WO2019007074A1 - 显示面板及其制备方法、显示*** - Google Patents

显示面板及其制备方法、显示*** Download PDF

Info

Publication number
WO2019007074A1
WO2019007074A1 PCT/CN2018/076442 CN2018076442W WO2019007074A1 WO 2019007074 A1 WO2019007074 A1 WO 2019007074A1 CN 2018076442 W CN2018076442 W CN 2018076442W WO 2019007074 A1 WO2019007074 A1 WO 2019007074A1
Authority
WO
WIPO (PCT)
Prior art keywords
display panel
polarization direction
liquid crystal
array substrate
crystal layer
Prior art date
Application number
PCT/CN2018/076442
Other languages
English (en)
French (fr)
Inventor
胡伟频
赵合彬
孙晓
Original Assignee
京东方科技集团股份有限公司
北京京东方显示技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 北京京东方显示技术有限公司 filed Critical 京东方科技集团股份有限公司
Priority to JP2018560130A priority Critical patent/JP7144325B2/ja
Priority to EP18796354.1A priority patent/EP3650928A4/en
Priority to US16/301,171 priority patent/US20210271131A1/en
Publication of WO2019007074A1 publication Critical patent/WO2019007074A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133528Polarisers
    • G02F1/133536Reflective polarizers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/017Head mounted
    • G02B27/0172Head mounted characterised by optical features
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133553Reflecting elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133618Illuminating devices for ambient light
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/137Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering
    • G02F1/139Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering based on orientation effects in which the liquid crystal remains transparent
    • G02F1/1396Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering based on orientation effects in which the liquid crystal remains transparent the liquid crystal being selectively controlled between a twisted state and a non-twisted state, e.g. TN-LC cell
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/017Head mounted
    • G02B2027/0178Eyeglass type
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/28Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising
    • G02B27/283Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising used for beam splitting or combining
    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C11/00Non-optical adjuncts; Attachment thereof
    • G02C11/10Electronic devices other than hearing aids
    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C7/00Optical parts
    • G02C7/12Polarisers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133528Polarisers
    • G02F1/133548Wire-grid polarisers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2203/00Function characteristic
    • G02F2203/64Normally black display, i.e. the off state being black

Definitions

  • At least one embodiment of the present disclosure is directed to a display panel, a method of fabricating the same, and a display system.
  • the liquid crystal display panel can achieve the purpose of anti-peeping by matching special glasses, but in a large viewing angle, the display image can be faintly seen, so the anti-spy performance is limited, and the consumer cannot be satisfied. Requirements.
  • At least one embodiment of the present disclosure provides a display panel including: an oppositely disposed opposite substrate and an array substrate, a liquid crystal layer between the opposite substrate and the array substrate, and a reflection on the opposite substrate a polarizing plate, the reflective polarizing plate being located on a side of the liquid crystal layer away from the array substrate.
  • the reflective polarizer is configured such that the transmitted light has a first polarization direction and the reflected light has a second polarization direction, the first polarization direction and the The second polarization direction is vertical.
  • the display panel provided by at least one embodiment of the present disclosure may further include: a first polarizing layer on the array substrate, the first polarizing layer being configured such that the transmitted light has a third polarization direction.
  • the display panel is at least one of a transmissive display panel, a reflective display panel, and a transflective display panel.
  • the display panel is a transmissive display panel
  • the array substrate is a transmissive array substrate
  • the first polarizing layer is located on a side of the array substrate away from the liquid crystal layer; or the first polarizing layer is located in the array substrate and the Between the liquid crystal layers.
  • an initial twist angle of the liquid crystal layer is set to 0 degrees, the third polarization direction is perpendicular to the first polarization direction; or an initial of the liquid crystal layer The twist angle is set to 90 degrees, and the third polarization direction is parallel to the first polarization direction.
  • the display panel is a reflective display panel
  • the array substrate is a reflective array substrate
  • the array substrate includes a reflective layer, and the first polarizing layer is located between the liquid crystal layer and the reflective layer.
  • an initial twist angle of the liquid crystal layer is set to 0 degrees, the third polarization direction is perpendicular to the first polarization direction; or an initial of the liquid crystal layer The twist angle is set to 90 degrees, and the third polarization direction is parallel to the first polarization direction.
  • the first polarizing layer is configured as a nano grating.
  • the reflective polarizer is located on a side of the opposite substrate remote from the liquid crystal layer; or the reflective polarizer is located on the opposite substrate and the Between the liquid crystal layers.
  • At least one embodiment of the present disclosure provides a display system including the display panel of any of the above embodiments.
  • the display system provided by at least one embodiment of the present disclosure may further include: glasses; wherein the glasses are configured to allow light having a first polarization direction in a display image of the display panel to be transmitted, and to block the display Light in the display image of the panel having a second polarization direction.
  • the glasses include at least one lens, each of the lenses includes a second polarizing layer, and the second polarizing layer is configured such that the transmitted light has a first Polarization direction.
  • At least one embodiment of the present disclosure provides a method of fabricating a display panel, including: providing an opposite substrate and forming a reflective polarizer on the opposite substrate; providing an array substrate; and pairing the opposite substrate and the array substrate a cartridge is disposed, and a liquid crystal layer is formed between the array substrate and the opposite substrate; wherein the reflective polarizer is located on a side of the liquid crystal layer away from the array substrate.
  • FIG. 1 is a cross-sectional view of a display panel according to an embodiment of the present disclosure
  • FIG. 2 is a cross-sectional view of a portion of a display panel in a non-display state according to an embodiment of the present disclosure
  • FIG. 3 is a cross-sectional view of a portion of another display panel in a non-display state according to an embodiment of the present disclosure
  • FIG. 4 is a cross-sectional view of a portion of a display panel in a display state according to an embodiment of the present disclosure
  • FIG. 5 is a schematic structural diagram of a display system according to an embodiment of the present disclosure.
  • 6A-6C are process diagrams of a method for fabricating a display panel according to an embodiment of the present disclosure.
  • the liquid crystal molecules have the characteristics of optical anisotropy.
  • the alignment state of the liquid crystal molecules changes and the alignment state of the liquid crystal molecules is different to different degrees, so that the light passing through the liquid crystal molecules is different.
  • Optical effects In the case of a large viewing angle, the difference in brightness of the emitted light of the display panel is significant, so that the human eye can also faintly observe the display image of the display panel, and thus the user's information may still leak.
  • At least one embodiment of the present disclosure provides a display panel, a method of fabricating the same, and a display system to solve the above technical problems.
  • the display panel includes: a oppositely disposed opposite substrate and an array substrate, a liquid crystal layer between the opposite substrate and the array substrate, and a reflective polarizer on the opposite substrate, wherein the reflective polarizer is located at a distance from the array substrate of the liquid crystal layer side.
  • the reflective polarizer is configured such that the transmitted light has a first polarization direction and such that the reflected light has a second polarization direction that is substantially perpendicular to the second polarization direction.
  • the light in the environment When the light in the environment is directed toward the reflective polarizer, it is decomposed into light rays having a first polarization direction and a second polarization direction, respectively, and the light having the second polarization direction is reflected by the reflective polarizer, and has a second polarization direction.
  • the light can display the environment image so that the display panel has a mirror effect, the beauty of the display panel can be improved, and the environment image can cover the display image in the display panel, and the display in the display panel cannot be seen through the naked eye even under a large viewing angle. Image to improve the anti-spy ability of the display panel.
  • a display panel, a method of manufacturing the same, and a display system according to at least one embodiment of the present disclosure will be described in detail below with reference to the accompanying drawings.
  • FIG. 1 is a cross-sectional view of a display panel according to an embodiment of the present disclosure.
  • the display panel includes: a oppositely disposed opposite substrate 100 and an array substrate 200 , a liquid crystal layer 300 between the opposite substrate 100 and the array substrate 200 , and a reflective polarizing plate 400 on the opposite substrate 100 .
  • the reflective polarizer 400 is located on a side of the liquid crystal layer 300 remote from the array substrate 200, and the reflective polarizer 400 is configured such that the transmitted light has a first polarization direction and the reflected light has a second polarization direction, the first polarization direction and the second The polarization direction is substantially vertical (including vertical).
  • the opposite substrate 100 may be a color film substrate.
  • the color film substrate 100 may include a plurality of color film units including, for example, a red color film unit, a green color film unit, and a blue color film unit, each color film unit corresponding to a sub-pixel of the display panel (refer to Sub-pixel unit area A2) in the following embodiment.
  • a black matrix may be formed on the opposite substrate; or a common electrode for display operation or a touch electrode for touch operation or the like may be further formed.
  • the specific arrangement position of the reflective polarizing plate 400 is not limited as long as the reflective polarizing plate 400 is located on the side of the liquid crystal layer 300 remote from the array substrate 200.
  • the reflective polarizer 400 may be disposed on a side of the opposite substrate 100 away from the liquid crystal layer 300 (outside in the drawing); or the reflective polarizer 400 may be disposed between the opposite substrate 100 and the liquid crystal layer 300 (in the figure) The inside).
  • the first polarization direction and the second polarization direction are not limited to In the strict sense of the vertical direction, the first polarization direction and the second polarization direction may be changed within a certain angle range on the basis of mutual vertical, as long as the angle variation range between the two does not affect the actual display effect of the display panel.
  • the angle between the first polarization direction and the second polarization direction is from 80 degrees to 100 degrees, further, for example, from 85 to 95 degrees, for example, the two are perpendicular to each other at 90 degrees.
  • the reflective polarizer 400 may be, for example, a reflective polarizing brightness enhancement film (DBEF).
  • DBEF reflective polarizing brightness enhancement film
  • a DBEF product supplied by 3M Company of the United States may be used, which is prepared, for example, by a multilayer film technique.
  • a diffusion layer or a diffusion sheet or the like may be disposed on both sides of the DBEF.
  • the reflective polarizer can be attached to the counter substrate 100, for example, by an optically transparent adhesive.
  • the technical solution in at least one embodiment of the present disclosure will be described by taking the first polarization direction and the second polarization direction perpendicular as an example, and as shown in FIG. Indicates the first polarization direction, with the symbol Indicates the second polarization direction.
  • the display panel may further include: a first polarizing layer 500 on the array substrate 200, the first polarizing layer 500 being configured such that the transmitted light has a third polarization direction.
  • the first polarizing layer 500 causes the emitted light of the display panel to be polarized light, the cooperation of the first polarizing layer 500 and the reflective polarizing plate 400, and special glasses (refer to the glasses 700 in the embodiment of the display system described below), so that the user can watch The display image to the display panel.
  • the liquid crystal layer 300 may be pre-oriented such that light transmitted through the liquid crystal layer 300 has a specific polarization direction to facilitate image display by the display panel.
  • an alignment layer 600 may be disposed on at least one of the opposite substrate 100 and the array substrate 200 of the display panel, and the alignment layer 600 is configured such that the liquid crystal layer 300 is not applied with voltage (for example, the display panel is in a non-operating state). The case has the same initial twist angle.
  • the alignment layer 600 can be prepared by applying polyimide (PI) and rubbing it.
  • the display panel may be at least one of a transmissive display panel, a reflective display panel, and a transflective display panel.
  • the display panel is a transmissive display panel, and correspondingly, the array substrate 200 in the display panel is a transmissive array substrate.
  • a light source (for example, a backlight module including a light source) may be disposed on a side of the array substrate 200 remote from the opposite substrate 100 to provide light for displaying an image to the display panel.
  • the first polarizing layer 500 may be located on a side of the array substrate 200 remote from the liquid crystal layer 300 or a first polarizing layer. 500 is located between the array substrate 200 and the liquid crystal layer 300 as long as the first polarizing layer 500 is located on a side of the liquid crystal layer 300 remote from the opposite substrate 100.
  • the embodiment of the present disclosure does not limit the specific arrangement position of the first polarizing layer 500.
  • the specific numerical value of the initial twist angle of the liquid crystal layer 300 in the display panel is not limited, and may be set according to actual needs.
  • the initial twist angle of the liquid crystal layer 300 in the display panel may be set to 0 degrees, the third polarization direction (polarization direction of light transmitted through the first polarizing layer 500), and the first polarization.
  • the direction (the polarization direction of the light transmitted through the reflective polarizing plate 400) may be set to be perpendicular to each other; or the initial twist angle of the liquid crystal layer 300 in the display panel may be set to 90 degrees, and the third polarization direction and the first polarization direction may be set to Parallel to each other, in this way, the display panel can be made to be in a normally black state, and the contrast of the display image of the display panel can be improved.
  • the display panel is a reflective display panel, and correspondingly, the array substrate 200 in the display panel is a reflective array substrate.
  • FIG. 2 is a cross-sectional view of a portion of a display panel in a non-display state according to an embodiment of the present disclosure.
  • the display panel may further include a reflective layer 210, and the first polarizing layer 500 is located between the reflective layer 210 and the liquid crystal layer 300.
  • the reflective layer 210 can reflect incident light in the environment such that the display panel can display an image.
  • the light of the reflective display panel for displaying an image in an operating state has a specific polarization direction, which is a result of the interaction of the liquid crystal layer 300, the first polarizing layer 500, and the reflective polarizing plate 400, and the specifics of the three
  • the structural relationship can be set according to the initial twist angle of the liquid crystal layer 300.
  • the specific structure of the reflective display panel will be described below based on the different arrangement of the initial twist angle of the liquid crystal layer 300.
  • FIG. 2 is a cross-sectional view of a portion of a display panel in a non-display state according to an embodiment of the present disclosure.
  • the initial twist angle of the liquid crystal layer 300 in the display panel may be set to 0 degrees
  • the reflective polarizer 400 and the first polarizing layer 500 may be configured such that the polarization directions of the transmitted light are perpendicular to each other, that is, the third.
  • the polarization direction is perpendicular to the first polarization direction.
  • the liquid crystal layer 300 does not deflect the light transmitted through the reflective polarizer 400, the light passes through the reflective polarizer 400 and the liquid crystal layer 300 and is polarized and has a first polarization direction. Therefore, the light cannot pass through the first polarizing layer 500, and the display panel can realize a normally black state to improve the contrast of the displayed image.
  • FIG. 3 is a cross-sectional view of a portion of another display panel in a non-display state according to an embodiment of the present disclosure.
  • the initial twist angle of the liquid crystal layer 300 in the display panel may be set to 90 degrees
  • the reflective polarizing plate 400 and the first polarizing layer 500 may be configured such that the polarization directions of the transmitted light are parallel to each other, that is, the third.
  • the polarization direction is parallel to the first polarization direction.
  • the liquid crystal layer 300 deflects the polarization direction of the light transmitted through the reflective polarizer 400 by 90 degrees, the light passes through the reflective polarizer 400 and the liquid crystal layer 300, and is polarized and first.
  • the polarization direction is vertical, so that the light cannot pass through the first polarizing layer 500, and the display panel can achieve a normally black state to improve the contrast of the displayed image.
  • the alignment layer 600 may be disposed on both sides of the liquid crystal layer 300 such that the initial twist angle of the liquid crystal layer 300 is set to 90 degrees.
  • a first alignment layer 610 is disposed on a side of the array substrate 200 facing the liquid crystal layer 300
  • a second alignment layer 620 is disposed on a side of the opposite substrate 100 facing the liquid crystal layer 300
  • the rubbing direction of the alignment layer 320 is perpendicular, so that the initial twist angle of the liquid crystal layer 300 can be made 90 degrees.
  • the specific arrangement relationship between the reflective polarizer 400 and the first polarizing layer 500 may be based on the initial of the liquid crystal layer 300.
  • the twist angle is defined, and the initial twist angle of the liquid crystal layer 300 can be determined according to actual needs.
  • the initial twist angle of the liquid crystal layer 300 is not limited in the embodiment of the present disclosure, so the third polarization direction and the first polarization direction are not limited.
  • the above parallel or vertical relationship for example, the initial twist angle of the liquid crystal layer 300 can also be set to 30 degrees.
  • the angle between the third polarization direction and the first polarization direction can be set to 120 degrees or 60 degrees, and the display panel can also obtain a normally black state. .
  • the working principle of the reflective display panel provided by at least one embodiment of the present disclosure will be described by taking the initial twist angle of the liquid crystal layer 300 shown in FIG. 3 as 90 degrees and the third polarization direction being parallel to the first polarization direction. .
  • FIG. 4 is a cross-sectional view of a portion of a display panel in a display state according to an embodiment of the present disclosure, in which the initial twist angle of the liquid crystal layer 300 is 90 degrees.
  • the display panel may include a plurality of pixel units, each of which includes at least one sub-pixel unit area A2 and a spacing area A1 between adjacent sub-pixel unit areas A2.
  • a pixel electrode and a common electrode may be disposed in the display panel, and the pixel electrode and the common electrode may apply a voltage to the liquid crystal layer 300 to control the twist state of the liquid crystal layer 300 of the sub-pixel unit region A2.
  • the pixel electrode and the common electrode may be located on the same side of the liquid crystal layer 300, for example, both are disposed on the opposite substrate 100 or both on the array substrate 200; or the pixel electrode and the common electrode may be located on different sides of the liquid crystal layer 300, for example The two are respectively located on the opposite substrate 100 and the array substrate 200.
  • the liquid crystal layer 300 of the spacer region A1 is not applied with a voltage, so it still has an initial twist angle of 90 degrees.
  • the incident light of the environment passes through the reflective polarizer 400 and the liquid crystal layer 300, and is polarized.
  • the area A1 is shown as a black state; the liquid crystal layer 300 of the sub-pixel unit area A2 has a twist angle of, for example, 0 degrees after being applied with a voltage, and thus, in the sub-pixel unit area A2, the incident light of the environment passes through the reflective polarizer 400 and The liquid crystal layer 300 is followed by polarized light and the polarization direction is parallel to the first polarization direction, and the first polarization direction is parallel to the third polarization direction, so the incident light rays are transmitted through the first polarization layer 500 and are reflected by the reflection layer 210, and are reflected.
  • the sub-pixel unit area A of the display panel 2 can display images.
  • the interval area A1 of the display panel can maintain a normally black state, and the black matrix can be eliminated in the interval area A1, which simplifies the structure of the display panel and reduces the cost.
  • the degree of distortion of the liquid crystal layer 300 in the sub-pixel unit region A2 region can be controlled by controlling the voltage value applied to the liquid crystal layer 300, thereby grading the display image of the display panel. Take control.
  • the embodiment of the present disclosure does not limit the specific structure of the reflective layer 210, and it can be designed according to actual conditions.
  • the pixel electrode in the display panel may be configured as a reflective layer 210.
  • the pixel electrode 210 may include a metal conductive material such as aluminum, copper, and alloys thereof.
  • the specific structure of the first polarizing layer 500 is not limited as long as the polarizing layer 500 can make the transmitted light have a specific polarization direction.
  • the first polarizing layer 500 may be configured as a nano-grating or the like.
  • the embodiment of the present disclosure does not limit the specific structural parameters of the nanograting 500 as long as it can make the transmitted light have a specific polarization direction (for example, a third polarization direction).
  • the nano-grating 500 may include a plurality of grating strips arranged side by side, each of the grating strips may have a width of about 50 to 80 nanometers, for example, 60 nanometers, 65 nanometers, 70 nanometers, etc.; the width of the grating strips and adjacent grating strips The ratio of the spacing distance between them is about 2/3 to 1; in the direction perpendicular to the plane of the nano-grating 500, the thickness of the grating strip is about 150-250 nm, for example, 160 nm, 180 nm, 200 nm, 220. Nano, 240 nm, etc.
  • the nanograting 500 can be fabricated from a metal material or a polymer (eg, polydimethylsiloxane), and embodiments of the present disclosure include, but are not limited to.
  • the nanograting 500 can be fabricated on the array substrate 200 by, for example, nanoimprinting.
  • At least one embodiment of the present disclosure provides a display system that can include the display panel of any of the above embodiments.
  • the display system may further include a backlight module or the like disposed on one side of the array substrate 200 of the display panel.
  • the display system may further include a structure such as a touch panel.
  • the display panel has a touch function.
  • the display system may include a front light source disposed on a side of the opposite substrate 100 of the display panel, and the front light source may provide light for display to ensure a reflective display. The panel will still display properly in dimly lit, dimly lit environments.
  • FIG. 5 is a schematic structural diagram of a display system according to an embodiment of the present disclosure.
  • the display system may further include glasses 700 that may be configured to allow a first polarization direction in a display image of the display panel Light passes through and blocks the second polarization direction in the display image of the display panel Light.
  • the user wearing the glasses 700 can receive the display image of the display panel (the image actually required by the user) without being affected by the environmental image and the interference image emitted by the display panel (for example, an image composed of light having the second polarization direction).
  • the naked-eye user is affected by the environment image and the interference image, and the naked-eye user cannot see the display image even under a large viewing angle.
  • the glasses 700 of the display system may include at least one lens, and a second polarizing layer 710 may be disposed on the lens, and the second polarizing layer 710 is configured to transmit light.
  • the second polarizing layer 710 has a first polarization direction
  • the second polarizing layer 710 is configured such that the transmitted light has a first polarization direction that is relatively opposite, as long as the second polarizing layer 710 is configured to transmit the polarization direction of the light. It is close to the first polarization direction.
  • the display system in at least one embodiment of the present disclosure can be applied to any liquid crystal display product or component having a display function, such as a mobile phone, a tablet computer, a television, a display, a notebook computer, a navigator, and the like.
  • a display function such as a mobile phone, a tablet computer, a television, a display, a notebook computer, a navigator, and the like.
  • At least one embodiment of the present disclosure provides a method of fabricating a display panel, the method comprising: providing an opposite substrate and forming a reflective polarizer on the opposite substrate; providing an array substrate; and setting the opposite substrate and the array substrate to the cassette, and A liquid crystal layer is formed between the array substrate and the opposite substrate; wherein the reflective polarizer is located on a side of the liquid crystal layer away from the array substrate.
  • the reflective polarizer is configured such that the transmitted light has a first polarization direction and such that the reflected light has a second polarization direction, the first polarization direction being perpendicular to the second polarization direction.
  • the reflective polarizer When the light in the environment is directed to the reflective polarizer, it will be decomposed into light of different polarization directions, and one of the polarization directions will be reflected by the reflective polarizer, so that the display panel has a mirror effect, which can improve the aesthetics of the display panel and Anti-peep ability.
  • the method for fabricating a display panel may further include: forming a first polarizing layer on the array substrate, and the first polarizing layer is such that the transmitted light has a third polarization direction.
  • the specific structure of the display panel may refer to the related description in the foregoing embodiment (the embodiment provided by the present disclosure regarding the display panel), The disclosure will not be repeated here.
  • FIG. 6A-6C are process diagrams of a method for fabricating a display panel according to an embodiment of the present disclosure.
  • the process of a method for fabricating a display panel according to an example of an embodiment of the present disclosure is shown in FIG. 6A to FIG.
  • the diagram includes the following process:
  • the counter substrate 100 is provided and a reflective polarizing plate 400 is formed on the counter substrate 100.
  • a second alignment layer 620 may also be formed on the opposite substrate 100.
  • the reflective polarizer 400 may be formed on a side of the opposite substrate 100 away from the second alignment layer 620, or may be formed between the opposite substrate 100 and the second alignment layer 620, and the reflective polarizer 400 and the first
  • the two alignment layers 620 refer to the related content in the foregoing embodiment (for the embodiment of the display panel), and the disclosure is not described herein.
  • the array substrate 200 is provided.
  • the specific process of the preparation process of the array substrate 200 (for example, the preparation process of the thin film transistor and the pixel electrode, etc.) can refer to the current preparation process, which is not described in the disclosure.
  • the reflective layer 210 may be separately disposed on the array substrate 200, or the reflective layer 210 may be synchronously prepared in the process of preparing the array substrate 200 (for example, when the pixel electrode is used as the reflective layer 210)
  • the embodiment of the present disclosure does not limit the specific formation manner of the reflective layer 210, so the relevant steps of forming the reflective layer 210 are not shown in FIGS. 6A to 6C.
  • a first polarizing layer 500 is formed on the array substrate 200, and the first polarizing layer 500 may have a third polarization direction of transmitted light.
  • the first polarizing layer 500 may be a nano grating, for example, may be disposed on the array substrate 200 by nanoimprinting.
  • a first alignment layer 610 may be formed on the array substrate 200.
  • the rubbing treatment directions of the first alignment layer 610 and the second alignment layer 620 are perpendicular to each other.
  • the opposite substrate 100 and the array substrate 200 are disposed to the cartridge, and the liquid crystal layer 300 is filled between the opposite substrate 100 and the array substrate 200.
  • the first alignment side layer 610 and the second alignment layer 620 cause the liquid crystal layer 300 to have the same initial twist angle without applying a voltage, for example, the initial twist angle may be 90 degrees.
  • At least one embodiment of the present disclosure provides a display panel, a method of fabricating the same, a display system, and may have at least one of the following beneficial effects:
  • At least one embodiment of the present disclosure provides a display panel in which a reflective polarizer is disposed, which can reflect part of ambient light, so that the display panel has a mirror effect, so that a naked-eye user cannot observe the display image at a large viewing angle. Increase the aesthetics of the display while improving the anti-spy function of the display panel.
  • At least one embodiment of the present disclosure provides a display system in which a reflective polarizer in a display panel causes a reflected ambient light to have a specific polarization direction so that a user wearing glasses does not receive reflected ambient light.
  • the interference can be accepted to display the image.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Mathematical Physics (AREA)
  • Liquid Crystal (AREA)
  • Health & Medical Sciences (AREA)
  • Ophthalmology & Optometry (AREA)
  • Polarising Elements (AREA)
  • General Health & Medical Sciences (AREA)
  • Acoustics & Sound (AREA)
  • Otolaryngology (AREA)

Abstract

一种显示面板及其制备方法、显示***。显示面板包括:相对设置的对置基板(100)和阵列基板(200)、位于对置基板(100)和阵列基板(200)之间的液晶层(300)以及位于对置基板(100)上的反射偏振片(400),反射偏振片(400)位于液晶层(300)的远离阵列基板(200)的一侧。反射偏振片(400)使得显示面板具有镜面效果,可以提高显示面板的美感和防窥能力。

Description

显示面板及其制备方法、显示***
本申请要求于2017年7月4日递交的中国专利申请第201710537640.X号的优先权,在此全文引用上述中国专利申请公开的内容以作为本申请的一部分。
技术领域
本公开至少一个实施例涉及一种显示面板及其制备方法、显示***。
背景技术
随着电子显示产品在消费者中的普及,如何防止电子显示产品中的用户信息被偷窥已经越来越受到消费者的关注。以当前的一种液晶显示产品为例,液晶显示面板通过配合专用眼镜以取得防窥的目的,但是在大视角下,还是可以隐约看到显示图像,所以其防窥性能有限,不能满足消费者的要求。
发明内容
本公开至少一个实施例提供一种显示面板,包括:相对设置的对置基板和阵列基板、位于所述对置基板和所述阵列基板之间的液晶层以及位于所述对置基板上的反射偏振片,所述反射偏振片位于所述液晶层的远离所述阵列基板的一侧。
例如,在本公开至少一个实施例提供的显示面板中,所述反射偏振片配置为使得透过光具有第一偏振方向并且使得反射光具有第二偏振方向,所述第一偏振方向与所述第二偏振方向垂直。
例如,本公开至少一个实施例提供的显示面板还可包括:位于所述阵列基板上的第一偏光层,所述第一偏光层配置为使得透过光具有第三偏振方向。
例如,在本公开至少一个实施例提供的显示面板中,所述显示面板为透射式显示面板、反射式显示面板和半透半反式显示面板中的至少一种。
例如,在本公开至少一个实施例提供的显示面板中,所述显示面板为 透射式显示面板,并且所述阵列基板为透射式的阵列基板。
例如,在本公开至少一个实施例提供的显示面板中,所述第一偏光层位于所述阵列基板的远离所述液晶层的一侧;或者所述第一偏光层位于所述阵列基板和所述液晶层之间。
例如,在本公开至少一个实施例提供的显示面板中,所述液晶层的初始扭曲角设置为0度,所述第三偏振方向与所述第一偏振方向垂直;或者所述液晶层的初始扭曲角设置为90度,所述第三偏振方向与所述第一偏振方向平行。
例如,在本公开至少一个实施例提供的显示面板中,所述显示面板为反射式的显示面板,并且所述阵列基板为反射式的阵列基板。
例如,在本公开至少一个实施例提供的显示面板中,所述阵列基板包括反射层,并且所述第一偏光层位于所述液晶层和所述反射层之间。
例如,在本公开至少一个实施例提供的显示面板中,所述液晶层的初始扭曲角设置为0度,所述第三偏振方向与所述第一偏振方向垂直;或者所述液晶层的初始扭曲角设置为90度,所述第三偏振方向与所述第一偏振方向平行。
例如,在本公开至少一个实施例提供的显示面板中,所述第一偏光层配置为纳米光栅。
例如,在本公开至少一个实施例提供的显示面板中,所述反射偏振片位于所述对置基板的远离所述液晶层的一侧;或者所述反射偏振片位于所述对置基板和所述液晶层之间。
本公开至少一个实施例提供一种显示***,包括上述任一实施例中的显示面板。
例如,本公开至少一个实施例提供的显示***还可包括:眼镜;其中,所述眼镜配置为允许所述显示面板的显示图像中的具有第一偏振方向的光透过,并且遮挡所述显示面板的显示图像中的具有第二偏振方向的光。
例如,在本公开至少一个实施例提供的显示***中,所述眼镜包括至少一个镜片,每个所述镜片包括第二偏光层,并且所述第二偏光层配置为使得透过光具有第一偏振方向。
本公开至少一个实施例提供一种显示面板的制备方法,包括:提供对置基板并且在所述对置基板上形成反射偏振片;提供阵列基板;将所述对 置基板和所述阵列基板对盒设置,并且在所述阵列基板和所述对置基板之间形成液晶层;其中,所述反射偏振片位于所述液晶层的远离所述阵列基板的一侧。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对实施例的附图作简单地介绍,显而易见地,下面描述中的附图仅仅涉及本发明的一些实施例,而非对本发明的限制。
图1为本公开一个实施例提供的一种显示面板的截面图;
图2为本公开一个实施例提供的一种显示面板在非显示状态下的部分区域的截面图;
图3为本公开一个实施例提供的另一种显示面板在非显示状态下的部分区域的截面图;
图4为本公开一个实施例提供的一种显示面板在显示状态下的部分区域的截面图;
图5为本公开一个实施例提供的一种显示***的结构示意图;以及
图6A~图6C为本公开一个实施例提供的一种显示面板制备方法的过程图。
附图标记:
100-对置基板;200-阵列基板;210-反射层;300-液晶层;400-反射偏振片;500-第一偏光层;600-配向层;610-第一配向层;620-第二配向层;700-眼镜;710-第二偏光层。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例的附图,对本发明实施例的技术方案进行清楚、完整地描述。显然,所描述的实施例是本发明的一部分实施例,而不是全部的实施例。基于所描述的本发明的实施例,本领域普通技术人员在无需创造性劳动的前提下所获得的所有其他实施例,都属于本发明保护的范围。
除非另外定义,本公开使用的技术术语或者科学术语应当为本发明所属领域内具有一般技能的人士所理解的通常意义。本公开中使用的“第一”、 “第二”以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来区分不同的组成部分。“包括”或者“包含”等类似的词语意指出现该词前面的元件或者物件涵盖出现在该词后面列举的元件或者物件及其等同,而不排除其他元件或者物件。“连接”或者“相连”等类似的词语并非限定于物理的或者机械的连接,而是可以包括电性的连接,不管是直接的还是间接的。“上”、“下”、“左”、“右”等仅用于表示相对位置关系,当被描述对象的绝对位置改变后,则该相对位置关系也可能相应地改变。
液晶分子具有光学各向异性的特点,在液晶电子产品的实际工作状态中,液晶分子的排列状态会发生变化并且使得液晶分子的排列状态产生不同程度的差异,从而使得通过液晶分子的光具有不同的光学效果。在大视角情况下,显示面板的出射光线的亮度差异明显,使得人眼也可以隐约观察到显示面板的显示图像,因此用户的信息仍可能会泄露。
本公开至少一个实施例提供一种显示面板及其制备方法、显示***以解决上述技术问题。该显示面板包括:相对设置的对置基板和阵列基板、位于对置基板和阵列基板之间的液晶层以及位于对置基板上的反射偏振片,反射偏振片位于液晶层的远离阵列基板的一侧。例如,在本公开至少一个实施例中,反射偏振片配置为使得透过光具有第一偏振方向并且使得反射光具有第二偏振方向,第一偏振方向与第二偏振方向基本垂直。
当环境中的光线在射向反射偏振片时会分解为分别具有第一偏振方向和第二偏振方向的光线,并且具有第二偏振方向的光线会被反射偏振片反射,具有第二偏振方向的光线可以显示环境图像从而使得显示面板具有镜面效果,可以提高显示面板的美感,并且该环境图像可以覆盖显示面板中的显示图像,即使在大视角之下也不能通过裸眼看清显示面板中的显示图像,提高显示面板的防窥能力。
下面将结合附图对根据本公开至少一个实施例中的显示面板及其制备方法、显示***进行详细的说明。
本公开至少一个实施例提供一种显示面板,图1为本公开一个实施例提供的一种显示面板的截面图。例如图1所示,该显示面板包括:相对设置的对置基板100和阵列基板200、位于对置基板100和阵列基板200之间的液晶层300以及位于对置基板100上的反射偏振片400,反射偏振片400位于液晶层300的远离阵列基板200的一侧,反射偏振片400配置为 使得透过光具有第一偏振方向并且使得反射光具有第二偏振方向,第一偏振方向与第二偏振方向基本垂直(包括垂直)。
例如,在本公开至少一个实施例中,如图1所示,对置基板100可以为彩膜基板。例如,彩膜基板100中可以包括多个彩膜单元,这些彩膜单元例如包括红色彩膜单元、绿色彩膜单元和蓝色彩膜单元,每个彩膜单元对应于显示面板的子像素(参考下述实施例中的子像素单元区域A2)。在该对置基板上还可以形成有黑矩阵;或者,更进一步形成有用于显示操作的公共电极,或用于触控操作的触控电极等。
例如,在本公开至少一个实施例中,如图1所示,对反射偏振片400的具体设置位置不做限制,只要反射偏振片400位于液晶层300的远离阵列基板200的一侧即可。例如,反射偏振片400可以设置在对置基板100的远离液晶层300的一侧(图中的外侧);或者反射偏振片400也可以设置在对置基板100和液晶层300之间(图中的内侧)。
需要说明的是,在本公开的实施例中,反射偏振片400使得环境入射光线分解为具有第一偏振方向和具有第二偏振方向的光线时,第一偏振方向和第二偏振方向不限于为严格意义上的垂直,第一偏振方向和第二偏振方向之间可以以相互垂直为基准在一定角度范围内变化,只要两者之间的角度变化范围不会影响显示面板的实际显示效果即可。例如,第一偏振方向和第二偏振方向之间的夹角为80度~100度,进一步例如85~95度,例如二者彼此垂直呈90度。该反射偏振片400例如可以为反射式偏光增光膜(DBEF),例如可以采用美国3M公司提供的DBEF产品,其例如采用多层膜技术制备。在DBEF的两侧还可以设置扩散层或扩散片等。该反射偏振片例如可以通过光学透明胶贴附到对置基板100上。
下面,以第一偏振方向和第二偏振方向垂直为例,对本公开下述至少一个实施例中的技术方案进行说明,并且如图1所示,以符号
Figure PCTCN2018076442-appb-000001
表示第一偏振方向,以符号
Figure PCTCN2018076442-appb-000002
表示第二偏振方向。
例如,在本公开至少一个实施例中,如图1所示,显示面板还可以包括:位于阵列基板200上的第一偏光层500,第一偏光层500配置为使得透过光具有第三偏振方向。第一偏光层500使得显示面板的出射光为偏振光,第一偏光层500和反射偏振片400、专用眼镜(参考下述关于显示***的实施例中的眼镜700)的配合,使得用户可以看到显示面板的显示图 像。
例如,在本公开至少一个实施例中,可以对液晶层300进行预取向,以使得透过液晶层300的光具有特定偏振方向,以便于显示面板进行图像显示。如图1所示,显示面板的对置基板100和阵列基板200中的至少一个上可以设置有配向层600,配向层600配置为使得液晶层300在未施加电压(例如显示面板处于非工作状态)的情况下具有相同的初始扭曲角。例如,配向层600可以通过涂敷聚酰亚胺(PI)并对其摩擦来制备。
例如,在本公开至少一个实施例中,对显示面板的类型不做限制。例如,在本公开至少一个实施例中,显示面板可以为透射式显示面板、反射式显示面板和半透半反式显示面板等中的至少一种。例如,在本公开至少一个实施例中,如图1所示,显示面板为透射式的显示面板,相应地,显示面板中的阵列基板200为透射式的阵列基板。可以在阵列基板200的远离对置基板100的一侧设置光源(例如包括光源的背光模组)以向显示面板提供用于显示图像的光线。
例如,在本公开至少一个实施例中,如图1所示,显示面板为透射式显示面板时,第一偏光层500可以位于阵列基板200的远离液晶层300的一侧,或者第一偏光层500位于阵列基板200和液晶层300之间,只要第一偏光层500位于液晶层300的远离对置基板100的一侧即可。本公开的实施例对第一偏光层500的具体设置位置不做限制。
例如,在本公开至少一个实施例中,显示面板为透射式显示面板时,对显示面板中的液晶层300的初始扭曲角的具体数值不做限定,其可以根据实际需要进行设置。例如,在本公开至少一个实施例中,显示面板中的液晶层300的初始扭曲角可以设置为0度,第三偏振方向(透过第一偏光层500的光的偏振方向)和第一偏振方向(透过反射偏振片400的光的偏振方向)可以设置为相互垂直;或者显示面板中的液晶层300的初始扭曲角可以设置为90度,第三偏振方向和第一偏振方向可以设置为相互平行,如此,可以使得显示面板实现常黑态,可以提高显示面板的显示图像的对比度。
例如,在本公开至少一个实施例中,显示面板为反射式的显示面板,相应地,显示面板中的阵列基板200为反射式的阵列基板。
例如,在本公开至少一个实施例中,图2为本公开一个实施例提供的 一种显示面板在非显示状态下的部分区域的截面图。例如图2所示,显示面板还可以包括反射层210,并且第一偏光层500位于反射层210和液晶层300之间。反射层210可以反射环境中的入射光线,以使得显示面板可以显示图像。
反射式的显示面板在工作状态下用于显示图像的光线具有特定的偏振方向,该偏振方向是液晶层300、第一偏光层500以及反射偏振片400的共同作用的结果,并且三者的具体结构关系可以根据液晶层300的初始扭曲角进行设置。下面根据液晶层300的初始扭曲角的不同设置方式对反射式的显示面板的具体结构进行说明。
在本公开至少一个实施例提供的显示面板中,图2为本公开一个实施例提供的一种显示面板在非显示状态下的部分区域的截面图。例如图2所示,显示面板中的液晶层300的初始扭曲角可以设置为0度,可以将反射偏振片400和第一偏光层500配置为使得透过光的偏振方向相互垂直,即第三偏振方向与第一偏振方向垂直。当外界环境光线射入显示面板中后,因为液晶层300不会对透过反射偏振片400的光线进行偏转,所以光线经过反射偏振片400以及液晶层300后为偏振光且具有第一偏振方向,如此光线不能透过第一偏光层500,显示面板可以实现常黑态以提高显示图像的对比度。
在本公开至少一个实施例提供的显示面板中,图3为本公开一个实施例提供的另一种显示面板在非显示状态下的部分区域的截面图。例如图3所示,显示面板中的液晶层300的初始扭曲角可以设置为90度,可以将反射偏振片400和第一偏光层500配置为使得透过光的偏振方向相互平行,即第三偏振方向与第一偏振方向平行。当外界环境光线射入显示面板中后,因为液晶层300使得透过反射偏振片400的光线的偏振方向偏转90度,所以光线经过反射偏振片400以及液晶层300后为偏振光且与第一偏振方向垂直,如此光线不能透过第一偏光层500,显示面板可以实现常黑态以提高显示图像的对比度。
例如,在本公开至少一个实施例中,如图3所示,可以在液晶层300的两侧设置配向层600以使得液晶层300的初始扭曲角设置为90度。例如,在阵列基板200的面向液晶层300的一侧设置第一配向层610,在对置基板100的面向液晶层300的一侧设置第二配向层620,并且第一配向层610 和第二配向层320的摩擦方向垂直,如此可以使得液晶层300的初始扭曲角为90度。
需要说明的是,在本公开至少一个实施例中,反射偏振片400和第一偏光层500的具体设置关系(第一偏振方向和第三偏振方向之间的关系)可以根据液晶层300的初始扭曲角来限定,而液晶层300的初始扭曲角可以根据实际需求来决定,本公开实施例对液晶层300的初始扭曲角不做限制,所以第三偏振方向和第一偏振方向之间不限于上述的平行或者垂直的关系。例如,液晶层300的初始扭曲角也可以设置为30度,如此,第三偏振方向和第一偏振方向之间的夹角可以设置为120度或者60度,也可以使得显示面板获得常黑态。
下面,以图3所示的液晶层300的初始扭曲角为90度,且第三偏振方向和第一偏振方向平行为例,对本公开至少一个实施例提供的反射式显示面板的工作原理进行说明。
图4为本公开一个实施例提供的一种显示面板在显示状态下的部分区域的截面图,该显示面板中的液晶层300的初始扭曲角为90度。显示面板可以包括多个像素单元,每个像素单元包括至少一个子像素单元区域A2以及位于相邻子像素单元区域A2之间为间隔区域A1。显示面板中可以设置有像素电极和公共电极,像素电极和公共电极可以向液晶层300施加电压以对子像素单元区域A2的液晶层300的扭曲状态进行控制。像素电极和公共电极可以位于液晶层300的同一侧,例如两者都设置在对置基板100上或者都设置在阵列基板200上;或者像素电极和公共电极可以位于液晶层300的不同侧,例如两者分别位于对置基板100和阵列基板200上。
如图4所示,间隔区域A1的液晶层300未被施加电压所以仍具有初始扭曲角90度,如此,在间隔区域A1中,环境入射的光线经过反射偏振片400和液晶层300之后为偏振光且偏振方向与第一偏振方向垂直,且第一偏振方向和第三偏振方向平行,所以入射光线不会透过第一偏光层500并且不会被反射层210反射,如此,显示面板的间隔区域A1显示为黑态;子像素单元区域A2的液晶层300在被施加电压后其扭曲角度例如变为0度,如此,在子像素单元区域A2中,环境入射的光线经过反射偏振片400和液晶层300之后为偏振光且偏振方向与第一偏振方向平行,且第一偏振方向和第三偏振方向平行,所以入射光线会透过第一偏光层500并且被反 射层210反射,被反射的光线经过第一偏光层500和液晶层300之后仍为偏振光且偏振方向与第一偏振方向平行,如此,显示面板的子像素单元区域A2可以显示图像。如此,显示面板的间隔区域A1可以维持常黑态,间隔区域A1中可以不需要设置黑矩阵,可以简化显示面板的结构,降低成本。
例如,在本公开至少一个实施例中,可以通过控制向液晶层300施加的电压值,来控制子像素单元区域A2区域中的液晶层300的扭曲程度,从而对显示面板的显示图像的灰度进行控制。
本公开的实施例对反射层210的具体结构不做限定,其可以根据实际情况进行设计。例如,在本公开至少一个实施例中,如图4所示,显示面板中的像素电极可以配置为反射层210,例如,像素电极210可以包括铝、铜及其合金等金属导电材料。
在本公开至少一个实施例中,对第一偏光层500的具体结构不做限定,只要偏光层500可以使得透过光具有特定的偏振方向即可。
例如,在本公开至少一个实施例中,如图2、图3和图4所示,第一偏光层500可以配置为纳米光栅等结构。本公开的实施例对该纳米光栅500的具体结构参数不做限制,只要其可以使得透过光线具有特定偏振方向(例如第三偏振方向)即可。例如,纳米光栅500可以包括多个并列设置的光栅条,每个光栅条的宽度可以为约50~80纳米,例如为60纳米、65纳米、70纳米等;光栅条的宽度与相邻光栅条之间的间隔距离的比值为约2/3~1;在垂直于纳米光栅500所在面的方向上,光栅条的厚度为约150~250纳米,例如为160纳米、180纳米、200纳米、220纳米、240纳米等。纳米光栅500可以为金属材料或者聚合物(例如聚二甲基硅氧烷)等材料制备,本公开的实施例包括但不限于此。例如,纳米光栅500可以通过例如纳米压印等方式制备在阵列基板200上。
本公开至少一个实施例提供一种显示***,该显示***可以包括上述任一实施例中的显示面板。例如,在显示面板为透射式显示面板的情况下,显示***还可以包括设置在显示面板的阵列基板200一侧的背光模组等结构;例如,显示***还可以包括触控面板等结构,以使得显示面板具有触控功能。例如,在显示面板为反射式显示面板的情况下,显示***可以包括设置在显示面板的对置基板100一侧的前置光源等结构,前置光源可以 提供显示用的光线,保证反射式显示面板在光线不足的昏暗环境中仍可以正常显示。
图5为本公开一个实施例提供的一种显示***的结构示意图。例如,在本公开至少一个实施例中,如图5所示,显示***还可以包括眼镜700,眼镜700可以配置为允许显示面板的显示图像中的具有第一偏振方向
Figure PCTCN2018076442-appb-000003
的光透过,并且遮挡显示面板的显示图像中的具有第二偏振方向
Figure PCTCN2018076442-appb-000004
的光。如此,佩戴眼镜700的用户可以不受环境图像及显示面板出射的干扰图像(例如具有第二偏振方向的光构成的图像)的影响,可以接受显示面板的显示图像(用户实际需要的图像),而裸眼用户会受到环境图像及干扰图像的影响,即使在大视角下,裸眼用户也不能看到显示图像。
例如,在本公开至少一个实施例中,如图5所示,显示***的眼镜700可以包括至少一个镜片,并且镜片上可以设置第二偏光层710,第二偏光层710配置为使得透过光具有第一偏振方向
Figure PCTCN2018076442-appb-000005
需要说明的是,在本公开至少一个实施例中,第二偏光层710配置为使得透过光具有第一偏振方向是相对而言的,只要第二偏光层710配置为透过光的偏振方向接近第一偏振方向即可。
例如,本公开至少一个实施例中的显示***可以应用于手机、平板电脑、电视机、显示器、笔记本电脑、导航仪等任何具有显示功能的液晶显示产品或部件。
本公开至少一个实施例提供一种显示面板的制备方法,该方法包括:提供对置基板并且在对置基板上形成反射偏振片;提供阵列基板;将对置基板和阵列基板对盒设置,并且在阵列基板和对置基板之间形成液晶层;其中,反射偏振片位于液晶层的远离阵列基板的一侧。例如,在本公开至少一个实施例中,反射偏振片配置为使得透过光具有第一偏振方向并且使得反射光具有第二偏振方向,第一偏振方向与第二偏振方向垂直。环境中的光线在射向反射偏振片时会分解为不同偏振方向的光线,且其中一种偏振方向的光线会被反射偏振片反射,从而使得显示面板具有镜面效果,可以提高显示面板的美感和防窥能力。
例如,本公开至少一个实施例提供的显示面板的制备方法还可以包括:在阵列基板上形成第一偏光层,并且第一偏光层使得透过光具有第三偏振方向。
需要说明的是,在本公开至少一个实施例提供的显示面板的制备方法中,显示面板的具体化结构可以参考前述实施例(本公开提供的关于显示面板的实施例)中的相关说明,本公开在此不做赘述。
下面,以图3所示的显示面板结构为例,在本公开实施例的一个示例中,对显示面板的制备方法进行说明。图6A~图6C为本公开一个实施例提供的一种显示面板制备方法的过程图,例如图6A~图6C所示,本公开实施例的一个示例提供的显示面板的一种制备方法的过程图包括如下过程:
如图6A所示,提供对置基板100并在对置基板100上形成反射偏振片400。
例如,在本公开至少一个实施例中,如图6A所示,也可以在对置基板100上形成第二配向层620。需要说明的是,反射偏振片400可以形成在对置基板100的远离第二配向层620的一侧,也可以形成在对置基板100和第二配向层620之间,反射偏振片400和第二配向层620的具体化设置方式可以参考前述实施例(关于显示面板的实施例)中的相关内容,本公开在此不做赘述。
如图6B所示,提供阵列基板200,其中,阵列基板200的制备工艺(例如薄膜晶体管及像素电极等的制备工艺等)的具体过程可以参考当前的制备工艺,本公开对此不做赘述。需要说明的是,对于反射式的显示面板,可以在阵列基板200上单独设置反射层210,也可以在制备阵列基板200的过程中同步制备反射层210(例如像素电极作为反射层210的情况),本公开的实施例对反射层210的具体形成方式不做限制,所以形成反射层210的相关步骤未在图6A~图6C中示出。
例如,在本公开至少一个实施例中,如图6B所示,在阵列基板200上形成第一偏光层500,第一偏光层500可以使得透过光具有第三偏振方向。例如,第一偏光层500可以为纳米光栅,例如可以通过纳米压印的方式设置在阵列基板200上。
例如,在本公开至少一个实施例中,如图6B所示,可以在阵列基板200上形成第一配向层610。在制备第一配向层610和如图6A所示的制备第二配向层620的过程中,对第一配向层610和第二配向层620的摩擦处理的方向相互垂直。
如图6C所示,将对置基板100和阵列基板200对盒设置,并且在对置基板100和阵列基板200之间填充液晶层300。第一配向侧层610和第二配向层620使得液晶层300在未施加电压的情况下具有相同的初始扭曲角,例如该初始扭曲角可以为90度。
本公开至少一个实施例提供一种显示面板及其制备方法、显示***,并且可以具有以下至少一项有益效果:
(1)本公开至少一个实施例提供一种显示面板,该显示面板中设置有反射偏振片,可以反射部分环境光线,使得显示面板具有镜面效果,使得裸眼用户不能在大视角下观察显示图像,增加显示器美感的同时提高了显示面板的防窥功能。
(2)本公开至少一个实施例提供一种显示***,其中的显示面板中的反射偏振片使得被反射的环境光线具有特定偏振方向,以使得佩戴有眼镜的用户不会受到被反射的环境光线的干扰,可以接受显示图像。
对于本公开,还有以下几点需要说明:
(1)本公开实施例附图只涉及到与本公开实施例涉及到的结构,其他结构可参考通常设计。
(2)为了清晰起见,在用于描述本公开的实施例的附图中,层或区域的厚度被放大或缩小,即这些附图并非按照实际的比例绘制。
(3)在不冲突的情况下,本公开的实施例及实施例中的特征可以相互组合以得到新的实施例。
以上所述,仅为本公开的具体实施方式,但本公开的保护范围并不局限于此,本公开的保护范围应以所述权利要求的保护范围为准。

Claims (16)

  1. 一种显示面板,包括:
    相对设置的对置基板和阵列基板;
    位于所述对置基板和所述阵列基板之间的液晶层;以及
    位于所述对置基板上的反射偏振片;
    其中,所述反射偏振片位于所述液晶层的远离所述阵列基板的一侧。
  2. 根据权利要求1所述的显示面板,其中,所述反射偏振片配置为使得透过光具有第一偏振方向并且使得反射光具有第二偏振方向,所述第一偏振方向与所述第二偏振方向垂直。
  3. 根据权利要求2所述的显示面板,还包括位于所述阵列基板上的第一偏光层,
    其中,所述第一偏光层配置为使得透过光具有第三偏振方向。
  4. 根据权利要求3所述的显示面板,其中,所述显示面板为透射式显示面板、反射式显示面板和半透半反式显示面板中的至少一种。
  5. 根据权利要求4所述的显示面板,其中,所述显示面板为透射式显示面板,并且所述阵列基板为透射式的阵列基板。
  6. 根据权利要求5所述的显示面板,其中,所述第一偏光层位于所述阵列基板的远离所述液晶层的一侧;或者
    所述第一偏光层位于所述阵列基板和所述液晶层之间。
  7. 根据权利要求5或6所述的显示面板,其中,所述液晶层的初始扭曲角设置为0度,所述第三偏振方向与所述第一偏振方向垂直;或者
    所述液晶层的初始扭曲角设置为90度,所述第三偏振方向与所述第一偏振方向平行。
  8. 根据权利要求4所述的显示面板,其中,所述显示面板为反射式的显示面板,并且所述阵列基板为反射式的阵列基板。
  9. 根据权利要求8所述的显示面板,其中,所述阵列基板包括反射层,并且所述第一偏光层位于所述液晶层和所述反射层之间。
  10. 根据权利要求8或9所述的显示面板,其中,所述液晶层的初始扭曲角设置为0度,所述第三偏振方向与所述第一偏振方向垂直;或者
    所述液晶层的初始扭曲角设置为90度,所述第三偏振方向与所述第 一偏振方向平行。
  11. 根据权利要求3-10中任一项所述的显示面板,其中,所述第一偏光层配置为纳米光栅。
  12. 根据权利要求1-11中任一项所述的显示面板,其中,所述反射偏振片位于所述对置基板的远离所述液晶层的一侧;或者
    所述反射偏振片位于所述对置基板和所述液晶层之间。
  13. 一种显示***,包括权利要求1-12任一项所述的显示面板。
  14. 根据权利要求13所述的显示***,还包括:
    眼镜;
    其中,所述眼镜配置为允许所述显示面板的显示图像中的具有所述第一偏振方向的光透过,并且遮挡所述显示面板的显示图像中的具有所述第二偏振方向的光。
  15. 根据权利要求14所述的显示***,其中,所述眼镜包括至少一个镜片,每个所述镜片包括第二偏光层,并且所述第二偏光层配置为使得透过光具有所述第一偏振方向。
  16. 一种显示面板的制备方法,包括:
    提供对置基板并且在所述对置基板上形成反射偏振片;
    提供阵列基板;
    将所述对置基板和所述阵列基板对盒设置,并且在所述阵列基板和所述对置基板之间形成液晶层;
    其中,所述反射偏振片位于所述液晶层的远离所述阵列基板的一侧。
PCT/CN2018/076442 2017-07-04 2018-02-12 显示面板及其制备方法、显示*** WO2019007074A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2018560130A JP7144325B2 (ja) 2017-07-04 2018-02-12 表示パネルおよびその製造方法、表示システム
EP18796354.1A EP3650928A4 (en) 2017-07-04 2018-02-12 DISPLAY BOARD AND MANUFACTURING METHOD FOR IT, AND DISPLAY SYSTEM
US16/301,171 US20210271131A1 (en) 2017-07-04 2018-02-12 Display panel, manufacturing method thereof and display system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710537640.XA CN109212812A (zh) 2017-07-04 2017-07-04 显示面板及其制备方法、显示***
CN201710537640.X 2017-07-04

Publications (1)

Publication Number Publication Date
WO2019007074A1 true WO2019007074A1 (zh) 2019-01-10

Family

ID=64949688

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/076442 WO2019007074A1 (zh) 2017-07-04 2018-02-12 显示面板及其制备方法、显示***

Country Status (5)

Country Link
US (1) US20210271131A1 (zh)
EP (1) EP3650928A4 (zh)
JP (1) JP7144325B2 (zh)
CN (1) CN109212812A (zh)
WO (1) WO2019007074A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4016173A1 (fr) * 2020-12-21 2022-06-22 The Swatch Group Research and Development Ltd Procéd de fabrication d'un dispositif d'affichage à cristal liquide et dispositif d'affichage a cristal liquide
CN114167632A (zh) * 2021-12-10 2022-03-11 武汉华星光电技术有限公司 显示装置
CN116682379B (zh) * 2023-06-20 2024-04-12 惠科股份有限公司 显示面板、显示驱动方法及显示装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103064211A (zh) * 2012-10-15 2013-04-24 京东方科技集团股份有限公司 一种液晶显示装置、专用眼镜及保密显示器件
CN104111555A (zh) * 2014-06-19 2014-10-22 京东方科技集团股份有限公司 一种照明装置、其专用眼镜、其检偏装置及照明***
CN104122705A (zh) * 2014-07-11 2014-10-29 京东方科技集团股份有限公司 显示面板、显示器、显示设备及驱动方法
CN105388668A (zh) * 2015-12-25 2016-03-09 武汉华星光电技术有限公司 反射式液晶面板以及显示装置
CN105552105A (zh) * 2016-01-26 2016-05-04 京东方科技集团股份有限公司 显示装置及其驱动方法、制作方法以及防偷窥显示***
CN106133587A (zh) * 2014-03-19 2016-11-16 夏普株式会社 反射镜显示器和电子设备
WO2017105926A1 (en) * 2015-12-17 2017-06-22 3M Innovative Properties Company Mirror including reflective backlit display

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4438377B2 (ja) 2003-10-27 2010-03-24 セイコーエプソン株式会社 液晶表示装置、及び電子機器
JP2006171723A (ja) 2004-12-13 2006-06-29 Samsung Electronics Co Ltd アレイ基板、その製造方法、及びこれを有する液晶表示装置
US7502085B2 (en) * 2005-04-26 2009-03-10 Samsung Electronics Co., Ltd. Display device having functional transparent plate in prismatic structure on retarder provided on polarizer above display panel assembly
JP2009031439A (ja) 2007-07-25 2009-02-12 Toshiba Matsushita Display Technology Co Ltd 液晶表示装置
KR101743524B1 (ko) * 2010-12-13 2017-06-05 엘지디스플레이 주식회사 액정표시장치 및 그 제조방법
JP6068052B2 (ja) 2012-08-23 2017-01-25 京セラディスプレイ株式会社 液晶表示素子
KR20140060058A (ko) 2012-11-09 2014-05-19 삼성디스플레이 주식회사 편광판, 편광판의 제조방법 및 이를 포함하는 표시장치
CN103235441B (zh) 2013-04-22 2015-10-14 京东方科技集团股份有限公司 一种液晶显示装置、专用眼镜及显示器件
CN105929593A (zh) * 2016-07-11 2016-09-07 京东方科技集团股份有限公司 阵列基板、透明显示基板和透明显示装置
CN105974644B (zh) * 2016-07-13 2019-04-30 深圳市华星光电技术有限公司 液晶显示器
CN106019454B (zh) * 2016-07-28 2018-07-10 深圳市华星光电技术有限公司 金属线栅偏光片与液晶显示装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103064211A (zh) * 2012-10-15 2013-04-24 京东方科技集团股份有限公司 一种液晶显示装置、专用眼镜及保密显示器件
CN106133587A (zh) * 2014-03-19 2016-11-16 夏普株式会社 反射镜显示器和电子设备
CN104111555A (zh) * 2014-06-19 2014-10-22 京东方科技集团股份有限公司 一种照明装置、其专用眼镜、其检偏装置及照明***
CN104122705A (zh) * 2014-07-11 2014-10-29 京东方科技集团股份有限公司 显示面板、显示器、显示设备及驱动方法
WO2017105926A1 (en) * 2015-12-17 2017-06-22 3M Innovative Properties Company Mirror including reflective backlit display
CN105388668A (zh) * 2015-12-25 2016-03-09 武汉华星光电技术有限公司 反射式液晶面板以及显示装置
CN105552105A (zh) * 2016-01-26 2016-05-04 京东方科技集团股份有限公司 显示装置及其驱动方法、制作方法以及防偷窥显示***

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3650928A4 *

Also Published As

Publication number Publication date
EP3650928A4 (en) 2021-03-03
EP3650928A1 (en) 2020-05-13
CN109212812A (zh) 2019-01-15
US20210271131A1 (en) 2021-09-02
JP7144325B2 (ja) 2022-09-29
JP2020525806A (ja) 2020-08-27

Similar Documents

Publication Publication Date Title
TW451097B (en) Liquid crystal device and electronic device
JP4586869B2 (ja) 液晶表示装置及び電子機器
CN102483530B (zh) 显示面板、显示***、便携式终端、电子设备
TWI474080B (zh) Liquid crystal display device
US10191322B2 (en) Display and electronic unit
CN102681232B (zh) 半透射液晶显示装置及便携终端装置
TW573164B (en) Reflective LCD, semi-transmitting reflective LCD and electronic device
TWI227359B (en) Liquid crystal display device and electronic apparatus
CN109073921B (zh) 开关式反射镜面板、及开关式反射镜器件
JP2007004125A (ja) 液晶装置及び電子機器
US20180088438A1 (en) Display device
CN101017276A (zh) 液晶显示装置、其制造方法及电子设备
JP2006343738A (ja) 半透過半反射型の液晶ディスプレイ
JP5241822B2 (ja) 表示パネル及びカメラ
CN100485477C (zh) 液晶显示装置及电子设备
WO2019007074A1 (zh) 显示面板及其制备方法、显示***
CN107247357B (zh) 一种显示面板及其显示方法、显示装置
KR101644518B1 (ko) 투명 표시 장치 및 이를 이용한 투명 표시 방법
CN104280811B (zh) 偏光片、液晶面板以及液晶显示器
JP2009204938A (ja) 液晶表示装置および電子機器
US20130234966A1 (en) Optical element and display system
JP2007218940A (ja) 液晶装置及び電子機器
CN110501835B (zh) 一种显示面板、其驱动方法及显示装置
WO2017217009A1 (ja) 画像表示装置
US9429787B2 (en) Transparent display unit

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018560130

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18796354

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018796354

Country of ref document: EP

Effective date: 20200204