WO2019003461A1 - Travel control device and travel control method - Google Patents

Travel control device and travel control method Download PDF

Info

Publication number
WO2019003461A1
WO2019003461A1 PCT/JP2017/030657 JP2017030657W WO2019003461A1 WO 2019003461 A1 WO2019003461 A1 WO 2019003461A1 JP 2017030657 W JP2017030657 W JP 2017030657W WO 2019003461 A1 WO2019003461 A1 WO 2019003461A1
Authority
WO
WIPO (PCT)
Prior art keywords
target
rotational speed
rotation number
gain
speed
Prior art date
Application number
PCT/JP2017/030657
Other languages
French (fr)
Japanese (ja)
Inventor
刀谷 郁也
Original Assignee
ニチユ三菱フォークリフト株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ニチユ三菱フォークリフト株式会社 filed Critical ニチユ三菱フォークリフト株式会社
Publication of WO2019003461A1 publication Critical patent/WO2019003461A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Definitions

  • the present invention relates to a travel control device and a travel control method of an industrial vehicle.
  • a forklift described in Patent Document 1 As an industrial vehicle provided with a traveling control device, for example, a forklift described in Patent Document 1 is known.
  • the traveling control device calculates a target rotation speed (target speed) which is a target value of the rotation speed of the traveling motor from the tilt angle of the accelerator lever. Then, the traveling control device performs PI control based on the target rotational speed and the current rotational speed (current speed) of the traveling motor, and outputs a control signal (torque command) to the traveling motor for traveling.
  • the current rotational speed (current speed) of the motor is matched with the target rotational speed (target speed).
  • acceleration control is performed on a flat road as traveling control, automatic torque is increased on an uphill road, and neutral regeneration and downhill regeneration are also performed.
  • neutral regeneration and downhill regeneration are also performed.
  • PI control is performed like the said forklift, since travel speed hardly changes with the weight of load, there existed a problem that operation feeling was not good.
  • the present invention has been made in view of the above circumstances, and it is an object of the present invention to provide a travel control device and a travel control method capable of simplifying control and having improved operation feeling. It is.
  • the traveling control device concerning the present invention is: It is a travel control device of an industrial vehicle, and An instruction rotation number calculation unit configured to calculate an instruction rotation number of a traveling motor of the industrial vehicle from a lever movement amount of an accelerator lever of the industrial vehicle; A target rotation number calculation unit that calculates a target rotation number of the traveling motor based on the designated rotation number, and performs lamp processing to gradually bring the target rotation number closer to the designated rotation number; A motor control unit that controls the traveling motor in accordance with the target rotational speed; The target rotational speed calculation unit A first processing unit that calculates the target number of revolutions while changing the gain of the ramp processing stepwise according to the relationship between the target number of revolutions and the designated number of revolutions; And a second processing unit configured to set an amount of change of the target rotational speed when the gain is changed by one step.
  • the above travel control device A photographing unit for photographing a worker driving the industrial vehicle and generating image data of the worker; A storage unit in which change amount setting data indicating a relationship between the worker and a change amount of the target rotational speed is registered in advance; Preferably, a management unit is configured to determine a change amount of the target rotation number based on the image data and the change amount setting data, and to cause the second processing unit to set the change amount of the target rotation number.
  • the above travel control device A biological information acquisition unit for acquiring biological information of the worker;
  • the target rotation number calculation unit may reduce the amount of change of the target rotation number when the biological information acquired by the biological information acquisition unit exceeds a predetermined threshold.
  • the first processing unit is The deviation between the target rotational speed and the instructed rotational speed is calculated, and the deviation is compared with a plurality of preset threshold values, so that the gain decreases as the target rotational speed approaches the instructed rotational speed. Alternatively, the gain may be changed in accordance with the result of the comparison.
  • the run control method concerning the present invention is: It is a travel control method of an industrial vehicle, An instruction rotation number calculation step of calculating an instruction rotation number of a travel motor of the industrial vehicle from a lever movement amount of an accelerator lever of the industrial vehicle; A target rotation number calculation step of calculating a target rotation number of the traveling motor based on the designated rotation number, and performing lamp processing to bring the target rotation number closer to the designated rotation number in stages; And a motor control step of controlling the traveling motor according to the target rotational speed, wherein the target rotational speed calculation step includes A first step of calculating the target number of revolutions while changing the gain of the ramp processing stepwise according to the relationship between the target number of revolutions and the designated number of revolutions; And a second step of setting, for each worker who drives the industrial vehicle, the amount of change of the target rotational speed when the gain is changed by one step.
  • the second step is A photographing step of photographing the worker by a photographing unit and generating image data of the worker; Change amount setting to set the change amount of the target number of rotations based on the image data, change amount setting data indicating the relationship between the operator and the change amount of the target number of rotations registered in advance in the storage unit And step may be included.
  • the biological information of the worker may be acquired, and the change amount of the target rotational speed may be reduced when the biological information exceeds a predetermined threshold.
  • the deviation between the target rotational speed and the instructed rotational speed is calculated, and the deviation is compared with a plurality of preset threshold values, so that the gain decreases as the target rotational speed approaches the instructed rotational speed.
  • the gain may be changed in accordance with the result of the comparison.
  • the forklift 100 and the management server 40 are shown in FIG.
  • the management server 40 manages traveling and cargo handling operations of the plurality of forklifts 100.
  • the travel control device according to the present embodiment includes a part of the configuration of the forklift 100 (the control device 10 and the in-vehicle camera 30) and a part of the configuration of the management server 40 (a storage unit 41 and a management unit 42).
  • the forklift 100 includes a pair of left and right straddle legs 2 extended to the front side of the vehicle body 1, a carriage 3 moving in the front and rear direction along the straddle legs 2, and a pair of left and right mast devices 4 erected on the carriage 3.
  • a pair of left and right forks 5 vertically movably attached to the mast device 4, a pair of left and right front wheels 6 provided on the straddle leg 2, and a caster provided on the right rear of the vehicle body 1 (under the driver's seat 7)
  • a wheel (not shown) and a control device 10 provided inside the vehicle body 1 are provided.
  • the forklift 100 includes a driving wheel 20 and a traveling motor 21 at the left rear of the vehicle body 1.
  • the traveling motor 21 is rotationally driven under the control of the control device 10
  • the power of the traveling motor 21 is transmitted to the drive wheel 20, and the drive wheel 20 rotates forward or reversely.
  • the forklift 100 includes a steering handle 8 for steering the drive wheels 20 and levers 9 on the upper surface of the vehicle body 1.
  • the levers 9 include a cargo handling lever (lift lever, tilt lever and reach lever) and an accelerator lever.
  • the control device 10 When an accelerator ON operation is performed to tilt the accelerator lever in the neutral position forward or backward, the control device 10 causes the drive wheel 20 to rotate in the forward direction, and reverse the drive wheel 20 in the backward direction.
  • the control device 10 changes the rotation direction of the drive wheel 20 when an accelerator reverse operation is performed such that the accelerator lever in the forward tilt state is tilted backward or the accelerator lever in the backward tilt state is tilted forward.
  • the control device 10 stops the rotation of the drive wheel 20.
  • the forklift 100 includes an on-vehicle camera 30 (corresponding to the “imaging unit” of the present invention) for imaging an operator who operates the forklift 100.
  • an on-vehicle camera 30 corresponding to the “imaging unit” of the present invention
  • the on-vehicle camera 30 captures an image of the worker
  • the on-vehicle camera 30 generates image data of the worker.
  • the generated image data is output to the management server 40.
  • the management server 40 includes a storage unit 41 and a management unit 42.
  • the management server 40 can mutually communicate with a plurality of forklifts 100.
  • worker data and change amount setting data indicating a relationship between the worker and a change amount of a target rotation number described later are registered in advance.
  • the worker data includes the face image of the worker, the name of the worker, the department to which the worker belongs, the ID and the like.
  • change amount setting data for example, worker A changes amount 1 (1 [rpm]), worker B changes amount 2 (2 [rpm]), and worker C changes amount 3 (3 [rpm]). And the amount of change associated with each worker.
  • the management unit 42 refers to the worker data and the change amount setting data of the storage unit 41, identifies the face image of the worker from the image data of the on-vehicle camera 30, and changes the target rotation number of the identified worker. decide.
  • the determined amount of change of the target rotational speed is output to the control device 10.
  • the control device 10 includes a lever movement amount calculation unit 11, an instruction rotation number calculation unit 12, a first processing unit 13 and a second processing unit 14 that constitute a target rotation number calculation unit, and a motor control unit 15. .
  • the control device 10 is configured by, for example, at least one microcomputer.
  • the lever movement amount calculation unit 11 calculates the lever movement amount from the tilt angle of the accelerator lever.
  • the tilt angle of the accelerator lever is input from tilt angle detection means (for example, a potentiometer) provided on the accelerator lever.
  • the lever movement amount has a non-linear relationship with the tilt angle. Specifically, as shown in FIG. 3, the larger the tilt angle, the larger the lever travel (the lever travel also maximizes when the tilt angle is maximum), but the larger the tilt angle, the more the lever travel changes As the amount increases, and the tilt angle decreases, the amount of change in lever movement decreases. For this reason, high-speed traveling can be easily performed in the range where the tilt angle is large, and low-speed travel can be easily performed in the range where the tilt angle is small. As a result, the operation feeling is improved.
  • the commanded rotation number calculation unit 12 calculates a commanded rotation number that is a command value of the rotation number of the traveling motor 21 from the lever movement amount. As shown in FIG. 4, the designated rotation number has a linear relationship with the lever movement amount. For this reason, the designated rotation number calculation unit 12 can calculate the designated rotation number by multiplying the lever movement amount by a predetermined coefficient. The calculated instruction rotation number is output to the first processing unit 13 of the target rotation number calculation unit.
  • the target rotation speed calculation unit includes a first processing unit 13 and a second processing unit 14.
  • the first processing unit 13 shares information of the second processing unit 14 (the amount of change of the target rotational speed set by the second processing unit 14).
  • the first processing unit 13 calculates a target rotation number that is a target value of the rotation number of the traveling motor 21 based on the designated rotation number at a predetermined cycle (for example, 2 ms). Specifically, the first processing unit 13 performs lamp processing to bring the target rotation speed closer to the instructed rotation speed in stages, and changes the gain of the lamp processing according to the deviation between the target rotation speed and the instructed rotation speed. While, the target number of revolutions is calculated.
  • the target rotational speed is a value less than the instructed rotational speed when the instructed rotational speed is positive (normal rotation), and the target rotational speed is a value greater than the instructed rotational speed when the instructed rotation speed is negative (reverse rotation) .
  • the gain of the ramp processing corresponds to the degree to which the target rotational speed is changed in the ramp processing.
  • the gain is increased, the degree of changing (increasing or decreasing) the target rotational speed also increases, so the time for the target rotational speed to reach the designated rotational speed becomes short. That is, the time until the current rotation number (current rotation number) of the traveling motor 21 reaches the designated rotation number becomes short.
  • the gain is reduced, the degree of changing the target rotational speed is also reduced, and therefore, the time until the target rotational speed reaches the designated rotational speed becomes longer. That is, the time until the current rotational speed reaches the designated rotational speed becomes long.
  • the gain is increased if the absolute value of the deviation between the target rotational speed and the instructed rotational speed is large, and the gain is reduced if the absolute value of the deviation is small.
  • the second processing unit 14 sets, for each worker, the amount of change of the target rotational speed when the gain is changed by one step. In the present embodiment, the second processing unit 14 sets the amount of change of the target rotational speed input from the management unit 42.
  • the travel control device includes a biological information acquisition unit that acquires biological information (for example, the heart rate) of the worker, the second processing unit 14 acquires the biological information acquired by the biological information acquisition unit.
  • T exceeds the predetermined threshold value, the change amount of the set target rotational speed may be reduced.
  • the biological information acquisition unit includes, for example, a heart rate sensor that can be worn on the worker's wrist.
  • the motor control unit 15 controls the traveling motor 21 in accordance with the target rotational speed. Specifically, the motor control unit 15 performs P control (proportional control) based on the target rotation speed and the current rotation speed (current rotation speed) of the traveling motor 21, and transmits a control signal ( Output the torque command).
  • P control proportional control
  • the current rotation number of the traveling motor 21 is input from, for example, an encoder provided to the traveling motor 21.
  • the first processing unit 13 calculates the target number of revolutions while changing the gain of the lamp processing according to the deviation between the target number of revolutions and the designated number of revolutions. It is not necessary to selectively use traveling control (for example, acceleration limitation is performed on a flat road, automatic torque is increased on an uphill road, and neutral regeneration and downhill regeneration are also performed). Therefore, according to the travel control device of the present embodiment, the control can be simplified.
  • the second processing unit 14 sets, for each worker, the amount of change in the target rotational speed when changing the gain, so that the operator's favorite operation fee Rings can be realized. Furthermore, in the present embodiment, the amount of change of the target rotational speed is automatically set by the on-vehicle camera 30, the storage unit 41, and the management unit 42. Therefore, the operator needs to set the amount of change of the target rotational speed. It becomes unnecessary.
  • [Drive control method] 5 and 6 show flowcharts of the travel control method according to the present embodiment.
  • the travel control method according to the present embodiment is realized by the travel control device shown in FIG. Below, let target rotation speed [rpm] be a target speed, and let instruction rotation speed [rpm] be an instruction
  • the traveling control method includes an instruction rotation number calculation step (S1, S2), a target rotation number calculation step (S3 to S12, S14 to S18, S101, S102), and a motor control step (S13). including.
  • the instruction rotation number calculation step (S1, S2) is a step of calculating an instruction rotation number (instruction speed) of the traveling motor 21. Specifically, when the angle (tilt angle) of the accelerator lever is input to the lever movement amount calculation unit 11 in step S1, the lever movement amount calculation unit 11 calculates the lever movement amount, and the instruction rotation number calculation unit Output to 12. In step S2, the instruction rotation number calculation unit 12 calculates an instruction speed from the lever movement amount.
  • the target rotation speed calculation step calculates a target rotation speed (target speed) of the traveling motor, and performs lamp processing to make the target speed approach the instruction speed in stages. It is a step.
  • the target rotation speed calculation step includes a first step (S3 to S12, S14 to S18) of calculating a target speed while changing the gain of the ramp processing in a stepwise manner, and a target speed when the gain is changed by one step. And a second step (S101, S102) of setting the amount of change.
  • the second step includes a photographing step (S101) and a change amount setting step (S102). Specifically, when the worker gets on the forklift 100 in step S101, the on-vehicle camera 30 photographs the worker and generates image data of the worker. The generated image data is output to the management unit 42 of the management server 40.
  • step S102 the management unit 42 refers to the worker data and change amount setting data of the storage unit 41, identifies the face image of the worker from the image data of the on-vehicle camera 30, and determines the target speed of the identified worker. Determine the amount of change.
  • the determined change amount of the target velocity is output to the second processing unit 14 of the control device 10, and the second processing unit 14 sets the change amount of the target velocity. In this embodiment, it is assumed that the change amount of the target speed is set to 1 [rpm].
  • the target speed in step S4 is zero. That is, the deviation is equal to the designated speed.
  • the target speed in step S4 is the target speed calculated immediately before.
  • the first processing unit 13 compares the deviation with a plurality of preset threshold values, and determines the gain according to the comparison result (steps S5 to S12).
  • the maximum value of the instruction speed is 3000 [rpm]
  • the minimum value is -3000 [rpm].
  • the first processing unit 13 compares the deviation with 0, and increases the target speed by one step (+1 [rpm]) if the deviation> 0 (step S5).
  • the first processing unit 13 compares the deviation with 1000 [rpm], and raises the target speed by one step (+1 [rpm]) if the deviation> 1000 [rpm] (step S6).
  • the first processing unit 13 compares the deviation with 2000 [rpm], and raises the target speed by one step (+1 [rpm]) if the deviation> 2000 [rpm] (step S7).
  • the first processing unit 13 compares the deviation with 3000 [rpm], and raises the target speed by one step (+1 [rpm]) when deviation> 3000 [rpm] (step S8).
  • the first processing unit 13 compares the deviation with 0, and reduces the target speed by one step ( ⁇ 1 [rpm]) if deviation ⁇ 0 (step S9).
  • the first processing unit 13 compares the deviation with -1000 [rpm], and reduces the target speed by one step (-1 [rpm]) if the deviation is less than -1000 [rpm] (step S10).
  • the first processing unit 13 compares the deviation with -2000 [rpm], and reduces the target speed by one step (-1 [rpm]) if deviation ⁇ -2000 [rpm] (step S11).
  • the first processing unit 13 compares the deviation with -3000 [rpm], and reduces the target speed by one step (-1 [rpm]) if the deviation is less than -3000 [rpm] (step S12). ).
  • the first processing unit 13 can change the gain of the ramp processing into four stages.
  • the target gain is increased by one step or decreased by 1 [rpm] to become a first gain.
  • 1000 [rpm] ⁇ deviation ⁇ 2000 [rpm] or ⁇ 2000 [rpm] ⁇ deviation ⁇ 1000 [rpm] the target speed is increased or decreased by 2 stages (2 [rpm] increase or decrease) second It becomes a gain.
  • the motor control step (S13) is a step of controlling the traveling motor 21 in accordance with the target rotational speed. Specifically, in step S13, the motor control unit 15 sets P at the target speed calculated by the first processing unit 13 and the input speed (current rotation number) input from the encoder provided at the traveling motor 21. Control and calculate torque. Then, the motor control unit 15 outputs a control signal (torque command) to the traveling motor 21.
  • FIG. 7A shows a change in gain of lamp processing when the designated speed is 3000 [rpm] and the first target speed is -3000 [rpm]. Since the deviation> 3000 [rpm] until the target speed becomes 0, the gain becomes the fourth gain that increases the target speed by 4 steps (increases 4 [rpm]). Thereafter, as the target speed approaches the commanded speed, the gain changes with the third gain, the second gain, and the first gain.
  • FIG. 7B shows a change in gain of lamp processing when the designated speed is ⁇ 3000 [rpm] and the initial target speed is 3000 [rpm]. Since the deviation is less than -3000 rpm until the target velocity reaches 0, the gain becomes the fourth gain that reduces the target velocity by 4 steps (decreases 4 rpm). Thereafter, as the target speed approaches the commanded speed, the gain changes with the third gain, the second gain, and the first gain.
  • FIG. 7C shows a change in gain of lamp processing when the indicated speed is 2000 [rpm] and the first target speed is -2000 [rpm]. Since the deviation> 3000 [rpm] until the target speed reaches -1000 [rpm], the gain becomes the fourth gain that causes the target speed to be increased by 4 steps (increased by 4 [rpm]). Thereafter, as the target speed approaches the commanded speed, the gain changes with the third gain, the second gain, and the first gain.
  • the first processing unit 13 compares the target speed with a predetermined threshold in steps S14 and S16.
  • the predetermined threshold is an increase / decrease value (+4 [rpm] or -4 [rpm]) of the target speed at the maximum gain (fourth gain).
  • step S14 in the case of target speed> threshold value (+4 [rpm]), in step S15, the first processing unit 13 reduces the target speed by four steps (decreases 4 [rpm]).
  • step S16 if target speed ⁇ threshold (-4 [rpm]), in step S17, the first processing unit 13 increases the target speed by four steps (increases 4 [rpm]).
  • step S18 the first processing unit 13 sets the target speed to zero.
  • the process proceeds to step S13.
  • the target speed is calculated while changing the gain of the lamp processing according to the deviation between the target speed and the instructed speed.
  • acceleration is limited on a flat road
  • automatic torque is increased on an uphill road
  • neutral regeneration and downhill regeneration are also performed. Therefore, according to the travel control method of the present embodiment, control can be simplified.
  • the amount of change in the target speed when the gain is changed is automatically set for each worker.
  • the operator's desired operation feeling can be realized, and the operator does not have to set the amount of change in the target rotational speed.
  • the biological information (for example, the heart rate) of the worker is acquired at a predetermined cycle, and the second step (S101) is performed when the biological information exceeds a predetermined threshold.
  • S102) may reduce the amount of change of the target speed.
  • the change amount of the target speed may be changed from 1 [rpm] to 0.5 [rpm].
  • the amount of change of the target speed when the target speed is increased or decreased by one step in the first step is changed from 1 [rpm] to 0.5 [rpm].
  • the present invention is not limited to the above-mentioned embodiment.
  • the first processing unit 13 changes the gain of the lamp processing into four stages according to the deviation between the target rotation speed (target speed) and the command rotation speed (command speed). It may be changed to a level below or may be changed to five or more levels.
  • the first processing unit 13 may change the gain of the lamp processing in accordance with the magnitude relationship between the designated rotation number, the target rotation number, and the zero vehicle speed point.
  • the zero vehicle speed is the number of revolutions of the traveling motor 21 when the speed of the forklift 100 is zero, and is zero.
  • the first processing unit 13 (1) In the case of 0 vehicle speed ⁇ target rotation speed ⁇ instructed rotation speed, or in the case of vehicle speed 0 point> target rotation speed> instructed rotation speed, the gain is set as the second gain, (2) If the vehicle speed 0 point ⁇ instructed rotation speed ⁇ target rotation speed, or if the vehicle speed 0 point> instructed rotation speed> target rotation speed, the gain is set as the first gain, (3) The gain may be set as the third gain in the case of instructed rotation speed ⁇ vehicle speed 0 point ⁇ target rotation speed, or in the case of instructed rotation speed> vehicle speed 0 point> target rotation speed.
  • the configuration can be changed as appropriate.
  • the on-vehicle camera 30, the storage unit 41, and the management unit 42 are provided to automatically set the change amount of the target rotation number, but the work of the operator setting the change amount of the target rotation number If the above can be tolerated, the above configuration can be omitted.
  • the motor control unit 15 perform P control, in the present invention, the operation feeling is improved to some extent by calculating the instruction rotation number from the lever movement amount having a non-linear relationship with the tilt angle of the accelerator lever.
  • the control unit 15 may perform control other than P control, for example, PI control or PID control.
  • Industrial vehicles according to the present invention include cargo handling vehicles other than forklifts.
  • Reference Signs List 1 vehicle body 2 straddle leg 3 carriage 4 mast device 5 fork 6 front wheel 7 driver's seat 8 steering handle 9 lever 10 control device 11 lever movement amount calculation unit 12 commanded rotation number calculation unit 13 first processing unit 14 second processing unit 15 motor Control unit 20 Drive wheel 21 Drive motor 30 In-vehicle camera 40 Management server 41 Storage unit 42 Management unit 100 Forklift

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Auxiliary Drives, Propulsion Controls, And Safety Devices (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Forklifts And Lifting Vehicles (AREA)

Abstract

The present invention provides a travel control device and a travel control method, which can simplify control and provide an improved operating experience. As a travel control device for an industrial vehicle, the travel control device is provided with: an instruction rotation speed calculating unit 12 which calculates an instruction rotation speed of a traveling motor; a target rotation speed calculating unit which calculates a target rotation speed of the traveling motor and performs a ramping process for bringing the target rotation speed close to the instruction rotation speed in a stepwise manner; and a motor control unit 15 which controls the traveling motor according to the target rotation speed. The target rotation speed calculating unit is provided with: a first processing unit 13 which calculates the target rotation speed while changing the gain of the ramping process in a stepwise manner according to the relationship between the target rotation speed and the instruction rotation speed; and a second processing unit 14 which sets the degree to which the target rotation speed changes when the gain is changed one step.

Description

走行制御装置および走行制御方法Traveling control device and traveling control method
 本発明は、産業車両の走行制御装置および走行制御方法に関する。 The present invention relates to a travel control device and a travel control method of an industrial vehicle.
 走行制御装置を備えた産業車両としては、例えば、特許文献1に記載のフォークリフトが知られている。特許文献1に記載のフォークリフトでは、走行制御装置が、アクセルレバーの倒し角から、走行用モータの回転数の目標値である目標回転数(目標速度)を算出する。そして、走行制御装置は、目標回転数と走行用モータの現在の回転数(現在の速度)とでPI制御を行い、走行用モータに対して制御信号(トルク指令)を出力して、走行用モータの現在の回転数(現在の速度)を目標回転数(目標速度)に一致させる。 As an industrial vehicle provided with a traveling control device, for example, a forklift described in Patent Document 1 is known. In the forklift described in Patent Document 1, the traveling control device calculates a target rotation speed (target speed) which is a target value of the rotation speed of the traveling motor from the tilt angle of the accelerator lever. Then, the traveling control device performs PI control based on the target rotational speed and the current rotational speed (current speed) of the traveling motor, and outputs a control signal (torque command) to the traveling motor for traveling. The current rotational speed (current speed) of the motor is matched with the target rotational speed (target speed).
特開2012-90463号公報JP 2012-90463 A
 上記フォークリフト含む従来のフォークリフトでは、一般に、走行制御として、平坦路では加速制限を行い、登坂路ではオートトルクアップを行い、さらにニュートラル回生や降坂時回生なども行うため、制御が複雑になるという問題があった。また、上記フォークリフトのようにPI制御を行った場合、走行速度が荷物の重さによってほとんど変わらないため、操作フィーリングが良くないという問題があった。 In the conventional forklift including the above-mentioned forklift, in general, acceleration control is performed on a flat road as traveling control, automatic torque is increased on an uphill road, and neutral regeneration and downhill regeneration are also performed. There was a problem. Moreover, when PI control is performed like the said forklift, since travel speed hardly changes with the weight of load, there existed a problem that operation feeling was not good.
 本発明は上記事情に鑑みてなされたものであって、その課題とするところは、制御を簡素化することが可能で、かつ操作フィーリングが改善された走行制御装置および走行制御方法を提供することにある。 The present invention has been made in view of the above circumstances, and it is an object of the present invention to provide a travel control device and a travel control method capable of simplifying control and having improved operation feeling. It is.
 上記課題を解決するために、本発明に係る走行制御装置は、
 産業車両の走行制御装置であって、
 前記産業車両のアクセルレバーのレバー移動量から、前記産業車両の走行用モータの指示回転数を算出する指示回転数算出部と、
 前記指示回転数に基づいて前記走行用モータの目標回転数を算出するとともに、前記目標回転数を前記指示回転数に段階的に近づけるランプ処理を行う目標回転数算出部と、
 前記目標回転数に従って前記走行用モータを制御するモータ制御部と、を備え、
 前記目標回転数算出部は、
 前記ランプ処理のゲインを前記目標回転数と前記指示回転数との関係に応じて段階的に変更しつつ、前記目標回転数を算出する第1処理部と、
 前記ゲインを1段階変化させたときの前記目標回転数の変化量を設定する第2処理部と、を備える
ことを特徴とする。
In order to solve the above-mentioned subject, the traveling control device concerning the present invention is:
It is a travel control device of an industrial vehicle, and
An instruction rotation number calculation unit configured to calculate an instruction rotation number of a traveling motor of the industrial vehicle from a lever movement amount of an accelerator lever of the industrial vehicle;
A target rotation number calculation unit that calculates a target rotation number of the traveling motor based on the designated rotation number, and performs lamp processing to gradually bring the target rotation number closer to the designated rotation number;
A motor control unit that controls the traveling motor in accordance with the target rotational speed;
The target rotational speed calculation unit
A first processing unit that calculates the target number of revolutions while changing the gain of the ramp processing stepwise according to the relationship between the target number of revolutions and the designated number of revolutions;
And a second processing unit configured to set an amount of change of the target rotational speed when the gain is changed by one step.
 上記走行制御装置は、
 前記産業車両を運転する作業者を撮影し、前記作業者の画像データを生成する撮影部と、
 前記作業者と前記目標回転数の変化量との関係を示す変化量設定データが予め登録された記憶部と、
 前記画像データおよび前記変化量設定データに基づいて前記目標回転数の変化量を決定し、前記第2処理部に前記目標回転数の変化量を設定させる管理部と、を備える
ことが好ましい。
The above travel control device
A photographing unit for photographing a worker driving the industrial vehicle and generating image data of the worker;
A storage unit in which change amount setting data indicating a relationship between the worker and a change amount of the target rotational speed is registered in advance;
Preferably, a management unit is configured to determine a change amount of the target rotation number based on the image data and the change amount setting data, and to cause the second processing unit to set the change amount of the target rotation number.
 上記走行制御装置は、
 前記作業者の生体情報を取得する生体情報取得部を備え、
 前記目標回転数算出部は、前記生体情報取得部で取得した前記生体情報が所定の閾値を超えている場合に、前記目標回転数の変化量を小さくしてもよい。
The above travel control device
A biological information acquisition unit for acquiring biological information of the worker;
The target rotation number calculation unit may reduce the amount of change of the target rotation number when the biological information acquired by the biological information acquisition unit exceeds a predetermined threshold.
 前記第1処理部は、
 前記目標回転数と前記指示回転数との偏差を算出し、前記偏差と予め設定された複数の閾値との比較を行い、前記目標回転数が前記指示回転数に近づくほど前記ゲインが小さくなるように、前記比較の結果に応じて前記ゲインを変更してもよい。
The first processing unit is
The deviation between the target rotational speed and the instructed rotational speed is calculated, and the deviation is compared with a plurality of preset threshold values, so that the gain decreases as the target rotational speed approaches the instructed rotational speed. Alternatively, the gain may be changed in accordance with the result of the comparison.
 上記課題を解決するために、本発明に係る走行制御方法は、
 産業車両の走行制御方法であって、
 前記産業車両のアクセルレバーのレバー移動量から、前記産業車両の走行用モータの指示回転数を算出する指示回転数算出ステップと、
 前記指示回転数に基づいて前記走行用モータの目標回転数を算出するとともに、前記目標回転数を前記指示回転数に段階的に近づけるランプ処理を行う目標回転数算出ステップと、
 前記目標回転数に従って前記走行用モータを制御するモータ制御ステップと、を含み、 前記目標回転数算出ステップは、
 前記ランプ処理のゲインを前記目標回転数と前記指示回転数との関係に応じて段階的に変更しつつ、前記目標回転数を算出する第1ステップと、
 前記ゲインを1段階変化させたときの前記目標回転数の変化量を、前記産業車両を運転する作業者ごとに設定する第2ステップと、を含む
ことを特徴とする。
In order to solve the above-mentioned subject, the run control method concerning the present invention is:
It is a travel control method of an industrial vehicle,
An instruction rotation number calculation step of calculating an instruction rotation number of a travel motor of the industrial vehicle from a lever movement amount of an accelerator lever of the industrial vehicle;
A target rotation number calculation step of calculating a target rotation number of the traveling motor based on the designated rotation number, and performing lamp processing to bring the target rotation number closer to the designated rotation number in stages;
And a motor control step of controlling the traveling motor according to the target rotational speed, wherein the target rotational speed calculation step includes
A first step of calculating the target number of revolutions while changing the gain of the ramp processing stepwise according to the relationship between the target number of revolutions and the designated number of revolutions;
And a second step of setting, for each worker who drives the industrial vehicle, the amount of change of the target rotational speed when the gain is changed by one step.
 前記第2ステップは、
 撮影部で前記作業者を撮影し、前記作業者の画像データを生成する撮影ステップと、
 前記画像データと、記憶部に予め登録された前記作業者と前記目標回転数の変化量との関係を示す変化量設定データと、に基づいて前記目標回転数の変化量を設定する変化量設定ステップと、を含んでもよい。
The second step is
A photographing step of photographing the worker by a photographing unit and generating image data of the worker;
Change amount setting to set the change amount of the target number of rotations based on the image data, change amount setting data indicating the relationship between the operator and the change amount of the target number of rotations registered in advance in the storage unit And step may be included.
 前記第1ステップでは、
 前記作業者の生体情報を取得し、前記生体情報が所定の閾値を超えている場合に、前記目標回転数の変化量を小さくしてもよい。
In the first step,
The biological information of the worker may be acquired, and the change amount of the target rotational speed may be reduced when the biological information exceeds a predetermined threshold.
 前記第1ステップでは、
 前記目標回転数と前記指示回転数との偏差を算出し、前記偏差と予め設定された複数の閾値との比較を行い、前記目標回転数が前記指示回転数に近づくほど前記ゲインが小さくなるように、前記比較の結果に応じて前記ゲインを変更してもよい。
In the first step,
The deviation between the target rotational speed and the instructed rotational speed is calculated, and the deviation is compared with a plurality of preset threshold values, so that the gain decreases as the target rotational speed approaches the instructed rotational speed. Alternatively, the gain may be changed in accordance with the result of the comparison.
 本発明によれば、制御を簡素化することが可能で、かつ操作フィーリングが改善された走行制御装置および走行制御方法を提供することができる。 According to the present invention, it is possible to provide a travel control device and a travel control method capable of simplifying control and having improved operation feeling.
本発明に係る走行制御装置を示す図である。It is a figure showing the run control device concerning the present invention. 本発明に係る走行制御装置のブロック図である。It is a block diagram of a traveling control device concerning the present invention. アクセルレバーの倒し角とレバー移動量との関係を示す図である。It is a figure which shows the relationship between the tilting angle of an accelerator lever, and a lever movement amount. レバー移動量と指示回転数との関係を示す図である。It is a figure which shows the relationship between lever movement amount and instruction | command rotation speed. 本発明に係る走行制御方法のフローチャートである。It is a flowchart of the traveling control method concerning the present invention. 本発明に係る走行制御方法の第2ステップのフローチャートである。It is a flowchart of the 2nd step of the traveling control method concerning the present invention. ランプ処理のゲインを説明するための図である。It is a figure for demonstrating the gain of lamp processing.
 以下、添付図面を参照して、本発明に係る走行制御装置および走行制御方法の実施形態について説明する。なお、以下では、産業車両としてフォークリフトを例に挙げて説明する。 Hereinafter, embodiments of a travel control device and a travel control method according to the present invention will be described with reference to the attached drawings. In addition, below, a forklift is mentioned as an example and demonstrated as an industrial vehicle.
[走行制御装置]
 図1に、フォークリフト100および管理サーバ40を示す。管理サーバ40は、複数のフォークリフト100の走行および荷役作業を管理する。本実施形態に係る走行制御装置は、フォークリフト100の一部の構成(制御装置10、車載カメラ30)と、管理サーバ40の一部の構成(記憶部41、管理部42)と、を含む。
[Travel control device]
The forklift 100 and the management server 40 are shown in FIG. The management server 40 manages traveling and cargo handling operations of the plurality of forklifts 100. The travel control device according to the present embodiment includes a part of the configuration of the forklift 100 (the control device 10 and the in-vehicle camera 30) and a part of the configuration of the management server 40 (a storage unit 41 and a management unit 42).
 フォークリフト100は、車体1の前側に延出された左右一対のストラドルレッグ2と、ストラドルレッグ2に沿って前後方向に移動するキャリッジ3と、キャリッジ3に立設された左右一対のマスト装置4と、マスト装置4に昇降可能に取り付けられた左右一対のフォーク5と、ストラドルレッグ2に設けられた左右一対の前輪6と、車体1の右後部(運転席7の下側)に設けられたキャスタ輪(図示略)と、車体1の内部に設けられた制御装置10と、を備える。 The forklift 100 includes a pair of left and right straddle legs 2 extended to the front side of the vehicle body 1, a carriage 3 moving in the front and rear direction along the straddle legs 2, and a pair of left and right mast devices 4 erected on the carriage 3. A pair of left and right forks 5 vertically movably attached to the mast device 4, a pair of left and right front wheels 6 provided on the straddle leg 2, and a caster provided on the right rear of the vehicle body 1 (under the driver's seat 7) A wheel (not shown) and a control device 10 provided inside the vehicle body 1 are provided.
 フォークリフト100は、車体1の左後部に、駆動輪20と、走行用モータ21とを備える。制御装置10の制御下で走行用モータ21が回転駆動すると、走行用モータ21の動力が駆動輪20に伝達され、駆動輪20が正転または逆転する。さらに、フォークリフト100は、車体1の上面に、駆動輪20を操舵するためのステアリングハンドル8と、レバー類9と、を備える。レバー類9は、荷役レバー(リフトレバー、ティルトレバーおよびリーチレバー)とアクセルレバーと、を含む。 The forklift 100 includes a driving wheel 20 and a traveling motor 21 at the left rear of the vehicle body 1. When the traveling motor 21 is rotationally driven under the control of the control device 10, the power of the traveling motor 21 is transmitted to the drive wheel 20, and the drive wheel 20 rotates forward or reversely. Furthermore, the forklift 100 includes a steering handle 8 for steering the drive wheels 20 and levers 9 on the upper surface of the vehicle body 1. The levers 9 include a cargo handling lever (lift lever, tilt lever and reach lever) and an accelerator lever.
 ニュートラル位置のアクセルレバーを前傾または後傾させるアクセルON操作が行われると、制御装置10は、前傾の場合に駆動輪20を正転させ、後傾の場合に駆動輪20を逆転させる。前傾状態のアクセルレバーを後傾状態にさせたり後傾状態のアクセルレバーを前傾状態にさせたりするアクセル反転操作が行われると、制御装置10は、駆動輪20の回転方向を変える。前傾状態または後傾状態のアクセルレバーをニュートラル位置に戻すアクセルOFF操作が行われると、制御装置10は、駆動輪20の回転を停止させる。  When an accelerator ON operation is performed to tilt the accelerator lever in the neutral position forward or backward, the control device 10 causes the drive wheel 20 to rotate in the forward direction, and reverse the drive wheel 20 in the backward direction. The control device 10 changes the rotation direction of the drive wheel 20 when an accelerator reverse operation is performed such that the accelerator lever in the forward tilt state is tilted backward or the accelerator lever in the backward tilt state is tilted forward. When the accelerator OFF operation for returning the acceleration lever in the forward or backward tilt state to the neutral position is performed, the control device 10 stops the rotation of the drive wheel 20.
 フォークリフト100は、フォークリフト100を運転する作業者を撮影するための車載カメラ30(本発明の「撮影部」に相当)を備える。車載カメラ30は、作業者を撮影すると、当該作業者の画像データを生成する。生成された画像データは、管理サーバ40に出力される。 The forklift 100 includes an on-vehicle camera 30 (corresponding to the “imaging unit” of the present invention) for imaging an operator who operates the forklift 100. When the on-vehicle camera 30 captures an image of the worker, the on-vehicle camera 30 generates image data of the worker. The generated image data is output to the management server 40.
 管理サーバ40は、記憶部41と、管理部42と、を備える。管理サーバ40は、複数のフォークリフト100と相互に通信を行うことができる。 The management server 40 includes a storage unit 41 and a management unit 42. The management server 40 can mutually communicate with a plurality of forklifts 100.
 記憶部41には、作業者データと、作業者と後述する目標回転数の変化量との関係を示す変化量設定データと、が予め登録されている。作業者データには、作業者の顔画像と、作業者の氏名、所属部署、ID等が含まれる。変化量設定データには、例えば、作業者Aは変化量1(1[rpm])、作業者Bは変化量2(2[rpm])、作業者Cは変化量3(3[rpm])というような、作業者ごとに関連付けされた変化量が含まれる。 In the storage unit 41, worker data and change amount setting data indicating a relationship between the worker and a change amount of a target rotation number described later are registered in advance. The worker data includes the face image of the worker, the name of the worker, the department to which the worker belongs, the ID and the like. For change amount setting data, for example, worker A changes amount 1 (1 [rpm]), worker B changes amount 2 (2 [rpm]), and worker C changes amount 3 (3 [rpm]). And the amount of change associated with each worker.
 管理部42は、記憶部41の作業者データおよび変化量設定データを参照して、車載カメラ30の画像データから作業者の顔画像を特定し、特定した作業者の目標回転数の変化量を決定する。決定した目標回転数の変化量は、制御装置10に出力される。 The management unit 42 refers to the worker data and the change amount setting data of the storage unit 41, identifies the face image of the worker from the image data of the on-vehicle camera 30, and changes the target rotation number of the identified worker. decide. The determined amount of change of the target rotational speed is output to the control device 10.
 図2に、制御装置10の具体的な構成を示す。制御装置10は、レバー移動量算出部11と、指示回転数算出部12と、目標回転数算出部を構成する第1処理部13および第2処理部14と、モータ制御部15と、を備える。制御装置10は、例えば、少なくとも1つのマイコンにより構成される。 A specific configuration of the control device 10 is shown in FIG. The control device 10 includes a lever movement amount calculation unit 11, an instruction rotation number calculation unit 12, a first processing unit 13 and a second processing unit 14 that constitute a target rotation number calculation unit, and a motor control unit 15. . The control device 10 is configured by, for example, at least one microcomputer.
 レバー移動量算出部11は、アクセルレバーの倒し角からレバー移動量を算出する。アクセルレバーの倒し角は、アクセルレバーに設けられた倒し角検出手段(例えば、ポテンショメータ)から入力される。レバー移動量は、倒し角と非線形関係を有する。具体的には、図3に示すとおり、倒し角が大きいとレバー移動量も大きくなる(倒し角が最大のときにレバー移動量も最大になる)が、倒し角が大きいほどレバー移動量の変化量が大きくなり、倒し角が小さいほどレバー移動量の変化量が小さくなる。このため、倒し角が大きい範囲では高速走行を容易に行うことができ、倒し角が小さい範囲では微速走行を容易に行うことができる。その結果、操作フィーリングが向上する。 The lever movement amount calculation unit 11 calculates the lever movement amount from the tilt angle of the accelerator lever. The tilt angle of the accelerator lever is input from tilt angle detection means (for example, a potentiometer) provided on the accelerator lever. The lever movement amount has a non-linear relationship with the tilt angle. Specifically, as shown in FIG. 3, the larger the tilt angle, the larger the lever travel (the lever travel also maximizes when the tilt angle is maximum), but the larger the tilt angle, the more the lever travel changes As the amount increases, and the tilt angle decreases, the amount of change in lever movement decreases. For this reason, high-speed traveling can be easily performed in the range where the tilt angle is large, and low-speed travel can be easily performed in the range where the tilt angle is small. As a result, the operation feeling is improved.
 指示回転数算出部12は、レバー移動量から、走行用モータ21の回転数の指示値である指示回転数を算出する。図4に示すとおり、指示回転数は、レバー移動量と線形関係を有する。このため、指示回転数算出部12は、レバー移動量に所定の係数を乗算することで、指示回転数を算出することができる。算出された指示回転数は、目標回転数算出部の第1処理部13に出力される。 The commanded rotation number calculation unit 12 calculates a commanded rotation number that is a command value of the rotation number of the traveling motor 21 from the lever movement amount. As shown in FIG. 4, the designated rotation number has a linear relationship with the lever movement amount. For this reason, the designated rotation number calculation unit 12 can calculate the designated rotation number by multiplying the lever movement amount by a predetermined coefficient. The calculated instruction rotation number is output to the first processing unit 13 of the target rotation number calculation unit.
 目標回転数算出部は、第1処理部13と、第2処理部14と、を含む。第1処理部13は、第2処理部14の情報(第2処理部14で設定された目標回転数の変化量)を共有している。 The target rotation speed calculation unit includes a first processing unit 13 and a second processing unit 14. The first processing unit 13 shares information of the second processing unit 14 (the amount of change of the target rotational speed set by the second processing unit 14).
 第1処理部13は、所定の周期(例えば、2[ms])で、指示回転数に基づいて走行用モータ21の回転数の目標値である目標回転数を算出する。具体的には、第1処理部13は、目標回転数を指示回転数に段階的に近づけるランプ処理を行い、かつ目標回転数と指示回転数との偏差に応じてランプ処理のゲインを変更しつつ、目標回転数を算出する。目標回転数は、指示回転数が正(正転)の場合には指示回転数以下の値になり、指示回転数が負(逆転)の場合に目標回転数が指示回転数以上の値になる。 The first processing unit 13 calculates a target rotation number that is a target value of the rotation number of the traveling motor 21 based on the designated rotation number at a predetermined cycle (for example, 2 ms). Specifically, the first processing unit 13 performs lamp processing to bring the target rotation speed closer to the instructed rotation speed in stages, and changes the gain of the lamp processing according to the deviation between the target rotation speed and the instructed rotation speed. While, the target number of revolutions is calculated. The target rotational speed is a value less than the instructed rotational speed when the instructed rotational speed is positive (normal rotation), and the target rotational speed is a value greater than the instructed rotational speed when the instructed rotation speed is negative (reverse rotation) .
 ランプ処理のゲインは、ランプ処理において目標回転数を変化させる度合に相当する。ゲインを大きくすると、目標回転数を変化させる(増加または減少させる)度合も大きくなるので、目標回転数が指示回転数に達するまでの時間が短くなる。すなわち、走行用モータ21の現在の回転数(現在回転数)が指示回転数に達するまでの時間が短くなる。一方、ゲインを小さくすると、目標回転数を変化させる度合も小さくなるので、目標回転数が指示回転数に達するまでの時間が長くなる。すなわち、現在回転数が指示回転数に達するまでの時間が長くなる。本実施形態では、目標回転数と指示回転数との偏差の絶対値が大きければゲインは大きくなり、偏差の絶対値が小さければゲインは小さくなる。 The gain of the ramp processing corresponds to the degree to which the target rotational speed is changed in the ramp processing. When the gain is increased, the degree of changing (increasing or decreasing) the target rotational speed also increases, so the time for the target rotational speed to reach the designated rotational speed becomes short. That is, the time until the current rotation number (current rotation number) of the traveling motor 21 reaches the designated rotation number becomes short. On the other hand, when the gain is reduced, the degree of changing the target rotational speed is also reduced, and therefore, the time until the target rotational speed reaches the designated rotational speed becomes longer. That is, the time until the current rotational speed reaches the designated rotational speed becomes long. In the present embodiment, the gain is increased if the absolute value of the deviation between the target rotational speed and the instructed rotational speed is large, and the gain is reduced if the absolute value of the deviation is small.
 第2処理部14は、ゲインを1段階変化させたときの目標回転数の変化量を、作業者ごとに設定する。本実施形態では、第2処理部14は、管理部42から入力された目標回転数の変化量を設定する。本実施形態に係る走行制御装置が、作業者の生体情報(例えば、心拍数)を取得する生体情報取得部を備えている場合、第2処理部14は、生体情報取得部で取得した生体情報が所定の閾値を超えているときに、設定した目標回転数の変化量を小さくしてもよい。生体情報取得部は、例えば、作業者の手首に装着可能な心拍センサを含む。 The second processing unit 14 sets, for each worker, the amount of change of the target rotational speed when the gain is changed by one step. In the present embodiment, the second processing unit 14 sets the amount of change of the target rotational speed input from the management unit 42. When the travel control device according to the present embodiment includes a biological information acquisition unit that acquires biological information (for example, the heart rate) of the worker, the second processing unit 14 acquires the biological information acquired by the biological information acquisition unit. When T exceeds the predetermined threshold value, the change amount of the set target rotational speed may be reduced. The biological information acquisition unit includes, for example, a heart rate sensor that can be worn on the worker's wrist.
 モータ制御部15は、目標回転数に従って走行用モータ21を制御する。具体的には、モータ制御部15は、目標回転数と走行用モータ21の現在の回転数(現在回転数)とでP制御(比例制御)を行い、走行用モータ21に対して制御信号(トルク指令)を出力する。走行用モータ21の現在回転数は、例えば、走行用モータ21に設けられたエンコーダから入力される。 The motor control unit 15 controls the traveling motor 21 in accordance with the target rotational speed. Specifically, the motor control unit 15 performs P control (proportional control) based on the target rotation speed and the current rotation speed (current rotation speed) of the traveling motor 21, and transmits a control signal ( Output the torque command). The current rotation number of the traveling motor 21 is input from, for example, an encoder provided to the traveling motor 21.
 上記のとおりP制御を行うことで、フォーク5上の荷物が重くなれば目標回転数(目標速度)に達するまでの時間が長くなり、フォーク5上の荷物が軽くなれば目標回転数(目標速度)に達するまでの時間が短くなる。これにより、操作フィーリングが向上する。 By performing P control as described above, if the load on the fork 5 is heavy, the time to reach the target rotation speed (target speed) will be longer, and if the load on the fork 5 is lighter, the target rotation speed (target speed The time to reach) is shortened. This improves the operation feeling.
 結局、本実施形態に係る走行制御装置では、第1処理部13が、目標回転数と指示回転数との偏差に応じてランプ処理のゲインを変更しつつ目標回転数を算出するので、複数の走行制御を使い分ける(例えば、平坦路では加速制限を行い、登坂路ではオートトルクアップを行い、さらにニュートラル回生や降坂時回生なども行う)必要がなくなる。したがって、本実施形態に係る走行制御装置によれば、制御を簡素化することできる。 After all, in the travel control device according to the present embodiment, the first processing unit 13 calculates the target number of revolutions while changing the gain of the lamp processing according to the deviation between the target number of revolutions and the designated number of revolutions. It is not necessary to selectively use traveling control (for example, acceleration limitation is performed on a flat road, automatic torque is increased on an uphill road, and neutral regeneration and downhill regeneration are also performed). Therefore, according to the travel control device of the present embodiment, the control can be simplified.
 また、本実施形態に係る走行制御装置によれば、第2処理部14が、ゲインを変化させたときの目標回転数の変化量を作業者ごとに設定するので、作業者の好みの操作フィーリングを実現することができる。さらに、本実施形態では、車載カメラ30、記憶部41、管理部42により、目標回転数の変化量が自動的に設定されるので、作業者は、目標回転数の変化量を設定する作業が不要となる。 Further, according to the travel control device according to the present embodiment, the second processing unit 14 sets, for each worker, the amount of change in the target rotational speed when changing the gain, so that the operator's favorite operation fee Rings can be realized. Furthermore, in the present embodiment, the amount of change of the target rotational speed is automatically set by the on-vehicle camera 30, the storage unit 41, and the management unit 42. Therefore, the operator needs to set the amount of change of the target rotational speed. It becomes unnecessary.
[走行制御方法]
 図5および図6に、本実施形態に係る走行制御方法のフローチャートを示す。本実施形態に係る走行制御方法は、図1に示す走行制御装置により実現される。以下では、目標回転数[rpm]を目標速度とし、指示回転数[rpm]を指示速度とする。
[Drive control method]
5 and 6 show flowcharts of the travel control method according to the present embodiment. The travel control method according to the present embodiment is realized by the travel control device shown in FIG. Below, let target rotation speed [rpm] be a target speed, and let instruction rotation speed [rpm] be an instruction | indication speed.
 本実施形態に係る走行制御方法は、指示回転数算出ステップ(S1、S2)と、目標回転数算出ステップ(S3~S12、S14~S18、S101、S102)と、モータ制御ステップ(S13)と、を含む。 The traveling control method according to the present embodiment includes an instruction rotation number calculation step (S1, S2), a target rotation number calculation step (S3 to S12, S14 to S18, S101, S102), and a motor control step (S13). including.
 指示回転数算出ステップ(S1、S2)は、走行用モータ21の指示回転数(指示速度)を算出するステップである。具体的には、ステップS1において、アクセルレバーの角度(倒し角)がレバー移動量算出部11に入力されると、レバー移動量算出部11は、レバー移動量を算出し、指示回転数算出部12に出力する。ステップS2において、指示回転数算出部12は、レバー移動量から指示速度を算出する。 The instruction rotation number calculation step (S1, S2) is a step of calculating an instruction rotation number (instruction speed) of the traveling motor 21. Specifically, when the angle (tilt angle) of the accelerator lever is input to the lever movement amount calculation unit 11 in step S1, the lever movement amount calculation unit 11 calculates the lever movement amount, and the instruction rotation number calculation unit Output to 12. In step S2, the instruction rotation number calculation unit 12 calculates an instruction speed from the lever movement amount.
 目標回転数算出ステップ(S3~S12、S14~S18、S101、S102)は、走行用モータの目標回転数(目標速度)を算出するとともに、目標速度を指示速度に段階的に近づけるランプ処理を行うステップである。この目標回転数算出ステップは、ランプ処理のゲインを段階的に変更しつつ目標速度を算出する第1ステップ(S3~S12、S14~S18)と、ゲインを1段階変化させたときの目標速度の変化量を設定する第2ステップ(S101、S102)と、を含む。 The target rotation speed calculation step (S3 to S12, S14 to S18, S101, S102) calculates a target rotation speed (target speed) of the traveling motor, and performs lamp processing to make the target speed approach the instruction speed in stages. It is a step. The target rotation speed calculation step includes a first step (S3 to S12, S14 to S18) of calculating a target speed while changing the gain of the ramp processing in a stepwise manner, and a target speed when the gain is changed by one step. And a second step (S101, S102) of setting the amount of change.
 図6に示すように、第2ステップは、撮影ステップ(S101)と、変化量設定ステップ(S102)と、を含む。具体的には、ステップS101において、作業者がフォークリフト100に搭乗すると、車載カメラ30は、作業者を撮影して当該作業者の画像データを生成する。生成された画像データは、管理サーバ40の管理部42に出力される。 As shown in FIG. 6, the second step includes a photographing step (S101) and a change amount setting step (S102). Specifically, when the worker gets on the forklift 100 in step S101, the on-vehicle camera 30 photographs the worker and generates image data of the worker. The generated image data is output to the management unit 42 of the management server 40.
 ステップS102において、管理部42は、記憶部41の作業者データおよび変化量設定データを参照して、車載カメラ30の画像データから作業者の顔画像を特定し、特定した作業者の目標速度の変化量を決定する。決定した目標速度の変化量は、制御装置10の第2処理部14に出力され、第2処理部14において、目標速度の変化量が設定される。本実施形態では、目標速度の変化量が1[rpm]に設定されたものとする。 In step S102, the management unit 42 refers to the worker data and change amount setting data of the storage unit 41, identifies the face image of the worker from the image data of the on-vehicle camera 30, and determines the target speed of the identified worker. Determine the amount of change. The determined change amount of the target velocity is output to the second processing unit 14 of the control device 10, and the second processing unit 14 sets the change amount of the target velocity. In this embodiment, it is assumed that the change amount of the target speed is set to 1 [rpm].
 再び図5を参照し、ステップS3において、第1処理部13は、ブレーキがオン(例えば、ブレーキペダルが踏まれている)か否かを判定する。ブレーキがオンでない(例えば、ブレーキペダルが踏まれていない)場合、ステップS4において、第1処理部13は、目標速度と指示速度との偏差を算出する。本実施形態では、偏差=指示速度-目標速度である。なお、フォークリフト100の始動時(停止状態のフォークリフト100において、アクセルレバーを前傾または後傾させるアクセルON操作が行われた時)は、ステップS4の目標速度は0になる。すなわち、偏差=指示速度となる。一方、フォークリフト100の始動後は、ステップS4の目標速度は、直前に算出した目標速度になる。 Referring again to FIG. 5, in step S3, the first processing unit 13 determines whether the brake is on (for example, the brake pedal is depressed). If the brake is not on (for example, the brake pedal is not depressed), in step S4, the first processing unit 13 calculates a deviation between the target speed and the instructed speed. In the present embodiment, the deviation = designated speed−target speed. When the forklift 100 is started (when the accelerator ON operation is performed to tilt the accelerator lever forward or backward in the stopped forklift 100), the target speed in step S4 is zero. That is, the deviation is equal to the designated speed. On the other hand, after the forklift 100 is started, the target speed in step S4 is the target speed calculated immediately before.
 第1処理部13は、偏差と予め設定された複数の閾値との比較を行い、比較の結果に応じてゲインを決定する(ステップS5~S12)。本実施形態では、指示速度の最大値を3000[rpm]とし、最小値を-3000[rpm]とする。 The first processing unit 13 compares the deviation with a plurality of preset threshold values, and determines the gain according to the comparison result (steps S5 to S12). In the present embodiment, the maximum value of the instruction speed is 3000 [rpm], and the minimum value is -3000 [rpm].
 まず、第1処理部13は、偏差と0との比較を行い、偏差>0の場合は目標速度を1段階(+1[rpm])アップさせる(ステップS5)。次に、第1処理部13は、偏差と1000[rpm]との比較を行い、偏差>1000[rpm]の場合は目標速度を1段階(+1[rpm])アップさせる(ステップS6)。次に、第1処理部13は、偏差と2000[rpm]との比較を行い、偏差>2000[rpm]の場合は目標速度を1段階(+1[rpm])アップさせる(ステップS7)。次に、第1処理部13は、偏差と3000[rpm]との比較を行い、偏差>3000[rpm]の場合は目標速度を1段階(+1[rpm])アップさせる(ステップS8)。 First, the first processing unit 13 compares the deviation with 0, and increases the target speed by one step (+1 [rpm]) if the deviation> 0 (step S5). Next, the first processing unit 13 compares the deviation with 1000 [rpm], and raises the target speed by one step (+1 [rpm]) if the deviation> 1000 [rpm] (step S6). Next, the first processing unit 13 compares the deviation with 2000 [rpm], and raises the target speed by one step (+1 [rpm]) if the deviation> 2000 [rpm] (step S7). Next, the first processing unit 13 compares the deviation with 3000 [rpm], and raises the target speed by one step (+1 [rpm]) when deviation> 3000 [rpm] (step S8).
 次に、第1処理部13は、偏差と0との比較を行い、偏差<0の場合は目標速度を1段階(-1[rpm])ダウンさせる(ステップS9)。次に、第1処理部13は、偏差と-1000[rpm]との比較を行い、偏差<-1000[rpm]の場合は目標速度を1段階(-1[rpm])ダウンさせる(ステップS10)。次に、第1処理部13は、偏差と-2000[rpm]との比較を行い、偏差<-2000[rpm]の場合は目標速度を1段階(-1[rpm])ダウンさせる(ステップS11)。次に、第1処理部13は、偏差と-3000[rpm]との比較を行い、偏差<-3000[rpm]の場合は目標速度を1段階(-1[rpm])ダウンさせる(ステップS12)。 Next, the first processing unit 13 compares the deviation with 0, and reduces the target speed by one step (−1 [rpm]) if deviation <0 (step S9). Next, the first processing unit 13 compares the deviation with -1000 [rpm], and reduces the target speed by one step (-1 [rpm]) if the deviation is less than -1000 [rpm] (step S10). ). Next, the first processing unit 13 compares the deviation with -2000 [rpm], and reduces the target speed by one step (-1 [rpm]) if deviation <-2000 [rpm] (step S11). ). Next, the first processing unit 13 compares the deviation with -3000 [rpm], and reduces the target speed by one step (-1 [rpm]) if the deviation is less than -3000 [rpm] (step S12). ).
 結局、本実施形態では、第1処理部13は、ランプ処理のゲインを4段階に変更することができる。-1000[rpm]≦偏差≦1000[rpm]の場合は、目標速度を1段階アップまたはダウンさせる(1[rpm]増加または減少させる)第1ゲインとなる。1000[rpm]<偏差≦2000[rpm]または-2000[rpm]≦偏差<-1000[rpm]の場合は、目標速度を2段階アップまたはダウンさせる(2[rpm]増加または減少させる)第2ゲインとなる。2000[rpm]<偏差≦3000[rpm]または-3000[rpm]≦偏差<-2000[rpm]の場合は、目標速度を3段階アップまたはダウンさせる(3[rpm]増加または減少させる)第3ゲインとなる。偏差>3000[rpm]または偏差<-3000[rpm]の場合は、目標速度を4段階アップまたはダウンさせる(4[rpm]増加または減少させる)第4ゲインとなる。 After all, in the present embodiment, the first processing unit 13 can change the gain of the ramp processing into four stages. In the case of −1000 [rpm] ≦ deviation ≦ 1000 [rpm], the target gain is increased by one step or decreased by 1 [rpm] to become a first gain. When 1000 [rpm] <deviation ≦ 2000 [rpm] or −2000 [rpm] ≦ deviation <−1000 [rpm], the target speed is increased or decreased by 2 stages (2 [rpm] increase or decrease) second It becomes a gain. If 2000 [rpm] <deviation <3000 [rpm] or-3000 [rpm] <deviation <-2000 [rpm], increase or decrease the target speed by 3 steps (increase or decrease 3 [rpm]) Third It becomes a gain. When the deviation> 3000 [rpm] or the deviation <-3000 [rpm], the target speed is increased or decreased by four steps (or increased or decreased by 4 [rpm]).
 モータ制御ステップ(S13)は、目標回転数に従って走行用モータ21を制御するステップである。具体的には、ステップS13において、モータ制御部15は、第1処理部13が算出した目標速度と、走行用モータ21に設けられたエンコーダから入力された入力速度(現在回転数)とでP制御を行い、トルクを計算する。そして、モータ制御部15は、走行用モータ21に対して制御信号(トルク指令)を出力する。 The motor control step (S13) is a step of controlling the traveling motor 21 in accordance with the target rotational speed. Specifically, in step S13, the motor control unit 15 sets P at the target speed calculated by the first processing unit 13 and the input speed (current rotation number) input from the encoder provided at the traveling motor 21. Control and calculate torque. Then, the motor control unit 15 outputs a control signal (torque command) to the traveling motor 21.
 図7(A)に、指示速度が3000[rpm]、最初の目標速度が-3000[rpm]の場合における、ランプ処理のゲインの変化を示す。目標速度が0になるまでは、偏差>3000[rpm]となるので、ゲインは目標速度を4段階アップさせる(4[rpm]増加させる)第4ゲインとなる。その後、目標速度が指示速度に近づくにつれて、ゲインは第3ゲイン、第2ゲイン、第1ゲインと変化する。 FIG. 7A shows a change in gain of lamp processing when the designated speed is 3000 [rpm] and the first target speed is -3000 [rpm]. Since the deviation> 3000 [rpm] until the target speed becomes 0, the gain becomes the fourth gain that increases the target speed by 4 steps (increases 4 [rpm]). Thereafter, as the target speed approaches the commanded speed, the gain changes with the third gain, the second gain, and the first gain.
 図7(B)に、指示速度が-3000[rpm]、最初の目標速度が3000[rpm]の場合における、ランプ処理のゲインの変化を示す。目標速度が0になるまでは、偏差<-3000[rpm]となるので、ゲインは目標速度を4段階ダウンさせる(4[rpm]減少させる)第4ゲインとなる。その後、目標速度が指示速度に近づくにつれて、ゲインは第3ゲイン、第2ゲイン、第1ゲインと変化する。 FIG. 7B shows a change in gain of lamp processing when the designated speed is −3000 [rpm] and the initial target speed is 3000 [rpm]. Since the deviation is less than -3000 rpm until the target velocity reaches 0, the gain becomes the fourth gain that reduces the target velocity by 4 steps (decreases 4 rpm). Thereafter, as the target speed approaches the commanded speed, the gain changes with the third gain, the second gain, and the first gain.
 図7(C)に、指示速度が2000[rpm]、最初の目標速度が-2000[rpm]の場合における、ランプ処理のゲインの変化を示す。目標速度が-1000[rpm]になるまでは、偏差>3000[rpm]となるので、ゲインは目標速度を4段階アップさせる(4[rpm]増加させる)第4ゲインとなる。その後、目標速度が指示速度に近づくにつれて、ゲインは第3ゲイン、第2ゲイン、第1ゲインと変化する。 FIG. 7C shows a change in gain of lamp processing when the indicated speed is 2000 [rpm] and the first target speed is -2000 [rpm]. Since the deviation> 3000 [rpm] until the target speed reaches -1000 [rpm], the gain becomes the fourth gain that causes the target speed to be increased by 4 steps (increased by 4 [rpm]). Thereafter, as the target speed approaches the commanded speed, the gain changes with the third gain, the second gain, and the first gain.
 再び図5を参照し、ステップS3においてブレーキがオン(例えば、ブレーキペダルが踏まれている)場合、ステップS14、S16において、第1処理部13は、目標速度と所定の閾値との比較を行う。所定の閾値は、最大のゲイン(第4ゲイン)のときの目標速度の増減値(+4[rpm]または-4[rpm])である。 Referring again to FIG. 5, if the brake is on (for example, the brake pedal is depressed) in step S3, the first processing unit 13 compares the target speed with a predetermined threshold in steps S14 and S16. . The predetermined threshold is an increase / decrease value (+4 [rpm] or -4 [rpm]) of the target speed at the maximum gain (fourth gain).
 ステップS14において、目標速度>閾値(+4[rpm])の場合、ステップS15において、第1処理部13は目標速度を4段階ダウンさせる(4[rpm]減少させる)。ステップS16において、目標速度<閾値(-4[rpm])の場合、ステップS17において、第1処理部13は目標速度を4段階アップさせる(4[rpm]増加させる)。ステップS14、S16において、ともにNOの場合(-4[rpm]≦目標速度≦+4[rpm]の場合)、ステップS18において、第1処理部13は目標速度を0にする。次いで、ステップS13に移行する。 In step S14, in the case of target speed> threshold value (+4 [rpm]), in step S15, the first processing unit 13 reduces the target speed by four steps (decreases 4 [rpm]). In step S16, if target speed <threshold (-4 [rpm]), in step S17, the first processing unit 13 increases the target speed by four steps (increases 4 [rpm]). In the case where both are NO in steps S14 and S16 (in the case of −4 [rpm] ≦ target speed ≦ + 4 [rpm]), in step S18, the first processing unit 13 sets the target speed to zero. Next, the process proceeds to step S13.
 上記のとおり、第1ステップ(S3~S12、S14~S18)において、目標速度と指示速度との偏差に応じてランプ処理のゲインを変更しつつ目標速度を算出するので、複数の走行制御を使い分ける(例えば、平坦路では加速制限を行い、登坂路ではオートトルクアップを行い、さらにニュートラル回生や降坂時回生なども行う)必要がなくなる。したがって、本実施形態に係る走行制御方法によれば、制御を簡素化することできる。 As described above, in the first step (S3 to S12, S14 to S18), the target speed is calculated while changing the gain of the lamp processing according to the deviation between the target speed and the instructed speed. (For example, acceleration is limited on a flat road, automatic torque is increased on an uphill road, and neutral regeneration and downhill regeneration are also performed). Therefore, according to the travel control method of the present embodiment, control can be simplified.
 また、本実施形態に係る走行制御方法によれば、第2ステップ(S101、S102)において、ゲインを変化させたときの目標速度の変化量を作業者ごとに自動的に設定するので、作業者の好みの操作フィーリングを実現することができ、かつ、作業者は目標回転数の変化量を設定する作業が不要となる。 Further, according to the travel control method of the present embodiment, in the second step (S101, S102), the amount of change in the target speed when the gain is changed is automatically set for each worker. The operator's desired operation feeling can be realized, and the operator does not have to set the amount of change in the target rotational speed.
 さらに、本実施形態に係る走行制御方法では、作業者の生体情報(例えば、心拍数)を所定の周期で取得し、当該生体情報が所定の閾値を超えているときに、第2ステップ(S101、S102)で設定した目標速度の変化量を小さくしてもよい。例えば、目標速度の変化量を1[rpm]から0.5[rpm]に変更してもよい。これにより、第1ステップにおいて目標速度を1段階アップ/ダウンさせたときの目標速度の変化量は、1[rpm]から0.5[rpm]に変更される。 Furthermore, in the traveling control method according to the present embodiment, the biological information (for example, the heart rate) of the worker is acquired at a predetermined cycle, and the second step (S101) is performed when the biological information exceeds a predetermined threshold. , S102) may reduce the amount of change of the target speed. For example, the change amount of the target speed may be changed from 1 [rpm] to 0.5 [rpm]. Thereby, the amount of change of the target speed when the target speed is increased or decreased by one step in the first step is changed from 1 [rpm] to 0.5 [rpm].
 以上、本発明に係る走行制御装置および走行制御方法の実施形態について説明したが、本発明は上記実施形態に限定されるものではない。 As mentioned above, although the embodiment of the traveling control device and the traveling control method concerning the present invention was described, the present invention is not limited to the above-mentioned embodiment.
 例えば、上記実施形態では、第1処理部13が、目標回転数(目標速度)と指示回転数(指示速度)との偏差に応じてランプ処理のゲインを4段階に変更しているが、3段階以下に変更してもよいし、5段階以上に変更してもよい。 For example, in the above embodiment, the first processing unit 13 changes the gain of the lamp processing into four stages according to the deviation between the target rotation speed (target speed) and the command rotation speed (command speed). It may be changed to a level below or may be changed to five or more levels.
 第1処理部13は、指示回転数、目標回転数および車速0点の大小関係に応じてランプ処理のゲインを変更してもよい。車速0点とは、フォークリフト100の車速がゼロのときの走行用モータ21の回転数のことであり、回転数ゼロのことである。例えば、第1処理部13は、
(1)車速0点<目標回転数<指示回転数の場合、または車速0点>目標回転数>指示回転数の場合に、ゲインを第2ゲインとし、
(2)車速0点<指示回転数<目標回転数の場合、または車速0点>指示回転数>目標回転数の場合に、ゲインを第1ゲインとし、
(3)指示回転数<車速0点<目標回転数の場合、または指示回転数>車速0点>目標回転数の場合に、ゲインを第3ゲインとしてもよい。
The first processing unit 13 may change the gain of the lamp processing in accordance with the magnitude relationship between the designated rotation number, the target rotation number, and the zero vehicle speed point. The zero vehicle speed is the number of revolutions of the traveling motor 21 when the speed of the forklift 100 is zero, and is zero. For example, the first processing unit 13
(1) In the case of 0 vehicle speed <target rotation speed <instructed rotation speed, or in the case of vehicle speed 0 point> target rotation speed> instructed rotation speed, the gain is set as the second gain,
(2) If the vehicle speed 0 point <instructed rotation speed <target rotation speed, or if the vehicle speed 0 point> instructed rotation speed> target rotation speed, the gain is set as the first gain,
(3) The gain may be set as the third gain in the case of instructed rotation speed <vehicle speed 0 point <target rotation speed, or in the case of instructed rotation speed> vehicle speed 0 point> target rotation speed.
 すなわち、第1処理部13は、目標回転数(目標速度)と指示回転数(指示速度)との関係に応じてランプ処理のゲインを変更するのであれば、適宜構成を変更できる。 That is, if the first processing unit 13 changes the gain of the lamp processing in accordance with the relationship between the target rotation number (target speed) and the designated rotation number (designated speed), the configuration can be changed as appropriate.
 上記実施形態では、目標回転数の変化量を自動的に設定するために、車載カメラ30、記憶部41、管理部42を設けているが、作業者が目標回転数の変化量を設定する作業を許容できるのであれば、上記の構成を省略することができる。 In the above embodiment, the on-vehicle camera 30, the storage unit 41, and the management unit 42 are provided to automatically set the change amount of the target rotation number, but the work of the operator setting the change amount of the target rotation number If the above can be tolerated, the above configuration can be omitted.
 モータ制御部15はP制御を行うことが好ましいが、本発明では、アクセルレバーの倒し角と非線形関係にあるレバー移動量から指示回転数を算出することにより操作フィーリングがある程度向上するので、モータ制御部15は、P制御以外の制御、例えば、PI制御やPID制御を行っても良い。 Although it is preferable that the motor control unit 15 perform P control, in the present invention, the operation feeling is improved to some extent by calculating the instruction rotation number from the lever movement amount having a non-linear relationship with the tilt angle of the accelerator lever. The control unit 15 may perform control other than P control, for example, PI control or PID control.
 本発明に係る産業車両は、フォークリフト以外の荷役車両を含む。 Industrial vehicles according to the present invention include cargo handling vehicles other than forklifts.
1  車体
2  ストラドルレッグ
3  キャリッジ
4  マスト装置
5  フォーク
6  前輪
7  運転席
8  ステアリングハンドル
9  レバー類
10  制御装置
11  レバー移動量算出部
12  指示回転数算出部
13  第1処理部
14  第2処理部
15  モータ制御部
20  駆動輪
21  走行用モータ
30  車載カメラ
40  管理サーバ
41  記憶部
42  管理部
100  フォークリフト
Reference Signs List 1 vehicle body 2 straddle leg 3 carriage 4 mast device 5 fork 6 front wheel 7 driver's seat 8 steering handle 9 lever 10 control device 11 lever movement amount calculation unit 12 commanded rotation number calculation unit 13 first processing unit 14 second processing unit 15 motor Control unit 20 Drive wheel 21 Drive motor 30 In-vehicle camera 40 Management server 41 Storage unit 42 Management unit 100 Forklift

Claims (8)

  1.  産業車両の走行制御装置であって、
     前記産業車両のアクセルレバーのレバー移動量から、前記産業車両の走行用モータの指示回転数を算出する指示回転数算出部と、
     前記指示回転数に基づいて前記走行用モータの目標回転数を算出するとともに、前記目標回転数を前記指示回転数に段階的に近づけるランプ処理を行う目標回転数算出部と、
     前記目標回転数に従って前記走行用モータを制御するモータ制御部と、を備え、
     前記目標回転数算出部は、
     前記ランプ処理のゲインを前記目標回転数と前記指示回転数との関係に応じて段階的に変更しつつ、前記目標回転数を算出する第1処理部と、
     前記ゲインを1段階変化させたときの前記目標回転数の変化量を設定する第2処理部と、を備える
    ことを特徴とする走行制御装置。
    It is a travel control device of an industrial vehicle, and
    An instruction rotation number calculation unit configured to calculate an instruction rotation number of a traveling motor of the industrial vehicle from a lever movement amount of an accelerator lever of the industrial vehicle;
    A target rotation number calculation unit that calculates a target rotation number of the traveling motor based on the designated rotation number, and performs lamp processing to gradually bring the target rotation number closer to the designated rotation number;
    A motor control unit that controls the traveling motor in accordance with the target rotational speed;
    The target rotational speed calculation unit
    A first processing unit that calculates the target number of revolutions while changing the gain of the ramp processing stepwise according to the relationship between the target number of revolutions and the designated number of revolutions;
    And a second processing unit configured to set a change amount of the target rotational speed when the gain is changed by one step.
  2.  前記産業車両を運転する作業者を撮影し、前記作業者の画像データを生成する撮影部と、
     前記作業者と前記目標回転数の変化量との関係を示す変化量設定データが予め登録された記憶部と、
     前記画像データおよび前記変化量設定データに基づいて前記目標回転数の変化量を決定し、前記第2処理部に前記目標回転数の変化量を設定させる管理部と、を備える
    ことを特徴とする請求項1に記載の走行制御装置。
    A photographing unit for photographing a worker driving the industrial vehicle and generating image data of the worker;
    A storage unit in which change amount setting data indicating a relationship between the worker and a change amount of the target rotational speed is registered in advance;
    And a management unit configured to determine a change amount of the target rotation number based on the image data and the change amount setting data, and to cause the second processing unit to set the change amount of the target rotation number. The travel control device according to claim 1.
  3.  前記作業者の生体情報を取得する生体情報取得部を備え、
     前記目標回転数算出部は、前記生体情報取得部で取得した前記生体情報が所定の閾値を超えている場合に、前記目標回転数の変化量を小さくする
    ことを特徴とする請求項1または2に記載の走行制御装置。
    A biological information acquisition unit for acquiring biological information of the worker;
    The target rotation number calculation unit reduces the amount of change in the target rotation number when the biological information acquired by the biological information acquisition unit exceeds a predetermined threshold. The travel control device according to.
  4.  前記第1処理部は、
     前記目標回転数と前記指示回転数との偏差を算出し、前記偏差と予め設定された複数の閾値との比較を行い、前記目標回転数が前記指示回転数に近づくほど前記ゲインが小さくなるように、前記比較の結果に応じて前記ゲインを変更する
    ことを特徴とする請求項1~3のいずれか一項に記載の走行制御装置。
    The first processing unit is
    The deviation between the target rotational speed and the instructed rotational speed is calculated, and the deviation is compared with a plurality of preset threshold values, so that the gain decreases as the target rotational speed approaches the instructed rotational speed. The travel control device according to any one of claims 1 to 3, wherein the gain is changed according to the result of the comparison.
  5.  産業車両の走行制御方法であって、
     前記産業車両のアクセルレバーのレバー移動量から、前記産業車両の走行用モータの指示回転数を算出する指示回転数算出ステップと、
     前記指示回転数に基づいて前記走行用モータの目標回転数を算出するとともに、前記目標回転数を前記指示回転数に段階的に近づけるランプ処理を行う目標回転数算出ステップと、
     前記目標回転数に従って前記走行用モータを制御するモータ制御ステップと、を含み、 前記目標回転数算出ステップは、
     前記ランプ処理のゲインを前記目標回転数と前記指示回転数との関係に応じて段階的に変更しつつ、前記目標回転数を算出する第1ステップと、
     前記ゲインを1段階変化させたときの前記目標回転数の変化量を、前記産業車両を運転する作業者ごとに設定する第2ステップと、を含む
    ことを特徴とする走行制御方法。
    It is a travel control method of an industrial vehicle,
    An instruction rotation number calculation step of calculating an instruction rotation number of a travel motor of the industrial vehicle from a lever movement amount of an accelerator lever of the industrial vehicle;
    A target rotation number calculation step of calculating a target rotation number of the traveling motor based on the designated rotation number, and performing lamp processing to bring the target rotation number closer to the designated rotation number in stages;
    And a motor control step of controlling the traveling motor according to the target rotational speed, wherein the target rotational speed calculation step includes
    A first step of calculating the target number of revolutions while changing the gain of the ramp processing stepwise according to the relationship between the target number of revolutions and the designated number of revolutions;
    A second step of setting the amount of change of the target rotational speed when changing the gain by one step for each worker who drives the industrial vehicle.
  6.  前記第2ステップは、
     撮影部で前記作業者を撮影し、前記作業者の画像データを生成する撮影ステップと、
     前記画像データと、記憶部に予め登録された前記作業者と前記目標回転数の変化量との関係を示す変化量設定データと、に基づいて前記目標回転数の変化量を設定する変化量設定ステップと、を含む
    ことを特徴とする請求項5に記載の走行制御方法。
    The second step is
    A photographing step of photographing the worker by a photographing unit and generating image data of the worker;
    Change amount setting to set the change amount of the target number of rotations based on the image data, change amount setting data indicating the relationship between the operator and the change amount of the target number of rotations registered in advance in the storage unit The travel control method according to claim 5, comprising the steps of:
  7.  前記第1ステップでは、
     前記作業者の生体情報を取得し、前記生体情報が所定の閾値を超えている場合に、前記目標回転数の変化量を小さくする
    ことを特徴とする請求項5または6に記載の走行制御方法。
    In the first step,
    The travel control method according to claim 5 or 6, wherein the biological information of the worker is acquired, and the change amount of the target rotational speed is reduced when the biological information exceeds a predetermined threshold. .
  8.  前記第1ステップでは、
     前記目標回転数と前記指示回転数との偏差を算出し、前記偏差と予め設定された複数の閾値との比較を行い、前記目標回転数が前記指示回転数に近づくほど前記ゲインが小さくなるように、前記比較の結果に応じて前記ゲインを変更する
    ことを特徴とする請求項5~7のいずれか一項に記載の走行制御方法。
     
     
     
    In the first step,
    The deviation between the target rotational speed and the instructed rotational speed is calculated, and the deviation is compared with a plurality of preset threshold values, so that the gain decreases as the target rotational speed approaches the instructed rotational speed. The travel control method according to any one of claims 5 to 7, wherein the gain is changed according to a result of the comparison.


PCT/JP2017/030657 2017-06-30 2017-08-28 Travel control device and travel control method WO2019003461A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017128687A JP6438537B1 (en) 2017-06-30 2017-06-30 Travel control device and travel control method
JP2017-128687 2017-06-30

Publications (1)

Publication Number Publication Date
WO2019003461A1 true WO2019003461A1 (en) 2019-01-03

Family

ID=64655888

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/030657 WO2019003461A1 (en) 2017-06-30 2017-08-28 Travel control device and travel control method

Country Status (2)

Country Link
JP (1) JP6438537B1 (en)
WO (1) WO2019003461A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5699856A (en) * 1979-12-31 1981-08-11 Westinghouse Electric Corp Method of controlling deceleration of car for transportation and its controller
JPH06293273A (en) * 1993-03-09 1994-10-21 Mazda Motor Corp Control device for vehicle
JP2005254975A (en) * 2004-03-11 2005-09-22 Toyota Industries Corp Base performance-setting device for forklift
JP2007323199A (en) * 2006-05-30 2007-12-13 Omron Corp Production management apparatus, production management method, production management program and recording medium with the same recorded thereon, and production system
JP2012052581A (en) * 2010-08-31 2012-03-15 Hitachi Constr Mach Co Ltd Hydraulic travel driving device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5699856A (en) * 1979-12-31 1981-08-11 Westinghouse Electric Corp Method of controlling deceleration of car for transportation and its controller
JPH06293273A (en) * 1993-03-09 1994-10-21 Mazda Motor Corp Control device for vehicle
JP2005254975A (en) * 2004-03-11 2005-09-22 Toyota Industries Corp Base performance-setting device for forklift
JP2007323199A (en) * 2006-05-30 2007-12-13 Omron Corp Production management apparatus, production management method, production management program and recording medium with the same recorded thereon, and production system
JP2012052581A (en) * 2010-08-31 2012-03-15 Hitachi Constr Mach Co Ltd Hydraulic travel driving device

Also Published As

Publication number Publication date
JP2019013092A (en) 2019-01-24
JP6438537B1 (en) 2018-12-12

Similar Documents

Publication Publication Date Title
EP3408168B1 (en) Pedal drive system and method of operating a pedal drive system
KR102274126B1 (en) Control apparatus and method of motor driven power steering system
JP5883489B1 (en) Vehicle control apparatus and vehicle control method
JP2008109787A (en) Electric vehicle, and its slip controller and control method
JP2013233018A (en) Driving force control device of electric vehicle
JP5219103B2 (en) Travel control device
JP6500296B2 (en) Traveling control device and industrial vehicle
JP6438537B1 (en) Travel control device and travel control method
JP3780504B2 (en) Electric vehicle control device
JP4141314B2 (en) Travel restriction device for omnidirectional steering forklift
JP3906525B2 (en) Vehicle speed setting device
JP6142515B2 (en) Vehicle travel support device
JP5057406B2 (en) Travel control device and forklift equipped with the device
US20220089214A1 (en) Steering control device
JP2007320383A (en) Electric power steering device
JP2674828B2 (en) Slip detection method and acceleration control method during acceleration in an electric vehicle
JPH02133007A (en) Motor-driven vehicle
JP5641549B1 (en) Travel control device and forklift provided with the travel control device
JP6237444B2 (en) Industrial vehicle
JP4200739B2 (en) Driving control device for electric industrial vehicle
JP2014103815A (en) Motor drive device for forklift and electric forklift using the same
JP2674830B2 (en) Slip detection method and deceleration control method during electric braking in an electric vehicle
WO2021049259A1 (en) Brake assistance device and electric vehicle
JP6501168B1 (en) Traveling control device and industrial vehicle
JP2011161990A (en) Moving body driving device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17915653

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17915653

Country of ref document: EP

Kind code of ref document: A1