WO2019008145A1 - Procédé de préparation d'émulsions de pickering à partir de particules biosourcées - Google Patents

Procédé de préparation d'émulsions de pickering à partir de particules biosourcées Download PDF

Info

Publication number
WO2019008145A1
WO2019008145A1 PCT/EP2018/068397 EP2018068397W WO2019008145A1 WO 2019008145 A1 WO2019008145 A1 WO 2019008145A1 EP 2018068397 W EP2018068397 W EP 2018068397W WO 2019008145 A1 WO2019008145 A1 WO 2019008145A1
Authority
WO
WIPO (PCT)
Prior art keywords
particles
emulsion
oil
pickering emulsion
μηι
Prior art date
Application number
PCT/EP2018/068397
Other languages
English (en)
Inventor
Chrystel Faure
Cécile JOSEPH
Fernando Leal-Calderon
Didier Pintori
Maud CANSELL
Original Assignee
Pivert
Centre National De La Recherche Scientifique
Iterg
Université De Bordeaux
Institut Polytechnique De Bordeaux
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pivert, Centre National De La Recherche Scientifique, Iterg, Université De Bordeaux, Institut Polytechnique De Bordeaux filed Critical Pivert
Priority to EP18736913.7A priority Critical patent/EP3648736A1/fr
Publication of WO2019008145A1 publication Critical patent/WO2019008145A1/fr

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/96Cosmetics or similar toiletry preparations characterised by the composition containing materials, or derivatives thereof of undetermined constitution
    • A61K8/97Cosmetics or similar toiletry preparations characterised by the composition containing materials, or derivatives thereof of undetermined constitution from algae, fungi, lichens or plants; from derivatives thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K36/00Medicinal preparations of undetermined constitution containing material from algae, lichens, fungi or plants, or derivatives thereof, e.g. traditional herbal medicines
    • A61K36/18Magnoliophyta (angiosperms)
    • A61K36/185Magnoliopsida (dicotyledons)
    • A61K36/28Asteraceae or Compositae (Aster or Sunflower family), e.g. chamomile, feverfew, yarrow or echinacea
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K36/00Medicinal preparations of undetermined constitution containing material from algae, lichens, fungi or plants, or derivatives thereof, e.g. traditional herbal medicines
    • A61K36/18Magnoliophyta (angiosperms)
    • A61K36/185Magnoliopsida (dicotyledons)
    • A61K36/31Brassicaceae or Cruciferae (Mustard family), e.g. broccoli, cabbage or kohlrabi
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/02Cosmetics or similar toiletry preparations characterised by special physical form
    • A61K8/0241Containing particulates characterized by their shape and/or structure
    • A61K8/0275Containing agglomerated particulates
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/02Cosmetics or similar toiletry preparations characterised by special physical form
    • A61K8/04Dispersions; Emulsions
    • A61K8/06Emulsions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q19/00Preparations for care of the skin

Definitions

  • the present invention relates to a method for preparing Pickering emulsions obtained from biosourced particles. It relates more particularly to a process for preparing emulsions from vegetable powders, as well as the emulsions thus obtained and their uses, preferably in the cosmetics, food or road asphalt emulsion based surfaces.
  • An emulsion consists of a mixture of two immiscible liquids together rendered stable over time by an emulsifier.
  • the emulsions are generally divided into two categories, the so-called “water-in-oil” emulsions, where water droplets are suspended in an oily phase, and the so-called “oil-in-water” emulsions, where droplets of oil are suspended in an aqueous phase.
  • Milk, butter and vinaigrette are examples of common emulsions in the agri-food sector.
  • Emulsifiers also called emulsifiers, surfactants or surfactants, are compounds capable of stabilizing emulsions over time. These compounds may be of artificial origin, such as synthetic polymers, or of natural origin, such as phospholipids or proteins.
  • emulsion systems can be used to increase the resistance of oils to oxidation phenomena.
  • the oxidation of unsaturated fatty acids such as linoleic acid, is a complex phenomenon that comprises several phases: primary oxidation, which degrades fatty acids into hydrogen peroxide and hydroperoxide derivatives, and degrading secondary oxidation. peroxide derivatives and hydroperoxides of hydrogen to aldehyde derivatives.
  • the degree of oxidation of fatty acids can be evaluated by the method of the peroxide index, which consists of a method of determination defined according to NF ISO standards. 3976, NF EN ISO 27107 or NF EN ISO 3960.
  • the oxidation limit of an oil for food use is set at a maximum of 15 meq of active oxygen / kg of oil (15 meq0 2 .kg "1 ), according to the CODEX STAN 19-1981 standard.
  • Amphiphilic solid particles are also used to stabilize the emulsions.
  • the resulting systems called Pickering emulsions, often have extraordinary kinetic stability (F. Leal-Calderon, V. Schmitt, Solid-stabilized emulsions, Current Opinion in Colloid and Interface Science, 13, 217-227 ( 2008)).
  • the solid particles are capable of strongly and irreversibly adsorbing at the interface of the immiscible phases, forming a rigid and thick layer capable of permanently preventing the phenomena of destruction of the emulsions such as the recombination of the drops (coalescence).
  • the application EP 2 775 862 describes the use of cocoa particles capable of stabilizing emulsions for the preparation of food products, without the use of additional emulsifiers.
  • One of the disadvantages of these particles is that their application is limited to products having a chocolate taste, in order to satisfy the end consumer.
  • the present invention aims to provide a stable Pickering emulsion that can be used in various fields of application including cosmetic, food or asphalt-based coatings or other hydrophobic substance.
  • Another object of the invention is to provide a means for stabilizing Pickering emulsions obtained from biosourced particles.
  • Another object of the invention is to provide a process for preparing stable Pickering emulsions from biosourced particles.
  • the present invention relates to a process for preparing a Pickering emulsion comprising the following steps:
  • a Pickering emulsion is an emulsion in which solid particles are employed to stabilize two immiscible liquids.
  • the Pickering emulsions according to the invention comprise plant powder particles of at least one oleaginous species.
  • the inventors have surprisingly found that these specific particles allow the stabilization of said emulsions.
  • the method for preparing the Pickering emulsions according to the invention therefore comprises a step of refining particles of oleaginous species making it possible to obtain a plant powder, a step of introducing the plant powder into one of the phases. then adding the second phase, and a stirring step allowing an energy supply to the mixture "water in oil” or “oil in water” containing the vegetable powder to obtain a stabilized emulsion.
  • Step a) of the process consists of refining particles of at least one oleaginous species, preferably oleaginous oil cake, in order to obtain a vegetable powder.
  • the plant powder according to the invention is obtained from a part of an oleaginous plant.
  • the vegetable powder is obtained from seeds of oleaginous species, hulls of oleaginous species, films of oleaginous species, oily meal and mixtures thereof.
  • the vegetable powder of step a) is obtained from cake of oleaginous species.
  • the oleaginous species are chosen from the group consisting of rapeseed, sunflower, soybean, flax, hemp, pea, beans, lupine, castor oil, olive, almond, corn germ, poppy, sesame, walnut, oil palm, shuttle, safflower, and mixtures thereof.
  • step a) consists of a wet or dry mechanical treatment step. This first step aims to refine the average particle diameter.
  • step a) is carried out by means of a universal mill.
  • grinding means that the material is subjected to striking, shearing and percussive effects within a grinding apparatus.
  • the term "sieving” means that it is possible to select the desired grinding fineness.
  • the fineness of grinding of the raw material can be chosen between 0.12 and 10 mm by means of interchangeable sieves.
  • the sieves commonly used in grinders have openings of 120 ⁇ , 200 ⁇ , 250 ⁇ , 500 ⁇ , 750 ⁇ , 1 mm, 1, 5 mm, 2 mm, 3 mm, 4 mm, 5 mm, 6 mm, 8 mm. and 10 mm.
  • step a) grinding and sieving according to step a) are carried out by a grinder at 120 ⁇ .
  • step a) makes it possible to obtain a plant powder in the form of particles of suitable size.
  • the plant powder thus obtained is in the form of particles of average size between 0.1 ⁇ and 100 ⁇ , and preferably between 0.5 ⁇ and 50 ⁇ .
  • the term “average size” refers to the average number diameter of the particles.
  • the size distribution of the particles is determined by statistical analysis of images (for example by optical microscopy, objective x60, 2 images of 1 19 ⁇ 88 ⁇ ). The largest dimension of all particles in the images is noted. The total number of particles varies from one sample to another but is never less than 100.
  • the refining consists of a step of grinding and sieving the cake of oleaginous species in order to obtain a vegetable powder.
  • the vegetable powder obtained after step a) is preferably produced from sunflower cake, rapeseed or lupine.
  • cake refers to solid co-products obtained after grinding oleaginous seeds and solvent extraction of the oils. Cakes are generally valued as a source of protein feed for livestock. The cakes thus obtained are then milled and sieved to produce a powder.
  • Step b) consists of adding the powder obtained at the end of step a) in an oily or aqueous phase to prepare an emulsion.
  • Step b) may consist in adding the vegetable powder in an aqueous phase to obtain a suspension (S) followed by the incorporation of oil in said suspension (S), to obtain an oil-in-water emulsion.
  • Step b) may consist in adding the vegetable powder in an oily phase to obtain a suspension (S ') followed by the incorporation of water in said suspension (S'), to obtain a water-in-oil emulsion.
  • the emulsion is of the oil-in-water type.
  • the emulsion contains from 5% to 40% of oil and from 60% to 95% of water, more preferably from 10% to 30% of oil and from 70% to 90% of water, for example. relative to the total weight of said emulsion.
  • the aqueous phase of the emulsion is buffered.
  • the aqueous phase has a pH of between 5 and 9, more preferably between 6 and 8.
  • the buffer used can be any type of buffer.
  • the buffer used is an inorganic salt and / or a mixture of inorganic salts, more preferably the buffer contains 0.1 M phosphate buffer (KH 2 PO 4 / K 2 HPO 4 ).
  • Stage c) of the process according to the invention consists in supplying energy to the mixture obtained at the end of stage b), containing the vegetable powder, in order to obtain a stabilized emulsion.
  • an emulsion consists of fine drops of a phase dispersed in a continuous dispersing phase, immiscible with the first.
  • Stirring step c) consists of supplying energy to the emulsion obtained at the end of step b) to stabilize said emulsion.
  • Such a step can also be likened to an emulsification step.
  • Step c) can be done by various means.
  • step c) is performed by means of a rotor / stator type stirrer.
  • a rotor / stator stirrer comprises a mobile part, called a rotor, fixed on a stationary part, called a stator, and capable of causing stirring in a medium.
  • step c) is performed by means of an ultrasound apparatus.
  • step c) is carried out using a high-pressure homogenizer.
  • a high-pressure homogenizer is an apparatus comprising numerous pistons that make it possible to vary the pressure within of the medium, causing vacuum effects, entrainment effects and or shear effects.
  • the homogenization pressure of the homogenizer at high pressure is between 50 bar and 1000 bar, preferably between 100 bar and 300 bar.
  • a high pressure homogenizer is particularly advantageous in that it allows for finer powder sizes and smaller drop sizes. This embodiment thus makes it possible to obtain emulsions that are more stable over time.
  • step c) is carried out by means of a ball mill.
  • ball mills are devices capable of grinding by involving multiple friction and impact effects between the sample, the balls and the inner walls of the bowl or mortar. Ball mills are suitable for the mixing and homogenization process.
  • the present invention also relates to a Pickering emulsion obtainable by the process as defined above.
  • the Pickering emulsions according to the invention comprise drops of size less than 30 ⁇ , preferably between 0.5 ⁇ and 1 0 ⁇ .
  • the term "size” here designates the average volume diameter (D 4.3 ) of the drops of the emulsion, determined by laser granulometry.
  • Particle size is used to measure the size of the particles or elementary drops dispersed in the continuous phase.
  • the size of the drops can be measured by means of a light scattering apparatus.
  • the apparatus employed is a laser granulometer.
  • the drops can be visualized by means of microscopy devices.
  • the apparatus employed is a phase contrast microscope.
  • the distribution of solid particles on the surface of the drops can be visualized using an apparatus capable of revealing the fluorescence properties of the particles.
  • the apparatus employed is a fluorescence microscope.
  • the use of a high pressure homogenizer is particularly advantageous in that it allows particles of reduced size.
  • the Pickering emulsions according to the invention comprise vegetable powder particles having a protein content by weight of between 8% and 50% relative to the total weight of vegetable powder particles.
  • the anchoring rate of the plant particles at the interface between the two phases of the emulsion is between 60% and 95%, preferably between 70% and 95%. % and 90%.
  • the anchoring rate is defined as the mass ratio between the plant particles adsorbed at the interfaces and the total mass of particles used to make the emulsion.
  • An anchoring rate of less than 100% reveals the presence of free particles in the continuous phase.
  • the anchoring rate is determined by weighing the non-anchored particles on the surface of the drops. The decorated drops of particles are separated from the aqueous phase containing the unanchored particles by natural creaming (about 3 days). The cream is removed and the aqueous phase is removed by lyophilization to obtain the non-anchored particles which are then weighed.
  • the anchoring rate is calculated by difference:
  • the emulsions obtained according to the invention are advantageous in that they have a drop size, an anchoring rate and a stability controlled by the process of the invention.
  • the size of the drops of the emulsions obtained can be controlled by the mass of particles initially introduced.
  • the size of the drops of the emulsions obtained can also be controlled by the volume fraction of oil or by the homogenization pressure.
  • the present invention also relates to the use of a Pickering emulsion as defined above in cosmetic, food or bitumen-based coatings.
  • the present invention therefore also relates to a cosmetic composition comprising at least one Pickering emulsion as defined above.
  • the present invention therefore also relates to an agrifood composition comprising at least one Pickering emulsion as defined above.
  • the present invention therefore also relates to a bitumen composition comprising at least one Pickering emulsion as defined above.
  • the present invention also relates to the use of a vegetable powder of at least one oleaginous species, in particular oilseed cake, for stabilizing a water-in-oil or oil-in-water emulsion, said emulsion comprising drops. less than 30 ⁇ , preferably between 0.5 ⁇ and 10 ⁇ .
  • the vegetable powder is obtained from oleaginous rapeseeds, delipidated with hexane, crushed / sieved at 120 ⁇ , sorted by centrifugation to remove large particles likely to clog the apparatus (a 10% dispersion of rapeseed is centrifuged 10min to 54xg where g is the acceleration of gravity, the upper phase is lyophilized to recover the so-called "sorted" powder).
  • This vegetable powder is introduced into an aqueous phase (distilled water buffered at pH 7 with a 0.1 M phosphate buffer) at 2.5% by weight. This mixture is stirred with a magnetic bar for 20 minutes to obtain a dispersion.
  • the dispersion is then stirred for 2 min by means of a rotor / stator type stirrer (Ultra-Turrax T25 digital) at 6000 rpm (rotation per minute).
  • the oily phase (sunflower oil, 20% by weight of the total emulsion) is gradually added to the mixture once stirring is increased to 8000 rpm.
  • the speed is then increased to 12,000 rpm and the mixture is subjected to this speed an additional 10 minutes to obtain an emulsion.
  • the emulsion is stable for 14 days, with an average size of the drops in volume of 20 ⁇ . After 14 days, the emulsion is destabilized, a layer of oil is visible on the surface. The particles are adsorbed on the surface of the drops but are poorly distributed, and 31% of them are not at the interfaces.
  • the vegetable powder (identical to Example 1) at 2.5% by weight relative to the aqueous phase is added to the aqueous phase (78% of the total emulsion, distilled water buffered at pH 7 by a phosphate buffer at 0.degree. , 1 M), then the oily phase (20% of the total emulsion, sunflower oil) is also added.
  • the mixture (10 mL) is stirred manually and then by means of an ultrasound probe (CE Converter 120C), set at 10W, with a duty cycle of 80%, and a duration of 5 minutes, to obtain an emulsion.
  • the emulsion is stable for 30 days, with an average volume of drops of 3 ⁇ .
  • the drops then coalesce to reach 15 ⁇ before the appearance of a layer of oil, a sign of destabilization.
  • the particles are adsorbed on the surface of the drops and well distributed, the fluorescence being homogeneous. Only 10% of them are not at interfaces.
  • a given volume (20 ml) of emulsion obtained by means of a rotor-stator stirrer (emulsion of Example 1) is introduced into the tank of the high-pressure homogenizer (Microfluidizer M-1 10S).
  • the homogenization is carried out with an inlet pressure of 3.44 bar and a chamber pressure of 801 bar.
  • the emulsion undergoes 20 strokes of pistons.
  • the apparatus operates in closed circuit and each emulsion makes an average of 6 passages in the apparatus.
  • the emulsion is stable for more than 90 days, with a mean volume size of drops of 4 ⁇ .
  • the particles are adsorbed on the surface of the drops and well distributed, the fluorescence being homogeneous. Only 7% of them are not at interfaces.
  • the average size of the drops of the emulsions can therefore be controlled.
  • ie 20% oil compared to the phase aqueous solution with milled rapeseed particles sieved at 120 ⁇ and sorted by centrifugation and with emulsification carried out using a high-pressure homogenizer at 801 bar, it is possible to obtain precisely emulsions in a range of 0, 6 ⁇ at 8.3 ⁇ (D (4.3)) with a range of 1% to 15% of plant particles relative to the aqueous phase.
  • the vegetable rapeseed powder of Example 3 is used to obtain two emulsions manufactured according to the protocol of Example 3, one is obtained with a pressure of 801 bar, the other at a pressure of 240 bar. Both are 5% vegetable particles with respect to the aqueous phase.
  • Emulsification pressure makes it possible to play on the size of the drops and thus on the properties of the emulsions.
  • Emulsification at 240 bar also makes it possible to obtain an emulsion which is very stable over time (at least 71 days), and relatively fine.
  • Example 6 Measurement of Pickering Emulsion Stabilized Oil Peroxide Index.
  • An oil used in the food industry must have an oxidation limit of not more than 15 meq0 2 / kg- 1 according to CODEX STAN 19-1981 This value is measured by a method of determination of the peroxide value according to standard NF EN ISO 27107.
  • the peroxide number was measured for:
  • Formulation A serves as a reference and allows to see the behavior of linseed oil vis-à-vis the oxidation over time.
  • the advantage of formulation B is to show the impact of a mechanical stirring in oxygenated medium on the resistance of the oil vis-à-vis the oxidation. The results show that the oil according to formulation B is no longer considered edible from 48h, against 72h for formulation A.
  • Formulation C shows the interest of the stabilization of the oil by means of a Pickering emulsion according to the invention.
  • the results show that the resistance of an oil to oxidation can be increased by making a Pickering emulsion.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Natural Medicines & Medicinal Plants (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Epidemiology (AREA)
  • Mycology (AREA)
  • Birds (AREA)
  • Microbiology (AREA)
  • Botany (AREA)
  • Biotechnology (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Alternative & Traditional Medicine (AREA)
  • Medical Informatics (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Dermatology (AREA)
  • Dispersion Chemistry (AREA)
  • Colloid Chemistry (AREA)

Abstract

La présente invention concerne un procédé de préparation d'une émulsion de Pickering comprenant les étapes suivantes : a) la préparation d'une poudre végétale d'au moins une espèce oléagineuse; b) l'addition de ladite poudre végétale - soit dans une phase aqueuse pour obtenir une suspension (S), - soit dans une phase huileuse pour obtenir une suspension (S'), suivie de l'incorporation - soit d'huile dans la suspension (S) pour obtenir une émulsion de type huile- dans-eau, - soit d'eau dans la suspension (S') pour obtenir une émulsion de type eau- dans-huile; et c) l'agitation de l'émulsion obtenue à l'issue de l'étape précédente.

Description

PROCÉDÉ DE PRÉPARATION D'ÉMULSIONS DE PICKERING À PARTIR DE PARTICULES BIOSOURCÉES
La présente invention a pour objet un procédé de préparation d'émulsions de Pickering obtenues à partir de particules biosourcées. Elle a plus particulièrement pour objet un procédé de préparation d'émulsions à partir de poudres végétales, ainsi que les émulsions ainsi obtenues et leurs utilisations, de préférence dans le domaine cosmétique, agroalimentaire ou dans les revêtements routiers en émulsion à base de bitume.
Une émulsion consiste en un mélange de deux liquides non miscibles entre eux rendu stable dans le temps grâce à un émulsifiant. Les émulsions sont en général réparties en deux catégories, les émulsions dites « eau-dans-huile », où des gouttelettes d'eau sont en suspension dans une phase huileuse, et les émulsions dites « huile-dans-eau », où des gouttelettes d'huile sont en suspension dans une phase aqueuse. Le lait, le beurre et la vinaigrette sont des exemples d'émulsions courantes dans le domaine de l'agroalimentaire.
Les émulsifiants, aussi appelés émulsionnants, tensioactifs ou agents de surfaces, sont des composés capables de stabiliser les émulsions au cours du temps. Ces composés peuvent être d'origine artificielle, tels que des polymères synthétiques, ou bien d'origine naturelle, tels que les phospholipides ou les protéines.
A l'heure actuelle, on observe, notamment dans le domaine de l'agroalimentaire et de la cosmétique, une élimination progressive des tensioactifs synthétiques jugés nocifs pour la santé et l'environnement. Il existe donc un réel besoin de nouveaux émulsifiants d'origine naturelle (biosourcés).
Dans le domaine de l'alimentaire, des systèmes d'émulsions peuvent être employés pour augmenter la résistance des huiles vis-à-vis des phénomènes d'oxydation. L'oxydation des acides gras insaturés, comme par exemple l'acide linoléique, est un phénomène complexe qui comprend plusieurs phases : une oxydation primaire, qui dégrade les acides gras en dérivés de type peroxydes et hydroperoxydes d'hydrogène, et une oxydation secondaire dégradant les dérivés de type péroxyde et hydroperoxydes d'hydrogène en dérivés de type aldéhydes. Le degré d'oxydation des acides gras peut être évalué par la méthode de l'indice de péroxyde, qui consiste en une méthode de dosage définie selon les normes NF ISO 3976, NF EN ISO 27107 ou NF EN ISO 3960. De façon générale, la limite d'oxydation d'une huile pour un usage alimentaire est fixée à un maximum de 15 méq d'oxygène actif/kg d'huile (15 meq02.kg"1), selon la norme CODEX STAN 19- 1981 .
Des particules solides amphiphiles sont aussi employées pour stabiliser les émulsions. Les systèmes obtenus, appelés émulsions de Pickering, sont souvent dotés d'une stabilité cinétique hors du commun (F. Leal-Calderon, V. Schmitt, Solid- stabilized émulsions, Current Opinion in Colloid and Interface Science, 13, 217-227 (2008)). Les particules solides sont capables de s'adsorber fortement et irréversiblement à l'interface des phases non miscibles, formant une couche rigide et épaisse capable d'empêcher durablement les phénomènes de destruction des émulsions tels que la recombinaison des gouttes (coalescence).
Il est connu que des particules solides naturelles peuvent être utilisées pour stabiliser des émulsions. La demande FR 2 794 466 décrit l'utilisation de fibrilles de cellulose pour la stabilisation d'une émulsion huile-dans-eau exempte de tensioactif pour une application cosmétique. Toutefois, ce type de particules solides présente l'inconvénient de ne pas pouvoir être utilisé pour des applications alimentaires (humaines ou animales).
La demande EP 2 775 862 décrit l'utilisation de particules de cacao capables de stabiliser des émulsions pour la préparation de produits alimentaires, sans utilisation d'émulsifiants additionnels. L'un des inconvénients de ces particules est que leur application est limitée à des produits ayant un goût de chocolat, afin de satisfaire le consommateur final.
Il existe donc actuellement un besoin de disposer d'émulsions stables de type Pickering pouvant être utilisées dans tout domaine d'application.
Il existe aussi actuellement un besoin de disposer d'un procédé permettant d'augmenter la résistance des huiles vis-à-vis des phénomènes d'oxydation dans le domaine de l'alimentaire.
La présente invention a pour but de fournir une émulsion de Pickering stable pouvant être utilisée dans divers domaines d'application notamment cosmétique, alimentaire ou dans des revêtements à base de bitume ou de toute autre substance hydrophobe.
Un autre but de l'invention consiste à fournir un moyen de stabilisation d'émulsions de Pickering obtenues à partir de particules biosourcées. Un autre but de l'invention consiste à fournir un procédé de préparation d'émulsions de Pickering stables à partir de particules biosourcées.
Ainsi, la présente invention concerne un procédé de préparation d'une émulsion de Pickering comprenant les étapes suivantes :
a) la préparation d'une poudre végétale d'au moins une espèce oléagineuse ; b) l'addition de ladite poudre végétale
- soit dans une phase aqueuse pour obtenir une suspension (S),
- soit dans une phase huileuse pour obtenir une suspension (S'),
suivie de l'incorporation
- soit d'huile dans la suspension (S) pour obtenir une émulsion de type huile- dans-eau,
- soit d'eau dans la suspension (S') pour obtenir une émulsion de type eau- dans-huile ; et
c) l'agitation de l'émulsion obtenue à l'issue de l'étape précédente.
Comme indiqué ci-dessus, une émulsion de Pickering est une émulsion dans laquelle des particules solides sont employées pour stabiliser deux liquides non miscibles.
Les émulsions de Pickering selon l'invention comprennent des particules de poudre végétale d'au moins une espèce oléagineuse. Les inventeurs ont constaté de façon surprenante que ces particules spécifiques permettent la stabilisation desdites émulsions.
Le procédé de préparation des émulsions de Pickering selon l'invention comprend donc une étape d'affinage de particules d'espèces oléagineuses permettant l'obtention d'une poudre végétale, une étape d'introduction de la poudre végétale dans l'une des phases puis l'ajout de la seconde phase, et une étape d'agitation permettant un apport d'énergie au mélange « eau dans huile » ou « huile dans eau » contenant la poudre végétale afin d'obtenir une émulsion stabilisée.
Etape a)
L'étape a) du procédé consiste à affiner des particules d'au moins une espèce oléagineuse, de préférence de tourteaux d'espèces oléagineuses, afin d'obtenir une poudre végétale. Selon un mode de réalisation, la poudre végétale selon l'invention est obtenue à partir d'une partie d'une plante oléagineuse.
Selon un mode de réalisation, la poudre végétale est obtenue à partir de graines d'espèces oléagineuses, de coques d'espèces oléagineuses, de pellicules d'espèces oléagineuses, de tourteaux d'espèces oléagineuses et de leurs mélanges.
Selon un mode particulièrement préféré, la poudre végétale de l'étape a) est obtenue à partir de tourteaux d'espèces oléagineuses.
De préférence, les espèces oléagineuses sont choisies dans le groupe constitué du colza, du tournesol, du soja, du lin, du chanvre, du pois, de la fèverole, du lupin, du ricin, de l'olive, de l'amande, du germe de maïs, du pavot, du sésame, de la noix, du noyau de palmier à huile, de la navette, du carthame, et de leurs mélanges.
De préférence, l'étape a) consiste en une étape de traitement mécanique en voie sèche ou humide. Cette première étape a pour but d'affiner le diamètre moyen des particules.
Parmi les traitements mécaniques pouvant être mis en œuvre selon l'invention, on peut citer les techniques suivantes : hélices, homogénéisation à haute pression, ou encore broyage à billes ou à meule.
De préférence, l'étape a) est effectuée au moyen d'un broyeur universel.
Le terme « broyage » signifie que le matériau est soumis à des effets de frappe, de cisaillement et de percussion au sein d'un appareil de broyage.
Le terme « tamisage » signifie qu'il est possible de sélectionner la finesse de broyage désirée. En général la finesse de broyage de la matière première peut être choisie entre 0,12 et 10 mm au moyen de tamis interchangeables. Les tamis couramment employés dans des broyeurs présentent des ouvertures de 120 μηι, 200 μηι, 250 μηι, 500 μηι, 750 μηι, 1 mm, 1 ,5 mm, 2 mm, 3 mm, 4 mm, 5 mm, 6 mm, 8mm et 10 mm.
De préférence, le broyage et le tamisage selon l'étape a) sont effectués par un broyeur à 120 μηι.
Ainsi, l'étape a) permet d'obtenir une poudre végétale sous forme de particules de taille adaptée. Selon un mode de réalisation, la poudre végétale ainsi obtenue est sous forme de particules de taille moyenne comprise entre 0,1 μηι et 100 μηι, et de préférence entre 0,5 μηι et 50 μηι.
Selon l'invention, le terme « taille moyenne » désigne le diamètre moyen en nombre des particules.
La répartition en taille des particules est déterminée par analyse statistique d'images (par exemple par microscopie optique, objectif x60, 2 images de 1 19χ88μηι). La plus grande dimension de toutes les particules présentes sur les images est relevée. Le nombre total de particules varie d'un échantillon à l'autre mais n'est jamais inférieur à 100.
De préférence, l'affinage consiste en une étape de broyage et de tamisage des tourteaux d'espèces oléagineuses afin d'obtenir une poudre végétale.
La poudre végétale obtenue après l'étape a) est produite de préférence à partir de tourteaux de tournesol, de colza ou de lupin.
Le terme « tourteau » désigne des coproduits solides obtenus après broyage des graines oléagineuses et extraction par solvant des huiles. Les tourteaux sont généralement valorisés comme source d'alimentation protéique pour le bétail. Les tourteaux ainsi obtenus sont ensuite broyés et tamisés afin de produire une poudre.
Etape b)
L'étape b) consiste à ajouter la poudre obtenue à l'issue de l'étape a) dans une phase huileuse ou aqueuse pour préparer une émulsion.
L'étape b) peut consister à additionner la poudre végétale dans une phase aqueuse pour obtenir une suspension (S) suivie de l'incorporation d'huile dans ladite suspension (S), pour obtenir une émulsion huile-dans-eau.
L'étape b) peut consister à additionner la poudre végétale dans une phase huileuse pour obtenir une suspension (S') suivie de l'incorporation d'eau dans ladite suspension (S'), pour obtenir une émulsion eau-dans-huile.
De préférence, l'émulsion est de type huile-dans-eau.
De préférence, l'émulsion contient de 5% à 40% d'huile et de 60% à 95% d'eau, plus préférentiellement de 10% à 30% d'huile et de 70% à 90% d'eau, par rapport au poids total de ladite émulsion. Selon un mode de réalisation, la phase aqueuse de l'émulsion est tamponnée. De préférence, la phase aqueuse présente un pH compris entre 5 et 9, plus préférentiellement entre 6 et 8.
Le tampon employé peut être n'importe quel type de tampon. De préférence, le tampon employé est un sel inorganique et/ou un mélange de sels inorganiques, plus préférentiellement le tampon contient 0,1 M de tampon phosphate (KH2P04/K2HP04)
Etape c)
L'étape c) du procédé selon l'invention consiste à apporter de l'énergie au mélange obtenu à l'issue de l'étape b), contenant la poudre végétale, afin d'obtenir une émulsion stabilisée.
Par définition, une émulsion est constituée de fines gouttes d'une phase dispersée dans une phase dispersante continue, non miscible avec la première.
L'étape c) d'agitation consiste à apporter de l'énergie à l'émulsion obtenue à l'issue de l'étape b) pour stabiliser ladite émulsion. Une telle étape peut également être assimilée à une étape d'émulsification.
L'étape c) peut être effectuée par divers moyens.
Selon un mode de réalisation, l'étape c) est effectuée au moyen d'un agitateur de type rotor/stator.
De façon générale, un agitateur rotor/stator comporte une partie mobile, appelée rotor, fixée sur une partie immobile, appelée stator, et capable de provoquer une agitation dans un milieu.
Selon un mode de réalisation, l'étape c) est effectuée au moyen d'un appareil à ultrasons.
De façon générale, l'utilisation d'ultrasons est un moyen efficace et économe en énergie pour apporter un stress mécanique et une énergie intenses à des mélanges de solutions telles que des mélanges de poudre et de liquide
Selon un mode de réalisation, l'étape c) est effectuée au moyen d'un homogénéisateur à haute pression.
De façon générale, un homogénéisateur à haute pression est un appareil comportant de nombreux pistons qui permettent de faire varier la pression au sein du milieu, provoquant des effets de vide, des effets d'entraînement et ou des effets de cisaillement.
De préférence, la pression d'homogénéisation de l'homogénéisateur à haute pression est comprise entre 50 bar et 1 000 bar, de préférence entre 100 bar et 300 bar.
L'utilisation d'un homogénéisateur à haute pression est particulièrement avantageuse en ce qu'elle permet d'obtenir des tailles de poudre plus fine et des tailles de gouttes plus petites. Ce mode de réalisation permet ainsi d'obtenir des émulsions plus stables dans le temps.
Selon un mode de réalisation, l'étape c) est effectuée au moyen d'un broyeur à billes.
De façon générale, les broyeurs à billes sont des appareils capables de broyer en faisant intervenir des effets de friction et d'impacts multiples entre l'échantillon, les billes et les parois internes du bol ou du mortier. Les broyeurs à billes sont des appareils adaptés au processus de mélange et d'homogénéisation.
La présente invention concerne également une émulsion de Pickering susceptible d'être obtenue selon le procédé tel que défini ci-dessus.
Selon un mode de réalisation, les émulsions de Pickering selon l'invention comprennent des gouttes de taille inférieure à 30 μηι, de préférence comprise entre 0,5 μηι et 1 0 μηι.
Selon l'invention, le terme « taille » désigne ici le diamètre moyen en volume (D4,3) des gouttes de l'émulsion, déterminé par granulométrie laser.
La présence de particules solides au sein des émulsions faussant la mesure de granulométrie classique, celles-ci sont détachées des interfaces des gouttes par dilution et agitation de l'émulsion dans une solution contenant un agent tensioactif, le dodécyl sulfate de sodium (SDS), à 1 0%. En se fixant aux interfaces, le SDS provoque la désorption des particules. Il devient alors aisé de séparer les gouttes des particules par centrifugation. Une fois la séparation effectuée, la distribution granulométrique des gouttes est mesurée par granulométrie laser. De façon générale, la stabilité des émulsions est fortement dépendante de la taille moyenne des gouttes de la phase dispersée, de la distribution granulométrique des gouttes et de leur répartition spatiale dans la phase dispersante.
La granulométrie a pour objet la mesure de la taille des particules ou des gouttes élémentaires dispersées dans la phase continue.
La taille des gouttes peut être mesurée au moyen d'un appareil de diffusion de la lumière. De préférence, l'appareil employé est un granulomètre laser.
Les gouttes peuvent être visualisées au moyen d'appareils de microscopie. De préférence, l'appareil employé est un microscope à contraste de phase.
La répartition des particules solides à la surface des gouttes peut être visualisée en utilisant un appareil capable de révéler les propriétés de fluorescence des particules. De préférence, l'appareil employé est un microscope de fluorescence.
Il est apparu aux inventeurs que le choix du dispositif d'émulsification employé au cours de l'étape c) telle que décrite ci-dessus avait un impact sur l'émulsion obtenue. Le dispositif d'émulsification employé a également un impact sur la taille des particules végétales au sein des émulsions obtenues.
En particulier, l'utilisation d'un homogénéisateur à haute pression est particulièrement avantageuse en ce qu'elle permet des particules de taille réduite.
De préférence, les émulsions de Pickering selon l'invention comprennent des particules de poudre végétale présentant une teneur en poids de protéines comprise entre 8% et 50% par rapport au poids total de particules de poudre végétale.
La teneur en protéines est déterminée par dosage de la teneur en azote selon Kjeldhal ou selon Dumas (N=6,25, N étant le facteur conventionnel de conversion de l'azote total en protéines, d'après NF EN ISO 16634),
Selon un mode de réalisation, dans les émulsions de Pickering selon l'invention, le taux d'ancrage des particules végétales à l'interface entre les deux phases de l'émulsion est compris entre 60% et 95%, de préférence compris entre 70% et 90%.
Le taux d'ancrage est défini comme le rapport massique entre les particules végétales adsorbées aux interfaces et la masse totale de particules utilisées pour fabriquer l'émulsion. Un taux d'ancrage inférieur à 100% révèle la présence de particules libres dans la phase continue. Par exemple, le taux d'ancrage est déterminé par pesée des particules non ancrées à la surface des gouttes. Les gouttes décorées de particules sont séparées de la phase aqueuse contenant les particules non ancrées par crémage naturel (environ 3 jours). La crème est prélevée et la phase aqueuse est retirée par lyophilisation pour obtenir les particules non ancrées qui sont alors pesées. Le taux d'ancrage est calculé par différence :
ta = 100*(masse de particules totales - masse de particules non ancrées) / (masse de particules totales)
Les émulsions obtenues selon l'invention sont avantageuses en ce qu'elles présentent une taille de gouttes, un taux d'ancrage et une stabilité contrôlée par le procédé de l'invention.
Selon l'invention, la taille des gouttes des émulsions obtenues peut être contrôlée par la masse de particules initialement introduites.
Selon l'invention, la taille des gouttes des émulsions obtenues peut également être contrôlée par la fraction volumique d'huile ou encore par la pression d'homogénéisation.
La présente invention concerne également l'utilisation d'une émulsion de Pickering telle que définie ci-dessus dans des compositions cosmétiques, agroalimentaires ou des revêtements à base de bitume.
La présente invention concerne donc également une composition cosmétique comprenant au moins une émulsion de Pickering telle que définie ci-dessus.
La présente invention concerne donc également une composition agroalimentaire comprenant au moins une émulsion de Pickering telle que définie ci-dessus.
La présente invention concerne donc également une composition de bitume comprenant au moins une émulsion de Pickering telle que définie ci-dessus.
La présente invention concerne également l'utilisation d'une poudre végétale d'au moins une espèce oléagineuse, notamment de tourteaux d'espèces oléagineuses, pour stabiliser une émulsion eau-dans-huile ou huile-dans-eau, ladite émulsion comprenant des gouttes de taille inférieure à 30 μηι, de préférence comprise entre 0,5 μηι et 10 μηι. EXEMPLES
Exemple 1 : Préparation d'une émulsion de Pickering au moyen d'un agitateur rotor-stator
La poudre végétale est obtenue à partir de graines oléagineuses de colza, délipidées à l'hexane, broyées/tamisées à 120 μηι, triées par centrifugation pour éliminer les grosses particules susceptibles d'obstruer les appareils (une dispersion à 10% de colza est centrifugée 10min à 54xg où g est l'accélération de la pesanteur, la phase supérieure est lyophilisée pour récupérer la poudre dite « triée »). Cette poudre végétale est introduite dans une phase aqueuse (eau distillée tamponnée à pH 7 par un tampon phosphate à 0,1 M) à 2,5% massique. Ce mélange est agité au moyen d'un barreau magnétique pendant 20 minutes afin d'obtenir une dispersion. La dispersion est ensuite agitée 2 min au moyen d'un agitateur de type rotor/stator (Ultra-Turrax T25 digital) à 6 000 tpm (rotation par minute). La phase huileuse (huile de tournesol, 20% massique de l'émulsion totale) est progressivement additionnée au mélange une fois l'agitation augmentée à 8 000 tpm. La vitesse est ensuite augmentée à 12 000 tpm et le mélange est soumis à cette vitesse 10 min supplémentaires afin d'obtenir une émulsion.
L'émulsion est stable pendant 14 jours, avec une taille moyenne des gouttes en volume de 20 μηι. Après 14 jours, l'émulsion est déstabilisée, une couche d'huile est visible en surface. Les particules sont adsorbées à la surface des gouttes mais sont mal réparties, et 31 % d'entre elles ne sont pas aux interfaces.
Exemple 2 : Préparation d'une émulsion de Pickering au moyen d'un dispositif à ultrasons
La poudre végétale (identique à l'exemple 1 ) à 2,5% massique par rapport à la phase aqueuse est ajoutée à la phase aqueuse (78% de l'émulsion totale, eau distillée tamponnée à pH 7 par un tampon phosphate à 0,1 M), puis la phase huileuse (20% de l'émulsion totale, huile de tournesol) est également ajoutée. Le mélange (10 mL) est agité manuellement puis au moyen d'une sonde à ultrasons (CE Converter 120C), réglée sur 10W, avec un rapport cyclique de 80%, et une durée de 5 minutes, afin d'obtenir une émulsion.
L'émulsion est stable pendant 30 jours, avec une taille moyenne en volume des gouttes de 3 μηι. Les gouttes coalescent ensuite pour atteindre 15 μηι avant l'apparition d'une couche d'huile, signe d'une déstabilisation. Les particules sont adsorbées à la surface des gouttes et bien réparties, la fluorescence étant homogène. Seules 10% d'entre elles ne sont pas aux interfaces.
Exemple 3 : Préparation d'une émulsion de Pickering au moyen d'un homogénéisateur haute pression
Un volume donné (20 ml) d'émulsion obtenue au moyen d'un agitateur rotor- stator (émulsion de l'exemple 1 ) est introduit dans le réservoir de l'homogénéisateur haute pression (Microfluidizer M-1 10S). L'homogénéisation est effectuée avec une pression d'entrée de 3,44 bar et avec une pression dans la chambre de 801 bar. L'émulsion subit 20 coups de pistons. L'appareil fonctionne en circuit fermé et chaque émulsion effectue en moyenne 6 passages dans l'appareil.
L'émulsion est stable pendant plus de 90 jours, avec une moyenne de taille en volume de gouttes de 4 μηι. Les particules sont adsorbées à la surface des gouttes et bien réparties, la fluorescence étant homogène. Seules 7% d'entre elles ne sont pas aux interfaces.
Exemple 4 : Contrôle de la taille des gouttes par la quantité de poudre végétale
Plusieurs émulsions sont réalisées d'après le protocole de l'exemple 3. Seule la quantité de poudre dans la phase aqueuse varie de 1 % à 15% de particules de colza (même traitement que l'exemple 3) par rapport à la phase aqueuse. L'inverse du diamètre moyen en surface (D(3,2)) est tracé en fonction de la masse de particules végétales initialement introduite. En effet, plus cette quantité de poudre végétale augmente, plus le diamètre moyen des gouttes de l'émulsion obtenue diminue. L'inverse du diamètre moyen en surface est proportionnel à la masse de particules. La quantité de particules initialement introduite permet donc de maîtriser précisément la taille moyenne (en surface et en volume) des gouttes.
Figure imgf000012_0001
La taille moyenne des gouttes des émulsions peut donc être contrôlée. Dans les conditions de l'exemple présenté, soit 20% d'huile par rapport à la phase aqueuse, avec des particules de colza broyées, tamisées à 120 μηι et triées par centrifugation et avec une émulsification réalisée au moyen d'un homogénéisateur à haute pression à 801 bar, il est possible d'obtenir précisément des émulsions dans une gamme de 0,6 μηι à 8,3 μηι (D(4,3)) avec une gamme de 1 % à 15% de particules végétales par rapport à la phase aqueuse.
Exemple 5 : Contrôle de la taille des gouttes par la pression appliquée par homogénéisation à haute pression
La poudre végétale de colza de l'exemple 3 est utilisée pour obtenir deux émulsions fabriquées d'après le protocole de l'exemple 3, l'une est obtenue avec une pression de 801 bar, l'autre à une pression de 240 bar. Les deux sont à 5% de particules végétales par rapport à la phase aqueuse.
Figure imgf000013_0001
La pression d'émulsification permet bien de jouer sur la taille des gouttes et donc sur les propriétés des émulsions. Une émulsification à 240 bar permet également d'obtenir une émulsion très stable dans le temps (minimum 71 jours), et relativement fine.
Exemple 6 : Mesure de l'indice de peroxyde d'huiles stabilisées par une émulsion de Pickering.
Une huile employée dans le domaine alimentaire doit présenter une limite d'oxydation fixée à un maximum de 15 meq02/kg"1 selon la norme CODEX STAN 19-1981 . Cette valeur est mesurée par une méthode de dosage de l'indice de peroxyde selon la norme NF EN ISO 27107.
L'indice de peroxyde a été mesuré pour :
- A) Une huile vierge de lin (Huilerie Philippe Vigean, France)
- B) Une huile vierge de lin agitée mécaniquement (agitateur rotor-stator puis homogénéisateur haute pression) - C) Une huile de lin stabilisée sous la forme d'une émulsion de Pickering au moyen d'une poudre végétale issue de tourteaux de colza selon le protocole de l'exemple 3.
Figure imgf000014_0001
La formulation A sert de référence et permet de voir le comportement de l'huile de lin vis-à-vis de l'oxydation au cours du temps. L'intérêt de la formulation B est de montrer l'impact d'une agitation mécanique en milieu oxygéné sur la résistance de l'huile vis-à-vis de l'oxydation. Les résultats montrent que l'huile selon la formulation B n'est plus considérée comme comestible à partir de de 48h, contre 72h pour la formulation A.
La formulation C montre l'intérêt de la stabilisation de l'huile au moyen d'une émulsion de Pickering selon l'invention. Les résultats montrent que la résistance d'une huile vis-à-vis de l'oxydation peut être augmentée en réalisant une émulsion de Pickering.

Claims

REVENDICATIONS
1. Procédé de préparation d'une émulsion de Pickering comprenant les étapes suivantes :
a) la préparation d'une poudre végétale d'au moins une espèce oléagineuse ; b) l'addition de ladite poudre végétale
- soit dans une phase aqueuse pour obtenir une suspension (S),
- soit dans une phase huileuse pour obtenir une suspension (S'),
suivie de l'incorporation
- soit d'huile dans la suspension (S) pour obtenir une émulsion de type huile- dans-eau,
- soit d'eau dans la suspension (S') pour obtenir une émulsion de type eau- dans-huile ; et
c) l'agitation de l'émulsion obtenue à l'issue de l'étape précédente.
2. Procédé de préparation d'une émulsion de Pickering selon la revendication 1 , caractérisé en ce que la poudre végétale est obtenue à partir de graines d'espèces oléagineuses, de coques d'espèces oléagineuses, de pellicules d'espèces oléagineuses, de tourteaux d'espèces oléagineuses et de leurs mélanges.
3. Procédé de préparation d'une émulsion de Pickering selon l'une quelconque des revendications 1 ou 2, dans lequel les espèces oléagineuses sont choisies dans le groupe constitué du colza, du tournesol, du soja, du lin, du chanvre, du pois, de la fèverole, du lupin, du ricin, de l'olive, de l'amande, du germe de maïs, du pavot, du sésame, de la noix, du noyau de palmier à huile, de la navette, du carthame, et de leurs mélanges
4. Procédé de préparation d'une émulsion de Pickering selon l'une quelconque des revendications 1 à 3, dans lequel l'étape a) consiste en une étape de traitement mécanique en voie sèche ou humide.
5. Procédé de préparation d'une émulsion de Pickering selon l'une quelconque des revendications 1 à 4, dans lequel la poudre végétale est sous forme de particules de taille moyenne comprise entre 0,5 μηι et 50 μηι.
6. Procédé de préparation d'une émulsion de Pickering selon l'une quelconque des revendications 1 à 5, dans lequel l'étape d'agitation c) est effectuée au moyen d'un agitateur de type rotor/stator, d'un appareil à ultrasons, d'un homogénéisateur à haute pression ou d'un broyeur à billes.
7. Emulsion de Pickering susceptible d'être obtenue selon le procédé selon l'une quelconque des revendications 1 à 6.
8. Emulsion de Pickering selon la revendication 7, comprenant des gouttes de taille inférieure à 30 μηι, de préférence comprise entre 0,5 μηι et 10 μηι.
9. Emulsion de Pickering selon la revendication 7 ou 8, dans laquelle les particules de poudre végétale présentent une teneur en poids de protéines comprise entre 8% et 50% par rapport au poids total de particules de poudre végétale.
10. Emulsion de Pickering selon l'une quelconque des revendications 7 à 9, dans laquelle le taux de particules végétales à l'interface entre les deux phases de l'émulsion est compris entre 60% et 95%, de préférence compris entre 70% et 90%.
11. Utilisation d'une émulsion de Pickering selon l'une quelconque des revendications 7 à 10, dans des compositions cosmétiques, agroalimentaires ou de revêtements en émulsion à base bitume.
PCT/EP2018/068397 2017-07-07 2018-07-06 Procédé de préparation d'émulsions de pickering à partir de particules biosourcées WO2019008145A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP18736913.7A EP3648736A1 (fr) 2017-07-07 2018-07-06 Procédé de préparation d'émulsions de pickering à partir de particules biosourcées

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1756459A FR3068607B1 (fr) 2017-07-07 2017-07-07 Procede de preparation d'emulsions de pickering a partir de particules biosourcees
FR1756459 2017-07-07

Publications (1)

Publication Number Publication Date
WO2019008145A1 true WO2019008145A1 (fr) 2019-01-10

Family

ID=59930541

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2018/068397 WO2019008145A1 (fr) 2017-07-07 2018-07-06 Procédé de préparation d'émulsions de pickering à partir de particules biosourcées

Country Status (3)

Country Link
EP (1) EP3648736A1 (fr)
FR (1) FR3068607B1 (fr)
WO (1) WO2019008145A1 (fr)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111296840A (zh) * 2020-03-27 2020-06-19 重庆市中药研究院 一种具有调节胃肠道健康作用的姜枣合用乳液及其制备方法
CN113875978A (zh) * 2021-09-14 2022-01-04 中南民族大学 一种由山茶油和茶枯饼提取物制备的高内相Pickering乳液
CN115010854A (zh) * 2022-02-18 2022-09-06 甘肃农业大学 一种以油橄榄果渣稳定的Pickering乳液为模板制备多孔吸附材料的方法
US11446227B2 (en) * 2019-12-26 2022-09-20 Jiangnan University Pumpkin seed protein nanoparticles, methods for preparing and using thereof
CN115777922A (zh) * 2022-11-09 2023-03-14 安徽工程大学 一种纯天然颗粒乳化剂稳定的乳液及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2794466A1 (fr) 1999-06-02 2000-12-08 Oreal Composition sous forme d'emulsion huile-dans-eau contenant des fibrilles de cellulose et ses utilisations notamment cosmetiques
WO2013042069A1 (fr) * 2011-09-22 2013-03-28 Ariel-University Research And Development Company, Ltd. Emulsions et procédés de fabrication d'émulsions
EP2775862A1 (fr) 2011-11-07 2014-09-17 Nestec S.A. Stabilisation d'émulsion
CN105994697A (zh) * 2016-05-25 2016-10-12 东华大学 一种食用油凝胶及其制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2794466A1 (fr) 1999-06-02 2000-12-08 Oreal Composition sous forme d'emulsion huile-dans-eau contenant des fibrilles de cellulose et ses utilisations notamment cosmetiques
WO2013042069A1 (fr) * 2011-09-22 2013-03-28 Ariel-University Research And Development Company, Ltd. Emulsions et procédés de fabrication d'émulsions
EP2775862A1 (fr) 2011-11-07 2014-09-17 Nestec S.A. Stabilisation d'émulsion
CN105994697A (zh) * 2016-05-25 2016-10-12 东华大学 一种食用油凝胶及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
F. LEAL-CALDERON; V. SCHMITT: "Solidstabilized emulsions", CURRENT OPINION IN COLLOID AND INTERFACE SCIENCE, vol. 13, 2008, pages 217 - 227

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11446227B2 (en) * 2019-12-26 2022-09-20 Jiangnan University Pumpkin seed protein nanoparticles, methods for preparing and using thereof
CN111296840A (zh) * 2020-03-27 2020-06-19 重庆市中药研究院 一种具有调节胃肠道健康作用的姜枣合用乳液及其制备方法
CN111296840B (zh) * 2020-03-27 2022-08-23 重庆市中药研究院 一种具有调节胃肠道健康作用的姜枣合用乳液及其制备方法
CN113875978A (zh) * 2021-09-14 2022-01-04 中南民族大学 一种由山茶油和茶枯饼提取物制备的高内相Pickering乳液
CN113875978B (zh) * 2021-09-14 2023-10-20 中南民族大学 一种由山茶油和茶枯饼提取物制备的高内相Pickering乳液
CN115010854A (zh) * 2022-02-18 2022-09-06 甘肃农业大学 一种以油橄榄果渣稳定的Pickering乳液为模板制备多孔吸附材料的方法
CN115777922A (zh) * 2022-11-09 2023-03-14 安徽工程大学 一种纯天然颗粒乳化剂稳定的乳液及其制备方法
CN115777922B (zh) * 2022-11-09 2024-01-26 安徽工程大学 一种纯天然颗粒乳化剂稳定的乳液及其制备方法

Also Published As

Publication number Publication date
FR3068607B1 (fr) 2020-10-02
EP3648736A1 (fr) 2020-05-13
FR3068607A1 (fr) 2019-01-11

Similar Documents

Publication Publication Date Title
WO2019008145A1 (fr) Procédé de préparation d'émulsions de pickering à partir de particules biosourcées
Ricaurte et al. Production of high-oleic palm oil nanoemulsions by high-shear homogenization (microfluidization)
Matos et al. O/W emulsions stabilized by OSA-modified starch granules versus non-ionic surfactant: Stability, rheological behaviour and resveratrol encapsulation
Raviadaran et al. Ultrasound-assisted water-in-palm oil nano-emulsion: Influence of polyglycerol polyricinoleate and NaCl on its stability
Donsì et al. Encapsulation of bioactive compounds in nanoemulsion-based delivery systems
Zhong et al. Spray drying and rehydration of macadamia oil-in-water emulsions: Impact of macadamia protein isolate to chitosan hydrochloride ratio
FR2947186A1 (fr) Procede de preparation d'une emulsion huile-dans-eau stable
Carmona et al. Influence of emulsion properties on the microencapsulation of orange essential oil by spray drying
WO2019008147A1 (fr) Procédé de préparation d'émulsions sèches à partir de particules biosourcées
Joseph et al. Pickering emulsions stabilized by various plant materials: Cocoa, rapeseed press cake and lupin hulls
Sugumar et al. Essential oil-based nanoemulsion formation by low-and high-energy methods and their application in food preservation against food spoilage microorganisms
Abd Ghani et al. Effects of oil-droplet diameter and dextrose equivalent of maltodextrin on the surface-oil ratio of microencapsulated fish oil by spray drying
Joseph et al. Redispersible dry emulsions stabilized by plant material: Rapeseed press-cake or cocoa powder
CA2519697A1 (fr) Dispersion mssn et procede de production de ladite dispersion
FR2692812A1 (fr) Microcapsules contenant au moins un principe actif, leurs applications et procédé de préparation de microcapsules renfermant au moins un principe actif.
Villalobos-Espinosa et al. Effect of pumping and atomisation on the stability of oil/water emulsions
WO2018153614A1 (fr) Traitement de son issu de graines de moutarde noire ou de moutarde brune et utilisation du son traité dans des produits alimentaires
Xie et al. Effects of tea saponin on the foaming properties of pea protein
CN111372462A (zh) 双重乳液
JP7270160B2 (ja) 乳化イサダオイル
Qin et al. Combining colloid milling and twin screw pressing for oleosome extraction
WO2022254153A1 (fr) Utilisation de melasse fermentee comme emulsifiant
WO2009136084A2 (fr) Composition cosmetique emulsionnante, preparation et utilisations
FR3050734A1 (fr) Procede de preparation d'une emulsion de bitume fluxe
Banerjee et al. A flaxseed oil emulgel formulation for prospective food applications synthesis and characterization

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18736913

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018736913

Country of ref document: EP

Effective date: 20200207