WO2019009202A1 - Thermoelectric conversion module and method for producing thermoelectric conversion module - Google Patents

Thermoelectric conversion module and method for producing thermoelectric conversion module Download PDF

Info

Publication number
WO2019009202A1
WO2019009202A1 PCT/JP2018/024828 JP2018024828W WO2019009202A1 WO 2019009202 A1 WO2019009202 A1 WO 2019009202A1 JP 2018024828 W JP2018024828 W JP 2018024828W WO 2019009202 A1 WO2019009202 A1 WO 2019009202A1
Authority
WO
WIPO (PCT)
Prior art keywords
thermoelectric conversion
layer
silver
aluminum
conversion element
Prior art date
Application number
PCT/JP2018/024828
Other languages
French (fr)
Japanese (ja)
Inventor
皓也 新井
修司 西元
雅人 駒崎
長友 義幸
黒光 祥郎
Original Assignee
三菱マテリアル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2018118764A external-priority patent/JP7163631B2/en
Application filed by 三菱マテリアル株式会社 filed Critical 三菱マテリアル株式会社
Priority to EP18828546.4A priority Critical patent/EP3651217A4/en
Priority to US16/608,469 priority patent/US20210111327A1/en
Priority to CN201880036600.XA priority patent/CN110710008B/en
Priority to KR1020197034156A priority patent/KR20200026797A/en
Publication of WO2019009202A1 publication Critical patent/WO2019009202A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N11/00Generators or motors not provided for elsewhere; Alleged perpetua mobilia obtained by electric or magnetic means
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/01Manufacture or treatment
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/10Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects
    • H10N10/17Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects characterised by the structure or configuration of the cell or thermocouple forming the device
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/80Constructional details
    • H10N10/81Structural details of the junction
    • H10N10/817Structural details of the junction the junction being non-separable, e.g. being cemented, sintered or soldered

Definitions

  • the present invention relates to a thermoelectric conversion module in which a plurality of thermoelectric conversion elements are electrically connected, and a method of manufacturing the thermoelectric conversion module.
  • thermoelectric conversion element is an electronic element capable of mutually converting thermal energy and electrical energy by the Seebeck effect or Peltier effect.
  • the Seebeck effect is a phenomenon in which an electromotive force is generated when a temperature difference is generated between both ends of a thermoelectric conversion element, and thermal energy is converted into electrical energy.
  • the electromotive force generated by the Seebeck effect is determined by the characteristics of the thermoelectric conversion element. In recent years, development of thermoelectric generation utilizing this effect has been brisk.
  • the Peltier effect is a phenomenon in which when an electrode or the like is formed at both ends of a thermoelectric conversion element to generate a potential difference between the electrodes, a temperature difference occurs at both ends of the thermoelectric conversion element, and electrical energy is converted to thermal energy.
  • An element having such an effect is particularly called a Peltier element, and is used for cooling and temperature control of precision instruments, small refrigerators and the like.
  • thermoelectric conversion module using the above-mentioned thermoelectric conversion element, for example, one having a structure in which an n-type thermoelectric conversion element and a p-type thermoelectric conversion element are alternately connected in series is proposed.
  • heat transfer plates are disposed respectively on one end side and the other end side of a plurality of thermoelectric conversion elements, and the thermoelectric conversion elements are connected in series by the electrode portions disposed on the heat transfer plate.
  • an insulating circuit board provided with an insulating layer and an electrode part may be used.
  • the Seebeck effect generates electrical energy by causing a temperature difference between the heat transfer plate disposed at one end of the thermoelectric conversion element and the heat transfer plate disposed at the other end of the thermoelectric conversion element. It can be done. Alternatively, by supplying a current to the thermoelectric conversion element, between the heat transfer plate disposed at one end of the thermoelectric conversion element and the heat transfer plate disposed at the other end of the thermoelectric conversion element by the Peltier effect. It is possible to generate a temperature difference.
  • thermoelectric conversion module in order to improve the thermoelectric conversion efficiency, it is necessary to suppress the electrical resistance in the electrode portion connected to the thermoelectric conversion element to a low level. For this reason, conventionally, when joining a thermoelectric conversion element and an electrode part, the silver paste etc. which were especially excellent in electroconductivity are used. Moreover, an electrode part itself may be formed with a silver paste, and it may join with a thermoelectric conversion element.
  • thermoelectric conversion element since the sintered body of silver paste has a relatively large number of pores, the electrical resistance can not be suppressed sufficiently low. Moreover, there existed a possibility that the thermoelectric conversion element might deteriorate by the gas which exists in the pore. In order to reduce the number of pores by densifying the sintered body of silver paste, it is conceivable to perform liquid phase sintering by heating to the melting point (960 ° C.) of silver or more. Under such high temperature conditions, thermoelectric conversion is performed during bonding. The element may be degraded by heat.
  • Patent Document 1 proposes a method of joining a thermoelectric conversion element by forming an electrode portion using a silver solder having a melting point lower than that of silver.
  • coating a glass solution to the whole outer peripheral surface of a joining layer and drying in air is performed. Proposed.
  • thermoelectric conversion module 1 silver solder having a melting point lower than that of silver is used, but the melting point of the silver solder used is, for example, 750 to prevent melting of the silver solder even at the operating temperature of the thermoelectric conversion module. 800 ° C. is preferred (see Patent Document 1, paragraph 0023).
  • the thermoelectric conversion elements are joined under such relatively high temperature conditions, there is also a possibility that the characteristics of the thermoelectric conversion elements may be deteriorated by the heat at the time of joining.
  • thermoelectric conversion module since the pores are present inside the bonding layer, the electric resistance in the electrode portion connected to the thermoelectric conversion element can not be suppressed low, and thus the thermoelectric conversion module could not improve the thermoelectric conversion efficiency.
  • thermoelectric conversion module excellent in the thermoelectric conversion efficiency
  • thermoelectric conversion module of the present invention comprises a plurality of thermoelectric conversion elements, a first electrode portion disposed on one end side of the thermoelectric conversion elements, and a second on the other end side. It is an thermoelectric conversion module which has an electrode part and a plurality of thermoelectric conversion elements are electrically connected via the 1st electrode part and the 2nd electrode part.
  • a first insulating circuit board including a first insulating layer and the first electrode portion formed on one surface of the first insulating layer is disposed on one end side of the thermoelectric conversion element. .
  • Said 1st electrode part is 1st silver baking which consists of the 1st aluminum layer which consists of aluminum or aluminum alloys, and the sintered body of silver formed in the surface on the opposite side to said 1st insulating layer of this 1st aluminum layer
  • the first aluminum layer has a thickness in the range of 50 ⁇ m to 2000 ⁇ m
  • the first first silver fired layer has a thickness at least in the region where the thermoelectric conversion element is disposed.
  • the porosity is 5% or more and the porosity is less than 10%.
  • the first insulating layer and the first electrode portion formed on one surface of the first insulating layer are provided on one end side of the thermoelectric conversion element.
  • An insulating circuit substrate is disposed, and the first electrode portion is formed on a first aluminum layer made of aluminum or an aluminum alloy, and a surface of the first aluminum layer opposite to the first insulating layer.
  • the first aluminum layer has a thickness in the range of 50 ⁇ m to 2000 ⁇ m, and the first silver fired layer has at least the thermoelectric conversion. In the region where the element is disposed, the thickness is 5 ⁇ m or more and the porosity is less than 10%, so that the first silver fired layer becomes dense and the thickness of the entire first electrode portion is secured. , Can reduce the electrical resistance.
  • the number of pores in the first silver fired layer is small, it is possible to suppress the deterioration of the thermoelectric conversion element due to the gas of the pores.
  • the first electrode portion is provided with the first aluminum layer made of aluminum or aluminum alloy which is a relatively soft metal, the metal is compared to the case where a substrate in which silver or copper is joined to the insulating layer is used. It is possible to suppress the damage of the insulating layer due to the thermal expansion difference between the first and second insulating layers.
  • the bonding temperature (baking temperature) can be set to a relatively low temperature condition, and the deterioration of the thermoelectric conversion element during bonding can be suppressed.
  • the first silver baked layer itself is made of silver, it can be stably operated even at an operating temperature of about 500.degree.
  • the first silver fired layer may have a thickness of 20 ⁇ m or more.
  • the thickness of the first silver fired layer is formed relatively thick as 20 ⁇ m or more, the conductivity is secured by the first silver fired layer, and electricity between the plurality of thermoelectric conversion elements is obtained. It is possible to keep the resistance low.
  • thermoelectric conversion module the other end side of the thermoelectric conversion element is provided with a second insulating layer and the second electrode portion formed on one surface of the second insulating layer.
  • a second insulating circuit board is disposed, and the second electrode portion is formed on a second aluminum layer made of aluminum or an aluminum alloy, and a surface of the second aluminum layer opposite to the second insulating layer.
  • the second aluminum layer has a thickness in the range of 50 ⁇ m or more and 2000 ⁇ m or less, and the second and third silver fired layers have at least the thermoelectric power layer. In a region in which the conversion element is disposed, the thickness may be 5 ⁇ m or more, and the porosity may be less than 10%.
  • a second insulating circuit board is disposed on the other end side of the thermoelectric conversion element, and the second electrode portion of the second insulating circuit board is also a second aluminum layer made of aluminum or an aluminum alloy, and And a second silver fired layer formed of a fired body of silver formed on the surface opposite to the second insulating layer of the second aluminum layer, and the second aluminum layer has a thickness of 50 ⁇ m to 2000 ⁇ m.
  • the second silver fired layer has a thickness of 5 ⁇ m or more and a porosity of less than 10%, at least in the region where the thermoelectric conversion element is disposed.
  • the fired layer becomes dense, and the thickness of the entire second electrode portion is secured, so that the electric resistance can be reduced.
  • the number of pores in the second silver fired layer is small, the deterioration of the thermoelectric conversion element due to the gas of the pores can be suppressed.
  • the second electrode portion is provided with a second aluminum layer made of aluminum or an aluminum alloy which is a relatively soft metal, the metal is compared to the case where a substrate in which silver or copper is joined to the insulating layer is used. It is possible to suppress the damage of the insulating layer due to the thermal expansion difference between the first and second insulating layers.
  • the bonding temperature (baking temperature) can be set to a relatively low temperature condition, and the deterioration of the thermoelectric conversion element during bonding can be suppressed.
  • the second silver baked layer itself is made of silver, it can be operated stably even at an operating temperature of about 500.degree.
  • the second silver fired layer may have a thickness of 20 ⁇ m or more.
  • the thickness of the second silver fired layer is formed to be relatively large such as 20 ⁇ m or more, the conductivity is ensured by the second silver fired layer, and electricity between the plurality of thermoelectric conversion elements is obtained. It is possible to keep the resistance low.
  • thermoelectric conversion module comprises a plurality of thermoelectric conversion elements, a first electrode portion disposed on one end side of the thermoelectric conversion elements, and a second electrode portion disposed on the other end side. It is a manufacturing method of the thermoelectric conversion module which has a plurality of said thermoelectric conversion elements electrically connected via said 1st electrode part and said 2nd electrode part.
  • the thermoelectric conversion module is a first insulating circuit board including a first insulating layer on one end side of the thermoelectric conversion element, and the first electrode portion formed on one surface of the first insulating layer. It is arranged.
  • Said 1st electrode part is 1st silver baking which consists of the 1st aluminum layer which consists of aluminum or aluminum alloys, and the sintered body of silver formed in the surface on the opposite side to said 1st insulating layer of this 1st aluminum layer And a layer.
  • a silver paste application step of applying a silver paste containing silver to a thickness of more than 5 ⁇ m on one side of the first aluminum layer, and firing the silver paste to form the first aluminum layer A firing step of forming the first electrode portion having the first silver firing layer, a stacking step of stacking the first insulating layer on one end side of the thermoelectric conversion element via the first electrode portion, and And a thermoelectric conversion element bonding step of pressing and heating the conversion element and the first insulating layer in the stacking direction and bonding the thermoelectric conversion elements.
  • thermoelectric conversion element bonding step a glass-containing silver paste is applied at least to the lowermost layer in contact with the first aluminum layer, and in the thermoelectric conversion element bonding step, the pressure load is in the range of 20 MPa to 50 MPa,
  • the heating temperature is set to 300 ° C. or more and 400 ° C. or less.
  • the region where at least the thermoelectric conversion element of the first silver fired layer is disposed has a thickness of 5 ⁇ m or more, and a porosity of less than 10%.
  • the heating load is set to 300 ° C. or more and 400 ° C. or less within the range of 20 MPa to 50 MPa. Therefore, the thickness can be 5 ⁇ m or more and the porosity can be less than 10% in at least the area where the thermoelectric conversion element of the first silver fired layer is disposed. Moreover, since it is set as comparatively low temperature conditions, deterioration of the thermoelectric conversion element at the time of joining (at the time of baking) can be suppressed.
  • the glass-containing silver paste is applied to at least the lowermost layer in contact with the first aluminum layer, it is formed on the surface of the first aluminum layer by the glass component of the glass-containing silver paste.
  • the oxide film can be removed, and the first aluminum layer and the first silver fired layer can be reliably bonded.
  • the method for manufacturing a thermoelectric conversion module according to the present invention may further include a blasting step of blasting the first silver fired layer after the firing step.
  • a blasting step of blasting the first silver fired layer since the blasting step of blasting the first silver fired layer is provided, the electrical resistance between the first silver fired layer and the first aluminum layer is reduced, and the first electrode portion is formed.
  • the conductivity in the above can be improved.
  • the thermoelectric conversion element may be disposed after applying and drying a silver paste on the first electrode portion in the laminating step.
  • the thermoelectric conversion element is disposed, and then the thermoelectric conversion element is joined under the above-described conditions, so The sintered body of the silver paste applied onto the first electrode portion can also be densified to have a porosity of less than 10%.
  • thermoelectric conversion module may further include: a second insulating layer on the other end side of the thermoelectric conversion element; and the second insulating layer on one side of the second insulating layer. And a second insulating circuit substrate having two electrodes, wherein the second electrode is a second aluminum layer made of aluminum or an aluminum alloy, and the second insulating layer of the second aluminum layer. And a second silver fired layer composed of a fired body of silver stacked on the opposite side to the second silver fired layer.
  • a silver paste containing silver is applied with a thickness of 5 ⁇ m or more on one surface of the first aluminum layer and the second aluminum layer, and at least the first aluminum layer and the second Glass-containing silver paste is applied to the lowermost layer in contact with the aluminum layer.
  • the silver paste is fired, and the first electrode portion including the first aluminum layer and the first silver fired layer, and the second electrode layer including the second aluminum layer and the second silver fired layer. 2 Form an electrode part.
  • the first insulating layer is stacked on the one end side of the thermoelectric conversion element via the first electrode portion, and the second insulating portion is stacked on the other end side of the thermoelectric conversion element via the second electrode portion. Stack the insulating layer.
  • thermoelectric conversion element bonding step the first insulating layer, the thermoelectric conversion element, and the second insulating layer are pressurized and heated in the stacking direction, and the first electrode portion, the thermoelectric conversion element, and The thermoelectric conversion element and the second electrode portion are joined.
  • the pressure load is in the range of 20 MPa to 50 MPa
  • the heating temperature is 300 ° C. to 400 ° C.
  • the thickness is at least 5 ⁇ m and at least in the region where the thermoelectric conversion element is disposed.
  • the porosity can be less than 10%.
  • the glass-containing silver paste is applied to at least the lowermost layer in contact with the first aluminum layer and the second aluminum layer, so the first aluminum layer is made of the glass component of the glass-containing silver paste.
  • the oxide film formed on the surface of the second aluminum layer can be removed, and the first aluminum layer and the first silver fired layer, and the second aluminum layer and the second silver fired layer can be assured Can be bonded to
  • the method for manufacturing a thermoelectric conversion module according to the present invention may further include a blasting step of blasting the first silver fired layer and the second silver fired layer after the firing step.
  • a blasting step of blasting the first silver fired layer and the second silver fired layer after the firing step.
  • the thermoelectric conversion element may be disposed after applying and drying a silver paste on the second electrode portion in the laminating step.
  • the thermoelectric conversion element is disposed, and then the thermoelectric conversion element is joined under the above-described conditions, so The sintered body of the silver paste applied on the second electrode portion can also be densified to have a porosity of less than 10%.
  • thermoelectric conversion module having a low electrical resistance in the electrode portion and suppressing deterioration of the thermoelectric conversion element at the time of bonding, and having excellent thermoelectric conversion efficiency, and a method of manufacturing the thermoelectric conversion module.
  • thermoelectric conversion module which is embodiment of this invention. It is a flowchart which shows the manufacturing method of the thermoelectric conversion module which is embodiment of this invention. It is a schematic explanatory drawing of the manufacturing method of the thermoelectric conversion module which is embodiment of this invention. It is a schematic explanatory drawing of the manufacturing method of the thermoelectric conversion module which is embodiment of this invention. It is a schematic explanatory drawing of the thermoelectric conversion module which is other embodiment of this invention.
  • thermoelectric conversion module 10 is arranged on a plurality of columnar thermoelectric conversion elements 11 and one end side (lower side in FIG. 1) of the thermoelectric conversion elements 11 in the length direction.
  • a first heat transfer plate 20 is provided, and a second heat transfer plate 30 disposed on the other end side (upper side in FIG. 1) of the thermoelectric conversion elements 11 in the longitudinal direction.
  • the first electrode portion 25 is formed on the first heat transfer plate 20 disposed on one end side of the thermoelectric conversion element 11, and the first heat transfer plate 20 is disposed on the other end side of the thermoelectric conversion element 11.
  • a second electrode portion 35 is formed on the heat transfer plate 30, and a plurality of columnar thermoelectric conversion elements 11 are electrically connected in series by the first electrode portion 25 and the second electrode portion 35. .
  • the first heat transfer plate 20 includes a first insulating layer 21 and a first electrode portion 25 formed on one surface (upper surface in FIG. 1) of the first insulating layer 21. It consists of In the present embodiment, in the first insulating circuit substrate to be the first heat transfer plate 20, as shown in FIG. 1, the first heat dissipation layer 26 is formed on the other surface (the lower surface in FIG. 1) of the first insulating layer 21. Is formed.
  • the first insulating layer 21 is made of, for example, a highly insulating ceramic material such as aluminum nitride (AlN), silicon nitride (Si 3 N 4 ), alumina (Al 2 O 3 ), or an insulating resin.
  • the first insulating layer 21 is made of aluminum nitride (AlN).
  • the thickness of the first insulating layer 21 made of aluminum nitride is in the range of 100 ⁇ m to 2000 ⁇ m.
  • the first electrode portion 25 is opposite to the first aluminum layer 25a disposed on one surface of the first insulating layer 21 and the first insulating layer 21 of the first aluminum layer 25a. And a first silver fired layer 25b made of a fired body of silver stacked on the side surface.
  • the first electrode portion 25 is formed in a pattern on one surface (upper surface in FIG. 1) of the first insulating layer 21.
  • the thickness of the first aluminum layer 25a is in the range of 50 ⁇ m to 2000 ⁇ m.
  • the first aluminum layer 25 a is formed by bonding a first aluminum plate 45 a to one surface of the first insulating layer 21.
  • the first aluminum plate 45a is made of aluminum having a purity of 99 mass% or more and aluminum having a purity of 99.99 mass% or more.
  • the first silver fired layer 25b is composed of a fired body of silver, and the lowermost layer in contact with one surface of the first aluminum layer 25a is composed of a fired body of a glass-containing silver paste containing a glass component .
  • the entire first silver fired layer 25 b is formed of a fired body of a glass-containing silver paste.
  • the thickness of the first silver fired layer 25 b is 5 ⁇ m or more at least in the region where the thermoelectric conversion element 11 is disposed.
  • the thickness of the first silver fired layer 25 b is preferably 20 ⁇ m or more. By setting the thickness of the first silver fired layer 25 b to 20 ⁇ m or more, the electrical resistance can be reliably reduced. Moreover, it is preferable that the thickness of the 1st silver baking layer 25b is 100 micrometers or less. By setting the thickness of the first silver fired layer 25b to 100 ⁇ m or less, generation of large thermal stress in the thermoelectric conversion element 11 can be suppressed when a cooling thermal cycle is applied, and generation of cracks can be prevented. Become. Therefore, the thickness of the first silver fired layer 25 b is preferably in the range of 20 ⁇ m to 100 ⁇ m. The lower limit of the thickness of the first silver fired layer 25 b is more preferably 30 ⁇ m or more, and the upper limit of the thickness of the first silver fired layer 25 b is more preferably 60 ⁇ m or less.
  • the porosity P is less than 10% at least in the region where the thermoelectric conversion element 11 is disposed.
  • the porosity P of the first silver fired layer 25 b can be calculated as follows. After mechanically polishing the cross section of the first silver fired layer 25b, Ar ion etching (cross section polisher SM-09010 manufactured by Nippon Denshi Co., Ltd.) is performed, and cross section observation is performed using a laser microscope (VKX-200 manufactured by Keyence Inc.) Carried out. The obtained image was binarized, the white portion was Ag, and the black portion was pores. The area of the black part was determined from the binarized image, and the porosity was calculated by the following equation.
  • Porosity P (%) black area (pores) area / observed area of first silver fired layer 21b ⁇ 100
  • the first aluminum layer 25a is made of aluminum or an aluminum alloy, an aluminum oxide film naturally generated in the air is formed on the surface of the first aluminum layer 25a.
  • the lowermost layer of the first silver fired layer 25b is formed of a fired body of a glass-containing silver paste, the aluminum oxide film is removed by the glass component, and the first aluminum layer 25a and the first silver fired layer 25b is firmly joined.
  • the first heat radiation layer 26 is made of aluminum or an aluminum alloy.
  • the first heat dissipation layer 26 is formed by bonding a heat dissipation aluminum plate 46 to the other surface of the first insulating layer 21 as in the first aluminum layer 25 a.
  • the heat dissipation aluminum plate 46 is made of aluminum having a purity of 99 mass% or more and aluminum having a purity of 99.99 mass% or more.
  • the second heat transfer plate 30 includes a second insulating layer 31 and a second electrode portion 35 formed on one surface (a lower surface in FIG. 1) of the second insulating layer 31. It consists of In the present embodiment, in the second insulating circuit substrate to be the second heat transfer plate 30, as shown in FIG. 1, the second heat dissipation layer 36 is formed on the other surface (upper surface in FIG. 1) of the second insulating layer 31. Is formed.
  • the second insulating layer 31 is made of, for example, a highly insulating ceramic material such as aluminum nitride (AlN), silicon nitride (Si 3 N 4 ), alumina (Al 2 O 3 ), or an insulating resin.
  • the second insulating layer 31 is made of aluminum nitride (AlN).
  • the thickness of the second insulating layer 31 made of aluminum nitride is in the range of 100 ⁇ m to 2000 ⁇ m.
  • the second electrode portion 35 is opposite to the second aluminum layer 35 a disposed on one surface of the second insulating layer 31 and the second insulating layer 31 of the second aluminum layer 35 a. And a second silver fired layer 35b formed of a fired body of silver stacked on the side surface.
  • the second electrode portion 35 is formed in a pattern on one surface (the lower surface in FIG. 1) of the second insulating layer 31.
  • the thickness of the second aluminum layer 35a is in the range of 50 ⁇ m to 2000 ⁇ m. As shown in FIG. 3, the second aluminum layer 35 a is formed by bonding the second aluminum plate 55 a to one surface of the second insulating layer 31. In the present embodiment, the second aluminum plate 55a is made of aluminum having a purity of 99 mass% or more and aluminum having a purity of 99.99 mass% or more.
  • the second silver fired layer 35b is composed of a fired body of silver, and the lowermost layer in contact with one surface of the second aluminum layer 35a is composed of a fired body of a glass-containing silver paste containing a glass component .
  • the entire second silver fired layer 35 b is formed of a fired body of a glass-containing silver paste.
  • the thickness of the second silver fired layer 35 b is 5 ⁇ m or more at least in the region where the thermoelectric conversion element 11 is disposed.
  • the thickness of the second silver fired layer 35 b is preferably 20 ⁇ m or more. By setting the thickness of the second silver fired layer 35 b to 20 ⁇ m or more, the electrical resistance can be reliably reduced.
  • the thickness of the second silver fired layer 35 b is preferably 100 ⁇ m or less.
  • the thickness of the first silver fired layer 35b is preferably in the range of 20 ⁇ m to 100 ⁇ m.
  • the lower limit of the thickness of the second silver fired layer 35 b is more preferably 30 ⁇ m or more, and the upper limit of the thickness of the second silver fired layer 35 b is more preferably 60 ⁇ m or less.
  • the porosity P is less than 10% at least in the region where the thermoelectric conversion element 11 is disposed.
  • the porosity P of the second silver fired layer 35 b can be calculated by the same method as that of the first silver fired layer 25 b.
  • the second aluminum layer 35a is made of aluminum or an aluminum alloy, an aluminum oxide film naturally generated in the air is formed on the surface of the second aluminum layer 35a.
  • the lowermost layer of the second silver fired layer 35b is formed of a fired body of the glass-containing silver paste, the aluminum oxide film is removed by the glass component, and the second aluminum layer 35a and the second silver fired layer 35b is firmly joined.
  • the second heat radiation layer 36 is made of aluminum or an aluminum alloy.
  • the second heat dissipation layer 36 is formed by bonding a heat dissipation aluminum plate 56 to the other surface of the second insulating layer 31 as in the second aluminum layer 35 a.
  • the heat dissipation aluminum plate 56 is made of aluminum having a purity of 99 mass% or more and aluminum having a purity of 99.99 mass% or more.
  • the thermoelectric conversion element 11 has an n-type thermoelectric conversion element 11a and a p-type thermoelectric conversion element 11b, and these n-type thermoelectric conversion elements 11a and p-type thermoelectric conversion elements 11b are alternately arranged.
  • Metallized layers (not shown) are respectively formed on one end surface and the other end surface of the thermoelectric conversion element 11.
  • the metallized layer it is possible to use, for example, nickel, silver, cobalt, tungsten, molybdenum or the like, or a non-woven fabric or the like made of these metal fibers.
  • the outermost surface of the metallized layer (the bonding surface with the first electrode portion 25 and the second electrode portion 35) is preferably made of Au or Ag.
  • the n-type thermoelectric conversion element 11a and the p-type thermoelectric conversion element 11b are, for example, sintered bodies of tellurium compound, skutterudite, filled skutterudite, Heusler, half-Heusler, clathrate, silicide, oxide, silicon germanium, etc. It is configured.
  • a material of the n-type thermoelectric conversion element 11 a for example, Bi 2 Te 3 , PbTe, La 3 Te 4 , CoSb 3 , FeVAl, ZrNiSn, Ba 8 Al 16 Si 30 , Mg 2 Si, FeSi 2 , SrTiO 3 , CaMnO 3 , ZnO, SiGe and the like are used.
  • thermoelectric conversion module 10 Next, a method of manufacturing the thermoelectric conversion module 10 according to the above-described embodiment will be described with reference to FIGS. 2 to 4.
  • the first aluminum plate 45 a is joined to one surface of the first insulating layer 21 to form the first aluminum layer 25 a, and the second aluminum layer 25 a is formed on the one surface of the second insulating layer 31.
  • the aluminum plate 55a is joined to form a second aluminum layer 35a.
  • the heat dissipation aluminum plate 46 is joined to the other surface of the first insulation layer 21 to form the first heat dissipation layer 26, and the other side of the second insulation layer 31.
  • the second heat dissipation layer 36 is formed by bonding the heat dissipation aluminum plate 56 to the surface.
  • the bonding method of the first insulating layer 21 and the first aluminum plate 45 a and the heat radiating aluminum plate 46 and the bonding method of the second insulating layer 31 and the second aluminum plate 55 a and the heat radiating aluminum plate 56 are not particularly limited.
  • bonding using Al—Si based brazing material or solid phase diffusion bonding may be applied.
  • bonding may be performed by a transient liquid phase bonding method (TLP) in which an additive element such as Cu, Si or the like is fixed to the bonding surface and the additive element is diffused to melt and solidify.
  • TLP transient liquid phase bonding method
  • the first insulating layer 21, the first aluminum plate 45 a, the aluminum plate 46 for heat dissipation, and the second insulating layer 31 are formed using Al—Si brazing materials 48 and 58. And the second aluminum plate 55a and the heat radiation aluminum plate 56 are joined.
  • a silver paste containing silver is applied to one surface of the first aluminum layer 25a and one surface of the second aluminum layer 35a with a thickness of more than 5 ⁇ m.
  • the application method is not particularly limited, and various means such as screen printing method, offset printing method, photosensitive process and the like can be adopted.
  • a glass-containing silver paste having a glass component is applied to the lowermost layer in contact with at least the first aluminum layer 25a and the second aluminum layer 35a.
  • the application and drying of the paste may be repeated in order to make the application thickness exceed 5 ⁇ m.
  • a glass-containing paste may be applied to the lowermost layer in contact with the first aluminum layer 25a and the second aluminum layer 35a, and thereafter a silver paste containing no glass component may be applied.
  • the thickness of each of the glass-containing silver pastes 45b and 55b exceeds 5 ⁇ m on one side of the first aluminum layer 25a and on one side of the second aluminum layer 35a. It is applied with.
  • coating thickness shall be 7 micrometers or more.
  • the glass-containing silver paste for forming the first silver fired layer 25 b and the second silver fired layer 35 b will be described.
  • the glass-containing silver paste contains silver powder, glass powder, a resin, a solvent, and a dispersant, and the content of a powder component composed of silver powder and glass powder is glass-containing silver paste
  • the total amount is 60% by mass or more and 90% by mass or less, and the remaining portion is a resin, a solvent, or a dispersant.
  • the content of the powder component composed of the silver powder and the glass powder is 85% by mass of the entire glass-containing silver paste.
  • the viscosity of this glass-containing silver paste is adjusted to 10 Pa ⁇ s or more and 500 Pa ⁇ s or less, more preferably 50 Pa ⁇ s or more and 300 Pa ⁇ s or less.
  • the silver powder has a particle diameter of 0.05 ⁇ m or more and 1.0 ⁇ m or less, and in the present embodiment, one having an average particle diameter of 0.8 ⁇ m was used.
  • the glass powder contains, for example, any one or more of lead oxide, zinc oxide, silicon oxide, boron oxide, phosphorus oxide and bismuth oxide.
  • a glass powder consisting of lead oxide, zinc oxide and boron oxide as main components and having an average particle diameter of 0.5 ⁇ m was used.
  • the solvent one having a boiling point of 200 ° C. or higher is suitable, and in the present embodiment, diethylene glycol dibutyl ether is used.
  • the resin is used to adjust the viscosity of the glass-containing silver paste, and a resin that decomposes at 400 ° C. or higher is suitable.
  • ethyl cellulose is used.
  • a dicarboxylic acid-based dispersant is added. You may comprise a glass containing silver paste, without adding a dispersing agent.
  • this glass-containing silver paste a mixed powder obtained by mixing silver powder and glass powder and an organic mixture obtained by mixing a solvent and a resin are premixed together with a dispersant by a mixer, and the obtained preliminary mixture is milled by a roll mill. After mixing while being kneaded, the resulting kneaded product is produced by filtering with a paste filter.
  • the first silver fired layer 25 b and the second silver fired layer 35 b may be subjected to a blast process, as necessary.
  • a blast process for example, in the case where the thickness of the first silver baked layer 25 b and the second silver baked layer 35 b is 5 ⁇ m or more and less than 20 ⁇ m, it is preferable to carry out the blasting step S04.
  • the blasting step S04 is performed, irregularities are formed on the surfaces of the first silver fired layer 25b and the second silver fired layer 35b after the blasting process according to the blast abrasives to be collided.
  • the surface roughness Ra of the first silver fired layer 25 b and the second silver fired layer 35 b after the blast treatment may be 0.35 ⁇ m or more and 1.50 ⁇ m or less.
  • the surface roughness Ra after the blast treatment may be 0.35 ⁇ m or more, between the first silver fired layer 25b and the first aluminum layer 25a, and between the second silver fired layer 35b and the second aluminum layer 35a.
  • the electrical resistance between them can be sufficiently reduced.
  • the thermoelectric conversion element 11 can be joined favorably by setting surface roughness Ra after a blast process to 1.50 micrometers or less.
  • glass particles such as silica with a New Mohs hardness of 2 to 7, ceramic particles, metal particles, resin beads or the like can be used as blast particles.
  • glass particles are used.
  • grains is made into the range of 20 micrometers or more and 150 micrometers or less.
  • the blast pressure is in the range of 0.2 MPa to 0.8 MPa, and the processing time is in the range of 2 seconds to 60 seconds.
  • the thickness of the first silver fired layer 25 b and the second silver fired layer 35 b is less than 5 ⁇ m
  • a part of the first silver fired layer 25 b and the second silver fired layer 35 b is made by the first aluminum layer 25 a and the blast treatment. It is embedded in the 2nd aluminum layer 35a, and bondability falls between the thermoelectric conversion element 11 and the 1st electrode part 25, and the thermoelectric conversion element 11 and the 2nd electrode part 35.
  • a silver paste containing no glass may be applied, dried and fired to make the thicknesses of the first silver fired layer 25b and the second silver fired layer 35b 5 ⁇ m or more.
  • the presence or absence of the implementation of the blasting step S04 is preferably determined on the basis of the following criteria.
  • the first electrical resistance between the two thermoelectric conversion elements 11 connected is 1/10 or less of the electrical resistance of the thermoelectric conversion element 11 itself. It is preferable to constitute the silver fired layer 25 b and the second silver fired layer 35 b. Specifically, the electrical resistance between the two connected thermoelectric conversion elements 11 is preferably in the range of 1 m ⁇ or more and 1 ⁇ or less.
  • the blasting step S04 is performed. There is no need.
  • the blasting step S04 is performed.
  • the conductivity is ensured by the first silver baked layer 25b and the first aluminum layer 25a, and the second silver baked layer 35b and the second aluminum layer 35a.
  • blasting process S04 When blasting process S04 is implemented, when the cooling-heating cycle is loaded with respect to the thermoelectric conversion module 10, there exists a possibility that the effect of blasting process S04 may reduce. For this reason, it is preferable not to carry out the blasting step S04 in applications where a thermal cycle is applied.
  • the first insulating layer 21 is laminated on one end side (lower side in FIG. 4) of the thermoelectric conversion element 11 via the first electrode portion 25 and the other end side (upper side in FIG. 4) of the thermoelectric conversion element 11
  • the second insulating layer 31 is stacked on the second electrode portion 35.
  • thermoelectric conversion element bonding step S06 Next, the first insulating layer 21, the thermoelectric conversion element 11, and the second insulating layer 31 are pressurized and heated in the stacking direction, and the thermoelectric conversion element 11 and the first electrode portion 25, and the thermoelectric conversion element 11 and the first The two electrode parts 35 are joined.
  • the thermoelectric conversion element 11 is bonded to the first electrode unit 25 and the second electrode unit 35 by solid phase diffusion bonding.
  • the thickness is set to 5 ⁇ m or more, and the porosity P is set to less than 10% in a region where at least the thermoelectric conversion element 11 of the first silver fired layer 25 b is disposed.
  • the thickness is set to 5 ⁇ m or more and the porosity P is set to less than 10% in at least the region where the thermoelectric conversion element 11 of the second silver fired layer 35 b is disposed.
  • the pressure load is in the range of 20 MPa to 50 MPa
  • the heating temperature is in the range of 300 ° C. to 400 ° C.
  • the holding time at the above-mentioned heating temperature is 5 minutes or more and 60 minutes or less
  • the atmosphere is a vacuum atmosphere.
  • the pressure load in the thermoelectric conversion element bonding step S06 is less than 20 MPa, the porosity of the first silver fired layer 25b and the second silver fired layer 35b may not be less than 10%.
  • the pressure load in the thermoelectric conversion element bonding step S06 exceeds 50 MPa, there is a possibility that a crack may occur in the thermoelectric conversion element 11 and the first insulating layer 21 and the second insulating layer 31 made of aluminum nitride.
  • the pressure load in the thermoelectric conversion element bonding step S06 is set in the range of 20 MPa or more and 50 MPa or less.
  • thermoelectrical conversion element junction process S06 In order to make porosity P of the 1st silver calcination layer 25b and the 2nd silver calcination layer 35b certainly less than 10%, it is preferred to make the minimum of the pressurization load in thermoelectrical conversion element junction process S06 into 30 or more MPa. On the other hand, to reliably suppress the occurrence of cracks in the first insulating layer 21 and the second insulating layer 31 made of the thermoelectric conversion element 11 or aluminum nitride, the upper limit of the pressing load in the thermoelectric conversion element bonding step S06 is 40 MPa or less It is preferable to
  • thermoelectric conversion element bonding step S06 If the heating temperature in the thermoelectric conversion element bonding step S06 is less than 300 ° C., there is a possibility that the thermoelectric conversion element 11 can not be bonded to the first electrode portion 25 and the second electrode portion 35. On the other hand, when the heating temperature in the thermoelectric conversion element bonding step S06 exceeds 400 ° C., the first aluminum layer 25a and the second aluminum layer 35a are softened and deformed, and the first electrode portion 25 and the first electrode portion 25 formed in a pattern are There is a possibility that the 2 electrode part 35 may short-circuit. For this reason, in the present embodiment, the heating temperature in the thermoelectric conversion element bonding step S06 is set in the range of 300 ° C. or more and 400 ° C. or less.
  • the lower limit of the heating temperature in the thermoelectric conversion element bonding step S06 is preferably 330 ° C. or more.
  • the upper limit of the heating temperature in the thermoelectric conversion element bonding step S06 it is preferable to set the upper limit of the heating temperature in the thermoelectric conversion element bonding step S06 to 370 ° C. or less.
  • thermoelectric conversion module 10 As described above, the thermoelectric conversion module 10 according to the present embodiment is manufactured.
  • the first heat transfer plate 20 side is used as a low temperature portion
  • the second heat transfer plate 30 side is used as a high temperature portion. Conversion with electrical energy is performed.
  • thermoelectric conversion module 10 configured as described above, the first insulating layer 21 and one surface of the first insulating layer 21 are formed on one end side of the thermoelectric conversion element 11.
  • a first insulating circuit board including the first electrode portion 25 is disposed.
  • the first electrode portion 25 is formed of a first aluminum layer 25a made of aluminum or an aluminum alloy, and a sintered body of silver laminated on the surface of the first aluminum layer 25a opposite to the first insulating layer 21. And a silver fired layer 25b.
  • the thickness of the first aluminum layer 25a is in the range of 50 ⁇ m to 2000 ⁇ m.
  • the first silver fired layer 25 b has a thickness of 5 ⁇ m or more and a porosity P of less than 10% at least in a region where the thermoelectric conversion element 11 is disposed. Therefore, the first silver fired layer 25 b becomes dense, and the thickness of the entire first electrode portion 25 is secured, so that the electric resistance can be reduced. In addition, since the number of pores in the first silver fired layer 25 b is small, the deterioration of the thermoelectric conversion element 11 due to the gas of the pores can be suppressed.
  • the first electrode portion 25 is provided with the first aluminum layer 25 a made of aluminum or an aluminum alloy which is a relatively soft metal, when using a substrate in which silver or copper is joined to the first insulating layer 21. In comparison with the above, it is possible to suppress the breakage of the first insulating layer 21 due to the thermal expansion difference between the metal and the first insulating layer 21. Furthermore, since the first silver fired layer 25b is a fired body of silver paste, the bonding temperature (baking temperature) can be set to a relatively low temperature condition, and the deterioration of the thermoelectric conversion element 11 at the time of bonding is suppressed. be able to. Further, since the first silver baked layer 25b itself is made of silver, it can be stably operated even at an operating temperature of about 500.degree.
  • a second insulating layer 31 and a second electrode portion 35 formed on one surface of the second insulating layer 31 are provided on the other end side of the thermoelectric conversion element 11.
  • An insulating circuit board is provided.
  • the second electrode portion 35 is formed of a second aluminum layer 35 a made of aluminum or an aluminum alloy, and a second sintered body of silver stacked on the surface of the second aluminum layer 35 a opposite to the second insulating layer 31.
  • a silver fired layer 35 b The thickness of the second aluminum layer 35 a is in the range of 50 ⁇ m to 2000 ⁇ m.
  • the second silver fired layer 35 b has a thickness of 5 ⁇ m or more and a porosity P of less than 10% at least in a region where the thermoelectric conversion element 11 is disposed. Therefore, the second silver fired layer 35b becomes dense, and the thickness of the entire second electrode portion 35 is secured, so that the electric resistance can be reduced. Further, since the number of pores in the second silver fired layer 35 b is small, the deterioration of the thermoelectric conversion element 11 due to the gas of the pores can be suppressed.
  • the second electrode portion 35 is provided with the second aluminum layer 35 a made of aluminum or an aluminum alloy which is a relatively soft metal, when using a substrate in which silver or copper is joined to the second insulating layer 31 In comparison with the above, it is possible to suppress the breakage of the second insulating layer 31 due to the thermal expansion difference between the metal and the second insulating layer 31. Furthermore, since the second silver fired layer 35b is a fired body of silver paste, the bonding temperature (baking temperature) can be set to a relatively low temperature condition, and the deterioration of the thermoelectric conversion element 11 at the time of bonding is suppressed. be able to. Further, since the second silver baked layer 35b itself is made of silver, it can be stably operated even at an operating temperature of about 500.degree.
  • thermoelectric conversion module 10 when the thicknesses of the first silver fired layer 25 b and the second silver fired layer 35 b are 20 ⁇ m or more, the first silver fired layer 25 b and the second silver fired layer 35 b The conductivity is secured, and the electrical resistance between the plurality of thermoelectric conversion elements 11 can be suppressed to a low level.
  • the heating load is 300 ° C. or more and 400 ° C. or less in the range of 20 MPa to 50 MPa and the heating load in the thermoelectric conversion element bonding step S06.
  • the thickness can be 5 ⁇ m or more, and the porosity P can be less than 10%.
  • it is set as comparatively low temperature conditions, deterioration of the thermoelectric conversion element 11 at the time of joining (at the time of baking) can be suppressed.
  • the first aluminum layer is formed by the glass component of the glass-containing silver paste.
  • the oxide film formed on the surface of the second aluminum layer 35a can be removed, and the first aluminum layer 25a and the first silver fired layer 25b, and the second aluminum layer 35a and the second silver fired layer 35b can be removed. It can be joined reliably.
  • the first silver fired layer 25 b and the second silver fired layer 35 b are used.
  • the blasting step S04 for blasting is performed, the electrical resistance between the first silver fired layer 25b and the first aluminum layer 25a and between the second silver fired layer 35b and the second aluminum layer 35a The conductivity of the first electrode portion 25 and the second electrode portion 35 can be improved.
  • the thickness of the first silver baked layer 25b and the second silver baked layer 35b is 5 ⁇ m or more, the first silver baked layer 25b and the second silver are formed on the first aluminum layer 25a and the second aluminum layer 35a by blasting. A part of the baked layer 35b is not embedded, and the bonding property of the thermoelectric conversion element 11 and the first electrode portion 25 and the thermoelectric conversion element 11 and the second electrode portion 35 is not reduced.
  • the thickness of the first silver fired layer 25 b and the second silver fired layer 35 b is 20 ⁇ m or more, the conductivity is sufficiently ensured in the first silver fired layer 25 b and the second silver fired layer 35 b.
  • the above-mentioned blasting step S04 may not be performed.
  • thermoelectric conversion element 11 is directly stacked on the first electrode portion 25 and the second electrode portion 35 in the stacking step S05 and described as solid phase diffusion bonding, but the present invention is limited thereto
  • the thermoelectric conversion element 11 may be disposed and joined using the silver paste.
  • the first bonding layer 27 is formed between the first electrode portion 25 and the thermoelectric conversion element 11
  • the second bonding layer is formed between the second electrode portion 35 and the thermoelectric conversion element 11. 37 are formed.
  • the porosity of the first bonding layer 27 and the second bonding layer 37 is also less than 10%.
  • the second heat transfer plate 30 is disposed as the second heat transfer plate 30 on the other end side of the thermoelectric conversion element 11 in the present embodiment, the present invention is not limited to this.
  • the second heat transfer plate may be configured by disposing the second electrode portion on the other end side of the thermoelectric conversion element 11 and stacking the insulating substrate and pressing the insulating substrate in the stacking direction.
  • thermoelectric conversion module was produced by the method similar to embodiment mentioned above.
  • a 12 mm pair of PN pairs was used as a thermoelectric conversion element, using a half-Heussler element with a Ni base gold electrode of 3 mm ⁇ 3 mm ⁇ 5 mmt.
  • As the insulating layer aluminum nitride having a thickness of 0.635 mm was used.
  • the first aluminum layer and the second aluminum layer are formed by bonding a foil having a purity of 99.99 mass% and a thickness of 0.25 mm, and the thickness of the first silver fired layer, the thermoelectric conversion element and the first silver fired layer
  • the joining temperature and joining load were as described in Table 1.
  • the bonding atmosphere was as described in Table 1, and the thermoelectric conversion element and the first electrode portion were directly laminated and bonded in the bonding of the thermoelectric conversion element and the first electrode portion.
  • the second silver fired layer was similar to the first silver fired layer, and the second electrode portion was similar to the first electrode portion.
  • thermoelectric conversion module The temperature on the first heat transfer plate side of the thermoelectric conversion module produced was 450 ° C., the temperature on the second heat transfer plate side was 50 ° C., and the electrical resistance (internal resistance) was measured (initial resistance). In addition, the temperature difference was continuously applied to the thermoelectric conversion module, the rate of increase from the initial value of the internal resistance with respect to time elapsed was calculated, and the durability of the thermoelectric conversion module after 24 hours elapsed was evaluated (internal resistance increase rate). As for internal resistance, a variable resistance is installed between the output terminals of the thermoelectric conversion module with the temperature difference as described above, and the resistance is changed to measure the current value and the voltage value. Create a graph with the voltage value on the vertical axis.
  • thermoelectric conversion modules After mechanically polishing the cross section of the first silver baked layer of each of the obtained thermoelectric conversion modules, Ar ion etching (cross section polisher SM-09010 manufactured by Nippon Denshi Co., Ltd.) is performed, and a laser microscope (VKX-200 manufactured by Keyence Corporation) is performed. Cross-sectional observation was performed using. Then, the obtained image was subjected to a binarization treatment, and the white portion was made Ag, and the black portion was made pores. The area of the black part was determined from the binarized image, and the porosity was calculated by the following equation.
  • Comparative Example 1 in which the first silver fired layer was formed such that the thickness of the first silver fired layer was less than 5 ⁇ m, the first silver fired layer and the thermoelectric conversion element could not be joined. It is considered that this is because the first silver baked layer has been embedded in the first aluminum layer.
  • Comparative Example 2 where the heating temperature was low, the porosity was over 10%, so the rate of increase in internal resistance was high.
  • Comparative Example 3 in which the pressing load was less than 20 MPa, the porosity was high and the initial resistance was high. Therefore, the rate of increase in internal resistance was not measured.
  • Comparative Example 4 in which the bonding temperature exceeded 400 ° C., the first aluminum layer was crushed. Therefore, in Comparative Example 4, the porosity and the electrical resistance were not evaluated.
  • thermoelectric conversion module was obtained in which the thickness of the first silver fired layer is 5 ⁇ m or more, the porosity is less than 10%, and the internal resistance increase rate is also low.
  • Example 2 By the same method as in Example 1, the thickness of the first silver fired layer was changed as shown in Table 2, and the presence or absence of the blast treatment was changed to produce various thermoelectric conversion modules.
  • the bonding atmosphere was vacuum
  • the pressure load was 30 MPa
  • the heating temperature was 350 ° C.
  • the porosity of the first silver fired layer was measured in the same manner as in Example 1.
  • the cooling-heat cycle was loaded on the following conditions with respect to the obtained thermoelectric conversion module.
  • the cooling and heating cycle was performed under the atmosphere, giving 50 cycles of 150 ° C. ⁇ 5 minutes ⁇ ⁇ 450 ° C. ⁇ 5 minutes on the high temperature side and fixing the temperature on the low temperature side at 80 ° C.
  • the initial internal resistance and the rate of increase in internal resistance after the thermal cycle load were determined.
  • the evaluation results are shown in Table 2.
  • the internal resistance increase rate after cold thermal cycle load was evaluated as “A” when the increase rate was less than 1%, and “B” when the increase rate was 1% or more.
  • thermoelectric conversion module of Inventive Example 1 When a thermal cycle was loaded on the thermoelectric conversion module of Inventive Example 1, the rate of increase in internal resistance after the thermal cycle exceeded 1%. This is because the thermoelectric conversion module subjected to the blast treatment to the first silver fired layer can suppress the rate of increase in internal resistance low when used under a constant temperature, but high temperature and low temperature are repeated When used under environment, it means that internal resistance will rise.
  • thermoelectric conversion modules of the invention examples 11 to 14 in which the blast treatment was not performed on the first silver fired layer, the increase rate of the internal resistance could be suppressed low even if the cooling thermal cycle was loaded.
  • the thermoelectric conversion module which has not been subjected to blasting to the first silver fired layer is useful in an environment where high and low temperatures are repeated. It was also confirmed that by setting the thickness of the silver fired layer in the range of 20 ⁇ m to 100 ⁇ m, the initial internal resistance can be lowered, and the rate of increase in the internal resistance after cooling and heating cycles can be suppressed low.
  • the present invention provides a thermoelectric conversion module which has low electric resistance in the electrode portion and suppresses deterioration of the thermoelectric conversion element at the time of bonding, and which has excellent thermoelectric conversion efficiency, and a method of manufacturing the thermoelectric conversion module. can do.

Abstract

This thermoelectric conversion module 10 comprises a thermoelectric conversion element 11; and a first insulating circuit board, which is provided with a first insulating layer 21 and a first electrode part 25 that is formed on one surface of the first insulating layer 21, is arranged at one end of the thermoelectric conversion element 11. The first electrode part 25 comprises: a first aluminum layer 25a that is formed from aluminum or an aluminum alloy; and a first calcined silver layer 25b that is formed on a surface of the first aluminum layer 25a from a calcined body of silver, said surface being on the reverse side of the first insulating layer 21-side surface. The first aluminum layer 25a is configured to have a thickness within the range of from 50 μm to 2,000 μm (inclusive). The first calcined silver layer 25b is configured to have a thickness of 5 μm or more and a porosity of less than 10% at least in a region where the thermoelectric conversion element 11 is arranged.

Description

熱電変換モジュール、及び、熱電変換モジュールの製造方法Thermoelectric conversion module and method of manufacturing thermoelectric conversion module
この発明は、複数の熱電変換素子が電気的に接続してなる熱電変換モジュール、及び、熱電変換モジュールの製造方法に関するものである。
 本願は、2017年7月5日に日本に出願された特願2017-132050号および2018年6月22日に日本に出願された特願2018-118764について優先権を主張し、その内容をここに援用する。
The present invention relates to a thermoelectric conversion module in which a plurality of thermoelectric conversion elements are electrically connected, and a method of manufacturing the thermoelectric conversion module.
Priority is claimed on Japanese Patent Application No. 2017-132050 filed on Jul. 5, 2017, and Japanese Patent Application No. 2012-118764 filed on June 22, 2018, the contents of which are incorporated herein by reference. In the
上述の熱電変換素子は、ゼーベック効果あるいはペルティエ効果によって、熱エネルギーと電気エネルギーとを相互に変換可能な電子素子である。
ゼーベック効果は、熱電変換素子の両端に温度差を生じさせると起電力が発生する現象であり、熱エネルギーを電気エネルギーに変換する。ゼーベック効果により発生する起電力は、熱電変換素子の特性によって決まる。近年では、この効果を利用した熱電発電の開発が盛んである。
ペルティエ効果は、熱電変換素子の両端に電極等を形成して電極間で電位差を生じさせると、熱電変換素子の両端に温度差が生じる現象であり、電気エネルギーを熱エネルギーに変換する。このような効果をもつ素子は特にペルティエ素子と呼ばれ、精密機器や小型冷蔵庫などの冷却や温度制御に利用されている。
The above-described thermoelectric conversion element is an electronic element capable of mutually converting thermal energy and electrical energy by the Seebeck effect or Peltier effect.
The Seebeck effect is a phenomenon in which an electromotive force is generated when a temperature difference is generated between both ends of a thermoelectric conversion element, and thermal energy is converted into electrical energy. The electromotive force generated by the Seebeck effect is determined by the characteristics of the thermoelectric conversion element. In recent years, development of thermoelectric generation utilizing this effect has been brisk.
The Peltier effect is a phenomenon in which when an electrode or the like is formed at both ends of a thermoelectric conversion element to generate a potential difference between the electrodes, a temperature difference occurs at both ends of the thermoelectric conversion element, and electrical energy is converted to thermal energy. An element having such an effect is particularly called a Peltier element, and is used for cooling and temperature control of precision instruments, small refrigerators and the like.
上述の熱電変換素子を用いた熱電変換モジュールとしては、例えば、n型熱電変換素子とp型熱電変換素子とを交互に直列接続した構造のものが提案されている。
このような熱電変換モジュールにおいては、複数の熱電変換素子の一端側及び他端側にそれぞれ伝熱板が配置され、この伝熱板に配設された電極部によって熱電変換素子同士が直列接続された構造とされている。上述の伝熱板として、絶縁層と電極部とを備えた絶縁回路基板を用いることがある。
As a thermoelectric conversion module using the above-mentioned thermoelectric conversion element, for example, one having a structure in which an n-type thermoelectric conversion element and a p-type thermoelectric conversion element are alternately connected in series is proposed.
In such a thermoelectric conversion module, heat transfer plates are disposed respectively on one end side and the other end side of a plurality of thermoelectric conversion elements, and the thermoelectric conversion elements are connected in series by the electrode portions disposed on the heat transfer plate. Structure. As the above-mentioned heat transfer plate, an insulating circuit board provided with an insulating layer and an electrode part may be used.
熱電変換素子の一端側に配設された伝熱板と熱電変換素子の他端側に配設された伝熱板との間で温度差を生じさせることで、ゼーベック効果によって、電気エネルギーを発生させることができる。あるいは、熱電変換素子に電流を流すことで、ペルティエ効果によって、熱電変換素子の一端側に配設された伝熱板と熱電変換素子の他端側に配設された伝熱板との間に温度差を生じさせることが可能となる。 The Seebeck effect generates electrical energy by causing a temperature difference between the heat transfer plate disposed at one end of the thermoelectric conversion element and the heat transfer plate disposed at the other end of the thermoelectric conversion element. It can be done. Alternatively, by supplying a current to the thermoelectric conversion element, between the heat transfer plate disposed at one end of the thermoelectric conversion element and the heat transfer plate disposed at the other end of the thermoelectric conversion element by the Peltier effect. It is possible to generate a temperature difference.
上述の熱電変換モジュールにおいては、熱電変換効率を向上させるために、熱電変換素子と接続された電極部における電気抵抗を低く抑える必要がある。
このため、従来、熱電変換素子と電極部とを接合する際には、導電性に特に優れた銀ペースト等が用いられている。また、電極部自体を銀ペーストで形成し、熱電変換素子と接合することもある。
In the above-described thermoelectric conversion module, in order to improve the thermoelectric conversion efficiency, it is necessary to suppress the electrical resistance in the electrode portion connected to the thermoelectric conversion element to a low level.
For this reason, conventionally, when joining a thermoelectric conversion element and an electrode part, the silver paste etc. which were especially excellent in electroconductivity are used. Moreover, an electrode part itself may be formed with a silver paste, and it may join with a thermoelectric conversion element.
しかしながら、銀ペーストの焼成体は、気孔が比較的多いことから、電気抵抗を十分に低く抑えることができない。また、気孔内に存在するガスによって熱電変換素子が変質してしまうおそれがあった。
銀ペーストの焼成体を緻密化して気孔を少なくするためには、銀の融点(960℃)以上に加熱して液相焼結することが考えられるが、このような高温条件では接合時に熱電変換素子が熱で劣化してしまうおそれがあった。
However, since the sintered body of silver paste has a relatively large number of pores, the electrical resistance can not be suppressed sufficiently low. Moreover, there existed a possibility that the thermoelectric conversion element might deteriorate by the gas which exists in the pore.
In order to reduce the number of pores by densifying the sintered body of silver paste, it is conceivable to perform liquid phase sintering by heating to the melting point (960 ° C.) of silver or more. Under such high temperature conditions, thermoelectric conversion is performed during bonding. The element may be degraded by heat.
例えば特許文献1においては、銀よりも融点の低い銀ロウを用いて電極部を構成し、熱電変換素子を接合する方法が提案されている。
特許文献2においては、気孔中のガスによる熱電変換素子の劣化を抑制するために、接合層の外周面全体にガラス溶液を塗布して空気中で乾燥することによって緻密質被膜を形成する方法が提案されている。
For example, Patent Document 1 proposes a method of joining a thermoelectric conversion element by forming an electrode portion using a silver solder having a melting point lower than that of silver.
In patent document 2, in order to suppress deterioration of the thermoelectric conversion element by the gas in a pore, the method of forming a dense film by apply | coating a glass solution to the whole outer peripheral surface of a joining layer and drying in air is performed. Proposed.
特開2013-197265号公報JP, 2013-197265, A 特開2012-231025号公報JP 2012-231025 A
特許文献1に記載された方法においては、銀よりも融点の低い銀ロウを用いているが、熱電変換モジュールの作動温度でも銀ロウが溶融しないように、使用する銀ロウの融点は例えば750~800℃が好ましいとされている(特許文献1段落番号0023参照)。このような比較的高温条件で熱電変換素子を接合した場合には、やはり、接合時の熱によって熱電変換素子の特性が劣化してしまうおそれがあった。 In the method described in Patent Document 1, silver solder having a melting point lower than that of silver is used, but the melting point of the silver solder used is, for example, 750 to prevent melting of the silver solder even at the operating temperature of the thermoelectric conversion module. 800 ° C. is preferred (see Patent Document 1, paragraph 0023). When the thermoelectric conversion elements are joined under such relatively high temperature conditions, there is also a possibility that the characteristics of the thermoelectric conversion elements may be deteriorated by the heat at the time of joining.
 また、特許文献2に記載された方法においては、接合層の内部には気孔が存在しているため、熱電変換素子と接続された電極部における電気抵抗を低く抑えることができず、熱電変換モジュールの熱電変換効率を向上することはできなかった。 Further, in the method described in Patent Document 2, since the pores are present inside the bonding layer, the electric resistance in the electrode portion connected to the thermoelectric conversion element can not be suppressed low, and thus the thermoelectric conversion module Could not improve the thermoelectric conversion efficiency.
 この発明は、前述した事情に鑑みてなされたものであって、電極部における電気抵抗が低く、かつ、接合時における熱電変換素子の劣化が抑えられており、熱電変換効率に優れた熱電変換モジュール、及び、熱電変換モジュールの製造方法を提供することを目的とする。 This invention is made in view of the situation mentioned above, and the electric resistance in an electrode part is low, and degradation of the thermoelectric conversion element at the time of joining is suppressed, and the thermoelectric conversion module excellent in the thermoelectric conversion efficiency An object of the present invention is to provide a method of manufacturing a thermoelectric conversion module.
 上記課題を解決するために、本発明の熱電変換モジュールは、複数の熱電変換素子と、これら熱電変換素子の一端側に配設された第1電極部及び他端側に配設された第2電極部と、を有し、前記第1電極部及び前記第2電極部を介して複数の前記熱電変換素子が電気的に接続してなる熱電変換モジュールである。前記熱電変換素子の一端側には、第1絶縁層と、この第1絶縁層の一方の面に形成された前記第1電極部と、を備えた第1絶縁回路基板が配設されている。前記第1電極部は、アルミニウム又はアルミニウム合金からなる第1アルミニウム層と、この第1アルミニウム層の前記第1絶縁層とは反対側の面に形成された銀の焼成体からなる第1銀焼成層と、を有し、前記第1アルミニウム層は、厚さが50μm以上2000μm以下の範囲内とされ、前第1銀焼成層は、少なくとも前記熱電変換素子が配置された領域において、厚さが5μm以上とされ、気孔率が10%未満とされている。 In order to solve the above problems, the thermoelectric conversion module of the present invention comprises a plurality of thermoelectric conversion elements, a first electrode portion disposed on one end side of the thermoelectric conversion elements, and a second on the other end side. It is an thermoelectric conversion module which has an electrode part and a plurality of thermoelectric conversion elements are electrically connected via the 1st electrode part and the 2nd electrode part. A first insulating circuit board including a first insulating layer and the first electrode portion formed on one surface of the first insulating layer is disposed on one end side of the thermoelectric conversion element. . Said 1st electrode part is 1st silver baking which consists of the 1st aluminum layer which consists of aluminum or aluminum alloys, and the sintered body of silver formed in the surface on the opposite side to said 1st insulating layer of this 1st aluminum layer And the first aluminum layer has a thickness in the range of 50 μm to 2000 μm, and the first first silver fired layer has a thickness at least in the region where the thermoelectric conversion element is disposed. The porosity is 5% or more and the porosity is less than 10%.
 本発明の熱電変換モジュールによれば、前記熱電変換素子の一端側には、第1絶縁層と、この第1絶縁層の一方の面に形成された前記第1電極部と、を備えた第1絶縁回路基板が配設されており、前記第1電極部は、アルミニウム又はアルミニウム合金からなる第1アルミニウム層と、この第1アルミニウム層の前記第1絶縁層とは反対側の面に形成された銀の焼成体からなる第1銀焼成層と、を有し、前記第1アルミニウム層は、厚さが50μm以上2000μm以下の範囲内とされ、前記第1銀焼成層は、少なくとも前記熱電変換素子が配置された領域において、厚さが5μm以上とされ、気孔率が10%未満とされているので、第1銀焼成層が緻密となり、かつ、第1電極部全体の厚さが確保され、電気抵抗を低くすることができる。また、第1銀焼成層において気孔が少ないため、気孔のガスによる熱電変換素子の劣化を抑えることができる。 According to the thermoelectric conversion module of the present invention, the first insulating layer and the first electrode portion formed on one surface of the first insulating layer are provided on one end side of the thermoelectric conversion element. An insulating circuit substrate is disposed, and the first electrode portion is formed on a first aluminum layer made of aluminum or an aluminum alloy, and a surface of the first aluminum layer opposite to the first insulating layer. And the first aluminum layer has a thickness in the range of 50 μm to 2000 μm, and the first silver fired layer has at least the thermoelectric conversion. In the region where the element is disposed, the thickness is 5 μm or more and the porosity is less than 10%, so that the first silver fired layer becomes dense and the thickness of the entire first electrode portion is secured. , Can reduce the electrical resistance. In addition, since the number of pores in the first silver fired layer is small, it is possible to suppress the deterioration of the thermoelectric conversion element due to the gas of the pores.
また、第1電極部には、比較的軟らかい金属であるアルミニウム又はアルミニウム合金からなる第1アルミニウム層が設けられているので、銀や銅を絶縁層に接合した基板を用いる場合と比較し、金属と絶縁層との熱膨張差による絶縁層の破損を抑制することが可能となる。
さらに、前記第1銀焼成層は、銀ペーストの焼成体とされているので、接合温度(焼成温度)を比較的低温条件とすることができ、接合時の熱電変換素子の劣化を抑制することができる。また、前記第1銀焼成層自体は、銀で構成されているので、500℃程度の作動温度でも安定して作動させることができる。
Further, since the first electrode portion is provided with the first aluminum layer made of aluminum or aluminum alloy which is a relatively soft metal, the metal is compared to the case where a substrate in which silver or copper is joined to the insulating layer is used. It is possible to suppress the damage of the insulating layer due to the thermal expansion difference between the first and second insulating layers.
Furthermore, since the first silver fired layer is a fired body of silver paste, the bonding temperature (baking temperature) can be set to a relatively low temperature condition, and the deterioration of the thermoelectric conversion element during bonding can be suppressed. Can. Further, since the first silver baked layer itself is made of silver, it can be stably operated even at an operating temperature of about 500.degree.
本発明の熱電変換モジュールにおいては、前記第1銀焼成層の厚さが20μm以上とされている構成としてもよい。
この場合、前記第1銀焼成層の厚さが20μm以上と比較的厚く形成されているので、この第1銀焼成層によって導電性が確保されることになり、複数の熱電変換素子間の電気抵抗を低く抑えることが可能となる。
In the thermoelectric conversion module of the present invention, the first silver fired layer may have a thickness of 20 μm or more.
In this case, since the thickness of the first silver fired layer is formed relatively thick as 20 μm or more, the conductivity is secured by the first silver fired layer, and electricity between the plurality of thermoelectric conversion elements is obtained. It is possible to keep the resistance low.
また、本発明の熱電変換モジュールにおいては、前記熱電変換素子の他端側に、第2絶縁層と、この第2絶縁層の一方の面に形成された前記第2電極部と、を備えた第2絶縁回路基板が配設されており、前記第2電極部は、アルミニウム又はアルミニウム合金からなる第2アルミニウム層と、この第2アルミニウム層の前記第2絶縁層とは反対側の面に形成された銀の焼成体からなる第2銀焼成層と、を有し、前記第2アルミニウム層は、厚さが50μm以上2000μm以下の範囲内とされ、前第2銀焼成層は、少なくとも前記熱電変換素子が配置された領域において、厚さが5μm以上とされ、気孔率が10%未満とされた構成としてもよい。 Further, in the thermoelectric conversion module according to the present invention, the other end side of the thermoelectric conversion element is provided with a second insulating layer and the second electrode portion formed on one surface of the second insulating layer. A second insulating circuit board is disposed, and the second electrode portion is formed on a second aluminum layer made of aluminum or an aluminum alloy, and a surface of the second aluminum layer opposite to the second insulating layer. And the second aluminum layer has a thickness in the range of 50 μm or more and 2000 μm or less, and the second and third silver fired layers have at least the thermoelectric power layer. In a region in which the conversion element is disposed, the thickness may be 5 μm or more, and the porosity may be less than 10%.
この場合、前記熱電変換素子の他端側に第2絶縁回路基板が配設され、この第2絶縁回路基板の前記第2電極部についても、アルミニウム又はアルミニウム合金からなる第2アルミニウム層と、この第2アルミニウム層の前記第2絶縁層とは反対側の面に形成された銀の焼成体からなる第2銀焼成層と、を有し、前記第2アルミニウム層は、厚さが50μm以上2000μm以下の範囲内とされ、前第2銀焼成層は、少なくとも前記熱電変換素子が配置された領域において、厚さが5μm以上とされ、気孔率が10%未満とされているので、第2銀焼成層が緻密となり、かつ、第2電極部全体の厚さが確保され、電気抵抗を低くすることができる。また、第2銀焼成層において気孔が少ないため、気孔のガスによる熱電変換素子の劣化を抑えることができる。 In this case, a second insulating circuit board is disposed on the other end side of the thermoelectric conversion element, and the second electrode portion of the second insulating circuit board is also a second aluminum layer made of aluminum or an aluminum alloy, and And a second silver fired layer formed of a fired body of silver formed on the surface opposite to the second insulating layer of the second aluminum layer, and the second aluminum layer has a thickness of 50 μm to 2000 μm. The second silver fired layer has a thickness of 5 μm or more and a porosity of less than 10%, at least in the region where the thermoelectric conversion element is disposed. The fired layer becomes dense, and the thickness of the entire second electrode portion is secured, so that the electric resistance can be reduced. In addition, since the number of pores in the second silver fired layer is small, the deterioration of the thermoelectric conversion element due to the gas of the pores can be suppressed.
また、第2電極部には、比較的軟らかい金属であるアルミニウム又はアルミニウム合金からなる第2アルミニウム層が設けられているので、銀や銅を絶縁層に接合した基板を用いる場合と比較し、金属と絶縁層との熱膨張差による絶縁層の破損を抑制することが可能となる。
さらに、前記第2銀焼成層は、銀ペーストの焼成体とされているので、接合温度(焼成温度)を比較的低温条件とすることができ、接合時の熱電変換素子の劣化を抑制することができる。また、前記第2銀焼成層自体は、銀で構成されているので、500℃程度の作動温度でも、安定して作動させることができる。
Further, since the second electrode portion is provided with a second aluminum layer made of aluminum or an aluminum alloy which is a relatively soft metal, the metal is compared to the case where a substrate in which silver or copper is joined to the insulating layer is used. It is possible to suppress the damage of the insulating layer due to the thermal expansion difference between the first and second insulating layers.
Furthermore, since the second silver fired layer is a fired body of silver paste, the bonding temperature (baking temperature) can be set to a relatively low temperature condition, and the deterioration of the thermoelectric conversion element during bonding can be suppressed. Can. Further, since the second silver baked layer itself is made of silver, it can be operated stably even at an operating temperature of about 500.degree.
さらに、本発明の熱電変換モジュールにおいては、前記第2銀焼成層の厚さが20μm以上とされている構成としてもよい。
この場合、前記第2銀焼成層の厚さが20μm以上と比較的厚く形成されているので、この第2銀焼成層によって導電性が確保されることになり、複数の熱電変換素子間の電気抵抗を低く抑えることが可能となる。
Furthermore, in the thermoelectric conversion module of the present invention, the second silver fired layer may have a thickness of 20 μm or more.
In this case, since the thickness of the second silver fired layer is formed to be relatively large such as 20 μm or more, the conductivity is ensured by the second silver fired layer, and electricity between the plurality of thermoelectric conversion elements is obtained. It is possible to keep the resistance low.
本発明の熱電変換モジュールの製造方法は、複数の熱電変換素子と、これら熱電変換素子の一端側に配設された第1電極部及び他端側に配設された第2電極部と、を有し、前記第1電極部及び前記第2電極部を介して複数の前記熱電変換素子が電気的に接続してなる熱電変換モジュールの製造方法である。前記熱電変換モジュールは、前記熱電変換素子の一端側に、第1絶縁層と、この第1絶縁層の一方の面に形成された前記第1電極部と、を備えた第1絶縁回路基板が配設されている。前記第1電極部は、アルミニウム又はアルミニウム合金からなる第1アルミニウム層と、この第1アルミニウム層の前記第1絶縁層とは反対側の面に形成された銀の焼成体からなる第1銀焼成層と、を有している。この方法は、前記第1アルミニウム層の一方の面側に、銀を含む銀ペーストを5μmを超える厚さで塗布する銀ペースト塗布工程と、前記銀ペーストを焼成して、前記第1アルミニウム層と前記第1銀焼成層を有する前記第1電極部を形成する焼成工程と、前記熱電変換素子の一端側に前記第1電極部を介して前記第1絶縁層を積層する積層工程と、前記熱電変換素子と前記第1絶縁層とを積層方向に加圧するとともに加熱して、前記熱電変換素子を接合する熱電変換素子接合工程と、を有する。前記銀ペースト塗布工程においては、少なくとも前記第1アルミニウム層と接する最下層には、ガラス含有銀ペーストを塗布し、前記熱電変換素子接合工程においては、加圧荷重が20MPa以上50MPa以下の範囲内、加熱温度が300℃以上400℃以下とされている。前記第1銀焼成層の少なくとも前記熱電変換素子が配置された領域は、厚さが5μm以上とされ、気孔率が10%未満とされることを特徴としている。 The method for manufacturing a thermoelectric conversion module according to the present invention comprises a plurality of thermoelectric conversion elements, a first electrode portion disposed on one end side of the thermoelectric conversion elements, and a second electrode portion disposed on the other end side. It is a manufacturing method of the thermoelectric conversion module which has a plurality of said thermoelectric conversion elements electrically connected via said 1st electrode part and said 2nd electrode part. The thermoelectric conversion module is a first insulating circuit board including a first insulating layer on one end side of the thermoelectric conversion element, and the first electrode portion formed on one surface of the first insulating layer. It is arranged. Said 1st electrode part is 1st silver baking which consists of the 1st aluminum layer which consists of aluminum or aluminum alloys, and the sintered body of silver formed in the surface on the opposite side to said 1st insulating layer of this 1st aluminum layer And a layer. In this method, a silver paste application step of applying a silver paste containing silver to a thickness of more than 5 μm on one side of the first aluminum layer, and firing the silver paste to form the first aluminum layer A firing step of forming the first electrode portion having the first silver firing layer, a stacking step of stacking the first insulating layer on one end side of the thermoelectric conversion element via the first electrode portion, and And a thermoelectric conversion element bonding step of pressing and heating the conversion element and the first insulating layer in the stacking direction and bonding the thermoelectric conversion elements. In the silver paste application step, a glass-containing silver paste is applied at least to the lowermost layer in contact with the first aluminum layer, and in the thermoelectric conversion element bonding step, the pressure load is in the range of 20 MPa to 50 MPa, The heating temperature is set to 300 ° C. or more and 400 ° C. or less. The region where at least the thermoelectric conversion element of the first silver fired layer is disposed has a thickness of 5 μm or more, and a porosity of less than 10%.
このような構成とされた熱電変換モジュールの製造方法によれば、前記熱電変換素子接合工程において、加圧荷重が20MPa以上50MPa以下の範囲内、加熱温度が300℃以上400℃以下とされているので、前記第1銀焼成層の少なくとも前記熱電変換素子が配置された領域において、その厚さを5μm以上、かつ、気孔率を10%未満とすることができる。また、比較的低温条件とされているので、接合時(焼成時)における熱電変換素子の劣化を抑制することができる。
また、前記銀ペースト塗布工程において、少なくとも前記第1アルミニウム層と接する最下層にはガラス含有銀ペーストを塗布しているので、ガラス含有銀ペーストのガラス成分によって前記第1アルミニウム層の表面に形成された酸化被膜を除去することができ、前記第1アルミニウム層と前記第1銀焼成層とを確実に接合することができる。
According to the method of manufacturing a thermoelectric conversion module having such a configuration, in the step of bonding the thermoelectric conversion element, the heating load is set to 300 ° C. or more and 400 ° C. or less within the range of 20 MPa to 50 MPa. Therefore, the thickness can be 5 μm or more and the porosity can be less than 10% in at least the area where the thermoelectric conversion element of the first silver fired layer is disposed. Moreover, since it is set as comparatively low temperature conditions, deterioration of the thermoelectric conversion element at the time of joining (at the time of baking) can be suppressed.
Further, in the silver paste application step, since the glass-containing silver paste is applied to at least the lowermost layer in contact with the first aluminum layer, it is formed on the surface of the first aluminum layer by the glass component of the glass-containing silver paste. The oxide film can be removed, and the first aluminum layer and the first silver fired layer can be reliably bonded.
本発明の熱電変換モジュールの製造方法においては、前記焼成工程後に、前記第1銀焼成層に対してブラスト処理を行うブラスト工程を備えていてもよい。
この場合、前記第1銀焼成層に対してブラスト処理を行うブラスト工程を備えているので、前記第1銀焼成層と前記第1アルミニウム層との間の電気抵抗が低下し、第1電極部における導電性を向上させることができる。
The method for manufacturing a thermoelectric conversion module according to the present invention may further include a blasting step of blasting the first silver fired layer after the firing step.
In this case, since the blasting step of blasting the first silver fired layer is provided, the electrical resistance between the first silver fired layer and the first aluminum layer is reduced, and the first electrode portion is formed. The conductivity in the above can be improved.
また、本発明の熱電変換モジュールの製造方法においては、前記積層工程では、前記第1電極部の上に銀ペーストを塗布して乾燥させた後に、前記熱電変換素子を配設する構成としてもよい。
この場合、前記第1電極部の上に銀ペーストを塗布して乾燥させた後に、前記熱電変換素子を配設しており、その後、上述の条件で熱電変換素子を接合しているので、前記第1電極部の上に塗布した銀ペーストの焼成体も緻密化し、気孔率を10%未満とすることができる。
In the method of manufacturing a thermoelectric conversion module according to the present invention, the thermoelectric conversion element may be disposed after applying and drying a silver paste on the first electrode portion in the laminating step. .
In this case, after the silver paste is applied and dried on the first electrode portion, the thermoelectric conversion element is disposed, and then the thermoelectric conversion element is joined under the above-described conditions, so The sintered body of the silver paste applied onto the first electrode portion can also be densified to have a porosity of less than 10%.
さらに、本発明の熱電変換モジュールの製造方法において、前記熱電変換モジュールは、前記熱電変換素子の他端側に、第2絶縁層と、この第2絶縁層の一方の面に形成された前記第2電極部と、を備えた第2絶縁回路基板が配設されており、前記第2電極部は、アルミニウム又はアルミニウム合金からなる第2アルミニウム層と、この第2アルミニウム層の前記第2絶縁層とは反対側の面に積層された銀の焼成体からなる第2銀焼成層と、を有する。前記銀ペースト塗布工程では、前記第1アルミニウム層及び前記第2アルミニウム層の一方の面に、銀を含む銀ペーストを5μm以上の厚さで塗布するともに、少なくとも前記第1アルミニウム層及び前記第2アルミニウム層と接する最下層には、ガラス含有銀ペーストを塗布する。前記焼成工程では、前記銀ペーストを焼成し、前記第1アルミニウム層と前記第1銀焼成層を有する前記第1電極部、及び、前記第2アルミニウム層と前記第2銀焼成層を有する前記第2電極部を形成する。前記積層工程では、前記熱電変換素子の一端側に前記第1電極部を介して前記第1絶縁層を積層するとともに前記熱電変換素子の他端側に前記第2電極部を介して前記第2絶縁層を積層する。前記熱電変換素子接合工程では、前記第1絶縁層と前記熱電変換素子と前記第2絶縁層を、積層方向に加圧するとともに加熱して、前記第1電極部と前記熱電変換素子、及び、前記熱電変換素子と前記第2電極部を接合する。前記熱電変換素子接合工程においては、加圧荷重が20MPa以上50MPa以下の範囲内、加熱温度が300℃以上400℃以下とされており、前記第1銀焼成層及び前記第2銀焼成層の少なくとも前記熱電変換素子が配置された領域において、厚さが5μm以上とされ、気孔率が10%未満とされてもよい。 Furthermore, in the method of manufacturing a thermoelectric conversion module according to the present invention, the thermoelectric conversion module may further include: a second insulating layer on the other end side of the thermoelectric conversion element; and the second insulating layer on one side of the second insulating layer. And a second insulating circuit substrate having two electrodes, wherein the second electrode is a second aluminum layer made of aluminum or an aluminum alloy, and the second insulating layer of the second aluminum layer. And a second silver fired layer composed of a fired body of silver stacked on the opposite side to the second silver fired layer. In the silver paste application step, a silver paste containing silver is applied with a thickness of 5 μm or more on one surface of the first aluminum layer and the second aluminum layer, and at least the first aluminum layer and the second Glass-containing silver paste is applied to the lowermost layer in contact with the aluminum layer. In the firing step, the silver paste is fired, and the first electrode portion including the first aluminum layer and the first silver fired layer, and the second electrode layer including the second aluminum layer and the second silver fired layer. 2 Form an electrode part. In the stacking step, the first insulating layer is stacked on the one end side of the thermoelectric conversion element via the first electrode portion, and the second insulating portion is stacked on the other end side of the thermoelectric conversion element via the second electrode portion. Stack the insulating layer. In the thermoelectric conversion element bonding step, the first insulating layer, the thermoelectric conversion element, and the second insulating layer are pressurized and heated in the stacking direction, and the first electrode portion, the thermoelectric conversion element, and The thermoelectric conversion element and the second electrode portion are joined. In the thermoelectric conversion element bonding step, the pressure load is in the range of 20 MPa to 50 MPa, and the heating temperature is 300 ° C. to 400 ° C., and at least at least the first silver baking layer and the second silver baking layer In the area | region where the said thermoelectric conversion element is arrange | positioned, thickness may be 5 micrometers or more and porosity may be made less than 10%.
この場合、前記熱電変換素子の他端側に配設される第2電極部の第2銀焼成層においても、少なくとも前記熱電変換素子が配置された領域において、その厚さを5μm以上、かつ、気孔率を10%未満とすることができる。また、比較的低温条件とされているので、接合時(焼成時)における熱電変換素子の劣化を抑制することができる。
また、前記銀ペースト塗布工程において、少なくとも前記第1アルミニウム層及び第2アルミニウム層と接する最下層にはガラス含有銀ペーストを塗布しているので、ガラス含有銀ペーストのガラス成分によって前記第1アルミニウム層及び前記第2アルミニウム層の表面に形成された酸化被膜を除去することができ、前記第1アルミニウム層と前記第1銀焼成層、及び、前記第2アルミニウム層と前記第2銀焼成層を確実に接合することができる。
In this case, also in the second silver fired layer of the second electrode portion disposed on the other end side of the thermoelectric conversion element, the thickness is at least 5 μm and at least in the region where the thermoelectric conversion element is disposed. The porosity can be less than 10%. Moreover, since it is set as comparatively low temperature conditions, deterioration of the thermoelectric conversion element at the time of joining (at the time of baking) can be suppressed.
Furthermore, in the silver paste application step, the glass-containing silver paste is applied to at least the lowermost layer in contact with the first aluminum layer and the second aluminum layer, so the first aluminum layer is made of the glass component of the glass-containing silver paste. And the oxide film formed on the surface of the second aluminum layer can be removed, and the first aluminum layer and the first silver fired layer, and the second aluminum layer and the second silver fired layer can be assured Can be bonded to
本発明の熱電変換モジュールの製造方法において、前記焼成工程後に、前記第1銀焼成層及び前記第2銀焼成層に対してブラスト処理を行うブラスト工程を備えていてもよい。
この場合、ブラスト工程において、前記第1銀焼成層及び前記第2銀焼成層に対してブラスト処理を行っているので、前記第1銀焼成層と前記第1アルミニウム層との間、及び、前記第2銀焼成層と前記第2アルミニウム層との間の電気抵抗が低下し、第1電極部及び第2電極部における導電性を向上させることができる。
The method for manufacturing a thermoelectric conversion module according to the present invention may further include a blasting step of blasting the first silver fired layer and the second silver fired layer after the firing step.
In this case, since the first silver baking layer and the second silver baking layer are subjected to the blasting process in the blasting step, the space between the first silver baking layer and the first aluminum layer, and The electrical resistance between the second silver baked layer and the second aluminum layer is reduced, and the conductivity in the first electrode portion and the second electrode portion can be improved.
本発明の熱電変換モジュールの製造方法において、前記積層工程では、前記第2電極部の上に銀ペーストを塗布して乾燥させた後に、前記熱電変換素子を配設する構成としてもよい。
この場合、前記第2電極部の上に銀ペーストを塗布して乾燥させた後に、前記熱電変換素子を配設しており、その後、上述の条件で熱電変換素子を接合しているので、前記第2電極部の上に塗布した銀ペーストの焼成体も緻密化し、気孔率を10%未満とすることができる。
In the method of manufacturing a thermoelectric conversion module according to the present invention, the thermoelectric conversion element may be disposed after applying and drying a silver paste on the second electrode portion in the laminating step.
In this case, after the silver paste is applied and dried on the second electrode portion, the thermoelectric conversion element is disposed, and then the thermoelectric conversion element is joined under the above-described conditions, so The sintered body of the silver paste applied on the second electrode portion can also be densified to have a porosity of less than 10%.
 本発明によれば、電極部における電気抵抗が低く、かつ、接合時における熱電変換素子の劣化が抑えられ、熱電変換効率に優れた熱電変換モジュール、及び、熱電変換モジュールの製造方法を提供することができる。 According to the present invention, it is possible to provide a thermoelectric conversion module having a low electrical resistance in the electrode portion and suppressing deterioration of the thermoelectric conversion element at the time of bonding, and having excellent thermoelectric conversion efficiency, and a method of manufacturing the thermoelectric conversion module. Can.
本発明の実施形態である熱電変換モジュールの概略説明図である。It is a schematic explanatory drawing of the thermoelectric conversion module which is embodiment of this invention. 本発明の実施形態である熱電変換モジュールの製造方法を示すフロー図である。It is a flowchart which shows the manufacturing method of the thermoelectric conversion module which is embodiment of this invention. 本発明の実施形態である熱電変換モジュールの製造方法の概略説明図である。It is a schematic explanatory drawing of the manufacturing method of the thermoelectric conversion module which is embodiment of this invention. 本発明の実施形態である熱電変換モジュールの製造方法の概略説明図である。It is a schematic explanatory drawing of the manufacturing method of the thermoelectric conversion module which is embodiment of this invention. 本発明の他の実施形態である熱電変換モジュールの概略説明図である。It is a schematic explanatory drawing of the thermoelectric conversion module which is other embodiment of this invention.
 以下に、本発明の実施形態について添付した図面を参照して説明する。以下に示す各実施形態は、発明の趣旨をより良く理解させるために具体的に説明するものであり、特に指定のない限り、本発明を限定するものではない。また、以下の説明で用いる図面は、本発明の特徴をわかりやすくするために、便宜上、要部となる部分を拡大して示している場合があり、各構成要素の寸法比率などが実際と同じであるとは限らない。 Hereinafter, embodiments of the present invention will be described with reference to the attached drawings. Each embodiment shown below is concretely described in order to understand the meaning of an invention better, and does not limit the present invention unless otherwise specified. Further, in the drawings used in the following description, for the sake of easy understanding of the features of the present invention, the main parts may be enlarged for convenience, and the dimensional ratio of each component may be the same as the actual one. Not necessarily.
 本実施形態に係る熱電変換モジュール10は、図1に示すように、複数の柱状をなす熱電変換素子11と、この熱電変換素子11の長さ方向の一端側(図1において下側)に配設された第1伝熱板20と、熱電変換素子11の長さ方向の他端側(図1において上側)に配設された第2伝熱板30と、を備えている。
 図1に示すように、熱電変換素子11の一端側に配設された第1伝熱板20には第1電極部25が形成され、熱電変換素子11の他端側に配設された第2伝熱板30には第2電極部35が形成されており、これら第1電極部25及び第2電極部35によって、複数の柱状をなす熱電変換素子11が電気的に直列接続されている。
As shown in FIG. 1, the thermoelectric conversion module 10 according to the present embodiment is arranged on a plurality of columnar thermoelectric conversion elements 11 and one end side (lower side in FIG. 1) of the thermoelectric conversion elements 11 in the length direction. A first heat transfer plate 20 is provided, and a second heat transfer plate 30 disposed on the other end side (upper side in FIG. 1) of the thermoelectric conversion elements 11 in the longitudinal direction.
As shown in FIG. 1, the first electrode portion 25 is formed on the first heat transfer plate 20 disposed on one end side of the thermoelectric conversion element 11, and the first heat transfer plate 20 is disposed on the other end side of the thermoelectric conversion element 11. A second electrode portion 35 is formed on the heat transfer plate 30, and a plurality of columnar thermoelectric conversion elements 11 are electrically connected in series by the first electrode portion 25 and the second electrode portion 35. .
 第1伝熱板20は、第1絶縁層21と、この第1絶縁層21の一方の面(図1において上面)に形成された第1電極部25と、を備えた第1絶縁回路基板で構成されている。
 本実施形態では、第1伝熱板20となる第1絶縁回路基板においては、図1に示すように、第1絶縁層21の他方の面(図1において下面)に、第1放熱層26が形成されている。
The first heat transfer plate 20 includes a first insulating layer 21 and a first electrode portion 25 formed on one surface (upper surface in FIG. 1) of the first insulating layer 21. It consists of
In the present embodiment, in the first insulating circuit substrate to be the first heat transfer plate 20, as shown in FIG. 1, the first heat dissipation layer 26 is formed on the other surface (the lower surface in FIG. 1) of the first insulating layer 21. Is formed.
 第1絶縁層21は、例えば窒化アルミニウム(AlN)、窒化ケイ素(Si)、アルミナ(Al)等の絶縁性の高いセラミックス材料、あるいは、絶縁樹脂等で構成されている。本実施形態では、第1絶縁層21は窒化アルミニウム(AlN)で構成されている。窒化アルミニウムからなる第1絶縁層21の厚さは、100μm以上2000μm以下の範囲内とされている。 The first insulating layer 21 is made of, for example, a highly insulating ceramic material such as aluminum nitride (AlN), silicon nitride (Si 3 N 4 ), alumina (Al 2 O 3 ), or an insulating resin. In the present embodiment, the first insulating layer 21 is made of aluminum nitride (AlN). The thickness of the first insulating layer 21 made of aluminum nitride is in the range of 100 μm to 2000 μm.
第1電極部25は、図1に示すように、第1絶縁層21の一方の面に配設された第1アルミニウム層25aと、この第1アルミニウム層25aの第1絶縁層21とは反対側の面に積層された銀の焼成体からなる第1銀焼成層25bと、を有している。第1電極部25は、第1絶縁層21の一方の面(図1において上面)にパターン状に形成されている。 As shown in FIG. 1, the first electrode portion 25 is opposite to the first aluminum layer 25a disposed on one surface of the first insulating layer 21 and the first insulating layer 21 of the first aluminum layer 25a. And a first silver fired layer 25b made of a fired body of silver stacked on the side surface. The first electrode portion 25 is formed in a pattern on one surface (upper surface in FIG. 1) of the first insulating layer 21.
 第1アルミニウム層25aは、その厚さが50μm以上2000μm以下の範囲内とされている。
 第1アルミニウム層25aは、図3に示すように、第1絶縁層21の一方の面に、第1アルミニウム板45aが接合されることにより形成されている。本実施形態においては、第1アルミニウム板45aは、純度が99mass%以上のアルミニウムや純度99.99mass%以上のアルミニウムで構成されている。
The thickness of the first aluminum layer 25a is in the range of 50 μm to 2000 μm.
As shown in FIG. 3, the first aluminum layer 25 a is formed by bonding a first aluminum plate 45 a to one surface of the first insulating layer 21. In the present embodiment, the first aluminum plate 45a is made of aluminum having a purity of 99 mass% or more and aluminum having a purity of 99.99 mass% or more.
 第1銀焼成層25bは、銀の焼成体で構成されており、第1アルミニウム層25aの一方の面に接する最下層は、ガラス成分を含有するガラス含有銀ペーストの焼成体で構成されている。本実施形態では、第1銀焼成層25b全体が、ガラス含有銀ペーストの焼成体で構成されている。
 この第1銀焼成層25bにおいては、少なくとも熱電変換素子11が配置された領域において、厚さが5μm以上とされている。
The first silver fired layer 25b is composed of a fired body of silver, and the lowermost layer in contact with one surface of the first aluminum layer 25a is composed of a fired body of a glass-containing silver paste containing a glass component . In the present embodiment, the entire first silver fired layer 25 b is formed of a fired body of a glass-containing silver paste.
The thickness of the first silver fired layer 25 b is 5 μm or more at least in the region where the thermoelectric conversion element 11 is disposed.
第1銀焼成層25bの厚さは、20μm以上とすることが好ましい。第1銀焼成層25bの厚さを20μm以上とすることで、電気抵抗を確実に低下させることができる。また、第1銀焼成層25bの厚さは、100μm以下であることが好ましい。第1銀焼成層25bの厚さを100μm以下とすることで、冷熱サイクルが負荷された際に熱電変換素子11に大きな熱応力が生じることを抑制でき、割れの発生を防止することが可能となる。
よって、第1銀焼成層25bの厚さは20μm以上100μm以下の範囲内とすることが好ましい。第1銀焼成層25bの厚さの下限は30μm以上とすることがより好ましく、第1銀焼成層25bの厚さの上限は60μm以下とすることがより好ましい。
The thickness of the first silver fired layer 25 b is preferably 20 μm or more. By setting the thickness of the first silver fired layer 25 b to 20 μm or more, the electrical resistance can be reliably reduced. Moreover, it is preferable that the thickness of the 1st silver baking layer 25b is 100 micrometers or less. By setting the thickness of the first silver fired layer 25b to 100 μm or less, generation of large thermal stress in the thermoelectric conversion element 11 can be suppressed when a cooling thermal cycle is applied, and generation of cracks can be prevented. Become.
Therefore, the thickness of the first silver fired layer 25 b is preferably in the range of 20 μm to 100 μm. The lower limit of the thickness of the first silver fired layer 25 b is more preferably 30 μm or more, and the upper limit of the thickness of the first silver fired layer 25 b is more preferably 60 μm or less.
 第1銀焼成層25bにおいては、少なくとも熱電変換素子11が配置された領域において、気孔率Pが10%未満とされている。第1銀焼成層25bの気孔率Pは、以下のようにして算出することができる。
第1銀焼成層25bの断面を機械研磨した後、Arイオンエッチング(日本電子株式会社製クロスセクションポリッシャSM-09010)を行い、レーザ顕微鏡(株式会社キーエンス製VKX-200)を用いて断面観察を実施した。得られた画像を二値化処理し、白色部をAg、黒色部を気孔とした。二値化した画像から、黒色部の面積を求め、以下に示す式で気孔率を算出した。5箇所の断面で測定し、各断面の気孔率を算術平均して第1銀焼成層25bの気孔率とした。
気孔率P(%)=黒色部(気孔)面積/第1銀焼成層21bの観察面積×100
In the first silver fired layer 25 b, the porosity P is less than 10% at least in the region where the thermoelectric conversion element 11 is disposed. The porosity P of the first silver fired layer 25 b can be calculated as follows.
After mechanically polishing the cross section of the first silver fired layer 25b, Ar ion etching (cross section polisher SM-09010 manufactured by Nippon Denshi Co., Ltd.) is performed, and cross section observation is performed using a laser microscope (VKX-200 manufactured by Keyence Inc.) Carried out. The obtained image was binarized, the white portion was Ag, and the black portion was pores. The area of the black part was determined from the binarized image, and the porosity was calculated by the following equation. It measured by the cross section of five places, and the porosity of each cross section was carried out arithmetic mean, and it was set as the porosity of the 1st silver baking layer 25b.
Porosity P (%) = black area (pores) area / observed area of first silver fired layer 21b × 100
第1アルミニウム層25aがアルミニウム又はアルミニウム合金で構成されていることから、第1アルミニウム層25aの表面には、大気中で自然発生したアルミニウム酸化被膜が形成されている。本実施形態では、第1銀焼成層25bの最下層がガラス含有銀ペーストの焼成体で構成されているので、ガラス成分によってアルミニウム酸化被膜が除去され、第1アルミニウム層25aと第1銀焼成層25bとが強固に接合されている。 Since the first aluminum layer 25a is made of aluminum or an aluminum alloy, an aluminum oxide film naturally generated in the air is formed on the surface of the first aluminum layer 25a. In this embodiment, since the lowermost layer of the first silver fired layer 25b is formed of a fired body of a glass-containing silver paste, the aluminum oxide film is removed by the glass component, and the first aluminum layer 25a and the first silver fired layer 25b is firmly joined.
 第1放熱層26は、アルミニウム又はアルミニウム合金で構成されている。本実施形態では、第1放熱層26は、第1アルミニウム層25aと同様に、第1絶縁層21の他方の面に、放熱用アルミニウム板46が接合されることにより形成されている。本実施形態においては、放熱用アルミニウム板46は、純度が99mass%以上のアルミニウムや純度99.99mass%以上のアルミニウムで構成されている。 The first heat radiation layer 26 is made of aluminum or an aluminum alloy. In the present embodiment, the first heat dissipation layer 26 is formed by bonding a heat dissipation aluminum plate 46 to the other surface of the first insulating layer 21 as in the first aluminum layer 25 a. In the present embodiment, the heat dissipation aluminum plate 46 is made of aluminum having a purity of 99 mass% or more and aluminum having a purity of 99.99 mass% or more.
 第2伝熱板30は、第2絶縁層31と、この第2絶縁層31の一方の面(図1において下面)に形成された第2電極部35と、を備えた第2絶縁回路基板で構成されている。
 本実施形態では、第2伝熱板30となる第2絶縁回路基板においては、図1に示すように、第2絶縁層31の他方の面(図1において上面)に、第2放熱層36が形成されている。
The second heat transfer plate 30 includes a second insulating layer 31 and a second electrode portion 35 formed on one surface (a lower surface in FIG. 1) of the second insulating layer 31. It consists of
In the present embodiment, in the second insulating circuit substrate to be the second heat transfer plate 30, as shown in FIG. 1, the second heat dissipation layer 36 is formed on the other surface (upper surface in FIG. 1) of the second insulating layer 31. Is formed.
 第2絶縁層31は、例えば窒化アルミニウム(AlN)、窒化ケイ素(Si)、アルミナ(Al)等の絶縁性の高いセラミックス材料、あるいは、絶縁樹脂等で構成されている。本実施形態では、第2絶縁層31は窒化アルミニウム(AlN)で構成されている。窒化アルミニウムからなる第2絶縁層31の厚さは、100μm以上2000μm以下の範囲内とされている。 The second insulating layer 31 is made of, for example, a highly insulating ceramic material such as aluminum nitride (AlN), silicon nitride (Si 3 N 4 ), alumina (Al 2 O 3 ), or an insulating resin. In the present embodiment, the second insulating layer 31 is made of aluminum nitride (AlN). The thickness of the second insulating layer 31 made of aluminum nitride is in the range of 100 μm to 2000 μm.
第2電極部35は、図1に示すように、第2絶縁層31の一方の面に配設された第2アルミニウム層35aと、この第2アルミニウム層35aの第2絶縁層31とは反対側の面に積層された銀の焼成体からなる第2銀焼成層35bと、を有している。第2電極部35は、第2絶縁層31の一方の面(図1において下面)にパターン状に形成されている。 As shown in FIG. 1, the second electrode portion 35 is opposite to the second aluminum layer 35 a disposed on one surface of the second insulating layer 31 and the second insulating layer 31 of the second aluminum layer 35 a. And a second silver fired layer 35b formed of a fired body of silver stacked on the side surface. The second electrode portion 35 is formed in a pattern on one surface (the lower surface in FIG. 1) of the second insulating layer 31.
 第2アルミニウム層35aは、その厚さが50μm以上2000μm以下の範囲内とされている。
 第2アルミニウム層35aは、図3に示すように、第2絶縁層31の一方の面に、第2アルミニウム板55aが接合されることにより形成されている。本実施形態においては、第2アルミニウム板55aは、純度が99mass%以上のアルミニウムや純度99.99mass%以上のアルミニウムで構成されている。
The thickness of the second aluminum layer 35a is in the range of 50 μm to 2000 μm.
As shown in FIG. 3, the second aluminum layer 35 a is formed by bonding the second aluminum plate 55 a to one surface of the second insulating layer 31. In the present embodiment, the second aluminum plate 55a is made of aluminum having a purity of 99 mass% or more and aluminum having a purity of 99.99 mass% or more.
 第2銀焼成層35bは、銀の焼成体で構成されており、第2アルミニウム層35aの一方の面に接する最下層は、ガラス成分を含有するガラス含有銀ペーストの焼成体で構成されている。本実施形態では、第2銀焼成層35b全体が、ガラス含有銀ペーストの焼成体で構成されている。
 この第2銀焼成層35bにおいては、少なくとも熱電変換素子11が配置された領域において、厚さが5μm以上とされている。
The second silver fired layer 35b is composed of a fired body of silver, and the lowermost layer in contact with one surface of the second aluminum layer 35a is composed of a fired body of a glass-containing silver paste containing a glass component . In the present embodiment, the entire second silver fired layer 35 b is formed of a fired body of a glass-containing silver paste.
The thickness of the second silver fired layer 35 b is 5 μm or more at least in the region where the thermoelectric conversion element 11 is disposed.
第2銀焼成層35bの厚さは、20μm以上とすることが好ましい。第2銀焼成層35bの厚さを20μm以上とすることで、電気抵抗を確実に低下させることができる。第2銀焼成層35bの厚さは、100μm以下であることが好ましい。第1銀焼成層35bの厚さを100μm以下とすることで、冷熱サイクルが負荷された際に熱電変換素子11に大きな熱応力が生じることを抑制でき、割れの発生を防止することが可能となる。
よって、第2銀焼成層35bの厚さは20μm以上100μm以下の範囲内とすることが好ましい。第2銀焼成層35bの厚さの下限は30μm以上とすることがより好ましく、第2銀焼成層35bの厚さの上限は60μm以下とすることがより好ましい。
The thickness of the second silver fired layer 35 b is preferably 20 μm or more. By setting the thickness of the second silver fired layer 35 b to 20 μm or more, the electrical resistance can be reliably reduced. The thickness of the second silver fired layer 35 b is preferably 100 μm or less. By setting the thickness of the first silver fired layer 35b to 100 μm or less, generation of a large thermal stress in the thermoelectric conversion element 11 can be suppressed when a thermal cycle is applied, and generation of cracks can be prevented. Become.
Therefore, the thickness of the second silver baked layer 35 b is preferably in the range of 20 μm to 100 μm. The lower limit of the thickness of the second silver fired layer 35 b is more preferably 30 μm or more, and the upper limit of the thickness of the second silver fired layer 35 b is more preferably 60 μm or less.
 第2銀焼成層35bにおいては、少なくとも熱電変換素子11が配置された領域において、気孔率Pが10%未満とされている。第2銀焼成層35bの気孔率Pは、第1銀焼成層25bと同様の方法で算出することができる。 In the second silver fired layer 35b, the porosity P is less than 10% at least in the region where the thermoelectric conversion element 11 is disposed. The porosity P of the second silver fired layer 35 b can be calculated by the same method as that of the first silver fired layer 25 b.
第2アルミニウム層35aがアルミニウム又はアルミニウム合金で構成されていることから、第2アルミニウム層35aの表面には、大気中で自然発生したアルミニウム酸化被膜が形成されている。本実施形態では、第2銀焼成層35bの最下層がガラス含有銀ペーストの焼成体で構成されているので、ガラス成分によってアルミニウム酸化被膜が除去され、第2アルミニウム層35aと第2銀焼成層35bとが強固に接合されている。 Since the second aluminum layer 35a is made of aluminum or an aluminum alloy, an aluminum oxide film naturally generated in the air is formed on the surface of the second aluminum layer 35a. In this embodiment, since the lowermost layer of the second silver fired layer 35b is formed of a fired body of the glass-containing silver paste, the aluminum oxide film is removed by the glass component, and the second aluminum layer 35a and the second silver fired layer 35b is firmly joined.
 第2放熱層36は、アルミニウム又はアルミニウム合金で構成されている。本実施形態では、第2放熱層36は、第2アルミニウム層35aと同様に、第2絶縁層31の他方の面に、放熱用アルミニウム板56が接合されることにより形成されている。本実施形態においては、放熱用アルミニウム板56は、純度が99mass%以上のアルミニウムや純度99.99mass%以上のアルミニウムで構成されている。 The second heat radiation layer 36 is made of aluminum or an aluminum alloy. In the present embodiment, the second heat dissipation layer 36 is formed by bonding a heat dissipation aluminum plate 56 to the other surface of the second insulating layer 31 as in the second aluminum layer 35 a. In the present embodiment, the heat dissipation aluminum plate 56 is made of aluminum having a purity of 99 mass% or more and aluminum having a purity of 99.99 mass% or more.
 熱電変換素子11は、n型熱電変換素子11aとp型熱電変換素子11bとを有しており、これらn型熱電変換素子11aとp型熱電変換素子11bが交互に配列されている。
 この熱電変換素子11の一端面及び他端面には、メタライズ層(図示なし)がそれぞれ形成されている。メタライズ層としては、例えば、ニッケル、銀、コバルト、タングステン、モリブデン等や、あるいはそれらの金属繊維でできた不織布等を用いることができる。メタライズ層の最表面(第1電極部25及び第2電極部35との接合面)は、Au又はAgで構成されていることが好ましい。
The thermoelectric conversion element 11 has an n-type thermoelectric conversion element 11a and a p-type thermoelectric conversion element 11b, and these n-type thermoelectric conversion elements 11a and p-type thermoelectric conversion elements 11b are alternately arranged.
Metallized layers (not shown) are respectively formed on one end surface and the other end surface of the thermoelectric conversion element 11. As the metallized layer, it is possible to use, for example, nickel, silver, cobalt, tungsten, molybdenum or the like, or a non-woven fabric or the like made of these metal fibers. The outermost surface of the metallized layer (the bonding surface with the first electrode portion 25 and the second electrode portion 35) is preferably made of Au or Ag.
n型熱電変換素子11a及びp型熱電変換素子11bは、例えば、テルル化合物、スクッテルダイト、充填スクッテルダイト、ホイスラー、ハーフホイスラー、クラストレート、シリサイド、酸化物、シリコンゲルマニウム等の焼結体で構成されている。
n型熱電変換素子11aの材料として、例えば、BiTe、PbTe、LaTe、CoSb、FeVAl、ZrNiSn、BaAl16Si30、MgSi、FeSi、SrTiO、CaMnO、ZnO、SiGeなどが用いられる。
p型熱電変換素子11bの材料として、例えば、BiTe、SbTe、PbTe、TAGS(=Ag‐Sb‐Ge‐Te)、ZnSb、CoSb、CeFeSb12、Yb14MnSb11、FeVAl、MnSi1.73、FeSi、NaxCoO、CaCo、BiSrCo、SiGeなどが用いられる。
ドーパントによりn型とp型の両方をとれる化合物と、n型かp型のどちらか一方のみの性質をもつ化合物がある。
The n-type thermoelectric conversion element 11a and the p-type thermoelectric conversion element 11b are, for example, sintered bodies of tellurium compound, skutterudite, filled skutterudite, Heusler, half-Heusler, clathrate, silicide, oxide, silicon germanium, etc. It is configured.
As a material of the n-type thermoelectric conversion element 11 a, for example, Bi 2 Te 3 , PbTe, La 3 Te 4 , CoSb 3 , FeVAl, ZrNiSn, Ba 8 Al 16 Si 30 , Mg 2 Si, FeSi 2 , SrTiO 3 , CaMnO 3 , ZnO, SiGe and the like are used.
As a material of the p-type thermoelectric conversion element 11b, for example, Bi 2 Te 3 , Sb 2 Te 3 , PbTe, TAGS (= Ag-Sb-Ge-Te), Zn 4 Sb 3 , CoSb 3 , CeFe 4 Sb 12 , Yb 14 MnSb 11 , FeVAl, MnSi 1.73 , FeSi 2 , NaxCoO 2 , Ca 3 Co 4 O 7 , Bi 2 Sr 2 Co 2 O 7 , SiGe or the like is used.
There are compounds that can take both n-type and p-type depending on the dopant, and compounds that have only n-type or p-type properties.
 次に、上述した本実施形態である熱電変換モジュール10の製造方法について、図2から図4を参照して説明する。 Next, a method of manufacturing the thermoelectric conversion module 10 according to the above-described embodiment will be described with reference to FIGS. 2 to 4.
(アルミニウム層形成工程S01)
 まず、図3に示すように、第1絶縁層21の一方の面に第1アルミニウム板45aを接合して第1アルミニウム層25aを形成するとともに、第2絶縁層31の一方の面に第2アルミニウム板55aを接合して第2アルミニウム層35aを形成する。
 本実施形態では、図3に示すように、第1絶縁層21の他方の面に放熱用アルミニウム板46を接合することで第1放熱層26を形成するとともに、第2絶縁層31の他方の面に放熱用アルミニウム板56を接合することで第2放熱層36を形成する。
(Aluminum layer forming step S01)
First, as shown in FIG. 3, the first aluminum plate 45 a is joined to one surface of the first insulating layer 21 to form the first aluminum layer 25 a, and the second aluminum layer 25 a is formed on the one surface of the second insulating layer 31. The aluminum plate 55a is joined to form a second aluminum layer 35a.
In the present embodiment, as shown in FIG. 3, the heat dissipation aluminum plate 46 is joined to the other surface of the first insulation layer 21 to form the first heat dissipation layer 26, and the other side of the second insulation layer 31. The second heat dissipation layer 36 is formed by bonding the heat dissipation aluminum plate 56 to the surface.
 第1絶縁層21と第1アルミニウム板45a及び放熱用アルミニウム板46の接合方法、並びに、第2絶縁層31と第2アルミニウム板55a及び放熱用アルミニウム板56の接合方法は、特に制限はなく、例えばAl-Si系ろう材を用いた接合や固相拡散接合を適用してもよい。さらに、接合面にCu、Si等の添加元素を固着させ、これらの添加元素を拡散させることで溶融・凝固させる過渡液相接合法(TLP)によって接合してもよい。
 本実施形態では、図3に示すように、Al-Si系ろう材48,58を用いて、第1絶縁層21と第1アルミニウム板45a及び放熱用アルミニウム板46、並びに、第2絶縁層31と第2アルミニウム板55a及び放熱用アルミニウム板56を接合している。
The bonding method of the first insulating layer 21 and the first aluminum plate 45 a and the heat radiating aluminum plate 46 and the bonding method of the second insulating layer 31 and the second aluminum plate 55 a and the heat radiating aluminum plate 56 are not particularly limited. For example, bonding using Al—Si based brazing material or solid phase diffusion bonding may be applied. Further, bonding may be performed by a transient liquid phase bonding method (TLP) in which an additive element such as Cu, Si or the like is fixed to the bonding surface and the additive element is diffused to melt and solidify.
In the present embodiment, as shown in FIG. 3, the first insulating layer 21, the first aluminum plate 45 a, the aluminum plate 46 for heat dissipation, and the second insulating layer 31 are formed using Al— Si brazing materials 48 and 58. And the second aluminum plate 55a and the heat radiation aluminum plate 56 are joined.
(銀ペースト塗布工程S02)
まず、第1アルミニウム層25aの一方の面、及び、第2アルミニウム層35aの一方の面に、銀を含む銀ペーストを、それぞれ5μmを超える厚さで塗布する。塗布方法に特に制限はなく、スクリーン印刷法、オフセット印刷法、感光性プロセス等の種々の手段を採用することができる。このとき、少なくとも第1アルミニウム層25a及び第2アルミニウム層35aと接する最下層には、ガラス成分を有するガラス含有銀ペーストを塗布する。
(Silver paste application step S02)
First, a silver paste containing silver is applied to one surface of the first aluminum layer 25a and one surface of the second aluminum layer 35a with a thickness of more than 5 μm. The application method is not particularly limited, and various means such as screen printing method, offset printing method, photosensitive process and the like can be adopted. At this time, a glass-containing silver paste having a glass component is applied to the lowermost layer in contact with at least the first aluminum layer 25a and the second aluminum layer 35a.
塗布厚さを5μm超えとするために、ペーストの塗布と乾燥とを繰り返し実施してもよい。この場合、第1アルミニウム層25a及び第2アルミニウム層35aと接する最下層にガラス含有ペーストを塗布し、その後はガラス成分を含有しない銀ペーストを塗布してもよい。
本実施形態では、図3に示すように、第1アルミニウム層25aの一方の面、及び、第2アルミニウム層35aの一方の面に、ガラス含有銀ペースト45b、55bを、それぞれ5μmを超える厚さで塗布している。
また、塗布厚さは7μm以上とすることが好ましい。
The application and drying of the paste may be repeated in order to make the application thickness exceed 5 μm. In this case, a glass-containing paste may be applied to the lowermost layer in contact with the first aluminum layer 25a and the second aluminum layer 35a, and thereafter a silver paste containing no glass component may be applied.
In the present embodiment, as shown in FIG. 3, the thickness of each of the glass-containing silver pastes 45b and 55b exceeds 5 μm on one side of the first aluminum layer 25a and on one side of the second aluminum layer 35a. It is applied with.
Moreover, it is preferable that application | coating thickness shall be 7 micrometers or more.
第1銀焼成層25b及び第2銀焼成層35bを形成するガラス含有銀ペーストについて説明する。
このガラス含有銀ペーストは、銀粉末と、ガラス粉末と、樹脂と、溶剤と、分散剤と、を含有しており、銀粉末とガラス粉末とからなる粉末成分の含有量が、ガラス含有銀ペースト全体の60質量%以上90質量%以下とされており、残部が樹脂、溶剤、分散剤とされている。
The glass-containing silver paste for forming the first silver fired layer 25 b and the second silver fired layer 35 b will be described.
The glass-containing silver paste contains silver powder, glass powder, a resin, a solvent, and a dispersant, and the content of a powder component composed of silver powder and glass powder is glass-containing silver paste The total amount is 60% by mass or more and 90% by mass or less, and the remaining portion is a resin, a solvent, or a dispersant.
本実施形態では、銀粉末とガラス粉末とからなる粉末成分の含有量は、ガラス含有銀ペースト全体の85質量%とされている。
このガラス含有銀ペーストは、その粘度が10Pa・s以上500Pa・s以下、より好ましくは50Pa・s以上300Pa・s以下に調整されている。
In the present embodiment, the content of the powder component composed of the silver powder and the glass powder is 85% by mass of the entire glass-containing silver paste.
The viscosity of this glass-containing silver paste is adjusted to 10 Pa · s or more and 500 Pa · s or less, more preferably 50 Pa · s or more and 300 Pa · s or less.
銀粉末は、その粒径が0.05μm以上1.0μm以下とされており、本実施形態では、平均粒径0.8μmのものを使用した。
ガラス粉末は、例えば、酸化鉛、酸化亜鉛、酸化ケイ素、酸化ホウ素、酸化リン及び酸化ビスマスのいずれか1種又は2種以上を含有している。本実施形態では、主成分として酸化鉛と酸化亜鉛と酸化ホウ素とからなり、平均粒径が0.5μmのガラス粉末を使用した。
銀粉末の重量Aとガラス粉末の重量Gとの重量比A/Gは、80/20から99/1の範囲内に調整されており、本実施形態では、A/G=80/5とした。
The silver powder has a particle diameter of 0.05 μm or more and 1.0 μm or less, and in the present embodiment, one having an average particle diameter of 0.8 μm was used.
The glass powder contains, for example, any one or more of lead oxide, zinc oxide, silicon oxide, boron oxide, phosphorus oxide and bismuth oxide. In this embodiment, a glass powder consisting of lead oxide, zinc oxide and boron oxide as main components and having an average particle diameter of 0.5 μm was used.
The weight ratio A / G of the weight A of the silver powder to the weight G of the glass powder is adjusted within the range of 80/20 to 99/1, and in this embodiment, A / G = 80/5. .
溶剤は、沸点が200℃以上のものが適しており、本実施形態では、ジエチレングリコールジブチルエーテルを用いている。
樹脂は、ガラス含有銀ペーストの粘度を調整するものであり、400℃以上で分解されるものが適している。本実施形態では、エチルセルロースを用いている。
また、本実施形態では、ジカルボン酸系の分散剤を添加している。分散剤を添加することなくガラス含有銀ペーストを構成してもよい。
As the solvent, one having a boiling point of 200 ° C. or higher is suitable, and in the present embodiment, diethylene glycol dibutyl ether is used.
The resin is used to adjust the viscosity of the glass-containing silver paste, and a resin that decomposes at 400 ° C. or higher is suitable. In the present embodiment, ethyl cellulose is used.
Further, in the present embodiment, a dicarboxylic acid-based dispersant is added. You may comprise a glass containing silver paste, without adding a dispersing agent.
このガラス含有銀ペーストは、銀粉末とガラス粉末とを混合した混合粉末と、溶剤と樹脂とを混合した有機混合物とを、分散剤とともにミキサーによって予備混合し、得られた予備混合物をロールミル機によって練り込みながら混合した後、得られた混錬物をペーストろ過機によってろ過することによって製出される。 In this glass-containing silver paste, a mixed powder obtained by mixing silver powder and glass powder and an organic mixture obtained by mixing a solvent and a resin are premixed together with a dispersant by a mixer, and the obtained preliminary mixture is milled by a roll mill. After mixing while being kneaded, the resulting kneaded product is produced by filtering with a paste filter.
(焼成工程S03)
 次に、第1アルミニウム層25aの一方の面、及び、第2アルミニウム層35aの一方の面に、それぞれ銀ペースト(ガラス含有銀ペースト45b、55b)を塗布した状態で、加熱処理を行い、銀ペースト(ガラス含有銀ペースト45b、55b)を焼成する。焼成前に銀ペースト(ガラス含有銀ペースト45b、55b)の溶媒を除去する乾燥処理を実施してもよい。これにより、第1アルミニウム層25aに厚さ5μm以上の第1銀焼成層25bが積層されるとともに第2アルミニウム層35aに厚さ5μm以上の第2銀焼成層35bが積層され、第1電極部25及び第2電極部35が形成される。
この焼成工程S03においては、大気雰囲気、加熱温度は400℃以上600℃以下、加熱温度での保持時間は1分以上60分以下の条件で、焼成を行うことが好ましい。
(Firing step S03)
Next, heat treatment is performed in a state where silver paste (glass-containing silver paste 45b, 55b) is applied to one surface of the first aluminum layer 25a and one surface of the second aluminum layer 35a, respectively. The paste (glass-containing silver paste 45b, 55b) is fired. You may implement the drying process which removes the solvent of silver paste (glass containing silver paste 45b, 55b) before baking. Thereby, the first silver fired layer 25b having a thickness of 5 μm or more is stacked on the first aluminum layer 25a, and the second silver fired layer 35b having a thickness of 5 μm or more is stacked on the second aluminum layer 35a. 25 and a second electrode portion 35 are formed.
In the firing step S03, firing is preferably performed under the conditions of an air atmosphere, a heating temperature of 400 ° C. to 600 ° C., and a holding time of the heating temperature of 1 minute to 60 minutes.
(ブラスト工程S04)
次に、必要に応じて、第1銀焼成層25b及び第2銀焼成層35bに対してブラスト処理を行ってもよい。例えば、第1銀焼成層25b及び第2銀焼成層35bの厚さが5μm以上20μm未満の場合には、ブラスト工程S04を実施することが好ましい。
ブラスト工程S04を実施した場合には、ブラスト処理後の第1銀焼成層25b及び第2銀焼成層35bの表面には、衝突されるブラスト砥粒に応じた凹凸が形成される。
ブラスト処理後の第1銀焼成層25b及び第2銀焼成層35bの表面粗さRaは、0.35μm以上1.50μm以下とすると良い。ブラスト処理後の表面粗さRaを0.35μm以上とすることにより、第1銀焼成層25bと第1アルミニウム層25aとの間、及び、第2銀焼成層35bと第2アルミニウム層35aとの間の電気抵抗を十分に低下させることができる。一方、ブラスト処理後の表面粗さRaを1.50μm以下とすることで、熱電変換素子11を良好に接合することができる。
(Blasting step S04)
Next, the first silver fired layer 25 b and the second silver fired layer 35 b may be subjected to a blast process, as necessary. For example, in the case where the thickness of the first silver baked layer 25 b and the second silver baked layer 35 b is 5 μm or more and less than 20 μm, it is preferable to carry out the blasting step S04.
When the blasting step S04 is performed, irregularities are formed on the surfaces of the first silver fired layer 25b and the second silver fired layer 35b after the blasting process according to the blast abrasives to be collided.
The surface roughness Ra of the first silver fired layer 25 b and the second silver fired layer 35 b after the blast treatment may be 0.35 μm or more and 1.50 μm or less. By setting the surface roughness Ra after the blast treatment to 0.35 μm or more, between the first silver fired layer 25b and the first aluminum layer 25a, and between the second silver fired layer 35b and the second aluminum layer 35a. The electrical resistance between them can be sufficiently reduced. On the other hand, the thermoelectric conversion element 11 can be joined favorably by setting surface roughness Ra after a blast process to 1.50 micrometers or less.
このブラスト処理工程S04においては、ブラスト粒として新モース硬度2~7のシリカ等のガラス粒子、セラミック粒子、金属粒子、あるいは樹脂製ビーズ等を用いることができる。本実施形態では、ガラス粒子を用いている。また、ブラスト粒の粒径は、20μm以上150μm以下の範囲内とされている。
また、ブラスト圧力は、0.2MPa以上0.8MPa以下の範囲内、加工時間を2秒以上60秒以下の範囲内としている。
In the blasting step S04, glass particles such as silica with a New Mohs hardness of 2 to 7, ceramic particles, metal particles, resin beads or the like can be used as blast particles. In the present embodiment, glass particles are used. Moreover, the particle size of blast particle | grains is made into the range of 20 micrometers or more and 150 micrometers or less.
The blast pressure is in the range of 0.2 MPa to 0.8 MPa, and the processing time is in the range of 2 seconds to 60 seconds.
第1銀焼成層25b及び第2銀焼成層35bの厚さが5μm未満の場合、ブラスト処理によって、第1銀焼成層25b及び第2銀焼成層35bの一部が、第1アルミニウム層25a及び第2アルミニウム層35aに埋め込まれ、熱電変換素子11と第1電極部25、及び、熱電変換素子11と第2電極部35とを接合性が低下する。
ブラスト工程S04後に、ガラスを含有しない銀ペーストを塗布し、乾燥・焼成することによって、第1銀焼成層25b及び第2銀焼成層35bの厚さを5μm以上としてもよい。
When the thickness of the first silver fired layer 25 b and the second silver fired layer 35 b is less than 5 μm, a part of the first silver fired layer 25 b and the second silver fired layer 35 b is made by the first aluminum layer 25 a and the blast treatment. It is embedded in the 2nd aluminum layer 35a, and bondability falls between the thermoelectric conversion element 11 and the 1st electrode part 25, and the thermoelectric conversion element 11 and the 2nd electrode part 35.
After the blasting step S04, a silver paste containing no glass may be applied, dried and fired to make the thicknesses of the first silver fired layer 25b and the second silver fired layer 35b 5 μm or more.
ブラスト工程S04の実施の有無については、以下のような基準で決定することが好ましい。
本実施形態である熱電変換モジュール10においては、接続された2つの熱電変換素子11,11の間の電気抵抗が、熱電変換素子11自体の電気抵抗の1/10以下となるように、第1銀焼成層25b及び第2銀焼成層35bを構成することが好ましい。具体的には、接続された2つの熱電変換素子11,11の間の電気抵抗が1mΩ以上1Ω以下の範囲内であることが好ましい。
The presence or absence of the implementation of the blasting step S04 is preferably determined on the basis of the following criteria.
In the thermoelectric conversion module 10 according to the present embodiment, the first electrical resistance between the two thermoelectric conversion elements 11 connected is 1/10 or less of the electrical resistance of the thermoelectric conversion element 11 itself. It is preferable to constitute the silver fired layer 25 b and the second silver fired layer 35 b. Specifically, the electrical resistance between the two connected thermoelectric conversion elements 11 is preferably in the range of 1 mΩ or more and 1 Ω or less.
第1銀焼成層25b及び第2銀焼成層35bの厚さが厚く、第1銀焼成層25b及び第2銀焼成層35bにおいて導電性が確保されている場合には、ブラスト工程S04を実施する必要はない。一方、第1銀焼成層25b及び第2銀焼成層35bの厚さが薄く、第1銀焼成層25b及び第2銀焼成層35bにおいて導電性が不十分な場合には、ブラスト工程S04を実施し、第1銀焼成層25bと第1アルミニウム層25a、及び、第2銀焼成層35bと第2アルミニウム層35aによって、導電性を確保することが好ましい。
ブラスト工程S04を実施した場合、熱電変換モジュール10に対して冷熱サイクルを負荷した場合には、ブラスト工程S04の効果が低減してしまうおそれがある。このため、冷熱サイクルが負荷される用途においては、ブラスト工程S04を実施しないことが好ましい。
When the thickness of the first silver fired layer 25b and the second silver fired layer 35b is large and the conductivity is ensured in the first silver fired layer 25b and the second silver fired layer 35b, the blasting step S04 is performed. There is no need. On the other hand, when the thicknesses of the first silver fired layer 25b and the second silver fired layer 35b are thin and the conductivity of the first silver fired layer 25b and the second silver fired layer 35b is insufficient, the blasting step S04 is performed. Preferably, the conductivity is ensured by the first silver baked layer 25b and the first aluminum layer 25a, and the second silver baked layer 35b and the second aluminum layer 35a.
When blasting process S04 is implemented, when the cooling-heating cycle is loaded with respect to the thermoelectric conversion module 10, there exists a possibility that the effect of blasting process S04 may reduce. For this reason, it is preferable not to carry out the blasting step S04 in applications where a thermal cycle is applied.
(積層工程S05)
 次に、熱電変換素子11の一端側(図4において下側)に第1電極部25を介して第1絶縁層21を積層するとともに、熱電変換素子11の他端側(図4において上側)に第2電極部35を介して第2絶縁層31を積層する。
(Lamination process S05)
Next, the first insulating layer 21 is laminated on one end side (lower side in FIG. 4) of the thermoelectric conversion element 11 via the first electrode portion 25 and the other end side (upper side in FIG. 4) of the thermoelectric conversion element 11 The second insulating layer 31 is stacked on the second electrode portion 35.
(熱電変換素子接合工程S06)
 次に、第1絶縁層21と熱電変換素子11と第2絶縁層31とを積層方向に加圧するとともに加熱して、熱電変換素子11と第1電極部25、及び、熱電変換素子11と第2電極部35とを接合する。本実施形態では、熱電変換素子11と第1電極部25及び第2電極部35を固相拡散接合している。
第1銀焼成層25bの少なくとも熱電変換素子11が配置された領域において、厚さが5μm以上とされ、気孔率Pが10%未満とされる。同様に、第2銀焼成層35bの少なくとも熱電変換素子11が配置された領域において、厚さが5μm以上とされ、気孔率Pが10%未満とされる。
(Thermoelectric conversion element bonding step S06)
Next, the first insulating layer 21, the thermoelectric conversion element 11, and the second insulating layer 31 are pressurized and heated in the stacking direction, and the thermoelectric conversion element 11 and the first electrode portion 25, and the thermoelectric conversion element 11 and the first The two electrode parts 35 are joined. In the present embodiment, the thermoelectric conversion element 11 is bonded to the first electrode unit 25 and the second electrode unit 35 by solid phase diffusion bonding.
The thickness is set to 5 μm or more, and the porosity P is set to less than 10% in a region where at least the thermoelectric conversion element 11 of the first silver fired layer 25 b is disposed. Similarly, the thickness is set to 5 μm or more and the porosity P is set to less than 10% in at least the region where the thermoelectric conversion element 11 of the second silver fired layer 35 b is disposed.
 この熱電変換素子接合工程S06においては、加圧荷重が20MPa以上50MPa以下の範囲内、加熱温度が300℃以上400℃以下の範囲内とされている。また、本実施形態においては、上述の加熱温度での保持時間が5分以上60分以下、雰囲気が真空雰囲気とされている。 In the thermoelectric conversion element bonding step S06, the pressure load is in the range of 20 MPa to 50 MPa, and the heating temperature is in the range of 300 ° C. to 400 ° C. Further, in the present embodiment, the holding time at the above-mentioned heating temperature is 5 minutes or more and 60 minutes or less, and the atmosphere is a vacuum atmosphere.
 熱電変換素子接合工程S06における加圧荷重が20MPa未満では、第1銀焼成層25b及び第2銀焼成層35bの気孔率を10%未満とすることができないおそれがあった。一方、熱電変換素子接合工程S06における加圧荷重が50MPaを超えると、熱電変換素子11や窒化アルミニウムからなる第1絶縁層21及び第2絶縁層31に割れが発生するおそれがあった。また、第1アルミニウム層25a及び第2アルミニウム層35aが変形してしまうおそれがあった。
このため、本実施形態では、熱電変換素子接合工程S06における加圧荷重を20MPa以上50MPa以下の範囲内に設定している。
When the pressure load in the thermoelectric conversion element bonding step S06 is less than 20 MPa, the porosity of the first silver fired layer 25b and the second silver fired layer 35b may not be less than 10%. On the other hand, when the pressure load in the thermoelectric conversion element bonding step S06 exceeds 50 MPa, there is a possibility that a crack may occur in the thermoelectric conversion element 11 and the first insulating layer 21 and the second insulating layer 31 made of aluminum nitride. In addition, there is a possibility that the first aluminum layer 25a and the second aluminum layer 35a may be deformed.
Therefore, in the present embodiment, the pressure load in the thermoelectric conversion element bonding step S06 is set in the range of 20 MPa or more and 50 MPa or less.
 第1銀焼成層25b及び第2銀焼成層35bの気孔率Pを確実に10%未満とするためには、熱電変換素子接合工程S06における加圧荷重の下限を30MPa以上とすることが好ましい。一方、熱電変換素子11や窒化アルミニウムからなる第1絶縁層21及び第2絶縁層31における割れの発生を確実に抑制するためには、熱電変換素子接合工程S06における加圧荷重の上限を40MPa以下とすることが好ましい。 In order to make porosity P of the 1st silver calcination layer 25b and the 2nd silver calcination layer 35b certainly less than 10%, it is preferred to make the minimum of the pressurization load in thermoelectrical conversion element junction process S06 into 30 or more MPa. On the other hand, to reliably suppress the occurrence of cracks in the first insulating layer 21 and the second insulating layer 31 made of the thermoelectric conversion element 11 or aluminum nitride, the upper limit of the pressing load in the thermoelectric conversion element bonding step S06 is 40 MPa or less It is preferable to
 熱電変換素子接合工程S06における加熱温度が300℃未満では、熱電変換素子11と第1電極部25及び第2電極部35と接合できないおそれがあった。一方、熱電変換素子接合工程S06における加熱温度が400℃を超えると、第1アルミニウム層25a及び第2アルミニウム層35aが軟化して変形してしまい、パターン状に形成した第1電極部25及び第2電極部35が短絡してしまうおそれがあった。
 このため、本実施形態では、熱電変換素子接合工程S06における加熱温度を300℃以上400℃以下の範囲内に設定している。
If the heating temperature in the thermoelectric conversion element bonding step S06 is less than 300 ° C., there is a possibility that the thermoelectric conversion element 11 can not be bonded to the first electrode portion 25 and the second electrode portion 35. On the other hand, when the heating temperature in the thermoelectric conversion element bonding step S06 exceeds 400 ° C., the first aluminum layer 25a and the second aluminum layer 35a are softened and deformed, and the first electrode portion 25 and the first electrode portion 25 formed in a pattern are There is a possibility that the 2 electrode part 35 may short-circuit.
For this reason, in the present embodiment, the heating temperature in the thermoelectric conversion element bonding step S06 is set in the range of 300 ° C. or more and 400 ° C. or less.
 熱電変換素子11と第1電極部25及び第2電極部35とを確実に接合するためには、熱電変換素子接合工程S06における加熱温度の下限を330℃以上とすることが好ましい。一方、第1アルミニウム層25a及び第2アルミニウム層35aの変形を確実に抑制するためには、熱電変換素子接合工程S06における加熱温度の上限を370℃以下とすることが好ましい。 In order to reliably bond the thermoelectric conversion element 11 to the first electrode unit 25 and the second electrode unit 35, the lower limit of the heating temperature in the thermoelectric conversion element bonding step S06 is preferably 330 ° C. or more. On the other hand, in order to reliably suppress the deformation of the first aluminum layer 25a and the second aluminum layer 35a, it is preferable to set the upper limit of the heating temperature in the thermoelectric conversion element bonding step S06 to 370 ° C. or less.
 以上のようにして、本実施形態である熱電変換モジュール10が製造される。
このようにして得られた本実施形態である熱電変換モジュール10においては、例えば、第1伝熱板20側を低温部とし、第2伝熱板30側を高温部として使用され、熱エネルギーと電気エネルギーとの変換が実施される。
As described above, the thermoelectric conversion module 10 according to the present embodiment is manufactured.
In the thermoelectric conversion module 10 according to this embodiment obtained in this manner, for example, the first heat transfer plate 20 side is used as a low temperature portion, and the second heat transfer plate 30 side is used as a high temperature portion. Conversion with electrical energy is performed.
 以上のような構成とされた本実施形態である熱電変換モジュール10においては、熱電変換素子11の一端側に、第1絶縁層21と、この第1絶縁層21の一方の面に形成された第1電極部25とを備えた第1絶縁回路基板が配設されている。第1電極部25は、アルミニウム又はアルミニウム合金からなる第1アルミニウム層25aと、この第1アルミニウム層25aの第1絶縁層21とは反対側の面に積層された銀の焼成体からなる第1銀焼成層25bとを有する。第1アルミニウム層25aは、厚さが50μm以上2000μm以下の範囲内とされている。第1銀焼成層25bは、少なくとも熱電変換素子11が配置された領域において、厚さが5μm以上とされ、気孔率Pが10%未満とされている。そのため、第1銀焼成層25bが緻密となり、かつ、第1電極部25全体の厚さが確保され、電気抵抗を低くすることができる。また、第1銀焼成層25bにおいて気孔が少ないため、気孔のガスによる熱電変換素子11の劣化を抑えることができる。 In the thermoelectric conversion module 10 according to this embodiment configured as described above, the first insulating layer 21 and one surface of the first insulating layer 21 are formed on one end side of the thermoelectric conversion element 11. A first insulating circuit board including the first electrode portion 25 is disposed. The first electrode portion 25 is formed of a first aluminum layer 25a made of aluminum or an aluminum alloy, and a sintered body of silver laminated on the surface of the first aluminum layer 25a opposite to the first insulating layer 21. And a silver fired layer 25b. The thickness of the first aluminum layer 25a is in the range of 50 μm to 2000 μm. The first silver fired layer 25 b has a thickness of 5 μm or more and a porosity P of less than 10% at least in a region where the thermoelectric conversion element 11 is disposed. Therefore, the first silver fired layer 25 b becomes dense, and the thickness of the entire first electrode portion 25 is secured, so that the electric resistance can be reduced. In addition, since the number of pores in the first silver fired layer 25 b is small, the deterioration of the thermoelectric conversion element 11 due to the gas of the pores can be suppressed.
また、第1電極部25には、比較的軟らかい金属であるアルミニウム又はアルミニウム合金からなる第1アルミニウム層25aが設けられているので、銀や銅を第1絶縁層21に接合した基板を用いる場合と比較し、金属と第1絶縁層21との熱膨張差による第1絶縁層21の破損を抑制することが可能となる。
さらに、第1銀焼成層25bは、銀ペーストの焼成体とされているので、接合温度(焼成温度)を比較的低温条件とすることができ、接合時の熱電変換素子11の劣化を抑制することができる。
また、第1銀焼成層25b自体は、銀で構成されているので、500℃程度の作動温度でも、安定して作動させることができる。
Further, since the first electrode portion 25 is provided with the first aluminum layer 25 a made of aluminum or an aluminum alloy which is a relatively soft metal, when using a substrate in which silver or copper is joined to the first insulating layer 21. In comparison with the above, it is possible to suppress the breakage of the first insulating layer 21 due to the thermal expansion difference between the metal and the first insulating layer 21.
Furthermore, since the first silver fired layer 25b is a fired body of silver paste, the bonding temperature (baking temperature) can be set to a relatively low temperature condition, and the deterioration of the thermoelectric conversion element 11 at the time of bonding is suppressed. be able to.
Further, since the first silver baked layer 25b itself is made of silver, it can be stably operated even at an operating temperature of about 500.degree.
また、本実施形態においては、熱電変換素子11の他端側に、第2絶縁層31と、この第2絶縁層31の一方の面に形成された第2電極部35と、を備えた第2絶縁回路基板が配設されている。第2電極部35は、アルミニウム又はアルミニウム合金からなる第2アルミニウム層35aと、この第2アルミニウム層35aの第2絶縁層31とは反対側の面に積層された銀の焼成体からなる第2銀焼成層35bと、を有する。第2アルミニウム層35aは、厚さが50μm以上2000μm以下の範囲内とされている。第2銀焼成層35bは、少なくとも熱電変換素子11が配置された領域において、厚さが5μm以上とされ、気孔率Pが10%未満とされている。そのため、第2銀焼成層35bが緻密となり、かつ、第2電極部35全体の厚さが確保され、電気抵抗を低くすることができる。また、第2銀焼成層35bにおいて気孔が少ないため、気孔のガスによる熱電変換素子11の劣化を抑えることができる。 Further, in the present embodiment, a second insulating layer 31 and a second electrode portion 35 formed on one surface of the second insulating layer 31 are provided on the other end side of the thermoelectric conversion element 11. 2) An insulating circuit board is provided. The second electrode portion 35 is formed of a second aluminum layer 35 a made of aluminum or an aluminum alloy, and a second sintered body of silver stacked on the surface of the second aluminum layer 35 a opposite to the second insulating layer 31. And a silver fired layer 35 b. The thickness of the second aluminum layer 35 a is in the range of 50 μm to 2000 μm. The second silver fired layer 35 b has a thickness of 5 μm or more and a porosity P of less than 10% at least in a region where the thermoelectric conversion element 11 is disposed. Therefore, the second silver fired layer 35b becomes dense, and the thickness of the entire second electrode portion 35 is secured, so that the electric resistance can be reduced. Further, since the number of pores in the second silver fired layer 35 b is small, the deterioration of the thermoelectric conversion element 11 due to the gas of the pores can be suppressed.
また、第2電極部35には、比較的軟らかい金属であるアルミニウム又はアルミニウム合金からなる第2アルミニウム層35aが設けられているので、銀や銅を第2絶縁層31に接合した基板を用いる場合と比較し、金属と第2絶縁層31との熱膨張差による第2絶縁層31の破損を抑制することが可能となる。
さらに、第2銀焼成層35bは、銀ペーストの焼成体とされているので、接合温度(焼成温度)を比較的低温条件とすることができ、接合時の熱電変換素子11の劣化を抑制することができる。また、第2銀焼成層35b自体は、銀で構成されているので、500℃程度の作動温度でも安定して作動させることができる。
Further, since the second electrode portion 35 is provided with the second aluminum layer 35 a made of aluminum or an aluminum alloy which is a relatively soft metal, when using a substrate in which silver or copper is joined to the second insulating layer 31 In comparison with the above, it is possible to suppress the breakage of the second insulating layer 31 due to the thermal expansion difference between the metal and the second insulating layer 31.
Furthermore, since the second silver fired layer 35b is a fired body of silver paste, the bonding temperature (baking temperature) can be set to a relatively low temperature condition, and the deterioration of the thermoelectric conversion element 11 at the time of bonding is suppressed. be able to. Further, since the second silver baked layer 35b itself is made of silver, it can be stably operated even at an operating temperature of about 500.degree.
本実施形態である熱電変換モジュール10において、第1銀焼成層25b及び第2銀焼成層35bの厚さを20μm以上とした場合には、第1銀焼成層25b及び第2銀焼成層35bによって導電性が確保されることになり、複数の熱電変換素子11,11間の電気抵抗を低く抑えることが可能となる。また、第1銀焼成層25b及び第2銀焼成層35bに対してブラスト工程S04を実施する必要がなく、冷熱サイクルが負荷される用途にも良好に使用することができる。 In the thermoelectric conversion module 10 according to the present embodiment, when the thicknesses of the first silver fired layer 25 b and the second silver fired layer 35 b are 20 μm or more, the first silver fired layer 25 b and the second silver fired layer 35 b The conductivity is secured, and the electrical resistance between the plurality of thermoelectric conversion elements 11 can be suppressed to a low level. In addition, it is not necessary to carry out the blasting step S04 on the first silver fired layer 25b and the second silver fired layer 35b, and the first silver fired layer 25b and the second silver fired layer 35b can be favorably used for applications where a cooling and heating cycle is loaded.
本実施形態である熱電変換モジュールの製造方法によれば、熱電変換素子接合工程S06において、加圧荷重が20MPa以上50MPa以下の範囲内、加熱温度が300℃以上400℃以下とされているので、第1銀焼成層25b及び第2銀焼成層35bの少なくとも熱電変換素子11が配置された領域において、その厚さを5μm以上、かつ、気孔率Pを10%未満とすることができる。また、比較的低温条件とされているので、接合時(焼成時)における熱電変換素子11の劣化を抑制することができる。
また、銀ペースト塗布工程S02において、少なくとも第1アルミニウム層25a及び第2アルミニウム層35aと接する最下層にはガラス含有銀ペーストを塗布しているので、ガラス含有銀ペーストのガラス成分によって第1アルミニウム層25a及び第2アルミニウム層35aの表面に形成された酸化被膜を除去することができ、第1アルミニウム層25aと第1銀焼成層25b、及び、第2アルミニウム層35aと第2銀焼成層35bを確実に接合することができる。
According to the method for manufacturing a thermoelectric conversion module according to the present embodiment, the heating load is 300 ° C. or more and 400 ° C. or less in the range of 20 MPa to 50 MPa and the heating load in the thermoelectric conversion element bonding step S06. In a region where at least the thermoelectric conversion element 11 of the first silver fired layer 25 b and the second silver fired layer 35 b is disposed, the thickness can be 5 μm or more, and the porosity P can be less than 10%. Moreover, since it is set as comparatively low temperature conditions, deterioration of the thermoelectric conversion element 11 at the time of joining (at the time of baking) can be suppressed.
Further, in the silver paste application step S02, since the glass-containing silver paste is applied to the lowermost layer in contact with at least the first aluminum layer 25a and the second aluminum layer 35a, the first aluminum layer is formed by the glass component of the glass-containing silver paste. The oxide film formed on the surface of the second aluminum layer 35a can be removed, and the first aluminum layer 25a and the first silver fired layer 25b, and the second aluminum layer 35a and the second silver fired layer 35b can be removed. It can be joined reliably.
さらに、本実施形態において、例えば、第1銀焼成層25b及び第2銀焼成層35bの厚さが5μm以上20μm未満の場合に、第1銀焼成層25b及び第2銀焼成層35bに対してブラスト処理を行うブラスト工程S04を実施した場合には、第1銀焼成層25bと第1アルミニウム層25aとの間、及び、第2銀焼成層35bと第2アルミニウム層35aとの間の電気抵抗が低下し、第1電極部25及び第2電極部35における導電性を向上させることができる。 Furthermore, in the present embodiment, for example, when the thickness of the first silver fired layer 25 b and the second silver fired layer 35 b is 5 μm or more and less than 20 μm, the first silver fired layer 25 b and the second silver fired layer 35 b are used. When the blasting step S04 for blasting is performed, the electrical resistance between the first silver fired layer 25b and the first aluminum layer 25a and between the second silver fired layer 35b and the second aluminum layer 35a The conductivity of the first electrode portion 25 and the second electrode portion 35 can be improved.
また、第1銀焼成層25b及び第2銀焼成層35bの厚さを5μm以上としているので、ブラスト処理によって第1アルミニウム層25a及び第2アルミニウム層35aに第1銀焼成層25b及び第2銀焼成層35bの一部が埋め込まれることがなく、熱電変換素子11と第1電極部25、及び、熱電変換素子11と第2電極部35とを接合性を低下させることがない。
第1銀焼成層25b及び第2銀焼成層35bの厚さが20μm以上の場合には、これら第1銀焼成層25b及び第2銀焼成層35bにおいて導電性が十分に確保されることから、上述のブラスト工程S04を実施しなくてもよい。
Further, since the thickness of the first silver baked layer 25b and the second silver baked layer 35b is 5 μm or more, the first silver baked layer 25b and the second silver are formed on the first aluminum layer 25a and the second aluminum layer 35a by blasting. A part of the baked layer 35b is not embedded, and the bonding property of the thermoelectric conversion element 11 and the first electrode portion 25 and the thermoelectric conversion element 11 and the second electrode portion 35 is not reduced.
When the thickness of the first silver fired layer 25 b and the second silver fired layer 35 b is 20 μm or more, the conductivity is sufficiently ensured in the first silver fired layer 25 b and the second silver fired layer 35 b. The above-mentioned blasting step S04 may not be performed.
 以上、本発明の一実施形態について説明したが、本発明はこれに限定されることはなく、その発明の技術的思想を逸脱しない範囲で適宜変更可能である。 As mentioned above, although one Embodiment of this invention was described, this invention is not limited to this, It can change suitably in the range which does not deviate from the technical idea of the invention.
 例えば、本実施形態では、積層工程S05において、第1電極部25及び第2電極部35に熱電変換素子11を直接積層して固相拡散接合するものとして説明したが、これに限定されることはなく、第1電極部25及び第2電極部35の上に銀ペーストを塗布して乾燥させた後に、熱電変換素子11を配設し、銀ペーストを用いて接合してもよい。
 この場合、図5に示すように、第1電極部25と熱電変換素子11の間に第1接合層27が形成されるとともに第2電極部35と熱電変換素子11の間に第2接合層37が形成される。熱電変換素子接合工程S06において、上述の条件で加圧加熱処理が実施されることから、第1接合層27及び第2接合層37においても、気孔率は10%未満となる。
For example, in the present embodiment, the thermoelectric conversion element 11 is directly stacked on the first electrode portion 25 and the second electrode portion 35 in the stacking step S05 and described as solid phase diffusion bonding, but the present invention is limited thereto Alternatively, after the silver paste is applied onto the first electrode portion 25 and the second electrode portion 35 and dried, the thermoelectric conversion element 11 may be disposed and joined using the silver paste.
In this case, as shown in FIG. 5, the first bonding layer 27 is formed between the first electrode portion 25 and the thermoelectric conversion element 11, and the second bonding layer is formed between the second electrode portion 35 and the thermoelectric conversion element 11. 37 are formed. In the thermoelectric conversion element bonding step S06, since the pressure heating process is performed under the above-described conditions, the porosity of the first bonding layer 27 and the second bonding layer 37 is also less than 10%.
また、本実施形態では、熱電変換素子11の他端側に第2伝熱板30として第2絶縁回路基板を配設するものとして説明したが、これに限定されることはない。例えば、熱電変換素子11の他端側に第2電極部を配置するとともに絶縁基板を積層し、この絶縁基板を積層方向に押圧することによって、第2伝熱板を構成してもよい。 Further, although the second heat transfer plate 30 is disposed as the second heat transfer plate 30 on the other end side of the thermoelectric conversion element 11 in the present embodiment, the present invention is not limited to this. For example, the second heat transfer plate may be configured by disposing the second electrode portion on the other end side of the thermoelectric conversion element 11 and stacking the insulating substrate and pressing the insulating substrate in the stacking direction.
 本発明の有効性を確認するために行った確認実験について説明する。 A confirmation experiment conducted to confirm the effectiveness of the present invention will be described.
<実施例1>
上述した実施形態と同様の方法で熱電変換モジュールを作製した。
熱電変換素子として、3mm×3mm×5mmtのNi下地金電極付きハーフホイッスラー素子を用い、PN対を12対用いた。絶縁層として厚さ0.635mmの窒化アルミニウムを用いた。第1アルミニウム層及び第2アルミニウム層は純度99.99mass%、厚さ0.25mmの箔を接合することで形成し、第1銀焼成層の厚さ、熱電変換素子と第1銀焼成層との接合温度、接合荷重は表1記載の通りとした。
接合雰囲気は表1記載の通りとし、熱電変換素子と第1電極部との接合において、熱電変換素子と第1電極部とを直接積層し接合した。また、第2銀焼成層は第1銀焼成層と同様とし、第2電極部は第1電極部と同様とした。
Example 1
The thermoelectric conversion module was produced by the method similar to embodiment mentioned above.
A 12 mm pair of PN pairs was used as a thermoelectric conversion element, using a half-Heussler element with a Ni base gold electrode of 3 mm × 3 mm × 5 mmt. As the insulating layer, aluminum nitride having a thickness of 0.635 mm was used. The first aluminum layer and the second aluminum layer are formed by bonding a foil having a purity of 99.99 mass% and a thickness of 0.25 mm, and the thickness of the first silver fired layer, the thermoelectric conversion element and the first silver fired layer The joining temperature and joining load were as described in Table 1.
The bonding atmosphere was as described in Table 1, and the thermoelectric conversion element and the first electrode portion were directly laminated and bonded in the bonding of the thermoelectric conversion element and the first electrode portion. The second silver fired layer was similar to the first silver fired layer, and the second electrode portion was similar to the first electrode portion.
(電気抵抗)
 作製した熱電変換モジュールの第1伝熱板側の温度を450℃、第2伝熱板側の温度を50℃とし、電気抵抗(内部抵抗)を測定した(初期抵抗)。
また、熱電変換モジュールへ温度差を与え続け、時間経過に対する内部抵抗の初期値からの上昇率を計算し、24時間経過後の熱電変換モジュールの耐久性を評価した(内部抵抗上昇率)。
内部抵抗は、上述のような温度差を与えた状態で、熱電変換モジュールの出力端子間に可変抵抗を設置し、抵抗を変化させて電流値と電圧値を測定し、横軸を電流値、縦軸を電圧値としたグラフを作成し、このグラフにおいて、電流値が0のときの電圧値を開放電圧とし、電圧値が0のときの電流値を最大電流とし、このグラフにおいて、開放電圧と最大電流を直線で結び、その直線の傾きを熱電変換モジュールの全体の内部抵抗とし、その値をPN対の数で割った値を、内部抵抗とした。評価結果を表1に示す。
(Electric resistance)
The temperature on the first heat transfer plate side of the thermoelectric conversion module produced was 450 ° C., the temperature on the second heat transfer plate side was 50 ° C., and the electrical resistance (internal resistance) was measured (initial resistance).
In addition, the temperature difference was continuously applied to the thermoelectric conversion module, the rate of increase from the initial value of the internal resistance with respect to time elapsed was calculated, and the durability of the thermoelectric conversion module after 24 hours elapsed was evaluated (internal resistance increase rate).
As for internal resistance, a variable resistance is installed between the output terminals of the thermoelectric conversion module with the temperature difference as described above, and the resistance is changed to measure the current value and the voltage value. Create a graph with the voltage value on the vertical axis. In this graph, the voltage value when the current value is 0 is the open circuit voltage, and the current value when the voltage value is 0 is the maximum current. The maximum current is linearly connected, and the slope of the straight line is taken as the internal resistance of the entire thermoelectric conversion module, and the value divided by the number of PN pairs is taken as the internal resistance. The evaluation results are shown in Table 1.
(第1銀焼成層の気孔率及び厚さ)
得られた各熱電変換モジュールの第1銀焼成層の断面を機械研磨した後、Arイオンエッチング(日本電子株式会社製クロスセクションポリッシャSM-09010)を行い、レーザ顕微鏡(株式会社キーエンス製VKX-200)を用いて断面観察を実施した。そして、得られた画像を二値化処理し、白色部をAg、黒色部を気孔とした。二値化した画像から、黒色部の面積を求め、以下に示す式で気孔率を算出した。5箇所の断面で測定し、各断面の気孔率を算術平均して第1銀焼成層の気孔率とした。気孔率が10%以上の場合を「B」、10%未満の場合を「A」と評価した。
 気孔率P(%)=黒色部(気孔)面積/第1銀焼成層の観察面積×100
第1銀焼成層の厚さは、上記レーザ顕微鏡を用いて測定した。測定結果を表1に示す。
(Porosity and thickness of the first silver fired layer)
After mechanically polishing the cross section of the first silver baked layer of each of the obtained thermoelectric conversion modules, Ar ion etching (cross section polisher SM-09010 manufactured by Nippon Denshi Co., Ltd.) is performed, and a laser microscope (VKX-200 manufactured by Keyence Corporation) is performed. Cross-sectional observation was performed using. Then, the obtained image was subjected to a binarization treatment, and the white portion was made Ag, and the black portion was made pores. The area of the black part was determined from the binarized image, and the porosity was calculated by the following equation. It measured by the cross section of five places, the porosity of each cross section was carried out arithmetic mean, and it was set as the porosity of the 1st silver baking layer. The case where the porosity was 10% or more was evaluated as "B", and the case less than 10% was evaluated as "A".
Porosity P (%) = black area (pores) area / observed area of first silver fired layer × 100
The thickness of the first silver fired layer was measured using the above laser microscope. The measurement results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 第1銀焼成層の厚さが5μm未満となるように第1銀焼成層を形成した比較例1では、第1銀焼成層と熱電変換素子とを接合することができなかった。これは、第1銀焼成層が第1アルミニウム層に埋め込まれてしまったからと考えられる。
加熱温度が低い比較例2では、気孔率が10%を超えていたため、内部抵抗上昇率が高かった。
加圧荷重が20MPa未満であった比較例3では、気孔率が高くなっており、初期抵抗が高かった。そのため、内部抵抗上昇率は測定しなかった。
接合温度が400℃を超えた比較例4では、第1アルミニウム層が潰れてしまった。よって、比較例4では、気孔率及び電気抵抗については評価しなかった。
接合荷重が50MPaを超えた比較例5では、第1絶縁層に割れが生じた。よって、比較例5では、気孔率及び電気抵抗については評価しなかった。
 一方、本発明例1-3においては、第1銀焼成層の厚さが5μm以上、気孔率が10%未満であり、内部抵抗上昇率も低い熱電変換モジュールが得られることが分かった。
In Comparative Example 1 in which the first silver fired layer was formed such that the thickness of the first silver fired layer was less than 5 μm, the first silver fired layer and the thermoelectric conversion element could not be joined. It is considered that this is because the first silver baked layer has been embedded in the first aluminum layer.
In Comparative Example 2 where the heating temperature was low, the porosity was over 10%, so the rate of increase in internal resistance was high.
In Comparative Example 3 in which the pressing load was less than 20 MPa, the porosity was high and the initial resistance was high. Therefore, the rate of increase in internal resistance was not measured.
In Comparative Example 4 in which the bonding temperature exceeded 400 ° C., the first aluminum layer was crushed. Therefore, in Comparative Example 4, the porosity and the electrical resistance were not evaluated.
In Comparative Example 5 in which the bonding load exceeded 50 MPa, cracking occurred in the first insulating layer. Therefore, in Comparative Example 5, the porosity and the electrical resistance were not evaluated.
On the other hand, it was found that in Inventive Example 1-3, a thermoelectric conversion module was obtained in which the thickness of the first silver fired layer is 5 μm or more, the porosity is less than 10%, and the internal resistance increase rate is also low.
<実施例2>
 実施例1と同様の方法により、第1銀焼成層の厚さを表2に示すように変更するとともに、ブラスト処理の有無を変更し、各種熱電変換モジュールを作製した。熱電変換素子の接合条件としては、接合雰囲気を真空、加圧荷重を30MPa、加熱温度を350℃とした。
実施例1と同様の方法により、第1銀焼成層の気孔率を測定した。
Example 2
By the same method as in Example 1, the thickness of the first silver fired layer was changed as shown in Table 2, and the presence or absence of the blast treatment was changed to produce various thermoelectric conversion modules. As a bonding condition of the thermoelectric conversion element, the bonding atmosphere was vacuum, the pressure load was 30 MPa, and the heating temperature was 350 ° C.
The porosity of the first silver fired layer was measured in the same manner as in Example 1.
 また、得られた熱電変換モジュールに対して、以下の条件で冷熱サイクルを負荷した。
冷熱サイクルは、大気下で、高温側に150℃×5分←→450℃×5分の50サイクルを与え、低温側は80℃に固定して行った。そして、実施例1と同様の方法により、初期の内部抵抗、及び、冷熱サイクル負荷後の内部抵抗上昇率を求めた。評価結果を表2に示す。冷熱サイクル負荷後の内部抵抗上昇率は、上昇率が1%未満の場合を「A」、上昇率が1%以上の場合を「B」と評価した。
Moreover, the cooling-heat cycle was loaded on the following conditions with respect to the obtained thermoelectric conversion module.
The cooling and heating cycle was performed under the atmosphere, giving 50 cycles of 150 ° C. × 5 minutes ← → 450 ° C. × 5 minutes on the high temperature side and fixing the temperature on the low temperature side at 80 ° C. Then, in the same manner as in Example 1, the initial internal resistance and the rate of increase in internal resistance after the thermal cycle load were determined. The evaluation results are shown in Table 2. The internal resistance increase rate after cold thermal cycle load was evaluated as “A” when the increase rate was less than 1%, and “B” when the increase rate was 1% or more.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 本発明例1の熱電変換モジュールに対し、冷熱サイクルを負荷した場合、冷熱サイクル後の内部抵抗上昇率が1%を超えた。これは、第1銀焼成層へのブラスト処理を行った熱電変換モジュールは、一定の温度下で使用した場合には、内部抵抗の上昇率を低く抑えることができるが、高温と低温が繰り返される環境下で利用した場合、内部抵抗が上昇してしまうことを意味している。 When a thermal cycle was loaded on the thermoelectric conversion module of Inventive Example 1, the rate of increase in internal resistance after the thermal cycle exceeded 1%. This is because the thermoelectric conversion module subjected to the blast treatment to the first silver fired layer can suppress the rate of increase in internal resistance low when used under a constant temperature, but high temperature and low temperature are repeated When used under environment, it means that internal resistance will rise.
 一方、第1銀焼成層へのブラスト処理を行わなかった本発明例11~14の熱電変換モジュールでは、冷熱サイクルを負荷しても内部抵抗の上昇率を低く抑えることができた。これは、第1銀焼成層へのブラスト処理を行わなかった熱電変換モジュールは、高温と低温が繰り返される環境下での利用が有用であることを意味する。
 また、銀焼成層の厚さを20μm以上100μm以下の範囲とすることで、初期の内部抵抗を低く出来るとともに、冷熱サイクル後の内部抵抗の上昇率を低く抑えることができることが確認された。
On the other hand, in the thermoelectric conversion modules of the invention examples 11 to 14 in which the blast treatment was not performed on the first silver fired layer, the increase rate of the internal resistance could be suppressed low even if the cooling thermal cycle was loaded. This means that the thermoelectric conversion module which has not been subjected to blasting to the first silver fired layer is useful in an environment where high and low temperatures are repeated.
It was also confirmed that by setting the thickness of the silver fired layer in the range of 20 μm to 100 μm, the initial internal resistance can be lowered, and the rate of increase in the internal resistance after cooling and heating cycles can be suppressed low.
 本発明によれば、電極部における電気抵抗が低く、かつ、接合時における熱電変換素子の劣化が抑えられており、熱電変換効率に優れた熱電変換モジュール、及び、熱電変換モジュールの製造方法を提供することができる。 According to the present invention, the present invention provides a thermoelectric conversion module which has low electric resistance in the electrode portion and suppresses deterioration of the thermoelectric conversion element at the time of bonding, and which has excellent thermoelectric conversion efficiency, and a method of manufacturing the thermoelectric conversion module. can do.
10 熱電変換モジュール
11 熱電変換素子
20 第1伝熱板(第1絶縁回路基板)
21 第1絶縁層 
25 第1電極部
25a 第1アルミニウム層
25b 第1銀焼成層
30 第2伝熱板(第2絶縁回路基板)
31 第2絶縁層 
35 第2電極部
35a 第2アルミニウム層
35b 第2銀焼成層
10 thermoelectric conversion module 11 thermoelectric conversion element 20 first heat transfer plate (first insulating circuit board)
21 first insulating layer
25 first electrode portion 25a first aluminum layer 25b first silver fired layer 30 second heat transfer plate (second insulated circuit board)
31 2nd insulating layer
35 second electrode portion 35a second aluminum layer 35b second silver fired layer

Claims (10)

  1.  複数の熱電変換素子と、これら熱電変換素子の一端側に配設された第1電極部及び他端側に配設された第2電極部と、を有し、前記第1電極部及び前記第2電極部を介して複数の前記熱電変換素子が電気的に接続してなる熱電変換モジュールであって、
    前記熱電変換素子の一端側には、第1絶縁層と、この第1絶縁層の一方の面に形成された前記第1電極部と、を備えた第1絶縁回路基板が配設されており、
    前記第1電極部は、アルミニウム又はアルミニウム合金からなる第1アルミニウム層と、この第1アルミニウム層の前記第1絶縁層とは反対側の面に形成された銀の焼成体からなる第1銀焼成層と、を有し、
    前記第1アルミニウム層は、厚さが50μm以上2000μm以下の範囲内とされ、
    前第1銀焼成層は、少なくとも前記熱電変換素子が配置された領域において、厚さが5μm以上とされ、気孔率が10%未満とされていることを特徴とする熱電変換モジュール。
    A plurality of thermoelectric conversion elements, a first electrode portion disposed on one end side of the thermoelectric conversion elements, and a second electrode portion disposed on the other end side; the first electrode portion and the first electrode portion A thermoelectric conversion module in which a plurality of the thermoelectric conversion elements are electrically connected via a two-electrode unit,
    A first insulating circuit board including a first insulating layer and the first electrode portion formed on one surface of the first insulating layer is disposed on one end side of the thermoelectric conversion element. ,
    Said 1st electrode part is 1st silver baking which consists of the 1st aluminum layer which consists of aluminum or aluminum alloys, and the sintered body of silver formed in the surface on the opposite side to said 1st insulating layer of this 1st aluminum layer With layers,
    The first aluminum layer has a thickness in the range of 50 μm to 2000 μm,
    A thermoelectric conversion module characterized in that the first first silver fired layer has a thickness of 5 μm or more and a porosity of less than 10% at least in a region where the thermoelectric conversion element is disposed.
  2. 前記第1銀焼成層の厚さが20μm以上とされていることを特徴とする請求項1に記載の熱電変換モジュール。 The thickness of the said 1st silver baking layer is 20 micrometers or more, The thermoelectric conversion module of Claim 1 characterized by the above-mentioned.
  3. 前記熱電変換素子の他端側に、第2絶縁層と、この第2絶縁層の一方の面に形成された前記第2電極部と、を備えた第2絶縁回路基板が配設されており、
    前記第2電極部は、アルミニウム又はアルミニウム合金からなる第2アルミニウム層と、この第2アルミニウム層の前記第2絶縁層とは反対側の面に形成された銀の焼成体からなる第2銀焼成層と、を有し、
    前記第2アルミニウム層は、厚さが50μm以上2000μm以下の範囲内とされ、
    前第2銀焼成層は、少なくとも前記熱電変換素子が配置された領域において、厚さが5μm以上とされ、気孔率が10%未満とされていることを特徴とする請求項1又は請求項2に記載の熱電変換モジュール。
    A second insulating circuit board including a second insulating layer and the second electrode portion formed on one surface of the second insulating layer is disposed on the other end side of the thermoelectric conversion element. ,
    The second electrode portion includes a second aluminum layer formed of aluminum or an aluminum alloy, and a second silver portion formed of a fired body of silver formed on the surface of the second aluminum layer opposite to the second insulating layer. With layers,
    The second aluminum layer has a thickness in the range of 50 μm to 2000 μm.
    The second pre-sintered silver layer has a thickness of 5 μm or more and a porosity of less than 10% at least in a region where the thermoelectric conversion element is disposed. Thermoelectric conversion module described in.
  4. 前記第2銀焼成層の厚さが20μm以上とされていることを特徴とする請求項3に記載の熱電変換モジュール。 The thickness of the said 2nd silver baking layer is 20 micrometers or more, The thermoelectric conversion module of Claim 3 characterized by the above-mentioned.
  5. 複数の熱電変換素子と、これら熱電変換素子の一端側に配設された第1電極部及び他端側に配設された第2電極部と、を有し、前記第1電極部及び前記第2電極部を介して複数の前記熱電変換素子が電気的に接続してなる熱電変換モジュールの製造方法であって、
    前記熱電変換モジュールは、前記熱電変換素子の一端側に、第1絶縁層と、この第1絶縁層の一方の面に形成された前記第1電極部と、を備えた第1絶縁回路基板が配設されており、前記第1電極部は、アルミニウム又はアルミニウム合金からなる第1アルミニウム層と、この第1アルミニウム層の前記第1絶縁層とは反対側の面に積層された銀の焼成体からなる第1銀焼成層と、を有しており、
    前記第1アルミニウム層の一方の面側に、銀を含む銀ペーストを5μmを超える厚さで塗布する銀ペースト塗布工程と、
    前記銀ペーストを焼成して、前記第1アルミニウム層と前記第1銀焼成層を有する前記第1電極部を形成する焼成工程と、
    前記熱電変換素子の一端側に前記第1電極部を介して前記第1絶縁層を積層する積層工程と、
     前記熱電変換素子と前記第1絶縁層とを積層方向に加圧するとともに加熱して、前記熱電変換素子を接合する熱電変換素子接合工程と、
    を有し、
    前記銀ペースト塗布工程においては、少なくとも前記第1アルミニウム層と接する最下層には、ガラス含有銀ペーストを塗布し、
     前記熱電変換素子接合工程においては、加圧荷重が20MPa以上50MPa以下の範囲内、加熱温度が300℃以上400℃以下とされており、
    前記第1銀焼成層の少なくとも前記熱電変換素子が配置された領域において、厚さが5μm以上とされ、気孔率が10%未満とされることを特徴とする熱電変換モジュールの製造方法。
    A plurality of thermoelectric conversion elements, a first electrode portion disposed on one end side of the thermoelectric conversion elements, and a second electrode portion disposed on the other end side; the first electrode portion and the first electrode portion It is a manufacturing method of the thermoelectric conversion module formed by electrically connecting a plurality of the above-mentioned thermoelectric conversion elements via two electrode parts,
    The thermoelectric conversion module is a first insulating circuit board including a first insulating layer on one end side of the thermoelectric conversion element, and the first electrode portion formed on one surface of the first insulating layer. A sintered body of silver disposed on a surface of the first electrode portion, the first electrode portion being formed of a first aluminum layer made of aluminum or an aluminum alloy, and a surface of the first aluminum layer opposite to the first insulating layer. And a first silver fired layer comprising
    A silver paste application step of applying a silver paste containing silver to a thickness of more than 5 μm on one side of the first aluminum layer;
    A firing step of firing the silver paste to form the first electrode portion having the first aluminum layer and the first silver fired layer;
    Stacking the first insulating layer on one end side of the thermoelectric conversion element via the first electrode portion;
    A thermoelectric conversion element bonding step of pressing and heating the thermoelectric conversion element and the first insulating layer in the stacking direction and bonding the thermoelectric conversion elements;
    Have
    In the silver paste application step, a glass-containing silver paste is applied to at least the lowermost layer in contact with the first aluminum layer,
    In the thermoelectric conversion element bonding step, the pressure load is in the range of 20 MPa to 50 MPa, and the heating temperature is 300 ° C. to 400 ° C.,
    A method of manufacturing a thermoelectric conversion module, wherein a thickness is 5 μm or more and a porosity is less than 10% in a region where at least the thermoelectric conversion element of the first silver fired layer is disposed.
  6. 前記焼成工程後に、前記第1銀焼成層に対してブラスト処理を行うブラスト工程を備えていることを特徴とする請求項5に記載の熱電変換モジュールの製造方法。 The method for manufacturing a thermoelectric conversion module according to claim 5, further comprising a blasting step of blasting the first silver fired layer after the firing step.
  7.  前記積層工程では、前記第1電極部の上に銀ペーストを塗布して乾燥させた後に、前記熱電変換素子を配設することを特徴とする請求項5又は請求項6に記載の熱電変換モジュールの製造方法。 The thermoelectric conversion module according to claim 5 or 6, wherein the thermoelectric conversion element is disposed after applying and drying a silver paste on the first electrode portion in the laminating step. Manufacturing method.
  8. 前記熱電変換モジュールは、前記熱電変換素子の他端側に、第2絶縁層と、この第2絶縁層の一方の面に形成された前記第2電極部と、を備えた第2絶縁回路基板が配設されており、前記第2電極部は、アルミニウム又はアルミニウム合金からなる第2アルミニウム層と、この第2アルミニウム層の前記第2絶縁層とは反対側の面に積層された銀の焼成体からなる第2銀焼成層と、を有し、
    前記銀ペースト塗布工程では、前記第1アルミニウム層及び前記第2アルミニウム層の一方の面に、銀を含む銀ペーストを5μm以上の厚さで塗布するともに、少なくとも前記第1アルミニウム層及び前記第2アルミニウム層と接する最下層には、ガラス含有銀ペーストを塗布し、
    前記焼成工程では、前記銀ペーストを焼成し、前記第1アルミニウム層と前記第1銀焼成層を有する前記第1電極部、及び、前記第2アルミニウム層と前記第2銀焼成層を有する前記第2電極部を形成し、
    前記積層工程では、前記熱電変換素子の一端側に前記第1電極部を介して前記第1絶縁層を積層するとともに前記熱電変換素子の他端側に前記第2電極部を介して前記第2絶縁層を積層し、
    前記熱電変換素子接合工程では、前記第1絶縁層と前記熱電変換素子と前記第2絶縁層を、積層方向に加圧するとともに加熱して、前記第1電極部と前記熱電変換素子、及び、前記熱電変換素子と前記第2電極部を接合し、
     前記熱電変換素子接合工程においては、加圧荷重が20MPa以上50MPa以下の範囲内、加熱温度が300℃以上400℃以下とされており、前記第1銀焼成層及び前記第2銀焼成層の少なくとも前記熱電変換素子が配置された領域において、厚さが5μm以上とされ、気孔率が10%未満とされることを特徴とする請求項5から請求項7のいずれか一項に記載の熱電変換モジュールの製造方法。
    The said thermoelectric conversion module is a 2nd insulated circuit board provided with the 2nd insulating layer and the said 2nd electrode part formed in one side of this 2nd insulating layer in the other end side of the said thermoelectric conversion element Is disposed, and the second electrode portion is formed of a second aluminum layer made of aluminum or an aluminum alloy, and a firing of silver stacked on the surface of the second aluminum layer opposite to the second insulating layer. A second silver fired layer consisting of a body;
    In the silver paste application step, a silver paste containing silver is applied with a thickness of 5 μm or more on one surface of the first aluminum layer and the second aluminum layer, and at least the first aluminum layer and the second Apply the glass-containing silver paste to the lowermost layer in contact with the aluminum layer,
    In the firing step, the silver paste is fired, and the first electrode portion including the first aluminum layer and the first silver fired layer, and the second electrode layer including the second aluminum layer and the second silver fired layer. 2 form the electrode part,
    In the stacking step, the first insulating layer is stacked on the one end side of the thermoelectric conversion element via the first electrode portion, and the second insulating portion is stacked on the other end side of the thermoelectric conversion element via the second electrode portion. Stack insulating layers,
    In the thermoelectric conversion element bonding step, the first insulating layer, the thermoelectric conversion element, and the second insulating layer are pressurized and heated in the stacking direction, and the first electrode portion, the thermoelectric conversion element, and Joining the thermoelectric conversion element and the second electrode portion,
    In the thermoelectric conversion element bonding step, the pressure load is in the range of 20 MPa to 50 MPa, and the heating temperature is 300 ° C. to 400 ° C., and at least at least the first silver baking layer and the second silver baking layer The thermoelectric conversion according to any one of claims 5 to 7, wherein a thickness is 5 μm or more and a porosity is less than 10% in a region where the thermoelectric conversion element is disposed. Module manufacturing method.
  9. 前記焼成工程後に、前記第1銀焼成層及び前記第2銀焼成層に対してブラスト処理を行うブラスト工程を備えていることを特徴とする請求項8に記載の熱電変換モジュールの製造方法。 The manufacturing method of the thermoelectric conversion module according to claim 8, further comprising a blasting step of blasting the first silver baking layer and the second silver baking layer after the baking step.
  10. 前記積層工程では、前記第2電極部の上に銀ペーストを塗布して乾燥させた後に、前記熱電変換素子を配設することを特徴とする請求項8又は請求項9に記載の熱電変換モジュールの製造方法。 The thermoelectric conversion module according to claim 8 or 9, wherein the thermoelectric conversion element is disposed after applying and drying a silver paste on the second electrode portion in the laminating step. Manufacturing method.
PCT/JP2018/024828 2017-07-05 2018-06-29 Thermoelectric conversion module and method for producing thermoelectric conversion module WO2019009202A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP18828546.4A EP3651217A4 (en) 2017-07-05 2018-06-29 Thermoelectric conversion module and method for producing thermoelectric conversion module
US16/608,469 US20210111327A1 (en) 2017-07-05 2018-06-29 Thermoelectric conversion module and method for producing thermoelectric conversion module
CN201880036600.XA CN110710008B (en) 2017-07-05 2018-06-29 Thermoelectric conversion module and method for manufacturing thermoelectric conversion module
KR1020197034156A KR20200026797A (en) 2017-07-05 2018-06-29 Thermoelectric Conversion Module and Manufacturing Method of Thermoelectric Conversion Module

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2017-132050 2017-07-05
JP2017132050 2017-07-05
JP2018-118764 2018-06-22
JP2018118764A JP7163631B2 (en) 2017-07-05 2018-06-22 Thermoelectric conversion module and method for manufacturing thermoelectric conversion module

Publications (1)

Publication Number Publication Date
WO2019009202A1 true WO2019009202A1 (en) 2019-01-10

Family

ID=64951025

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/024828 WO2019009202A1 (en) 2017-07-05 2018-06-29 Thermoelectric conversion module and method for producing thermoelectric conversion module

Country Status (2)

Country Link
TW (1) TWI752242B (en)
WO (1) WO2019009202A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021079462A1 (en) * 2019-10-24 2021-04-29 三菱電機株式会社 Thermoelectric conversion element module and method for producing thermoelectric conversion element module

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07321378A (en) * 1994-05-27 1995-12-08 Matsushita Electric Ind Co Ltd Thermo-element and its manufacture
JP2012231025A (en) 2011-04-26 2012-11-22 Toto Ltd Thermoelectric conversion module
JP2013197265A (en) 2012-03-19 2013-09-30 Toto Ltd Thermoelectric conversion module
JP2014236106A (en) * 2013-06-03 2014-12-15 ヤマハ株式会社 Thermoelectric conversion component
JP2017059823A (en) * 2015-09-18 2017-03-23 三菱マテリアル株式会社 Thermoelectric conversion module and thermoelectric conversion device
JP2017069555A (en) * 2015-09-28 2017-04-06 三菱マテリアル株式会社 Thermoelectric conversion module and thermoelectric conversion device
JP2017132050A (en) 2016-01-25 2017-08-03 ブラザー工業株式会社 Liquid discharge device
JP2018118764A (en) 2017-01-26 2018-08-02 キョーラク株式会社 Delamination container

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100595940C (en) * 2004-12-20 2010-03-24 株式会社东芝 Thermoelectric conversion module, heat exchanger using same, and thermoelectric power generating system
JP2009099686A (en) * 2007-10-15 2009-05-07 Sumitomo Chemical Co Ltd Thermoelectric conversion module

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07321378A (en) * 1994-05-27 1995-12-08 Matsushita Electric Ind Co Ltd Thermo-element and its manufacture
JP2012231025A (en) 2011-04-26 2012-11-22 Toto Ltd Thermoelectric conversion module
JP2013197265A (en) 2012-03-19 2013-09-30 Toto Ltd Thermoelectric conversion module
JP2014236106A (en) * 2013-06-03 2014-12-15 ヤマハ株式会社 Thermoelectric conversion component
JP2017059823A (en) * 2015-09-18 2017-03-23 三菱マテリアル株式会社 Thermoelectric conversion module and thermoelectric conversion device
JP2017069555A (en) * 2015-09-28 2017-04-06 三菱マテリアル株式会社 Thermoelectric conversion module and thermoelectric conversion device
JP2017132050A (en) 2016-01-25 2017-08-03 ブラザー工業株式会社 Liquid discharge device
JP2018118764A (en) 2017-01-26 2018-08-02 キョーラク株式会社 Delamination container

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3651217A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021079462A1 (en) * 2019-10-24 2021-04-29 三菱電機株式会社 Thermoelectric conversion element module and method for producing thermoelectric conversion element module

Also Published As

Publication number Publication date
TWI752242B (en) 2022-01-11
TW201917917A (en) 2019-05-01

Similar Documents

Publication Publication Date Title
JP6750404B2 (en) Thermoelectric conversion module, thermoelectric conversion device, and method for manufacturing thermoelectric conversion module
JP7163631B2 (en) Thermoelectric conversion module and method for manufacturing thermoelectric conversion module
CN111433923B (en) Insulating heat transfer substrate, thermoelectric conversion module, and method for manufacturing insulating heat transfer substrate
JP7196432B2 (en) Thermoelectric conversion module and method for manufacturing thermoelectric conversion module
CN108028306B (en) Thermoelectric conversion module and thermoelectric conversion device
WO2019009202A1 (en) Thermoelectric conversion module and method for producing thermoelectric conversion module
WO2019244692A1 (en) Thermoelectric conversion module and method for manufacturing thermoelectric conversion module
JP5218285B2 (en) Thermoelectric conversion material
JP7248091B2 (en) Thermoelectric conversion module and method for manufacturing thermoelectric conversion module
WO2022168777A1 (en) Thermoelectric conversion module, and method for producing thermoelectric conversion module
WO2019004429A1 (en) Thermoelectric conversion module and method for manufacturing thermoelectric conversion module
CN116784019A (en) Thermoelectric conversion module and method for manufacturing thermoelectric conversion module
WO2019111997A1 (en) Insulating heat-transfer substrate, thermoelectric conversion module, and method for manufacturing insulating heat-transfer substrate
JP2012124480A (en) Thermoelectric element and manufacturing method for the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18828546

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20197034156

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018828546

Country of ref document: EP

Effective date: 20200205