出资源池。网络设备也可以向终端设备发送资源池所占的 频域带宽和时域宽度,并根据终端设备预设的资源池的起始子载波信息/终止子载波信息、起始符号数/终止符号数,确定出资源池。
GFTA信息所指示的资源池中包含至少一个免授权数据传输单元(Grant Free Transmission Uint,GFTU)。当终端设备接收到网络设备发送的GFTA信息之后,终端设备在GFTA信息中选择一个GFTU进行上行数据传输。示例性的,GFTU可以为终端设备在进行上行数据传输时的基本资源单位,或若干个基本资源单位构成的资源块。一个基本资源单位由时域起点、时域长度、频域起点以及频域宽度唯一确定。基本资源单位还可扩展定义为其它维度上的资源,例如,若采用稀疏码多址接入技术(Sparse Code Multiple Access,SCMA)进行上行数据传输,则基本资源单位的定义还可扩展至码域,即基本资源单位定义为时频资源和码域资源的一种组合。示例性的,对于SCMA来说,基本资源单位定义为时频资源、SCMA码本和导频序列的一种组合。可选的,GFTU可以是由频域、时域参数定义的一个时频资源块,也可以是由频域、时域、码域参数定义的资源单位。在***域参数定义GFTU的情况下,不同的GFTU可以在频域和/或时域有部分或全部重叠。为便于描述,本申请以下各实施例中以基本资源单位为时频资源块为例进行描述,但容易理解,本申请的所有实施例均可用于基本资源单位采用其它定义的情况。
S203、网络设备向各终端设备发送GFTA信息。
示例性的,网络设备根据GFTR生成GFTA信息,并将GFTA信息发送给各终端设备。示例性的,网络设备将GFTA信息广播。
本申请实施例提供的资源池配置方法中,终端设备向网络设备发送GFTR,GFTR用于向网络设备指示终端设备存在待传输的上行数据;网络设备接收至少一个终端设备发送的GFTR,并根据GFTR生成GFTA信息;网络设备将该GFTA信息发送至各终端设备,GFTA信息用于指示终端设备进行免授权传输时所采用的资源池。本实施例提供的资源池配置方法中终端设备在进行上行数据传输之前,向网络设备发送GFTR,以获取网络设备根据GFTR生成的GFTA信息,GFTA信息中指示了终端设备在免授权传输时所采用的资源池,由于GFTA信息中指示的资源池由网络设备根据接收到的GFTR获得,因此资源池的大小根据待发送的数据量配置,因而可避免在数据量较小时,配置了较大的资源池导致了资源浪费,也可避免在数据量较大时配置的资源池过小而导致的竞争增多,数据传输可靠性降低的问题。本申请实施例提供了一种动态的资源池配置方法,资源池配置更合理。
进一步地,在图2所示实施例的基础上,本申请实施例还提供一种资源池配置方法,本实施例中为保证网络设备正确接收到GFTR,对GFTR的发送和接收时机进行了详细说明。图3为本申请实施例二提供的资源池配置方法的信令流程示意图。如图3所示,本申请实施例提供的资源池配置方法包括:
S301、终端设备在第一时隙内的第一预设资源上向网络设备发送GFTR。
其中,第一预设资源在第一时隙对应的上行时频资源中占用部分资源。
通信***中,终端设备和网络设备在传输信息时占用一定时间和带宽,可被信息占用的所有时间和带宽称为时频资源。时频资源在时域上,以无线帧(radio frame)为单位进行划分。一个无线帧包括10个子帧(subframe),每一个子帧的时间长度为1毫秒(ms)。LTE通信***中,每个子帧均包括两个时隙(slot),每个slot的时间长度为0.5ms。每个 slot包括的OFDM符号的个数与子帧中循环前缀(cyclic prefix,CP)长度相关。如果CP为normal(普通)CP,则每个slot包括7个OFDM符号,每OFDM符号的时间长度大约为71.4微秒,例如,每个slot由序号分别为#0,#1,#2,#3,#4,#5,#6的OFDM符号组成。如果CP为extended(长)CP,每个slot包括6个OFDM符号,例如每个slot由序号分别为#0,#1,#2,#3,#4,#5的OFDM符号组成。本申请以下各实施例中仅以每个slot包括7个OFDM符号对本申请提供资源池配置方法进行详细说明。时频资源在频域上的最小单元为子载波,每个子载波(sub carrier)的宽度是15KHz,分布在一个OFDM符号对应的时间范围内的子载波,构成了该OFDM符号对应的频域资源,所有OFDM符号对应的频域资源构成时频资源。
为了灵活地支持多种业务特性,本申请实施例中不再限定子载波的宽度。当子载波越宽,OFDM符号的长度可以越短,因此在子帧的时间长度保持不变的情况下,一个子帧内可以包括更多的时隙。例如在子载波宽度由15KHz变为30KHz时,OFDM符号的长度约为35.7微秒。若仍以7个OFDM符号为一时隙的话,一个子帧可以有4个时隙。而当子载波宽度为60KHz时,OFDM符号的长度相比子载波宽度为30KHz时再缩短一半,以7个OFDM符号为一时隙,则一个子帧内可以有8个时隙。在子载波宽度为60KHz时,若定义一个时隙包含14个OFDM符号,则一个子帧包含4个时隙而不是8个时隙。示例性的,图4示出了本申请实施例可能适用的一种子帧结构。如图4所示,一个子帧包括8个时隙,每个时隙包括7个OFDM符号。
可选的,终端设备向网络设备发送信息称为上行传输,上行传输时信息所占用的时频资源称为上行时频资源,网络设备向终端设备发送信息称为下行传输,下行传输时所占用的时频资源称为下行时频资源。上行时频资源与下行时频资源不重叠。
可选的,本申请实施例还提供至少一种时频资源的划分方式。本实施例提供的时频资源划分方式中,时隙对应的时频资源包括上行时频资源和下行时频资源;
其中,上行时频资源和下行时频资源所占的子载波不同,或上行时频资源和下行时频资源所占的符号不同。
示例性的,时频资源的上下行划分包括时分和频分两种制式。频分制式下,参照图4,上行时频资源和下行时频资源占用不同的子载波。例如,将时隙对应的频域资源划分为上行子载波和下行子载波,此时上行子载波上的时隙都是用于上行传输的,而下行子载波上的时隙都是用于下行传输的。图5示出了本申请实施例可能适用的另一种子帧结构。示例性的,图5中示出了一种时分制式下的子帧结构,每个时隙中都可以有部分OFDM符号用于上行传输而另一部分OFDM符号用于下行传输。在每个时隙都可以传输下行控制信息和上行控制信息。
本申请实施例提供的时频资源划分方式中,每个时隙对应的时频资源都包括下行时频资源和上行时频资源。相比LTE通信***中的将子帧划分为上行子帧和下行子帧相比,本申请实施例的子帧结构中,上下行传输切换时间隔时间较短。
示例性的,为保证网络设备能够接收到终端设备发送的GFTR,网络设备和终端设备在每一个时隙对应时频资源中的相同位置处,设置第一预设资源,用于进行GFTR的发送和接收。终端设备可在周期性出现的时隙中占用该第一预设资源向网络设备发送GFTR,对应的,网络设备周期性地在每一个时隙的第一预设资源上接收GFTR。示例性的,该部 分资源在第一时隙对应的上行时频资源上的位置可以为固定位置,还可以由网络设备动态配置。网络设备可通过***广播信息、高层信令向终端设备通知第一预设资源在第一时隙对应的上行时频资源中的位置。示例性的,当终端设备产生待传输的URLLC数据时,终端设备可在最近的第一时隙的第一预设资源中传输GFTR。若终端设备已经错过当前时隙中的第一预设资源,则只能在下一个时隙中的第一预设资源上传输GFTR。示例性的,第一预设资源可以占用一个时隙对应的上行时频资源中一个或多个OFDM符号所对应的所有上行子载波。或者,第一预设资源可以占用一个时隙对应的上行时频资源中的一个或多个子带对应的所有OFDM符号,一个子带包含至少一个子载波,如图4所示。示例性的,一个子带包含6个或12个子载波。
S302、网络设备在第一时隙内的第一预设资源上,接收至少一个终端设备发送的GFTR,根据GFTR生成GFTA信息。
其中,GFTA信息用于指示终端设备进行免授权传输时所采用的资源池。
示例性的,网络设备周期性的在每一个第一预设资源上接收GFTR,从而可根据接收到的GFTR确定待传输的上行数据量。当网络设备未接收到GFTR,则认为当前时刻没有数据需要传输,故可不生成GFTA信息。
示例性的,网络设备根据GFTR生成GFTA信息,具体可以包括:
网络设备获取GFTR的数量,根据GFTR的数量生成GFTA信息。
进一步地,下面结合具体实施例,对终端设备在第一时隙内的第一预设资源上向网络设备发送GFTR的方式、以及网络设备获取GFTR的数量的方式进行详细说明。
第一种可行的实现方式中,第一预设资源包含至少一个GFTR传输单元(GFTRU),终端设备在至少一个GFTR传输单元上,向网络设备发送GFTR。
对应的,网络设备根据第一预设资源中检测到GFTR的GFTR传输单元的数量,获取GFTR的数量,并根据获取GFTR的数量,生成GFTA信息。
示例性的,第一预设资源可以包含多个GFTRU,一个GFTRU占用很少的资源,示例性的,一个GFTRU可以是一个时频资源单元,可以在频域上占用至少一个到多个子载波,在时域上占用一个OFDM符号,或者一个GFTRU可以是一个时频码资源单元,可以在频域上占用多个子载波,例如6个或12个子载波,在时域上占用一个OFDM符号,在码域上占用一个码字。或者,第一预设资源中的每个基本资源单元(Resource Element,RE)作为一个GFTRU,一个RE占用一个子载波和一个OFDM符号。终端设备可以在至少一个GFTRU上发送GFTR。例如,终端设备随机选择GFTRU。示例性的,也可以由网络设备为每个终端设备分配一个或多个GFTRU,分配给不同的终端设备的GFTRU不同;或者在GFTRU数量不足时,将同一个GFTRU分配给一组终端设备。在分配GFTRU的方案中,若终端设备每次免授权数据传输时只能使用一个GFTU,则网络设备只需给每个终端设备分配一个GFTRU即可,或者网络设备分配给终端设备的多个GFTRU中,终端设备每次只能使用一个GFTRU发送GFTR,终端设备每次只能发送一个GFTR。若终端设备在每次免授权数据传输时可以使用多个GFTU,则可为终端设备分配多个GFTRU。
示例性的,GFTR可只包含1比特信息,仅用于指示终端设备存在待传输的上行数据。当网络设备接收到GFTR时,可认为存在终端设备需要进行免授权数据传输。GFTR中无需携带终端设备的标识信息,因此GFTR占用的资源较少。例如上行时频资源的载波带宽 是20MHz、子载波宽度是60KHz,则一个载波内大约包含340个子载波,以每个RE作为一个GFTRU为例,若第一预设资源占用一个OFDM符号对应的所有时频资源,则一个预设资源就可包括340个GFTRU。
网络设备在第一时隙内的第一预设资源上接收GFTR,检测每个GFTRU上是否存在GFTR,若检测到GFTR信号,则计为一个GFTR,若检测不到信号,则认为这个GFTRU上没有GFTR。当网络设备在第一预设资源的N个GFTRU上检测到GFTR,则可根据N确定存在N个终端设备需要进行免授权数据传输,或者确定存在N个待传输的上行数据。其中,N为自然数。示例性的,考虑可能的传输失败或者信号重叠,可根据N和预设校正系数a,生成GFTA信息。其中,预设校正系数a示例性的可以为大于1的实数,例如a至少为1.5,最后确定的GFTA包含的GFTU的个数可以大约为N与a的乘积V。通过检测到的GFTR数量N和预设校正系数a确定GFTA的大小,提高了传输资源配置的准确性。
本实现方式中,通过将每个GFTR占用一个GFTRU进行发送,使得网络设备根据检测到GFTR的数量,确定发送GFTR的终端设备的数量,同时各GFTR中包含信息较少,加快了网络设备检测GFTRU上是否承载有GFTR的速度,进而加快了传输资源配置速度。
第二种可行的实现方式中,终端设备在第一时隙内的第一预设资源上,采用第一功率向网络设备发送GFTR;第一功率用于使得所述终端设备的GFTR到达网络设备时的信号强度为预设功率。每个终端设备发送GFTR采用的第一功率不一定相同。
对应的,网络设备在第一时隙内的第一预设资源上,检测第一预设资源上的信号强度;根据信号强度和预设功率,获得GFTR的数量,并根据GFTR的数量生成GFTA信息。
示例性的,为了减少第一预设资源占用的资源量,GFTR的发送还可以使用能量的方式。其中,第一预设资源可以仅占用少量的RE,例如仅用6个连续的RE组成第一预设资源。第一预设资源为公共资源,存在待发送数据的终端设备均在该公共资源上发送GFTR。终端设备在发送GFTR时,控制发送GFTR的发送功率,使得GFTR信号到达网络设备侧时的信号强度为一个预设功率,即目标信号强度。当多个终端设备同时在第一时隙内的第一预设资源上发送GFTR时,多个GFTR在网络设备侧的目标信号强度叠加,网络设备只需检测第一预设资源上的GFTR的信号强度pr(记为总强度),以及一个GFTR在网络设备处的目标信号强度px(即预设功率值),即可确定出第一预设资源上叠加的GFTR的数量N,从而根据数量N生成GFTA信息。
示例性的,由于网络设备只需检测信号强度,而不对GFTR中携带的内容进行解析,GFTR可不包含任何数字信息,或者不同终端设备发送的GFTR可携带相同的1比特位的数据。为提高网络设备生成GFTA信息的准确性,需确保各不同的终端设备发送的GFTR在达到网络设备时信号强度均为预设功率px。示例性的,终端设备采用第一功率向网络设备发送GFTR。其中,第一功率用于使得GFTR到达网络设备时的信号强度为预设功率px。终端设备通常根据预设功率和终端设备与网络设备之间的路损生成第一功率。示例性的,由于网络设备用固定强度的功率发送信号,终端设备可以侦听网络设备发送的信号来估算路损,终端设备根据网络设备发送的信号的接收功率可以测算终端设备与网络设备之间的路损。
示例性的,当px为-82dBm,而pr为-79dBm,则可以认为有两个终端设备发送了GFTR或者网络设备检测到两个GFTR;当pr为-76dBm,则可以认为有四个终端设备发送了GFTR 或者网络设备检测到4个GFTR。当一个终端设备上存在多个待发送的上行数据时,终端设备可适应性的提高GFTR的第一功率,使得GFTR到达网络设备时的信号强度是px的多倍,相当于多个终端设备同时发送GFTR。当网络设备获得GFTR的数量N后,估算GFTA的大小。网络设备估算GFTA的大小时要考虑N可能比实际GFTR发送数量小的情况,且GFTA的大小要满足这些免授权数据传输的成功率要达到URLLC的要求。网络设备可根据数量N和预设校正系数确定资源池大小。
本实现方式中,多个终端设备在公共的第一预设资源上发送GFTR,使得网络设备检测得到所有GFTR的总功率,同时控制GFTR的发送功率,使得不同终端设备发送的GFTR的目标信号强度相同,网络设备可根据第一预设资源上的总功率和单个GFTR的目标信号强度确定GFTR的数量,由于各终端设备发送的GFTR可在公共的第一预设资源上叠加,因此第一预设资源占用的资源较少,节约了资源。
S303、网络设备向各终端设备发送GFTA信息。
示例性的,本实施例中的S303与图2所示实施例中的S203相同,本申请不再赘述。
本实施例中终端设备在任一时隙的第一预设资源上进行GFTR的传输,网络设备在所有时隙的第一预设资源上周期性的接收GFTR,确保了网络设备与终端设备之间的GFTR传输的可靠性。从而使得网络设备可根据接收到的GFTR生成GFTA信息,GFTA信息中指示的资源池的大小根据待发送的数据量配置,资源池配置更具合理性。
示例性的,在图3所示实施例的基础上,本申请实施例还提供一种资源池配置方法。本实施例中为保证终端设备接收到网络设备发送的GFTA信息,对GFTA信息的发送和接收时机进行了详细说明。图6为本申请实施例三提供的资源池配置方法的信令流程示意图。如图6所示,本申请实施例提供的资源池配置方法包括:
S601、终端设备在第一时隙内的第一预设资源上向网络设备发送GFTR。
S602、网络设备在第一时隙内的第一预设资源上,接收至少一个终端设备发送的GFTR,根据GFTR生成GFTA信息。
其中,GFTA信息用于指示终端设备进行免授权传输时所采用的资源池。
示例性的,本实施例中的S601、S602与图3所示实施例中的S301、S302相同,本申请不再赘述。
S603、网络设备在第二时隙内的第二预设资源上,向各终端设备发送GFTA信息。
其中,第二时隙不早于第一时隙。
对应的,终端设备在第二时隙内的第二预设资源上,接收GFTA信息。
示例性的,当网络设备根据接收到的GFTR生成了GFTA信息后,网络设备在第二预设资源上向各终端设备发送GFTA信息。对应的,终端设备在第二预设资源上接收GFTA信息。其中,第二预设资源为第二时隙对应的下行时频资源上的部分资源,第二时隙为不早于第一时隙的一个时隙。示例性的,该部分资源在第二时隙对应的上行时频资源上的位置可以为固定位置,还可以由网络设备动态配置。网络设备可通过***广播信息、高层信令向终端设备通知第二预设资源在第二时隙对应的上行时频资源中的位置。终端设备在第一时隙向网络设备发送GFTR之后,终端设备在第二时隙对应的下行时频资源中的第二预设资源上,接收GFTA信息。若终端设备未发送GFTR,则终端设备不进行GFTA信息接收。示例性的,由于第一时隙可能为任一时隙,每一时隙上都设置有第一预设资源,每一 个第一时隙都存在对应的第二时隙,第二时隙上设置有第二预设资源,故参照图4,在每一时隙上都设置有第二预设资源。
进一步地,终端设备在发送GFTR之后,需从发送状态切换为接受状态,而终端设备在接收GFTR之后,需根据GFTR生成GFTA信息,并从接收状态切换为发送状态。为提高资源池配置效率并保证资源池配置的成功率,第一预设资源与第二预设资源之间存在时间间隔。下面结合具体实施例对第一预设资源与第二预设资源之间的时间间隔进行详细说明。
第一种可能的时间间隔方式为:第一时隙与第二时隙之间间隔一个时隙。
示例性的,第二时隙和第一时隙的之间的时间间隔与一个子帧包含的时隙数量以及终端设备和网络设备处理接收到的信息所需的时间有关。如图4所示的一个子帧包含8个时隙的情况,因为一个子帧的时间长度为1毫秒,则每时隙的时间长度为125微秒,可以规定第二时隙和第一时隙间隔一个时隙,这样不管第一预设资源是按时域安排还是按频域安排(如图4中的横向安排),都可以保证终端设备发送GFTR之后网络设备至少有一个时隙即125微秒的时间对接收的信息进行处理并生成要发送的GFTA信息并实现发送,以及保证终端设备在发送完GFTR之后有足够的时间从发送状态切换到接收状态以接收GFTA信息。参照图4,终端设备在时隙1中的第一预设资源上发送GFTR,并在时隙3中的第二预设资源上接收GFTA信息。网络设备在时隙1中的第一预设资源上接收GFTR,并在时隙3中的第二预设资源之前,根据GFTR生成GFTA信息,并在时隙3中的第二预设资源上发送GFTA信息。示例性的,当终端设备未能在时隙1中的第一预设资源上发送GFTR时,终端设备在时隙2中的第一预设资源上发送GFTR,对应的,终端设备在时隙4中的第二预设资源上接收GFTA信息。由于终端设备和网络设备的接收发送之间均间隔有一个时隙,保证了资源池配置的可靠性;同时,以一个子帧中包含8个时隙为例,此时终端设备从生成待传输的数据,到接收到网络设备配置的资源池,最多只需4个OFDM符号,资源池配置的延时较少。
可选的,第一时隙与第二时隙之间间隔至少一个时隙。
示例性的,如果一个子帧包含时隙较多,则第二时隙和第一时隙之间的时间间隔的时隙数可以更多。例如一个子帧中包括16个时隙,则第二时隙和第一时隙之间可以间隔2个时隙,则终端设备发送完GFTR之后到网络设备发送GFTA信息之间以及终端设备从发送状态切换到接收状态之间仍至少有125微秒的间隔,满足终端设备或网络设备从接收到信息对信息处理到进行发送之间的时间需求,而此时终端设备从产生数据到接收到GFTA信息经过的延时不超过0.25毫秒。如果终端设备和网络设备对接收信号的处理更加快速,第二时隙和第一时隙之间也可以仅间隔1个时隙,更能满足URLLC的时延需求。
第二种可能的时间间隔方式为:第一时隙与第二时隙为同一时隙或相邻时隙,第一预设资源与第二预设资源之间间隔一个OFDM符号。
示例性的,当终端设备和网络设备的信息处理速度较快,或考虑到本申请实施例提供的GFTR中包括的信息较少,可进一步缩短第一预设资源与第二预设资源之间的时间间隔为至少一个OFDM符号。
示例性的,图7示出了本申请实施例可能适用的再一种子帧结构,图7中的子帧示例性的包含4个时隙,图7中的子帧采用频分制式。如图7所示,第一时隙与第二时隙为相邻时 隙。可以将第一预设资源安排在每个时隙的中间位置,将第二预设资源安排在每个时隙的起始位置。同时使第二时隙的第二预设资源和第一时隙的第一预设资源之间间隔至少一个OFDM符号,图7中以仅间隔一个OFDM符号为例。此时,资源池的配置速度可以满足URLLC业务的需求。由于此时一个OFDM符号的时间长度较长,终端设备和网络设备来得及对接收到的信息进行处理并及时在下一个资源到达时进行发送。可选的,还可将第一预设资源在时隙的左侧,第二预设资源在时隙的中间,且第一时隙与第二时隙为同一时隙。
本申请实施例中终端设备在第一时隙内的第一预设资源上传输GFTR,网络设备在第一时隙内的第一预设资源上接收GFTR,并根据接收到的GFTR生成GFTA信息,网络设备在第二时隙内的第二预设资源上进行GFTA信息的发送,确保了网络设备与终端设备之间的GFTR和GFTA信息传输的可靠性。从而使得网络设备可根据接收到的GFTR生成GFTA信息,终端设备可采用GFTA信息中指示的资源池进行上行数据传输。本实施例中的资源池的大小根据待发送的数据量配置,资源池配置更具合理性。
进一步地,在图6所示实施例的基础上,本申请实施例还提供一种资源池配置方法。本实施例中涉及的是当终端设备接收到网络设备发送的GFTA信息后,在GFTA信息指示的资源池上发送上行数据的过程。图8为本申请实施例四提供的资源池配置方法的信令流程示意图。如图8所示,本申请实施例提供的资源池配置方法包括:
S801、终端设备在第一时隙内的第一预设资源上向网络设备发送GFTR。
S802、网络设备在第一时隙内的第一预设资源上,接收至少一个终端设备发送的GFTR,根据GFTR生成GFTA信息。
其中,GFTA信息用于指示终端设备进行免授权传输时所采用的资源池。
S803、网络设备在第二时隙内的第二预设资源上,向各终端设备发送GFTA信息。
其中,第二时隙不早于第一时隙。
示例性的,本实施例中的S801至S803与图6所示实施例中的S601至S603相同,本申请不再赘述。
S804、终端设备在第三时隙内的资源池上,进行上行数据的免授权传输。
其中,第三时隙不早于第二时隙。对应的,网络设备在第三时隙内的资源池上,接收各终端设备发送的上行数据。
示例性的,终端设备在接收到GFTA信息后,在GFTA信息指示的资源池上进行上行数据传输。对应的,网络设备在资源池哈桑接收终端设备发送的上行数据。其中,资源池为第三时隙对应的上行时频资源上的部分资源,第三时隙不早于第二时隙。示例性的,参照图4,由于资源池的大小和位置取决于对应的第一预设资源上的GFTR,因此,各时隙中的资源池的大小可能不同。
下面结合具体实施例对第二预设资源与第三预设资源之间的时间间隔进行详细说明。
第一种可能的时间间隔方式为:第三时隙与第二时隙之间间隔一个时隙。
示例性的,参照图4,参考第二时隙与第一时隙之间的第一种间隔方式,第三时隙和第二时隙之间也可以间隔一个时隙,这样不管第二预设资源是按时域安排还是按频域安排,都可以保证终端设备在接收到GFTA信息之后至少有一个时隙即125微秒的时间对接收的信息进行处理并从接收状态切换到发送状态在第三时隙的资源池中进行发送。例如终端设备在图4所示的时隙1产生数据并在时隙1的第一预设资源中发送GFTR,则网络设备在 时隙3的第二预设资源中发送GFTA信息,然后终端设备在时隙5的资源池中进行免授权数据传输。如果终端设备在时隙1错过了发送GFTR的机会,则在时隙2的第一预设资源中发送GFTR,则网络设备在时隙4的第二预设资源中发送GFTA信息,网络设备在时隙6的资源池中进行免授权数据传输。此时,从终端设备产生数据到在资源池上发出数据经过的时间最多为6个OFDM符号,0.75毫秒。通过设置第一预设资源、第二预设资源和资源池之间的时间间隔,减少了资源池配置的延时。
可选的,第二时隙与第三时隙之间间隔至少一个时隙。
示例性的,如果一个子帧包含时隙较多,则第二时隙和第三时隙之间的时间间隔的时隙数可以更多。例如一个子帧中包括16个时隙,则第三时隙和第二时隙之间可以间隔2个时隙,则终端设备接收到网络设备发送的GFTA信息之后,仍至少有125微秒的间隔来确定GFTA信息指示的资源池,并在资源池上发送上行数据,满足URLLC业务中终端设备或网络设备从接收到信息对信息处理到进行上行数据发送之间的时间需求,而此时终端设备从产生数据到根据GFTA信息进行上行数据发送经过的延时不超过0.5毫秒。如果终端设备和网络设备对接收信号的处理更加快速,第二时隙和第一时隙之间也可以仅间隔1个时隙,更能满足URLLC的时延需求。
第二种可能的时间间隔方式为:第二时隙与第三时隙为同一时隙或相邻时隙,第二预设资源与资源池之间间隔一个OFDM符号。
示例性的,参照图4,参考第二时隙与第一时隙之间的第二种间隔方式,如果终端设备和网络设备处理接收到的数据不需要太多时间,例如1到2个OFDM符号的时间即可,则第三时隙和第二时隙之间可以不需要一个时隙,只需要使得第三时隙的资源池和第二时隙的第二预设资源之间间隔所需要的符号数即可,这样终端设备从产生数据到发出数据的时延就可以缩短到0.5毫秒以内。
如图7所示,如果一个子帧包含4个时隙,可以将第一预设资源安排在每个时隙的中间位置,将第二预设资源安排在每个时隙的起始位置,资源池安排在每个时隙的右侧,且第二时隙与第一时隙相邻,而第三时隙与第二时隙为同一时隙,同时使第二时隙的第二预设资源和第一时隙的第一预设资源以及第二时隙(即第三时隙)中的资源池和第二预设资源之间间隔至少一个OFDM符号。此时一个OFDM符号的时间长度较长,终端设备和网络设备只要性能足够,来得及对接收到的信息进行处理并及时在下一个资源到达时进行发送。可选的,还可将第一预设资源设置在时隙的左侧,第二预设资源设置在时隙的中间,资源池设置在时隙的左侧,且第一时隙与第二时隙为同一时隙,第三时隙与第二时隙相邻,同时也使得第二时隙(即第一时隙)中的第二预设资源和第一预设资源以及第三时隙的资源池和第二时隙的第二预设资源之间间隔至少一个OFDM符号。此时,资源池的配置速度可以满足URLLC业务的需求。
实施例中终端设备在第一时隙内的第一预设资源上进行GFTR的传输,网络设备在第二时隙内的第二预设资源上向终端设备发送根据GFTR生成的GFTA信息,并在GFTA信息指示的资源池上进行了数据传输,确保了网络设备与终端设备之间的GFTR、GFTA信息和上行数据的传输。从而使得网络设备可根据接收到的GFTR生成GFTA信息,并在GFTA信息中指示的资源池上进行数据传输,本实施例中的资源池的大小根据待发送的数据量配置,资源池配置更具合理性。
示例性的,上述各实施例中的资源池配置方法还可适用于如图5所示的采用时分制式的子帧中。
图5所示的子帧中包含8个时隙,示例性的可以规定每个时隙的左边若干个OFDM符号对应的时频资源用于下行传输,这些OFDM符号称为下行OFDM符号;而右边若干个符号对应的时频资源用于上行传输,这些OFDM符号称为上行OFDM符号。各时隙中的上行OFDM符号和下行OFDM符号的数量的分配可以不同。例如,第一预设资源可以为每个时隙的上行OFDM符号中的右边第一个OFDM符号对应的部分时频资源,第二预设资源可以为每个时隙的下行OFDM符号中左边第一个OFDM符号对应的部分时频资源,资源池可以为每个时隙的上行OFDM符号对应的时频资源中的部分资源。子帧中的其他OFDM符号根据上下行传输对资源的需要(通常下行比上行需要更多资源)用作下行数据传输或上行数据传输。
示例性的,第一时隙与第二时隙、第三时隙之间的间隔可以与图4或图7所示实施例中的时间间隔相同。下面仅对各时隙之间间隔一个时隙进行示例性的说明。当终端设备在时隙1产生URLLC数据时,可以在时隙1的第一预设资源中传输GFTR。网络设备从时隙1的第一预设资源中获得GFTR的数量N,根据N为终端设备配置资源池,生成GFTA信息,然后在时隙3的第二预设资源上发送GFTA信息。终端设备在时隙3的第二预设资源上接收GFTA信息,并根据GFTA信息在时隙5的资源池上选择传输单元进行上行数据传输。示例性的,第一时隙和第二时隙还可以为相邻时隙或同一时隙,第一预设资源与第二预设资源之间间隔至少一个OFDM符号。示例性的,当终端设备未能在时隙1中的第一预设资源上发送GFTR时,终端设备在时隙2中的第一预设资源上发送GFTR,对应的,终端设备在时隙4中的第二预设资源上接收GFTA信息,并在时隙6上在资源池上进行上行数据传输。由于终端设备和网络设备的接收发送之间均间隔有一个时隙,保证了资源池配置的可靠性;同时,以一个子帧中包含8个时隙为例,此时终端设备从生成待传输的数据,到在网络设备配置的资源池上进行上行数据传输,最多只需6个OFDM符号,满足URLLC业务的延时要求。
示例性的,上述任一实施例中的第一时隙、第二时隙、第三时隙可分布在不同子帧内。第一预设资源可以为第一时隙对应的上行时频资源中的上行控制信道(Phisical Uplink Control Channel,PUCCH)所占用的时频资源中的部分资源。所述第二预设资源可以为第二时隙对应的下行时频资源中的下行控制信道(Phisical Downlink Control Channel,PDCCH)所占用的时频资源中的部分资源。
本申请实施例再一方面还提供一种资源池配置装置,用于执行上述实施例中的网络设备侧的资源池配置方法,具有相同的技术特征和技术效果。
图9为本申请实施例一提供的资源池配置装置的结构示意图。该资源池配置装置可以为上述图2至图8所示实施例中的网络设备,该资源池配置装置可以通过软件、硬件或者软硬件结合的方式实现。如图9所示,该资源池配置装置可以包括:
接收模块11,用于接收至少一个终端设备发送的免授权传输请求GFTR;
资源池配置模块12,用于根据所述GFTR生成免授权传输资源GFTA信息;
发送模块13,用于向各终端设备发送所述GFTA信息,所述GFTA信息用于指示终端设备进行免授权传输时所采用的资源池。
可选的,所述接收模块11具体用于:
在第一时隙内的第一预设资源上,接收至少一个终端设备发送的GFTR。
可选的,所述发送模块13具体用于:
在第二时隙内的第二预设资源上,向各终端设备发送所述GFTA信息;所述第二时隙不早于所述第一时隙。
可选的,所述接收模块11还用于:
在第三时隙内的所述资源池上,接收各终端设备发送的上行数据;所述第三时隙不早于所述第二时隙。
可选的,所述资源池配置模块12具体用于:获取所述GFTR的数量,根据所述GFTR的数量生成所述GFTA信息。
可选的,所述第一预设资源包含至少一个GFTR传输单元,所述资源池配置模块12具体用于:
根据所述第一预设资源中检测到GFTR的GFTR传输单元的数量,获取所述GFTR的数量。
可选的,所述资源池配置模块12具体用于:
在所述第一预设资源上,检测所述第一预设资源上的信号强度;
根据所述信号强度和预设功率,获取所述GFTR的数量。
可选的,所述第一时隙与所述第二时隙之间间隔一个时隙。
可选的,所述第一时隙与所述第二时隙为同一时隙或相邻时隙,所述第一预设资源与所述第二预设资源之间间隔一个正交频分多路复用OFDM符号。
可选的,所述第三时隙与所述第二时隙之间间隔一个时隙。
可选的,所述第二时隙与所述第三时隙为同一时隙或相邻时隙,所述第二预设资源与所述资源池之间间隔一个OFDM符号。
可选的,所述第一时隙、第二时隙和第三时隙中的任一时隙对应的时频资源包括上行时频资源和下行时频资源;
其中,所述上行时频资源和所述下行时频资源所占的子载波不同,或所述上行时频资源和所述下行时频资源所占的符号不同。
可选的,所述GFTA信息包括所述资源池所占用的符号数量、起始符号数、终止符号数中的至少一项,和所述资源池所占用的起始子载波信息、子带宽度信息、终止子载波信息中的至少一项。
图10为本申请实施例二提供的资源池配置装置的结构示意图。该资源池配置装置可以为上述图2至图8所示实施例中的终端设备,该资源池配置装置可以通过软件、硬件或者软硬件结合的方式实现。如图10所示,该资源池配置装置可以包括:
发送模块21,用于向网络设备发送GFTR,所述GFTR用于向所述网络设备指示所述终端设备存在待传输的上行数据;
接收模块22,用于从所述网络设备接收GFTA信息,所述GFTA信息用于指示所述终端设备进行免授权传输时所采用的资源池。
可选的,所述发送模块21具体用于:
在第一时隙内的第一预设资源上向所述网络设备发送所述GFTR。
可选的,所述接收模块22具体用于:
在第二时隙内的第二预设资源上从所述网络设备接收GFTA信息;所述第二时隙不早于所述第一时隙。
可选的,所述发送模块21还用于:
在第三时隙内的所述资源池上,进行所述上行数据的免授权传输;所述第三时隙不早于所述第二时隙。
可选的,所述第一预设资源包含至少一个GFTR传输单元,所述发送模块21具体用于:
在至少一个所述GFTR传输单元上,向网络设备发送所述GFTR。
可选的,所述发送模块21具体用于:
在所述第一预设资源上,采用第一功率向所述网络设备发送所述GFTR;所述第一功率用于使得所述GFTR到达所述网络设备时的信号强度为预设功率。
可选的,所述第一时隙与所述第二时隙之间间隔一个时隙。
可选的,所述第一时隙与所述第二时隙为同一时隙或相邻时隙,所述第一预设资源与所述第二预设资源之间间隔一个符号。
可选的,所述第三时隙与所述第二时隙之间间隔一个时隙。
可选的,所述第二时隙与所述第三时隙为同一时隙或相邻时隙,所述第二预设资源与所述资源池之间间隔一个符号。
可选的,时隙对应的时频资源包括上行时频资源和下行时频资源;
其中,所述上行时频资源和所述下行时频资源所占的子载波不同,或所述上行时频资源和所述下行时频资源所占的符号不同。
可选的,所述GFTA信息包括所述资源池所占用的符号数量、起始符号数、终止符号数中的至少一项,和所述资源池所占用的起始子载波信息、子带宽度信息、终止子载波信息中的至少一项。
本申请实施例又一方面还提供一种网络设备,用于执行上述实施例中的网络设备侧的资源池配置方法,具有相同的技术特征和技术效果。
图11为本申请实施例提供的网络设备的结构示意图。该网络设备可以包括存储器31、处理器32、至少一个通信总线33、发送器34和接收器35。通信总线33用于实现元件之间的通信连接。存储器31可能包含高速RAM存储器,也可能还包括非易失性存储NVM,例如至少一个磁盘存储器,存储器31中可以存储各种程序,用于完成各种处理功能以及实现本实施例的方法步骤。本实施例中,发送器34可以为基站中的射频处理模块或者基带处理模块,接收器35可以为基站中的射频处理模块或者基带处理模块。上述发送器34和接收器35可以分开设置,还可以集成在一起设置构成一个收发器,该发送器34和接收器35均可以耦合至所述处理器32。通信总线33可以是外设部件互连标准(英文:Peripheral Component Interconnect,简称:PCI)总线或扩展工业标准结构(英文:Extended Industry Standard Architecture,简称:EISA)总线等。上述通信总线33可以分为地址总线、数据总线、控制总线等。为便于表示,图11中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。图11示出了上述实施例中所涉及的网络设备的一种可能的设计结构的简化示意图。可以理解的是,图11仅仅示出了所述网络设备的简化设计。在实际应用 中,所述网络设备可以包含任意数量的发射器,接收器,处理器,存储器等,而所有可以实现本申请的网络设备都在本申请的保护范围之内。
具体的,本实施例中,接收器35,用于接收至少一个终端设备发送的免授权传输请求GFTR;
处理器32,用于根据所述GFTR生成免授权传输资源GFTA信息;
发送器34,用于向各终端设备发送所述GFTA信息,所述GFTA信息用于指示终端设备进行免授权传输时所采用的资源池。
可选的,所述接收器35具体用于:
在第一时隙内的第一预设资源上,接收至少一个终端设备发送的GFTR。
可选的,所述发送器34具体用于:
在第二时隙内的第二预设资源上,向各终端设备发送所述GFTA信息;所述第二时隙不早于所述第一时隙。
可选的,所述接收器35还用于:
在第三时隙内的所述资源池上,接收各终端设备发送的上行数据;所述第三时隙不早于所述第二时隙。
可选的,处理器32具体用于:
获取所述GFTR的数量,根据所述GFTR的数量生成所述GFTA信息。
可选的,所述第一预设资源包含至少一个GFTR传输单元,处理器32具体用于:
根据所述第一预设资源中检测到GFTR的GFTR传输单元的数量,获取所述GFTR的数量。
可选的,处理器32具体用于:
在所述第一预设资源上,检测所述第一预设资源上的信号强度;
根据所述信号强度和预设功率,获取所述GFTR的数量。
可选的,所述第一时隙与所述第二时隙之间间隔一个时隙。
可选的,所述第一时隙与所述第二时隙为同一时隙或相邻时隙,所述第一预设资源与所述第二预设资源之间间隔一个正交频分多路复用OFDM符号。
可选的,所述第三时隙与所述第二时隙之间间隔一个时隙。
可选的,所述第二时隙与所述第三时隙为同一时隙或相邻时隙,所述第二预设资源与所述资源池之间间隔一个OFDM符号。
可选的,所述第一时隙、第二时隙和第三时隙中的任一时隙对应的时频资源包括上行时频资源和下行时频资源;
其中,所述上行时频资源和所述下行时频资源所占的子载波不同,或所述上行时频资源和所述下行时频资源所占的符号不同。
可选的,所述GFTA信息包括所述资源池所占用的符号数量、起始符号数、终止符号数中的至少一项,和所述资源池所占用的起始子载波信息、子带宽度信息、终止子载波信息中的至少一项。
本申请实施例又一方面还提供一种终端设备,用于执行上述实施例中的终端设备侧的资源池配置方法,具有相同的技术特征和技术效果。
图12为本申请实施例提供的终端设备的结构示意图。该终端设备可以包括存储器41、 处理器42、至少一个通信总线43、发送器44和接收器45。通信总线43用于实现元件之间的通信连接。存储器41可能包含高速RAM存储器,也可能还包括非易失性存储NVM,例如至少一个磁盘存储器,存储器41中可以存储各种程序,用于完成各种处理功能以及实现本实施例的方法步骤。本实施例中,发送器44可以为基站中的射频处理模块或者基带处理模块,接收器45可以为基站中的射频处理模块或者基带处理模块。上述发送器44和接收器45可以分开设置,还可以集成在一起设置构成一个收发器,该发送器44和接收器45均可以耦合至所述处理器42。通信总线43可以是外设部件互连标准(英文:Peripheral Component Interconnect,简称:PCI)总线或扩展工业标准结构(英文:Extended Industry Standard Architecture,简称:EISA)总线等。上述通信总线43可以分为地址总线、数据总线、控制总线等。为便于表示,图12中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。图12示出了上述实施例中所涉及的终端设备的一种可能的设计结构的简化示意图。可以理解的是,图12仅仅示出了所述终端设备的简化设计。在实际应用中,所述终端设备可以包含任意数量的发射器,接收器45,处理器,存储器等,而所有可以实现本申请的终端设备都在本申请的保护范围之内。
具体的,本实施例中,发送器44,用于向网络设备发送GFTR,所述GFTR用于向所述网络设备指示所述终端设备存在待传输的上行数据;
接收器45,用于从所述网络设备接收GFTA信息,所述GFTA信息用于指示所述终端设备进行免授权传输时所采用的资源池。
可选的,所述发送器44具体用于:
在第一时隙内的第一预设资源上向所述网络设备发送所述GFTR。
可选的,所述接收器45具体用于:
在第二时隙内的第二预设资源上从所述网络设备接收GFTA信息;所述第二时隙不早于所述第一时隙。
可选的,所述发送器44还用于:
在第三时隙内的所述资源池上,进行所述上行数据的免授权传输;所述第三时隙不早于所述第二时隙。
可选的,所述第一预设资源包含至少一个GFTR传输单元,所述发送器44具体用于:
在至少一个所述GFTR传输单元上,向网络设备发送所述GFTR。
可选的,所述发送器44具体用于:
在所述第一预设资源上,采用第一功率向所述网络设备发送所述GFTR;所述第一功率用于使得所述GFTR到达所述网络设备时的信号强度为预设功率。
可选的,所述第一时隙与所述第二时隙之间间隔一个时隙。
可选的,所述第一时隙与所述第二时隙为同一时隙或相邻时隙,所述第一预设资源与所述第二预设资源之间间隔一个符号。
可选的,所述第三时隙与所述第二时隙之间间隔一个时隙。
可选的,所述第二时隙与所述第三时隙为同一时隙或相邻时隙,所述第二预设资源与所述资源池之间间隔一个符号。
可选的,时隙对应的时频资源包括上行时频资源和下行时频资源;
其中,所述上行时频资源和所述下行时频资源所占的子载波不同,或所述上行时频资 源和所述下行时频资源所占的符号不同。
可选的,所述GFTA信息包括所述资源池所占用的符号数量、起始符号数、终止符号数中的至少一项,和所述资源池所占用的起始子载波信息、子带宽度信息、终止子载波信息中的至少一项。
本申请实施例又一方面还提供了一种计算机存储介质,用于储存上述网络设备所用的计算机软件指令,其包含用于执行上述任一实施例中的网络设备侧的方法的程序。本申请实施例还提供一种计算机程序产品,其包含指令,当计算机程序被计算机所执行时,该指令使得计算机执行上述网络设备所执行的功能。
本申请实施例还提供了一种芯片***,该芯片***包括处理器,用于支持网络设备实现上述任一实施例中所涉及的功能,例如,生成或处理上述方法中所涉及的数据和/或信息。在一种可能的设计中,该芯片***还包括存储器,所述存储器,用于保存网络设备必要的程序指令和数据。该芯片***,可以由芯片构成,也可以包含芯片和其他分立器件。
本申请实施例又一方面还提供了一种计算机存储介质,用于储存上述终端设备所用的计算机软件指令,其包含用于执行上述任一实施例中的终端设备侧的方法的程序。本申请实施例还提供一种计算机程序产品,其包含指令,当计算机程序被计算机所执行时,该指令使得计算机执行终端设备所执行的功能。
本申请实施例还提供了一种芯片***,该芯片***包括处理器,用于支持终端设备实现上述任一实施例中所涉及的功能,例如,生成或处理上述方法中所涉及的数据和/或信息。在一种可能的设计中,该芯片***还包括存储器,所述存储器,用于保存终端设备必要的程序指令和数据。该芯片***,可以由芯片构成,也可以包含芯片和其他分立器件。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的***、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的***、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个***,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
本申请的说明书和权利要求书及上述附图中的术语“第一”、“第二”、“第三”“第四”等(如果存在)是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本申请的实施例例如能够以除了在这里图示或描述的那些以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何 变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、***、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,简称ROM)、随机存取存储器(Random Access Memory,简称RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
最后应说明的是:以上各实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述各实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的范围。

Claims (28)

  1. 一种资源池配置方法,其特征在于,所述方法包括:
    接收至少一个终端设备发送的免授权传输请求GFTR;
    根据所述GFTR生成免授权传输资源GFTA信息,并向各终端设备发送所述GFTA信息,所述GFTA信息用于指示终端设备进行免授权传输时所采用的资源池。
  2. 根据权利要求1所述的方法,其特征在于,所述接收至少一个终端设备发送的GFTR,具体包括:
    在第一时隙内的第一预设资源上,接收至少一个终端设备发送的GFTR。
  3. 根据权利要求2所述的方法,其特征在于,所述向各终端设备发送所述GFTA信息,具体包括:
    在第二时隙内的第二预设资源上,向各终端设备发送所述GFTA信息;所述第二时隙不早于所述第一时隙。
  4. 根据权利要求3所述的方法,其特征在于,所述向各终端设备发送所述GFTA信息之后,所述方法还包括:
    在第三时隙内的所述资源池上,接收各终端设备发送的上行数据;所述第三时隙不早于所述第二时隙。
  5. 根据权利要求2至4中任一项所述的方法,其特征在于,所述根据所述GFTR生成GFTA信息,具体包括:
    获取所述GFTR的数量,根据所述GFTR的数量生成所述GFTA信息。
  6. 根据权利要求5所述的方法,其特征在于,所述第一预设资源包含至少一个GFTR传输单元,所述获取所述GFTR的数量,具体包括:
    根据所述第一预设资源中检测到GFTR的GFTR传输单元的数量,获取所述GFTR的数量。
  7. 根据权利要求5所述的方法,其特征在于,所述获取所述GFTR的数量,具体包括:
    在所述第一时隙的第一预设资源上,检测所述第一预设资源上的信号强度;
    根据所述信号强度和预设功率,获取所述GFTR的数量。
  8. 根据权利要求3或4所述的方法,其特征在于,所述第一时隙与所述第二时隙之间间隔一个时隙。
  9. 根据权利要求3或4所述的方法,其特征在于,所述第一时隙与所述第二时隙为同一时隙或相邻时隙,所述第一预设资源与所述第二预设资源之间间隔一个正交频分多路复用OFDM符号。
  10. 根据权利要求4所述的方法,其特征在于,所述第三时隙与所述第二时隙之间间隔一个时隙。
  11. 根据权利要求4所述的方法,其特征在于,所述第二时隙与所述第三时隙为同一时隙或相邻时隙,所述第二预设资源与所述资源池之间间隔一个OFDM符号。
  12. 根据权利要求4至11中任一项所述的方法,其特征在于,所述第一时隙、第二时隙和第三时隙中的任一时隙对应的时频资源包括上行时频资源和下行时频资源;
    其中,所述上行时频资源和所述下行时频资源所占的子载波不同,或所述上行时频资源和所述下行时频资源所占的符号不同。
  13. 根据权利要求1至12中任一项所述的方法,其特征在于,所述GFTA信息包括所述资源池所占用的符号数量、起始符号数、终止符号数中的至少一项,和所述资源池所占用的起始子载波信息、子带宽度信息、终止子载波信息中的至少一项。
  14. 一种资源池配置方法,其特征在于,所述方法包括:
    终端设备向网络设备发送GFTR,所述GFTR用于向所述网络设备指示所述终端设备存在待传输的上行数据;
    所述终端设备从所述网络设备接收GFTA信息,所述GFTA信息用于指示所述终端设备进行免授权传输时所采用的资源池。
  15. 根据权利要求14所述的方法,其特征在于,所述终端设备向网络设备发送GFTR,具体包括:
    所述终端设备在第一时隙内的第一预设资源上向所述网络设备发送所述GFTR。
  16. 根据权利要求15所述的方法,其特征在于,所述终端设备从所述网络设备接收GFTA信息,具体包括:
    所述终端设备在第二时隙内的第二预设资源上从所述网络设备接收GFTA信息;所述第二时隙不早于所述第一时隙。
  17. 根据权利要求16所述的方法,其特征在于,所述终端设备从所述网络设备接收GFTA信息之后,所述方法还包括:
    所述终端设备在第三时隙内的所述资源池上,进行所述上行数据的免授权传输;所述第三时隙不早于所述第二时隙。
  18. 根据权利要求15至17中任一项所述的方法,其特征在于,所述第一预设资源包含至少一个GFTR传输单元,所述终端设备在第一时隙内的第一预设资源上向网络设备发送GFTR,具体包括:
    所述终端设备在第一时隙内的至少一个所述GFTR传输单元上,向网络设备发送所述GFTR。
  19. 根据权利要求15至17中任一项所述的方法,其特征在于,所述终端设备在第一时隙内的第一预设资源上向网络设备发送GFTR,具体包括:
    所述终端设备在第一时隙内的所述第一预设资源上,采用第一功率向所述网络设备发送所述GFTR;所述第一功率用于使得所述GFTR到达所述网络设备时的信号强度为预设功率。
  20. 根据权利要求16或17所述的方法,其特征在于,所述第一时隙与所述第二时隙之间间隔一个时隙。
  21. 根据权利要求16或17所述的方法,其特征在于,所述第一时隙与所述第二时隙为同一时隙或相邻时隙,所述第一预设资源与所述第二预设资源之间间隔一个符号。
  22. 根据权利要求17所述的方法,其特征在于,所述第三时隙与所述第二时隙之间间隔一个时隙。
  23. 根据权利要求17所述的方法,其特征在于,所述第二时隙与所述第三时隙为同一时隙或相邻时隙,所述第二预设资源与所述资源池之间间隔一个符号。
  24. 根据权利要求15至23中任一项所述的方法,其特征在于,时隙对应的时频资源包括上行时频资源和下行时频资源;
    其中,所述上行时频资源和所述下行时频资源所占的子载波不同,或所述上行时频资源和所述下行时频资源所占的符号不同。
  25. 根据权利要求14至24中任一项所述的方法,其特征在于,所述GFTA信息包括所述资源池所占用的符号数量、起始符号数、终止符号数中的至少一项,和所述资源池所占用的起始子载波信息、子带宽度信息、终止子载波信息中的至少一项。
  26. 一种资源池配置装置,其特征在于,所述装置包括:
    接收模块,用于接收至少一个终端设备发送的免授权传输请求GFTR;
    资源池配置模块,用于根据所述GFTR生成GFTA信息;
    发送模块,用于向各终端设备发送所述GFTA信息,所述GFTA信息用于指示终端设备进行免授权传输时所采用的资源池。
  27. 一种资源池配置装置,其特征在于,所述装置包括:
    发送模块,用于向网络设备发送GFTR,所述GFTR用于向所述网络设备指示所述终端设备存在待传输的上行数据;
    接收模块,用于从所述网络设备接收GFTA信息,所述GFTA信息用于指示所述终端设备进行免授权传输时所采用的资源池。
  28. 一种芯片***,其特征在于,所述芯片***包括处理器,用于执行权利要求1至25中任一项所述的方法。
PCT/CN2017/097205 2017-07-13 2017-08-11 资源池配置方法和装置 WO2019010746A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201780092245.3A CN110754125B (zh) 2017-07-13 2017-08-11 资源池配置方法和装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710570772 2017-07-13
CN201710570772.2 2017-07-13

Publications (1)

Publication Number Publication Date
WO2019010746A1 true WO2019010746A1 (zh) 2019-01-17

Family

ID=65001556

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/097205 WO2019010746A1 (zh) 2017-07-13 2017-08-11 资源池配置方法和装置

Country Status (2)

Country Link
CN (1) CN110754125B (zh)
WO (1) WO2019010746A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111615212A (zh) * 2020-04-15 2020-09-01 北京云智软通信息技术有限公司 5g通信中的上行多bwp联合免调度发送方法及***

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103826310A (zh) * 2014-02-28 2014-05-28 电信科学技术研究院 一种确定资源池容量的方法和设备
US20160302231A1 (en) * 2015-04-08 2016-10-13 Institute For Information Industry Base station, user equipment, transmission control method for the base station and data transmission method for the user equipment
CN106301725A (zh) * 2015-06-03 2017-01-04 普天信息技术有限公司 资源分配方法及装置
CN106507486A (zh) * 2015-09-08 2017-03-15 华为技术有限公司 用于上行数据传输的方法、网络设备和终端设备
CN106788943A (zh) * 2017-02-16 2017-05-31 宇龙计算机通信科技(深圳)有限公司 免上行调度许可的资源配置方法、用户设备及基站
CN106793091A (zh) * 2016-11-03 2017-05-31 北京展讯高科通信技术有限公司 基站、用户设备及数据传输方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104349479A (zh) * 2013-10-31 2015-02-11 上海朗帛通信技术有限公司 D2d通信资源分配方法及基站设备和用户设备
US20160295624A1 (en) * 2015-04-02 2016-10-06 Samsung Electronics Co., Ltd Methods and apparatus for resource pool design for vehicular communications
CN106502576B (zh) * 2015-09-06 2020-06-23 中兴通讯股份有限公司 迁移策略调整方法及装置
CN105407488A (zh) * 2015-12-18 2016-03-16 重庆邮电大学 一种基于d2d终端反馈值调整资源池大小的优化方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103826310A (zh) * 2014-02-28 2014-05-28 电信科学技术研究院 一种确定资源池容量的方法和设备
US20160302231A1 (en) * 2015-04-08 2016-10-13 Institute For Information Industry Base station, user equipment, transmission control method for the base station and data transmission method for the user equipment
CN106301725A (zh) * 2015-06-03 2017-01-04 普天信息技术有限公司 资源分配方法及装置
CN106507486A (zh) * 2015-09-08 2017-03-15 华为技术有限公司 用于上行数据传输的方法、网络设备和终端设备
CN106793091A (zh) * 2016-11-03 2017-05-31 北京展讯高科通信技术有限公司 基站、用户设备及数据传输方法
CN106788943A (zh) * 2017-02-16 2017-05-31 宇龙计算机通信科技(深圳)有限公司 免上行调度许可的资源配置方法、用户设备及基站

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111615212A (zh) * 2020-04-15 2020-09-01 北京云智软通信息技术有限公司 5g通信中的上行多bwp联合免调度发送方法及***
CN111615212B (zh) * 2020-04-15 2021-06-22 北京云智软通信息技术有限公司 5g通信中的上行多bwp联合免调度发送方法及***

Also Published As

Publication number Publication date
CN110754125B (zh) 2022-04-29
CN110754125A (zh) 2020-02-04

Similar Documents

Publication Publication Date Title
CN110611957B (zh) 一种信号传输方法及装置
EP3566528B1 (en) Scheduling request with different numerologies
US10805923B2 (en) Allocating transmission resources in communication networks that provide low latency services
CN110225547B (zh) 一种调度请求发送、接收方法、终端及网络侧设备
CN110831234B (zh) 随机接入方法、通信装置、芯片及存储介质
US20170238311A1 (en) Synchronous Licensed Assisted Access
WO2013026414A1 (zh) 接入通信***的方法、下行信息发送方法、终端及基站
AU2018284889C1 (en) Bandwidth resource configuration method, apparatus, and system
WO2021032017A1 (zh) 通信方法和装置
EP3833109B1 (en) Random access method, user equipment, and base station
JP2020523902A (ja) 通信方法、ネットワークデバイス、およびユーザ機器
CN107872308A (zh) 数据发送方法、接收方法及设备
WO2022029721A1 (en) TIMING ENHANCEMENTS RELATED TO PUCCH REPETITION TOWARDS MULTIPLE TRPs
CN107770733B (zh) 一种数据通信的方法、装置及***
JP2015506601A (ja) 半二重および全二重のための通信装置および通信方法
CN112399627A (zh) 一种dmrs端口确定方法及通信装置
CN110971362B (zh) 一种发现参考信号发送方法及装置
WO2022029711A1 (en) COLLISION AVOIDANCE AND/OR HANDLING OF INVALID SYMBOLS WHEN UTILIZING UPLINK CHANNEL REPETITION TOWARDS MULTIPLE TRPs
CN110890953B (zh) 使用免授权频段的通信方法和通信装置
WO2019010746A1 (zh) 资源池配置方法和装置
CN107769903B (zh) 一种无线通信中的方法和装置
CN107370703B (zh) 信息的收发方法、装置及***
US10291445B2 (en) Method and system for minimizing channel preservation time in cellular communications on un-licensed band
EP3288334B1 (en) Data transmission method and apparatus
US10470172B2 (en) Configuring wireless communications resources

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17917621

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17917621

Country of ref document: EP

Kind code of ref document: A1