WO2018233353A1 - 有机发光二极管显示面板及其制作方法、显示装置 - Google Patents

有机发光二极管显示面板及其制作方法、显示装置 Download PDF

Info

Publication number
WO2018233353A1
WO2018233353A1 PCT/CN2018/082695 CN2018082695W WO2018233353A1 WO 2018233353 A1 WO2018233353 A1 WO 2018233353A1 CN 2018082695 W CN2018082695 W CN 2018082695W WO 2018233353 A1 WO2018233353 A1 WO 2018233353A1
Authority
WO
WIPO (PCT)
Prior art keywords
peak
display panel
light
light emitting
layer
Prior art date
Application number
PCT/CN2018/082695
Other languages
English (en)
French (fr)
Inventor
吴长晏
宋泳锡
宋文峰
李伟
林俊仪
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Priority to EP18793351.0A priority Critical patent/EP3644368A4/en
Priority to JP2018558429A priority patent/JP7193346B2/ja
Priority to US16/098,326 priority patent/US11189811B2/en
Publication of WO2018233353A1 publication Critical patent/WO2018233353A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • H10K50/125OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers specially adapted for multicolour light emission, e.g. for emitting white light
    • H10K50/13OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers specially adapted for multicolour light emission, e.g. for emitting white light comprising stacked EL layers within one EL unit
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/32Stacked devices having two or more layers, each emitting at different wavelengths
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • H10K50/125OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers specially adapted for multicolour light emission, e.g. for emitting white light
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/38Devices specially adapted for multicolour light emission comprising colour filters or colour changing media [CCM]
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/10Triplet emission
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/27Combination of fluorescent and phosphorescent emission
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/301Details of OLEDs
    • H10K2102/351Thickness

Definitions

  • At least one embodiment of the present disclosure is directed to an organic light emitting diode display panel, a method of fabricating the same, and a display device.
  • OLED Organic Light-Emitting Diode
  • flat panel display device which is a kind of self-luminous with all solid-state structure, high brightness, full viewing angle, fast response, flexible display and so on.
  • OLED devices are now the next generation of display devices that are highly competitive and promising.
  • White Organic Light Emitting Diode is a surface light source, which can be used to manufacture a large-sized, arbitrary-shaped flat-panel light source, and is suitable for a backlight of a liquid crystal display and a full-color organic light-emitting diode display device.
  • WOLED White Organic Light Emitting Diode
  • CF color filter
  • At least one embodiment of the present disclosure provides an organic light emitting diode display panel, a method of fabricating the same, and a display device.
  • the OLED display panel has both a wide color gamut and low power consumption performance.
  • At least one embodiment of the present disclosure provides an organic light emitting diode display panel including a substrate substrate and a light emitting layer on the substrate substrate, the light emitting layer having a maximum spectral intensity of 10% of the emission spectrum -
  • the spectral width at 15% is not less than 200 nm, and the yellow to green wavelength band of the emission spectrum includes at least one peak located between 550 nm and 562 nm.
  • the organic light emitting diode display panel further includes a filter layer on a side of the light emitting layer away from the base substrate, and the filter layer is located on a light exiting side of the light emitting layer, and the filter layer includes at least three colors.
  • the filter unit wherein the filter unit of one color is configured to transmit only light having a wavelength greater than 580 nm, and the transmittance of light having a wavelength of 595 nm is greater than 50%.
  • the emission spectrum includes at least three peaks.
  • the yellow to green band of the emission spectrum includes only one peak between 550 nm and 562 nm, and the peak between 550 nm and 562 nm is the first peak.
  • the peak at the maximum spectral intensity of the emission spectrum is the second peak, and the peak wavelength of the second peak is no greater than 456 nm.
  • the valley of the trough between the first peak and the second peak is between 15% and 30% of the second peak.
  • the red band of the emission spectrum includes a third peak, and the peak wavelength of the third peak is between 610 nm and 624 nm.
  • the ratio of the peak of the first peak to the peak of the third peak is greater than 1.5:1, and the difference between the peak wavelength of the third peak and the peak wavelength of the first peak is less than 70 nm.
  • the luminescent layer includes three laminates.
  • the three stacks include a first blue light emitting layer, red and green light emitting layers, and a second blue light emitting layer.
  • the first blue light-emitting layer has a thickness of 150 to 300 nm
  • the red and green light-emitting layers have a thickness of 60 to 100 nm
  • the second blue light-emitting layer has a thickness of 100 to 200 nm.
  • the first blue light-emitting layer and the second blue light-emitting layer each include a fluorescent light-emitting material
  • the red and green light-emitting layers include a phosphorescent light-emitting material
  • the organic light emitting diode display panel includes a red pixel, a green pixel, a blue pixel, and a white pixel
  • the filter unit of at least three colors includes a red filter unit, a green filter unit, and a blue filter.
  • the cells are respectively disposed in the red pixel, the green pixel, and the blue pixel.
  • the light emitting layer is a white light emitting layer.
  • At least one embodiment of the present disclosure provides a method of fabricating an organic light emitting diode display panel, comprising forming a light emitting layer on a substrate, wherein a spectral width at 10% to 15% of a maximum spectral intensity of an emission spectrum of the light emitting layer Not less than 200 nm, and the yellow to green band of the emission spectrum includes at least one peak located between 550 nm and 562 nm.
  • the method for fabricating an organic light emitting diode display panel further includes forming a filter layer on a side of the light emitting layer away from the substrate substrate, the filter layer is located on a light exiting side of the light emitting layer, and the filter layer includes at least three A filter unit of a color, wherein the filter unit of one color is configured to transmit only light having a wavelength greater than 580 nm, and the transmittance of light having a wavelength of 595 nm is greater than 50%.
  • the yellow to green band of the emission spectrum includes only one peak between 550 nm and 562 nm.
  • At least one embodiment of the present disclosure provides a display device including any of the organic light emitting diode display panels provided by the embodiments of the present disclosure.
  • FIG. 1 is a schematic diagram of an organic light emitting diode display panel according to an embodiment of the present disclosure
  • FIG. 2 is an emission spectrum diagram of the organic light emitting diode display panel illustrated in FIG. 1;
  • FIG. 3 is a schematic diagram of filter characteristics of a color filter unit in a filter layer according to an embodiment of the present disclosure.
  • the inventor of the present application found that when the color gamut of the OLED display panel is increased, the power consumption thereof is often greatly affected, that is, increasing the color gamut of the OLED display panel easily leads to its Power consumption increases. Therefore, the wide color gamut and low power consumption performance of the OLED display panel are difficult to achieve at the same time.
  • Embodiments of the present disclosure provide an organic light emitting diode display panel, a method of fabricating the same, and a display device.
  • the organic light emitting diode display panel comprises a base substrate and a light emitting layer on the base substrate, the spectral width of the maximum spectral intensity of the emission spectrum of the light emitting layer is not less than 200 nm, and the yellow spectrum of the emission spectrum
  • the green light band includes at least one peak located between 550 nm and 562 nm.
  • the OLED display panel has both a wide color gamut and low power consumption performance.
  • FIG. 1 is a schematic diagram of an organic light emitting diode display panel provided by the embodiment
  • FIG. 2 is an emission spectrum diagram of the organic light emitting diode display panel illustrated in FIG.
  • the organic light emitting diode display panel provided in this embodiment includes a base substrate 100 and a light emitting layer 110 on the base substrate 100 .
  • the spectral width at 10% to 15% of the peak value of the peak 111 at the maximum spectral intensity of the emission spectrum of the light-emitting layer 110 is not less than 200 nm.
  • the spectral width at 10% of the peak value of the peak 111 at the maximum spectral intensity is larger than the spectral width at 15% of the peak value of the peak 111 at the maximum spectral intensity, thereby, in the present embodiment, the spectrum
  • the wavelength interval between two points A and B of the corresponding spectral line at 15% of the maximum spectral intensity in the line is ⁇ 1 > 200 nm.
  • the spectrum emitted by the light-emitting layer 110 provided in this embodiment has a wide spectral characteristic, so that the organic light-emitting diode display panel including the light-emitting layer has a wide color gamut.
  • the yellow to green band of the emission spectrum includes at least one peak between 550 nm and 562 nm.
  • the yellow to green band here includes a wavelength range of approximately 500 nm to 600 nm.
  • the yellow to green light band of the spectrum provided by this embodiment includes at least one peak between 550 nm and 562 nm.
  • the yellow to green band of the emission spectrum includes only one peak between 550 nm and 562 nm.
  • the description is made as an example, but is not limited thereto.
  • the wavelength corresponding to the position of the peak is close to the wavelength corresponding to the peak of the human visual curve, and therefore, the green light emitted by the organic light emitting diode display panel can have higher luminous efficiency.
  • the "luminous efficiency” here mainly refers to the current efficiency, that is, the luminance of the light at a unit current.
  • the power consumption here includes the power consumption (White Power) and the maximum power consumption (Worst Power) of the display panel in white.
  • the peak wavelength of the peak shifts to the right (ie, the wavelength value increases)
  • the color gamut of the organic light emitting diode display panel provided by the embodiment is lowered.
  • the peak wavelength of the peak 111 at the maximum spectral intensity is not more than 456 nm, that is, the peak 111 at the maximum spectral intensity in the emission spectrum is located in the deep blue wavelength band, so that the organic light emitting diode display panel has more Wide color gamut.
  • the organic light emitting diode display panel provided in this embodiment further includes a filter layer 120 , the filter layer 120 is located on a side of the light emitting layer 110 away from the substrate 100 , and the filter layer 120 is located in the organic light emitting layer.
  • the structure of the organic light emitting diode display panel in this embodiment is a structure in which a white organic light emitting diode (WOLED) and a color filter layer (CF, Color Filter) are superimposed, that is, the light emitting layer in this embodiment. It is a white light emitting layer for white light.
  • the filter layer 120 includes filter elements of at least three colors. The present embodiment is described by taking the filter layer 120 as a filter unit of three colors, but is not limited thereto.
  • the filter layer 120 includes a first filter unit 121 , a second filter unit 122 , and a third filter unit 123 .
  • This embodiment includes but is not limited thereto.
  • the present embodiment describes an OLED display panel including a red pixel 201 , a green pixel 202 , a blue pixel 203 , and a white pixel 204 (each pixel circled by a dotted line in the figure) as an example, but Not limited to this, pixels of other colors may also be included.
  • the first filter unit 121 included in the filter layer 120 in this embodiment may be a red filter unit
  • the second filter unit 122 may be a green filter unit
  • the third filter unit 123 may be a blue filter.
  • the light unit, the filter units of the three colors are respectively disposed in the red pixel 201, the green pixel 202, and the blue pixel 203.
  • the embodiment includes but is not limited thereto.
  • FIG. 3 is a schematic diagram of filter characteristics of a color filter unit in the filter layer provided in the embodiment.
  • the filter unit of one color is configured to transmit only light having a wavelength greater than 580 nm, that is, the position of the wavelength of 580 nm is the starting point of the transmittance of the filter unit for different wavelengths of light from zero. (onset), when white light having different wavelengths emitted by the light-emitting layer passes through the filter unit, light having a wavelength of less than or equal to 580 nm is substantially not transmitted through the filter unit, and light having a wavelength greater than 580 nm can pass through the filter unit.
  • the filter unit is a filter unit (ie, a red filter unit) that can transmit light having the longest wavelength (ie, red light).
  • the filter unit also needs to satisfy a transmittance of light having a wavelength of 595 nm of more than 50%, and therefore, the red light emitted by the organic light emitting diode display panel having the filter unit has higher illumination.
  • the efficiency can also make the organic light emitting diode display panel provided by the embodiment have a wider color gamut.
  • the organic light emitting diode display panel provided in this embodiment adopts a structure in which a light emitting layer having an emission spectrum as shown in FIG. 1 is superimposed with a filter unit having a special spectral setting as shown in FIG.
  • the adjustment of red light to achieve wide color gamut performance of the organic light emitting diode display panel can be made higher by adjusting the green light and the red light to reduce the power consumption of the display panel.
  • the emission spectrum includes at least three peaks, and the embodiment is described by taking the emission spectrum including three peaks as an example, but is not limited thereto.
  • the yellow to green band of the emission spectrum includes only one peak between 550 nm and 562 nm, and the peak between 550 nm and 562 nm is the first peak 112.
  • the peak 111 at the maximum spectral intensity of the emission spectrum is the second peak 111.
  • the valley of the valley 114 between the first peak 112 and the second peak 111 is between 15% and 30% of the peak of the second peak 111, that is, the spectral intensity value of the valley 114 is located at the spectrum of the second peak 111. Between 15% and 30% of the intensity (ie the maximum spectral intensity).
  • the valley value of the trough 114 provided in this embodiment is greater than 15% of the peak value of the second peak 111 such that the spectrum at 10%-15% of the maximum spectral intensity is a continuous spectrum, and the embodiment includes but is not limited thereto.
  • the red wavelength band of the emission spectrum includes a third peak 113, and the peak wavelength of the third peak 113 is between 610 nm and 624 nm.
  • the peak of the first peak 112 is greater than the peak of the third peak 113, and the ratio of the peak of the first peak 112 to the peak of the third peak 113 is greater than 1.5:1, ie, the peak of the first peak 112 is higher than the third peak. More than 50% of the peak of 113.
  • the wavelength difference between the peak wavelength of the third peak 113 and the peak wavelength of the first peak 112 is less than 70 nm, that is, ⁇ 2 ⁇ 70 nm in FIG. Therefore, the third peak 113 in FIG. 2 does not appear to be obvious.
  • the current efficiency of the display panel can be changed by adjusting the ratio between the spectral intensity values of the blue light, the green light and the red light emitted by the organic light emitting diode display panel.
  • an organic light-emitting diode display panel having spectral characteristics as shown in FIG. 2 has both high current efficiency and high color temperature characteristics under the premise that quantum efficiency is constant.
  • the color temperature here is the most common indicator of the spectral quality of the light source.
  • the temperature of the black body heating is called The color temperature of the light source, referred to as the color temperature.
  • the organic light emitting diode display panel having the spectral characteristics as shown in FIG. 2 has a quantum efficiency of 100%, a current efficiency of 100%, and a color temperature of 9200 K.
  • This embodiment includes but is not limited thereto.
  • the superposition of the OLED layer with the special spectral design and the filter layer set by the special spectrum can improve the luminous efficiency of the white pixel in the organic light emitting diode display panel (WOELD).
  • the display panel has a suitable white color temperature, and at the same time, it is ensured that the light transmitted through the filter layer has a wide color gamut. Therefore, the organic light emitting diode display panel provided by the embodiment can achieve both wide color gamut and low power consumption performance.
  • the light emitting layer 110 provided in this embodiment includes three stacked layers in a direction perpendicular to the base substrate 100 , and one of the light emitting layers 110 having three stacked structures is away from the substrate 100 .
  • the first electrode 130 is disposed on the side
  • the second electrode 140 is disposed on a side of the light emitting layer 110 adjacent to the base substrate 100.
  • the three stacks in this embodiment are a series stack structure such that the light emitting diodes provided in this embodiment are series organic light emitting diodes, and the three stacks in series share the first electrode 130 and the second electrode 140.
  • the first electrode 130 may be a cathode layer, and the cathode layer serves as a connection layer of a negative voltage of the organic light emitting diode display panel, and has better electrical conductivity and a lower work function value.
  • the second electrode 140 may be an anode layer, and the anode layer serves as a connection layer for the forward voltage of the organic light emitting diode display panel, and has better electrical conductivity and a higher work function value.
  • the red pixel 201 , the green pixel 202 , the blue pixel 203 , and the white pixel 204 in the organic light emitting diode display panel respectively correspond to the first sub-electrode 141 and the second sub-electrode 142 of the second electrode 140 .
  • three stacks in the light emitting layer 110 may include a first blue light emitting layer 115 , a red and green light emitting layer 116 , and a second blue light emitting layer 117 , and the embodiment includes but is not limited thereto. .
  • the first blue light-emitting layer 115 has a thickness of 150 to 300 nm
  • the red and green light-emitting layers 116 have a thickness of 60 to 100 nm
  • the second blue light-emitting layer 117 has a thickness of 100 to 200 nm.
  • the thickness of the first blue light-emitting layer 115 may be 150-180 nm, or 210-230 nm, etc., which is not limited in this embodiment.
  • the thickness of the red and green light-emitting layers 116 may be 60-70 nm, or 80-90 nm, etc., which is not limited in this embodiment.
  • the thickness of the second blue light-emitting layer 117 may be 120-150 nm, or 170-190 nm, etc., which is not limited in this embodiment.
  • the organic light-emitting material of the first blue light-emitting layer 115 and the second blue light-emitting layer 117 includes a fluorescent light-emitting material
  • the organic light-emitting material of the red and green light-emitting layer 116 includes a phosphorescent light-emitting material, which includes the present embodiment.
  • the red and green light-emitting layer 116 herein means that the light-emitting layer comprises a red-emitting and green-emitting light-emitting material, and the light emitted by the green-emitting light-emitting material may be referred to as yellow-green light (also referred to as yellow light). Examples include but are not limited to this.
  • the above-mentioned fluorescent luminescent material or phosphorescent luminescent material may adopt a doping system, that is, a doping material is mixed in the main body luminescent material to obtain a usable luminescent material.
  • the main body luminescent material may be a metal complex material, a ruthenium derivative, an aromatic diamine compound, a triphenylamine compound, an aromatic triamine compound, a biphenyldiamine derivative, or a triarylamine polymer, etc.
  • Embodiments include but are not limited to.
  • the fluorescent material or dopant material may include coumarin dye (coumarin 6, C-545T), perylene, and its derivatives tetra(t-butyl)-perylene (TBP), quinacridone (DMQA). Or 4-(dinitrile methylene)-2-methyl-6-(4-dimethylamino-styrene)-4H-pyran (DCM) series, etc., this embodiment includes but is not limited thereto.
  • the phosphorescent or doped material may include metal complex luminescent materials based on Ir, Pt, Ru, Cu, etc., such as: FIRpic, Fir6, FirN4, FIRtaz, Ir(ppy) 3 , Ir(ppy) 2 (acac), PtOEP (btp) 2 Iracac, Ir(piq) 2 (acac) or (MDQ) 2 Iracac, etc., this embodiment includes but is not limited thereto.
  • the luminescent material may also include a dual body and doping.
  • FIG. 1 is only a schematic representation of the organic light emitting diode display panel as a three-layer tandem organic light emitting diode display panel. Only the light emitting layer is illustrated in the three stacked layers, and the actual tandem stack is also Includes other functional layers.
  • a functional layer for transmitting and injecting electrons to the first blue light-emitting layer 115 is disposed on a side of the first blue light-emitting layer 115 away from the base substrate 100, in the first blue color.
  • a side layer of the light-emitting layer 115 close to the base substrate 100 is further provided with a first hole transport layer or the like for transporting and injecting holes into the first blue light-emitting layer 115, so that the injected electrons and holes are
  • the first blue light-emitting layer 115 is combined with each other to form excitons, and the excitons transfer energy to the organic light-emitting molecules in the first blue light-emitting layer 115, and the electrons of the organic light-emitting molecules are excited to transition from the ground state to the excited state, and the excited state
  • the electron radiation is deactivated to generate photons and emit blue light, and this embodiment includes but is not limited thereto.
  • the first blue light-emitting layer 115 and its corresponding at least one functional layer constitute a first light-emitting unit.
  • the red and green light emitting layer 116 and the second blue light emitting layer 117 may each include a corresponding functional layer on a side facing the base substrate 100 and a side away from the base substrate 100, and the embodiment includes but Not limited to this.
  • the red and green light-emitting layer 116 and the second blue light-emitting layer 117 and their corresponding at least one functional layer respectively constitute a second light-emitting unit and a third light-emitting unit.
  • the three light-emitting units are connected by two intermediate connection layers, which not only have the function of connecting the light-emitting units, but also the charge generation, transmission and injection of carriers into the functional layers.
  • each functional layer for example, adjusting the distance between the light emitting layer and the second electrode or the distance between the first electrode and the second electrode, and emitting light to the body in the light emitting material
  • the characteristics of the material, the proportion of the doped material, and the concentration can be controlled to control the spectral width, the peak value of each peak, and the peak wavelength of each peak in the emission spectrum of the OLED display panel.
  • each of the functional layers may include at least one of a hole transporting layer, a hole injecting layer, a hole blocking layer, an electron transporting layer, an electron injecting layer, and an electron blocking layer, which is not limited in this embodiment.
  • the hole injecting layer may be made of a triphenylamine compound or an organic layer having a P-type doping or a polymer, which is not limited in this embodiment.
  • the hole transport layer may be made of an aromatic diamine compound, an aromatic triamine compound, a biphenyldiamine derivative, a carbazole polymer, or the like, which is not limited in this embodiment.
  • the electron transport layer may be a phenanthroline derivative, an imidazole derivative, a metal complex, or a derivative of hydrazine, and the like, which is not limited in this embodiment.
  • the electron injecting layer may be an alkali metal oxide, an alkali metal fluoride or the like, which is not limited in this embodiment.
  • the characteristics of the organic light emitting diode display panel adopting the solution provided by the embodiment of the present disclosure and the organic light emitting diode display panel adopting the conventional scheme are as follows:
  • the chromaticity coordinates of red (R), green (G), and blue (B) in this embodiment are changed compared to the conventional scheme.
  • the relative position of the color gamut of the RGB primary colors to the CIE 1931 xy chromaticity diagram in the embodiment also varies as compared to the relative positions of the two in the conventional scheme.
  • the color gamut of the RGB primary color in the conventional scheme has a coverage of 84% in the DCI-P3 color gamut standard, and the color gamut of the RGB primary color in the embodiment of the present disclosure is in the DCI-P3 color gamut standard. The coverage is 92%.
  • the organic light emitting diode display panel provided by the embodiment of the present disclosure has a wider color gamut than the conventional scheme.
  • the white power consumption (White Power) in the conventional scheme is 210 watts
  • the white screen power consumption in the embodiment of the present disclosure is 160 watts.
  • the display panel provided by the embodiment has lower white screen power consumption; when the screen of the display panel is displayed as the maximum power consumption screen (for example, adjusted to a purple screen), the maximum power consumption in the conventional scheme (Worst Power)
  • the maximum power consumption in the embodiment of the present disclosure is 403 watts, and the display panel provided by the embodiment of the present disclosure has a lower maximum power consumption. Therefore, the organic light emitting diode display panel provided by the embodiment of the present disclosure can simultaneously achieve a wide color gamut and low power consumption performance.
  • the method for fabricating the organic light emitting diode display panel mainly includes forming a light emitting layer on the substrate.
  • the spectral width at 10%-15% of the maximum spectral intensity of the emission spectrum of the luminescent layer is not less than 200 nm, that is, between the two points of the corresponding spectral line in the range of 10%-15% of the maximum spectral intensity in the spectral line.
  • the wavelength interval is greater than 200 nm.
  • the spectrum emitted by the luminescent layer provided in this embodiment has a wide spectral characteristic, and thus the display panel having the luminescent layer has a characteristic of a wide color gamut.
  • the yellow to green light band of the emission spectrum of the light-emitting layer provided in this embodiment includes at least one peak located between 550 nm and 562 nm.
  • the yellow to green light band of the emission spectrum includes only one peak located between 550 nm and 562 nm, and the position of the peak corresponds to a wavelength close to the wavelength corresponding to the peak of the human visual curve.
  • the green light emitted by the organic light emitting diode display panel can have higher luminous efficiency.
  • the peak wavelength of the peak at the maximum spectral intensity of the emission spectrum of the light-emitting layer provided by the present embodiment is not more than 456 nm, that is, the peak at the maximum spectral intensity of the emission spectrum is located in the deep blue light band.
  • the emission spectrum of the luminescent layer provided in this embodiment includes at least three peaks.
  • This embodiment is described by taking the emission spectrum as three peaks as an example, but is not limited thereto.
  • the light emitting layer provided in this embodiment includes three layers in a direction perpendicular to the substrate, and the three layers may include a first blue light emitting layer, a red and green light emitting layer, and a second blue light emitting layer.
  • This embodiment includes but is not limited thereto.
  • the method for fabricating the OLED display panel further includes: forming a filter layer on a side of the luminescent layer away from the substrate, and the filter layer is formed on a light exiting side of the OLED display panel.
  • the structure of the OLED display panel in this embodiment is a structure in which a white organic light emitting diode (WOLED) and a color filter layer (CF, Color Filter) are stacked.
  • the filter layer includes filter elements of at least three colors. In this embodiment, the filter layer includes filter elements of three colors as an example, but is not limited thereto.
  • the present embodiment is described by taking an example of an OLED display panel including a red pixel, a green pixel, a blue pixel, and a white pixel, but is not limited thereto, and may also include pixels of other colors.
  • the filter layer in this embodiment includes a red filter unit, a green filter unit, and a blue filter unit.
  • the filter units of the three colors are respectively disposed in the red pixel, the green pixel, and the blue pixel.
  • Embodiments include but are not limited to.
  • the red filter unit is configured to transmit only light having a wavelength greater than 580 nm, and the transmittance of light having a wavelength of 595 nm is greater than 50%.
  • the organic light emitting diode display panel produced by the method for fabricating the organic light emitting diode display panel of the present embodiment has a wider color gamut and lower power consumption than the conventional one. Therefore, the organic light emitting diode display panel provided by the embodiment
  • the fabrication method of the OLED display panel can achieve both wide color gamut and low power consumption performance.
  • Another embodiment of the present disclosure provides a display device including any of the organic light emitting diode display panels provided by the embodiments of the present disclosure. Therefore, the display device including the above-described organic light emitting diode display panel can simultaneously achieve a wide color gamut and low power consumption performance.
  • the display device may be a display device such as an Organic Light-Emitting Diode (OLED) display device, and a television, a digital camera, a mobile phone, a watch, a tablet computer, a notebook computer, a navigation device, etc., including the display device.
  • OLED Organic Light-Emitting Diode
  • the product or component that displays the function is not limited to this embodiment.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Electroluminescent Light Sources (AREA)
  • Optical Filters (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

有机发光二极管显示面板及其制作方法、显示装置。该有机发光二极管显示面板包括衬底基板(100)以及位于衬底基板(100)上的发光层(110),该发光层(110)的发射光谱的最大光谱强度的10%-15%处的光谱宽度不小于200nm,且发射光谱的黄光至绿光波段包括至少一个位于550nm-562nm之间的波峰。该有机发光二极管显示面板同时具有广色域和低功耗的性能。

Description

有机发光二极管显示面板及其制作方法、显示装置
本申请要求于2017年6月20日递交的中国专利申请第201710469604.4号的优先权,在此全文引用上述中国专利申请公开的内容以作为本申请的一部分。
技术领域
本公开至少一个实施例涉及一种有机发光二极管显示面板及其制作方法、显示装置。
背景技术
有机发光二极管(Organic Light-Emitting Diode,OLED)器件是一种新型的平板显示器件,是一种具有全固态结构、高亮度、全视角、响应速度快、可柔性显示等一系列优点的自发光器件,因此有机发光二极管器件目前已成为极具竞争力和发展前景的下一代显示器件。
白光有机发光二极管(White Organic Light Emitting Diode,WOLED)属于面光源,可以用于制造成大尺寸、任意形状的平板光源,适合于液晶显示器的背光源及全彩色的有机发光二极管显示装置。一般多采用WOLED与彩色滤光层(Color Filter,CF)的叠加来实现有机发光二极管显示装置的全彩化。
发明内容
本公开的至少一实施例提供一种有机发光二极管显示面板及其制作方法、显示装置。该有机发光二极管显示面板同时具有广色域和低功耗的性能。
本公开的至少一实施例提供一种有机发光二极管显示面板,该有机发光二极管显示面板包括衬底基板以及位于衬底基板上的发光层,该发光层的发射光谱的最大光谱强度的10%-15%处的光谱宽度不小于200nm,且发射光谱的黄光至绿光波段包括至少一个位于550nm-562nm之间的波峰。
在本公开的一个示例中,有机发光二极管显示面板还包括位于发光层远离衬底基板的一侧的滤光层,且滤光层位于发光层的出光侧,滤光层包括至少三种颜色的滤光单元,其中,一种颜色的滤光单元被配置为仅透过波长大于580nm的光线,且波长为595nm的光线的透过率大于50%。
在本公开的一个示例中,发射光谱包括至少三个波峰。
在本公开的一个示例中,发射光谱的黄光至绿光波段仅包括一个位于550nm-562nm之间的波峰,位于550nm-562nm之间的波峰为第一波峰。
在本公开的一个示例中,发射光谱的最大光谱强度处的波峰为第二波峰,第二波峰的峰值波长不大于456nm。
在本公开的一个示例中,第一波峰与第二波峰之间的波谷的谷值位于第二波峰的15%-30%之间。
在本公开的一个示例中,发射光谱的红光波段包括第三波峰,第三波峰的峰值波长位于610nm-624nm之间。
在本公开的一个示例中,第一波峰的峰值与第三波峰的峰值的比例大于1.5:1,且第三波峰的峰值波长与第一波峰的峰值波长的波长差小于70nm。
在本公开的一个示例中,发光层包括三个叠层。
在本公开的一个示例中,三个叠层包括第一蓝色发光层、红色和绿色发光层以及第二蓝色发光层。
在本公开的一个示例中,第一蓝色发光层的厚度为150-300nm,红色和绿色发光层的厚度为60-100nm,第二蓝色发光层的厚度为100-200nm。
在本公开的一个示例中,第一蓝色发光层和第二蓝色发光层均包括荧光发光材料,红色和绿色发光层包括磷光发光材料。
在本公开的一个示例中,有机发光二极管显示面板包括红色像素、绿色像素、蓝色像素以及白色像素,至少三种颜色的滤光单元包括红色滤光单元、绿色滤光单元和蓝色滤光单元,分别设置于红色像素、绿色像素和蓝色像素内。
在本公开的一个示例中,发光层为白光发光层。
本公开的至少一实施例提供一种有机发光二极管显示面板的制作方法,包括在衬底基板上形成发光层,其中,发光层的发射光谱的最大光谱强度的10%-15%处的光谱宽度不小于200nm,且发射光谱的黄光至绿光波段包括至少一个位于550nm-562nm之间的波峰。
在本公开的一个示例中,有机发光二极管显示面板的制作方法还包括在发光层远离衬底基板的一侧形成滤光层,滤光层位于发光层的出光侧,且滤光层包括至少三种颜色的滤光单元,其中,一种颜色的滤光单元被配置为仅透过波长大于580nm的光线,且波长为595nm的光线的透过率大于50%。
在本公开的一个示例中,发射光谱的黄光至绿光波段仅包括一个位于550 nm-562nm之间的波峰。
本公开的至少一实施例提供一种显示装置,包括本公开实施例提供的任一种有机发光二极管显示面板。
附图说明
为了更清楚地说明本公开实施例的技术方案,下面将对实施例的附图作简单地介绍,显而易见地,下面描述中的附图仅仅涉及本公开的一些实施例,而非对本公开的限制。
图1为本公开一实施例提供的有机发光二极管显示面板的示意图;
图2为图1示出的有机发光二极管显示面板的发射光谱图;
图3为本公开一实施例提供的滤光层中的一种颜色的滤光单元的滤光特性示意图。
附图标记:100-衬底基板;110-发光层;111-最大光谱强度处的波峰(第二波峰);112-第一波峰;113-第三波峰;114-波谷;115-第一蓝色发光层;116-红色和绿色发光层;117-第二蓝色发光层;120-滤光层;121-第一滤光单元;122-第二滤光单元;123-第三滤光单元;130-第一电极;140-第二电极;141-第一子电极;142-第二子电极;143-第三子电极;144-第四子电极;201-红色像素;202-绿色像素;203-蓝色像素;204-白色像素。
具体实施方式
为使本公开实施例的目的、技术方案和优点更加清楚,下面将结合本公开实施例的附图,对本公开实施例的技术方案进行清楚、完整地描述。显然,所描述的实施例是本公开的一部分实施例,而不是全部的实施例。基于所描述的本公开的实施例,本领域普通技术人员在无需创造性劳动的前提下所获得的所有其他实施例,都属于本公开保护的范围。
除非另外定义,本公开使用的技术术语或者科学术语应当为本公开所属领域内具有一般技能的人士所理解的通常意义。本公开中使用的“第一”、“第二”以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来区分不同的组成部分。“包括”或者“包含”等类似的词语意指出现该词前面的元件或者物件涵盖出现在该词后面列举的元件或者物件及其等同,而不排除其他元件或者物件。“上”、“下”、“左”、“右”等仅用于表示相对位置关系,当被描述对 象的绝对位置改变后,则该相对位置关系也可能相应地改变。
在研究中,本申请的发明人发现:当增加有机发光二极管显示面板的色域时,往往会对其功耗造成很大的影响,即,增加有机发光二极管显示面板的色域很容易导致其功耗增大。因此,有机发光二极管显示面板的广色域和低功耗的性能很难同时实现。
本公开的实施例提供一种有机发光二极管显示面板及其制作方法、显示装置。该有机发光二极管显示面板包括衬底基板以及位于衬底基板上的发光层,该发光层的发射光谱的最大光谱强度的10%-15%处的光谱宽度不小于200nm,且发射光谱的黄光至绿光波段包括至少一个位于550nm-562nm之间的波峰。该有机发光二极管显示面板同时具有广色域和低功耗的性能。
下面结合附图对本公开实施例提供的有机发光二极管显示面板及其制作方法、显示装置进行描述。
本公开一实施例提供一种有机发光二极管显示面板,图1为本实施例提供的有机发光二极管显示面板的示意图,图2为图1示出的有机发光二极管显示面板的发射光谱图。如图1所示,本实施例提供的有机发光二极管显示面板包括衬底基板100以及位于衬底基板100上的发光层110。如图2所示,该发光层110的发射光谱的最大光谱强度处的波峰111的峰值的10%-15%处的光谱宽度不小于200nm。由图2可以看出,最大光谱强度处的波峰111的峰值的10%处的光谱宽度大于最大光谱强度处的波峰111的峰值的15%处的光谱宽度,由此,本实施例中在光谱线中光谱强度最大值的15%处对应的光谱线两点A和B之间的波长间隔λ1>200nm。本实施例提供的发光层110发射的光谱具有宽光谱特性,从而使包括该发光层的有机发光二极管显示面板具有广色域。
如图2所示,发射光谱的黄光至绿光波段包括至少一个位于550nm-562nm之间的波峰。这里的黄光至绿光波段包括的波长范围大致为500nm-600nm。本实施例提供的光谱的黄光至绿光波段包括至少一个位于550nm-562nm之间的波峰,本实施例以该发射光谱的黄光至绿光波段仅包括一个位于550nm-562nm之间的波峰为例进行描述,但不限于此。该波峰的位置对应的波长贴近人眼视觉曲线的峰值对应的波长,因此,可以使该有机发光二极管显示面板发射的绿光具有更高的发光效率。这里的“发光效率”主要指电流效率,即单位电流下的发光亮度。
例如,当该波峰的峰值波长左移(即波长数值减小)时,会使本实施例提供的有机发光二极管显示面板的电流效率降低,功耗增加。这里的“功耗”包括显示面板处于白画面的功耗(White Power)以及最大功耗(Worst Power)。例如,当该波峰的峰值波长右移(即波长数值增大)时,会使本实施例提供的有机发光二极管显示面板的色域降低。
例如,如图2所示,最大光谱强度处的波峰111的峰值波长不大于456nm,即,发射光谱中的最大光谱强度处的波峰111位于深蓝光波段,以使该有机发光二极管显示面板具有更广的色域。
例如,如图1所示,本实施例提供的有机发光二极管显示面板还包括滤光层120,滤光层120位于发光层110远离衬底基板100的一侧,且滤光层120位于有机发光二极管显示面板的出光侧。本实施例中的有机发光二极管显示面板的结构为白光有机发光二极管(WOLED,White Organic Light Emitting Diode)与彩色滤光层(CF,Color Filter)叠加的结构,即,本实施例中的发光层为白光发光层以用于发白光。该滤光层120包括至少三种颜色的滤光单元,本实施例以滤光层120包括三种颜色的滤光单元为例进行描述,但不限于此。
例如,如图1所示,滤光层120包括第一滤光单元121、第二滤光单元122以及第三滤光单元123,本实施例包括但不限于此。
例如,如图1所示,本实施以有机发光二极管显示面板包括红色像素201、绿色像素202、蓝色像素203以及白色像素204(图中虚线框圈出的各像素)为例进行描述,但不限于此,还可以包括其他颜色的像素。
例如,本实施例中的滤光层120包括的第一滤光单元121可以为红色滤光单元、第二滤光单元122可以为绿色滤光单元、第三滤光单元123可以为蓝色滤光单元,这三种颜色的滤光单元分别设置于红色像素201、绿色像素202和蓝色像素203内,本实施例包括但不限于此。
例如,图3为本实施例提供的滤光层中的一种颜色的滤光单元的滤光特性示意图。如图3所示,一种颜色的滤光单元被配置为仅透过波长大于580nm的光线,即,580nm波长的位置为滤光单元针对不同波长的光的透过率从零开始增加的起点(onset),发光层发出的具有不同波长的白光经过该滤光单元时,波长小于或等于580nm的光线基本不能透过该滤光单元,波长大于580nm的光线可以透过该滤光单元。由该滤光单元可以透过的波长范围可知,该滤光单元为可以透过具有最长波长的光线(即红光)的滤光单元(即红色滤光单元)。 另外,如图3所示,该滤光单元还需要满足波长为595nm的光线的透过率大于50%,因此,具有该滤光单元的有机发光二极管显示面板发射的红光具有更高的发光效率(电流效率),同时也能使本实施例提供的有机发光二极管显示面板具有更广的色域。
本实施例提供的有机发光二极管显示面板中采用将具有如图1所示的发射光谱的发光层与具有如图3所示的特殊光谱设定的滤光单元叠加的结构,可以通过对蓝光以及红光的调节来实现有机发光二极管显示面板的广色域性能。另外,还可以通过对绿光以及红光的调节来使有机发光二极管显示面板(WOLED)中的白色像素的发光效率更高以减小显示面板的功耗。
例如,如图2所示,该发射光谱包括至少三个波峰,本实施例以该发射光谱包括三个波峰为例进行描述,但不限于此。
例如,如图2所示,该发射光谱的黄光至绿光波段仅包括一个位于550nm-562nm之间的波峰,位于550nm-562nm之间的波峰为第一波峰112。
例如,如图2所示,该发射光谱的最大光谱强度处的波峰111为第二波峰111。例如,第一波峰112与第二波峰111之间的波谷114的谷值位于第二波峰111的峰值的15%-30%之间,即,波谷114的光谱强度值位于第二波峰111的光谱强度(即光谱强度最大值)的15%-30%之间。本实施例提供的波谷114的谷值大于第二波峰111的峰值的15%以使最大光谱强度的10%-15%处的光谱为连续光谱,本实施例包括但不限于此。
例如,如图2所示,发射光谱的红光波段包括第三波峰113,第三波峰113的峰值波长位于610nm-624nm之间。
例如,第一波峰112的峰值大于第三波峰113的峰值,并且第一波峰112的峰值与第三波峰113的峰值的比例大于1.5:1,即,第一波峰112的峰值高于第三波峰113的峰值的50%以上。本实施例中,由于第三波峰113的峰值波长与第一波峰112的峰值波长的波长差小于70nm,即如图2中的λ2<70nm。因此,图2中的第三波峰113看起来不明显。
在量子效率一定的前提下,通过对有机发光二极管显示面板发射的蓝光、绿光以及红光中各光谱强度值之间的比例的调整可以改变显示面板的电流效率。
例如,在量子效率一定的前提下,采用具有如图2所示的光谱特性的有机发光二极管显示面板兼具高电流效率与高色温的特性。这里的色温是表示光源 光谱质量最通用的指标,即把某个黑体加热到一个温度,其发射的光的颜色与某个光源所发射的光的颜色相同时,这个黑体加热的温度称之为该光源的颜色温度,简称色温。
例如,具有如图2所示的光谱特性的有机发光二极管显示面板的量子效率为100%,电流效率为100%,色温为9200K,本实施例包括但不限于此。
由此可知,本实施例提供的有机发光二极管显示面板通过具有特殊光谱设计的发光层与特殊光谱设定的滤光层的叠加不但可以提高有机发光二极管显示面板(WOELD)中白色像素的发光效率(以使该面板整体功耗降低),使该显示面板具有合适的白光色温,同时还可以保证透过滤光层后的光具有广色域。因此,本实施例提供的有机发光二极管显示面板可以同时实现广色域和低功耗的性能。
例如,如图1所示,本实施例提供的发光层110在垂直于衬底基板100的方向上包括三个叠层,并且具有三个叠层结构的发光层110远离衬底基板100的一侧设置有第一电极130,发光层110靠近衬底基板100的一侧设置有第二电极140。本实施例中的三个叠层为串联叠加结构以使本实施例提供的发光二极管为串联式有机发光二极管,并且该串联的三个叠层共用第一电极130和第二电极140。
例如,第一电极130可以为阴极层,阴极层作为有机发光二极管显示面板负向电压的连接层,具有较好的导电性能和较低的功函数值。
例如,第二电极140可以为阳极层,阳极层作为有机发光二极管显示面板正向电压的连接层,具有较好的导电性能以及较高的功函数值。
例如,如图1所示,有机发光二极管显示面板中的红色像素201、绿色像素202、蓝色像素203以及白色像素204分别对应第二电极140中的第一子电极141、第二子电极142、第三子电极143以及第四子电极144。
例如,如图1所示,发光层110中的三个叠层可以包括第一蓝色发光层115、红色和绿色发光层116以及第二蓝色发光层117,本实施例包括但不限于此。
例如,第一蓝色发光层115的厚度为150-300nm,红色和绿色发光层116的厚度为60-100nm,第二蓝色发光层117的厚度为100-200nm。
例如,第一蓝色发光层115的厚度可以为150-180nm,或者210-230nm等,本实施例对此不作限制。
例如,红色和绿色发光层116的厚度可以为60-70nm,或者80-90nm等, 本实施例对此不作限制。
例如,第二蓝色发光层117的厚度可以为120-150nm,或者170-190nm等,本实施例对此不作限制。
例如,本实施例中第一蓝色发光层115和第二蓝色发光层117的有机发光材料包括荧光发光材料,红色和绿色发光层116的有机发光材料包括磷光发光材料,本实施例包括但不限于此。这里的红色和绿色发光层116指该发光层包括发红光和绿光的发光材料,其中发绿光的发光材料发出的光可被称为黄绿光(也可被称为黄光),本实施例包括但不限于此。
例如,上述荧光发光材料或磷光发光材料可以采用掺杂体系,即在主体发光材料中混入掺杂材料得到可用的发光材料。
例如,主体发光材料可以采用金属配合物材料、蒽的衍生物、芳香族二胺类化合物、三苯胺化合物、芳香族三胺类化合物、联苯二胺衍生物、或三芳胺聚合物等,本实施例包括但不限于此。
例如,荧光发光材料或掺杂材料可以包括香豆素染料(coumarin 6、C-545T)、茈(perylene)及其衍生物tetra(t-butyl)-perylene(TBP)、喹吖啶酮(DMQA)或4-(二腈亚甲叉)-2-甲基-6-(4-二甲胺基-苯乙烯)-4H-吡喃(DCM)系列等,本实施例包括但不限于此。磷光发光材料或掺杂材料可以包括基于Ir、Pt、Ru、Cu等金属配合物发光材料,比如:FIrpic、Fir6、FirN4、FIrtaz、Ir(ppy) 3、Ir(ppy) 2(acac)、PtOEP、(btp) 2Iracac、Ir(piq) 2(acac)或(MDQ) 2Iracac等,本实施例包括但不限于此。另外,发光材料还可以包括双主体且进行掺杂的情形。
需要说明的是,图1仅是示意性的表示有机发光二极管显示面板为三叠层串联式的有机发光二极管显示面板,三叠层中仅示意了发光层,在实际的串联的叠层中还包括其他功能层。
例如,在第一蓝色发光层115远离衬底基板100的一侧还设置有第一电子传输层等用于向第一蓝色发光层115传输并注入电子的功能层,在第一蓝色发光层115靠近衬底基板100的一侧还设置有第一空穴传输层等用于向第一蓝色发光层115传输并注入空穴的功能层,以使被注入的电子和空穴在第一蓝色发光层115内相互复合形成激子,激子将能量传递给第一蓝色发光层115中的有机发光分子,并激发有机发光分子的电子从基态跃迁到激发态,而激发态的电子辐射失活以产生光子并发射蓝光,本实施例包括但不限于此。该第一蓝色发光层115与其相应的至少一个功能层组成第一发光单元。
同理,例如,红色和绿色发光层116以及第二蓝色发光层117在面向衬底基板100的一侧以及远离衬底基板100的一侧可以各包括相应的功能层,本实施例包括但不限于此。
例如,红色和绿色发光层116以及第二蓝色发光层117与其相应的至少一个功能层分别组成第二发光单元以及第三发光单元。三个发光单元之间通过两个中间连接层连接,该中间连接层不仅具有连接各发光单元的作用,还负责电荷的产生、传输以及将载流子注入到各功能层的作用。
本实施例中通过对各功能层膜厚的调节,例如,对发光层与第二电极之间的距离或者对第一电极与第二电极之间的距离的调节,以及对发光材料中主体发光材料的特性、混入掺杂材料的比例、浓度等方面的调控可以实现对有机发光二极管显示面板的发射光谱中的光谱宽度、各波峰峰值以及各波峰的峰值波长等参数的控制。
例如,各功能层可包括空穴传输层、空穴注入层、空穴阻挡层、电子传输层、电子注入层、电子阻挡层中至少之一,本实施例对此不作限制。
例如,空穴注入层可采用三苯胺化合物或者是有P型掺杂的有机层或者是聚合物等制成,本实施例对此不作限制。
例如,空穴传输层可采用芳香族二胺类化合物、芳香族三胺类化合物、联苯二胺衍生物以及咔唑类聚合物等制成,本实施例对此不作限制。
例如,电子传输层可采用邻菲罗林衍生物、咪唑衍生物、金属配合物以及蒽的衍生物等,本实施例对此不作限制。
例如,电子注入层可以采用碱金属氧化物、碱金属氟化物等,本实施例对此不作限制。
例如,采用本公开的实施例提供的方案的有机发光二极管显示面板与采用传统方案的有机发光二极管显示面板的特性比较如下表所示:
Figure PCTCN2018082695-appb-000001
Figure PCTCN2018082695-appb-000002
例如,从上表中的比较可以看出,相比于传统方案,本实施例中的红光(R)、绿光(G)、蓝光(B)的色度坐标产生了变化,因此,本实施例中RGB原色的色域与CIE 1931xy色度图的相对位置与传统方案中两者的相对位置相比也产生了变化。从表中可以看出,传统方案中RGB原色的色域在DCI-P3色域标准中的覆盖率为84%,而本公开的实施例中RGB原色的色域在DCI-P3色域标准中的覆盖率为92%,因此由上述实验结果可以看出本公开实施例提供的有机发光二极管显示面板相对于传统方案具有更广的色域。另一方面,当显示面板的画面显示为白画面时,传统方案中的白画面功耗(White Power)为210瓦特(watt),本公开实施例中的白画面功耗为160瓦特,两者相比较,本实施例提供的显示面板具有更低的白画面功耗;当显示面板的画面显示为最大功耗画面(例如,调节为紫画面)时,传统方案中的最大功耗(Worst Power)为427瓦特,本公开实施例中的最大功耗为403瓦特,两者相比较,本公开实施例提供的显示面板具有更低的最大功耗。因此,本公开实施例提供的有机发光二极管显示面板可以同时实现广色域和低功耗的性能。
本公开另一实施例提供一种有机发光二极管显示面板的制作方法,该有机发光二极管显示面板的制作方法主要包括在衬底基板上形成发光层。该发光层的发射光谱的最大光谱强度的10%-15%处的光谱宽度不小于200nm,即,在光谱线中光谱强度最大值的10%-15%范围内对应的光谱线两点间的波长间隔大于200nm。本实施例提供的发光层发射的光谱具有宽光谱特性,因此具有该发光层的显示面板具有广色域的特性。
本实施例提供的发光层的发射光谱的黄光至绿光波段包括至少一个位于550nm-562nm之间的波峰。
例如,本实施例以发射光谱的黄光至绿光波段仅包括一个位于550nm-562nm之间的波峰为例进行描述,该波峰的位置对应的波长贴近人眼视觉曲线的峰值对应的波长,因此,可以使该有机发光二极管显示面板发射的绿光具有更高的发光效率。
例如,本实施例提供的发光层的发射光谱的最大光谱强度处的波峰的峰值波长不大于456nm,即,发射光谱的最大光谱强度处的波峰位于深蓝光波段。
例如,本实施例提供的发光层的发射光谱包括至少三个波峰,本实施例以该发射光谱包括三个波峰为例进行描述,但不限于此。
例如,本实施例提供的发光层在垂直于衬底基板的方向上包括三个叠层,三个叠层可以包括第一蓝色发光层、红色和绿色发光层以及第二蓝色发光层,本实施例包括但不限于此。
例如,有机发光二极管显示面板的制作方法还包括:在发光层远离衬底基板的一侧形成滤光层,且该滤光层形成在有机发光二极管显示面板的出光侧。本实施例中的有机发光二极管显示面板的结构为白光有机发光二极管(WOLED,White Organic Light Emitting Diode)与彩色滤光层(CF,Color Filter)叠加的结构。该滤光层包括至少三种颜色的滤光单元,本实施例以滤光层包括三种颜色的滤光单元为例进行描述,但不限于此。
例如,本实施例以有机发光二极管显示面板包括红色像素、绿色像素、蓝色像素以及白色像素为例进行描述,但不限于此,还可以包括其他颜色的像素。
例如,本实施例中的滤光层包括红色滤光单元、绿色滤光单元以及蓝色滤光单元,这三种颜色的滤光单元分别设置于红色像素、绿色像素和蓝色像素内,本实施例包括但不限于此。
例如,红色滤光单元被配置为仅透过波长大于580nm的光线,且波长为595nm的光线的透过率大于50%。
本实施例提供的有机发光二极管显示面板的制作方法制作的有机发光二极管显示面板与传统方案相比具有更广的色域和更低的功耗,因此,本实施例提供的有机发光二极管显示面板的制作方法制作的有机发光二极管显示面板可以同时实现广色域和低功耗的性能。
本公开另一实施例提供一种显示装置,包括本公开实施例提供的任一种有机发光二极管显示面板。因此,包括上述有机发光二极管显示面板的显示装置可以同时实现广色域和低功耗的性能。
例如,该显示装置可以为有机发光二极管(Organic Light-Emitting Diode,OLED)显示装置等显示器件以及包括该显示装置的电视、数码相机、手机、手表、平板电脑、笔记本电脑、导航仪等任何具有显示功能的产品或者部件,本实施例不限于此。
有以下几点需要说明:
(1)除非另作定义,本公开实施例以及附图中,同一标号代表同一含义。
(2)本公开实施例附图中,只涉及到与本公开实施例涉及到的结构,其他结构可参考通常设计。
(3)为了清晰起见,在用于描述本公开的实施例的附图中,层或区域被放大。可以理解,当诸如层、膜、区域或基板之类的元件被称作位于另一元件“上”或“下”时,该元件可以“直接”位于另一元件“上”或“下”,或者可以存在中间元件。
以上所述,仅为本公开的具体实施方式,但本公开的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本公开揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本公开的保护范围之内。因此,本公开的保护范围应以所述权利要求的保护范围为准。

Claims (18)

  1. 一种有机发光二极管显示面板,包括:
    衬底基板;
    发光层,位于所述衬底基板上,所述发光层的发射光谱的最大光谱强度的10%-15%处的光谱宽度不小于200nm,且所述发射光谱的黄光至绿光波段包括至少一个位于550nm-562nm之间的波峰。
  2. 根据权利要求1所述的有机发光二极管显示面板,还包括:
    滤光层,位于所述发光层远离所述衬底基板的一侧,且位于所述发光层的出光侧,所述滤光层包括至少三种颜色的滤光单元,
    其中,一种颜色的所述滤光单元被配置为仅透过波长大于580nm的光线,且波长为595nm的光线的透过率大于50%。
  3. 根据权利要求1或2所述的有机发光二极管显示面板,其中,所述发射光谱包括至少三个波峰。
  4. 根据权利要求1-3任一项所述的有机发光二极管显示面板,其中,所述发射光谱的黄光至绿光波段仅包括一个位于550nm-562nm之间的波峰,所述位于550nm-562nm之间的波峰为第一波峰。
  5. 根据权利要求4所述的有机发光二极管显示面板,其中,所述发射光谱的最大光谱强度处的波峰为第二波峰,所述第二波峰的峰值波长不大于456nm。
  6. 根据权利要求5所述的有机发光二极管显示面板,其中,所述第一波峰与所述第二波峰之间的波谷的谷值位于所述第二波峰峰值的15%-30%之间。
  7. 根据权利要求5或6所述的有机发光二极管显示面板,其中,所述发射光谱的红光波段包括第三波峰,所述第三波峰的峰值波长位于610nm-624nm之间。
  8. 根据权利要求7所述的有机发光二极管显示面板,其中,所述第一波峰的峰值与所述第三波峰的峰值的比例大于1.5:1,且所述第三波峰的峰值波长与所述第一波峰的峰值波长的波长差小于70nm。
  9. 根据权利要求1-8任一项所述的有机发光二极管显示面板,其中,所述发光层包括三个叠层。
  10. 根据权利要求9所述的有机发光二极管显示面板,其中,所述三个叠层包括第一蓝色发光层、红色和绿色发光层以及第二蓝色发光层。
  11. 根据权利要求10所述的有机发光二极管显示面板,其中,所述第一蓝色发光层的厚度为150-300nm,所述红色和绿色发光层的厚度为60-100nm,所述第二蓝色发光层的厚度为100-200nm。
  12. 根据权利要求10或11所述的有机发光二极管显示面板,其中,所述第一蓝色发光层和所述第二蓝色发光层均包括荧光发光材料,所述红色和绿色发光层包括磷光发光材料。
  13. 根据权利要求2所述的有机发光二极管显示面板,其中,所述有机发光二极管显示面板包括红色像素、绿色像素、蓝色像素以及白色像素,所述至少三种颜色的滤光单元包括红色滤光单元、绿色滤光单元和蓝色滤光单元,分别设置于所述红色像素、所述绿色像素和所述蓝色像素内。
  14. 根据权利要求1-13任一项所述的有机发光二极管显示面板,其中,所述发光层为白光发光层。
  15. 一种显示装置,包括权利要求1-14任一项所述的有机发光二极管显示面板。
  16. 一种有机发光二极管显示面板的制作方法,包括:
    在衬底基板上形成发光层,其中,所述发光层的发射光谱的最大光谱强度的10%-15%处的光谱宽度不小于200nm,且所述发射光谱的黄光至绿光波段包括至少一个位于550nm-562nm之间的波峰。
  17. 根据权利要求16所述的有机发光二极管显示面板的制作方法,还包括:
    在所述发光层远离所述衬底基板的一侧形成滤光层,所述滤光层位于所述发光层的出光侧,且所述滤光层包括至少三种颜色的滤光单元,
    其中,一种颜色的所述滤光单元被配置为仅透过波长大于580nm的光线,且波长为595nm的所述光线的透过率大于50%。
  18. 根据权利要求16或17所述的有机发光二极管显示面板的制作方法,其中,所述发射光谱的黄光至绿光波段仅包括一个位于550nm-562nm之间的波峰。
PCT/CN2018/082695 2017-06-20 2018-04-11 有机发光二极管显示面板及其制作方法、显示装置 WO2018233353A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP18793351.0A EP3644368A4 (en) 2017-06-20 2018-04-11 DISPLAY BOARD WITH ORGANIC LIGHT DIODES AND MANUFACTURING METHOD FOR THEREFOR, AND DISPLAY DEVICE
JP2018558429A JP7193346B2 (ja) 2017-06-20 2018-04-11 有機発光ダイオード表示パネル及びその製造方法、表示装置
US16/098,326 US11189811B2 (en) 2017-06-20 2018-04-11 Organic light emitting diode display panel having wide color gamut and low power consumption, manufacturing method thereof, and display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710469604.4 2017-06-20
CN201710469604.4A CN109103214B (zh) 2017-06-20 2017-06-20 有机发光二极管显示面板及其制作方法、显示装置

Publications (1)

Publication Number Publication Date
WO2018233353A1 true WO2018233353A1 (zh) 2018-12-27

Family

ID=64735454

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/082695 WO2018233353A1 (zh) 2017-06-20 2018-04-11 有机发光二极管显示面板及其制作方法、显示装置

Country Status (5)

Country Link
US (1) US11189811B2 (zh)
EP (1) EP3644368A4 (zh)
JP (1) JP7193346B2 (zh)
CN (1) CN109103214B (zh)
WO (1) WO2018233353A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7102211B2 (ja) * 2018-04-26 2022-07-19 キヤノン株式会社 有機el素子、それを有する表示装置、照明装置、移動体
CN111029383A (zh) * 2019-12-13 2020-04-17 京东方科技集团股份有限公司 一种oled显示模组及其制备方法、oled显示装置
CN114512617A (zh) * 2020-11-17 2022-05-17 京东方科技集团股份有限公司 一种发光器件、显示装置和发光器件的制作方法
CN113224121B (zh) * 2021-04-30 2022-10-28 昆山国显光电有限公司 显示面板、显示面板的制作方法和显示设备

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1711002A (zh) * 2004-06-17 2005-12-21 胜华科技股份有限公司 单发光层全波长有机电激发光装置
CN101368096A (zh) * 2006-04-06 2009-02-18 友达光电股份有限公司 有机电致发光器件的发光层及其有机电致发光材料
CN101403831A (zh) * 2008-11-18 2009-04-08 友达光电股份有限公司 显示器装置及其调整彩色滤光片色阻的方法
US20110095276A1 (en) * 2009-10-22 2011-04-28 Sony Corporation Display unit
CN102842273A (zh) * 2011-11-25 2012-12-26 友达光电股份有限公司 显示装置
CN104716264A (zh) * 2013-12-11 2015-06-17 昆山工研院新型平板显示技术中心有限公司 一种有机电致发光器件及应用该发光器件的显示装置
CN106356464A (zh) * 2016-10-24 2017-01-25 中山大学 一种白光有机电致发光器件及其制备方法

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003279955A (ja) * 2002-03-18 2003-10-02 Giantplus Technology Co Ltd 半透過式カラー液晶ディスプレイ
KR100527187B1 (ko) * 2003-05-01 2005-11-08 삼성에스디아이 주식회사 고효율 유기전계 발광표시장치 및 그의 제조방법
JP2005150078A (ja) * 2003-10-24 2005-06-09 Pentax Corp 白色有機エレクトロルミネセンス素子
US7808585B2 (en) 2004-07-15 2010-10-05 Sony Corporation Color filter and color LCD apparatus having red filter with a peak wavelength between 685 nm and 690 nm and a red light source having a peak wavelength of between 640 nm and 645 nm
JP5222461B2 (ja) * 2004-12-28 2013-06-26 株式会社半導体エネルギー研究所 発光装置の作製方法、及び発光装置
JP4876453B2 (ja) 2005-06-29 2012-02-15 ソニー株式会社 有機発光素子および有機発光装置
JP2007103028A (ja) * 2005-09-30 2007-04-19 Sanyo Electric Co Ltd 有機エレクトロルミネッセンス表示装置
JP5593632B2 (ja) * 2009-04-10 2014-09-24 東洋インキScホールディングス株式会社 カラーフィルタ用青色着色組成物、カラーフィルタおよびカラー表示装置
JP5573416B2 (ja) * 2010-06-29 2014-08-20 東洋インキScホールディングス株式会社 カラーフィルタおよびカラー表示装置
KR101419247B1 (ko) * 2010-12-28 2014-07-16 엘지디스플레이 주식회사 백색 유기 발광 소자 및 이를 이용한 표시 장치
US8957442B2 (en) * 2011-02-11 2015-02-17 Semiconductor Energy Laboratory Co., Ltd. Light-emitting device and display device
JP2012199231A (ja) * 2011-03-04 2012-10-18 Semiconductor Energy Lab Co Ltd 表示装置
KR101476907B1 (ko) * 2012-04-10 2014-12-26 포항공과대학교 산학협력단 일체형 전도성 기판 및 이를 채용한 전자 소자
JP6051657B2 (ja) * 2012-07-30 2016-12-27 東洋インキScホールディングス株式会社 有機el表示装置用緑色着色組成物、カラーフィルタ、および有機el表示装置
DE102013112602B4 (de) * 2012-12-18 2020-11-12 Lg Display Co., Ltd. Weiße organische Lichtemissionsvorrichtung
JP6119282B2 (ja) * 2013-02-12 2017-04-26 大日本印刷株式会社 白色発光有機elディスプレイ用のカラーフィルタ及び着色レジスト組成物、並びに白色発光有機elディスプレイ
JP2014225415A (ja) * 2013-05-17 2014-12-04 パナソニック株式会社 有機エレクトロルミネッセンス素子
KR102081117B1 (ko) * 2013-08-29 2020-02-25 엘지디스플레이 주식회사 백색 유기 발광 소자
EP3050133A1 (en) * 2013-09-27 2016-08-03 Wake Forest University Frequency dependent light emitting devices
CN103500803B (zh) * 2013-10-21 2016-06-08 京东方科技集团股份有限公司 一种复合发光层及其制作方法、白光有机电致发光器件
EP3016160B1 (en) * 2014-10-28 2020-01-08 LG Display Co., Ltd. White organic light emitting diode and organic light emitting display device using the same
CN108630820A (zh) * 2017-03-21 2018-10-09 北京大学深圳研究生院 一种交流平面有机电致发光器件
CN105185790B (zh) * 2015-09-24 2019-03-12 深圳市华星光电技术有限公司 阵列基板及其制作方法
CN105093382A (zh) * 2015-09-25 2015-11-25 深圳市华星光电技术有限公司 一种偏光片
CN105204106B (zh) * 2015-10-12 2018-11-20 深圳市华星光电技术有限公司 量子点偏光片的制作方法
KR20180067766A (ko) * 2016-12-12 2018-06-21 삼성디스플레이 주식회사 유기 발광 표시 장치
CN107104192B (zh) * 2017-04-14 2019-02-26 深圳市华星光电半导体显示技术有限公司 量子点显示器件及其制造方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1711002A (zh) * 2004-06-17 2005-12-21 胜华科技股份有限公司 单发光层全波长有机电激发光装置
CN101368096A (zh) * 2006-04-06 2009-02-18 友达光电股份有限公司 有机电致发光器件的发光层及其有机电致发光材料
CN101403831A (zh) * 2008-11-18 2009-04-08 友达光电股份有限公司 显示器装置及其调整彩色滤光片色阻的方法
US20110095276A1 (en) * 2009-10-22 2011-04-28 Sony Corporation Display unit
CN102842273A (zh) * 2011-11-25 2012-12-26 友达光电股份有限公司 显示装置
CN104716264A (zh) * 2013-12-11 2015-06-17 昆山工研院新型平板显示技术中心有限公司 一种有机电致发光器件及应用该发光器件的显示装置
CN106356464A (zh) * 2016-10-24 2017-01-25 中山大学 一种白光有机电致发光器件及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3644368A4 *

Also Published As

Publication number Publication date
JP2020524391A (ja) 2020-08-13
EP3644368A1 (en) 2020-04-29
CN109103214A (zh) 2018-12-28
CN109103214B (zh) 2020-11-06
EP3644368A4 (en) 2021-03-17
JP7193346B2 (ja) 2022-12-20
US11189811B2 (en) 2021-11-30
US20210098730A1 (en) 2021-04-01

Similar Documents

Publication Publication Date Title
KR101963089B1 (ko) 전력 효율적인 rgbw oled 디스플레이
US11189811B2 (en) Organic light emitting diode display panel having wide color gamut and low power consumption, manufacturing method thereof, and display device
CN108417729B (zh) 白色有机发光器件
CN108807493B (zh) 有机发光显示器件及其制造方法、以及有机发光显示装置
US9570701B2 (en) Organic light emitting device
KR101419247B1 (ko) 백색 유기 발광 소자 및 이를 이용한 표시 장치
EP4408148A2 (en) Organic light emitting display device
KR102543974B1 (ko) 백색 유기전계발광 표시장치
WO2019064333A1 (ja) 有機el表示装置およびその製造方法並びにその発光方法
KR20220018535A (ko) 유기발광 표시장치
KR20220163324A (ko) 백색 유기 발광 소자
US20230329098A1 (en) Material for forming blue light-emitting layer, light-emitting device, light-emitting substrate, and light-emitting apparatus
KR101715857B1 (ko) 백색 유기 발광 소자
TWI467527B (zh) 顯示裝置
US10020348B2 (en) Organic light emitting display device with multiple emission layers
KR102614067B1 (ko) 백색 유기 발광 소자 및 이를 적용한 유기 발광 표시 장치
US8872170B2 (en) Image display system
CN114975802B (zh) 发光器件、发光基板和发光装置
KR102369068B1 (ko) 백색 유기 발광 소자
Hatwar et al. Development of white OLED technology for application in full-color displays and solid-state lighting
KR102358545B1 (ko) 유기발광 표시장치
KR20220030239A (ko) 백색 유기 발광 소자
CN103378123A (zh) 影像显示***
KR20060087982A (ko) 유기 일렉트로루미네센스 표시 장치

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018558429

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18793351

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018793351

Country of ref document: EP

Effective date: 20200120