WO2019004085A1 - Electronic device - Google Patents

Electronic device Download PDF

Info

Publication number
WO2019004085A1
WO2019004085A1 PCT/JP2018/023828 JP2018023828W WO2019004085A1 WO 2019004085 A1 WO2019004085 A1 WO 2019004085A1 JP 2018023828 W JP2018023828 W JP 2018023828W WO 2019004085 A1 WO2019004085 A1 WO 2019004085A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
electronic device
molecule
organic material
liquid organic
Prior art date
Application number
PCT/JP2018/023828
Other languages
French (fr)
Japanese (ja)
Inventor
吉田 学
浩司 末森
尚志 中西
アビジット ゴッシュ
Original Assignee
国立研究開発法人産業技術総合研究所
国立研究開発法人物質・材料研究機構
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立研究開発法人産業技術総合研究所, 国立研究開発法人物質・材料研究機構 filed Critical 国立研究開発法人産業技術総合研究所
Priority to JP2019526867A priority Critical patent/JP6948036B2/en
Publication of WO2019004085A1 publication Critical patent/WO2019004085A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B47/00Porphines; Azaporphines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/018Dielectrics
    • H01G4/04Liquid dielectrics
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G7/00Capacitors in which the capacitance is varied by non-mechanical means; Processes of their manufacture
    • H01G7/02Electrets, i.e. having a permanently-polarised dielectric
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N1/00Electrostatic generators or motors using a solid moving electrostatic charge carrier

Definitions

  • the present invention relates to an electronic device, and more particularly to an electronic device using an organic material which is liquid at normal temperature.
  • Patent Document 1 includes a pair of substrates configured to be relatively movable while maintaining a state of facing each other, a plurality of electrets are arranged side by side on one of the pair of substrates, and a pair of electrodes on the other.
  • An electrostatic induction generator is disclosed in which a plurality of sets of electrodes are arranged side by side.
  • Patent Document 2 a polymer dispersed solution is applied to a counter electrode to a vibrating membrane of an electrostatic type electroacoustic exchange unit and then baked to form a polymer film on the counter electrode, and then the polymer film is electretized.
  • a method of manufacturing an electrostatic electroacoustic transducing unit is disclosed.
  • the present inventors are conducting research and development on electronic devices.
  • electronic devices with high arbitrary shape have high versatility, such as being applicable to wearable devices that can be worn on the human body. Therefore, improvement of the performance of the electronic device is desired.
  • An electronic device comprises a first electrode, a second electrode disposed to face the first electrode, and a room-temperature liquid organic material disposed between the first electrode and the second electrode.
  • the normal temperature liquid organic material contains charged molecules, and the charged molecules are ⁇ -conjugated molecules having two or more side chains, and the two or more side chains are between the ⁇ -conjugated molecules. It is bound to the ⁇ -conjugated molecule so as to inhibit the ⁇ - ⁇ interaction.
  • the performance of the electronic device can be improved.
  • FIG. 1 is a cross-sectional view of an electronic device of a first embodiment.
  • the electronic device of Embodiment 1 it is a graph which shows the operation result immediately after charging the molecule
  • 6 is a graph showing an operation result three days after charging a molecule contained in a room temperature liquid organic material in the electronic device of Embodiment 1.
  • FIG. 1 it is a graph which shows the operation result seven days after charging the molecule
  • FIG. 7 is a cross-sectional view of the electronic device of Embodiment 2;
  • it is a graph which shows the time change of the voltage output from AC power supply.
  • it is a graph which shows the time change of the vibration generated to an electrode.
  • it is a graph which shows the result of Fourier-transforming the time change of the vibration generate
  • FIG. 18 is a plan view of the electronic device of the third embodiment.
  • FIG. 14 is a cross-sectional view of the electronic device of the third embodiment.
  • FIG. 14 is a cross-sectional view showing an operation principle of the electronic device of the third embodiment.
  • FIG. 20 is a cross-sectional view of the electronic device of the fourth embodiment.
  • it is a graph which shows the operation result immediately after charging the molecule contained in the normal temperature liquid organic material.
  • the electret is a dielectric (insulator) that holds the charge semipermanently, and is made of a solid material.
  • An electret is manufactured by colliding electrons with a solid material by corona discharge or the like to charge the solid material. Since the electret is made of a solid material, it can hold the charge stably, but has a problem that it lacks flexibility.
  • ionic liquids and Electro-Conjugate Fluids are known as liquid (fluid) materials used in electronic devices.
  • ionic liquids like electrets, are not suitable for use as liquids that hold a single charge, because of the presence of counter ions.
  • the electro-conjugate fluid is a dielectric liquid having high insulation, and when a high voltage is applied to the electrode pair in a container filled with the fluid, a strong jet flow is generated between the electrodes.
  • the electro-conjugated fluid can not retain the charge when the applied voltage is removed. Therefore, a liquid that can hold a charge stably is desired.
  • the normal temperature liquid organic material EL of one embodiment shown in FIG. 1, FIG. 2, FIG. 6, FIG. 11 and FIG. 12 is made of .pi.-conjugated molecule having two or more side chains.
  • the two or more side chains are the same or different selected from the group consisting of a branched alkyl chain, an alkyl chain having a polymerization site at the end, an oligosiloxane chain, a fluorocarbon chain, an oligoethylene glycol chain, and derivatives thereof. It is a side chain.
  • Each of the two or more side chains is bonded to the ⁇ -conjugated molecule directly or via a substituent.
  • S is at least one substituent selected from the group consisting of an ether group, a methylene group, and a phenyl group.
  • the R 1 is a substituted or unsubstituted alkyl group consisting of 4 or more carbon atoms
  • the R 2 is a substituted or unsubstituted alkyl group consisting of 6 or more carbon atoms.
  • the number of carbon atoms of R1 may be smaller than the number of carbon atoms of R2.
  • R1 and R2 are selected from the group consisting of (Chemical Formula 2) below.
  • the two or more side chains are an alkyl chain having a polymerization site at the end.
  • n is 6 ⁇ n ⁇ 14 in all cases.
  • the two or more side chains are-(Si- Ra ( Rb )) n- H,-(Si- Ra ( Rb ) And n may be selected from the group consisting of n -SiH 3 and-(Si- Ra (R b )) n -Si (CH 3 ) 3 .
  • n is 2 ⁇ n ⁇ 10
  • the two or more side chains are the fluorocarbon chain
  • the two or more side chains are — (CF 2 ) n CF 3 (wherein n is 5 ⁇ n ⁇ 9). obtain.
  • the two or more side chains are the oligoethylene glycol chain
  • the two or more side chains are-(O-CH 2 -CH 2 ) n -OH or-(O-CH 2 -CH 2 ) N -OCH 3 (n is 2 ⁇ n ⁇ 10).
  • the ⁇ -conjugated molecule is porphyrin, phthalocyanine, oligo (p-) phenylenevinylene, naphthalene, anthracene, tetracene, pentacene, pyrene, azobenzene, stilbene, diallythene, oligophenylene, oligothiophene, oxazole dye, and the like It may be selected from the group consisting of derivatives.
  • the ⁇ -conjugated molecule is porphyrin, and the ⁇ -conjugated molecule having the two or more side chains is represented by the following (Chemical formula Including those represented by any of 3).
  • the ⁇ -conjugated molecule is anthracene
  • the ⁇ -conjugated molecule having the two or more side chains is represented by the following (Chemical formula 4) Including those represented by either.
  • the ⁇ -conjugated molecule is oligo (p-) phenylenevinylene, and the ⁇ -conjugated molecule having the two or more side chains is Including those represented by any one of (Chemical formula 5)
  • the ⁇ -conjugated molecule is fluorene
  • the ⁇ -conjugated molecule having the two or more side chains is represented by the following (Chemical formula 6) Including those represented (where n is a natural number greater than or equal to 1).
  • the ⁇ -conjugated molecule is stilbene, and the ⁇ -conjugated molecule having the two or more side chains is represented by the following (Chemical formula 7) Including what is represented.
  • the ⁇ -conjugated molecule is azobenzene
  • the ⁇ -conjugated molecule having the two or more side chains is represented by the following (Chemical formula 8) Including what is represented.
  • the ⁇ -conjugated molecule is pyrene
  • the ⁇ -conjugated molecule having the two or more side chains is represented by the following (Chemical formula 9) Including what is represented.
  • the position of the two or more side chains is not particularly limited, but is preferably the second and fifth or the third and fifth for ease of production.
  • the ⁇ -conjugated system molecule having specific two or more side chains including the molecule described above, the ⁇ - ⁇ interaction between the ⁇ -conjugated system molecules is inhibited by the two or more side chains.
  • the inhibition of the ⁇ - ⁇ interaction prevents the crystallization of ⁇ -conjugated molecules. Therefore, the ⁇ -conjugated system molecule having the two or more side chains becomes a liquid at normal temperature.
  • the ⁇ -conjugated molecule having the two or more side chains when it is positively or negatively charged, the charge is delocalized by the ⁇ -conjugated system. Therefore, the ⁇ -conjugated molecule having the two or more side chains can stably hold the charge. Further, in the ⁇ -conjugated system molecule having the two or more side chains, the ⁇ -conjugated system molecule located at the center is sterically protected by the two or more side chains. Therefore, the interaction between external factors such as oxygen and moisture and the ⁇ -conjugated molecule is inhibited.
  • the ⁇ - ⁇ interaction between the ⁇ -conjugated system molecules is inhibited by the two or more side chains. Therefore, the charge can be prevented from escaping from the charged molecule to the other molecule through the ⁇ - ⁇ interaction.
  • the ⁇ -conjugated system molecule having two or more side chains has both of the ability to stably hold the charge in the molecule and the ability to inhibit the interaction with the outside and not release the charge. . Therefore, by charging the ⁇ -conjugated system molecules having the two or more side chains constituting the normal temperature liquid organic material EL, the normal temperature liquid organic material EL including molecules capable of retaining electric charge for a long time can be provided. .
  • the molecule P1 has a glass transition temperature of ⁇ 13.6 ° C.
  • the molecule P1 is an ink material having a purple color.
  • the molecule P1 can also be a light emitter that emits red light upon ultraviolet excitation.
  • the molecule P1 can also function as an electron donor solvent or a liquid electron donor itself, it can constitute a photoelectric conversion element by using it with an electron acceptor.
  • the ⁇ -conjugated molecule is porphyrin, the two or more side chains are all branched alkyl chains, and the substituent S is a combination of a phenyl group and an ether group, and the following (Chemical formula 11), (Chemical formula 12) and There is a molecule represented by (Chemical formula 13).
  • the molecule represented by (Chemical Formula 11) is referred to as a molecule P2
  • the molecule represented by (Chemical Formula 12) is referred to as a molecule P3
  • the molecule represented by (Chemical Formula 13) is referred to as a molecule P4.
  • each of the branched alkyl chains (side chains) has an ether group as a substituent S, but the branched alkyl chains additionally share a phenyl group as a substituent S.
  • Such molecule P2 has the same characteristics as the molecule P1 described above.
  • the viscosity of molecule P2 is higher than that of molecule P1. This is due to van der Waals interactions between side chains. That is, it is shown that the viscosity of the normal temperature liquid organic material can be controlled by the selection of the ⁇ -conjugated molecule and the selection of the number or type of branched alkyl chains to be introduced into the selected ⁇ -conjugated molecule.
  • the quantum yield of molecule P2 is higher than that of molecule P1.
  • the molecule P2 maintains the excited state longer than the molecule P1. That is, the degree of steric inhibition of the ⁇ - ⁇ interaction of the ⁇ -conjugated molecule is adjusted by selecting the number or type of side chains to be introduced into the ⁇ -conjugated molecule, and the external factor (oxygen in air And water), and show that the excited state can be maintained for a long time.
  • each branched alkyl chain (side chain) has an ether group as a substituent S, and the branched alkyl chains further share a phenyl group as a substituent S. Also, branched alkyl chains are located at the 2- and 5-positions of the phenyl group.
  • Molecule P3 has a glass transition temperature of about -50 ° C and behaves as a Newtonian liquid. That is, it is shown that the porphyrin site is effectively sequestered by the introduced alkyl chain, and the degree of steric inhibition of the ⁇ - ⁇ interaction between porphyrin rings can be increased.
  • each branched alkyl chain (side chain) has an ether group as a substituent S, and the branched alkyl chains further share a phenyl group as a substituent S.
  • molecule P4 has branched alkyl chains located at the 3- and 5-positions of the phenyl group.
  • the viscosity of molecule P4 is about five times higher than that of molecule P3. This is due to van der Waals interactions between side chains.
  • the molecule P4 has a glass transition temperature of about -50.degree. Molecule P4 behaves as a non-Newtonian liquid.
  • liquid physical properties of the normal temperature liquid organic material can be controlled by the selection of the ⁇ -conjugated molecule and the selection of the number or type of branched alkyl chains introduced into the selected ⁇ -conjugated molecule.
  • a molecule in which a ⁇ -conjugated molecule is an oligo (p-) phenylenevinylene, two or more side chains are all branched alkyl chains, a substituent S is an ether, and satisfies the following (Formula 14) is preferable.
  • the molecules OPV1 to OPV4 are all molecules having a pale yellow color.
  • the molecules OPV1 to OPV4 can also be light emitters that emit blue light by ultraviolet excitation and electron beam excitation.
  • the molecules OPV1 to OP4 can function as an electron donor solvent or liquid electron donor itself as well as the molecules P1 and P2. Therefore, a photoelectric conversion element can be configured by using it with an electron acceptor. .
  • the quantum yield increases in the order of molecule OPV1 ⁇ molecule OPV2 ⁇ molecule OPV3 ⁇ molecule OPV4. Also in this case, the selection of the number or type of branched alkyl chains to be introduced into the ⁇ -conjugated molecule more sterically inhibits the ⁇ - ⁇ interaction of the ⁇ -conjugated molecule, resulting in isolation from external factors. Indicates that the excited state can be maintained for a long time.
  • the ⁇ -conjugated molecule is anthracene
  • the two or more side chains are all branched alkyl chains (hyperbranched or swallow tail)
  • the substituent S is an ether
  • a molecule satisfying the following (Formula 15) a normal temperature liquid organic material having a hyperbranched alkyl chain
  • the normal temperature liquid organic material having a swallow tail alkyl chain is referred to as a molecule ACN2.
  • the molecules ACN1 and ACN2 are all normal temperature liquid organic materials having a pale yellow color.
  • the molecule ACN1 and the molecule ACN2 can also be light emitters that emit blue light by ultraviolet excitation and electron beam excitation.
  • n is a natural number of 1 or more, preferably 5 or less.
  • the molecules FL2 and FL3 can be emitters that emit blue light by ultraviolet excitation and electron beam excitation. Also, the viscosity increases as n increases (ie, the molecule FL1 is the softest and harder as n increases). Also, the quantum yield tends to increase as n increases.
  • a molecule having three branched alkyl chains is called molecule STLB.
  • the molecule STLB is a colorless and transparent normal temperature liquid organic material, and the molecule STLB causes trans-cis isomerization by ultraviolet light irradiation.
  • a photosensitizer is required for the isomerization reverse reaction, it is advantageous for an information storage medium in which optical electronic information as a cis form is thermally stored stably.
  • a molecule with two branched alkyl chains is called molecule AZO.
  • the molecule AZO is a reddish brown normal temperature liquid organic material, and the molecule AZO causes trans-cis isomerization by irradiation with ultraviolet light.
  • it is advantageous for inducing a dynamic change associated with photoisomerization because an isomerization reverse reaction easily occurs by visible light such as room lighting.
  • the ⁇ -conjugated molecule is pyrene
  • the two or more side chains are all branched alkyl chains (swallow tail)
  • the substituent S is a combination of a phenyl group and an ether group, and the following (Formula 19) is satisfied
  • a molecule is preferred.
  • a molecule having two alkyl chains (swallow tails) is referred to as a molecule PY1
  • a molecule having eight swallow tail alkyl chains is referred to as a molecule PY2.
  • the molecule PY1 and the molecule PY2 are both normal temperature liquid organic materials having a transparent pale yellow color, and exhibit behavior of a Newtonian liquid.
  • the molecules PY1 and PY2 emit blue light by ultraviolet ray excitation and electron beam excitation. The emission wavelength at that time is observed on the longer wavelength side than the molecule PY2 because the molecule PY1 is formed as an excimer.
  • the room temperature liquid organic material EL used for the electronic device ED1 of the first embodiment, the electronic device ED2 of the second embodiment, and the electronic device ED3 of the third embodiment described later is a ⁇ -conjugated molecule having two or more side chains as described above. As long as it is, it may be comprised from any molecule
  • FIG. 1 is a schematic view of a manufacturing apparatus CD of a room temperature liquid organic material EL containing charged molecules.
  • the manufacturing apparatus CD of the normal temperature liquid organic material EL containing charged molecules is disposed at a predetermined distance from the plate-like electrode GE, the insulator IL disposed on the electrode GE, and the electrode GE and the insulator IL And a point-like (needle-like) electrode CE.
  • the insulator IL is a sample stage for placing a sample to be charged.
  • the manufacturing apparatus CD of the normal temperature liquid organic material EL containing charged molecules has a heater HT for heating the sample on the insulator IL via the electrode GE.
  • the electrode GE is grounded.
  • the electrode CE is made of tungsten wire.
  • the room temperature liquid organic material EL is placed on the insulator IL, and the room temperature liquid organic material EL is heated to about 150 ° C. by the heater HT.
  • the heater HT By heating the normal temperature liquid organic material EL, the fluidity of the normal temperature liquid organic material EL is enhanced, and it becomes easy to charge the molecules contained in the normal temperature liquid organic material EL.
  • the normal temperature liquid organic material EL containing charged molecules may be manufactured using, for example, an electrostatic gun.
  • the electrostatic gun is a spray gun in which a high voltage is applied to the injection port, and is used, for example, for electrostatic coating.
  • the sample stage is grounded, and a negative voltage is applied to the injection port.
  • the normal temperature liquid organic material EL is injected from the electrostatic gun toward the sample table, the molecules contained in the normal temperature liquid organic material EL are charged at the injection port of the electrostatic gun, and the normal temperature liquid organic material EL containing charged molecules Is applied to the sample table.
  • the normal temperature liquid organic material EL can be applied while being patterned by controlling the potential of the sample stage.
  • the normal temperature liquid organic material containing charged molecules is referred to as the normal temperature liquid organic material EL.
  • Means material EL Means material EL.
  • FIG. 2 is a cross-sectional view of the electronic device ED1 of the first embodiment.
  • the electronic device ED1 includes a plate-like electrode (first electrode) Ea1 and a plate-like electrode (second electrode) disposed opposite to the electrode Ea1 with a predetermined interval.
  • An electrode Eb1 and a normal temperature liquid organic material EL disposed between the electrode Ea1 and the electrode Eb1.
  • the normal temperature liquid organic material EL contains negatively charged molecule ELM.
  • the normal temperature liquid organic material EL is a highly viscous liquid and is disposed on the electrode Eb1.
  • the electronic device ED1 of the first embodiment also includes electrodes Ea2 and Eb2 and electrodes Ea3 and Eb3 having the same configuration as the electrodes Ea1 and Eb1.
  • the electrodes Ea1 and Eb1, the electrodes Ea2 and Eb2, and the electrodes Ea3 and Eb3 are disposed parallel to each other along the surface direction of the electrodes at a predetermined interval.
  • the electrodes Ea1, Ea2, Ea3, Eb1, Eb2, and Eb3 each have a wiring portion, and can be connected to an external device such as a voltmeter or a sensor via the wiring portion. .
  • the electronic device ED1 of the first embodiment includes a plurality of spacers SC, SC, SC, SC maintaining the distance between the electrodes Ea1, Ea2, Ea3 and the electrodes Eb1, Eb2, Eb3, the electrodes Ea1, Ea2, Ea3 and It has a support member PT1 to which one end of the spacers SC, SC, SC, SC is fixed, and a support member PT2 to which the electrodes Eb1, Eb2, Eb3 and the other ends of the spacers SC, SC, SC, SC are fixed.
  • the support members PT1 and PT2 are made of a flexible material, preferably polyurethane.
  • the electrodes Ea1, Ea2, Ea3, Eb1, Eb2, Eb3 are made of a flexible material, preferably conductive fibers.
  • the normal temperature liquid organic material EL is sealed in the space formed by the spacers SC, SC, SC, SC and the support members PT1, PT2. Therefore, in the electronic device ED1 of the first embodiment, the charged molecule ELM contained in the normal temperature liquid organic material EL can be prevented from coming into contact with oxygen and moisture in the air.
  • the electrodes having the same configuration as the electrodes Ea1 and Eb1 may be other than the electrodes Ea2 and Eb2 and the electrodes Ea3 and Eb3, and the illustration thereof is omitted.
  • the spacer SC is disposed in the support member PT2 to which the electrodes Eb1, Eb2, Eb3 are fixed, and then the room temperature liquid organic material EL is poured to A support member PT1 to which Ea2 and Ea3 are fixed is attached to the spacer SC so as to face the support member PT2 and completed.
  • the electronic device ED1 of the first embodiment can also be manufactured as follows.
  • the electrodes Eb1, Eb2 and Eb3 are fixed to the support member PT2, and the room temperature liquid organic material EL containing the negatively charged molecules ELM in this state is applied to the side of the support member PT2 on which the electrodes Eb1, Eb2 and Eb3 are fixed. Thereafter, when a positive potential is applied to the electrodes Eb1, Eb2 and Eb3, the room temperature liquid organic material EL containing negatively charged molecules ELM is attracted to the electrodes Eb1, Eb2 and Eb3, and arranged on the electrodes Eb1, Eb2 and Eb3. .
  • the electronic device ED1 of the first embodiment is completed by sequentially attaching the support member PT1 having the spacer SC and the electrodes Ea1, Ea2, Ea3 fixed thereto to the support member PT2.
  • the normal temperature liquid organic material EL is a liquid and contains the charged molecule ELM, it can be patterned by the electrical method as described above.
  • the normal temperature liquid organic material EL disposed on the side of the electrode Eb1 contains negatively charged molecules ELM. Therefore, a positive charge is induced on the electrode Ea1 facing the electrode Eb1.
  • the electrode Ea1 approaches while being deformed to the electrode Eb1 side.
  • the capacitance between the electrode Ea1 and the electrode Eb1 increases, and the amount of charge induced in the electrode Ea1 increases. That is, the potential difference generated between the electrode Ea1 and the electrode Eb1 gradually increases as the support member PT1 is pushed.
  • the support member PT1 and the electrode Ea1 return to their original positions, and the electrode Ea1 moves away from the electrode Eb1 side.
  • the capacitance between the electrode Ea1 and the electrode Eb1 decreases, and the charge amount induced in the electrode Ea1 decreases. That is, the potential difference generated between the electrode Ea1 and the electrode Eb1 gradually decreases as the support member PT1 returns to its original position without stopping pressing the support member PT1.
  • the electronic device ED1 of the first embodiment can generate an electromotive force between the electrode Ea1 and the electrode Eb1 by changing the relative distance between the electrode Ea1 and the electrode Eb1, and, for example, a touch sensor Etc. can be used as a sensor or a generator.
  • the electrodes Ea1 and Eb1 have been described as an example, the electrodes Ea2 and Eb2 and the electrodes Ea3 and Eb3 operate similarly to the electrodes Ea1 and Eb1.
  • FIG. 3 is a graph showing an operation result immediately after charging the molecule ELM contained in the normal temperature liquid organic material EL in the electronic device ED1 of the first embodiment shown in FIG.
  • FIG. 4 is a graph showing an operation result three days after charging of the molecule ELM contained in the normal temperature liquid organic material EL in the electronic device ED1 of the first embodiment shown in FIG.
  • FIG. 5 is a graph showing an operation result seven days after the molecule ELM contained in the normal temperature liquid organic material EL is charged in the electronic device ED1 of the first embodiment shown in FIG.
  • FIGS. 3 to 5 in the electronic device ED1 of the first embodiment shown in FIG. 2, the support member PT1 is pushed toward the support member PT2, and immediately thereafter, the pushing of the support member PT1 is stopped. It is a graph showing the electrical potential difference between electrode Ea1 and electrode Eb1 at the time of performing operation repeatedly.
  • the aforementioned ⁇ -conjugated molecule is porphyrin, all of the two or more side chains are branched alkyl chains, and the substituent S is a combination of a phenyl group and an ether group ((Chemical formula A molecule consisting of a molecule P3 represented by 12) or a molecule P4 represented by (Chemical formula 13) was used.
  • the distance between the electrode Ea1 and the electrode Eb1 is shortened, and the capacitance between the electrode Ea1 and the electrode Eb1 is increased. Since the room temperature liquid organic material EL containing negatively charged molecules ELM is disposed on the electrode Eb1 side, when the capacitance between the electrode Ea1 and the electrode Eb1 becomes large, the positive charge is transferred from the outside to the electrode Ea1 side Flows in. Therefore, since the electrode Ea1 side has a negative potential with respect to the electrode Eb1, as shown in FIG. 3, it is considered that the peak PP in the downward direction (negative potential difference) is observed.
  • a downward peak is observed similarly to the above each time the support member PT1 is pushed to the support member PT2 side thereafter, and subsequently, it is upward. A peak was observed. Therefore, the charged molecule ELM contained in the normal temperature liquid organic material EL disposed on the electrode Eb1 side is considered to maintain its charged state even if the pressing operation of the support member PT1 is repeated. The change in peak intensity is considered to be due to the degree of pressing of the support member PT1.
  • the support member PT1 is moved to the support member PT2 side in the same manner as described above.
  • a downward peak (negative potential difference) peak PP was observed, and immediately thereafter, an upward (positive potential difference) peak PE was observed.
  • the support member PT1 is moved to the support member PT2 side as described above.
  • a downward peak (negative potential difference) peak PP was observed as in FIGS. 3 and 4, and immediately thereafter, an upward (positive potential difference) peak PE was observed.
  • the charged molecule ELM contained in the normal temperature liquid organic material EL maintains its charged state even 7 days after charging.
  • the ⁇ -conjugated system molecule having two or more side chains constituting the charged molecule ELM can stably hold the charge in the molecule, and inhibits the interaction between the molecules, thereby forming another molecule. It has both the property that the charge does not escape. Therefore, the results in FIG. 3 to FIG. 5 reflect that the charge can be held for a long period of time by charging the ⁇ -conjugated system molecules having the two or more side chains constituting the normal temperature liquid organic material EL. .
  • FIGS. 3 to 5 show the results of the normal temperature liquid organic material EL composed of the molecule P4, but similar results are obtained also for the molecule P3.
  • a charged solid material is used instead of the normal temperature liquid organic material EL, and an electronic device (not shown) whose other configuration is the same as the electronic device ED1 is examined. did. That is, this electronic device has a pair of electrodes facing each other and a solid material disposed between the pair of electrodes facing each other. This solid material is, for example, the aforementioned electret and is charged.
  • such an electronic device can be used, for example, as a sensor or a power generation device.
  • a sensor or a power generation device.
  • One possible method is to thicken the solid material.
  • solid materials that can be charged are highly insulative. Therefore, for example, when charging by corona discharge, electrons do not penetrate to the inside of the solid material, and only the surface can be charged. Therefore, even if the thickness of the solid material is increased in order to increase the amount of charge that can be held, the amount of charge that can be held reaches a plateau.
  • the electronic device ED1 of the first embodiment not the solid material but the normal temperature liquid organic material EL is used. Since the normal temperature liquid organic material EL contains the charged molecule ELM, the charge can be held not only on the surface of the normal temperature liquid organic material EL but also inside the normal temperature liquid organic material EL. As a result, in the electronic device ED1 of the first embodiment, by increasing the volume of the normal temperature liquid organic material EL, the sensitivity and the power generation efficiency can be easily improved as compared with the electronic device using the solid material described above.
  • such an electronic device be formed so as to be bendable and have an increased degree of freedom in shape. Therefore, in order to form the electronic device using the aforementioned solid material in a foldable manner, it is necessary to form the solid material in a foldable manner. For example, by forming a thin solid material in the form of a film, flexibility can be obtained. However, if the solid material is formed thin, the amount of charge that can be held by the solid material is reduced. If the solid material is made thicker to increase the amount of charge it can hold, it can not be made flexible. In addition, even if it is a flexible solid material, it may be plastically deformed and broken if the amount of deformation is large, such as expansion and contraction.
  • the liquid normal temperature liquid organic material EL is used in the electronic device ED1 of the first embodiment. Therefore, the normal temperature liquid organic material EL can be freely deformed and can follow external deformation. Furthermore, as described above, the amount of charge that can be held can be easily increased by increasing the volume of the normal temperature liquid organic material EL. Since the normal temperature liquid organic material EL is a liquid, it can be freely deformed even if its volume is increased.
  • the electronic device ED1 of the first embodiment by using the liquid normal-temperature liquid organic material EL instead of the solid material, it is possible to achieve both improvement in shape freedom of the electronic device and increase in the amount of holding charge. .
  • FIG. 6 is a cross-sectional view of the electronic device ED2 of the second embodiment.
  • the electronic device ED2 of the second embodiment includes a plate-like electrode Ea, a plate-like electrode Eb disposed opposite to the electrode Ea with a predetermined distance, an electrode Ea, and an electrode Eb. And a normal temperature liquid organic material EL disposed therebetween.
  • the normal temperature liquid organic material EL contains negatively charged molecule ELM.
  • the normal temperature liquid organic material EL is a highly viscous liquid and is disposed on the electrode Eb.
  • the electronic device ED2 according to the second embodiment includes an AC power supply PS that applies an AC voltage between the electrode Ea and the electrode Eb, and a vibration sensor VE that is attached to the electrode Ea and measures the vibration of the electrode Ea. doing.
  • the electronic device ED2 of the second embodiment is provided with a support member for supporting the electrodes Ea and Eb.
  • a sealing body is provided which holds the normal temperature liquid organic material EL placed on the electrode Eb.
  • the normal temperature liquid organic material EL disposed on the electrode Eb side contains negatively charged molecular ELM.
  • the room temperature liquid organic material EL containing the negatively charged molecule ELM and the electrode Ea attract each other.
  • the normal temperature liquid organic material EL containing negatively charged molecules ELM and the electrode Ea repel each other. Therefore, when an alternating current voltage is applied between the electrode Ea and the electrode Eb by the alternating current power supply PS, the electrode Ea vibrates in and out of the normal temperature liquid organic material EL, and the electrode Ea vibrates.
  • the electronic device ED2 of Embodiment 2 can take out the vibration which arises in electrode Ea1 outside. Therefore, the electronic device ED2 of the second embodiment can be used as, for example, a vibration generator, a speaker, or an ultrasonic wave generator.
  • FIG. 7 is a graph showing time change of the voltage output from the AC power supply PS in the electronic device ED2 of the second embodiment.
  • FIG. 8 is a graph showing time change of vibration generated in the electrode Ea in the electronic device ED2 of the second embodiment.
  • FIG. 9 is a graph showing the result of Fourier transform of the time change of the vibration generated in the electrode Ea in the electronic device ED2 of the second embodiment.
  • the aforementioned ⁇ -conjugated molecule is porphyrin, all of the two or more side chains are branched alkyl chains, and the substituent S is a combination of a phenyl group and an ether group ((Chemical formula A molecule consisting of a molecule P3 represented by 12) or a molecule P4 represented by (Chemical formula 13) was used.
  • the charge potential of the normal temperature liquid organic material EL disposed on the electrode Eb is -330 V.
  • the AC power supply PS has an inverter, and outputs an AC voltage with a maximum value of 200 V and a frequency of 500 Hz.
  • FIG. 8 shows the result of measurement of vibration generated in the electrode Ea by the vibration sensor VE by applying an AC voltage shown in FIG. 7 between the electrode Ea and the electrode Eb by the AC power supply PS.
  • FIG. 7 to FIG. 9 show the results of the normal temperature liquid organic material EL composed of the molecule P4, but the same result is obtained for the molecule P3.
  • an electronic device (not shown) whose other configuration is the same as that of the electronic device ED2 using a charged solid material instead of the normal temperature liquid organic material EL.
  • this electronic device has a pair of electrodes facing each other, a solid material disposed between the pair of electrodes facing each other, and an AC power supply for applying an AC voltage between the pair of electrodes.
  • This solid material is, for example, the aforementioned electret and is charged.
  • such an electronic device can be used, for example, as a vibration generator, a speaker or an ultrasonic generator.
  • the electronic device ED2 of the second embodiment not a solid material but a normal temperature liquid organic material EL is used. Since the normal temperature liquid organic material EL contains the charged molecule ELM, the charge can be held not only on the surface of the normal temperature liquid organic material EL but also inside the normal temperature liquid organic material EL. As a result, in the electronic device ED2 of the second embodiment, by increasing the volume of the normal temperature liquid organic material EL, the sensitivity and the power generation efficiency can be easily improved as compared with the electronic device using the solid material described above.
  • the electronic device ED2 of the second embodiment similarly to the electronic device ED1 of the first embodiment, also in the electronic device ED2 of the second embodiment, from the viewpoint of improving the convenience, it is desired that the electronic device ED2 be formed to be bendable to enhance the shape freedom. As described above, it has been difficult to simultaneously form a thin solid material and increase the amount of charge that can be held. On the other hand, in the electronic device ED2 of the second embodiment, by using the liquid normal temperature liquid organic material EL instead of the solid material, it is possible to achieve both improvement in shape freedom of the electronic device and increase in the holding charge amount. it can.
  • FIG. 10 is a cross-sectional view of the electronic device ED100 of the study example.
  • the electronic device ED100 of the study example has a substrate BP, electrodes Ec101, Ec102, Ec103, Ec104 disposed on the substrate BP, and electrodes Ec101, Ec102, Ec102, at a predetermined distance from the substrate BP. It has electrodes Ea101, Eb101, Ea102, and Eb102 disposed to face Ec103 and Ec104.
  • the electrode Ea101 and the electrode Ea102 are electrically connected.
  • the electrode Eb101 and the electrode Eb102 are electrically connected.
  • the electrodes Ea101, Eb101, Ea102, and Eb102 are arranged on the same plane at predetermined intervals from one another.
  • the electrodes Ea101 and Ea102 are supported by a spring member SP101, and the electrodes Eb101 and Eb102 are supported by a spring member SP102 so as to be movable parallel to the surface of the substrate BP. Although not shown, the electrodes Ea 101 and Ea 102 and the electrodes Eb 101 and Eb 102 are supported so as to move integrally.
  • the electrodes Ec101, Ec102, Ec103, and Ec104 are disposed on the substrate BP at predetermined intervals from one another.
  • Electret EL101 and electret EL102 are arranged on electrode Ec101 and electrode Ec103, respectively.
  • the electrets EL101 and EL102 are solid materials which are charged (negatively charged) and made of a patterned polymer film.
  • the width dimensions (length in the direction of the arrow in FIG. 10) of the electrodes Ea101, Eb101, Ea102, Eb102, the electrodes Ec101, Ec102, Ec103, Ec104, and the electrets EL101, EL102 are all the same.
  • the distance between the electrode Ea101 and the electrode Eb101 is the distance between the electrode Eb101 and the electrode Ea102, the distance between the electrode Ea102 and the electrode Eb102, the distance between the electrode Ec101 and the electrode Ec102, the distance between the electrode Ec102 and the electrode Ec103,
  • the distance between the electrode Ec 103 and the electrode Ec 104 is the same as each other.
  • the electrode Ea101, Eb101, Ea102, and Eb102 are moved along the substrate BP (the right direction of the arrow in FIG. 10) to make the electrode Ea101 face the electret EL101 on the electrode Ec101, the electrode Eb101 becomes the electrode Ec102.
  • the electrode Ea102 faces the electret EL102 on the electrode Ec103 and the electrode Eb102 faces the electrode Ec104, respectively.
  • the pair of electrodes Ea101, Eb101, Ea102, Eb102 is moved along the substrate BP (the left direction of the arrow in FIG.
  • the electrode Eb101 faces the electret EL101 on the electrode Ec101
  • the electrode Ea102 becomes the electrode Ec102
  • the electrode Eb102 faces the electret EL102 on the electrode Ec103, respectively.
  • one set of electrodes Ea101, Eb101, Ea102, Eb102 is moved along the substrate BP (in the direction of the right of the arrow in FIG. 10) and the electrode Ea101 is opposed to the electrode Ec102
  • the electrode Eb101 becomes the electret EL102 on the electrode Ec103
  • the electrode Ea102 faces the electrode Ec104, respectively.
  • the pair of electrodes Ea101, Eb101, Ea102, Eb102 and the electrodes Ec101, Ec102, Ec103, Ec104 are relatively moved by moving the pair of electrodes Ea101, Eb101, Ea102, Eb102.
  • the electrode Ea101 and the electret EL101 on the electrode Ec101 face each other, a charge (positive charge) of the opposite polarity to the charge (negative charge) charged on the electret EL101 is induced in the electrode Ea101.
  • the electrode Ea101 faces the electret EL101
  • the electrode Eb101 faces the electrode Ec102
  • the electrode Ea102 faces the electret EL102 on the electrode Ec103
  • the electrode Eb102 faces the electrode Ec104. Therefore, a charge (positive charge) of the opposite polarity to the charge (negative charge) charged in the electret EL 102 is induced in the electrode Ea102.
  • the electrode Eb101 and the electrode Eb102 face the grounded electrode Ec102 and the electrode Ec104, respectively, charge is not induced.
  • positive charges are induced in the electrodes Ea101 and Ea102, and no charges are induced in the electrodes Eb101 and Eb102. That is, the potential difference between the electrodes Ea101 and Ea102 and the electrodes Eb101 and Eb102 takes positive values with reference to the electrodes Eb101 and Eb102.
  • the electrodes Ea101 and Ea102 move away from the electrodes Ec101 and Ec103, respectively.
  • the capacitance is proportional to the area of the pair of opposing electrodes. Therefore, as the electrode Ea101 and the electrode Ea102 move away from the electrode Ec101 and the electrode Ec103, the capacitance between the electrode Ea101 and the electrode Ec101 and the capacitance between the electrode Ea102 and the electrode Ec103 are respectively It becomes smaller. That is, the amount of charge induced in the electrode Ea101 and the electrode Ea102 decreases.
  • the electrode Eb101 and the electrode Eb102 move away from the electrode Ec102 and the electrode Ec104, respectively, and approach the electrode Ec101 in which the electret EL101 is disposed and the electrode Ec103 in which the electret EL102 is disposed. Therefore, as the electrode Eb101 and the electrode Eb102 approach the electrode Ec101 and the electrode Ec103, the capacitance between the electrode Eb101 and the electrode Ec101 and the capacitance between the electrode Eb102 and the electrode Ec103 increase, respectively. To go. That is, the amount of charge induced in the electrode Eb101 and the electrode Eb102 increases.
  • the electrodes Ea101 and Ea102 approach the electrets EL101 and EL102 again by the restoring force of the spring members SP101 and SP102, and the electrodes Eb101 and Eb102 separate from the electrets EL101 and EL102 again.
  • an alternating voltage can be generated by periodically moving the electrodes Ea101, Ea102, Eb101, and Eb102 with respect to the electrets EL101 and EL102.
  • the electrets EL101 and EL102 thicker.
  • the electrets EL101 and EL102 are made of a solid material, as described above, even if the solid material is thickened in an attempt to increase the amount of charge that can be held, the amount of charge that can be held becomes a peak. Therefore, in the electronic device ED100 of the examination example, it is difficult to improve the power generation efficiency by increasing the amount of charge that can be held by the solid material.
  • FIG. 11 is a plan view of the electronic device ED3 of the third embodiment.
  • FIG. 12 is a cross-sectional view of the electronic device ED3 of the third embodiment.
  • the electronic device ED3 of the third embodiment is disposed so as to cover the electrode (first electrode) Ec, the electrode (second electrode) Ed, the electrode Ec, and the electrode Ed. And a normal temperature liquid organic material EL.
  • the electrode Ec is formed in a comb shape as a whole, and has a planar rectangular main body Ecm, and planar rectangular branches Ec1, Ec2, Ec3, and Ec4 branched from the main body Ecm.
  • the electrode Ed is formed in a comb-like shape as the electrode Ec, and has a main body portion Edm of a plane rectangular shape and branched portions Ed1, Ed2, Ed3, Ed4 of a plane rectangular shape branched from the body portion Edm. ing.
  • the branched portions Ec1, Ec2, Ec3, and Ec4 of the electrode Ec and the branched portions Ed1, Ed2, Ed3, and Ed4 of the electrode Ed extend in the longitudinal direction of the body portion Ecm of the electrode Ec and the body portion Edm of the electrode Ed. In each case, they are alternately arranged at predetermined intervals. That is, they are arranged in the order of the branch parts Ec1, Ed1, Ec2, Ed2,. Further, a diode D1 and an ammeter MA are connected between the electrode Ec and the electrode Ed.
  • the element connected between the electrode Ec and the electrode Ed is not limited to the diode D1 and the ammeter MA, and other elements may be connected.
  • the normal temperature liquid organic material EL is sealed in the sealing body SL.
  • the sealing body SL is made of a flexible insulator and preferably made of polyurethane. Therefore, when the sealing body SL is deformed, the normal temperature liquid organic material EL flows along the shape of the sealing body SL.
  • the sealing body SL is disposed on the branch portions Ec1, Ec2, Ec3, Ec4 of the electrode Ec and the branch portions Ed1, Ed2, Ed3, Ed4 of the electrode Ed, and the branch portions Ec1, Ec2, Ec3, Ec4 of the electrode Ec and the electrode It covers branch parts Ed1, Ed2, Ed3, and Ed4 of Ed.
  • the molecule ELM contained in the normal temperature liquid organic material EL is positively charged.
  • the charged molecule ELM contained in the normal temperature liquid organic material EL is the oxygen or moisture in the air. Contact can be prevented.
  • the normal temperature liquid organic material EL charges the molecule ELM by the method described above, and thereafter, is sealed in the sealing body SL.
  • the normal temperature liquid organic material EL can also charge the molecule ELM after being sealed in the sealing body SL, but in order to facilitate the process, the normal temperature liquid organic material EL is charged after the charging of the molecule ELM. It is preferable to enclose it inside.
  • FIG. 13 is a cross-sectional view showing the operation principle of the electronic device ED3 of the third embodiment.
  • FIG. 13 shows the electronic device ED3 of the third embodiment shown in FIG. 12 attached to, for example, a shoe sole (not shown), with the foot FT being disposed on the sealing body SL.
  • Branches Ec1, Ed1, Ec2, Ed2... Of the electrode Ec and the electrode Ed are aligned from the toe side (left side in FIG. 13) to the heel side (right side in FIG. 13) of the foot FT.
  • the potential difference proportional to the difference between the number of molecular ELMs present on the branch Ec1, Ec2, Ec3, Ec4 and the number of molecular ELMs present on the branch Ed1, Ed2, Ed3, Ed4 is equal to that of the electrode Ec. It occurs between the electrode Ed.
  • the number of molecular ELMs present on the branch portions Ec1, Ed1, Ec2, Ed2... Is the normal temperature liquid organic material EL on the branch portions Ec1, Ed1, Ec2, Ed2. Proportional to the volume of the In particular, in the case where the sealing body SL is disposed on the branch portions Ec1, Ed1, Ec2, Ed2,... And the normal temperature liquid organic material EL completely covers the branch portions Ec1, Ed1, Ec2, Ed2,.
  • the number of molecular ELMs present on the branch portions Ec1, Ed1, Ec2, Ed2... is proportional to the thickness of the sealing body SL on the branch portions Ec1, Ed1, Ec2, Ed2. Accordingly, in the upper part of FIG. 13, the number of molecules ELM increases from the heel side of the foot FT (right side in FIG. 13) to the toe side of the foot FT (left side in FIG. 13). Therefore, the sum of the number of molecule ELMs present on the branch parts Ec1, Ec2, Ec3 and Ec4 is larger than the sum of the number of molecule ELMs present on the branch parts Ed1, Ed2, Ed3 and Ed4.
  • the sum of the number of molecule ELMs present on the branch part Ed1, Ed2, Ed3, Ed4 is larger than the sum of the number of molecule ELMs present on the branch parts Ec1, Ec2, Ec3, Ec4. That is, since a charge (negative charge) of the opposite polarity to the charge (positive charge) charged in the molecule ELM is induced in the electrode Ed more than the electrode Ec, it is possible to prevent the charge between the electrode Ec and the electrode Ed. The potential difference takes a positive value with reference to the electrode Ed.
  • the diode D1 is connected between the electrode Ec and the electrode Ed.
  • the direction from the electrode Ec to the electrode Ed is the forward direction of the diode D1
  • the electrode Ec and the electrode A current flows between it and Ed and is observed by the ammeter MA. Therefore, in the electronic device ED3 of the third embodiment, a DC voltage can be generated by rectifying with the diode D1. Therefore, for example, by connecting the storage battery to the electronic device ED3 of the third embodiment, the generated electrical energy can be stored in the storage battery.
  • the room temperature liquid organic material EL sealed in the sealing body SL is disposed on the electrodes Ec and Ed.
  • the electronic device ED3 of the third embodiment is easier to manufacture and can reduce the manufacturing cost as compared with the electronic device ED100 of the examination example.
  • the normal temperature liquid organic material EL is a liquid
  • the normal temperature liquid organic material EL can be easily moved relative to the electrodes Ec and Ed.
  • the volume of the normal temperature liquid organic material EL existing on the electrodes Ec and Ed that is, the number (charge amount) of the charged molecule ELM is obtained by deforming the sealing body SL. It can be easily changed. Therefore, power can be generated efficiently by a simple operation of deforming the sealing body SL.
  • the normal temperature liquid organic material EL contains the charged molecule ELM
  • the electric charge not only to the surface of the normal temperature liquid organic material EL but also to the inside of the normal temperature liquid organic material EL Can be held.
  • many molecular ELMs can be held on the electrodes Ec and Ed by using the normal temperature liquid organic material EL enclosed in the sealing body SL.
  • the power generation efficiency can be enhanced as compared with the electronic device ED100 using an electret made of a solid material.
  • the normal temperature liquid organic material EL is a liquid. Regardless of the structure of the electrode, the electrode can be easily coated with the normal temperature liquid organic material EL.
  • FIG. 14 is a cross-sectional view of the electronic device ED4 of the fourth embodiment.
  • the electronic device ED4 of the fourth embodiment includes an electrode (first electrode) Ea, an electrode (second electrode) Eb disposed opposite to the electrode Ea with a predetermined distance, and an electrode It has the normal temperature liquid organic material EL arrange
  • the normal temperature liquid organic material EL contains negatively charged molecule ELM.
  • the support CL is disposed between the electrode Ea and the electrode Eb.
  • the support CL is made of a flexible material that can hold a liquid, preferably a fabric. Therefore, the normal temperature liquid organic material EL is disposed between the electrode Ea and the electrode Eb while being held by the support CL.
  • the support CL is made of a cloth
  • the normal temperature liquid organic material EL is held by the support CL in a state of being soaked in the cloth. Since the normal temperature liquid organic material EL is a highly viscous liquid, the normal temperature liquid organic material EL is held on the support CL without spreading in the support CL. Therefore, the normal temperature liquid organic material EL can be spaced apart and disposed in a plurality of regions of the support CL.
  • the electrodes Ea and Eb, the support CL, and the normal temperature liquid organic material EL are sealed by a sealing body SL. Therefore, in the electronic device ED4 of the fourth embodiment, the charged molecule ELM contained in the normal temperature liquid organic material EL can be prevented from contacting with oxygen or moisture in the air.
  • the sealing body SL is made of, for example, a polyurethane resin, a silicone resin, a rubber-based material, or the like by using a flexible material (a flexible and stretchable material).
  • the electrodes Ea and Eb are made of, for example, a thin metal film or a fiber on which a metal is vapor-deposited or plated. More specifically, the electrodes Ea and Eb are configured as stretchable electrodes in which, for example, silver-plated short fibers are attached to the sealing body SL.
  • the electrodes Ea and Eb each have a wiring portion, and can be connected to an external device such as a voltmeter or a sensor via the wiring portion.
  • the electrodes having the same configuration as the electrodes Ea and Eb may be present in addition to the electrodes Ea and Eb, and the illustration thereof is omitted.
  • a support CL disposed between the electrodes Ea and Eb holds a normal temperature liquid organic material EL containing negatively charged molecules ELM. Therefore, positive charges are induced on the electrodes Ea and Eb.
  • the sealing body SL is pressed and deformed along the thickness direction of the support body CL, the sealing body SL, the electrodes Ea and Eb, and the support body CL have flexibility, so the sealing is performed. While the body SL, the electrode Ea and the support CL are deformed respectively, the electrode Ea and the electrode Eb approach each other. As the relative distance between the electrode Ea and the electrode Eb decreases, the capacitance between the electrode Ea and the electrode Eb increases, and the amount of charge induced in the electrodes Ea and Eb increases. That is, the potential difference generated between the electrode Ea and the electrode Eb gradually increases as the sealing body SL is pushed.
  • the electronic device ED4 of the fourth embodiment can generate an electromotive force between the electrode Ea and the electrode Eb by changing the relative distance between the electrode Ea and the electrode Eb, and, for example, a touch sensor Etc. can be used as a sensor or a generator.
  • FIG. 15 is a graph showing an operation result immediately after charging the molecule ELM contained in the normal temperature liquid organic material EL in the electronic device ED4 of the fourth embodiment shown in FIG.
  • the sealing body SL is pressed and deformed along the thickness direction of the support CL, and immediately thereafter, the sealing body It is a graph showing the electrical potential difference between the electrode Ea and the electrode Eb at the time of performing repeatedly the operation
  • maintained at the support body CL is made into the electronic device ED101, and the result is collectively shown in FIG. That is, the difference between the electronic device ED101 and the electronic device ED4 is only the presence or absence of the normal temperature liquid organic material EL.
  • the aforementioned ⁇ -conjugated molecule is porphyrin, all of the two or more side chains are branched alkyl chains, and the substituent S is a combination of a phenyl group and an ether group ((Chemical formula A molecule consisting of a molecule P3 represented by 12) or a molecule P4 represented by (Chemical formula 13) was used.
  • the sealing body SL is pressed and deformed along the thickness direction of the support CL, the distance between the electrode Ea and the electrode Eb is shortened, and the capacitance between the electrode Ea and the electrode Eb is reduced. Becomes larger.
  • the electrode Ea when the electrode Ea is deformed, the distance between the electrode Ea and the normal temperature liquid organic material EL including the negatively charged molecules ELM is different from the distance between the electrode Eb and the normal temperature liquid organic material EL.
  • the electrode Ea side has a negative potential with respect to the electrode Eb, and as shown in FIG. 15, it is considered that the downward peak (negative potential difference) peak PP is observed.
  • FIG. 15 shows the result of the normal temperature liquid organic material EL composed of the molecule P4, the same result is obtained also for the molecule P3.
  • the normal temperature liquid organic material EL is used instead of the solid material as in the first to third embodiments. Since the normal temperature liquid organic material EL contains the charged molecule ELM, the charge can be held not only on the surface of the normal temperature liquid organic material EL but also inside the normal temperature liquid organic material EL. As a result, in the electronic device ED4 of the fourth embodiment, by increasing the volume of the normal temperature liquid organic material EL, the sensitivity and the power generation efficiency can be easily enhanced as compared with the electronic device using the solid material described above.
  • the electronic device ED4 of the fourth embodiment by using the liquid normal-temperature liquid organic material EL instead of the solid material, it is possible to achieve both improvement in shape freedom of the electronic device and increase in the amount of held charge.
  • the electrodes Ea and Eb, the support CL, and the sealing body SL have flexibility, so that the shape freedom is further increased compared to the first to third embodiments. It can be enhanced. And power can be generated efficiently by a simple operation of deforming the sealing body SL.
  • the electronic device ED4 of the fourth embodiment since the normal temperature liquid organic material EL is held by the support CL disposed between the electrode Ea and the electrode Eb, the electronic device ED100 of the examination example described above is As such, there is no need for a support structure to move the electrodes while maintaining the spacing between the electrodes and the electret. Therefore, the electronic device ED4 of the fourth embodiment is easy to manufacture as compared with the electronic device ED100 of the examination example, and the manufacturing cost can be reduced.
  • the present invention is applicable to various electronic devices such as sensors and power generators, and has industrial applicability.
  • CE electrode CL support D1 diode Ea electrode Ea1 electrode (first electrode) Ea101, Ea102 electrode Ea2, Ea3 electrode Eb electrode Eb1 electrode (second electrode) Eb101, Eb102 electrode Eb2, Eb3 electrode Ec electrode (first electrode) Ec1, Ec2, Ec3, Ec4 Branching portions Ec101, Ec102, Ec103, Ec104 Electrodes Ecm Body portions ED1, ED2, ED3 Electronic devices ED100, ED101 Electronic devices Ed Electrode (second electrode) Ed1, Ed2, Ed3, Ed4 Branching part Edm Body part EL Room temperature liquid organic material EL101, EL102 Electret FT foot GE electrode HT Heater IL Insulator MA Ammeter PS AC power supply PT1, PT2 Support member SC Spacer SL Sealing body SP101, SP102 Spring member VE Vibration sensor

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Electroluminescent Light Sources (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Abstract

The present invention improves the performance of an electronic device. According to the present invention, an electronic device comprises a first electrode Ea1, a second electrode Eb1 which is arranged so as to face the first electrode Ea1, and an organic material EL which is in a liquid state at normal temperature, and which is arranged between the first electrode Ea1 and the second electrode Eb1. The organic material EL which is in a liquid state at normal temperature contains electrically charged molecules ELM that are π-conjugated molecules, each of which has two or more side chains; and the two or more side chains are bonded to the π-conjugated molecule so as to inhibit the π-π interaction between the π-conjugated molecules.

Description

電子装置Electronic device
 本発明は、電子装置に関し、特に、常温で液状の有機材料を用いた電子装置に関するものである。 The present invention relates to an electronic device, and more particularly to an electronic device using an organic material which is liquid at normal temperature.
 近年、エレクトレットとよばれる、電荷を半永久的に保持している誘電体(絶縁体)を用いたデバイスの開発が行われている。 In recent years, a device called an electret has been developed which uses a dielectric (insulator) which holds a charge semipermanently.
 特許文献1には、互いに対向した状態を保ったまま、相対的に移動可能に構成された一対の基板を備え、一対の基板の一方に複数のエレクトレットが並べて配置され、他方に一対の電極を一組とする複数組の電極が並べて配置された静電誘導型発電装置が開示されている。 Patent Document 1 includes a pair of substrates configured to be relatively movable while maintaining a state of facing each other, a plurality of electrets are arranged side by side on one of the pair of substrates, and a pair of electrodes on the other. An electrostatic induction generator is disclosed in which a plurality of sets of electrodes are arranged side by side.
 特許文献2には、高分子分散溶液を静電型電気音響交換ユニットの振動膜に対する対向電極に塗布した後、焼付けて上記対向電極上に高分子フィルムを形成し、その後高分子フィルムをエレクトレット化する静電型電気音響変換ユニットの製法が開示されている。 In Patent Document 2, a polymer dispersed solution is applied to a counter electrode to a vibrating membrane of an electrostatic type electroacoustic exchange unit and then baked to form a polymer film on the counter electrode, and then the polymer film is electretized. A method of manufacturing an electrostatic electroacoustic transducing unit is disclosed.
国際公開第2011/086830号International Publication No. 2011/068830 特開昭48-31932号公報Japanese Patent Laid-Open No. 48-31932
 本発明者は、電子装置についての研究、開発を行っている。例えば、形状任意性の高い電子装置は、人体に装着可能なウェアラブルデバイスに適用できるなど、高い汎用性を有している。そのため、前記電子装置の性能の向上が望まれる。 The present inventors are conducting research and development on electronic devices. For example, electronic devices with high arbitrary shape have high versatility, such as being applicable to wearable devices that can be worn on the human body. Therefore, improvement of the performance of the electronic device is desired.
 その他の課題と新規な特徴は、本明細書の記述および添付図面から明らかになるであろう。 Other problems and novel features will be apparent from the description of the present specification and the accompanying drawings.
 本願において開示される発明のうち、代表的なものの概要を簡単に説明すれば、次のとおりである。 The outline of typical ones of the inventions disclosed in the present application will be briefly described as follows.
 本発明の電子装置は、第1電極と、前記第1電極と対向して配置された第2電極と、前記第1電極と前記第2電極との間に配置された常温液状有機材料と、を有している。前記常温液状有機材料は、帯電した分子を含有し、前記帯電した分子は、2以上の側鎖を有するπ共役系分子であって、前記2以上の側鎖は、前記π共役系分子間のπ-π相互作用を阻害するように前記π共役系分子に結合している。 An electronic device according to the present invention comprises a first electrode, a second electrode disposed to face the first electrode, and a room-temperature liquid organic material disposed between the first electrode and the second electrode. have. The normal temperature liquid organic material contains charged molecules, and the charged molecules are π-conjugated molecules having two or more side chains, and the two or more side chains are between the π-conjugated molecules. It is bound to the π-conjugated molecule so as to inhibit the π-π interaction.
 本願において開示される発明のうち、代表的なものによって得られる効果を簡単に説明すれば以下のとおりである。 The effects obtained by typical ones of the inventions disclosed in the present application will be briefly described as follows.
 本願において開示される発明によれば、電子装置の性能を向上することができる。 According to the invention disclosed in the present application, the performance of the electronic device can be improved.
帯電した分子を含む常温液状有機材料の製造装置の模式図である。It is a schematic diagram of the manufacturing apparatus of the normal temperature liquid organic material containing the charged molecule | numerator. 実施の形態1の電子装置の断面図である。FIG. 1 is a cross-sectional view of an electronic device of a first embodiment. 実施の形態1の電子装置において、常温液状有機材料に含まれる分子を帯電させた直後の動作結果を示すグラフである。In the electronic device of Embodiment 1, it is a graph which shows the operation result immediately after charging the molecule | numerator contained in a normal temperature liquid organic material. 実施の形態1の電子装置において、常温液状有機材料に含まれる分子を帯電させた3日後の動作結果を示すグラフである。6 is a graph showing an operation result three days after charging a molecule contained in a room temperature liquid organic material in the electronic device of Embodiment 1. FIG. 実施の形態1の電子装置において、常温液状有機材料に含まれる分子を帯電させた7日後の動作結果を示すグラフである。In the electronic device of Embodiment 1, it is a graph which shows the operation result seven days after charging the molecule | numerator contained in a normal temperature liquid organic material. 実施の形態2の電子装置の断面図である。FIG. 7 is a cross-sectional view of the electronic device of Embodiment 2; 実施の形態2の電子装置において、交流電源から出力される電圧の時間変化を示すグラフである。In the electronic device of Embodiment 2, it is a graph which shows the time change of the voltage output from AC power supply. 実施の形態2の電子装置において、電極に発生する振動の時間変化を示すグラフである。In the electronic device of Embodiment 2, it is a graph which shows the time change of the vibration generated to an electrode. 実施の形態2の電子装置において、電極に発生する振動の時間変化をフーリエ変換した結果を示すグラフである。In the electronic device of Embodiment 2, it is a graph which shows the result of Fourier-transforming the time change of the vibration generate | occur | produced in an electrode. 検討例の電子装置の断面図である。It is sectional drawing of the electronic device of a study example. 実施の形態3の電子装置の平面図である。FIG. 18 is a plan view of the electronic device of the third embodiment. 実施の形態3の電子装置の断面図である。FIG. 14 is a cross-sectional view of the electronic device of the third embodiment. 実施の形態3の電子装置の動作原理を示す断面図である。FIG. 14 is a cross-sectional view showing an operation principle of the electronic device of the third embodiment. 実施の形態4の電子装置の断面図である。FIG. 20 is a cross-sectional view of the electronic device of the fourth embodiment. 実施の形態4の電子装置において、常温液状有機材料に含まれる分子を帯電させた直後の動作結果を示すグラフである。In the electronic device of Embodiment 4, it is a graph which shows the operation result immediately after charging the molecule contained in the normal temperature liquid organic material.
 (検討事項)
 まず、実施の形態を説明する前に、本願発明者が検討した事項について説明する。前述のように、エレクトレットとは、電荷を半永久的に保持している誘電体(絶縁体)であり、固体材料からなる。エレクトレットは、コロナ放電等により固体材料に電子を衝突させ、固体材料を帯電させることにより製造する。エレクトレットは、固体材料からなるため、安定的に電荷を保持することができる一方で、柔軟性に欠けるという問題があった。
(Consideration)
First, before the embodiments are described, matters examined by the inventor of the present application will be described. As described above, the electret is a dielectric (insulator) that holds the charge semipermanently, and is made of a solid material. An electret is manufactured by colliding electrons with a solid material by corona discharge or the like to charge the solid material. Since the electret is made of a solid material, it can hold the charge stably, but has a problem that it lacks flexibility.
 一方、電子装置に用いられる液体(流体)の材料として、イオン液体や電界共役流体(Electro-Conjugate Fluids)が知られている。しかし、イオン液体は、対(カウンター)イオンが存在するため、エレクトレットのように、単一の電荷を保持する液体としての利用には適していない。また、電界共役流体とは高い絶縁性を持った誘電性の液体であり、これを満たした容器内で電極対に高電圧を印加すると電極間に強いジェット流が生じる。しかし、電界共役流体は、印加していた電圧を除去すると、電荷を保持することができない。そのため、電荷を安定して保持できる液体が望まれる。 On the other hand, ionic liquids and Electro-Conjugate Fluids are known as liquid (fluid) materials used in electronic devices. However, ionic liquids, like electrets, are not suitable for use as liquids that hold a single charge, because of the presence of counter ions. In addition, the electro-conjugate fluid is a dielectric liquid having high insulation, and when a high voltage is applied to the electrode pair in a container filled with the fluid, a strong jet flow is generated between the electrodes. However, the electro-conjugated fluid can not retain the charge when the applied voltage is removed. Therefore, a liquid that can hold a charge stably is desired.
 以下、「実施の形態」の欄において、本願発明者の検討事項をさらに詳細に説明する。 The matters to be examined by the inventor of the present application will be described in more detail below in the section “embodiment”.
 (実施の形態)
 <常温液状有機材料>
 以下、図1、図2、図6、図11および図12に示す一実施の形態の常温液状有機材料ELは、2以上の側鎖を有するπ共役系分子からなる。前記2以上の側鎖は、分岐アルキル鎖、末端に重合部位を有するアルキル鎖、オリゴシロキサン鎖、フルオロカーボン鎖、オリゴエチレングリコール鎖、および、これらの誘導体からなる群から選択される同一または別異の側鎖である。前記2以上の側鎖の夫々は、直接または置換基を介して前記π共役系分子に結合している。
Embodiment
<Normal temperature liquid organic material>
Hereinafter, the normal temperature liquid organic material EL of one embodiment shown in FIG. 1, FIG. 2, FIG. 6, FIG. 11 and FIG. 12 is made of .pi.-conjugated molecule having two or more side chains. The two or more side chains are the same or different selected from the group consisting of a branched alkyl chain, an alkyl chain having a polymerization site at the end, an oligosiloxane chain, a fluorocarbon chain, an oligoethylene glycol chain, and derivatives thereof. It is a side chain. Each of the two or more side chains is bonded to the π-conjugated molecule directly or via a substituent.
 前記2以上の側鎖が分岐アルキル鎖である場合、前記2以上の側鎖は、以下の(化学式1)で表されるように、前記π共役系分子に結合している。 When the two or more side chains are branched alkyl chains, the two or more side chains are bonded to the π-conjugated molecule as represented by (Chemical Formula 1) below.
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
 ここで、前記Sは、エーテル基、メチレン基、および、フェニル基からなる群から選択される少なくとも1つの置換基である。また、前記R1は、4以上の炭素原子からなる置換または無置換のアルキル基であり、前記R2は、6以上の炭素原子からなる置換または無置換のアルキル基である。前記R1の炭素原子数は、前記R2の炭素原子数よりも少なくてもよい。 Here, S is at least one substituent selected from the group consisting of an ether group, a methylene group, and a phenyl group. The R 1 is a substituted or unsubstituted alkyl group consisting of 4 or more carbon atoms, and the R 2 is a substituted or unsubstituted alkyl group consisting of 6 or more carbon atoms. The number of carbon atoms of R1 may be smaller than the number of carbon atoms of R2.
 具体的には、前記R1およびR2の組み合わせは、以下の(化学式2)からなる群から選択される。 Specifically, the combination of R1 and R2 is selected from the group consisting of (Chemical Formula 2) below.
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
 続いて、前記2以上の側鎖が前記末端に重合部位を有するアルキル鎖である場合を説明する。この場合、前記2以上の側鎖は、末端オレフィン{-(CH-CH=CH}、末端ジエニル{-(CH-CH=CH-CH=CH}、末端アクリル酸エステル{-(CH-OC(=O)CH=CH}、末端メタクリル酸エステル{-(CH-OC(=O)C(CH)=CH}および末端エポキシ基{-(CH-CHOCH}からなる群から選択され得る。ここで、いずれもnは、6≦n≦14である。 Subsequently, the case where the two or more side chains are an alkyl chain having a polymerization site at the end will be described. In this case, the two or more side chains are terminal olefin {-(CH 2 ) n -CH = CH 2 }, terminal dienyl {-(CH 2 ) n -CH = CH-CH = CH 2 }, terminal acrylic acid ester {- (CH 2) n -OC (= O) CH = CH 2}, terminal methacrylate ester {- (CH 2) n -OC (= O) C (CH 3) = CH 2} and terminal epoxy groups It may be selected from the group consisting of {-(CH 2 ) n -CHOCH 2 }. Here, n is 6 ≦ n ≦ 14 in all cases.
 また、前記2以上の側鎖が前記オリゴシロキサン鎖である場合、前記2以上の側鎖は、-(Si-R(R))-H、-(Si-R(R))-SiHおよび-(Si-R(R))-Si(CHからなる群から選択され得る。ここで、nは、2≦n≦10であり、RおよびRの組み合わせは、{R=H,R=H}、{R=H,R=CH}および{R=CH,R=CH}からなる群から選択される。 When the two or more side chains are the oligosiloxane chain, the two or more side chains are-(Si- Ra ( Rb )) n- H,-(Si- Ra ( Rb ) And n may be selected from the group consisting of n -SiH 3 and-(Si- Ra (R b )) n -Si (CH 3 ) 3 . Here, n is 2 ≦ n ≦ 10, and the combination of R a and R b is {R a = H, R b = H}, {R a = H, R b = CH 3 } and {R It is selected from the group consisting of a = CH 3 and R b = CH 3 }.
 また、前記2以上の側鎖が前記フルオロカーボン鎖である場合、前記2以上の側鎖は、-(CFCF、(ここで、nは、5≦n≦9である)であり得る。 When the two or more side chains are the fluorocarbon chain, the two or more side chains are — (CF 2 ) n CF 3 (wherein n is 5 ≦ n ≦ 9). obtain.
 また、前記2以上の側鎖が、前記オリゴエチレングリコール鎖である場合、前記2以上の側鎖は、-(O-CH-CH-OHまたは-(O-CH-CH-OCH(nは、2≦n≦10)であり得る。 When the two or more side chains are the oligoethylene glycol chain, the two or more side chains are-(O-CH 2 -CH 2 ) n -OH or-(O-CH 2 -CH 2 ) N -OCH 3 (n is 2 ≦ n ≦ 10).
 また、前記π共役系分子は、ポルフィリン、フタロシアニン、オリゴ(p-)フェニレンビニレン、ナフタレン、アントラセン、テトラセン、ペンタセン、ピレン、アゾベンゼン、スチルベン、ジアリルエテン、オリゴフェニレン、オリゴチオフェン、オキザール系色素、および、その誘導体からある群から選択され得る。 In addition, the π-conjugated molecule is porphyrin, phthalocyanine, oligo (p-) phenylenevinylene, naphthalene, anthracene, tetracene, pentacene, pyrene, azobenzene, stilbene, diallythene, oligophenylene, oligothiophene, oxazole dye, and the like It may be selected from the group consisting of derivatives.
 具体的には、一実施の形態の常温液状有機材料ELを構成する分子には、前記π共役系分子がポルフィリンであり、前記2以上の側鎖を有するπ共役系分子が、以下の(化学式3)のいずれかで表されるものを含む。 Specifically, in the molecule constituting the room-temperature liquid organic material EL according to one embodiment, the π-conjugated molecule is porphyrin, and the π-conjugated molecule having the two or more side chains is represented by the following (Chemical formula Including those represented by any of 3).
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
 また、一実施の形態の常温液状有機材料ELを構成する分子には、前記π共役系分子がアントラセンであり、前記2以上の側鎖を有するπ共役系分子が、以下の(化学式4)のいずれかで表されるものを含む。 Further, in the molecule constituting the room-temperature liquid organic material EL according to one embodiment, the π-conjugated molecule is anthracene, and the π-conjugated molecule having the two or more side chains is represented by the following (Chemical formula 4) Including those represented by either.
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
 また、一実施の形態の常温液状有機材料ELを構成する分子には、前記π共役系分子がオリゴ(p-)フェニレンビニレンであり、前記2以上の側鎖を有するπ共役系分子が、以下の(化学式5)のいずれかで表されるものを含む。 Further, in the molecule constituting the room-temperature liquid organic material EL according to one embodiment, the π-conjugated molecule is oligo (p-) phenylenevinylene, and the π-conjugated molecule having the two or more side chains is Including those represented by any one of (Chemical formula 5)
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
 また、一実施の形態の常温液状有機材料ELを構成する分子には、前記π共役系分子がフルオレンであり、前記2以上の側鎖を有するπ共役系分子が、以下の(化学式6)で表されるものを含む(ここで、nは1以上の自然数である)。 Further, in the molecule constituting the room-temperature liquid organic material EL according to one embodiment, the π-conjugated molecule is fluorene, and the π-conjugated molecule having the two or more side chains is represented by the following (Chemical formula 6) Including those represented (where n is a natural number greater than or equal to 1).
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
 また、一実施の形態の常温液状有機材料ELを構成する分子には、前記π共役系分子がスチルベンであり、前記2以上の側鎖を有するπ共役系分子が、以下の(化学式7)で表されるものを含む。 Further, in the molecule constituting the room-temperature liquid organic material EL of one embodiment, the π-conjugated molecule is stilbene, and the π-conjugated molecule having the two or more side chains is represented by the following (Chemical formula 7) Including what is represented.
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000013
 また、一実施の形態の常温液状有機材料ELを構成する分子には、前記π共役系分子がアゾベンゼンであり、前記2以上の側鎖を有するπ共役系分子が、以下の(化学式8)で表されるものを含む。 Further, in the molecule constituting the room-temperature liquid organic material EL according to one embodiment, the π-conjugated molecule is azobenzene, and the π-conjugated molecule having the two or more side chains is represented by the following (Chemical formula 8) Including what is represented.
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000014
 また、一実施の形態の常温液状有機材料ELを構成する分子には、前記π共役系分子がピレンであり、前記2以上の側鎖を有するπ共役系分子が、以下の(化学式9)で表されるものを含む。前記2以上の側鎖の位置は、特に制限はないが、製造の容易さから2位および5位、または、3位および5位が好ましい。 Further, in the molecule constituting the room-temperature liquid organic material EL of one embodiment, the π-conjugated molecule is pyrene, and the π-conjugated molecule having the two or more side chains is represented by the following (Chemical formula 9) Including what is represented. The position of the two or more side chains is not particularly limited, but is preferably the second and fifth or the third and fifth for ease of production.
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000015
 以上で説明した分子を含む、特定の2以上の側鎖を有するπ共役系分子は、前記2以上の側鎖によって、π共役系分子間のπ-π相互作用が阻害される。π-π相互作用が阻害されると、π共役系分子の結晶化が妨げられる。そのため、前記2以上の側鎖を有するπ共役系分子は、常温で液体となる。 In the π-conjugated system molecule having specific two or more side chains including the molecule described above, the π-π interaction between the π-conjugated system molecules is inhibited by the two or more side chains. The inhibition of the π-π interaction prevents the crystallization of π-conjugated molecules. Therefore, the π-conjugated system molecule having the two or more side chains becomes a liquid at normal temperature.
 また、前記2以上の側鎖を有するπ共役系分子にあっては、正電荷または負電荷を帯びた場合に、その電荷がπ共役系によって非局在化する。そのため、前記2以上の側鎖を有するπ共役系分子は、電荷を安定して保持することができる。また、前記2以上の側鎖を有するπ共役系分子は、前記2以上の側鎖によって、中心に位置するπ共役系分子が立体的に保護される。そのため、酸素や水分などの外的要因とπ共役系分子との相互作用が阻害される。特に、前記2以上の側鎖を有するπ共役系分子は、前記2以上の側鎖によって、π共役系分子間のπ-π相互作用が阻害される。そのため、電荷を帯びた分子から他の分子へとπ-π相互作用を介して電荷が逃げることを防止できる。 In addition, in the case of a π-conjugated molecule having two or more side chains, when it is positively or negatively charged, the charge is delocalized by the π-conjugated system. Therefore, the π-conjugated molecule having the two or more side chains can stably hold the charge. Further, in the π-conjugated system molecule having the two or more side chains, the π-conjugated system molecule located at the center is sterically protected by the two or more side chains. Therefore, the interaction between external factors such as oxygen and moisture and the π-conjugated molecule is inhibited. In particular, in the π-conjugated system molecule having the two or more side chains, the π-π interaction between the π-conjugated system molecules is inhibited by the two or more side chains. Therefore, the charge can be prevented from escaping from the charged molecule to the other molecule through the π-π interaction.
 以上より、前記2以上の側鎖を有するπ共役系分子は、分子内で電荷を安定して保持できることと、外部との相互作用を阻害して電荷を逃がさないこととの両方の性質を有する。そのため、常温液状有機材料ELを構成する前記2以上の側鎖を有するπ共役系分子を帯電させることにより、長期間に亘り電荷を保持できる分子を含む常温液状有機材料ELを提供することができる。 From the above, the π-conjugated system molecule having two or more side chains has both of the ability to stably hold the charge in the molecule and the ability to inhibit the interaction with the outside and not release the charge. . Therefore, by charging the π-conjugated system molecules having the two or more side chains constituting the normal temperature liquid organic material EL, the normal temperature liquid organic material EL including molecules capable of retaining electric charge for a long time can be provided. .
 以下では、常温液状有機材料を構成する分子の詳細について説明する。まず、π共役系分子がポルフィリンの場合、2以上の側鎖がすべて分岐アルキル鎖であり、以下の(化学式10)をみたす分子が好ましい。(化学式10)で表される分子を分子P1と称する。 Below, the detail of the molecule | numerator which comprises a normal temperature liquid organic material is demonstrated. First, in the case where the π-conjugated molecule is porphyrin, a molecule in which two or more side chains are all branched alkyl chains and satisfies the following (Chemical formula 10) is preferable. The molecule represented by (Chemical formula 10) is referred to as molecule P1.
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000016
 分子P1は、ガラス転移点が-13.6℃である。分子P1は、紫色を有するインク材料となる。分子P1は、紫外線励起により赤色発光する発光体にもなり得る。さらに、分子P1は、電子ドナー性の溶媒、あるいは、液状電子ドナーそれ自身としても機能し得るので、電子アクセプタと共に用いることによって、光電変換素子を構成できる。 The molecule P1 has a glass transition temperature of −13.6 ° C. The molecule P1 is an ink material having a purple color. The molecule P1 can also be a light emitter that emits red light upon ultraviolet excitation. Furthermore, since the molecule P1 can also function as an electron donor solvent or a liquid electron donor itself, it can constitute a photoelectric conversion element by using it with an electron acceptor.
 また、π共役系分子がポルフィリンであり、2以上の側鎖がすべて分岐アルキル鎖であり、置換基Sがフェニル基およびエーテル基の組み合わせであり、以下の(化学式11)、(化学式12)および(化学式13)で表される分子がある。(化学式11)で表される分子を分子P2と、(化学式12)で表される分子を分子P3と、(化学式13)で表される分子を分子P4と、夫々、称する。 In addition, the π-conjugated molecule is porphyrin, the two or more side chains are all branched alkyl chains, and the substituent S is a combination of a phenyl group and an ether group, and the following (Chemical formula 11), (Chemical formula 12) and There is a molecule represented by (Chemical formula 13). The molecule represented by (Chemical Formula 11) is referred to as a molecule P2, the molecule represented by (Chemical Formula 12) is referred to as a molecule P3, and the molecule represented by (Chemical Formula 13) is referred to as a molecule P4.
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000019
 分子P2は分岐アルキル鎖(側鎖)の夫々が置換基Sとしてエーテル基を有するが、分岐アルキル鎖は、さらに、置換基Sとしてフェニル基を共有する。このような分子P2は、前述の分子P1と同様の特性を有する。 In the molecule P2, each of the branched alkyl chains (side chains) has an ether group as a substituent S, but the branched alkyl chains additionally share a phenyl group as a substituent S. Such molecule P2 has the same characteristics as the molecule P1 described above.
 また、分子P2の粘性は、分子P1のそれよりも高い。これは、側鎖間のファンデルワールス相互作用に起因する。すなわち、π共役系分子の選択、および、選択されたπ共役系分子に導入する分岐アルキル鎖の数あるいは種類の選択によって、常温液状有機材料の粘性を制御できることを示す。 Also, the viscosity of molecule P2 is higher than that of molecule P1. This is due to van der Waals interactions between side chains. That is, it is shown that the viscosity of the normal temperature liquid organic material can be controlled by the selection of the π-conjugated molecule and the selection of the number or type of branched alkyl chains to be introduced into the selected π-conjugated molecule.
 さらに、分子P2の量子収率は、分子P1のそれよりも高い。これは、分子P2の方が、分子P1よりも励起状態を長く維持することを示す。すなわち、π共役系分子に導入する側鎖の数あるいは種類の選択によって、π共役系分子のπ-π相互作用の立体的な阻害の程度を調整し、かつ、外的要因(空気中の酸素や水分)から孤立し、励起状態を長く維持できることを示す。 Furthermore, the quantum yield of molecule P2 is higher than that of molecule P1. This shows that the molecule P2 maintains the excited state longer than the molecule P1. That is, the degree of steric inhibition of the π-π interaction of the π-conjugated molecule is adjusted by selecting the number or type of side chains to be introduced into the π-conjugated molecule, and the external factor (oxygen in air And water), and show that the excited state can be maintained for a long time.
 分子P3は、分子P2と同様に、分岐アルキル鎖(側鎖)の夫々が置換基Sとしてエーテル基を有し、分岐アルキル鎖は、さらに、置換基Sとしてフェニル基を共有する。また、分岐アルキル鎖はフェニル基の2位および5位に配置される。分子P3は、ガラス転移点が約-50℃であり、ニュートニアン液体として振る舞う。すなわち、ポルフィリン部位が導入したアルキル鎖により効果的に隔離され、ポルフィリン環同士のπ-π相互作用の立体的な阻害の程度を大きくできることを示す。 In the molecule P3, as in the molecule P2, each branched alkyl chain (side chain) has an ether group as a substituent S, and the branched alkyl chains further share a phenyl group as a substituent S. Also, branched alkyl chains are located at the 2- and 5-positions of the phenyl group. Molecule P3 has a glass transition temperature of about -50 ° C and behaves as a Newtonian liquid. That is, it is shown that the porphyrin site is effectively sequestered by the introduced alkyl chain, and the degree of steric inhibition of the π-π interaction between porphyrin rings can be increased.
 分子P4は、分子P3と同様に、分岐アルキル鎖(側鎖)の夫々が置換基Sとしてエーテル基を有し、分岐アルキル鎖は、さらに、置換基Sとしてフェニル基を共有する。一方、分子P4は、分子P3と異なり、分岐アルキル鎖はフェニル基の3位および5位に配置される。分子P4の粘性は、分子P3のそれよりも5倍程度高い。これは、側鎖間のファンデルワールス相互作用に起因する。また、分子P4は、ガラス転移点が約-50℃である。分子P4は、非ニュートニアン液体として振る舞う。すなわち、π共役系分子の選択、および、選択されたπ共役系分子に導入する分岐アルキル鎖の数あるいは種類の選択によって、常温液状有機材料の液体物性を制御できることを示す。 In the molecule P4, as in the molecule P3, each branched alkyl chain (side chain) has an ether group as a substituent S, and the branched alkyl chains further share a phenyl group as a substituent S. On the other hand, unlike molecule P3, molecule P4 has branched alkyl chains located at the 3- and 5-positions of the phenyl group. The viscosity of molecule P4 is about five times higher than that of molecule P3. This is due to van der Waals interactions between side chains. Also, the molecule P4 has a glass transition temperature of about -50.degree. Molecule P4 behaves as a non-Newtonian liquid. That is, it is shown that the liquid physical properties of the normal temperature liquid organic material can be controlled by the selection of the π-conjugated molecule and the selection of the number or type of branched alkyl chains introduced into the selected π-conjugated molecule.
 また、π共役系分子がオリゴ(p-)フェニレンビニレンであり、2以上の側鎖がすべて分岐アルキル鎖であり、置換基Sがエーテルであり、以下の(化学式14)をみたす分子が好ましい。高度に分岐した分岐アルキル鎖(ハイパーブランチ)あるいはシンプルに分岐したアルキル鎖(スワローテイル)を4つ有する分子を、分子OPV1,OPV2と、ハイパーブランチアルキル鎖あるいはスワローテイルアルキル鎖を6つ有する分子を、分子OPV3,OPV4と称する。 In addition, a molecule in which a π-conjugated molecule is an oligo (p-) phenylenevinylene, two or more side chains are all branched alkyl chains, a substituent S is an ether, and satisfies the following (Formula 14) is preferable. A molecule having four highly branched branched alkyl chains (hyperbranched) or simply branched alkyl chains (swallow tail), a molecule having OPV1 and OPV2 and a molecule having six hyperbranched alkyl chains or swallow tail alkyl chains , Molecules OPV3 and OPV4.
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000020
 分子OPV1~分子OPV4は、いずれも淡黄色を有する分子である。また、分子OPV1~OPV4は、紫外線励起および電子線励起により青色発光する発光体にもなり得る。さらに、分子OPV1~分子OPV4は、分子P1,P2と同様に、電子ドナー性の溶媒あるいは液状電子ドナーそれ自身としても機能し得るので、電子アクセプタと共に用いることによって光電変換素子を構成することができる。 The molecules OPV1 to OPV4 are all molecules having a pale yellow color. The molecules OPV1 to OPV4 can also be light emitters that emit blue light by ultraviolet excitation and electron beam excitation. Furthermore, the molecules OPV1 to OP4 can function as an electron donor solvent or liquid electron donor itself as well as the molecules P1 and P2. Therefore, a photoelectric conversion element can be configured by using it with an electron acceptor. .
 また、分子OPV4<分子OPV3=分子OPV2<分子OPV1の順に粘性が高くなる(すなわち、OPV4が最も柔らかく、OPV1が最も硬い)。これは導入した側鎖によるπ共役系分子の効果的な孤立化に起因し、π共役系分子の選択、および、選択されたπ共役系分子に導入する分岐アルキル鎖の数あるいは種類の選択によって、常温液状有機材料の粘性を制御できることを示す。 In addition, the viscosity increases in the order of molecule OPV4 <molecule OPV3 = molecule OPV2 <molecule OPV1 (that is, OPV4 is the softest and OPV1 is the hardest). This is due to the effective isolation of the π-conjugated molecule by the introduced side chain, and the selection of the π-conjugated molecule and the selection of the number or type of branched alkyl chains to be introduced into the selected π-conjugated molecule And demonstrate that the viscosity of the normal temperature liquid organic material can be controlled.
 さらに、量子収率は、分子OPV1<分子OPV2<分子OPV3<分子OPV4の順に大きくなる。これもまた、π共役系分子に導入する分岐アルキル鎖の数あるいは種類の選択によって、π共役系分子のπ-π相互作用をより立体的に阻害し、外的要因からの孤立化がおこることで、励起状態を長く維持できることを示す。 Furthermore, the quantum yield increases in the order of molecule OPV1 <molecule OPV2 <molecule OPV3 <molecule OPV4. Also in this case, the selection of the number or type of branched alkyl chains to be introduced into the π-conjugated molecule more sterically inhibits the π-π interaction of the π-conjugated molecule, resulting in isolation from external factors. Indicates that the excited state can be maintained for a long time.
 また、π共役系分子がアントラセンであり、2以上の側鎖がすべて分岐アルキル鎖(ハイパーブランチあるいはスワローテイル)であり、置換基Sがエーテルであり、以下の(化学式15)を満たす分子が好ましい。ハイパーブランチアルキル鎖を有する常温液状有機材料を分子ACN1と、スワローテイルアルキル鎖を有する常温液状有機材料を分子ACN2と称する。 In addition, it is preferable that the π-conjugated molecule is anthracene, the two or more side chains are all branched alkyl chains (hyperbranched or swallow tail), the substituent S is an ether, and a molecule satisfying the following (Formula 15) . The normal temperature liquid organic material having a hyperbranched alkyl chain is referred to as a molecule ACN1, and the normal temperature liquid organic material having a swallow tail alkyl chain is referred to as a molecule ACN2.
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000021
 分子ACN1および分子ACN2は、いずれも淡黄色を有する常温液状有機材料である。また、分子ACN1および分子ACN2は、紫外線励起および電子線励起により青色発光する発光体にもなり得る。 The molecules ACN1 and ACN2 are all normal temperature liquid organic materials having a pale yellow color. In addition, the molecule ACN1 and the molecule ACN2 can also be light emitters that emit blue light by ultraviolet excitation and electron beam excitation.
 また、π共役系分子がフルオレンであり、2以上の側鎖がすべて分岐アルキル鎖(スワローテイル)であり、以下の(化学式16)を満たす分子が好ましい。(化学式16)中、nは、1以上の自然数であるが、好ましくは、5以下である。n=1である分子を分子FL1、n=2である分子を分子FL2と称する(以降のnについても同様である)。 In addition, a molecule in which the π-conjugated molecule is fluorene, the two or more side chains are all branched alkyl chains (swallow tails), and satisfies the following (Formula 16) is preferable. In the formula (16), n is a natural number of 1 or more, preferably 5 or less. A molecule in which n = 1 is referred to as molecule FL1, and a molecule in which n = 2 is referred to as molecule FL2 (the same applies to the following n).
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000022
 分子FL2および分子FL3は、紫外線励起および電子線励起により青色発光する発光体になり得る。また、nが増大するほど粘性が高くなる(すなわち、分子FL1が最も柔らかく、nが増大するにつれて硬くなる)。また、量子収率は、nが増大するにつれて増大する傾向がある。 The molecules FL2 and FL3 can be emitters that emit blue light by ultraviolet excitation and electron beam excitation. Also, the viscosity increases as n increases (ie, the molecule FL1 is the softest and harder as n increases). Also, the quantum yield tends to increase as n increases.
 また、π共役系分子がスチルベンであり、2以上の側鎖がすべて分岐アルキル鎖(スワローテイル)であり、置換基Sがエーテルであり、以下の(化学式17)を満たす分子が好ましい。3つの分岐アルキル鎖を有する分子を分子STLBと称する。 In addition, a molecule in which the π-conjugated molecule is stilbene, the two or more side chains are all branched alkyl chains (swallow tails), the substituent S is an ether, and which satisfies the following (Chemical formula 17) is preferable. A molecule having three branched alkyl chains is called molecule STLB.
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000023
 分子STLBは、無色透明な常温液状有機材料である、また、分子STLBは、紫外光照射によりトランス-シス異性化を生じる。また、異性化逆反応には光増感剤が必要であるため、シス体としての光学電子情報が熱的に安定に記憶された情報記憶媒体に有利である。 The molecule STLB is a colorless and transparent normal temperature liquid organic material, and the molecule STLB causes trans-cis isomerization by ultraviolet light irradiation. In addition, since a photosensitizer is required for the isomerization reverse reaction, it is advantageous for an information storage medium in which optical electronic information as a cis form is thermally stored stably.
 また、π共役系分子がアゾベンゼンであり、2以上の側鎖がすべて分岐アルキル鎖(スワローテイル)であり、置換基Sがエーテルであり、以下の(化学式18)を満たす分子が好ましい。2つの分岐アルキル鎖を有する分子を分子AZOと称する。 In addition, a molecule in which the π-conjugated molecule is azobenzene, the two or more side chains are all branched alkyl chains (swallow tail), the substituent S is an ether, and satisfies the following (Chemical formula 18) is preferable. A molecule with two branched alkyl chains is called molecule AZO.
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000024
 分子AZOは、赤褐色な常温液状有機材料である、また、分子AZOは、紫外光照射によりトランス-シス異性化を生じる。また、室内照明等の可視光によって容易に異性化逆反応が生じるため、光異性化に伴う動的変化の誘起に有利である。 The molecule AZO is a reddish brown normal temperature liquid organic material, and the molecule AZO causes trans-cis isomerization by irradiation with ultraviolet light. In addition, it is advantageous for inducing a dynamic change associated with photoisomerization because an isomerization reverse reaction easily occurs by visible light such as room lighting.
 また、π共役系分子がピレンであり、2以上の側鎖がすべて分岐アルキル鎖(スワローテイル)であり、置換基Sがフェニル基およびエーテル基の組み合わせであり、以下の(化学式19)を満たす分子が好ましい。アルキル鎖(スワローテイル)を2つ有する分子を分子PY1、スワローテイルアルキル鎖を8つ有する分子を分子PY2と称する。 In addition, the π-conjugated molecule is pyrene, the two or more side chains are all branched alkyl chains (swallow tail), the substituent S is a combination of a phenyl group and an ether group, and the following (Formula 19) is satisfied A molecule is preferred. A molecule having two alkyl chains (swallow tails) is referred to as a molecule PY1, and a molecule having eight swallow tail alkyl chains is referred to as a molecule PY2.
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000025
 分子PY1および分子PY2は、いずれも透明淡黄色を有する常温液状有機材料であり、ニュートニアン液体の挙動を示す。また、分子PY1および分子PY2は、紫外線励起および電子線励起により青色発光する。その際の発光波長は、分子PY1の方がエキシマー形成のため、分子PY2より長波長側で観測される。 The molecule PY1 and the molecule PY2 are both normal temperature liquid organic materials having a transparent pale yellow color, and exhibit behavior of a Newtonian liquid. The molecules PY1 and PY2 emit blue light by ultraviolet ray excitation and electron beam excitation. The emission wavelength at that time is observed on the longer wavelength side than the molecule PY2 because the molecule PY1 is formed as an excimer.
 なお、具体的に紹介した、分子P1~P4,OPV1~OPV4,ACN1,ACN2,FL1等,STLB,AZO,PY1およびPY2の2以上の側鎖は、例示であって、これらに限定されるものではない。 In addition, the two or more side chains of molecules P1 to P4, OPV1 to OPV4, ACN1, ACN2, FL1, etc., STLB, AZO, PY1 and PY2 introduced specifically are exemplification and are limited thereto is not.
 後述する実施の形態1の電子装置ED1、実施の形態2の電子装置ED2および実施の形態3の電子装置ED3に用いる常温液状有機材料ELは、前述した2以上の側鎖を有するπ共役系分子であれば、いずれの分子から構成されていてもよい。 The room temperature liquid organic material EL used for the electronic device ED1 of the first embodiment, the electronic device ED2 of the second embodiment, and the electronic device ED3 of the third embodiment described later is a π-conjugated molecule having two or more side chains as described above. As long as it is, it may be comprised from any molecule | numerator.
 <帯電した分子を含む常温液状有機材料の製造装置および製造方法>
 図1は、帯電した分子を含む常温液状有機材料ELの製造装置CDの模式図である。帯電した分子を含む常温液状有機材料ELの製造装置CDは、板状の電極GEと、電極GE上に配置された絶縁体ILと、電極GEおよび絶縁体ILと所定間隔をおいて配置された点状(針状)の電極CEとを有している。絶縁体ILは、帯電させる試料を置くための試料台である。また、帯電した分子を含む常温液状有機材料ELの製造装置CDは、電極GEを介して絶縁体IL上の試料を加熱するためのヒータHTを有している。また、電極GEは接地されている。電極CEはタングステンワイヤからなる。
<Production Apparatus and Method for Producing Normal-Temperature Liquid Organic Material Containing Charged Molecules>
FIG. 1 is a schematic view of a manufacturing apparatus CD of a room temperature liquid organic material EL containing charged molecules. The manufacturing apparatus CD of the normal temperature liquid organic material EL containing charged molecules is disposed at a predetermined distance from the plate-like electrode GE, the insulator IL disposed on the electrode GE, and the electrode GE and the insulator IL And a point-like (needle-like) electrode CE. The insulator IL is a sample stage for placing a sample to be charged. Moreover, the manufacturing apparatus CD of the normal temperature liquid organic material EL containing charged molecules has a heater HT for heating the sample on the insulator IL via the electrode GE. Also, the electrode GE is grounded. The electrode CE is made of tungsten wire.
 以下、帯電した分子を含む常温液状有機材料ELの製法方法について説明する。 Hereinafter, the manufacturing method of the normal temperature liquid organic material EL containing charged molecules will be described.
 図1に示すように、絶縁体IL上に常温液状有機材料ELを置き、ヒータHTによって、常温液状有機材料ELを約150℃に加熱する。常温液状有機材料ELを加熱することによって、常温液状有機材料ELの流動性が高まり、常温液状有機材料ELに含まれる分子を帯電させやすくなる。 As shown in FIG. 1, the room temperature liquid organic material EL is placed on the insulator IL, and the room temperature liquid organic material EL is heated to about 150 ° C. by the heater HT. By heating the normal temperature liquid organic material EL, the fluidity of the normal temperature liquid organic material EL is enhanced, and it becomes easy to charge the molecules contained in the normal temperature liquid organic material EL.
 次に、電極CEと電極GEとの間に高電圧を印加すると、電極CEの周りに不均一な電場が生じ、電極CEから電極GEに向かって持続的に放電が生じる。これをコロナ放電という。この際、絶縁体ILに置いた常温液状有機材料ELに放電による電子が衝突し、常温液状有機材料ELに含まれる分子が帯電する。例えば、電極CEと電極GEとの電位差を-7kVとして、常温液状有機材料ELに含まれる分子を帯電させる。このように製造した、帯電した分子を含む常温液状有機材料ELの帯電電位は、-440V程度である。 Next, when a high voltage is applied between the electrode CE and the electrode GE, a nonuniform electric field is generated around the electrode CE, and a discharge is continuously generated from the electrode CE toward the electrode GE. This is called corona discharge. At this time, electrons from the discharge collide with the normal temperature liquid organic material EL placed on the insulator IL, and the molecules contained in the normal temperature liquid organic material EL are charged. For example, the potential difference between the electrode CE and the electrode GE is set to -7 kV to charge the molecules contained in the normal temperature liquid organic material EL. The charge potential of the room temperature liquid organic material EL containing charged molecules thus produced is about -440V.
 以上では、製造装置CDを用いて帯電した分子を含む常温液状有機材料ELを製造する方法について説明したが、これに限定されるものではない。帯電した分子を含む常温液状有機材料ELは、例えば、静電ガンを用いて製造してもよい。静電ガンは、噴射口に高電圧を印加したスプレーガンであり、例えば、静電塗装に用いられる。まず、試料台を接地し、噴射口に負の電圧を印加する。その後、静電ガンから試料台に向けて常温液状有機材料ELを噴射すると、静電ガンの噴射口において常温液状有機材料ELに含まれる分子が帯電し、帯電した分子を含む常温液状有機材料ELが試料台に塗布される。この方法によれば、試料台の電位を制御することによって、常温液状有機材料ELをパターニングしながら塗布することもできる。 Although the method for producing the normal temperature liquid organic material EL containing charged molecules using the production apparatus CD has been described above, the present invention is not limited to this. The normal temperature liquid organic material EL containing charged molecules may be manufactured using, for example, an electrostatic gun. The electrostatic gun is a spray gun in which a high voltage is applied to the injection port, and is used, for example, for electrostatic coating. First, the sample stage is grounded, and a negative voltage is applied to the injection port. Thereafter, when the normal temperature liquid organic material EL is injected from the electrostatic gun toward the sample table, the molecules contained in the normal temperature liquid organic material EL are charged at the injection port of the electrostatic gun, and the normal temperature liquid organic material EL containing charged molecules Is applied to the sample table. According to this method, the normal temperature liquid organic material EL can be applied while being patterned by controlling the potential of the sample stage.
 以下に説明する実施の形態1の電子装置ED1、実施の形態2の電子装置ED2および実施の形態3の電子装置ED3において、常温液状有機材料ELといった場合には、帯電した分子を含む常温液状有機材料ELを意味する。 In the electronic device ED1 of the first embodiment, the electronic device ED2 of the second embodiment, and the electronic device ED3 of the third embodiment described below, the normal temperature liquid organic material containing charged molecules is referred to as the normal temperature liquid organic material EL. Means material EL.
 <実施の形態1の電子装置>
 図2は、実施の形態1の電子装置ED1の断面図である。
<Electronic Device of First Embodiment>
FIG. 2 is a cross-sectional view of the electronic device ED1 of the first embodiment.
 図2に示すように、実施の形態1の電子装置ED1は、板状の電極(第1電極)Ea1と、電極Ea1と所定間隔をおいて対向して配置された板状の電極(第2電極)Eb1と、電極Ea1と電極Eb1との間に配置された常温液状有機材料ELとを有する。常温液状有機材料ELには、負に帯電した分子ELMが含まれている。ここでは、常温液状有機材料ELは粘性の高い液体であって、電極Eb1上に配置されている。 As shown in FIG. 2, the electronic device ED1 according to the first embodiment includes a plate-like electrode (first electrode) Ea1 and a plate-like electrode (second electrode) disposed opposite to the electrode Ea1 with a predetermined interval. An electrode Eb1 and a normal temperature liquid organic material EL disposed between the electrode Ea1 and the electrode Eb1. The normal temperature liquid organic material EL contains negatively charged molecule ELM. Here, the normal temperature liquid organic material EL is a highly viscous liquid and is disposed on the electrode Eb1.
 また、実施の形態1の電子装置ED1は、電極Ea1,Eb1と同様の構成を有する電極Ea2,Eb2および電極Ea3,Eb3をも有している。電極Ea1,Eb1、電極Ea2,Eb2および電極Ea3,Eb3は、電極の面方向に沿って平行に、互いに所定間隔をおいて配置されている。また、図示しないが、電極Ea1,Ea2,Ea3,Eb1,Eb2,Eb3は、夫々、配線部を有しており、この配線部を介して電圧計、センサ等の外部装置に接続することができる。 The electronic device ED1 of the first embodiment also includes electrodes Ea2 and Eb2 and electrodes Ea3 and Eb3 having the same configuration as the electrodes Ea1 and Eb1. The electrodes Ea1 and Eb1, the electrodes Ea2 and Eb2, and the electrodes Ea3 and Eb3 are disposed parallel to each other along the surface direction of the electrodes at a predetermined interval. Although not illustrated, the electrodes Ea1, Ea2, Ea3, Eb1, Eb2, and Eb3 each have a wiring portion, and can be connected to an external device such as a voltmeter or a sensor via the wiring portion. .
 さらに、実施の形態1の電子装置ED1は、電極Ea1,Ea2,Ea3と電極Eb1,Eb2,Eb3との間隔を維持する複数のスペーサSC,SC,SC,SCと、電極Ea1,Ea2,Ea3およびスペーサSC,SC,SC,SCの一端部が固定された支持部材PT1と、電極Eb1,Eb2,Eb3およびスペーサSC,SC,SC,SCの他端部が固定された支持部材PT2とを有する。実施の形態1の電子装置ED1において、支持部材PT1,PT2は、可撓性を有する材料により、好ましくはポリウレタンにより構成されている。また、電極Ea1,Ea2,Ea3,Eb1,Eb2,Eb3は、可撓性を有する材料により、好ましくは導電性繊維により構成されている。また、常温液状有機材料ELは、スペーサSC,SC,SC,SCおよび支持部材PT1,PT2によって形成された空間内に封止されている。そのため、実施の形態1の電子装置ED1では、常温液状有機材料ELに含まれる帯電した分子ELMが、空気中の酸素や水分と接触することを防止できる。 Furthermore, the electronic device ED1 of the first embodiment includes a plurality of spacers SC, SC, SC, SC maintaining the distance between the electrodes Ea1, Ea2, Ea3 and the electrodes Eb1, Eb2, Eb3, the electrodes Ea1, Ea2, Ea3 and It has a support member PT1 to which one end of the spacers SC, SC, SC, SC is fixed, and a support member PT2 to which the electrodes Eb1, Eb2, Eb3 and the other ends of the spacers SC, SC, SC, SC are fixed. In the electronic device ED1 of the first embodiment, the support members PT1 and PT2 are made of a flexible material, preferably polyurethane. The electrodes Ea1, Ea2, Ea3, Eb1, Eb2, Eb3 are made of a flexible material, preferably conductive fibers. The normal temperature liquid organic material EL is sealed in the space formed by the spacers SC, SC, SC, SC and the support members PT1, PT2. Therefore, in the electronic device ED1 of the first embodiment, the charged molecule ELM contained in the normal temperature liquid organic material EL can be prevented from coming into contact with oxygen and moisture in the air.
 なお、電極Ea1,Eb1と同様の構成の構成を有する電極は、電極Ea2,Eb2および電極Ea3,Eb3の他にもあってもよく、その図示を省略している。 The electrodes having the same configuration as the electrodes Ea1 and Eb1 may be other than the electrodes Ea2 and Eb2 and the electrodes Ea3 and Eb3, and the illustration thereof is omitted.
 <実施の形態1の電子装置の製造方法>
 図2に示すように、実施の形態1の電子装置ED1は、電極Eb1,Eb2,Eb3が固定された支持部材PT2に、スペーサSCを配置した後に、常温液状有機材料ELを流し込み、電極Ea1,Ea2,Ea3が固定された支持部材PT1を支持部材PT2と対向するようにスペーサSCに取り付けて完成する。
<Method of Manufacturing Electronic Device of First Embodiment>
As shown in FIG. 2, in the electronic device ED1 of the first embodiment, the spacer SC is disposed in the support member PT2 to which the electrodes Eb1, Eb2, Eb3 are fixed, and then the room temperature liquid organic material EL is poured to A support member PT1 to which Ea2 and Ea3 are fixed is attached to the spacer SC so as to face the support member PT2 and completed.
 ここで、実施の形態1の電子装置ED1は、次のように製造することもできる。支持部材PT2に電極Eb1,Eb2,Eb3を固定し、その状態で負に帯電した分子ELMを含む常温液状有機材料ELを支持部材PT2の電極Eb1,Eb2,Eb3が固定された側に塗布する。その後、電極Eb1,Eb2,Eb3に正電位を印加すると、負に帯電した分子ELMを含む常温液状有機材料ELが電極Eb1,Eb2,Eb3に引き寄せられ、電極Eb1,Eb2,Eb3上に配置される。その後、支持部材PT2にスペーサSCおよび電極Ea1,Ea2,Ea3が固定された支持部材PT1を順次取り付けることによって、実施の形態1の電子装置ED1が完成する。このように、常温液状有機材料ELは液体であり、帯電した分子ELMが含まれているので、前述のような電気的な手法によりパターニングすることができる。 Here, the electronic device ED1 of the first embodiment can also be manufactured as follows. The electrodes Eb1, Eb2 and Eb3 are fixed to the support member PT2, and the room temperature liquid organic material EL containing the negatively charged molecules ELM in this state is applied to the side of the support member PT2 on which the electrodes Eb1, Eb2 and Eb3 are fixed. Thereafter, when a positive potential is applied to the electrodes Eb1, Eb2 and Eb3, the room temperature liquid organic material EL containing negatively charged molecules ELM is attracted to the electrodes Eb1, Eb2 and Eb3, and arranged on the electrodes Eb1, Eb2 and Eb3. . Thereafter, the electronic device ED1 of the first embodiment is completed by sequentially attaching the support member PT1 having the spacer SC and the electrodes Ea1, Ea2, Ea3 fixed thereto to the support member PT2. As described above, since the normal temperature liquid organic material EL is a liquid and contains the charged molecule ELM, it can be patterned by the electrical method as described above.
 <実施の形態1の電子装置の動作>
 以下、実施の形態1の電子装置ED1の動作について、図を用いて説明する。
<Operation of Electronic Device of First Embodiment>
Hereinafter, the operation of the electronic device ED1 of the first embodiment will be described with reference to the drawings.
 図2に示すように、電極Eb1側に配置された常温液状有機材料ELは、負に帯電した分子ELMが含まれている。従って、電極Eb1と対向する電極Ea1には、正電荷が誘起される。ここで、電極Ea1上の支持部材PT1を支持部材PT2側に押すと、支持部材PT1および電極Ea1は可撓性を有しているので、電極Ea1が電極Eb1側へ変形しながら近づく。電極Eb1と電極Ea1との相対距離が小さくなると、電極Ea1と電極Eb1との間の静電容量が大きくなり、電極Ea1に誘起される電荷量が多くなる。すなわち、電極Ea1と電極Eb1との間に生じる電位差が、支持部材PT1を押していくに従って徐々に大きくなる。 As shown in FIG. 2, the normal temperature liquid organic material EL disposed on the side of the electrode Eb1 contains negatively charged molecules ELM. Therefore, a positive charge is induced on the electrode Ea1 facing the electrode Eb1. Here, when the support member PT1 on the electrode Ea1 is pushed to the support member PT2 side, since the support member PT1 and the electrode Ea1 have flexibility, the electrode Ea1 approaches while being deformed to the electrode Eb1 side. As the relative distance between the electrode Eb1 and the electrode Ea1 decreases, the capacitance between the electrode Ea1 and the electrode Eb1 increases, and the amount of charge induced in the electrode Ea1 increases. That is, the potential difference generated between the electrode Ea1 and the electrode Eb1 gradually increases as the support member PT1 is pushed.
 また逆に、支持部材PT1を押すのをやめると、支持部材PT1および電極Ea1がもとの位置に戻ろうとして、電極Ea1が電極Eb1側から遠ざかる。電極Eb1と電極Ea1との相対距離が大きくなると、電極Ea1と電極Eb1との間の静電容量が小さくなり、電極Ea1に誘起される電荷量が少なくなる。すなわち、電極Ea1と電極Eb1との間に生じる電位差が、支持部材PT1を押すのをやめて支持部材PT1がもとの位置に戻るに従って徐々に小さくなる。 Conversely, when the pressing of the support member PT1 is stopped, the support member PT1 and the electrode Ea1 return to their original positions, and the electrode Ea1 moves away from the electrode Eb1 side. As the relative distance between the electrode Eb1 and the electrode Ea1 increases, the capacitance between the electrode Ea1 and the electrode Eb1 decreases, and the charge amount induced in the electrode Ea1 decreases. That is, the potential difference generated between the electrode Ea1 and the electrode Eb1 gradually decreases as the support member PT1 returns to its original position without stopping pressing the support member PT1.
 以上より、実施の形態1の電子装置ED1は、電極Ea1と電極Eb1との相対距離を変化させることによって、電極Ea1と電極Eb1との間に起電力を発生させることができ、例えば、タッチセンサなどのセンサや発電装置として使用することができる。 As described above, the electronic device ED1 of the first embodiment can generate an electromotive force between the electrode Ea1 and the electrode Eb1 by changing the relative distance between the electrode Ea1 and the electrode Eb1, and, for example, a touch sensor Etc. can be used as a sensor or a generator.
 なお、電極Ea1,Eb1を例に説明したが、電極Ea2,Eb2および電極Ea3,Eb3についても、電極Ea1,Eb1と同様の動作をする。 Although the electrodes Ea1 and Eb1 have been described as an example, the electrodes Ea2 and Eb2 and the electrodes Ea3 and Eb3 operate similarly to the electrodes Ea1 and Eb1.
 <実施の形態1の動作結果>
 図3は、図2に示す実施の形態1の電子装置ED1において、常温液状有機材料ELに含まれる分子ELMを帯電させた直後の動作結果を示すグラフである。図4は、図2に示す実施の形態1の電子装置ED1において、常温液状有機材料ELに含まれる分子ELMを帯電させた3日後の動作結果を示すグラフである。図5は、図2に示す実施の形態1の電子装置ED1において、常温液状有機材料ELに含まれる分子ELMを帯電させた7日後の動作結果を示すグラフである。具体的には、図3~図5は、図2に示す実施の形態1の電子装置ED1において、支持部材PT1を支持部材PT2側に押し、その直後に、支持部材PT1を押すのをやめるという動作を繰り返し行なった際の、電極Ea1と電極Eb1との間の電位差を表したグラフである。
<Operation Result of First Embodiment>
FIG. 3 is a graph showing an operation result immediately after charging the molecule ELM contained in the normal temperature liquid organic material EL in the electronic device ED1 of the first embodiment shown in FIG. FIG. 4 is a graph showing an operation result three days after charging of the molecule ELM contained in the normal temperature liquid organic material EL in the electronic device ED1 of the first embodiment shown in FIG. FIG. 5 is a graph showing an operation result seven days after the molecule ELM contained in the normal temperature liquid organic material EL is charged in the electronic device ED1 of the first embodiment shown in FIG. Specifically, in FIGS. 3 to 5, in the electronic device ED1 of the first embodiment shown in FIG. 2, the support member PT1 is pushed toward the support member PT2, and immediately thereafter, the pushing of the support member PT1 is stopped. It is a graph showing the electrical potential difference between electrode Ea1 and electrode Eb1 at the time of performing operation repeatedly.
 ここで、常温液状有機材料ELは、前述のπ共役系分子がポルフィリンであり、2以上の側鎖がすべて分岐アルキル鎖であり、置換基Sがフェニル基およびエーテル基の組み合わせであり、(化学式12)で表される分子P3または(化学式13)で表される分子P4からなるものを用いた。 Here, in the normal temperature liquid organic material EL, the aforementioned π-conjugated molecule is porphyrin, all of the two or more side chains are branched alkyl chains, and the substituent S is a combination of a phenyl group and an ether group ((Chemical formula A molecule consisting of a molecule P3 represented by 12) or a molecule P4 represented by (Chemical formula 13) was used.
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000027
 図3に示すように、実施の形態1の電子装置ED1において、支持部材PT1を支持部材PT2側に押すと、下向き(負の電位差)のピークPPが観測され、その直後に上向き(正の電位差)のピークPEが観測された。 As shown in FIG. 3, in the electronic device ED1 of the first embodiment, when the support member PT1 is pushed toward the support member PT2, a peak PP downward (negative potential difference) is observed, and immediately thereafter an upward (positive potential difference) Peak PE of was observed.
 前述のように、支持部材PT1を支持部材PT2側に押すと、電極Ea1と電極Eb1との距離が短くなり、電極Ea1と電極Eb1との間の静電容量が大きくなる。電極Eb1側には、負に帯電した分子ELMを含む常温液状有機材料ELが配置されているので、電極Ea1と電極Eb1との間の静電容量が大きくなると、外部から電極Ea1側に正電荷が流れ込む。そのため、電極Eb1に対して電極Ea1側が負の電位を有するため、図3に示すように、下向き(負の電位差)のピークPPが観測されると考えられる。 As described above, when the support member PT1 is pushed toward the support member PT2, the distance between the electrode Ea1 and the electrode Eb1 is shortened, and the capacitance between the electrode Ea1 and the electrode Eb1 is increased. Since the room temperature liquid organic material EL containing negatively charged molecules ELM is disposed on the electrode Eb1 side, when the capacitance between the electrode Ea1 and the electrode Eb1 becomes large, the positive charge is transferred from the outside to the electrode Ea1 side Flows in. Therefore, since the electrode Ea1 side has a negative potential with respect to the electrode Eb1, as shown in FIG. 3, it is considered that the peak PP in the downward direction (negative potential difference) is observed.
 逆に、支持部材PT1を押すのをやめると、電極Ea1と電極Eb1との距離が長くなり、電極Ea1と電極Eb1との間の静電容量が小さくなる。その結果、電極Ea1に溜まっていた正電荷が外部へ流れ出し、電極Eb1に対して電極Ea1側が正の電位を有する。そのため、図3に示すように、上向き(正の電位差)のピークPEが観測されると考えられる。 Conversely, when the pressing of the support member PT1 is stopped, the distance between the electrode Ea1 and the electrode Eb1 is increased, and the capacitance between the electrode Ea1 and the electrode Eb1 is reduced. As a result, the positive charge accumulated in the electrode Ea1 flows out to the outside, and the electrode Ea1 side has a positive potential with respect to the electrode Eb1. Therefore, as shown in FIG. 3, it is considered that a peak PE facing upward (positive potential difference) is observed.
 また、図3に示すように、実施の形態1の電子装置ED1において、その後も支持部材PT1を支持部材PT2側に押す度に、前述と同様に、下向きのピークが観測され、続いて上向きのピークが観測された。そのため、電極Eb1側に配置された常温液状有機材料ELに含まれる帯電した分子ELMは、支持部材PT1の押圧動作を繰り返し行なっても、その帯電状態を維持しているものと考えられる。なお、ピーク強度の変化は、支持部材PT1の押し具合によるものと考えられる。 Further, as shown in FIG. 3, in the electronic device ED1 of the first embodiment, a downward peak is observed similarly to the above each time the support member PT1 is pushed to the support member PT2 side thereafter, and subsequently, it is upward. A peak was observed. Therefore, the charged molecule ELM contained in the normal temperature liquid organic material EL disposed on the electrode Eb1 side is considered to maintain its charged state even if the pressing operation of the support member PT1 is repeated. The change in peak intensity is considered to be due to the degree of pressing of the support member PT1.
 また、図4に示すように、実施の形態1の電子装置ED1において、常温液状有機材料ELに含まれる分子ELMを帯電させた3日後に、前述と同様に支持部材PT1を支持部材PT2側に押す操作を行ったところ、図3と同様に、下向き(負の電位差)のピークPPが観測され、その直後に上向き(正の電位差)のピークPEが観測された。 Further, as shown in FIG. 4, in the electronic device ED1 of Embodiment 1, three days after charging the molecule ELM contained in the normal temperature liquid organic material EL, the support member PT1 is moved to the support member PT2 side in the same manner as described above. When the pressing operation was performed, as in FIG. 3, a downward peak (negative potential difference) peak PP was observed, and immediately thereafter, an upward (positive potential difference) peak PE was observed.
 さらに、図5に示すように、実施の形態1の電子装置ED1において、常温液状有機材料ELに含まれる分子ELMを帯電させた7日後に、前述と同様に支持部材PT1を支持部材PT2側に押す操作を行ったところ、図3および図4と同様に、下向き(負の電位差)のピークPPが観測され、その直後に上向き(正の電位差)のピークPEが観測された。 Furthermore, as shown in FIG. 5, in the electronic device ED1 of the first embodiment, seven days after charging the molecule ELM contained in the normal temperature liquid organic material EL, the support member PT1 is moved to the support member PT2 side as described above. When the pressing operation was performed, a downward peak (negative potential difference) peak PP was observed as in FIGS. 3 and 4, and immediately thereafter, an upward (positive potential difference) peak PE was observed.
 以上より、実施の形態1の電子装置ED1において、常温液状有機材料ELに含まれる帯電した分子ELMは、帯電後7日経っても、その帯電状態を維持していることがわかる。前述のように、帯電した分子ELMを構成する2以上の側鎖を有するπ共役系分子は、分子内で電荷を安定して保持できることと、分子間の相互作用を阻害して他の分子に電荷が逃げないこととの両方の性質を有する。そのため、図3~図5の結果は、常温液状有機材料ELを構成する前記2以上の側鎖を有するπ共役系分子を帯電させることにより、長期間に亘り電荷を保持できることを反映している。 From the above, it can be seen that in the electronic device ED1 of the first embodiment, the charged molecule ELM contained in the normal temperature liquid organic material EL maintains its charged state even 7 days after charging. As described above, the π-conjugated system molecule having two or more side chains constituting the charged molecule ELM can stably hold the charge in the molecule, and inhibits the interaction between the molecules, thereby forming another molecule. It has both the property that the charge does not escape. Therefore, the results in FIG. 3 to FIG. 5 reflect that the charge can be held for a long period of time by charging the π-conjugated system molecules having the two or more side chains constituting the normal temperature liquid organic material EL. .
 なお、図3~図5の結果は、分子P4からなる常温液状有機材料ELの結果を示しているが、分子P3においても同様の結果が得られている。 The results of FIGS. 3 to 5 show the results of the normal temperature liquid organic material EL composed of the molecule P4, but similar results are obtained also for the molecule P3.
 <実施の形態1の電子装置の効果>
 図2に示す実施の形態1の電子装置ED1において、常温液状有機材料ELの代わりに帯電した固体材料を用いて、他の構成は電子装置ED1と同じである電子装置(図示せず)について検討した。すなわち、この電子装置は、対向する一対の電極と、この対向する一対の電極間に配置された固体材料とを有する。この固体材料は、例えば、前述のエレクトレットであり、電荷を帯びている。
<Effect of Electronic Device of First Embodiment>
In the electronic device ED1 of the first embodiment shown in FIG. 2, a charged solid material is used instead of the normal temperature liquid organic material EL, and an electronic device (not shown) whose other configuration is the same as the electronic device ED1 is examined. did. That is, this electronic device has a pair of electrodes facing each other and a solid material disposed between the pair of electrodes facing each other. This solid material is, for example, the aforementioned electret and is charged.
 前述したように、このような電子装置は、例えば、センサや発電装置として使用することができる。センサとしての感度を高めるため、または発電装置としての発電効率を高めるため、固体材料に保持できる電荷量を増やすことが望まれる。 As mentioned above, such an electronic device can be used, for example, as a sensor or a power generation device. In order to increase the sensitivity as a sensor or to increase the power generation efficiency as a power generation device, it is desirable to increase the amount of charge that can be held by a solid material.
 その一つの方法として、固体材料を厚くすることが考えられる。しかし、前述したように、帯電させることができる固体材料は、絶縁性が高い。そのため、例えば、コロナ放電で帯電させる際に、固体材料の内部まで電子が侵入せず、表面しか帯電させることができない。従って、保持できる電荷量を増やそうとして、固体材料を厚くしても、保持できる電荷量は頭打ちになる。以上より、固体材料を用いた電子装置では、固体材料に保持できる電荷量を増やすことによって感度や発電効率を高めることは難しい。 One possible method is to thicken the solid material. However, as mentioned above, solid materials that can be charged are highly insulative. Therefore, for example, when charging by corona discharge, electrons do not penetrate to the inside of the solid material, and only the surface can be charged. Therefore, even if the thickness of the solid material is increased in order to increase the amount of charge that can be held, the amount of charge that can be held reaches a plateau. As described above, in an electronic device using a solid material, it is difficult to improve sensitivity and power generation efficiency by increasing the amount of charge that can be held by the solid material.
 一方、実施の形態1の電子装置ED1では、固体材料ではなく常温液状有機材料ELを用いている。常温液状有機材料ELは、帯電した分子ELMを含んでいるので、常温液状有機材料ELの表面だけでなく、常温液状有機材料ELの内部まで電荷を保持することができる。その結果、実施の形態1の電子装置ED1では、常温液状有機材料ELの体積を増やすことによって、前述の固体材料を用いた電子装置に比べて、感度や発電効率を容易に高めることができる。 On the other hand, in the electronic device ED1 of the first embodiment, not the solid material but the normal temperature liquid organic material EL is used. Since the normal temperature liquid organic material EL contains the charged molecule ELM, the charge can be held not only on the surface of the normal temperature liquid organic material EL but also inside the normal temperature liquid organic material EL. As a result, in the electronic device ED1 of the first embodiment, by increasing the volume of the normal temperature liquid organic material EL, the sensitivity and the power generation efficiency can be easily improved as compared with the electronic device using the solid material described above.
 また、このような電子装置は、利便性を向上する観点から、折り曲げ可能に形成し、形状自由度を高めることが望まれる。そのため、前述の固体材料を用いた電子装置を折り曲げ可能に形成するためには、固体材料を折り曲げ可能に形成する必要がある。例えば、固体材料をフィルム状に薄く形成することで、可撓性をもたせることができる。しかしながら、この固体材料を薄く形成すると、固体材料に保持できる電荷量が少なくなる。保持できる電荷量を増やすために、固体材料を厚く形成すると、固体材料に可撓性をもたせることができない。また、可撓性を有する固体材料であっても、伸縮させる等、変形量が大きい場合には、塑性変形をして、壊れてしまうことがある。 Further, from the viewpoint of improving convenience, it is desirable that such an electronic device be formed so as to be bendable and have an increased degree of freedom in shape. Therefore, in order to form the electronic device using the aforementioned solid material in a foldable manner, it is necessary to form the solid material in a foldable manner. For example, by forming a thin solid material in the form of a film, flexibility can be obtained. However, if the solid material is formed thin, the amount of charge that can be held by the solid material is reduced. If the solid material is made thicker to increase the amount of charge it can hold, it can not be made flexible. In addition, even if it is a flexible solid material, it may be plastically deformed and broken if the amount of deformation is large, such as expansion and contraction.
 一方、実施の形態1の電子装置ED1では、液体の常温液状有機材料ELを用いている。そのため、常温液状有機材料ELは、自由に変形することができ、外部の変形に対して追従することができる。さらに、前述のように、常温液状有機材料ELの体積を増やすことによって、保持できる電荷量を容易に増やすことができる。常温液状有機材料ELは液体であるため、体積を大きくしても自由に変形することができる。 On the other hand, in the electronic device ED1 of the first embodiment, the liquid normal temperature liquid organic material EL is used. Therefore, the normal temperature liquid organic material EL can be freely deformed and can follow external deformation. Furthermore, as described above, the amount of charge that can be held can be easily increased by increasing the volume of the normal temperature liquid organic material EL. Since the normal temperature liquid organic material EL is a liquid, it can be freely deformed even if its volume is increased.
 以上より、実施の形態1の電子装置ED1では、固体材料ではなく液体の常温液状有機材料ELを用いることで、電子装置の形状自由度の向上と保持電荷量の増大とを両立させることができる。 From the above, in the electronic device ED1 of the first embodiment, by using the liquid normal-temperature liquid organic material EL instead of the solid material, it is possible to achieve both improvement in shape freedom of the electronic device and increase in the amount of holding charge. .
 <実施の形態2の電子装置>
 図6は、実施の形態2の電子装置ED2の断面図である。
<Electronic Device of Second Embodiment>
FIG. 6 is a cross-sectional view of the electronic device ED2 of the second embodiment.
 図6に示すように、実施の形態2の電子装置ED2は、板状の電極Eaと、電極Eaと所定間隔をおいて対向して配置された板状の電極Ebと、電極Eaと電極Ebとの間に配置された常温液状有機材料ELとを有する。常温液状有機材料ELには、負に帯電した分子ELMが含まれている。ここでは、常温液状有機材料ELは粘性の高い液体であって、電極Eb上に配置されている。また、実施の形態2の電子装置ED2は、電極Eaと電極Ebとの間に交流電圧を印加する交流電源PSと、電極Eaに取り付けられ、電極Eaの振動を測定する振動センサVEとを有している。また、図示しないが、実施の形態2の電子装置ED2には、電極Ea,Ebを支持する支持部材が設けられている。また、図示しないが、常温液状有機材料ELが電極Eb上に配置された状態を保持する封止体が設けられている。 As shown in FIG. 6, the electronic device ED2 of the second embodiment includes a plate-like electrode Ea, a plate-like electrode Eb disposed opposite to the electrode Ea with a predetermined distance, an electrode Ea, and an electrode Eb. And a normal temperature liquid organic material EL disposed therebetween. The normal temperature liquid organic material EL contains negatively charged molecule ELM. Here, the normal temperature liquid organic material EL is a highly viscous liquid and is disposed on the electrode Eb. Further, the electronic device ED2 according to the second embodiment includes an AC power supply PS that applies an AC voltage between the electrode Ea and the electrode Eb, and a vibration sensor VE that is attached to the electrode Ea and measures the vibration of the electrode Ea. doing. Although not shown, the electronic device ED2 of the second embodiment is provided with a support member for supporting the electrodes Ea and Eb. Although not shown, a sealing body is provided which holds the normal temperature liquid organic material EL placed on the electrode Eb.
 <実施の形態2の電子装置の動作>
 以下、実施の形態2の電子装置ED2の動作について、図を用いて説明する。
<Operation of Electronic Device of Second Embodiment>
Hereinafter, the operation of the electronic device ED2 of the second embodiment will be described with reference to the drawings.
 図6に示すように、電極Eb側に配置された常温液状有機材料ELは、負に帯電した分子ELMが含まれている。まず、電極Ea側に正の電位を、電極Eb側に負の電位を印加した場合には、負に帯電した分子ELMを含む常温液状有機材料ELと電極Eaとが引き合う。一方、電極Ea側に負の電位を、電極Eb側に正の電位を印加した場合には、負に帯電した分子ELMを含む常温液状有機材料ELと電極Eaとが反発し合う。従って、交流電源PSによって電極Eaと電極Ebとの間に交流電圧を印加すると、電極Eaが常温液状有機材料ELに対して、接近および離脱を繰り返すため、電極Eaが振動する。 As shown in FIG. 6, the normal temperature liquid organic material EL disposed on the electrode Eb side contains negatively charged molecular ELM. First, when a positive potential is applied to the electrode Ea side and a negative potential is applied to the electrode Eb side, the room temperature liquid organic material EL containing the negatively charged molecule ELM and the electrode Ea attract each other. On the other hand, when a negative potential is applied to the electrode Ea side and a positive potential is applied to the electrode Eb side, the normal temperature liquid organic material EL containing negatively charged molecules ELM and the electrode Ea repel each other. Therefore, when an alternating current voltage is applied between the electrode Ea and the electrode Eb by the alternating current power supply PS, the electrode Ea vibrates in and out of the normal temperature liquid organic material EL, and the electrode Ea vibrates.
 以上より、実施の形態2の電子装置ED2は、電極Ea1に生じる振動を外部に取り出すことができる。そのため、実施の形態2の電子装置ED2は、例えば、振動発生装置、スピーカ、または、超音波発生装置として使用することができる。 As mentioned above, the electronic device ED2 of Embodiment 2 can take out the vibration which arises in electrode Ea1 outside. Therefore, the electronic device ED2 of the second embodiment can be used as, for example, a vibration generator, a speaker, or an ultrasonic wave generator.
 <実施の形態2の電子装置の動作結果>
 図7は、実施の形態2の電子装置ED2において、交流電源PSから出力される電圧の時間変化を示すグラフである。図8は、実施の形態2の電子装置ED2において、電極Eaに発生する振動の時間変化を示すグラフである。図9は、実施の形態2の電子装置ED2において、電極Eaに発生する振動の時間変化をフーリエ変換した結果を示すグラフである。
<Operation Result of Electronic Device of Second Embodiment>
FIG. 7 is a graph showing time change of the voltage output from the AC power supply PS in the electronic device ED2 of the second embodiment. FIG. 8 is a graph showing time change of vibration generated in the electrode Ea in the electronic device ED2 of the second embodiment. FIG. 9 is a graph showing the result of Fourier transform of the time change of the vibration generated in the electrode Ea in the electronic device ED2 of the second embodiment.
 ここで、常温液状有機材料ELは、前述のπ共役系分子がポルフィリンであり、2以上の側鎖がすべて分岐アルキル鎖であり、置換基Sがフェニル基およびエーテル基の組み合わせであり、(化学式12)で表される分子P3または(化学式13)で表される分子P4からなるものを用いた。 Here, in the normal temperature liquid organic material EL, the aforementioned π-conjugated molecule is porphyrin, all of the two or more side chains are branched alkyl chains, and the substituent S is a combination of a phenyl group and an ether group ((Chemical formula A molecule consisting of a molecule P3 represented by 12) or a molecule P4 represented by (Chemical formula 13) was used.
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000029
Figure JPOXMLDOC01-appb-C000029
 図6に示す実施の形態2の電子装置ED2において、電極Eb上に配置した常温液状有機材料ELの帯電電位は-330Vである。また、図7に示すように、交流電源PSはインバータを有し、最大値200Vであって、周波数500Hzの交流電圧を出力する。図8には、交流電源PSによって、図7に示す交流電圧を電極Eaと電極Ebとの間に印加し、電極Eaに生じた振動を振動センサVEによって測定した結果を示す。 In the electronic device ED2 of the second embodiment shown in FIG. 6, the charge potential of the normal temperature liquid organic material EL disposed on the electrode Eb is -330 V. Further, as shown in FIG. 7, the AC power supply PS has an inverter, and outputs an AC voltage with a maximum value of 200 V and a frequency of 500 Hz. FIG. 8 shows the result of measurement of vibration generated in the electrode Ea by the vibration sensor VE by applying an AC voltage shown in FIG. 7 between the electrode Ea and the electrode Eb by the AC power supply PS.
 図8に示すように、実施の形態2の電子装置ED2において、電極Eaには一定の周期を有する振動が生じることがわかる。そこで、電極Eaに生じた振動の周期を求めるために、図8に示す波形をフーリエ変換し、図9に示す周波数スペクトルとして解析した。その結果、図9に示すように、最大の強度を示すピークPMが200Hzであることから、電極Eaに生じた振動の周期は200Hzであることがわかった。 As shown in FIG. 8, in the electronic device ED2 of the second embodiment, it can be seen that vibrations having a constant period occur in the electrode Ea. Therefore, in order to obtain the period of vibration generated in the electrode Ea, the waveform shown in FIG. 8 was subjected to Fourier transform and analyzed as a frequency spectrum shown in FIG. As a result, as shown in FIG. 9, since the peak PM showing the maximum intensity is 200 Hz, it was found that the period of the vibration generated in the electrode Ea is 200 Hz.
 なお、図7~図9の結果は、分子P4からなる常温液状有機材料ELの結果を示しているが、分子P3においても同様の結果が得られている。 The results in FIG. 7 to FIG. 9 show the results of the normal temperature liquid organic material EL composed of the molecule P4, but the same result is obtained for the molecule P3.
 <実施の形態2の電子装置の効果>
 まず、図6に示す実施の形態2の電子装置ED2において、常温液状有機材料ELの代わりに帯電した固体材料を用いて、他の構成は電子装置ED2と同じである電子装置(図示せず)について検討した。すなわち、この電子装置は、対向する一対の電極と、この対向する一対の電極間に配置された固体材料と、この一対の電極間に交流電圧を印加する交流電源とを有する。この固体材料は、例えば、前述のエレクトレットであり、電荷を帯びている。前述したように、このような電子装置は、例えば、振動発生装置、スピーカ、または、超音波発生装置として使用することができる。
<Effect of Electronic Device of Second Embodiment>
First, in the electronic device ED2 of the second embodiment shown in FIG. 6, an electronic device (not shown) whose other configuration is the same as that of the electronic device ED2 using a charged solid material instead of the normal temperature liquid organic material EL. Was examined. That is, this electronic device has a pair of electrodes facing each other, a solid material disposed between the pair of electrodes facing each other, and an AC power supply for applying an AC voltage between the pair of electrodes. This solid material is, for example, the aforementioned electret and is charged. As described above, such an electronic device can be used, for example, as a vibration generator, a speaker or an ultrasonic generator.
 これらの装置において、振動を効率よく発生させるため、固体材料に保持できる電荷量を増やすことが望まれる。しかし、前述の通り、固体材料を用いた電子装置では、固体材料に保持できる電荷量を増やすことによって感度や発電効率を高めることは難しい。 In these devices, in order to generate vibrations efficiently, it is desirable to increase the amount of charge that can be held on a solid material. However, as described above, in an electronic device using a solid material, it is difficult to improve sensitivity and power generation efficiency by increasing the amount of charge that can be held by the solid material.
 一方、実施の形態2の電子装置ED2では、固体材料ではなく常温液状有機材料ELを用いている。常温液状有機材料ELは、帯電した分子ELMを含んでいるので、常温液状有機材料ELの表面だけでなく、常温液状有機材料ELの内部まで電荷を保持することができる。その結果、実施の形態2の電子装置ED2では、常温液状有機材料ELの体積を増やすことによって、前述の固体材料を用いた電子装置に比べて、感度や発電効率を容易に高めることができる。 On the other hand, in the electronic device ED2 of the second embodiment, not a solid material but a normal temperature liquid organic material EL is used. Since the normal temperature liquid organic material EL contains the charged molecule ELM, the charge can be held not only on the surface of the normal temperature liquid organic material EL but also inside the normal temperature liquid organic material EL. As a result, in the electronic device ED2 of the second embodiment, by increasing the volume of the normal temperature liquid organic material EL, the sensitivity and the power generation efficiency can be easily improved as compared with the electronic device using the solid material described above.
 また、実施の形態1の電子装置ED1と同様に、実施の形態2の電子装置ED2においても、利便性を向上する観点から、折り曲げ可能に形成し、形状自由度を高めることが望まれる。前述の通り、固体材料を薄く形成することと、保持できる電荷量を増やすことを両立することが難しかった。それに対して、実施の形態2の電子装置ED2では、固体材料ではなく液体の常温液状有機材料ELを用いることで、電子装置の形状自由度の向上と保持電荷量の増大とを両立させることができる。 Further, similarly to the electronic device ED1 of the first embodiment, also in the electronic device ED2 of the second embodiment, from the viewpoint of improving the convenience, it is desired that the electronic device ED2 be formed to be bendable to enhance the shape freedom. As described above, it has been difficult to simultaneously form a thin solid material and increase the amount of charge that can be held. On the other hand, in the electronic device ED2 of the second embodiment, by using the liquid normal temperature liquid organic material EL instead of the solid material, it is possible to achieve both improvement in shape freedom of the electronic device and increase in the holding charge amount. it can.
 <検討例>
 ここで、電子装置に関して、本願発明者が検討した検討例について説明する。
<Examination example>
Here, regarding the electronic device, a study example examined by the inventor of the present application will be described.
 図10は、検討例の電子装置ED100の断面図である。図10に示すように、検討例の電子装置ED100は、基板BPと、基板BP上に配置された電極Ec101,Ec102,Ec103,Ec104と、基板BPから所定間隔をおいて、電極Ec101,Ec102,Ec103,Ec104と対向して配置された電極Ea101,Eb101,Ea102,Eb102とを有している。電極Ea101と電極Ea102とは、電気的に接続されている。同様に、電極Eb101と電極Eb102とは、電気的に接続されている。電極Ea101,Eb101,Ea102,Eb102は、夫々、互いに所定間隔をおいて同一平面上に配置されている。電極Ea101,Ea102はバネ部材SP101によって、電極Eb101,Eb102はバネ部材SP102によって、基板BPの表面に対して平行移動可能に支持されている。なお、図示しないが、電極Ea101,Ea102と電極Eb101,Eb102とは、一体的に動くように支持されている。 FIG. 10 is a cross-sectional view of the electronic device ED100 of the study example. As shown in FIG. 10, the electronic device ED100 of the study example has a substrate BP, electrodes Ec101, Ec102, Ec103, Ec104 disposed on the substrate BP, and electrodes Ec101, Ec102, Ec102, at a predetermined distance from the substrate BP. It has electrodes Ea101, Eb101, Ea102, and Eb102 disposed to face Ec103 and Ec104. The electrode Ea101 and the electrode Ea102 are electrically connected. Similarly, the electrode Eb101 and the electrode Eb102 are electrically connected. The electrodes Ea101, Eb101, Ea102, and Eb102 are arranged on the same plane at predetermined intervals from one another. The electrodes Ea101 and Ea102 are supported by a spring member SP101, and the electrodes Eb101 and Eb102 are supported by a spring member SP102 so as to be movable parallel to the surface of the substrate BP. Although not shown, the electrodes Ea 101 and Ea 102 and the electrodes Eb 101 and Eb 102 are supported so as to move integrally.
 また、電極Ec101,Ec102,Ec103,Ec104は、夫々、互いに所定間隔をおいて基板BP上に配置されている。電極Ec101および電極Ec103上には、エレクトレットEL101およびエレクトレットEL102が、夫々、配置されている。エレクトレットEL101,EL102は、電荷(負電荷)を帯びた固体材料であって、パターニングしたポリマーフィルムからなる。 The electrodes Ec101, Ec102, Ec103, and Ec104 are disposed on the substrate BP at predetermined intervals from one another. Electret EL101 and electret EL102 are arranged on electrode Ec101 and electrode Ec103, respectively. The electrets EL101 and EL102 are solid materials which are charged (negatively charged) and made of a patterned polymer film.
 ここでは、電極Ea101,Eb101,Ea102,Eb102、電極Ec101,Ec102,Ec103,Ec104、および、エレクトレットEL101,EL102の幅寸法(図10中、矢印の方向の長さ)は、全て同じである。また、電極Ea101と電極Eb101との間隔は、電極Eb101と電極Ea102との間隔、電極Ea102と電極Eb102との間隔、電極Ec101と電極Ec102との間隔、電極Ec102と電極Ec103との間隔、および、電極Ec103と電極Ec104との間隔と、夫々同じである。すなわち、一組の電極Ea101,Eb101,Ea102,Eb102を基板BP(図10中、矢印の右方向)に沿って動かし、電極Ea101を電極Ec101上のエレクトレットEL101と対向させると、電極Eb101が電極Ec102と、電極Ea102が電極Ec103上のエレクトレットEL102と、電極Eb102が電極Ec104と、夫々、対向する。また、一組の電極Ea101,Eb101,Ea102,Eb102を基板BP(図10中、矢印の左方向)に沿って動かし、電極Eb101を電極Ec101上のエレクトレットEL101と対向すると、電極Ea102が電極Ec102と、電極Eb102が電極Ec103上のエレクトレットEL102と、夫々、対向する。また、一組の電極Ea101,Eb101,Ea102,Eb102を基板BP(図10中、矢印の右方向)に沿って動かし、電極Ea101を電極Ec102と対向すると、電極Eb101が電極Ec103上のエレクトレットEL102と、電極Ea102が電極Ec104と、夫々、対向する。 Here, the width dimensions (length in the direction of the arrow in FIG. 10) of the electrodes Ea101, Eb101, Ea102, Eb102, the electrodes Ec101, Ec102, Ec103, Ec104, and the electrets EL101, EL102 are all the same. Further, the distance between the electrode Ea101 and the electrode Eb101 is the distance between the electrode Eb101 and the electrode Ea102, the distance between the electrode Ea102 and the electrode Eb102, the distance between the electrode Ec101 and the electrode Ec102, the distance between the electrode Ec102 and the electrode Ec103, The distance between the electrode Ec 103 and the electrode Ec 104 is the same as each other. That is, when the pair of electrodes Ea101, Eb101, Ea102, and Eb102 are moved along the substrate BP (the right direction of the arrow in FIG. 10) to make the electrode Ea101 face the electret EL101 on the electrode Ec101, the electrode Eb101 becomes the electrode Ec102. The electrode Ea102 faces the electret EL102 on the electrode Ec103 and the electrode Eb102 faces the electrode Ec104, respectively. Further, when the pair of electrodes Ea101, Eb101, Ea102, Eb102 is moved along the substrate BP (the left direction of the arrow in FIG. 10) and the electrode Eb101 faces the electret EL101 on the electrode Ec101, the electrode Ea102 becomes the electrode Ec102 and The electrode Eb102 faces the electret EL102 on the electrode Ec103, respectively. When one set of electrodes Ea101, Eb101, Ea102, Eb102 is moved along the substrate BP (in the direction of the right of the arrow in FIG. 10) and the electrode Ea101 is opposed to the electrode Ec102, the electrode Eb101 becomes the electret EL102 on the electrode Ec103 The electrode Ea102 faces the electrode Ec104, respectively.
 また、図10に示すように、エレクトレットEL101,EL102には、一方の極性の電荷(ここでは負電荷)が帯電している。電極Ec102,Ec104は、接地されている。 Further, as shown in FIG. 10, in the electrets EL101 and EL102, charges of one polarity (here, negative charges) are charged. The electrodes Ec102 and Ec104 are grounded.
 ここで、検討例の電子装置ED100の動作について説明する。検討例の電子装置ED100では、一組の電極Ea101,Eb101,Ea102,Eb102を動かすことによって、一組の電極Ea101,Eb101,Ea102,Eb102と電極Ec101,Ec102,Ec103,Ec104とを相対的に移動させる。この際、電極Ea101と電極Ec101上のエレクトレットEL101とが対向すると、電極Ea101には、エレクトレットEL101に帯電している電荷(負電荷)と反対の極性の電荷(正電荷)が誘起される。前述のように、電極Ea101をエレクトレットEL101と対向させると、電極Eb101が電極Ec102と、電極Ea102が電極Ec103上のエレクトレットEL102と、電極Eb102が電極Ec104と、夫々、対向する。そのため、電極Ea102には、エレクトレットEL102に帯電している電荷(負電荷)と反対の極性の電荷(正電荷)が誘起される。一方、電極Eb101および電極Eb102は、接地された電極Ec102および電極Ec104と、夫々、対向するので、電荷は誘起されない。以上より、電極Ea101,Ea102には正電荷が誘起され、電極Eb101,Eb102には電荷が誘起されない。すなわち、電極Ea101,Ea102と電極Eb101,Eb102との間の電位差は、電極Eb101,Eb102を基準にして正の値をとる。 Here, the operation of the electronic device ED100 of the examination example will be described. In the electronic device ED100 of the examination example, the pair of electrodes Ea101, Eb101, Ea102, Eb102 and the electrodes Ec101, Ec102, Ec103, Ec104 are relatively moved by moving the pair of electrodes Ea101, Eb101, Ea102, Eb102. Let At this time, when the electrode Ea101 and the electret EL101 on the electrode Ec101 face each other, a charge (positive charge) of the opposite polarity to the charge (negative charge) charged on the electret EL101 is induced in the electrode Ea101. As described above, when the electrode Ea101 faces the electret EL101, the electrode Eb101 faces the electrode Ec102, the electrode Ea102 faces the electret EL102 on the electrode Ec103, and the electrode Eb102 faces the electrode Ec104. Therefore, a charge (positive charge) of the opposite polarity to the charge (negative charge) charged in the electret EL 102 is induced in the electrode Ea102. On the other hand, since the electrode Eb101 and the electrode Eb102 face the grounded electrode Ec102 and the electrode Ec104, respectively, charge is not induced. As described above, positive charges are induced in the electrodes Ea101 and Ea102, and no charges are induced in the electrodes Eb101 and Eb102. That is, the potential difference between the electrodes Ea101 and Ea102 and the electrodes Eb101 and Eb102 takes positive values with reference to the electrodes Eb101 and Eb102.
 この状態から一組の電極Ea101,Eb101,Ea102,Eb102を動かすと、電極Ea101および電極Ea102は、電極Ec101および電極Ec103から、夫々離れていく。ここで、静電容量は、対向する一対の電極の面積に比例する。そのため、電極Ea101および電極Ea102が電極Ec101および電極Ec103から離れていくに従って、電極Ea101と電極Ec101との間の静電容量、および、電極Ea102と電極Ec103との間の静電容量は、夫々、小さくなっていく。すなわち、電極Ea101および電極Ea102に誘起される電荷量が少なくなっていく。 When the pair of electrodes Ea101, Eb101, Ea102, and Eb102 are moved from this state, the electrodes Ea101 and Ea102 move away from the electrodes Ec101 and Ec103, respectively. Here, the capacitance is proportional to the area of the pair of opposing electrodes. Therefore, as the electrode Ea101 and the electrode Ea102 move away from the electrode Ec101 and the electrode Ec103, the capacitance between the electrode Ea101 and the electrode Ec101 and the capacitance between the electrode Ea102 and the electrode Ec103 are respectively It becomes smaller. That is, the amount of charge induced in the electrode Ea101 and the electrode Ea102 decreases.
 一方、電極Eb101および電極Eb102は、電極Ec102および電極Ec104から夫々離れ、エレクトレットEL101が配置された電極Ec101およびエレクトレットEL102が配置された電極Ec103へと夫々近づいていく。そのため、電極Eb101および電極Eb102が電極Ec101および電極Ec103に近づくに従って、電極Eb101と電極Ec101との間の静電容量、および、電極Eb102と電極Ec103との間の静電容量は、夫々、大きくなっていく。すなわち、電極Eb101および電極Eb102に誘起される電荷量が多くなっていく。 On the other hand, the electrode Eb101 and the electrode Eb102 move away from the electrode Ec102 and the electrode Ec104, respectively, and approach the electrode Ec101 in which the electret EL101 is disposed and the electrode Ec103 in which the electret EL102 is disposed. Therefore, as the electrode Eb101 and the electrode Eb102 approach the electrode Ec101 and the electrode Ec103, the capacitance between the electrode Eb101 and the electrode Ec101 and the capacitance between the electrode Eb102 and the electrode Ec103 increase, respectively. To go. That is, the amount of charge induced in the electrode Eb101 and the electrode Eb102 increases.
 以上より、電極Ea101,Ea102がエレクトレットEL101,EL102から離間し、電極Eb101,Eb102がエレクトレットEL101,EL102に接近するに従って、電極Ea101,Ea102と電極Eb101,Eb102との間の電位差は、電極Eb101,Eb102を基準にして徐々に小さくなり、最終的に負の値となる。 From the above, as the electrodes Ea101 and Ea102 move away from the electrets EL101 and EL102 and the electrodes Eb101 and Eb102 approach the electrets EL101 and EL102, the potential difference between the electrodes Ea101 and Ea102 and the electrodes Eb101 and Eb102 becomes the electrodes Eb101 and Eb102. Gradually decreases with the reference to the final negative value.
 続いて、バネ部材SP101,SP102の復元力によって、電極Ea101,Ea102は、再びエレクトレットEL101,EL102に接近し、電極Eb101,Eb102は、再びエレクトレットEL101,EL102から離間する。この場合は、前述の動作の逆に相当するので、電極Ea101,Ea102がエレクトレットEL101,EL102に接近し、電極Eb101,Eb102がエレクトレットEL101,EL102から離間するに従って、電極Ea101,Ea102と電極Eb101,Eb102との間の電位差は、電極Eb101,Eb102を基準にして徐々に大きくなり、最終的に正の値となる。 Subsequently, the electrodes Ea101 and Ea102 approach the electrets EL101 and EL102 again by the restoring force of the spring members SP101 and SP102, and the electrodes Eb101 and Eb102 separate from the electrets EL101 and EL102 again. In this case, since this corresponds to the reverse of the above-described operation, as the electrodes Ea101 and Ea102 approach the electrets EL101 and EL102 and the electrodes Eb101 and Eb102 separate from the electrets EL101 and EL102, the electrodes Ea101 and Ea102 and the electrodes Eb101 and Eb102 The potential difference between the and the becomes gradually larger with reference to the electrodes Eb101 and Eb102, and finally becomes a positive value.
 以上より、電極Ea101,Ea102および電極Eb101,Eb102がエレクトレットEL101,EL102に接近または離間する度に、電極Ea101,Ea102と電極Eb101,Eb102との間には、異なる電位差が生じる。このため、電極Ea101,Ea102,Eb101,Eb102をエレクトレットEL101,EL102に対して周期的に動かすことによって、交流電圧を発生させることができる。 From the above, every time when the electrodes Ea101 and Ea102 and the electrodes Eb101 and Eb102 approach or separate from the electrets EL101 and EL102, different potential differences occur between the electrodes Ea101 and Ea102 and the electrodes Eb101 and Eb102. Therefore, an alternating voltage can be generated by periodically moving the electrodes Ea101, Ea102, Eb101, and Eb102 with respect to the electrets EL101 and EL102.
 検討例の電子装置ED100では、電極Ea101,Ea102および電極Eb101,Eb102と、エレクトレットEL101,EL102とを相対的に動かす必要がある。この際、電極Ea101,Ea102および電極Eb101,Eb102を支持して、エレクトレットEL101,EL102との間隔を保ちつつ動かすことが難しい。 In the electronic device ED100 of the examination example, it is necessary to move the electrodes Ea101 and Ea102 and the electrodes Eb101 and Eb102 relative to the electrets EL101 and EL102. Under the present circumstances, it is difficult to support electrode Ea101, Ea102 and electrode Eb101, Eb102, and to move, maintaining the space | interval with electret EL101, EL102.
 また、発電効率を高めるため、エレクトレットEL101,EL102を厚くすることが考えられる。しかし、エレクトレットEL101,EL102は固体材料からなるため、前述したように、保持できる電荷量を増やそうとして、固体材料を厚くしても、保持できる電荷量は頭打ちになる。そのため、検討例の電子装置ED100では、固体材料に保持できる電荷量を増やすことによって発電効率を高めることは難しい。 In addition, in order to enhance the power generation efficiency, it is conceivable to make the electrets EL101 and EL102 thicker. However, since the electrets EL101 and EL102 are made of a solid material, as described above, even if the solid material is thickened in an attempt to increase the amount of charge that can be held, the amount of charge that can be held becomes a peak. Therefore, in the electronic device ED100 of the examination example, it is difficult to improve the power generation efficiency by increasing the amount of charge that can be held by the solid material.
 <実施の形態3の電子装置>
 図11は、実施の形態3の電子装置ED3の平面図である。図12は、実施の形態3の電子装置ED3の断面図である。
<Electronic Device of Third Embodiment>
FIG. 11 is a plan view of the electronic device ED3 of the third embodiment. FIG. 12 is a cross-sectional view of the electronic device ED3 of the third embodiment.
 図11および図12に示すように、実施の形態3の電子装置ED3は、電極(第1電極)Ecと、電極(第2電極)Edと、電極Ecおよび電極Edを覆うように配置された常温液状有機材料ELと、を有している。電極Ecは、全体櫛状に形成され、平面長方形状の本体部Ecmと、本体部Ecmから分岐した平面長方形状の分岐部Ec1,Ec2,Ec3,Ec4とを有している。また、電極Edは、電極Ecと同様に全体櫛状に形成され、平面長方形状の本体部Edmと、本体部Edmから分岐した平面長方形状の分岐部Ed1,Ed2,Ed3,Ed4とを有している。電極Ecの分岐部Ec1,Ec2,Ec3,Ec4と、電極Edの分岐部Ed1,Ed2,Ed3,Ed4とは、電極Ecの本体部Ecmおよび電極Edの本体部Edmの長さ方向に沿って、夫々、所定間隔をおいて、互い違いに配置されている。すなわち、分岐部Ec1,Ed1,Ec2,Ed2・・・の順に配置されている。また、電極Ecと電極Edとの間には、ダイオードD1と電流計MAとが接続されている。なお、電極Ecと電極Edとの間に接続する素子として、ダイオードD1および電流計MAに限定されるものではなく、他の素子を接続してもよい。 As shown in FIGS. 11 and 12, the electronic device ED3 of the third embodiment is disposed so as to cover the electrode (first electrode) Ec, the electrode (second electrode) Ed, the electrode Ec, and the electrode Ed. And a normal temperature liquid organic material EL. The electrode Ec is formed in a comb shape as a whole, and has a planar rectangular main body Ecm, and planar rectangular branches Ec1, Ec2, Ec3, and Ec4 branched from the main body Ecm. Further, the electrode Ed is formed in a comb-like shape as the electrode Ec, and has a main body portion Edm of a plane rectangular shape and branched portions Ed1, Ed2, Ed3, Ed4 of a plane rectangular shape branched from the body portion Edm. ing. The branched portions Ec1, Ec2, Ec3, and Ec4 of the electrode Ec and the branched portions Ed1, Ed2, Ed3, and Ed4 of the electrode Ed extend in the longitudinal direction of the body portion Ecm of the electrode Ec and the body portion Edm of the electrode Ed. In each case, they are alternately arranged at predetermined intervals. That is, they are arranged in the order of the branch parts Ec1, Ed1, Ec2, Ed2,. Further, a diode D1 and an ammeter MA are connected between the electrode Ec and the electrode Ed. The element connected between the electrode Ec and the electrode Ed is not limited to the diode D1 and the ammeter MA, and other elements may be connected.
 また、常温液状有機材料ELは、封止体SL内に封入されている。封止体SLは、可撓性を有する絶縁体からなり、好ましくはポリウレタンからなる。そのため、封止体SLを変形させた場合には、封止体SLの形状に沿って常温液状有機材料ELが流動する。封止体SLは、電極Ecの分岐部Ec1,Ec2,Ec3,Ec4および電極Edの分岐部Ed1,Ed2,Ed3,Ed4上に配置され、電極Ecの分岐部Ec1,Ec2,Ec3,Ec4および電極Edの分岐部Ed1,Ed2,Ed3,Ed4を覆っている。また、常温液状有機材料ELに含まれる分子ELMは、正電荷を帯びている。 In addition, the normal temperature liquid organic material EL is sealed in the sealing body SL. The sealing body SL is made of a flexible insulator and preferably made of polyurethane. Therefore, when the sealing body SL is deformed, the normal temperature liquid organic material EL flows along the shape of the sealing body SL. The sealing body SL is disposed on the branch portions Ec1, Ec2, Ec3, Ec4 of the electrode Ec and the branch portions Ed1, Ed2, Ed3, Ed4 of the electrode Ed, and the branch portions Ec1, Ec2, Ec3, Ec4 of the electrode Ec and the electrode It covers branch parts Ed1, Ed2, Ed3, and Ed4 of Ed. In addition, the molecule ELM contained in the normal temperature liquid organic material EL is positively charged.
 常温液状有機材料ELは、封止体SL内に封入されているので、実施の形態3の電子装置ED3では、常温液状有機材料ELに含まれる帯電した分子ELMが、空気中の酸素や水分と接触することを防止できる。 Since the normal temperature liquid organic material EL is sealed in the sealing body SL, in the electronic device ED3 of the third embodiment, the charged molecule ELM contained in the normal temperature liquid organic material EL is the oxygen or moisture in the air. Contact can be prevented.
 常温液状有機材料ELは、前述した方法により分子ELMを帯電させ、その後、封止体SL内に封入する。なお、常温液状有機材料ELは、封止体SL内に封入した後に分子ELMを帯電させることもできるが、工程を容易にするため、分子ELMの帯電後に常温液状有機材料ELを封止体SL内に封入することが好ましい。 The normal temperature liquid organic material EL charges the molecule ELM by the method described above, and thereafter, is sealed in the sealing body SL. The normal temperature liquid organic material EL can also charge the molecule ELM after being sealed in the sealing body SL, but in order to facilitate the process, the normal temperature liquid organic material EL is charged after the charging of the molecule ELM. It is preferable to enclose it inside.
 <実施の形態3の電子装置の動作>
 以下、実施の形態3の電子装置ED3の動作について、図を用いて説明する。
<Operation of Electronic Device of Third Embodiment>
Hereinafter, the operation of the electronic device ED3 of the third embodiment will be described with reference to the drawings.
 図13は、実施の形態3の電子装置ED3の動作原理を示す断面図である。図13は、図12に示す実施の形態3の電子装置ED3を、例えば、靴底(図示せず)に取り付けて、足FTが封止体SL上に配置された状態を示している。足FTの爪先側(図13中左側)から踵側(図13中右側)に向かって、電極Ecおよび電極Edの分岐部Ec1,Ed1,Ec2,Ed2・・・が並んでいる。 FIG. 13 is a cross-sectional view showing the operation principle of the electronic device ED3 of the third embodiment. FIG. 13 shows the electronic device ED3 of the third embodiment shown in FIG. 12 attached to, for example, a shoe sole (not shown), with the foot FT being disposed on the sealing body SL. Branches Ec1, Ed1, Ec2, Ed2... Of the electrode Ec and the electrode Ed are aligned from the toe side (left side in FIG. 13) to the heel side (right side in FIG. 13) of the foot FT.
 図13の上部に示すように、封止体SL上の、足FTの踵側(図13中右側)に荷重がかかった場合は、封止体SLの足FTの踵側(図13中右側)がつぶれて薄くなる。その結果、封止体SL内に封入された常温液状有機材料ELが、封止体SL内において、足FTの踵側(図13中右側)から足FTの爪先側(図13中左側)へと移動する。 As shown in the upper part of FIG. 13, when a load is applied to the heel side of the foot FT (right side in FIG. 13) on the sealing body SL, the heel side of the foot FT of the sealing body SL (right side in FIG. 13) ) Is crushed and thinned. As a result, the normal temperature liquid organic material EL sealed in the sealing body SL is from the heel side (right side in FIG. 13) to the toe side (left side in FIG. 13) of the foot FT in the sealing body SL. And move.
 この際、電極Ecおよび電極Edの分岐部Ec1,Ed1,Ec2,Ed2・・・には、分岐部Ec1,Ed1,Ec2,Ed2・・・上に存在する分子ELMの数に応じて、分子ELMに帯電している電荷(正電荷)と反対の極性の電荷(負電荷)が誘起される。ここで、分岐部Ec1,Ec2,Ec3,Ec4は、本体部Ecmを介して、夫々、電極Ecに電気的に接続され、分岐部Ed1,Ed2,Ed3,Ed4は、本体部Edmを介して、夫々、電極Edに電気的に接続されている。そのため、分岐部Ec1,Ec2,Ec3,Ec4上に存在する分子ELMの数と、分岐部Ed1,Ed2,Ed3,Ed4上に存在する分子ELMの数との差に比例した電位差が、電極Ecと電極Edとの間に生じる。図13の上部に示すように、分岐部Ec1,Ed1,Ec2,Ed2・・・上に存在する分子ELMの数は、分岐部Ec1,Ed1,Ec2,Ed2・・・上の常温液状有機材料ELの体積に比例する。特に、封止体SLが分岐部Ec1,Ed1,Ec2,Ed2・・・上に配置され、常温液状有機材料ELが分岐部Ec1,Ed1,Ec2,Ed2・・・を完全に被覆している場合には、分岐部Ec1,Ed1,Ec2,Ed2・・・上に存在する分子ELMの数は、分岐部Ec1,Ed1,Ec2,Ed2・・・上の封止体SLの厚さに比例する。従って、図13の上部において、分子ELMの数は、足FTの踵側(図13中右側)から足FTの爪先側(図13中左側)に至るに従って多くなる。そのため、分岐部Ec1,Ec2,Ec3,Ec4上に存在する分子ELMの数の合計は、分岐部Ed1,Ed2,Ed3,Ed4上に存在する分子ELMの数の合計よりも多い。すなわち、電極Ecには、分子ELMに帯電している電荷(正電荷)と反対の極性の電荷(負電荷)が電極Edよりも多く誘起されることから、電極Ecと電極Edとの間の電位差は、電極Edを基準にして負の値をとる。 At this time, in the branch portions Ec1, Ed1, Ec2, Ed2... Of the electrode Ec and the electrode Ed, depending on the number of molecular ELMs present on the branch portions Ec1, Ed1, Ec2, Ed2,. Charge (positive charge) and charge of the opposite polarity (negative charge) are induced. Here, the branch parts Ec1, Ec2, Ec3 and Ec4 are electrically connected to the electrode Ec through the main body part Ecm, and the branch parts Ed1, Ed2, Ed3 and Ed4 are through the main body part Edm. Each is electrically connected to the electrode Ed. Therefore, the potential difference proportional to the difference between the number of molecular ELMs present on the branch Ec1, Ec2, Ec3, Ec4 and the number of molecular ELMs present on the branch Ed1, Ed2, Ed3, Ed4 is equal to that of the electrode Ec. It occurs between the electrode Ed. As shown in the upper part of FIG. 13, the number of molecular ELMs present on the branch portions Ec1, Ed1, Ec2, Ed2... Is the normal temperature liquid organic material EL on the branch portions Ec1, Ed1, Ec2, Ed2. Proportional to the volume of the In particular, in the case where the sealing body SL is disposed on the branch portions Ec1, Ed1, Ec2, Ed2,... And the normal temperature liquid organic material EL completely covers the branch portions Ec1, Ed1, Ec2, Ed2,. The number of molecular ELMs present on the branch portions Ec1, Ed1, Ec2, Ed2... Is proportional to the thickness of the sealing body SL on the branch portions Ec1, Ed1, Ec2, Ed2. Accordingly, in the upper part of FIG. 13, the number of molecules ELM increases from the heel side of the foot FT (right side in FIG. 13) to the toe side of the foot FT (left side in FIG. 13). Therefore, the sum of the number of molecule ELMs present on the branch parts Ec1, Ec2, Ec3 and Ec4 is larger than the sum of the number of molecule ELMs present on the branch parts Ed1, Ed2, Ed3 and Ed4. That is, since a charge (negative charge) having a polarity opposite to that of the charge (positive charge) charged in the molecule ELM is induced in the electrode Ec more than the electrode Ed, the charge between the electrode Ec and the electrode Ed is generated. The potential difference takes a negative value with reference to the electrode Ed.
 一方、図13の下部に示すように、封止体SL上の、足FTの爪先側(図13中左側)に荷重がかかった場合は、封止体SLの足FTの爪先側(図13中左側)がつぶれて薄くなる。その結果、封止体SL内に封入された常温液状有機材料ELが、封止体SL内において、足FTの爪先側(図13中左側)から足FTの踵側(図13中右側)へと移動する。従って、図13の下部において、分子ELMの数は、足FTの爪先側(図13中左側)から足FTの踵側(図13中右側)に至るに従って多くなる。そのため、分岐部Ed1,Ed2,Ed3,Ed4上に存在する分子ELMの数の合計は、分岐部Ec1,Ec2,Ec3,Ec4上に存在する分子ELMの数の合計よりも多い。すなわち、電極Edには、分子ELMに帯電している電荷(正電荷)と反対の極性の電荷(負電荷)が電極Ecよりも多く誘起されることから、電極Ecと電極Edとの間の電位差は、電極Edを基準にして正の値をとる。 On the other hand, as shown in the lower part of FIG. 13, when a load is applied to the toe side (left side in FIG. 13) of the foot FT on the sealing body SL, the toe side of the foot FT of the sealing body SL (FIG. 13) Middle left side collapses and becomes thinner. As a result, the normal temperature liquid organic material EL enclosed in the sealing body SL is from the toe of the foot FT (left side in FIG. 13) to the heel side of the foot FT (right side in FIG. 13) in the sealing body SL. And move. Therefore, in the lower part of FIG. 13, the number of molecules ELM increases from the toe side (left side in FIG. 13) of the foot FT to the heel side (right side in FIG. 13) of the foot FT. Therefore, the sum of the number of molecule ELMs present on the branch part Ed1, Ed2, Ed3, Ed4 is larger than the sum of the number of molecule ELMs present on the branch parts Ec1, Ec2, Ec3, Ec4. That is, since a charge (negative charge) of the opposite polarity to the charge (positive charge) charged in the molecule ELM is induced in the electrode Ed more than the electrode Ec, it is possible to prevent the charge between the electrode Ec and the electrode Ed. The potential difference takes a positive value with reference to the electrode Ed.
 以上より、電極Ec,Edの分岐部Ec1,Ed1,Ec2,Ed2・・・上の分子ELMの数を変化させると、電極Ecと電極Edとの間に電位差が生じる。このため、実施の形態3の電子装置ED3では、封止体SLを変形させ、常温液状有機材料ELを電極Ec,Edの分岐部Ec1,Ed1,Ec2,Ed2・・・に対して周期的に動かすことによって、交流電圧を発生させることができる。実施の形態3の電子装置ED3を交流電源として使用する場合には、常温液状有機材料ELを一定の周期で動かすことが望ましい。 From the above, when the number of molecular ELMs on the branch portions Ec1, Ed1, Ec2, Ed2... Of the electrodes Ec, Ed is changed, a potential difference is generated between the electrode Ec and the electrode Ed. For this reason, in the electronic device ED3 of the third embodiment, the sealing body SL is deformed, and the normal temperature liquid organic material EL is periodically applied to the branch portions Ec1, Ed1, Ec2, Ed2, ... of the electrodes Ec, Ed. By moving, an alternating voltage can be generated. When the electronic device ED3 of the third embodiment is used as an AC power supply, it is desirable to move the normal temperature liquid organic material EL at a constant cycle.
 ここで、実施の形態3の電子装置ED3は、電極Ecと電極Edとの間にダイオードD1が接続されている。例えば、電極Ecから電極Edに向かう方向をダイオードD1の順方向とすると、電極Ecと電極Edとの間の電位差が、電極Edを基準にして正の値をとるときに限り、電極Ecと電極Edとの間に電流が流れ、電流計MAに観測される。従って、実施の形態3の電子装置ED3では、ダイオードD1によって整流することによって、直流電圧を発生させることができる。そのため、例えば、実施の形態3の電子装置ED3に蓄電池を接続することによって、発生した電気エネルギーをこの蓄電池に蓄えることができる。この場合は、常温液状有機材料ELを一定の周期で動かす必要がないため、実施の形態3の電子装置ED3は直流電源として使用することが好適である。 Here, in the electronic device ED3 of the third embodiment, the diode D1 is connected between the electrode Ec and the electrode Ed. For example, assuming that the direction from the electrode Ec to the electrode Ed is the forward direction of the diode D1, only when the potential difference between the electrode Ec and the electrode Ed has a positive value with respect to the electrode Ed, the electrode Ec and the electrode A current flows between it and Ed and is observed by the ammeter MA. Therefore, in the electronic device ED3 of the third embodiment, a DC voltage can be generated by rectifying with the diode D1. Therefore, for example, by connecting the storage battery to the electronic device ED3 of the third embodiment, the generated electrical energy can be stored in the storage battery. In this case, it is preferable to use the electronic device ED3 of the third embodiment as a DC power supply because it is not necessary to move the room temperature liquid organic material EL in a constant cycle.
 <実施の形態3の電子装置の効果>
 図11および図12に示すように、実施の形態3の電子装置ED3は、電極Ec,Ed上に封止体SL内に封入された常温液状有機材料ELを配置しているので、検討例の電子装置ED100のように電極とエレクトレットとの間隔を保ちつつ、電極を動かすための支持構造が必要ない。そのため、実施の形態3の電子装置ED3は、検討例の電子装置ED100に比べて、製造が容易であり、製造コストを低減することができる。
<Effect of Electronic Device of Third Embodiment>
As shown in FIGS. 11 and 12, in the electronic device ED3 of the third embodiment, the room temperature liquid organic material EL sealed in the sealing body SL is disposed on the electrodes Ec and Ed. There is no need for a support structure to move the electrodes while maintaining the spacing between the electrodes and the electret as in the electronic device ED100. Therefore, the electronic device ED3 of the third embodiment is easier to manufacture and can reduce the manufacturing cost as compared with the electronic device ED100 of the examination example.
 そして、実施の形態3の電子装置ED3では、常温液状有機材料ELは液体であるため、常温液状有機材料ELを電極Ec,Edに対して容易に動かすことができる。また、実施の形態3の電子装置ED3では、封止体SLを変形させることで、電極Ec,Ed上に存在する常温液状有機材料ELの体積、すなわち帯電した分子ELMの数(電荷量)を容易に変化させることができる。そのため、封止体SLを変形させるという簡単な操作により、効率よく発電することができる。 In the electronic device ED3 of the third embodiment, since the normal temperature liquid organic material EL is a liquid, the normal temperature liquid organic material EL can be easily moved relative to the electrodes Ec and Ed. Further, in the electronic device ED3 of the third embodiment, the volume of the normal temperature liquid organic material EL existing on the electrodes Ec and Ed, that is, the number (charge amount) of the charged molecule ELM is obtained by deforming the sealing body SL. It can be easily changed. Therefore, power can be generated efficiently by a simple operation of deforming the sealing body SL.
 また、実施の形態3の電子装置ED3では、常温液状有機材料ELは、帯電した分子ELMを含んでいるので、常温液状有機材料ELの表面だけでなく、常温液状有機材料ELの内部まで電荷を保持することができる。その結果、実施の形態3の電子装置ED3では、封止体SL内に封入された常温液状有機材料ELを用いることで、電極Ec,Ed上に多くの分子ELMを保持できるので、検討例の固体材料からなるエレクトレットを用いた電子装置ED100に比べて、発電効率を高めることができる。 Further, in the electronic device ED3 of the third embodiment, since the normal temperature liquid organic material EL contains the charged molecule ELM, the electric charge not only to the surface of the normal temperature liquid organic material EL but also to the inside of the normal temperature liquid organic material EL Can be held. As a result, in the electronic device ED3 of the third embodiment, many molecular ELMs can be held on the electrodes Ec and Ed by using the normal temperature liquid organic material EL enclosed in the sealing body SL. The power generation efficiency can be enhanced as compared with the electronic device ED100 using an electret made of a solid material.
 また、実施の形態3の電子装置ED3において、図11~図13に示す電極Ec,Edと異なる電極の形状や構造を採用した場合であっても、常温液状有機材料ELは液体であるので、電極の構造にかかわらず、電極を常温液状有機材料ELによって容易に被覆することができる。 Further, in the electronic device ED3 according to the third embodiment, even when the electrode shape and structure different from those of the electrodes Ec and Ed shown in FIGS. 11 to 13 are adopted, the normal temperature liquid organic material EL is a liquid. Regardless of the structure of the electrode, the electrode can be easily coated with the normal temperature liquid organic material EL.
 <実施の形態4の電子装置>
 図14は、実施の形態4の電子装置ED4の断面図である。
<Electronic Device of Fourth Embodiment>
FIG. 14 is a cross-sectional view of the electronic device ED4 of the fourth embodiment.
 図14に示すように、実施の形態4の電子装置ED4は、電極(第1電極)Eaと、電極Eaと所定間隔をおいて対向して配置された電極(第2電極)Ebと、電極Eaと電極Ebとの間に配置された常温液状有機材料ELとを有する。常温液状有機材料ELには、負に帯電した分子ELMが含まれている。 As shown in FIG. 14, the electronic device ED4 of the fourth embodiment includes an electrode (first electrode) Ea, an electrode (second electrode) Eb disposed opposite to the electrode Ea with a predetermined distance, and an electrode It has the normal temperature liquid organic material EL arrange | positioned between Ea and electrode Eb. The normal temperature liquid organic material EL contains negatively charged molecule ELM.
 ここで、実施の形態4の電子装置ED4は、電極Eaと電極Ebとの間に支持体CLが配置されている。支持体CLは、可撓性を有し、かつ、液体を保持できる材料により、好ましくは布地により構成されている。そのため、常温液状有機材料ELは、支持体CLに保持された状態で電極Eaと電極Ebとの間に配置されている。特に、支持体CLが布地により構成されている場合には、常温液状有機材料ELは、布地に染み込ませた状態で支持体CLに保持される。なお、常温液状有機材料ELは粘性の高い液体であるため、常温液状有機材料ELを支持体CLの中で広がることなく、支持体CLに保持される。そのため、支持体CLの複数の領域に、常温液状有機材料ELを離間して配置することもできる。 Here, in the electronic device ED4 of the fourth embodiment, the support CL is disposed between the electrode Ea and the electrode Eb. The support CL is made of a flexible material that can hold a liquid, preferably a fabric. Therefore, the normal temperature liquid organic material EL is disposed between the electrode Ea and the electrode Eb while being held by the support CL. In particular, when the support CL is made of a cloth, the normal temperature liquid organic material EL is held by the support CL in a state of being soaked in the cloth. Since the normal temperature liquid organic material EL is a highly viscous liquid, the normal temperature liquid organic material EL is held on the support CL without spreading in the support CL. Therefore, the normal temperature liquid organic material EL can be spaced apart and disposed in a plurality of regions of the support CL.
 また、電極Ea,Eb、支持体CLおよび常温液状有機材料ELは、封止体SLにより封止されている。そのため、実施の形態4の電子装置ED4では、常温液状有機材料ELに含まれる帯電した分子ELMが、空気中の酸素や水分と接触することを防止できる。 The electrodes Ea and Eb, the support CL, and the normal temperature liquid organic material EL are sealed by a sealing body SL. Therefore, in the electronic device ED4 of the fourth embodiment, the charged molecule ELM contained in the normal temperature liquid organic material EL can be prevented from contacting with oxygen or moisture in the air.
 封止体SLは、可撓性を有する材料(柔軟で伸縮性のある材料)により、例えば、ポリウレタン樹脂やシリコーン樹脂、ゴム系材料等により構成されている。そして、電極Ea,Ebは、例えば、薄い金属膜や、金属が蒸着もしくはメッキされた繊維により構成されている。より具体的には、電極Ea,Ebは、例えば銀メッキされた短繊維を封止体SLに貼着した伸縮性電極として構成されている。 The sealing body SL is made of, for example, a polyurethane resin, a silicone resin, a rubber-based material, or the like by using a flexible material (a flexible and stretchable material). The electrodes Ea and Eb are made of, for example, a thin metal film or a fiber on which a metal is vapor-deposited or plated. More specifically, the electrodes Ea and Eb are configured as stretchable electrodes in which, for example, silver-plated short fibers are attached to the sealing body SL.
 また、図示しないが、電極Ea,Ebは、夫々、配線部を有しており、この配線部を介して電圧計、センサ等の外部装置に接続することができる。 Although not shown, the electrodes Ea and Eb each have a wiring portion, and can be connected to an external device such as a voltmeter or a sensor via the wiring portion.
 なお、電極Ea,Ebと同様の構成の構成を有する電極は、電極Ea,Ebの他にもあってもよく、その図示を省略している。 The electrodes having the same configuration as the electrodes Ea and Eb may be present in addition to the electrodes Ea and Eb, and the illustration thereof is omitted.
 <実施の形態4の電子装置の動作>
 以下、実施の形態4の電子装置ED4の動作について、図を用いて説明する。
<Operation of Electronic Device of Fourth Embodiment>
Hereinafter, the operation of the electronic device ED4 of the fourth embodiment will be described with reference to the drawings.
 図14に示すように、電極Ea,Ebの間に配置された支持体CLには、負に帯電した分子ELMを含む常温液状有機材料ELが保持されている。従って、電極Ea,Ebには、正電荷が誘起される。ここで、支持体CLの厚さ方向に沿って、封止体SLを押して変形させると、封止体SL、電極Ea,Ebおよび支持体CLは可撓性を有しているので、封止体SL、電極Eaおよび支持体CLが夫々変形しながら、電極Eaと電極Ebとが近づく。電極Eaと電極Ebとの相対距離が小さくなると、電極Eaと電極Ebとの間の静電容量が大きくなり、電極Ea,Ebに誘起される電荷量が多くなる。すなわち、電極Eaと電極Ebとの間に生じる電位差が、封止体SLを押していくに従って徐々に大きくなる。 As shown in FIG. 14, a support CL disposed between the electrodes Ea and Eb holds a normal temperature liquid organic material EL containing negatively charged molecules ELM. Therefore, positive charges are induced on the electrodes Ea and Eb. Here, when the sealing body SL is pressed and deformed along the thickness direction of the support body CL, the sealing body SL, the electrodes Ea and Eb, and the support body CL have flexibility, so the sealing is performed. While the body SL, the electrode Ea and the support CL are deformed respectively, the electrode Ea and the electrode Eb approach each other. As the relative distance between the electrode Ea and the electrode Eb decreases, the capacitance between the electrode Ea and the electrode Eb increases, and the amount of charge induced in the electrodes Ea and Eb increases. That is, the potential difference generated between the electrode Ea and the electrode Eb gradually increases as the sealing body SL is pushed.
 また逆に、支持体CLの厚さ方向に沿って、封止体SLを押すのをやめると、封止体SL、電極Eaおよび支持体CLがもとの位置に戻ろうとして、電極Eaと電極Ebとが遠ざかる。電極Eaと電極Ebとの相対距離が大きくなると、電極Eaと電極Ebとの間の静電容量が小さくなり、電極Ea,Ebに誘起される電荷量が少なくなる。すなわち、電極Eaと電極Ebとの間に生じる電位差が、封止体SLを押すのをやめて封止体SL、電極Eaおよび支持体CLが夫々もとの位置に戻るに従って徐々に小さくなる。 Conversely, when the pressing of the sealing body SL is stopped along the thickness direction of the supporting body CL, the sealing body SL, the electrode Ea and the supporting body CL try to return to their original positions, The electrode Eb moves away. As the relative distance between the electrode Ea and the electrode Eb increases, the capacitance between the electrode Ea and the electrode Eb decreases, and the charge amount induced in the electrodes Ea and Eb decreases. That is, the potential difference generated between the electrode Ea and the electrode Eb gradually decreases as the sealing body SL, the electrode Ea, and the support body CL return to their original positions without stopping pressing the sealing body SL.
 以上より、実施の形態4の電子装置ED4は、電極Eaと電極Ebとの相対距離を変化させることによって、電極Eaと電極Ebとの間に起電力を発生させることができ、例えば、タッチセンサなどのセンサや発電装置として使用することができる。 As described above, the electronic device ED4 of the fourth embodiment can generate an electromotive force between the electrode Ea and the electrode Eb by changing the relative distance between the electrode Ea and the electrode Eb, and, for example, a touch sensor Etc. can be used as a sensor or a generator.
 <実施の形態4の動作結果>
 図15は、図14に示す実施の形態4の電子装置ED4において、常温液状有機材料ELに含まれる分子ELMを帯電させた直後の動作結果を示すグラフである。具体的には、図15は、図14に示す実施の形態4の電子装置ED4において、支持体CLの厚さ方向に沿って、封止体SLを押して変形させ、その直後に、封止体SLを押すのをやめるという動作を繰り返し行なった際の、電極Eaと電極Ebとの間の電位差を表したグラフである。なお、支持体CLに常温液状有機材料ELが保持されていない電子装置を電子装置ED101として、その結果を図15に併せて示している。すなわち、電子装置ED101と電子装置ED4との相違点は、常温液状有機材料ELの有無のみである。
<Operation Result of Fourth Embodiment>
FIG. 15 is a graph showing an operation result immediately after charging the molecule ELM contained in the normal temperature liquid organic material EL in the electronic device ED4 of the fourth embodiment shown in FIG. Specifically, in FIG. 15, in the electronic device ED4 of the fourth embodiment shown in FIG. 14, the sealing body SL is pressed and deformed along the thickness direction of the support CL, and immediately thereafter, the sealing body It is a graph showing the electrical potential difference between the electrode Ea and the electrode Eb at the time of performing repeatedly the operation | movement of stopping pushing SL. In addition, the electronic device in which the normal temperature liquid organic material EL is not hold | maintained at the support body CL is made into the electronic device ED101, and the result is collectively shown in FIG. That is, the difference between the electronic device ED101 and the electronic device ED4 is only the presence or absence of the normal temperature liquid organic material EL.
 ここで、常温液状有機材料ELは、前述のπ共役系分子がポルフィリンであり、2以上の側鎖がすべて分岐アルキル鎖であり、置換基Sがフェニル基およびエーテル基の組み合わせであり、(化学式12)で表される分子P3または(化学式13)で表される分子P4からなるものを用いた。 Here, in the normal temperature liquid organic material EL, the aforementioned π-conjugated molecule is porphyrin, all of the two or more side chains are branched alkyl chains, and the substituent S is a combination of a phenyl group and an ether group ((Chemical formula A molecule consisting of a molecule P3 represented by 12) or a molecule P4 represented by (Chemical formula 13) was used.
Figure JPOXMLDOC01-appb-C000030
Figure JPOXMLDOC01-appb-C000030
Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-C000031
 図15に示すように、実施の形態4の電子装置ED4において、支持体CLの厚さ方向に沿って、封止体SLを押して変形させると、下向き(負の電位差)のピークPPが観測され、その直後に上向き(正の電位差)のピークPEが観測された。一方、電子装置ED101では、支持体CLの厚さ方向に沿って、封止体SLを押して変形させた場合であっても、ピークPP,PEは観測されていない。 As shown in FIG. 15, in the electronic device ED4 of the fourth embodiment, when the sealing body SL is pressed and deformed along the thickness direction of the support CL, a downward peak (negative potential difference) peak PP is observed. Immediately after that, an upward (positive potential difference) peak PE was observed. On the other hand, in the electronic device ED101, the peaks PP and PE are not observed even when the sealing body SL is pressed and deformed along the thickness direction of the support CL.
 前述のように、支持体CLの厚さ方向に沿って、封止体SLを押して変形させると、電極Eaと電極Ebとの距離が短くなり、電極Eaと電極Ebとの間の静電容量が大きくなる。特に、電極Eaが変形することにより、電極Eaと負に帯電した分子ELMを含む常温液状有機材料ELとの距離が、電極Ebと常温液状有機材料ELとの距離と異なる。これにより、電子装置ED4では、電極Ebに対して電極Ea側が負の電位を有し、図15に示すように、下向き(負の電位差)のピークPPが観測されると考えられる。 As described above, when the sealing body SL is pressed and deformed along the thickness direction of the support CL, the distance between the electrode Ea and the electrode Eb is shortened, and the capacitance between the electrode Ea and the electrode Eb is reduced. Becomes larger. In particular, when the electrode Ea is deformed, the distance between the electrode Ea and the normal temperature liquid organic material EL including the negatively charged molecules ELM is different from the distance between the electrode Eb and the normal temperature liquid organic material EL. Thereby, in the electronic device ED4, the electrode Ea side has a negative potential with respect to the electrode Eb, and as shown in FIG. 15, it is considered that the downward peak (negative potential difference) peak PP is observed.
 また逆に、支持体CLの厚さ方向に沿って、封止体SLを押すのをやめると、電極Eaと電極Ebとの距離が長くなり、電極Eaと電極Ebとの間の静電容量が小さくなる。その結果、電極Ea1に溜まっていた電荷が外部へ流れ出し、電極Ebに対して電極Ea側が正の電位を有する。そのため、図15に示すように、上向き(正の電位差)のピークPEが観測されると考えられる。 Conversely, when the pressing of the sealing body SL is stopped along the thickness direction of the support CL, the distance between the electrode Ea and the electrode Eb is increased, and the capacitance between the electrode Ea and the electrode Eb is increased. Becomes smaller. As a result, the charge accumulated in the electrode Ea1 flows out to the outside, and the electrode Ea side has a positive potential with respect to the electrode Eb. Therefore, as shown in FIG. 15, it is considered that a peak PE facing upward (positive potential difference) is observed.
 また、図15に示すように、実施の形態4の電子装置ED4において、その後も支持体CLの厚さ方向に沿って、封止体SLを押して変形させる度に、前述と同様に、下向きのピークが観測され、続いて上向きのピークが観測された。そのため、常温液状有機材料ELに含まれる帯電した分子ELMは、封止体SLの変形動作を繰り返し行なっても、その帯電状態を維持しているものと考えられる。なお、ピーク強度の変化は、封止体SLの変形度合いによるものと考えられる。 Further, as shown in FIG. 15, in the electronic device ED4 of the fourth embodiment, downward as in the above-described manner each time the sealing body SL is pressed and deformed along the thickness direction of the support CL thereafter. A peak was observed, followed by an upward peak. Therefore, it is considered that the charged molecule ELM contained in the normal temperature liquid organic material EL maintains its charged state even if the deformation operation of the sealing body SL is repeated. The change in peak intensity is considered to be due to the degree of deformation of the sealing body SL.
 なお、図15の結果は、分子P4からなる常温液状有機材料ELの結果を示しているが、分子P3においても同様の結果が得られている。 Although the result of FIG. 15 shows the result of the normal temperature liquid organic material EL composed of the molecule P4, the same result is obtained also for the molecule P3.
 <実施の形態4の電子装置の効果>
 図14に示すように、実施の形態4の電子装置ED4では、実施の形態1~3と同様に、固体材料ではなく常温液状有機材料ELを用いている。常温液状有機材料ELは、帯電した分子ELMを含んでいるので、常温液状有機材料ELの表面だけでなく、常温液状有機材料ELの内部まで電荷を保持することができる。その結果、実施の形態4の電子装置ED4では、常温液状有機材料ELの体積を増やすことによって、前述の固体材料を用いた電子装置に比べて、感度や発電効率を容易に高めることができる。
<Effect of Electronic Device of Fourth Embodiment>
As shown in FIG. 14, in the electronic device ED4 of the fourth embodiment, the normal temperature liquid organic material EL is used instead of the solid material as in the first to third embodiments. Since the normal temperature liquid organic material EL contains the charged molecule ELM, the charge can be held not only on the surface of the normal temperature liquid organic material EL but also inside the normal temperature liquid organic material EL. As a result, in the electronic device ED4 of the fourth embodiment, by increasing the volume of the normal temperature liquid organic material EL, the sensitivity and the power generation efficiency can be easily enhanced as compared with the electronic device using the solid material described above.
 また、実施の形態4の電子装置ED4では、固体材料ではなく液体の常温液状有機材料ELを用いることで、電子装置の形状自由度の向上と保持電荷量の増大とを両立させることができる。特に、実施の形態4の電子装置ED4では、電極Ea,Eb、支持体CLおよび封止体SLが可撓性を有しているため、実施の形態1~3に比べて形状自由度をさらに高めることができる。そして、封止体SLを変形させるという簡単な操作により、効率よく発電することができる。 Further, in the electronic device ED4 of the fourth embodiment, by using the liquid normal-temperature liquid organic material EL instead of the solid material, it is possible to achieve both improvement in shape freedom of the electronic device and increase in the amount of held charge. In particular, in the electronic device ED4 of the fourth embodiment, the electrodes Ea and Eb, the support CL, and the sealing body SL have flexibility, so that the shape freedom is further increased compared to the first to third embodiments. It can be enhanced. And power can be generated efficiently by a simple operation of deforming the sealing body SL.
 そして、実施の形態4の電子装置ED4では、常温液状有機材料ELが、電極Eaと電極Ebとの間に配置された支持体CLに保持されているので、前述した検討例の電子装置ED100のように電極とエレクトレットとの間隔を保ちつつ、電極を動かすための支持構造が必要ない。そのため、実施の形態4の電子装置ED4は、検討例の電子装置ED100に比べて、製造が容易であり、製造コストを低減することができる。 Then, in the electronic device ED4 of the fourth embodiment, since the normal temperature liquid organic material EL is held by the support CL disposed between the electrode Ea and the electrode Eb, the electronic device ED100 of the examination example described above is As such, there is no need for a support structure to move the electrodes while maintaining the spacing between the electrodes and the electret. Therefore, the electronic device ED4 of the fourth embodiment is easy to manufacture as compared with the electronic device ED100 of the examination example, and the manufacturing cost can be reduced.
 本発明は上記実施の形態に限定されるものではなく、その要旨を逸脱しない範囲で種々変更可能である。 The present invention is not limited to the above embodiment, and various modifications can be made without departing from the scope of the invention.
 本発明は、センサや発電装置等の種々の電子装置に適用可能であり、産業上利用可能性を有している。 The present invention is applicable to various electronic devices such as sensors and power generators, and has industrial applicability.
BP 基板
CD 製造装置
CE 電極
CL 支持体
D1 ダイオード
Ea 電極
Ea1 電極(第1電極)
Ea101,Ea102 電極
Ea2,Ea3 電極
Eb 電極
Eb1 電極(第2電極)
Eb101,Eb102 電極
Eb2,Eb3 電極
Ec 電極(第1電極)
Ec1,Ec2,Ec3,Ec4 分岐部
Ec101,Ec102,Ec103,Ec104 電極
Ecm 本体部
ED1,ED2,ED3 電子装置
ED100,ED101 電子装置
Ed 電極(第2電極)
Ed1,Ed2,Ed3,Ed4 分岐部
Edm 本体部
EL 常温液状有機材料
EL101,EL102 エレクトレット
FT 足
GE 電極
HT ヒータ
IL 絶縁体
MA 電流計
PS 交流電源
PT1,PT2 支持部材
SC スペーサ
SL 封止体
SP101,SP102 バネ部材
VE 振動センサ
 
BP substrate CD manufacturing equipment CE electrode CL support D1 diode Ea electrode Ea1 electrode (first electrode)
Ea101, Ea102 electrode Ea2, Ea3 electrode Eb electrode Eb1 electrode (second electrode)
Eb101, Eb102 electrode Eb2, Eb3 electrode Ec electrode (first electrode)
Ec1, Ec2, Ec3, Ec4 Branching portions Ec101, Ec102, Ec103, Ec104 Electrodes Ecm Body portions ED1, ED2, ED3 Electronic devices ED100, ED101 Electronic devices Ed Electrode (second electrode)
Ed1, Ed2, Ed3, Ed4 Branching part Edm Body part EL Room temperature liquid organic material EL101, EL102 Electret FT foot GE electrode HT Heater IL Insulator MA Ammeter PS AC power supply PT1, PT2 Support member SC Spacer SL Sealing body SP101, SP102 Spring member VE Vibration sensor

Claims (17)

  1.  第1電極と、前記第1電極と対向して配置された第2電極と、前記第1電極と前記第2電極との間に配置された常温液状有機材料と、を有し、
     前記常温液状有機材料は、帯電した分子を含有し、
     前記帯電した分子は、2以上の側鎖を有するπ共役系分子であり、
     前記2以上の側鎖は、前記π共役系分子間のπ-π相互作用を阻害するように前記π共役系分子に結合している、電子装置。
    A first electrode, a second electrode disposed to face the first electrode, and a room temperature liquid organic material disposed between the first electrode and the second electrode,
    The normal temperature liquid organic material contains charged molecules,
    The charged molecule is a π-conjugated molecule having two or more side chains,
    The electronic device, wherein the two or more side chains are bound to the π-conjugated molecule so as to inhibit the π-π interaction between the π-conjugated molecule.
  2.  請求項1記載の電子装置において、
     前記第1電極および前記第2電極は、前記第1電極と前記第2電極との間隔を変化可能に形成されている、電子装置。
    In the electronic device according to claim 1,
    The electronic device according to claim 1, wherein the first electrode and the second electrode are formed such that a distance between the first electrode and the second electrode can be changed.
  3.  請求項1記載の電子装置において、
     前記第1電極および前記第2電極は、可撓性を有している、電子装置。
    In the electronic device according to claim 1,
    The electronic device, wherein the first electrode and the second electrode have flexibility.
  4.  請求項1記載の電子装置において、
     交流電源によって、前記第1電極と前記第2電極との間に交流電圧を印加する、電子装置。
    In the electronic device according to claim 1,
    An electronic device, wherein an alternating current voltage is applied between the first electrode and the second electrode by an alternating current power supply.
  5.  請求項1記載の電子装置において、
     前記π共役系分子は、ポルフィリン、オリゴ(p-)フェニレンビニレン、フルオレン、アントラセン、アゾベンゼン、ピレン、および、スチルベンからなる群から選択され、
     前記2以上の側鎖のそれぞれは、分岐アルキル鎖であって、
     前記分岐アルキル鎖は、次の(化学式1)で表されるように、前記π共役系分子に結合し、
    Figure JPOXMLDOC01-appb-C000001
     前記Sは、エーテル基、メチレン基、および、フェニル基からなる群から選択される少なくとも1つの置換基であり、
     前記R1および前記R2の組み合わせは、次の(化学式2)
    Figure JPOXMLDOC01-appb-C000002
    からなる群から選択される、電子装置。
    In the electronic device according to claim 1,
    The π-conjugated molecule is selected from the group consisting of porphyrin, oligo (p-) phenylenevinylene, fluorene, anthracene, azobenzene, pyrene and stilbene,
    Each of the two or more side chains is a branched alkyl chain, and
    The branched alkyl chain is bonded to the π-conjugated molecule as represented by the following (Formula 1):
    Figure JPOXMLDOC01-appb-C000001
    The S is at least one substituent selected from the group consisting of an ether group, a methylene group, and a phenyl group,
    The combination of the R1 and the R2 is represented by the following Formula 2
    Figure JPOXMLDOC01-appb-C000002
    An electronic device selected from the group consisting of
  6.  請求項5記載の電子装置において、
     前記2以上の側鎖を有するπ共役系分子は、次の(化学式3)
    Figure JPOXMLDOC01-appb-C000003
    のいずれかで表される、電子装置。
    In the electronic device according to claim 5,
    The π-conjugated molecule having the two or more side chains is represented by the following Formula 3
    Figure JPOXMLDOC01-appb-C000003
    An electronic device, represented by one of the following:
  7.  請求項2記載の電子装置において、
     前記第1電極と前記第2電極との間隔を変化させることにより、前記第1電極と前記第2電極との間の電位差を変化させる、電子装置。
    In the electronic device according to claim 2,
    An electronic device, wherein a potential difference between the first electrode and the second electrode is changed by changing a distance between the first electrode and the second electrode.
  8.  請求項1記載の電子装置において、
     前記第1電極と前記第2電極との間には、可撓性を有し、かつ、液体を保持可能な支持体が配置され、
     前記常温液状有機材料は、前記支持体により保持されている、電子装置。
    In the electronic device according to claim 1,
    Between the first electrode and the second electrode, a support having flexibility and capable of holding a liquid is disposed.
    The electronic device, wherein the cold liquid organic material is held by the support.
  9.  請求項8記載の電子装置において、
     前記第1電極、前記第2電極および前記支持体は、封止体により封止され、
     前記封止体は、可撓性を有する、電子装置。
    In the electronic device according to claim 8,
    The first electrode, the second electrode and the support are sealed by a sealing body,
    The electronic device, wherein the sealing body is flexible.
  10.  請求項9記載の電子装置において、
     前記第1電極および前記第2電極は、金属が蒸着された繊維により構成され、
     前記繊維は、前記封止体に貼着されている、電子装置。
    In the electronic device according to claim 9,
    The first electrode and the second electrode are made of fibers deposited with metal,
    The electronic device, wherein the fiber is attached to the sealing body.
  11.  第1電極と、第2電極と、前記第1電極および前記第2電極を覆うように配置された常温液状有機材料と、を有し、
     前記常温液状有機材料は、帯電した分子を含有し、
     前記帯電した分子は、2以上の側鎖を有するπ共役系分子であり、
     前記2以上の側鎖は、前記π共役系分子間のπ-π相互作用を阻害するように前記π共役系分子に結合している、電子装置。
    A first electrode, a second electrode, and a room temperature liquid organic material disposed to cover the first electrode and the second electrode;
    The normal temperature liquid organic material contains charged molecules,
    The charged molecule is a π-conjugated molecule having two or more side chains,
    The electronic device, wherein the two or more side chains are bound to the π-conjugated molecule so as to inhibit the π-π interaction between the π-conjugated molecule.
  12.  請求項11記載の電子装置において、
     前記常温液状有機材料は、封止体により封止されている、電子装置。
    In the electronic device according to claim 11,
    The said normal temperature liquid organic material is an electronic device sealed by the sealing body.
  13.  請求項12記載の電子装置において、
     前記封止体は、可撓性を有する、電子装置。
    In the electronic device according to claim 12,
    The electronic device, wherein the sealing body is flexible.
  14.  請求項11記載の電子装置において、
     前記第1電極および前記第2電極は、可撓性を有する、電子装置。
    In the electronic device according to claim 11,
    The electronic device, wherein the first electrode and the second electrode have flexibility.
  15.  請求項11記載の電子装置において、
     前記π共役系分子は、ポルフィリン、オリゴ(p-)フェニレンビニレン、フルオレン、アントラセン、アゾベンゼン、ピレン、および、スチルベンからなる群から選択され、
     前記2以上の側鎖のそれぞれは、分岐アルキル鎖であって、
     前記分岐アルキル鎖は、次の(化学式1)で表されるように、前記π共役系分子に結合し、
    Figure JPOXMLDOC01-appb-C000004
     前記Sは、エーテル基、メチレン基、および、フェニル基からなる群から選択される少なくとも1つの置換基であり、
     前記R1および前記R2の組み合わせは、次の(化学式2)
    Figure JPOXMLDOC01-appb-C000005
    からなる群から選択される、電子装置。
    In the electronic device according to claim 11,
    The π-conjugated molecule is selected from the group consisting of porphyrin, oligo (p-) phenylenevinylene, fluorene, anthracene, azobenzene, pyrene and stilbene,
    Each of the two or more side chains is a branched alkyl chain, and
    The branched alkyl chain is bonded to the π-conjugated molecule as represented by the following (Formula 1):
    Figure JPOXMLDOC01-appb-C000004
    The S is at least one substituent selected from the group consisting of an ether group, a methylene group, and a phenyl group,
    The combination of the R1 and the R2 is represented by the following Formula 2
    Figure JPOXMLDOC01-appb-C000005
    An electronic device selected from the group consisting of
  16.  請求項15記載の電子装置において、
     前記2以上の側鎖を有するπ共役系分子は、次の(化学式3)
    Figure JPOXMLDOC01-appb-C000006
    のいずれかで表される、電子装置。
    In the electronic device according to claim 15,
    The π-conjugated molecule having the two or more side chains is represented by the following Formula 3
    Figure JPOXMLDOC01-appb-C000006
    An electronic device, represented by one of the following:
  17.  請求項13記載の電子装置において、
     前記封止体に封止された前記常温液状有機材料を変形させることにより、前記第1電極と前記第2電極との間の電位差を変化させる、電子装置。
     
    In the electronic device according to claim 13,
    An electronic device, wherein a potential difference between the first electrode and the second electrode is changed by deforming the normal temperature liquid organic material sealed in the sealing body.
PCT/JP2018/023828 2017-06-26 2018-06-22 Electronic device WO2019004085A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019526867A JP6948036B2 (en) 2017-06-26 2018-06-22 Electronic device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017124302 2017-06-26
JP2017-124302 2017-06-26

Publications (1)

Publication Number Publication Date
WO2019004085A1 true WO2019004085A1 (en) 2019-01-03

Family

ID=64740644

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/023828 WO2019004085A1 (en) 2017-06-26 2018-06-22 Electronic device

Country Status (2)

Country Link
JP (1) JP6948036B2 (en)
WO (1) WO2019004085A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012046849A1 (en) * 2010-10-07 2012-04-12 独立行政法人物質・材料研究機構 Liquid organic material at ambient temperature and use thereof
JP2015002607A (en) * 2013-06-14 2015-01-05 株式会社ビスキャス Vibration power generation body
JP2015192577A (en) * 2014-03-28 2015-11-02 シチズンホールディングス株式会社 power generator
WO2016114361A1 (en) * 2015-01-16 2016-07-21 国立大学法人 東京大学 Vibration power generation element

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012046849A1 (en) * 2010-10-07 2012-04-12 独立行政法人物質・材料研究機構 Liquid organic material at ambient temperature and use thereof
JP2015002607A (en) * 2013-06-14 2015-01-05 株式会社ビスキャス Vibration power generation body
JP2015192577A (en) * 2014-03-28 2015-11-02 シチズンホールディングス株式会社 power generator
WO2016114361A1 (en) * 2015-01-16 2016-07-21 国立大学法人 東京大学 Vibration power generation element

Also Published As

Publication number Publication date
JPWO2019004085A1 (en) 2020-05-21
JP6948036B2 (en) 2021-10-13

Similar Documents

Publication Publication Date Title
US9985554B2 (en) Triboelectric nanogenerator
Herz et al. Acceleration of singlet fission in an aza-derivative of TIPS-pentacene
Li et al. Largely improving the robustness and lifetime of triboelectric nanogenerators through automatic transition between contact and noncontact working states
US9843275B2 (en) Cylindrical and spherical triboelectric generators
Rao et al. Exciton fission and charge generation via triplet excitons in pentacene/C60 bilayers
Maness et al. Solid-state diode-like chemiluminescence based on serial, immobilized concentration gradients in mixed-valent poly [Ru (vbpy) 3](PF6) 2 films
Fan et al. Transparent triboelectric nanogenerators and self-powered pressure sensors based on micropatterned plastic films
Wu et al. Impact of intermolecular distance on singlet fission in a series of TIPS pentacene compounds
Boisseau et al. Electrostatic conversion for vibration energy harvesting
Jiang et al. Electronic ground state of higher acenes
Wang et al. Crystal engineering of biphenylene-containing acenes for high-mobility organic semiconductors
JP5605705B2 (en) Vertical field effect transistor
US20160065091A1 (en) Triboelectric nanogenerator
Yu et al. Harvesting energy from low-frequency excitations through alternate contacts between water and two dielectric materials
US20140246951A1 (en) Segmentally structured disk triboelectric nanogenerator
Wang et al. Matrix-assisted energy conversion in nanostructured piezoelectric arrays
Yun et al. High quality electret based triboelectric nanogenerator for boosted and reliable electrical output performance
Zhang et al. Triboelectric nanogenerator array as a probe for in situ dynamic mapping of interface charge transfer at a liquid–solid contacting
Lei et al. Aceno [2, 1, 3] thiadiazoles for field-effect transistors: synthesis and crystal packing
CN105099256A (en) Generator and power generation method based on electrostatic induction
Zhang et al. Supramolecular self-assembly in a sub-micrometer electrodic cavity: fabrication of heat-reversible π-gel memristor
CN104980059B (en) A kind of output device of the electrical signal including Cyclic flexion structure
CN106026758B (en) Generator and preparation method thereof and generating set
Li et al. Nanocomposite electret with surface potential self-recovery from water dipping for environmentally stable energy harvesting
KR20180029629A (en) Triboelectric device using ferroelectric material

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18824797

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019526867

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18824797

Country of ref document: EP

Kind code of ref document: A1