WO2019009195A1 - Consequent motor - Google Patents

Consequent motor Download PDF

Info

Publication number
WO2019009195A1
WO2019009195A1 PCT/JP2018/024784 JP2018024784W WO2019009195A1 WO 2019009195 A1 WO2019009195 A1 WO 2019009195A1 JP 2018024784 W JP2018024784 W JP 2018024784W WO 2019009195 A1 WO2019009195 A1 WO 2019009195A1
Authority
WO
WIPO (PCT)
Prior art keywords
current
coils
coil
coil group
harmonic
Prior art date
Application number
PCT/JP2018/024784
Other languages
French (fr)
Japanese (ja)
Inventor
智哉 上田
祐輔 牧野
Original Assignee
日本電産株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電産株式会社 filed Critical 日本電産株式会社
Priority to CN201890000924.3U priority Critical patent/CN211321250U/en
Publication of WO2019009195A1 publication Critical patent/WO2019009195A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2706Inner rotors
    • H02K1/272Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis
    • H02K1/274Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets
    • H02K1/2746Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets the rotor consisting of magnets arranged with the same polarity, e.g. consequent pole type
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/04Windings characterised by the conductor shape, form or construction, e.g. with bar conductors
    • H02K3/28Layout of windings or of connections between windings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/05Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation specially adapted for damping motor oscillations, e.g. for reducing hunting
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P25/00Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details
    • H02P25/16Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the circuit arrangement or by the kind of wiring
    • H02P25/22Multiple windings; Windings for more than three phases
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters

Definitions

  • the present invention relates to a consistent type motor.
  • Japanese Patent No. 5431 886 discloses a motor provided with a rotor of a consistent pole type structure.
  • a motor provided with a rotor of a consistent pole type structure.
  • a plurality of magnets of one magnetic pole are arranged in the circumferential direction of the rotor core.
  • a salient pole integrally formed on the rotor core is disposed between the magnets, and the salient pole functions as the other magnetic pole.
  • the magnetic flux density of the teeth facing the magnet is smaller than the magnetic flux density of the teeth facing the salient pole, so there is a possibility that the motor may vibrate due to the magnetic unbalance of the rotor. .
  • the motor of Japanese Patent No. 5431 886 comprises current supply means for supplying three-phase excitation current to the coils of the stator.
  • the current supply means implements different current control for each coil group to which three-phase excitation current is supplied. Thereby, the magnitude of the electromagnetic force acting on the teeth is adjusted between the coil groups.
  • the magnetic unbalance of the rotor is suppressed to reduce the motor's low vibration. Is being promoted.
  • the present invention has been made in view of the above problems, and it is an object of the present invention to reduce the magnetic unbalance and realize the low vibration of the motor while suppressing the current control from becoming complicated in the consistent motor. There is.
  • An exemplary consistent motor includes an armature having a plurality of coils arranged in a circumferential direction, and a plurality of magnetic poles and a plurality of pseudo poles alternately arranged in a circumferential direction.
  • a power supply unit that supplies a three-phase alternating current to the plurality of coils, and a control unit that controls an output from the power supply unit.
  • the number of the plurality of coils is a multiple of six.
  • the number of the plurality of magnetic poles is an odd number of 3 or more.
  • the control unit controls a first inverter for controlling a current supplied to a first coil group among the plurality of coils, and a second coil group radially facing the first coil group among the plurality of coils.
  • a second inverter that controls the supplied current.
  • a first harmonic current including a first harmonic current as a main wave current is superimposed on the fundamental wave current of the d-axis current of the first coil group by the first inverter.
  • a second harmonic current including a first harmonic current as a main wave current is superimposed on the fundamental wave current of the d-axis current of the second coil group by the second inverter. The peak phases of the three-phase alternating current supplied to the first coil group and the second coil group are shifted, and the zero cross positions are the same.
  • FIG. 1 is a cross-sectional view of a consistent motor 1 according to an exemplary embodiment of the present invention.
  • the corresponding motor 1 is simply referred to as "motor 1".
  • the motor 1 is an inner rotor type brushless motor.
  • the circumferential direction about the central axis J1 perpendicular to the paper surface in FIG. 1 is simply referred to as “circumferential direction”, and the radial direction about the central axis J1 is simply referred to as “radial direction”. .
  • the motor 1 includes an armature 2, a rotor 3 and a control unit 4.
  • the armature 2 includes a core back portion 21, a plurality of teeth 22, and a plurality of coils 24.
  • the core back portion 21 is a substantially annular portion centered on the central axis J1.
  • the plurality of teeth 22 radially extend radially inward from the core back portion 21.
  • the plurality of teeth 22 are arranged at substantially equal angular intervals in the circumferential direction.
  • the core back portion 21 and the plurality of teeth 22 are, for example, metal members of one connection.
  • the plurality of coils 24 are formed by winding a wire around the plurality of teeth 22 on an insulator (not shown) covering the plurality of teeth 22. Each coil 24 is a concentrated winding coil wound around one tooth 22. The plurality of coils 24 are arranged at substantially equal angular intervals in the circumferential direction. The plurality of coils 24 are three-phase coils. The number of coils 24 is a multiple of 6, preferably 12 or more. In the example shown in FIG. 1, the number of the plurality of coils 24 is twelve.
  • the rotor 3 is disposed radially inward of the armature 2.
  • the rotor 3 includes a shaft 31, a rotor core 32, and a plurality of magnetic poles 33.
  • the shaft 31 is a substantially cylindrical member centered on the central axis J1.
  • the rotor core 32 is a substantially annular member made of magnetic metal.
  • the rotor core 32 is connected to the outer peripheral surface of the shaft 31.
  • the plurality of magnetic poles 33 are magnets fixed to the outer peripheral surface of the rotor core 32.
  • the radially outer poles are the same.
  • the radially outer pole of each magnetic pole 33 is an N pole.
  • the plurality of magnetic poles 33 are arranged at substantially equal angular intervals in the circumferential direction while being separated from each other.
  • the number of the plurality of magnetic poles 33 is an odd number of 3 or more. In the example shown in FIG. 1, the number of the plurality of magnetic poles 33 is five.
  • the motor 1 is a 10P12S motor.
  • the rotor core 32 includes a plurality of convex portions 34 located between the plurality of magnetic poles 33 respectively.
  • Each convex portion 34 is a portion that protrudes outward in the radial direction from the outer peripheral surface of the rotor core 32.
  • the plurality of convex portions 34 are located at substantially the same position in the radial direction as the plurality of magnetic poles 33 and function as pseudo magnetic poles. In the following description, the convex portion 34 is referred to as “pseudo pole 34”.
  • the rotor 3 is a consistent type rotor in which a plurality of magnetic poles 33 and a plurality of pseudo poles 34 are alternately arranged in the circumferential direction.
  • the pseudo pole 34 is also called a salient pole.
  • a three-phase alternating current is supplied from the power supply unit 5 to the plurality of coils 24 of the armature 2 so that torque is generated between the plurality of coils 24 and the plurality of magnetic poles 33 and the plurality of pseudo poles 34. Occur.
  • the rotor 3 rotates about the central axis J1.
  • the control unit 4 controls the output from the power supply unit 5. In other words, the control unit 4 controls the three-phase alternating current supplied to the plurality of coils 24.
  • Control unit 4 includes a first inverter 41 and a second inverter 42.
  • U-phase current is supplied to four coils 24 of the twelve coils 24, V-phase current is supplied to the other four coils 24, and the remaining four coils are supplied.
  • the W-phase current is supplied to 24.
  • U1 to U4 four coils to which U-phase current is supplied are denoted by U1 to U4, and four coils to which V-phase current is supplied are denoted by V1 to V4, and W-phase current is supplied.
  • W1 to W4 are given to the four coils.
  • the coil U1 and the coil U2 are circumferentially adjacent to each other.
  • the coil U3 and the coil U4 are circumferentially adjacent to each other.
  • the coil U1 and the coil U3 oppose each other in the radial direction across the central axis J1.
  • the coil U2 and the coil U4 oppose each other in the radial direction across the central axis J1.
  • the coil U3 is disposed at a position offset by 180 degrees in the circumferential direction from the coil U1.
  • the coil U4 is disposed at a position shifted by 180 degrees in the circumferential direction from the coil U2.
  • Coil V1 is circumferentially adjacent to coil U2 and coil V2.
  • Coil V3 is circumferentially adjacent to coil U4 and coil V4.
  • the coil V1 and the coil V3 oppose each other in the radial direction across the central axis J1.
  • the coil V2 and the coil V4 oppose each other in the radial direction across the central axis J1.
  • the coil V3 is disposed at a position deviated from the coil V1 by 180 degrees in the circumferential direction.
  • the coil V4 is disposed at a position deviated from the coil V2 by 180 degrees in the circumferential direction.
  • the coil W1 is circumferentially adjacent to the coil V2 and the coil W2.
  • the coil W3 is circumferentially adjacent to the coil V4 and the coil W4.
  • the coil W1 and the coil W3 oppose each other in the radial direction across the central axis J1.
  • the coil W2 and the coil W4 oppose each other in the radial direction across the central axis J1.
  • the coil W3 is disposed at a position deviated from the coil W1 by 180 degrees in the circumferential direction.
  • the coil W4 is disposed at a position deviated from the coil W2 by 180 degrees in the circumferential direction.
  • FIG. 3 is a diagram showing a connection state between the plurality of coils U1 to U4, V1 to V4, W1 to W4 and the control unit 4.
  • the coil U1 is electrically connected to the coil U4 adjacent to the radially opposing coil U3.
  • the coil U1 and the coil U4 are connected to the first inverter 41 of the control unit 4.
  • the first inverter 41 controls the current supplied to the coil U1 and the coil U4.
  • the coil U3 is electrically connected to the coil U2 adjacent to the radially opposed coil U1.
  • the coil U2 and the coil U3 are connected to the second inverter 42 of the control unit 4.
  • the second inverter 42 controls the current supplied to the coil U2 and the coil U3.
  • the coil V1 is electrically connected to the coil V4 adjacent to the coil V3 facing in the radial direction.
  • the coil V1 and the coil V4 are connected to the second inverter 42.
  • the second inverter 42 controls the current supplied to the coil V1 and the coil V4.
  • the coil V3 is electrically connected to the coil V2 adjacent to the radially opposing coil V1.
  • the coil V2 and the coil V3 are connected to the first inverter 41.
  • the first inverter 41 controls the current supplied to the coil V2 and the coil V3.
  • the coil W1 is electrically connected to the coil W4 adjacent to the coil W3 facing in the radial direction.
  • the coil W1 and the coil W4 are connected to the first inverter 41.
  • the first inverter 41 controls the current supplied to the coil W1 and the coil W4.
  • the coil W3 is electrically connected to the coil W2 adjacent to the coil W1 facing in the radial direction.
  • the coil W2 and the coil W3 are connected to the second inverter 42.
  • the second inverter 42 controls the current supplied to the coil W2 and the coil W3.
  • the first harmonic current is superimposed on the fundamental wave current of the d-axis current by the three-phase alternating current supplied to coils U1, U4, V2, V3, W1 and W4 by first inverter 41. Ru. Further, the second harmonic current is superimposed on the fundamental wave current of the d-axis current by the three-phase alternating current supplied to the coils U2, U3, V1, V4, W2 and W3 by the second inverter 42.
  • the first harmonic current and the second harmonic current each include a first harmonic current at an electrical angle as a main wave current.
  • the order at the electrical angle of the harmonic current is simply referred to as the "order”.
  • the first harmonic current at electrical angle is simply referred to as "first harmonic current”.
  • the main wave current described above includes the first harmonic of the harmonic currents of the plurality of types of orders. It means a harmonic current of one or more orders which substantially or mainly determines the characteristics of the current and the second harmonic current.
  • the first harmonic current included in each of the first harmonic current and the second harmonic current is, for example, a sinusoidal current.
  • Each of the first harmonic current and the second harmonic current is, for example, a first harmonic current, and substantially does not include a second or higher harmonic current.
  • the fundamental wave current of the above-mentioned d-axis current is a zero-order current substantially not including a harmonic current of the first or higher order.
  • the center of oscillation of the first harmonic current coincides with, for example, the fundamental current of the d-axis current on which the first harmonic current is superimposed.
  • the center of oscillation of the second harmonic current coincides with, for example, the fundamental current of the d-axis current on which the second harmonic current is superimposed.
  • the amplitude of the first harmonic current is the same as the amplitude of the second harmonic current.
  • the phase of the first harmonic current is out of phase with the second harmonic current by 180 degrees in electrical angle. In other words, the first harmonic current is a current in reverse phase of the second harmonic current.
  • FIGS. 4 and 5 show the first harmonic current and the second harmonic current with respect to the d-axis current for U-phase current supplied to coils U1 and U4 and U-phase current supplied to coils U2 and U3. It is a figure which shows the influence by superposition.
  • the horizontal axes in FIGS. 4 and 5 indicate mechanical angles, and the vertical axes indicate current values.
  • a U-phase current supplied to the coils U1 and U4 and the coils U2 and U3 when the first harmonic current and the second harmonic current are not superimposed on the d-axis current is indicated by a solid line 60U.
  • the U-phase current supplied to the coils U1 and U4 is the same as the U-phase current supplied to the coils U2 and U3.
  • the U-phase current indicated by the solid line 60U is referred to as "basic U-phase current 60U".
  • a U-phase current supplied to the coils U1 and U4 when the first harmonic current is superimposed on the d-axis current is indicated by a solid line 61U.
  • a U-phase current supplied to the coils U2 and U3 when the second harmonic current is superimposed on the d-axis current is indicated by a broken line 62U.
  • the U-phase current indicated by a solid line 61U is referred to as "first U-phase current 61U”
  • the U-phase current indicated by a broken line 62U is referred to as "second U-phase current 62U”.
  • the peak position of the first U-phase current 61U supplied to the coils U1 and U4 is shifted to the negative side of the horizontal axis from the peak position of the basic U-phase current 60U by superimposing the first harmonic current on the d-axis current .
  • the peak position means a mechanical angle at which the U-phase current becomes maximum or minimum.
  • the peak values on the positive side and the negative side of the first U-phase current 61U may be the same as or different from the peak values on the positive side and the negative side of the basic U-phase current 60U, respectively.
  • the amplitude of the first U-phase current 61U may be the same as or different from the amplitude of the basic U-phase current 60U.
  • the zero cross position of the first U phase current 61U is the same as the zero cross position of the basic U phase current 60U.
  • the zero cross position means a mechanical angle at which the U-phase current becomes zero.
  • the meanings of the peak position and the zero cross position described above are the same as in the V-phase current and the W-phase current.
  • the peak position of the second U-phase current 62U supplied to the coils U2 and U3 deviates from the peak position of the basic U-phase current 60U to the plus side of the horizontal axis due to the second harmonic current being superimposed on the d-axis current . That is, the peak position of the second U-phase current 62U deviates from the peak position of the basic U-phase current 60U to the opposite side of the peak position of the first U-phase current 61U.
  • the absolute value of the deviation from the basic U-phase current 60U at the peak position of the second U-phase current 62U is equal to the absolute value of the deviation from the basic U-phase current 60U at the peak position of the first U-phase current 61U.
  • the peak values on the positive side and the negative side of the second U-phase current 62U may be the same as or different from the peak values on the positive side and the negative side of the basic U-phase current 60U, respectively.
  • the amplitude of the second U-phase current 62U may be the same as or different from the amplitude of the basic U-phase current 60U.
  • the positive and negative peak values of the second U-phase current 62U are the same as the positive and negative peak values of the first U-phase current 61U, respectively.
  • the amplitude of the second U-phase current 62U is the same as the amplitude of the first U-phase current 61U.
  • the zero cross position of the second U phase current 62U is the same as the zero cross position of the basic U phase current 60U and the zero cross position of the first U phase current 61U.
  • the first U-phase current 61U and the second U-phase current 62U are symmetrical about a straight line parallel to the vertical axis through the peak position of the basic U-phase current 60U.
  • the coils U1 and U4 face the magnetic poles 33 of the rotor 3 in the radial direction, and the coils U2 and U3 face the pseudo poles 34 in the radial direction.
  • U4 is supplied with the peak value of the first U-phase current 61U.
  • the second U-phase current 62U controlled by the second inverter 42 is smaller than the peak value, and the coils U2 and U3 are supplied with the second U-phase current 62U.
  • the electromagnetic force acting on the coils U2 and U3 radially opposed to the pseudo pole 34 is smaller than the electromagnetic force acting on the coils U1 and U4 radially opposed to the magnetic pole 33.
  • FIG. 6 is a diagram showing a basic V-phase current 60 V and a basic W-phase current 60 W in addition to the basic U-phase current 60 U described above.
  • FIG. 7 is a diagram showing a first V-phase current 61V and a second V-phase current 62V, and a first W-phase current 61W and a second W-phase current 62W in addition to the first U-phase current 61U and the second U-phase current 62U described above. is there.
  • the horizontal axes of FIGS. 6 and 7 indicate mechanical angles, and the vertical axes indicate current values.
  • the basic V-phase current 60 V and the basic W-phase current 60 W are respectively the V-phase current supplied to the coils V1 to V4 when the first harmonic current and the second harmonic current are not superimposed on the d-axis current, and It is a W-phase current supplied to W1 to W4.
  • the first V phase current 61 V and the second V phase current 62 V are the V phase current supplied to the coils V2 and V3 when the first harmonic current is superimposed on the d axis current, and the second harmonic current in the d axis current It is a V-phase current supplied to the coils V1 and V4 when the current is superimposed.
  • the first W-phase current 61W and the second W-phase current 62W are the W-phase current supplied to the coils W1 and W4 when the first harmonic current is superimposed on the d-axis current, and the second harmonic in the d-axis current It is a W-phase current supplied to the coils W2 and W3 when the current is superimposed.
  • the motor 1 includes the armature 2, the rotor 3, and the control unit 4.
  • the armature 2 has a plurality of coils 24 arranged in the circumferential direction.
  • the plurality of magnetic poles 33 and the plurality of pseudo poles 34 are alternately arranged in the circumferential direction.
  • the control unit 4 controls the three-phase alternating current supplied to the plurality of coils 24.
  • the number of coils 24 is a multiple of six.
  • the number of the plurality of magnetic poles 33 is an odd number of 3 or more.
  • Control unit 4 includes a first inverter 41 and a second inverter 42.
  • coils U1, V3 and W1 among the plurality of coils 24 are collectively referred to as “first coil group U1, V3 and W1”
  • coils U3, V1 and W3 are collectively referred to as "second coil group U3, V1 and V2
  • the first inverter 41 controls the current supplied to the first coil group U1, V3, and W1 among the plurality of coils 24 when called “W3”.
  • the second inverter 42 controls the current supplied to the second coil group U3, V1, W3 radially opposed to the first coil group U1, V3, W1 among the plurality of coils 24.
  • the first inverter 41 includes the first harmonic current including the first harmonic current as the main wave current superimposed on the fundamental wave current of the d-axis current of the first coil group U1, V3, W1. Ru. Further, a second harmonic current including a first harmonic current as a main wave current is superimposed by the second inverter 42 on the fundamental wave current of the d-axis current of the second coil group U3, V1, W3. Then, the peak phases of the three-phase alternating current supplied to the first coil group U1, V3, W1 and the second coil group U3, V1, W3 are shifted, and the zero cross positions are the same.
  • one coil group of the first coil group U1, V3, W1 and the second coil group U3, V1, W3 radially faces the magnetic pole 33, and the other coil group is pseudo pole 34 in the radial direction It is possible to easily realize control to make the current supplied to the one coil group larger than the current supplied to the other coil group, when facing each other. As a result, while suppressing the current control of the three-phase alternating current in the motor 1 from becoming complicated, the magnetic unbalance of the rotor 3 can be reduced, and the vibration reduction of the motor 1 can be realized. Moreover, the electrical angle primary radial force applied to each tooth 22 can also be reduced.
  • the peak values of the three-phase alternating current supplied to the first coil group U1, V3, W1 and the second coil group U3, V1, W3 are the same. Thereby, compared with the case where peak values differ, it can suppress further that current control of the three-phase alternating current in the motor 1 is complicated.
  • the first harmonic current included in the first harmonic current and the second harmonic current is a sinusoidal current.
  • the first harmonic current and the second harmonic current are first harmonic currents.
  • the generation interval of the control signal by the first inverter 41 and the second inverter 42 can be increased as compared with the case where the second harmonic current is included in the first harmonic current and the second harmonic current. it can.
  • current control of the three-phase alternating current in the motor 1 can be facilitated.
  • the accuracy of the above-described current control can be improved by setting the first harmonic current and the second harmonic current as the first harmonic current. it can.
  • the PWM Pulse Width Modulation
  • the number of the plurality of coils 24 is 12 or more.
  • the first coil group U1, V3, W1 is electrically connected to the coil groups U4, V2, W4 adjacent to the second coil group U3, V1, W3 among the plurality of coils 24.
  • the second coil groups U3, V1, and W3 are electrically connected to the coil groups U2, V4, and W2 adjacent to the first coil groups U1, V3, and W1 among the plurality of coils 24.
  • the number of the plurality of coils 24 is twelve, and the number of the plurality of magnetic poles 33 is five, the number of the plurality of magnetic poles 33 is five.
  • the technology for realizing the above-described embodiment has been described, the number of coils 24 and magnetic poles 33 of the motor 1 is not limited to the above example.
  • the above current control by the first inverter 41 and the second inverter 42 is performed. While suppressing the current control of the phase alternating current from becoming complicated, the magnetic unbalance of the rotor 3 can be reduced, and the vibration of the motor 1 can be reduced.
  • the first harmonic current included in the first harmonic current and the second harmonic current does not necessarily have to be a sine wave current, and may be a non-sinusoidal current such as a substantially rectangular wave current.
  • the first harmonic current and the second harmonic current may include harmonic currents of other orders as long as the first harmonic current is included as the main wave current.
  • the first coil groups U1, V3 and W1 do not necessarily have to be electrically connected to the coil groups U4, V2 and W4.
  • the second coil groups U3, V1, and W3 do not necessarily have to be electrically connected to the coil groups U2, V4, and W2.
  • the peak values of the three-phase alternating current supplied to the first coil group U1, V3, W1 and the second coil group U3, V1, W3 by the control of the first inverter 41 and the second inverter 42 may be different. Even in this case, it is possible to reduce the vibration of the motor 1 while suppressing the current control of the three-phase alternating current from becoming complicated.
  • coil U1, V3 and W1 were made into the 1st coil group among a plurality of coils 24, and coil U3, V1 and W3 were made into the 2nd coil group, and composition and effect of motor 1 were explained.
  • V2 and W4 are the first coil group
  • coils U2, V4 and W2 are the second coil group.
  • the number of the plurality of coils 24 is not limited to 12 and may be a multiple of six. Further, the number of the plurality of magnetic poles 33 is not limited to 5 or 7, and may be an odd number of 3 or more.
  • the motor according to the present invention can be used as a motor for various applications.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Permanent Magnet Type Synchronous Machine (AREA)

Abstract

The number of a plurality of coils of a consequent motor is a multiple of 6 and the number of a plurality of magnetic poles is an odd number of 3 or more. A control unit includes a first inverter that controls a current supplied to a first coil group among the plurality of coils and a second inverter that controls a current supplied to a second coil group radially opposed to the first coil group among the plurality of coils. A first harmonic current including a primary harmonic current as a main wave current is superimposed on a fundamental current of a d-axis current of the first coil group by the first inverter. A second harmonic current including a primary harmonic current as a main wave current is superimposed on a fundamental current of a d-axis current of the second coil group by the second inverter. The peak phases of three-phase alternating currents supplied to the first coil group and the second coil group are shifted with respect to each other, and the zero-cross positions of the currents are the same.

Description

コンシクエント型モータConcurrent type motor
本発明は、コンシクエント型モータに関する。 The present invention relates to a consistent type motor.
近年、ネオジウムマグネットの高騰等により、マグネットの使用量を低減したモータが求められている。例えば、特許第5431886号公報には、コンシクエントポール型構造のロータを備えるモータが開示されている。当該ロータでは、ロータコアの周方向に一方の磁極のマグネットが複数配置される。また、ロータコアに一体形成された突極が各マグネット間に配置されており、当該突極が他方の磁極として機能する。このようなモータでは、マグネットに対向しているティースの磁束密度が、突極に対向しているティースの磁束密度よりも小さくなるため、ロータの磁気アンバランスが生じてモータが振動するおそれがある。  In recent years, due to the soaring of neodymium magnets and the like, a motor with a reduced amount of use of magnets has been required. For example, Japanese Patent No. 5431 886 discloses a motor provided with a rotor of a consistent pole type structure. In the rotor, a plurality of magnets of one magnetic pole are arranged in the circumferential direction of the rotor core. Further, a salient pole integrally formed on the rotor core is disposed between the magnets, and the salient pole functions as the other magnetic pole. In such a motor, the magnetic flux density of the teeth facing the magnet is smaller than the magnetic flux density of the teeth facing the salient pole, so there is a possibility that the motor may vibrate due to the magnetic unbalance of the rotor. .
特許第5431886号公報のモータは、ステータのコイルに対して3相の励磁電流を供給する電流供給手段を備える。電流供給手段は、3相の励磁電流が供給されるコイル群毎に異なる電流制御を実施する。これにより、ティースに作用する電磁力の大きさが、コイル群間で調節される。当該モータでは、マグネットに対向しているティースに作用する電磁力と、突極に対向しているティースに作用する電磁力とを異ならせることにより、ロータの磁気アンバランスを抑えてモータの低振動化が図られている。  
特許第5431886号公報
The motor of Japanese Patent No. 5431 886 comprises current supply means for supplying three-phase excitation current to the coils of the stator. The current supply means implements different current control for each coil group to which three-phase excitation current is supplied. Thereby, the magnitude of the electromagnetic force acting on the teeth is adjusted between the coil groups. In this motor, by making the electromagnetic force acting on the teeth facing the magnet different from the electromagnetic force acting on the teeth facing the salient pole, the magnetic unbalance of the rotor is suppressed to reduce the motor's low vibration. Is being promoted.
Patent No. 5431 886
ところで、特許第5431886号公報のモータでは、ロータの磁気アンバランスを抑制するために、電流供給手段である第1駆動回路33から第1コイル群U1,V1,W1に供給される励磁電流において、電流値の負成分の絶対値が正成分の絶対値よりも低くなるように制御される。第2駆動回路38から第2コイル群U2,V2,W2に供給される励磁電流についても同様である。このように、当該モータでは、電流値の正成分と負成分とで異なる制御を行う必要があるため、電流制御が複雑化するおそれがある。  By the way, in the motor of Japanese Patent No. 5431 886, in order to suppress the magnetic imbalance of the rotor, in the excitation current supplied from the first drive circuit 33 which is the current supply means to the first coil group U1, V1, W1 The absolute value of the negative component of the current value is controlled to be lower than the absolute value of the positive component. The same applies to the excitation current supplied from the second drive circuit 38 to the second coil group U2, V2, W2. As described above, in the motor, it is necessary to perform different control for the positive component and the negative component of the current value, which may complicate current control.
本発明は、上記課題に鑑みなされたものであり、コンシクエント型モータにおいて、電流制御が複雑化することを抑制しつつ、磁気アンバランスを低減してモータの低振動化を実現することを目的としている。 The present invention has been made in view of the above problems, and it is an object of the present invention to reduce the magnetic unbalance and realize the low vibration of the motor while suppressing the current control from becoming complicated in the consistent motor. There is.
本発明の一の実施形態に係る例示的なコンシクエント型モータは、周方向に配列された複数のコイルを有する電機子と、複数の磁極と複数の疑似極とが周方向に交互に配列されたロータと、前記複数のコイルに3相交流電流を供給する電源部と、前記電源部からの出力を制御する制御部と、を備える。前記複数のコイルの数が6の倍数である。前記複数の磁極の数が3以上の奇数である。前記制御部が、前記複数のコイルのうち第1コイル群に供給される電流を制御する第1インバータと、前記複数のコイルのうち前記第1コイル群と径方向に対向する第2コイル群に供給される電流を制御する第2インバータと、を備える。前記第1インバータにより、前記第1コイル群のd軸電流の基本波電流に対して、1次高調波電流を主要波電流として含む第1高調波電流が重畳される。前記第2インバータにより、前記第2コイル群のd軸電流の基本波電流に対して、1次高調波電流を主要波電流として含む第2高調波電流が重畳される。前記第1コイル群および前記第2コイル群に供給される3相交流電流のピーク位相がずれ、ゼロクロス位置が同じである。 An exemplary consistent motor according to an embodiment of the present invention includes an armature having a plurality of coils arranged in a circumferential direction, and a plurality of magnetic poles and a plurality of pseudo poles alternately arranged in a circumferential direction. A power supply unit that supplies a three-phase alternating current to the plurality of coils, and a control unit that controls an output from the power supply unit. The number of the plurality of coils is a multiple of six. The number of the plurality of magnetic poles is an odd number of 3 or more. The control unit controls a first inverter for controlling a current supplied to a first coil group among the plurality of coils, and a second coil group radially facing the first coil group among the plurality of coils. And a second inverter that controls the supplied current. A first harmonic current including a first harmonic current as a main wave current is superimposed on the fundamental wave current of the d-axis current of the first coil group by the first inverter. A second harmonic current including a first harmonic current as a main wave current is superimposed on the fundamental wave current of the d-axis current of the second coil group by the second inverter. The peak phases of the three-phase alternating current supplied to the first coil group and the second coil group are shifted, and the zero cross positions are the same.
本発明では、電流制御が複雑化することを抑制しつつ、磁気アンバランスを低減してモータの低振動化を実現することができる。 According to the present invention, it is possible to reduce the magnetic imbalance and realize low vibration of the motor while suppressing the current control from becoming complicated.
一の実施形態に係るモータの横断面図である。It is a cross-sectional view of the motor which concerns on one Embodiment. モータの横断面図である。It is a cross-sectional view of a motor. 複数のコイルと制御部との接続状態を示す図である。It is a figure which shows the connection state of several coils and a control part. d軸電流に高調波電流が重畳されない場合にコイルに供給されるU相電流を示す図である。It is a figure which shows U phase current supplied to a coil when harmonic current is not superimposed on d axis current. d軸電流に高調波電流が重畳される場合にコイルに供給されるU相電流を示す図である。It is a figure which shows U phase current supplied to a coil, when harmonic current is superimposed on d axis current. d軸電流に高調波電流が重畳されない場合にコイルに供給されるU相電流、V相電流およびW相電流を示す図である。It is a figure which shows U phase current, V phase current, and W phase current which are supplied to a coil, when harmonic current is not superimposed on d axis current. d軸電流に高調波電流が重畳される場合にコイルに供給されるU相電流、V相電流およびW相電流を示す図である。It is a figure which shows U phase current, V phase current, and W phase current supplied to a coil, when harmonic current is superimposed on d axis current.
図1は、本発明の例示的な一の実施形態に係るコンシクエント型モータ1の横断面図である。以下の説明では、コンシクエント型モータ1を、単に「モータ1」と呼ぶ。モータ1は、インナーロータ型のブラシレスモータである。本明細書では、図1中の紙面に垂直な中心軸J1を中心とする周方向を、単に「周方向」と呼び、中心軸J1を中心とする径方向を、単に「径方向」と呼ぶ。  FIG. 1 is a cross-sectional view of a consistent motor 1 according to an exemplary embodiment of the present invention. In the following description, the corresponding motor 1 is simply referred to as "motor 1". The motor 1 is an inner rotor type brushless motor. In this specification, the circumferential direction about the central axis J1 perpendicular to the paper surface in FIG. 1 is simply referred to as “circumferential direction”, and the radial direction about the central axis J1 is simply referred to as “radial direction”. .
モータ1は、電機子2と、ロータ3と、制御部4と、を含む。電機子2は、コアバック部21と、複数のティース22と、複数のコイル24と、を含む。コアバック部21は、中心軸J1を中心とする略円環状の部位である。複数のティース22は、コアバック部21から径方向内方に放射状に延びる。複数のティース22は、周方向に略等角度間隔に配列される。コアバック部21および複数のティース22は、例えば、一繋がりの金属製の部材である。  The motor 1 includes an armature 2, a rotor 3 and a control unit 4. The armature 2 includes a core back portion 21, a plurality of teeth 22, and a plurality of coils 24. The core back portion 21 is a substantially annular portion centered on the central axis J1. The plurality of teeth 22 radially extend radially inward from the core back portion 21. The plurality of teeth 22 are arranged at substantially equal angular intervals in the circumferential direction. The core back portion 21 and the plurality of teeth 22 are, for example, metal members of one connection.
複数のコイル24は、複数のティース22を被覆するインシュレータ(図示省略)上から、複数のティース22に導線を巻回することにより形成される。各コイル24は、1つのティース22に巻回される集中巻きのコイルである。複数のコイル24は、周方向に略等角度間隔に配列される。複数のコイル24は、3相コイルである。複数のコイル24の数は、6の倍数であり、好ましくは12以上である。図1に示す例では、複数のコイル24の数は、12である。  The plurality of coils 24 are formed by winding a wire around the plurality of teeth 22 on an insulator (not shown) covering the plurality of teeth 22. Each coil 24 is a concentrated winding coil wound around one tooth 22. The plurality of coils 24 are arranged at substantially equal angular intervals in the circumferential direction. The plurality of coils 24 are three-phase coils. The number of coils 24 is a multiple of 6, preferably 12 or more. In the example shown in FIG. 1, the number of the plurality of coils 24 is twelve.
ロータ3は、電機子2の径方向内側に配置される。ロータ3は、シャフト31と、ロータコア32と、複数の磁極33と、を含む。シャフト31は、中心軸J1を中心とする略円柱状の部材である。ロータコア32は、磁性金属製の略円環状の部材である。ロータコア32は、シャフト31の外周面に接続される。複数の磁極33は、ロータコア32の外周面に固定されるマグネットである。複数の磁極33では、径方向外側の極は同じである。例えば、各磁極33の径方向外側の極はN極である。複数の磁極33は、互いに離間しつつ周方向に略等角度間隔に配列される。複数の磁極33の数は、3以上の奇数である。図1に示す例では、複数の磁極33の数は、5である。換言すれば、モータ1は、10P12Sのモータである。  The rotor 3 is disposed radially inward of the armature 2. The rotor 3 includes a shaft 31, a rotor core 32, and a plurality of magnetic poles 33. The shaft 31 is a substantially cylindrical member centered on the central axis J1. The rotor core 32 is a substantially annular member made of magnetic metal. The rotor core 32 is connected to the outer peripheral surface of the shaft 31. The plurality of magnetic poles 33 are magnets fixed to the outer peripheral surface of the rotor core 32. In the plurality of magnetic poles 33, the radially outer poles are the same. For example, the radially outer pole of each magnetic pole 33 is an N pole. The plurality of magnetic poles 33 are arranged at substantially equal angular intervals in the circumferential direction while being separated from each other. The number of the plurality of magnetic poles 33 is an odd number of 3 or more. In the example shown in FIG. 1, the number of the plurality of magnetic poles 33 is five. In other words, the motor 1 is a 10P12S motor.
ロータコア32は、複数の磁極33の間にそれぞれ位置する複数の凸部34を含む。各凸部34は、ロータコア32の外周面から径方向外方へと突出する部位である。複数の凸部34は、複数の磁極33と径方向の略同じ位置に位置し、擬似的な磁極として働く。以下の説明では、凸部34を「疑似極34」と呼ぶ。ロータ3は、複数の磁極33と複数の疑似極34とが周方向に交互に配列されたコンシクエント型ロータである。疑似極34は、突極とも呼ばれる。  The rotor core 32 includes a plurality of convex portions 34 located between the plurality of magnetic poles 33 respectively. Each convex portion 34 is a portion that protrudes outward in the radial direction from the outer peripheral surface of the rotor core 32. The plurality of convex portions 34 are located at substantially the same position in the radial direction as the plurality of magnetic poles 33 and function as pseudo magnetic poles. In the following description, the convex portion 34 is referred to as “pseudo pole 34”. The rotor 3 is a consistent type rotor in which a plurality of magnetic poles 33 and a plurality of pseudo poles 34 are alternately arranged in the circumferential direction. The pseudo pole 34 is also called a salient pole.
モータ1では、電源部5から電機子2の複数のコイル24に3相交流電流が供給されることにより、複数のコイル24と、複数の磁極33および複数の疑似極34との間にトルクが発生する。これにより、ロータ3が、中心軸J1を中心として回転する。制御部4は、電源部5からの出力を制御する。換言すれば、制御部4は、複数のコイル24に供給される3相交流電流を制御する。制御部4は、第1インバータ41と、第2インバータ42と、を含む。  In the motor 1, a three-phase alternating current is supplied from the power supply unit 5 to the plurality of coils 24 of the armature 2 so that torque is generated between the plurality of coils 24 and the plurality of magnetic poles 33 and the plurality of pseudo poles 34. Occur. Thus, the rotor 3 rotates about the central axis J1. The control unit 4 controls the output from the power supply unit 5. In other words, the control unit 4 controls the three-phase alternating current supplied to the plurality of coils 24. Control unit 4 includes a first inverter 41 and a second inverter 42.
図1に示すモータ1では、12個のコイル24のうち、4個のコイル24にU相電流が供給され、他の4個のコイル24にV相電流が供給され、残りの4個のコイル24にW相電流が供給される。図2では、U相電流が供給される4個のコイルに符号U1~U4を付し、V相電流が供給される4個のコイルに符号V1~V4を付し、W相電流が供給される4個のコイルに符号W1~W4を付す。  In the motor 1 shown in FIG. 1, U-phase current is supplied to four coils 24 of the twelve coils 24, V-phase current is supplied to the other four coils 24, and the remaining four coils are supplied. The W-phase current is supplied to 24. In FIG. 2, four coils to which U-phase current is supplied are denoted by U1 to U4, and four coils to which V-phase current is supplied are denoted by V1 to V4, and W-phase current is supplied. The symbols W1 to W4 are given to the four coils.
コイルU1とコイルU2とは周方向に隣接する。コイルU3とコイルU4とは周方向に隣接する。コイルU1とコイルU3とは、中心軸J1を挟んで径方向に対向する。コイルU2とコイルU4とは、中心軸J1を挟んで径方向に対向する。換言すれば、コイルU3は、コイルU1から周方向において180度ずれた位置に配置される。また、コイルU4は、コイルU2から周方向において180度ずれた位置に配置される。  The coil U1 and the coil U2 are circumferentially adjacent to each other. The coil U3 and the coil U4 are circumferentially adjacent to each other. The coil U1 and the coil U3 oppose each other in the radial direction across the central axis J1. The coil U2 and the coil U4 oppose each other in the radial direction across the central axis J1. In other words, the coil U3 is disposed at a position offset by 180 degrees in the circumferential direction from the coil U1. Further, the coil U4 is disposed at a position shifted by 180 degrees in the circumferential direction from the coil U2.
コイルV1は、コイルU2およびコイルV2と周方向に隣接する。コイルV3は、コイルU4およびコイルV4と周方向に隣接する。コイルV1とコイルV3とは、中心軸J1を挟んで径方向に対向する。コイルV2とコイルV4とは、中心軸J1を挟んで径方向に対向する。換言すれば、コイルV3は、コイルV1から周方向において180度ずれた位置に配置される。また、コイルV4は、コイルV2から周方向において180度ずれた位置に配置される。  Coil V1 is circumferentially adjacent to coil U2 and coil V2. Coil V3 is circumferentially adjacent to coil U4 and coil V4. The coil V1 and the coil V3 oppose each other in the radial direction across the central axis J1. The coil V2 and the coil V4 oppose each other in the radial direction across the central axis J1. In other words, the coil V3 is disposed at a position deviated from the coil V1 by 180 degrees in the circumferential direction. Further, the coil V4 is disposed at a position deviated from the coil V2 by 180 degrees in the circumferential direction.
コイルW1は、コイルV2およびコイルW2と周方向に隣接する。コイルW3は、コイルV4およびコイルW4と周方向に隣接する。コイルW1とコイルW3とは、中心軸J1を挟んで径方向に対向する。コイルW2とコイルW4とは、中心軸J1を挟んで径方向に対向する。換言すれば、コイルW3は、コイルW1から周方向において180度ずれた位置に配置される。また、コイルW4は、コイルW2から周方向において180度ずれた位置に配置される。  The coil W1 is circumferentially adjacent to the coil V2 and the coil W2. The coil W3 is circumferentially adjacent to the coil V4 and the coil W4. The coil W1 and the coil W3 oppose each other in the radial direction across the central axis J1. The coil W2 and the coil W4 oppose each other in the radial direction across the central axis J1. In other words, the coil W3 is disposed at a position deviated from the coil W1 by 180 degrees in the circumferential direction. In addition, the coil W4 is disposed at a position deviated from the coil W2 by 180 degrees in the circumferential direction.
図3は、複数のコイルU1~U4,V1~V4,W1~W4と制御部4との接続状態を示す図である。コイルU1は、径方向に対向するコイルU3に隣接するコイルU4と電気的に接続される。コイルU1およびコイルU4は、制御部4の第1インバータ41に接続される。第1インバータ41は、コイルU1およびコイルU4に供給される電流を制御する。コイルU3は、径方向に対向するコイルU1に隣接するコイルU2と電気的に接続される。コイルU2およびコイルU3は、制御部4の第2インバータ42に接続される。第2インバータ42は、コイルU2およびコイルU3に供給される電流を制御する。  FIG. 3 is a diagram showing a connection state between the plurality of coils U1 to U4, V1 to V4, W1 to W4 and the control unit 4. The coil U1 is electrically connected to the coil U4 adjacent to the radially opposing coil U3. The coil U1 and the coil U4 are connected to the first inverter 41 of the control unit 4. The first inverter 41 controls the current supplied to the coil U1 and the coil U4. The coil U3 is electrically connected to the coil U2 adjacent to the radially opposed coil U1. The coil U2 and the coil U3 are connected to the second inverter 42 of the control unit 4. The second inverter 42 controls the current supplied to the coil U2 and the coil U3.
コイルV1は、径方向に対向するコイルV3に隣接するコイルV4と電気的に接続される。コイルV1およびコイルV4は、第2インバータ42に接続される。第2インバータ42は、コイルV1およびコイルV4に供給される電流を制御する。コイルV3は、径方向に対向するコイルV1に隣接するコイルV2と電気的に接続される。コイルV2およびコイルV3は、第1インバータ41に接続される。第1インバータ41は、コイルV2およびコイルV3に供給される電流を制御する。  The coil V1 is electrically connected to the coil V4 adjacent to the coil V3 facing in the radial direction. The coil V1 and the coil V4 are connected to the second inverter 42. The second inverter 42 controls the current supplied to the coil V1 and the coil V4. The coil V3 is electrically connected to the coil V2 adjacent to the radially opposing coil V1. The coil V2 and the coil V3 are connected to the first inverter 41. The first inverter 41 controls the current supplied to the coil V2 and the coil V3.
コイルW1は、径方向に対向するコイルW3に隣接するコイルW4と電気的に接続される。コイルW1およびコイルW4は、第1インバータ41に接続される。第1インバータ41は、コイルW1およびコイルW4に供給される電流を制御する。コイルW3は、径方向に対向するコイルW1に隣接するコイルW2と電気的に接続される。コイルW2およびコイルW3は、第2インバータ42に接続される。第2インバータ42は、コイルW2およびコイルW3に供給される電流を制御する。  The coil W1 is electrically connected to the coil W4 adjacent to the coil W3 facing in the radial direction. The coil W1 and the coil W4 are connected to the first inverter 41. The first inverter 41 controls the current supplied to the coil W1 and the coil W4. The coil W3 is electrically connected to the coil W2 adjacent to the coil W1 facing in the radial direction. The coil W2 and the coil W3 are connected to the second inverter 42. The second inverter 42 controls the current supplied to the coil W2 and the coil W3.
モータ1では、第1インバータ41により、コイルU1,U4,V2,V3,W1およびW4に供給される3相交流電流によるd軸電流の基本波電流に対して、第1高調波電流が重畳される。また、第2インバータ42により、コイルU2,U3,V1,V4,W2およびW3に供給される3相交流電流によるd軸電流の基本波電流に対して、第2高調波電流が重畳される。  In motor 1, the first harmonic current is superimposed on the fundamental wave current of the d-axis current by the three-phase alternating current supplied to coils U1, U4, V2, V3, W1 and W4 by first inverter 41. Ru. Further, the second harmonic current is superimposed on the fundamental wave current of the d-axis current by the three-phase alternating current supplied to the coils U2, U3, V1, V4, W2 and W3 by the second inverter 42.
第1高調波電流および第2高調波電流はそれぞれ、電気角における1次高調波電流を主要波電流として含む。以下の説明では、高調波電流の電気角における次数を、単に「次数」と呼ぶ。例えば、電気角における1次高調波電流は、単に「1次高調波電流」と呼ばれる。また、上述の主要波電
流は、第1高調波電流および第2高調波電流に複数種類の次数の高調波電流が含まれる場合、当該複数種類の次数の高調波電流のうち、第1高調波電流および第2高調波電流の特徴を実質的に、または、主に決定づけている1種類または複数種類の次数の高調波電流を意味する。第1高調波電流および第2高調波電流にそれぞれ含まれる1次高調波電流は、例えば正弦波電流である。第1高調波電流および第2高調波電流はそれぞれ、例えば1次高調波電流であり、2次以上の次数の高調波電流を実質的に含まない。また、上述のd軸電流の基本波電流は、1次以上の次数の高調波電流を実質的に含まない0次電流である。 
The first harmonic current and the second harmonic current each include a first harmonic current at an electrical angle as a main wave current. In the following description, the order at the electrical angle of the harmonic current is simply referred to as the "order". For example, the first harmonic current at electrical angle is simply referred to as "first harmonic current". Furthermore, when the first harmonic current and the second harmonic current include harmonic currents of a plurality of types of orders, the main wave current described above includes the first harmonic of the harmonic currents of the plurality of types of orders. It means a harmonic current of one or more orders which substantially or mainly determines the characteristics of the current and the second harmonic current. The first harmonic current included in each of the first harmonic current and the second harmonic current is, for example, a sinusoidal current. Each of the first harmonic current and the second harmonic current is, for example, a first harmonic current, and substantially does not include a second or higher harmonic current. Further, the fundamental wave current of the above-mentioned d-axis current is a zero-order current substantially not including a harmonic current of the first or higher order.
第1高調波電流の振動の中心は、例えば、第1高調波電流が重畳されるd軸電流の基本波電流に一致する。第2高調波電流の振動の中心は、例えば、第2高調波電流が重畳されるd軸電流の基本波電流に一致する。第1高調波電流の振幅は、第2高調波電流の振幅と同じである。第1高調波電流の位相は、第2高調波電流の位相から、電気角にて180度ずれている。換言すれば、第1高調波電流は、第2高調波電流の逆位相の電流である。  The center of oscillation of the first harmonic current coincides with, for example, the fundamental current of the d-axis current on which the first harmonic current is superimposed. The center of oscillation of the second harmonic current coincides with, for example, the fundamental current of the d-axis current on which the second harmonic current is superimposed. The amplitude of the first harmonic current is the same as the amplitude of the second harmonic current. The phase of the first harmonic current is out of phase with the second harmonic current by 180 degrees in electrical angle. In other words, the first harmonic current is a current in reverse phase of the second harmonic current.
図4および図5は、コイルU1,U4に供給されるU相電流、および、コイルU2,U3に供給されるU相電流について、d軸電流に対する第1高調波電流および第2高調波電流の重畳による影響を示す図である。図4および図5の横軸は機械角を示し、縦軸は電流値を示す。  FIGS. 4 and 5 show the first harmonic current and the second harmonic current with respect to the d-axis current for U-phase current supplied to coils U1 and U4 and U-phase current supplied to coils U2 and U3. It is a figure which shows the influence by superposition. The horizontal axes in FIGS. 4 and 5 indicate mechanical angles, and the vertical axes indicate current values.
図4では、d軸電流に第1高調波電流および第2高調波電流が重畳されない場合にコイルU1,U4およびコイルU2,U3に供給されるU相電流を実線60Uにて示す。d軸電流に第1高調波電流および第2高調波電流が重畳されない場合、コイルU1,U4に供給されるU相電流は、コイルU2,U3に供給されるU相電流と同じである。以下の説明では、実線60Uにて示すU相電流を「基本U相電流60U」と呼ぶ。  In FIG. 4, a U-phase current supplied to the coils U1 and U4 and the coils U2 and U3 when the first harmonic current and the second harmonic current are not superimposed on the d-axis current is indicated by a solid line 60U. When the first harmonic current and the second harmonic current are not superimposed on the d-axis current, the U-phase current supplied to the coils U1 and U4 is the same as the U-phase current supplied to the coils U2 and U3. In the following description, the U-phase current indicated by the solid line 60U is referred to as "basic U-phase current 60U".
コイルU1,U4およびコイルU2,U3に基本U相電流60Uが供給されると、コイルU1,U4およびコイルU2,U3に作用する電磁力は同じとなる。したがって、図2に示すように、磁極33と径方向に対向するコイルU1,U4が巻回されたティース22の磁束密度が、疑似極34と径方向に対向するコイルU2,U3が巻回されたティース22の磁束密度よりも小さくなる。これにより、ロータ3の磁気アンバランスが生じてモータ1が振動するおそれがある。  When basic U-phase current 60U is supplied to coils U1 and U4 and coils U2 and U3, the electromagnetic forces acting on coils U1 and U4 and coils U2 and U3 become the same. Therefore, as shown in FIG. 2, the magnetic flux density of the teeth 22 in which the coils U1 and U4 radially opposed to the magnetic pole 33 are wound is wound by the coils U2 and U3 opposed radially to the pseudo pole 34. It becomes smaller than the magnetic flux density of teeth 22. As a result, the magnetic unbalance of the rotor 3 may occur and the motor 1 may vibrate.
図5では、d軸電流に第1高調波電流が重畳された場合にコイルU1,U4に供給されるU相電流を実線61Uにて示す。また、d軸電流に第2高調波電流が重畳された場合にコイルU2,U3に供給されるU相電流を破線62Uにて示す。以下の説明では、実線61Uにて示すU相電流を「第1U相電流61U」と呼び、破線62Uにて示すU相電流を「第2U相電流62U」と呼ぶ。  In FIG. 5, a U-phase current supplied to the coils U1 and U4 when the first harmonic current is superimposed on the d-axis current is indicated by a solid line 61U. A U-phase current supplied to the coils U2 and U3 when the second harmonic current is superimposed on the d-axis current is indicated by a broken line 62U. In the following description, the U-phase current indicated by a solid line 61U is referred to as "first U-phase current 61U", and the U-phase current indicated by a broken line 62U is referred to as "second U-phase current 62U".
d軸電流に第1高調波電流が重畳されることによりコイルU1,U4に供給される第1U相電流61Uのピーク位置は、基本U相電流60Uのピーク位置から、横軸のマイナス側にずれる。当該ピーク位置とは、U相電流が極大または極小となる機械角を意味する。第1U相電流61Uのプラス側およびマイナス側のピーク値はそれぞれ、基本U相電流60Uのプラス側およびマイナス側のピーク値と同じであってもよく、異なっていてもよい。換言すれば、第1U相電流61Uの振幅は、基本U相電流60Uの振幅と同じであってもよく、異なっていてもよい。第1U相電流61Uのゼロクロス位置は、基本U相電流60Uのゼロクロス位置と同じである。当該ゼロクロス位置は、U相電流がゼロになる機械角を意味する。上述のピーク位置およびゼロクロス位置の意味は、V相電流およびW相電流においても同様である。  The peak position of the first U-phase current 61U supplied to the coils U1 and U4 is shifted to the negative side of the horizontal axis from the peak position of the basic U-phase current 60U by superimposing the first harmonic current on the d-axis current . The peak position means a mechanical angle at which the U-phase current becomes maximum or minimum. The peak values on the positive side and the negative side of the first U-phase current 61U may be the same as or different from the peak values on the positive side and the negative side of the basic U-phase current 60U, respectively. In other words, the amplitude of the first U-phase current 61U may be the same as or different from the amplitude of the basic U-phase current 60U. The zero cross position of the first U phase current 61U is the same as the zero cross position of the basic U phase current 60U. The zero cross position means a mechanical angle at which the U-phase current becomes zero. The meanings of the peak position and the zero cross position described above are the same as in the V-phase current and the W-phase current.
d軸電流に第2高調波電流が重畳されることによりコイルU2,U3に供給される第2U相電流62Uのピーク位置は、基本U相電流60Uのピーク位置から、横軸のプラス側にずれる。すなわち、第2U相電流62Uのピーク位置は、基本U相電流60Uのピーク位置から、第1U相電流61Uのピーク位置がずれる側とは反対側にずれる。第2U相電流62Uのピーク位置の基本U相電流60Uからのずれ量の絶対値は、第1U相電流61Uのピーク位置の基本U相電流60Uからのずれ量の絶対値に等しい。  The peak position of the second U-phase current 62U supplied to the coils U2 and U3 deviates from the peak position of the basic U-phase current 60U to the plus side of the horizontal axis due to the second harmonic current being superimposed on the d-axis current . That is, the peak position of the second U-phase current 62U deviates from the peak position of the basic U-phase current 60U to the opposite side of the peak position of the first U-phase current 61U. The absolute value of the deviation from the basic U-phase current 60U at the peak position of the second U-phase current 62U is equal to the absolute value of the deviation from the basic U-phase current 60U at the peak position of the first U-phase current 61U.
また、第2U相電流62Uのプラス側およびマイナス側のピーク値はそれぞれ、基本U相電流60Uのプラス側およびマイナス側のピーク値と同じであってもよく、異なっていてもよい。換言すれば、第2U相電流62Uの振幅は、基本U相電流60Uの振幅と同じであってもよく、異なっていてもよい。第2U相電流62Uのプラス側およびマイナス側のピーク値はそれぞれ、第1U相電流61Uのプラス側およびマイナス側のピーク値と同じである。換言すれば、第2U相電流62Uの振幅は、第1U相電流61Uの振幅と同じである。第2U相電流62Uのゼロクロス位置は、基本U相電流60Uのゼロクロス位置、および、第1U相電流61Uのゼロクロス位置と同じである。第1U相電流61Uと第2U相電流62Uとは、基本U相電流60Uのピーク位置を通って縦軸に平行な直線に対して線対称である。  The peak values on the positive side and the negative side of the second U-phase current 62U may be the same as or different from the peak values on the positive side and the negative side of the basic U-phase current 60U, respectively. In other words, the amplitude of the second U-phase current 62U may be the same as or different from the amplitude of the basic U-phase current 60U. The positive and negative peak values of the second U-phase current 62U are the same as the positive and negative peak values of the first U-phase current 61U, respectively. In other words, the amplitude of the second U-phase current 62U is the same as the amplitude of the first U-phase current 61U. The zero cross position of the second U phase current 62U is the same as the zero cross position of the basic U phase current 60U and the zero cross position of the first U phase current 61U. The first U-phase current 61U and the second U-phase current 62U are symmetrical about a straight line parallel to the vertical axis through the peak position of the basic U-phase current 60U.
モータ1では、例えば、コイルU1,U4がロータ3の磁極33と径方向に対向し、コイルU2,U3が疑似極34と径方向に対向する状態で、第1インバータ41の制御により、コイルU1,U4に第1U相電流61Uのピーク値が供給される。この場合、第2インバータ42に制御される第2U相電流62Uはピーク値よりも小さく、コイルU2,U3には当該第2U相電流62Uが供給される。これにより、疑似極34と径方向に対向するコイルU2,U3に作用する電磁力が、磁極33と径方向に対向するコイルU1,U4に作用する電磁力よりも小さくなる。その結果、疑似極34と径方向に対向するコイルU2,U3が巻回されたティース22の磁束密度と、磁極33と径方向に対向するコイルU1,U4が巻回されたティース22の磁束密度とがおよそ等しくなる。  In the motor 1, for example, under the control of the first inverter 41, the coils U1 and U4 face the magnetic poles 33 of the rotor 3 in the radial direction, and the coils U2 and U3 face the pseudo poles 34 in the radial direction. , U4 is supplied with the peak value of the first U-phase current 61U. In this case, the second U-phase current 62U controlled by the second inverter 42 is smaller than the peak value, and the coils U2 and U3 are supplied with the second U-phase current 62U. Thus, the electromagnetic force acting on the coils U2 and U3 radially opposed to the pseudo pole 34 is smaller than the electromagnetic force acting on the coils U1 and U4 radially opposed to the magnetic pole 33. As a result, the magnetic flux density of the teeth 22 in which the coils U2 and U3 radially opposed to the pseudo pole 34 are wound, and the magnetic flux density of the teeth 22 in which the coils U1 and U4 radially opposed to the magnetic pole 33 are wound. And become approximately equal.
図6は、上述の基本U相電流60Uに加えて、基本V相電流60Vおよび基本W相電流60Wを示す図である。図7は、上述の第1U相電流61Uおよび第2U相電流62Uに加えて、第1V相電流61Vおよび第2V相電流62V、並びに、第1W相電流61Wおよび第2W相電流62Wを示す図である。図6および図7の横軸は機械角を示し、縦軸は電流値を示す。  FIG. 6 is a diagram showing a basic V-phase current 60 V and a basic W-phase current 60 W in addition to the basic U-phase current 60 U described above. FIG. 7 is a diagram showing a first V-phase current 61V and a second V-phase current 62V, and a first W-phase current 61W and a second W-phase current 62W in addition to the first U-phase current 61U and the second U-phase current 62U described above. is there. The horizontal axes of FIGS. 6 and 7 indicate mechanical angles, and the vertical axes indicate current values.
基本V相電流60Vおよび基本W相電流60Wはそれぞれ、d軸電流に第1高調波電流および第2高調波電流が重畳されない場合に、コイルV1~V4に供給されるV相電流、および、コイルW1~W4に供給されるW相電流である。第1V相電流61Vおよび第2V相電流62Vは、d軸電流に第1高調波電流が重畳された場合にコイルV2,V3に供給されるV相電流、および、d軸電流に第2高調波電流が重畳された場合にコイルV1,V4に供給されるV相電流である。第1W相電流61Wおよび第2W相電流62Wは、d軸電流に第1高調波電流が重畳された場合にコイルW1,W4に供給されるW相電流、および、d軸電流に第2高調波電流が重畳された場合にコイルW2,W3に供給されるW相電流である。  The basic V-phase current 60 V and the basic W-phase current 60 W are respectively the V-phase current supplied to the coils V1 to V4 when the first harmonic current and the second harmonic current are not superimposed on the d-axis current, and It is a W-phase current supplied to W1 to W4. The first V phase current 61 V and the second V phase current 62 V are the V phase current supplied to the coils V2 and V3 when the first harmonic current is superimposed on the d axis current, and the second harmonic current in the d axis current It is a V-phase current supplied to the coils V1 and V4 when the current is superimposed. The first W-phase current 61W and the second W-phase current 62W are the W-phase current supplied to the coils W1 and W4 when the first harmonic current is superimposed on the d-axis current, and the second harmonic in the d-axis current It is a W-phase current supplied to the coils W2 and W3 when the current is superimposed.
モータ1では、コイルV1~V4に供給されるV相電流、および、コイルW1~W4に供給されるW相電流に対しても、第1インバータ41および第2インバータ42による上述のU相電流の制御と同様の制御が行われる。その結果、ロータ3の磁気アンバランス発生が防止または抑制され、当該磁気アンバランスに起因するモータ1の振動も防止または抑制される。  In motor 1, with respect to the V-phase current supplied to coils V1 to V4 and the W-phase current supplied to coils W1 to W4, the above-described U-phase currents by first inverter 41 and second inverter 42 are Control similar to the control is performed. As a result, the occurrence of magnetic unbalance in the rotor 3 is prevented or suppressed, and the vibration of the motor 1 caused by the magnetic unbalance is also prevented or suppressed.
以上に説明したように、モータ1は、電機子2と、ロータ3と、制御部4と、を含む。電機子2は、周方向に配列された複数のコイル24を有する。ロータ3では、複数の磁極33と複数の疑似極34とが周方向に交互に配列される。制御部4は、複数のコイル24に供給される3相交流電流を制御する。複数のコイル24の数は、6の倍数である。複数の磁極33の数は、3以上の奇数である。  As described above, the motor 1 includes the armature 2, the rotor 3, and the control unit 4. The armature 2 has a plurality of coils 24 arranged in the circumferential direction. In the rotor 3, the plurality of magnetic poles 33 and the plurality of pseudo poles 34 are alternately arranged in the circumferential direction. The control unit 4 controls the three-phase alternating current supplied to the plurality of coils 24. The number of coils 24 is a multiple of six. The number of the plurality of magnetic poles 33 is an odd number of 3 or more.
制御部4は、第1インバータ41と、第2インバータ42と、を含む。ここで、複数のコイル24のうちコイルU1,V3,W1をまとめて「第1コイル群U1,V3,W1」と呼び、コイルU3,V1,W3をまとめて「第2コイル群U3,V1,W3」と呼ぶと、第1インバータ41は、複数のコイル24のうち第1コイル群U1,V3,W1に供給される電流を制御する。また、第2インバータ42は、複数のコイル24のうち第1コイル群U1,V3,W1と径方向に対向する第2コイル群U3,V1,W3に供給される電流を制御する。  Control unit 4 includes a first inverter 41 and a second inverter 42. Here, coils U1, V3 and W1 among the plurality of coils 24 are collectively referred to as "first coil group U1, V3 and W1", and coils U3, V1 and W3 are collectively referred to as "second coil group U3, V1 and V2 The first inverter 41 controls the current supplied to the first coil group U1, V3, and W1 among the plurality of coils 24 when called “W3”. Further, the second inverter 42 controls the current supplied to the second coil group U3, V1, W3 radially opposed to the first coil group U1, V3, W1 among the plurality of coils 24.
モータ1では、第1インバータ41により、第1コイル群U1,V3,W1のd軸電流の基本波電流に対して、1次高調波電流を主要波電流として含む第1高調波電流が重畳される。また、第2インバータ42により、第2コイル群U3,V1,W3のd軸電流の基本波電流に対して、1次高調波電流を主要波電流として含む第2高調波電流が重畳される。そして、第1コイル群U1,V3,W1および第2コイル群U3,V1,W3に供給される3相交流電流のピーク位相がずれ、ゼロクロス位置は同じである。  In the motor 1, the first inverter 41 includes the first harmonic current including the first harmonic current as the main wave current superimposed on the fundamental wave current of the d-axis current of the first coil group U1, V3, W1. Ru. Further, a second harmonic current including a first harmonic current as a main wave current is superimposed by the second inverter 42 on the fundamental wave current of the d-axis current of the second coil group U3, V1, W3. Then, the peak phases of the three-phase alternating current supplied to the first coil group U1, V3, W1 and the second coil group U3, V1, W3 are shifted, and the zero cross positions are the same.
これにより、第1コイル群U1,V3,W1および第2コイル群U3,V1,W3のうち、一方のコイル群が磁極33と径方向に対向し、他方のコイル群が疑似極34と径方向に対向する際に、当該一方のコイル群に供給される電流を、他方のコイル群に供給される電流よりも大きくする制御を容易に実現することができる。その結果、モータ1における3相交流電流の電流制御が複雑化することを抑制しつつ、ロータ3の磁気アンバランスを低減してモータ1の低振動化を実現することができる。また、各ティース22に加わる電気角1次ラジアル力も低減することができる。  Thereby, one coil group of the first coil group U1, V3, W1 and the second coil group U3, V1, W3 radially faces the magnetic pole 33, and the other coil group is pseudo pole 34 in the radial direction It is possible to easily realize control to make the current supplied to the one coil group larger than the current supplied to the other coil group, when facing each other. As a result, while suppressing the current control of the three-phase alternating current in the motor 1 from becoming complicated, the magnetic unbalance of the rotor 3 can be reduced, and the vibration reduction of the motor 1 can be realized. Moreover, the electrical angle primary radial force applied to each tooth 22 can also be reduced.
さらに、モータ1では、第1コイル群U1,V3,W1および第2コイル群U3,V1,W3に供給される3相交流電流のピーク値が同じである。これにより、ピーク値が異なる場合に比べて、モータ1における3相交流電流の電流制御が複雑化することを、より一層抑制することができる。  Furthermore, in the motor 1, the peak values of the three-phase alternating current supplied to the first coil group U1, V3, W1 and the second coil group U3, V1, W3 are the same. Thereby, compared with the case where peak values differ, it can suppress further that current control of the three-phase alternating current in the motor 1 is complicated.
モータ1では、第1高調波電流および第2高調波電流に含まれる1次高調波電流は、正弦波電流である。これにより、第1コイル群U1,V3,W1および第2コイル群U3,V1,W3に供給される3相交流電流の変化が滑らかになるため、各ティース22の磁束密度の変化も滑らかになる。その結果、モータ1の低振動化を好適に実現することができる。  In the motor 1, the first harmonic current included in the first harmonic current and the second harmonic current is a sinusoidal current. Thereby, since the change of the three-phase alternating current supplied to the first coil group U1, V3, W1 and the second coil group U3, V1, W3 becomes smooth, the change of the magnetic flux density of each tooth 22 also becomes smooth. . As a result, vibration reduction of the motor 1 can be suitably realized.
上述の例では、第1高調波電流および第2高調波電流は、1次高調波電流である。これにより、第1高調波電流および第2高調波電流に2次以上の高調波電流が含まれる場合に比べて、第1インバータ41および第2インバータ42による制御信号の生成間隔を大きくすることができる。その結果、モータ1における3相交流電流の電流制御を容易とすることができる。また、高調波電流の次数が大きくなるに従って分解能は低くなるため、第1高調波電流および第2高調波電流を1次高調波電流とすることにより、上述の電流制御の精度を向上することができる。なお、当該電流制御において、PWM(Pulse Width Modulation)周波数が一定である場合は、上記制御信号の生成間隔も一定である。  In the above example, the first harmonic current and the second harmonic current are first harmonic currents. Thereby, the generation interval of the control signal by the first inverter 41 and the second inverter 42 can be increased as compared with the case where the second harmonic current is included in the first harmonic current and the second harmonic current. it can. As a result, current control of the three-phase alternating current in the motor 1 can be facilitated. In addition, since the resolution decreases as the order of the harmonic current increases, the accuracy of the above-described current control can be improved by setting the first harmonic current and the second harmonic current as the first harmonic current. it can. In the current control, when the PWM (Pulse Width Modulation) frequency is constant, the generation interval of the control signal is also constant.
上述のように、複数のコイル24の数は、12以上である。また、第1コイル群U1,V3,W1は、複数のコイル24のうち、第2コイル群U3,V1,W3に隣接するコイル群U4,V2,W4に電気的に接続される。第2コイル群U3,V1,W3は、複数のコイル24のうち、第1コイル群U1,V3,W1に隣接するコイル群U2,V4,W2に電気的に接続される。これにより、12以上のコイル24が設けられたモータ1における3相交流電流の電流制御を容易とすることができる。  As mentioned above, the number of the plurality of coils 24 is 12 or more. Further, the first coil group U1, V3, W1 is electrically connected to the coil groups U4, V2, W4 adjacent to the second coil group U3, V1, W3 among the plurality of coils 24. The second coil groups U3, V1, and W3 are electrically connected to the coil groups U2, V4, and W2 adjacent to the first coil groups U1, V3, and W1 among the plurality of coils 24. Thereby, current control of the three-phase alternating current in the motor 1 provided with the 12 or more coils 24 can be facilitated.
上述の例では、複数のコイル24の数が12であり、複数の磁極33の数が5である10P12Sのモータ1に
ついて、3相交流電流の電流制御が複雑化することを抑制しつつ低振動化を実現する技術について説明したが、モータ1のコイル24および磁極33の数は、上記例には限定されない。例えば、複数のコイル24の数が12であり、複数の磁極33の数が7である14P12Sのモータ1においても、第1インバータ41および第2インバータ42による上記電流制御が行われることにより、3相交流電流の電流制御が複雑化することを抑制しつつ、ロータ3の磁気アンバランスを低減してモータ1の低振動化を実現することができる。 
In the above-mentioned example, the number of the plurality of coils 24 is twelve, and the number of the plurality of magnetic poles 33 is five, the number of the plurality of magnetic poles 33 is five. Although the technology for realizing the above-described embodiment has been described, the number of coils 24 and magnetic poles 33 of the motor 1 is not limited to the above example. For example, in the 14P12S motor 1 in which the number of the plurality of coils 24 is 12 and the number of the plurality of magnetic poles 33 is 7, the above current control by the first inverter 41 and the second inverter 42 is performed. While suppressing the current control of the phase alternating current from becoming complicated, the magnetic unbalance of the rotor 3 can be reduced, and the vibration of the motor 1 can be reduced.
上述のモータ1では、様々な変更が可能である。  In the motor 1 described above, various modifications are possible.
例えば、第1高調波電流および第2高調波電流に含まれる1次高調波電流は、必ずしも正弦波電流である必要はなく、略矩形波電流等の非正弦波電流であってもよい。また、第1高調波電流および第2高調波電流は、1次高調波電流を主要波電流として含むのであれば、他の次数の高調波電流を含んでいてもよい。  For example, the first harmonic current included in the first harmonic current and the second harmonic current does not necessarily have to be a sine wave current, and may be a non-sinusoidal current such as a substantially rectangular wave current. In addition, the first harmonic current and the second harmonic current may include harmonic currents of other orders as long as the first harmonic current is included as the main wave current.
第1コイル群U1,V3,W1は、必ずしもコイル群U4,V2,W4に電気的に接続される必要はない。また、第2コイル群U3,V1,W3は、必ずしもコイル群U2,V4,W2に電気的に接続される必要はない。  The first coil groups U1, V3 and W1 do not necessarily have to be electrically connected to the coil groups U4, V2 and W4. The second coil groups U3, V1, and W3 do not necessarily have to be electrically connected to the coil groups U2, V4, and W2.
第1インバータ41および第2インバータ42の制御により第1コイル群U1,V3,W1および第2コイル群U3,V1,W3に供給される3相交流電流では、ピーク値は異なっていてもよい。この場合であっても、3相交流電流の電流制御が複雑化することを抑制しつつ、モータ1の低振動化を実現することができる。  The peak values of the three-phase alternating current supplied to the first coil group U1, V3, W1 and the second coil group U3, V1, W3 by the control of the first inverter 41 and the second inverter 42 may be different. Even in this case, it is possible to reduce the vibration of the motor 1 while suppressing the current control of the three-phase alternating current from becoming complicated.
上述の例では、複数のコイル24のうちコイルU1,V3,W1を第1コイル群とし、コイルU3,V1,W3を第2コイル群としてモータ1の構成および効果について説明したが、コイルU4,V2,W4を第1コイル群とし、コイルU2,V4,W2を第2コイル群とした場合であっても上記と同様である。  In the above-mentioned example, coil U1, V3 and W1 were made into the 1st coil group among a plurality of coils 24, and coil U3, V1 and W3 were made into the 2nd coil group, and composition and effect of motor 1 were explained. The same applies to the case where V2 and W4 are the first coil group, and coils U2, V4 and W2 are the second coil group.
モータ1では、複数のコイル24の数は、12には限定されず、6の倍数であればよい。また、複数の磁極33の数は、5または7には限定されず、3以上の奇数であればよい。  In the motor 1, the number of the plurality of coils 24 is not limited to 12 and may be a multiple of six. Further, the number of the plurality of magnetic poles 33 is not limited to 5 or 7, and may be an odd number of 3 or more.
上記実施の形態および各変形例における構成は、相互に矛盾しない限り適宜組み合わされてよい。 The configurations in the above embodiment and each modification may be combined as appropriate as long as no contradiction arises.
本発明に係るモータは、様々な用途のモータとして利用可能である。 The motor according to the present invention can be used as a motor for various applications.
1:モータ、2:電機子、3:ロータ、4:制御部、24,U1~U4,V1~V4,W1~W4:コイル、33:磁極、34:疑似極、41:第1インバータ、42:第2インバータ、J1:中心軸、U1,V3,W1:第1コイル群、U3,V1,W3:第2コイル群 1: Motor, 2: Armature, 3: Rotor, 4: Controller, 24, U1 to U4, V1 to V4, W1 to W4: Coil, 33: Magnetic pole, 34: Pseudo pole, 41: First inverter, 42 : Second inverter, J1: central axis, U1, V3, W1: first coil group, U3, V1, W3: second coil group

Claims (7)


  1.  周方向に配列された複数のコイルを有する電機子と、

     複数の磁極と複数の疑似極とが周方向に交互に配列されたロータと、

     前記複数のコイルに供給される3相交流電流を制御する制御部と、

    を備え、

     前記複数のコイルの数が6の倍数であり、

     前記複数の磁極の数が3以上の奇数であり、

     前記制御部が、

     前記複数のコイルのうち第1コイル群に供給される電流を制御する第1インバータと、

     前記複数のコイルのうち前記第1コイル群と径方向に対向する第2コイル群に供給される電流を制御する第2インバータと、

    を備え、

     前記第1インバータにより、前記第1コイル群のd軸電流の基本波電流に対して、1次高調波電流を主要波電流として含む第1高調波電流が重畳され、

     前記第2インバータにより、前記第2コイル群のd軸電流の基本波電流に対して、1次高調波電流を主要波電流として含む第2高調波電流が重畳され、

     前記第1コイル群および前記第2コイル群に供給される3相交流電流のピーク位相がずれ、ゼロクロス位置が同じである、コンシクエント型モータ。

    An armature having a plurality of coils arranged circumferentially;

    A rotor having a plurality of magnetic poles and a plurality of pseudo poles alternately arranged in the circumferential direction;

    A control unit that controls a three-phase alternating current supplied to the plurality of coils;

    Equipped with

    The number of the plurality of coils is a multiple of six,

    The number of the plurality of magnetic poles is an odd number of 3 or more,

    The control unit

    A first inverter controlling a current supplied to a first coil group among the plurality of coils;

    A second inverter that controls a current supplied to a second coil group radially facing the first coil group among the plurality of coils;

    Equipped with

    A first harmonic current including a first harmonic current as a main wave current is superimposed on the fundamental wave current of the d-axis current of the first coil group by the first inverter,

    The second inverter current including the first harmonic current as a main wave current is superimposed on the fundamental wave current of the d-axis current of the second coil group by the second inverter,

    A coincident type motor in which peak phases of three-phase alternating current supplied to the first coil group and the second coil group are deviated and a zero cross position is the same.

  2.  前記第1高調波電流および前記第2高調波電流に含まれる1次高調波電流が正弦波電流である、請求項1に記載のコンシクエント型モータ。

    The coincident motor according to claim 1, wherein a first harmonic current included in the first harmonic current and the second harmonic current is a sine wave current.

  3.  前記第1高調波電流および前記第2高調波電流が1次高調波電流である、請求項1または2に記載のコンシクエント型モータ。

    The motor according to claim 1, wherein the first harmonic current and the second harmonic current are first harmonic currents.

  4.  前記複数のコイルの数が12以上であり、

     前記第1コイル群が、前記複数のコイルのうち前記第2コイル群に隣接するコイルに電気的に接続され、

     前記第2コイル群が、前記複数のコイルのうち前記第1コイル群に隣接するコイルに電気的に接続される、請求項1ないし3のいずれか1つに記載のコンシクエント型モータ。

    The number of the plurality of coils is 12 or more,

    The first coil group is electrically connected to a coil adjacent to the second coil group among the plurality of coils,

    The consequent type motor according to any one of claims 1 to 3, wherein the second coil group is electrically connected to a coil adjacent to the first coil group among the plurality of coils.

  5.  前記第1コイル群および前記第2コイル群に供給される3相交流電流のピーク値が同じである、請求項1ないし4のいずれか1つに記載のコンシクエント型モータ。

    The coincident type motor according to any one of claims 1 to 4, wherein peak values of three-phase alternating current supplied to the first coil group and the second coil group are the same.

  6.  前記複数のコイルの数が12であり、

     前記複数の磁極の数が5である、請求項1ないし5のいずれか1つに記載のコンシクエント型モータ。

    The number of the plurality of coils is twelve,

    The consistent motor according to any one of claims 1 to 5, wherein the number of the plurality of magnetic poles is five.

  7.  前記複数のコイルの数が12であり、

     前記複数の磁極の数が7である、請求項1ないし5のいずれか1つに記載のコンシクエント型モータ。

    The number of the plurality of coils is twelve,

    The consistent motor according to any one of claims 1 to 5, wherein the number of the plurality of magnetic poles is seven.
PCT/JP2018/024784 2017-07-03 2018-06-29 Consequent motor WO2019009195A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201890000924.3U CN211321250U (en) 2017-07-03 2018-06-29 Alternating motor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-130058 2017-07-03
JP2017130058 2017-07-03

Publications (1)

Publication Number Publication Date
WO2019009195A1 true WO2019009195A1 (en) 2019-01-10

Family

ID=64950050

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/024784 WO2019009195A1 (en) 2017-07-03 2018-06-29 Consequent motor

Country Status (2)

Country Link
CN (1) CN211321250U (en)
WO (1) WO2019009195A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111756145B (en) * 2020-07-08 2022-09-09 上海交通大学 Double three-phase winding variable magnetic flux memory motor, motor system and control method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090021105A1 (en) * 2006-07-12 2009-01-22 Steven Andrew Evans Rotor for an electric machine and production method thereof
JP2011176993A (en) * 2010-02-25 2011-09-08 Asmo Co Ltd Motor control apparatus
WO2015011747A1 (en) * 2013-07-22 2015-01-29 三菱電機株式会社 Permanent magnet motor and electric power steering device
WO2017085814A1 (en) * 2015-11-18 2017-05-26 三菱電機株式会社 Electric motor and air conditioner

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090021105A1 (en) * 2006-07-12 2009-01-22 Steven Andrew Evans Rotor for an electric machine and production method thereof
JP2011176993A (en) * 2010-02-25 2011-09-08 Asmo Co Ltd Motor control apparatus
WO2015011747A1 (en) * 2013-07-22 2015-01-29 三菱電機株式会社 Permanent magnet motor and electric power steering device
WO2017085814A1 (en) * 2015-11-18 2017-05-26 三菱電機株式会社 Electric motor and air conditioner

Also Published As

Publication number Publication date
CN211321250U (en) 2020-08-21

Similar Documents

Publication Publication Date Title
US8896178B2 (en) Synchronous electric motor drive system having slit windings
JP4723118B2 (en) Rotating electric machine and pulley drive device using the rotating electric machine
JP5827026B2 (en) Rotating electric machine and rotating electric machine drive system
JP2010531130A (en) Synchronous motor having 12 stator teeth and 10 rotor poles
JP2007124755A (en) Hybrid excitation dynamo-electric machine, and vehicle with hybrid excitation dynamo-electric machine
JP2009112091A (en) Rotating electrical machine and drive controller therefor
JP2018085799A (en) Rotary electric machine control system and method of adjusting the same
JP2008005603A (en) Synchronous machine and power generating system using it as generator
JP2011114941A (en) Motor
JP5419991B2 (en) Permanent magnet synchronous motor
JP2020010474A (en) Motor drive system
WO2017171037A1 (en) Rotor and method for designing rotor
WO2019009195A1 (en) Consequent motor
JP2010057208A (en) Rotary electric machine
JP2020043654A (en) motor
JP6481545B2 (en) motor
CN211457032U (en) Alternating motor
WO2017085861A1 (en) Rotating electric machine
JP6286115B2 (en) Structure of stator of rotating electrical machine
JPH10262359A (en) Permanent magnet dynamo-electric machine
JP2007189818A (en) Current control method of synchronous motor
JP2020043655A (en) motor
JP2021078208A (en) Rotary electric machine
JP2020145865A (en) Motor system
JP2014131373A (en) Permanent magnet synchronous machine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18827607

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18827607

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP