WO2018230419A1 - Welding system and welding method - Google Patents

Welding system and welding method Download PDF

Info

Publication number
WO2018230419A1
WO2018230419A1 PCT/JP2018/021773 JP2018021773W WO2018230419A1 WO 2018230419 A1 WO2018230419 A1 WO 2018230419A1 JP 2018021773 W JP2018021773 W JP 2018021773W WO 2018230419 A1 WO2018230419 A1 WO 2018230419A1
Authority
WO
WIPO (PCT)
Prior art keywords
welding
temperature
workpiece
preheating
sensor
Prior art date
Application number
PCT/JP2018/021773
Other languages
French (fr)
Japanese (ja)
Inventor
千里 福原
Original Assignee
南海鋼材株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南海鋼材株式会社 filed Critical 南海鋼材株式会社
Publication of WO2018230419A1 publication Critical patent/WO2018230419A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K10/00Welding or cutting by means of a plasma
    • B23K10/02Plasma welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/03Observing, e.g. monitoring, the workpiece
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/08Devices involving relative movement between laser beam and workpiece
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/34Laser welding for purposes other than joining
    • B23K26/342Build-up welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/60Preliminary treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K31/00Processes relevant to this subclass, specially adapted for particular articles or purposes, but not covered by only one of the preceding main groups
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/04Welding for other purposes than joining, e.g. built-up welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/235Preliminary treatment

Definitions

  • the present invention relates to a welding system and a welding method, and more particularly to a welding system used for overlay welding.
  • Overlay welding is generally a welding method in which a component material different from the base material is welded to the surface of the base material for the purpose of surface modification such as corrosion resistance, heat resistance, and wear resistance.
  • Arc welding, plasma welding, Fusion welding methods such as laser welding and gas welding are applicable.
  • FIG. 3 is a schematic view of a powder plasma welding apparatus for performing plasma welding.
  • FIG. 3A is a configuration diagram showing the relationship between the welding torch 8 and the workpiece 9
  • FIG. 3B is a cross-sectional view taken along line ZZ in FIG. 3A.
  • this apparatus is configured to provide a powder of welding material from a plurality of powder supply holes 8 a and 8 b of the welding torch 8 during a plasma arc formed between the welding torch 8 and the surface of the workpiece 9.
  • a droplet and the droplet is welded to the surface of the work 9 (see, for example, Patent Document 1).
  • thermal management preheating temperature, interlayer temperature / interpass temperature, and post heat treatment management
  • thermal management preheating temperature, interlayer temperature / interpass temperature, and post heat treatment management
  • select a material with the desired “base material strength” so that the “welded part” and the “interface between the weld and base material” have the same strength as the base material.
  • a high-strength base material is filled with a high-strength welding material having excellent heat resistance, wear resistance, and the like, but such a welding material is cracked during or after welding unless heat management is performed.
  • adherence state of a base material and a welding material which is one of welding quality must be favorable. Furthermore, the quality of the matrix structure must not be compromised.
  • the mold is tempered by heat treatment, but if the heat input is excessively raised in the welding process, it will be deteriorated, for example, the hardness will decrease.
  • the current value output of the welding device
  • current profile current profile
  • powder feed amount powder feed amount
  • trajectory and moving speed of the welding torch etc.
  • the suitability of the welded state depends on the size and shape of the molten metal (welded material melted on the base metal), the disturbance of the boundary line between the molten metal and the base metal, the boiling state of the molten metal, and the blowhole generated in the bead where the molten metal has solidified
  • the molten metal welded material melted on the base metal
  • the disturbance of the boundary line between the molten metal and the base metal the disturbance of the boundary line between the molten metal and the base metal
  • the boiling state of the molten metal the blowhole generated in the bead where the molten metal has solidified
  • the present invention intends to provide a welding system and a welding method that can easily stabilize the welding quality.
  • the present invention provides a welding system configured as follows in order to solve the above-described problems.
  • the welding system includes: (a) a welding device that welds a welding material to the surface of the workpiece to perform overlay welding; (b) a preheating device that preheats and retains the workpiece; and (c) the meat after the workpiece is preheated.
  • a first sensor for measuring. The control device, based on the first temperature measured by the first sensor, while the welding apparatus performs the overlay welding, so that the first temperature falls within a first range, The output of the preheating device is controlled.
  • the control device controls the output of the preheating device based on the measured value of the first temperature (the temperature of the molten metal) so that the first temperature is within a range where a good welding state is obtained. . Thereby, during welding, the welding conditions are appropriately controlled, and a good welding state is maintained.
  • the factors affecting the welding quality can be concentrated at the first temperature, the welding state can be controlled based on a quantitative standard, and the reproducibility of the thermal management is high. Therefore, it is easy to stabilize the welding quality.
  • the output of the preheating device may be changed after the first temperature is out of the first range, or may be changed from when the first temperature is within the first range.
  • the welding system further includes (e) a second sensor that measures a second temperature that is the temperature of the workpiece.
  • the control device is configured so that the second temperature falls within a second range based on the second temperature measured by the second sensor while the welding device performs the overlay welding. Control the output of the welding equipment.
  • the factors affecting the welding quality can be concentrated on the first or second temperature, the welding state can be controlled based on a quantitative standard, and the reproducibility of the thermal management is high. Therefore, it is easy to stabilize the welding quality.
  • the output of the welding apparatus may be changed after the second temperature is out of the second range, or may be changed from when the second temperature is in the second range.
  • control device is configured such that when the first temperature measured by the first sensor is out of the first range, or when the second temperature measured by the second sensor is the first temperature.
  • the output of either one or both of the welding device and the preheating device is changed.
  • the welding quality can be stabilized by changing the welding conditions while continuing the welding.
  • control device is configured such that when the first temperature measured by the first sensor is out of the first range, or when the second temperature measured by the second sensor is the first temperature.
  • the welding apparatus is out of the range 2
  • the output of one or both of the welding apparatus and the preheating apparatus is changed, and the output is changed. Then, the weld welding is restarted by the welding apparatus.
  • the welding quality can be prevented from deteriorating by interrupting the welding, and the welding quality can be stabilized by restarting the welding after changing the setting of the welding conditions.
  • the welding system includes: (e) the welding torch so that the welding torch of the welding apparatus and the workpiece relatively move along a preset path while the welding apparatus performs the overlay welding. And a relative movement device for moving one or both of the workpiece and (f) a third sensor for detecting the position of the workpiece.
  • the control device corrects the preset route according to the position of the workpiece after the preheating detected by the third sensor, and the welding device performs the welding while the welding device performs the overlay welding.
  • the relative movement device is operated so that the torch and the workpiece move relative to each other along the corrected path.
  • the welding device is a powder plasma welding device or a laser welding device provided with a powder feeding device for supplying gas and powder of the welding material.
  • control device is configured to manually change the output of one or both of the welding device and the preheating device when the welding device is automatically performing the overlay welding. Including operation panel.
  • the welding conditions can be changed manually before the welding conditions are changed by the control device. Therefore, an operator can monitor the welding state and change the welding conditions more quickly so as to obtain an appropriate welding state, so that the welding quality can be further stabilized.
  • the recording apparatus further includes a recording device connected to the control device and for recording a record of control conditions including control of the output of the welding device.
  • the present invention provides a welding method configured as follows in order to solve the above problems.
  • the welding method includes first to third steps.
  • the first step after preheating the work using a preheating device, the work is kept warm using the preheating device, and the torch of the welding apparatus and the work are relatively moved along a preset path. It is moved, and welding welding is performed on the surface of the workpiece to perform overlay welding.
  • a first temperature which is a temperature of the welding material melted on the surface of the workpiece, is measured during the build-up welding in the first step.
  • the output of the preheating device is controlled based on the first temperature measured in the second step so that the first temperature falls within the first range.
  • the factors affecting the welding quality can be concentrated at the first temperature, the welding state can be controlled based on a quantitative standard, and the reproducibility of the thermal management is high. Therefore, it is easy to stabilize the welding quality.
  • the second temperature which is the temperature of the surface of the workpiece
  • the output of the welding apparatus is controlled so that the second temperature falls within the second range.
  • the factors affecting the welding quality can be concentrated on the first and second temperatures, and the welding state can be controlled on the basis of a quantitative standard, and the reproducibility of the thermal management is high. Therefore, it is easy to stabilize the welding quality.
  • FIG. 1 is a configuration diagram of a welding system.
  • Example 1 is a flowchart of the operation of the welding system.
  • Example 1 FIG. 3 is a schematic view of a powder plasma welding apparatus. (Conventional example 1)
  • Example 1 The welding system 50 of Example 1 is demonstrated referring FIG.1 and FIG.2.
  • FIG. 1 is a configuration diagram conceptually showing the configuration of the welding system 50.
  • a welding system 50 is roughly composed of a welding device 10 that performs welding by welding a welding material to the surface 4 of the workpiece 2, a preheating device 30 that heats and keeps the workpiece 2 warm, and a welding device.
  • the gripping robot 20 that moves while gripping the ten welding torches 11 and the temperature of the molten metal 6 (the temperature of the welding material melted on the surface 4 of the workpiece 2, hereinafter also referred to as “first temperature Ta”) are detected.
  • a first sensor 40 that detects the temperature of the workpiece 2 (hereinafter also referred to as “second temperature Tb”), and a third sensor 44 that detects the position of the workpiece 2. Yes.
  • second temperature Tb the temperature of the workpiece 2
  • a third sensor 44 that detects the position of the workpiece 2. Yes.
  • a configuration without the third sensor 44 is also possible. It is also possible to have a configuration in which either one of the first
  • the welding apparatus 10 is, for example, a powder plasma welding apparatus that uses powder as a welding material.
  • the welding device 10 applies a voltage to a powder feeding device 12 that supplies gas and welding material powder to the welding torch 11, a cooling water circulation device 14 that supplies and recovers cooling water to the welding torch 11, and a voltage.
  • a plasma welding power source 16 for generating a plasma arc between the electrode inside the welding torch 11 and the surface 4 of the workpiece 2 and a control device 18 are provided.
  • the welding apparatus 10 is not limited to a powder plasma welding apparatus, and may be any welding apparatus that performs overlay welding by welding a welding material to the surface of a workpiece by an appropriate fusion welding method.
  • a powder plasma welding apparatus for example, normal arc welding An apparatus, a laser welding apparatus, a hybrid welding apparatus combining a laser and an arc, or the like may be used.
  • a powder plasma welding apparatus, a laser welding apparatus, or the like provided with a powder feeding device that supplies gas and powder of a welding material has few spatters during welding, and temperature measurement is easy.
  • the preheating device 30 can be used for preheating the workpiece 2 before welding, keeping the workpiece 2 warm during welding, and performing post-heat treatment of the workpiece 2 after welding.
  • the preheating device 30 includes, for example, a main body 32 having a placement surface 34 on which the workpiece 2 is placed, and a controller 36.
  • the main body 32 includes a heater and a temperature detector (not shown).
  • the controller 36 controls the heater in the main body 32 so that the temperature of the mounting surface 34 is maintained at the holding temperature after the mounting surface 34 is heated to a preset holding temperature.
  • a control signal is input from the control device 18 to the controller 36, and the control device 18 controls the start and end of preheating / warming and post-heat treatment of the preheating device 30, setting and changing of the holding temperature, and the like.
  • the preheating device 30 uses a temperature sensor for measuring the temperature of the workpiece (which may be used as the second sensor 42 or may be separate from the second sensor 42), so that the temperature of a predetermined portion of the workpiece is predetermined.
  • a temperature sensor for measuring the temperature of the workpiece (which may be used as the second sensor 42 or may be separate from the second sensor 42), so that the temperature of a predetermined portion of the workpiece is predetermined.
  • work may be heated and heat-retained so that it may become temperature. In this case, temperature management of a large workpiece or the like that is likely to cause temperature unevenness is facilitated.
  • a preheating device that heats the work 2 by heat transfer by direct contact
  • a preheating device that heats and keeps the work by an appropriate method such as heat ray irradiation, electromagnetic induction heating, arc discharge, gas burner, or laser irradiation is used. Also good.
  • the preheating device supports the workpiece even if it is incorporated in a device that supports the workpiece (for example, a moving table that moves the mounted workpiece or a workpiece gripping device that grips the workpiece and changes the position and orientation of the workpiece). You may provide separately from an apparatus. Further, the workpiece 2 may be heated by a plurality of preheating devices 30.
  • the gripping robot 20 moves the welding torch 11 along the surface 4 of the workpiece 2 so as to form a bead on the surface 4 of the workpiece 2 along a predetermined path.
  • the trajectory of the welding torch 11 is examined and set in advance by, for example, 3D simulation.
  • the gripping robot 20 is a welding torch so that the welding torch 11 of the welding apparatus 10 and the workpiece 2 relatively move along a preset path while the welding apparatus 10 performs overlay welding. 11 and a relative movement device that moves one or both of the workpiece 2 and the workpiece 2).
  • the relative movement device may be, for example, a moving table that moves a workpiece with respect to a welding torch on which a workpiece is placed and is fixed, a workpiece holding device that holds the workpiece and changes the position and orientation of the workpiece, and a welding torch.
  • a gripping robot that changes the position and orientation may be combined.
  • first and second sensors 40 and 42 for measuring the temperature a thermocouple, an optical fiber thermometer or the like can be used, but a non-contact type such as an infrared radiation thermometer or a thermo camera is preferable.
  • the first and second sensors 40 and 42 may be appropriately disposed.
  • the first and second sensors 40 and 42 may be attached to the gripping robot 20 or may be attached to another robot that operates in cooperation with the gripping robot 20.
  • the first and second sensors 40 and 42 do not need to be separate.
  • the temperature of both the molten metal 6 and the workpiece 2 may be measured by a single thermo camera.
  • the 1st and 2nd sensors 40 and 42 can be fixed to a stationary part.
  • the first sensor 40 measures the temperature of the molten metal 6 at an oblique angle from the vicinity of the welding torch 11, for example.
  • the second sensor 42 preferably measures the temperature of the surface 4 of the workpiece 2 where the welding torch 11 is to be welded in the direction of build-up or in the vicinity thereof, but the position at which the temperature of the workpiece 2 is measured. May be appropriately selected. For example, it is also possible to configure so as to measure the temperature of the part away from the region to be welded. It is also possible to configure to measure the temperature inside the workpiece 2.
  • the second sensor 42 is, for example, a predetermined distance away from the bead immediately after solidification, which is obliquely rearward with respect to the traveling direction of the molten metal 6 on the surface 4 of the workpiece 2, that is, the direction in which the molten metal 6 forms a solidified bead. Measure the temperature at the location. In this case, since the temperature of the base material near the interface with the weld layer immediately after welding can be accurately estimated and managed, it is easy to stabilize the adhesion strength of the weld layer and the deterioration of the base material near the interface. .
  • one or two or more second sensors 42 are configured to measure the temperature at a plurality of locations of the workpiece 2, appropriate control corresponding to the temperature distribution of the workpiece 2 is possible.
  • the workpiece 2 heated to some extent by preheating is welded while being kept warm by the preheating device 30.
  • the output (heat generation amount) of the preheating device 30 is smaller during the heat retention than during the preheating. Since the base metal near the welded part is immediately transmitted with heat generated by welding, the temperature is likely to rise. On the other hand, the temperature of the base material at a location far from the welding site is relatively less likely to rise, and in some cases, the temperature is lowered even though the temperature is maintained by the preheating device 30. As it is, the temperature at the time of welding increases greatly depending on the part of the base material, which causes quality unevenness. In addition, although the base metal temperature of the welded part drops after welding, there is a possibility that cracking after welding may occur at a place where the temperature drop is larger than expected.
  • the third sensor 44 that detects the position of the work 2 is, for example, a touch probe sensor, and is used to detect the position of the work 2 immediately before the start of welding.
  • the control device 18 corrects the trajectory of the welding torch 11 set in advance so as to be moved by the gripping robot 20 according to the position of the workpiece 2 detected by the third sensor 44, and according to the actual position of the workpiece.
  • the welding torch 11 is controlled to move along an appropriate track. That is, a preset path is corrected so that the welding torch 11 and the work 2 move relative to each other, and the welding torch 11 and the work 2 move relative to each other along the corrected path.
  • the control device 18 controls the powder feeding device 12, the cooling water circulation device 14, and the plasma welding power source 16 of the welding device 10, and further controls the gripping robot 20 and the preheating device 30.
  • the control device 18 includes an interface that outputs a control signal and a detection signal from the first to third sensors 40, 42, and 44, and a display device such as an indicator lamp or a display panel that displays an operation status or the like. And input devices such as operation switches, operation buttons, and data reading devices used for operations such as starting and starting welding and inputting welding conditions, a storage device such as a memory, and an arithmetic processing device such as a CPU. Control is executed according to a predetermined program.
  • the control device 18 preferably includes a manual operation panel 19 for manually changing the output of one or both of the welding device 10 and the preheating device 30.
  • the manual operation panel 19 is separate from the main body 18a of the control device 18, and may be connected to the main body 18a of the control device 18 or incorporated in the main body 18a of the control device 18. May be.
  • the manual operation panel 19 is configured so that the welding conditions can be finely adjusted manually. When the manual operation panel 19 is used, the welding conditions can be changed before the welding conditions are automatically changed. Therefore, an operator can monitor the welding state and change the welding conditions more quickly so as to obtain an appropriate welding state, so that the welding quality can be further stabilized.
  • a temperature display device for displaying either one or both of the first and second temperatures Ta and Tb measured by the first and second sensors 40 and 42.
  • the welding conditions can be changed more appropriately, and the welding quality can be further stabilized.
  • a recording device 19x that is connected to the control device 18 and includes the output of the welding device 10 and preferably records the results of the control conditions including the output of the preheating device 30 may be provided. Thereby, it is possible to improve the welding quality by reading the past control conditions from the recording device 19x and correcting and using them as necessary.
  • a past profile (the time is plotted on the horizontal axis and the output of the preheating device / welding device on the vertical axis) is recorded in advance from the recording device 19x.
  • the data is read out, corrected as necessary, and set (input) as a control condition in the control device 18.
  • the profile (actual result of control conditions) recorded in the recording device 19x is overwritten by real-time automatic control / manual control (fine adjustment of output from the manual operation panel).
  • profile accuracy can be improved and welding quality can be improved.
  • the smooth output control may be performed manually.
  • FIG. 2 is a flowchart of the basic operation of the welding system 50.
  • the welding conditions current value, current profile, powder feed amount, etc. that determine the output of the welding apparatus 10, the trajectory / operation conditions / movement speed of the welding torch 11, the holding temperature of the preheating apparatus 30) according to the workpiece 2 are set. Is set.
  • the control device 18 causes the preheating device 30 to start the heating / warming mode operation, and the second sensor 42 detects the work 2.
  • Measurement of temperature (second temperature Tb) is started (S10). While the temperature of the mounting surface 34 of the preheating device 30 rises until reaching a predetermined holding temperature, the temperature is automatically controlled to maintain the holding temperature when the holding temperature is reached.
  • the temperature of the workpiece 2 rises as the temperature of the placement surface 34 of the preheating device 30 rises, and the temperature of the workpiece 2 becomes equal to or lower than the temperature of the placement surface 34 of the preheating device 30.
  • the second sensor 42 is a temperature of the workpiece 2 measured (second temperature Tb) is pre-set welding start reference temperature T 0 is reached, (Y in S12), the welding setup is completed.
  • the operator waits for the operator to perform a predetermined welding start operation using the input device of the control device 18 (N in S14).
  • the welding start operation is performed (Y in S14)
  • the welding process is started.
  • the third sensor 44 detects the position of the workpiece 2, and the control device 18 sets the trajectory of the welding torch 11 that is set in advance according to the position of the workpiece 2 measured by the third sensor 44. Is corrected (S16).
  • step 16 may be omitted if the workpiece positioning error or the thermal deformation of the workpiece does not affect the welding quality, or if it does not cause a problem even if it affects the workpiece quality.
  • control device 18 operates the welding device 10 and the gripping robot 20 to start welding (S18).
  • the molten welding material is supplied from the welding torch 11 of the welding apparatus 10 to the surface 4 of the workpiece 2.
  • the gripping robot 20 moves the welding torch 11 along the corrected trajectory.
  • the first sensor 40 measures the temperature of the molten metal 6 (first temperature Ta)
  • the second sensor measures the temperature of the workpiece 2 (second temperature Tb).
  • the control device 18 Based on the first and second temperatures Ta and Tb measured by the first and second sensors 40 and 42, the control device 18 has first and second temperatures Ta and Tb determined in advance, respectively. And the output of at least one of the welding apparatus 10 and the preheating apparatus 30 is controlled so that it may be settled in the 2nd range.
  • a first temperature Ta reaches the first reference temperature T 1 (Y at S20), without changing the output, the process proceeds to step S24.
  • the controller 18 controls the output of the preheating apparatus 30. That is, the control device 18 sends a control signal for reducing the heat retention temperature set in the preheating device 30 by a predetermined value to the controller 36 of the preheating device 30, and outputs the output of the preheating device 30 (heat generation amount of the heater). Decrease (S22). In this case, it is possible to suppress variations in welding quality by finely adjusting the welding conditions while continuing welding.
  • step S24 to a second temperature Tb reaches the second reference temperature T 2 (N at S24), without changing the output, the process proceeds to step S26.
  • the controller 18 temporarily stops the operation of the welding apparatus 10 and the grab robot 20, interrupting the welding (S30) .
  • the control device 18 sends a control signal for reducing the heat retention temperature set in the preheating device 30 by a predetermined value to the controller 36 of the preheating device 30, and outputs the output of the preheating device 30 (heat generation amount of the heater). Decrease (S32).
  • the welding conditions are changed (S34). Specifically, the welding start reference temperature T 0 is changed to a value (T 0 ⁇ 0 ) that is lower by a predetermined value ⁇ 0 , and the second reference temperature T 2 is lower by a predetermined value ⁇ 2. Change to the value (T 2 ⁇ 2 ).
  • the process waits for the second temperature Tb to decrease to the welding start reference temperature T 0 after the change (N in S36).
  • the control device 18 releases the temporary stop of the operation of the welding device 10 and the gripping robot 20 and resumes the operation. (S38) and return to step 20.
  • the welding quality can be prevented from deteriorating by interrupting the welding, and the welding quality can be stabilized by restarting the welding after changing the setting of the welding conditions.
  • step S26 the process returns to step S20 to continue welding until welding in a predetermined range is completed (N in S26).
  • the output of the preheating device 30 reduced in step S ⁇ b> 22 is not changed until a predetermined time elapses even when the process proceeds to step S ⁇ b> 22 again.
  • the control device 18 stops the welding device 10 and the gripping robot 20 to finish the welding (S40), and the preheating device 30 operates in the preheating / heating mode. Is stopped (S42).
  • control device 18 causes the preheating device 30 to start the operation in the post heat treatment mode (S44).
  • the temperature of the mounting surface 34 of the preheating device 30 is automatically controlled according to a predetermined profile, and the workpiece after completion of welding mounted on the mounting surface 34 of the preheating device is post-heat treated. .
  • the preheating device 30 is stopped when the post-heat treatment is finished, and the welding system 50 ends the operation (S46).
  • the output of the welding device 10 and / or the preheating device 30 of the welding system 50 can be controlled by appropriately selecting and combining the above-described control and the controls of Modifications 1 to 8 described later.
  • the control device 18 determines the first temperature Ta (the temperature of the molten metal 6) and the second temperature Tb (the temperature of the workpiece 2, that is, the temperature of the base material) based on the measured values. And the output of the welding apparatus 10 and / or the preheating apparatus 30 is controlled so that the 2nd temperature Ta and Tb may be settled in the 1st and 2nd range which becomes a favorable welding state, respectively. Thereby, during welding, the welding conditions are appropriately controlled, and a good welding state is maintained.
  • the welding system 50 aggregates the factors affecting the welding quality into the first and second temperatures, can control the welding state based on a quantitative standard, and has high reproducibility of thermal management. Therefore, it is easy to stabilize the welding quality.
  • the penetration of the base material causes a decrease in the hardness of the weld metal, it is necessary to build up two or more layers.
  • powder plasma welding has little penetration of the base material, and can also perform overlay welding of only one layer.
  • the powder plasma arc welding apparatus can produce products that are difficult to produce by ordinary arc welding, such as a forging die having excellent wear resistance, heat crack resistance, and peel resistance.
  • SKD61 It is possible to build up stellite having a high degree of difficulty in welding on the base material.
  • the effect of the present invention is particularly remarkable when the welding apparatus 10 is a powder plasma arc welding apparatus.
  • the effect of the present invention is particularly remarkable.
  • the control device controls the output of the welding device. For example, the control device changes the current value of the welding device to a current value that is smaller by a predetermined value.
  • the unit length can be determined by the following preselected method: It is preferable to control so as to suppress fluctuations in the amount of deposit (welding amount).
  • One method is to reduce the current value of the welding device when the measured value of the first temperature (melt temperature) exceeds the first reference temperature, and to control the powder feed amount with the welding device. In association with the control, interrupt control is performed, and the amount of powder delivered is increased compared to the normal operation, and fluctuations in the amount of powder delivered are suppressed.
  • Another method is to reduce the current value of the welding apparatus when the measured value of the first temperature (molten metal temperature) exceeds the first reference temperature, and relate it to the current value controlled by the welding apparatus, After a predetermined time (for example, a predetermined number of seconds) elapses, the gripping robot is controlled so as to reduce the relative movement speed between the welding torch and the workpiece.
  • a predetermined time for example, a predetermined number of seconds
  • the control device controls the output of the welding device. For example, the control device changes the current value of the welding device to a current value that is larger by a predetermined value.
  • the unit length can be determined by, for example, the following preselected method: It is preferable to control so as to suppress fluctuations in the amount of deposit (welding amount).
  • One method is to increase the current value of the welding device and to reduce the powder feed amount when the measured value of the first temperature (melt temperature) falls below a predetermined third reference temperature. Then, interrupt control is performed in association with the current value controlled by the welding apparatus, and the powder feed amount is reduced compared with the normal operation, and fluctuations in the powder feed amount are suppressed.
  • Another method is to increase the current value of the welding device and control it with the welding device when the measured value of the first temperature (melt temperature) falls below a predetermined third reference temperature.
  • the gripping robot is controlled so as to increase the relative movement speed between the welding torch and the workpiece after a predetermined time (for example, a predetermined number of seconds) has elapsed in association with the current value.
  • the control device controls the output of the welding device. For example, the control device changes the current value set in the welding device to a current value that is smaller by a predetermined value.
  • One method is to reduce the current value of the welding apparatus and control the amount of powder delivered by the welding apparatus when the measured value of the second temperature (the temperature of the base material) exceeds the second reference temperature. Interrupt control is performed in association with the current value, and the amount of powder delivery is increased compared to that during normal operation, thereby suppressing fluctuations in the amount of powder delivery.
  • the measured value of the second temperature exceeds the second reference temperature
  • it is associated with the current value controlled by the welding apparatus and is determined in advance (for example, a predetermined value).
  • the gripping robot is controlled so as to reduce the relative movement speed of the welding torch and the workpiece.
  • the welding speed is very fast and short, such as a pin with a small diameter
  • the worker does not make it in time even if the welding conditions are fine-tuned, measure the base material temperature during welding
  • Control is performed to change the welding conditions such as the output of the welding apparatus in real time so that the measured value matches the desired base material temperature profile (base material temperature profile when good quality is obtained).
  • the control device controls the output of the preheating device. For example, the control device changes the heat retention temperature set in the preheating device to a temperature that is higher by a predetermined value.
  • the control device may change the outputs of both the welding device and the preheating device.
  • the output of the welding apparatus is controlled based on the first temperature so that the first temperature (molten metal temperature) is maintained at a predetermined temperature, and the second temperature (base metal temperature) is predetermined.
  • the output of the preheating device is controlled based on the second temperature so that the temperature is maintained.
  • the control of the preheating device based on the first temperature is prioritized over the normal control of the preheating device based on the second temperature, and the first temperature To control the output of the preheating device.
  • the control of the preheating device related to the second temperature measurement position is continued as it is at the second temperature. Also good.
  • the target value of the welding apparatus is determined based on the second temperature, and the point where the base material temperature is measured is actually welded.
  • the target value of the welding apparatus may be corrected in real time based on the temperature (first temperature). In this case, control responsiveness can be enhanced, and this is particularly effective for small workpieces.
  • normal control of the welding apparatus based on the first temperature and control of the welding apparatus based on the second temperature may be used in combination.
  • the base material temperature (second temperature) is measured at a point parallel to the welding direction, and the control target value of the welding apparatus based on the first temperature is corrected in real time based on the second temperature.
  • the output of the welding apparatus and / or the preheating apparatus is when the first temperature (the temperature of the molten metal) is within the first range (above the third reference temperature and below the first reference temperature). You may change from For example, when a first target temperature within the first range is set, and the first temperature is within the first range but deviates from the first target temperature, the welding device and / or the preheating device Change the output of. Similarly, the output of the welding apparatus and / or the preheating apparatus is from the time when the second temperature (the temperature of the base material) is within the second range (the fourth reference temperature or more and the second reference temperature or less). It may be changed.
  • the control device is a welding device and a preheating device. Either or both of the outputs may be changed.
  • control is performed to predict and change the previous welding conditions in advance based on the acceleration of the base material temperature change.
  • the welding system described above is capable of consolidating the factors affecting the welding quality into the first and second temperatures and controlling the welding state based on quantitative criteria, and reproducing thermal management. High nature. Therefore, it is easy to stabilize the welding quality.
  • control device of the welding apparatus is used as the control device of the welding system
  • the control device of the welding system may be appropriately configured.
  • a configuration using a control device of a relative movement device (gripping robot) or a configuration using an independent control device different from the welding device and the relative movement device (gripping robot) may be used.
  • IoT technology it is also possible to apply the IoT technology to the welding system of the present invention so that remote maintenance can be performed, and the system operating status, heater control status, safety, etc. can be monitored remotely.

Abstract

Provided are a welding system and a welding method, which are able to easily stabilize the welding quality. This welding system is provided with: a welding device (10) which performs buildup welding by fusion bonding a welding material to a surface (4) of a work (2); a preheating device (30) which preheats the work (2) and subsequently retains the heat; a control device (18) which operates the welding device (10) and the preheating device (30) so that the buildup welding is started after the preheating of the work (2); and a first sensor (40) that measures a first temperature of a welding material (6), at which the welding material (6) is melted at the surface (4) of the work (2) by means of the welding device (10). The control device (18) controls the output of the preheating device (30) on the basis of the first temperature during the time when the buildup welding is performed by the welding device (10) so that the first temperature is within a predetermined first range.

Description

溶接システム及び溶接方法Welding system and welding method
 本発明は、溶接システム及び溶接方法に関し、詳しくは、肉盛溶接に用いる溶接システムに関する。 The present invention relates to a welding system and a welding method, and more particularly to a welding system used for overlay welding.
 肉盛溶接は、一般に、耐食・耐熱・耐摩耗などの表面改質を目的として、母材の表面に、母材と異なる成分系の材料を溶着させる溶接法であり、アーク溶接、プラズマ溶接、レーザ溶接、ガス溶接などの溶融溶接法が適用可能である。 Overlay welding is generally a welding method in which a component material different from the base material is welded to the surface of the base material for the purpose of surface modification such as corrosion resistance, heat resistance, and wear resistance. Arc welding, plasma welding, Fusion welding methods such as laser welding and gas welding are applicable.
 例えば図3は、プラズマ溶接を行う粉体プラズマ溶接装置の概略図である。図3(A)は溶接トーチ8とワーク9との関係を示す構成図、図3(B)は図3(A)の線Z-Zに沿って見た断面図である。図3に示すように、この装置は、溶接トーチ8とワーク9の表面との間に形成されているプラズマアーク中に、溶接トーチ8の複数の粉体供給穴8a,8bから溶接材料の粉末を供給して液滴を形成し、その液滴をワーク9の表面に溶着させる(例えば、特許文献1参照)。 For example, FIG. 3 is a schematic view of a powder plasma welding apparatus for performing plasma welding. FIG. 3A is a configuration diagram showing the relationship between the welding torch 8 and the workpiece 9, and FIG. 3B is a cross-sectional view taken along line ZZ in FIG. 3A. As shown in FIG. 3, this apparatus is configured to provide a powder of welding material from a plurality of powder supply holes 8 a and 8 b of the welding torch 8 during a plasma arc formed between the welding torch 8 and the surface of the workpiece 9. To form a droplet, and the droplet is welded to the surface of the work 9 (see, for example, Patent Document 1).
特開平10-193129号公報Japanese Patent Laid-Open No. 10-193129
 肉盛溶接によって表面改質を達成するためには、熱管理(予熱温度、層間温度・パス間温度及び後熱処理の管理)が必要である。例えば、金型の肉盛等では、所望の「母材強度」の素材を選び、「溶接部」及び「溶接部と母材の界面部」が母材と同等程度の強度となるようにする。強度の高い母材へ、耐熱性・耐摩耗性などが優れた強度の高い溶接材料を盛ることなるが、そのような溶接材料は、熱管理がないと、溶接中又は溶接後に割れてしまう。溶接部の強度を高めるためには、溶接部の内部欠陥(巣など)は無いことが望ましく、できるだけ少なくしなくてはならない。また、溶接品質の一つである、母材と溶接材の密着状態が良好でなくてはならない。さらに、母材の組織の品質も損なってはならない。金型では熱処理によって調質するが、溶接工程で過度に入熱昇温すると、硬度が落ちるなど変質してしまう。 In order to achieve surface modification by overlay welding, thermal management (preheating temperature, interlayer temperature / interpass temperature, and post heat treatment management) is required. For example, when building up a mold, select a material with the desired “base material strength” so that the “welded part” and the “interface between the weld and base material” have the same strength as the base material. . A high-strength base material is filled with a high-strength welding material having excellent heat resistance, wear resistance, and the like, but such a welding material is cracked during or after welding unless heat management is performed. In order to increase the strength of the welded portion, it is desirable that there are no internal defects (such as nests) in the welded portion, and it should be as small as possible. Moreover, the contact | adherence state of a base material and a welding material which is one of welding quality must be favorable. Furthermore, the quality of the matrix structure must not be compromised. The mold is tempered by heat treatment, but if the heat input is excessively raised in the welding process, it will be deteriorated, for example, the hardness will decrease.
 しかしながら、熱管理について再現性の高い手法が確立されていないのが現状であり、溶接品質を安定させることは容易でない。 However, the current situation is that a highly reproducible method for thermal management has not been established, and it is not easy to stabilize the welding quality.
 例えば、粉体プラズマ溶接装置を用いて肉盛溶接を行う場合、安定した溶接品質を得るには、電流値(溶接装置の出力)・電流プロファイル・粉末送り出し量・溶接トーチの軌道や移動速度などの溶接条件を設定し溶接を開始した後、作業員が溶接状態を観察し、観察した溶接状態から溶接条件の適否を判断し、適宜、溶接条件を微調整する必要がある。溶接状態の適否は、溶湯(母材上で溶融している溶接材料)の大きさ・形状、溶湯と母材の境界線の乱れ、溶湯の沸き立ち状態、溶湯が凝固したビードに発生するブローホールの数や大きさなどで判断するが、作業員の経験に依存する部分が多く、定量的な判断基準は確立されていない。 For example, when performing overlay welding using a powder plasma welding device, to obtain stable welding quality, the current value (output of the welding device), current profile, powder feed amount, trajectory and moving speed of the welding torch, etc. After the welding conditions are set and the welding is started, the operator needs to observe the welding state, judge the suitability of the welding conditions from the observed welding state, and finely adjust the welding conditions as appropriate. The suitability of the welded state depends on the size and shape of the molten metal (welded material melted on the base metal), the disturbance of the boundary line between the molten metal and the base metal, the boiling state of the molten metal, and the blowhole generated in the bead where the molten metal has solidified However, there are many parts that depend on the experience of workers, and quantitative criteria have not been established.
 本発明は、かかる実情に鑑み、溶接品質を安定させることが容易である溶接システム及び溶接方法を提供しようとするものである。 In view of such a situation, the present invention intends to provide a welding system and a welding method that can easily stabilize the welding quality.
 本発明は、上記課題を解決するために、以下のように構成した溶接システムを提供する。 The present invention provides a welding system configured as follows in order to solve the above-described problems.
 溶接システムは、(a)ワークの表面に溶接材料を溶着させて肉盛溶接を行う溶接装置と、(b)前記ワークを予熱し保温する予熱装置と、(c)前記ワークの予熱後に前記肉盛溶接を開始するように、前記溶接装置及び前記予熱装置を動作させる制御装置と、(d)前記溶接装置によって前記ワークの前記表面で溶融されている前記溶接材料の温度である第1の温度を計測する第1のセンサと、を備える。前記制御装置は、前記溶接装置が前記肉盛溶接を行う間、前記第1のセンサが計測した前記第1の温度に基づいて、前記第1の温度が第1の範囲内に収まるように、前記予熱装置の出力を制御する。 The welding system includes: (a) a welding device that welds a welding material to the surface of the workpiece to perform overlay welding; (b) a preheating device that preheats and retains the workpiece; and (c) the meat after the workpiece is preheated. A control device for operating the welding device and the preheating device so as to start the build-up welding; and (d) a first temperature which is a temperature of the welding material melted on the surface of the workpiece by the welding device. And a first sensor for measuring. The control device, based on the first temperature measured by the first sensor, while the welding apparatus performs the overlay welding, so that the first temperature falls within a first range, The output of the preheating device is controlled.
 上記構成において、制御装置は、第1の温度(溶湯の温度)の計測値に基づいて、第1の温度が、良好な溶接状態になる範囲内に収まるように、予熱装置の出力を制御する。これによって、溶接中に、溶接条件が適切に制御され、良好な溶接状態が維持される。 In the above configuration, the control device controls the output of the preheating device based on the measured value of the first temperature (the temperature of the molten metal) so that the first temperature is within a range where a good welding state is obtained. . Thereby, during welding, the welding conditions are appropriately controlled, and a good welding state is maintained.
 上記構成によれば、溶接品質に影響を与える要因を第1の温度に集約し、定量的な基準に基づいて溶接状態を制御することができ、熱管理の再現性が高い。したがって、溶接品質を安定させることが容易である。 According to the above configuration, the factors affecting the welding quality can be concentrated at the first temperature, the welding state can be controlled based on a quantitative standard, and the reproducibility of the thermal management is high. Therefore, it is easy to stabilize the welding quality.
 予熱装置の出力は、第1の温度が第1の範囲から外れてから変更してもよいし、第1の温度が第1の範囲内のときから変更してもよい。 The output of the preheating device may be changed after the first temperature is out of the first range, or may be changed from when the first temperature is within the first range.
 好ましくは、溶接システムは、(e)前記ワークの温度である第2の温度を計測する第2のセンサを、さらに備える。前記制御装置は、前記溶接装置が前記肉盛溶接を行う間、前記第2のセンサが計測した前記第2の温度に基づいて、前記第2の温度が第2の範囲内に収まるように前記溶接装置の出力を制御する。 Preferably, the welding system further includes (e) a second sensor that measures a second temperature that is the temperature of the workpiece. The control device is configured so that the second temperature falls within a second range based on the second temperature measured by the second sensor while the welding device performs the overlay welding. Control the output of the welding equipment.
 上記構成によれば、溶接品質に影響を与える要因を第1又は第2の温度に集約し、定量的な基準に基づいて溶接状態を制御することができ、熱管理の再現性が高い。したがって、溶接品質を安定させることが容易である。 According to the above configuration, the factors affecting the welding quality can be concentrated on the first or second temperature, the welding state can be controlled based on a quantitative standard, and the reproducibility of the thermal management is high. Therefore, it is easy to stabilize the welding quality.
 溶接装置の出力は、第2の温度が第2の範囲から外れてから変更してもよいし、第2の温度が第2の範囲内のときから変更してもよい。 The output of the welding apparatus may be changed after the second temperature is out of the second range, or may be changed from when the second temperature is in the second range.
 好ましくは、前記制御装置は、前記第1のセンサが計測した前記第1の温度が前記第1の範囲から外れたとき、又は、前記第2のセンサが計測した前記第2の温度が前記第2の範囲から外れたとき、前記溶接装置と前記予熱装置とのいずれか一方又は両方の前記出力を変更する。 Preferably, the control device is configured such that when the first temperature measured by the first sensor is out of the first range, or when the second temperature measured by the second sensor is the first temperature. When out of the range of 2, the output of either one or both of the welding device and the preheating device is changed.
 この場合、溶接を継続しながら溶接条件を変更することによって、溶接品質を安定させることができる。 In this case, the welding quality can be stabilized by changing the welding conditions while continuing the welding.
 好ましくは、前記制御装置は、前記第1のセンサが計測した前記第1の温度が前記第1の範囲から外れたとき、又は、前記第2のセンサが計測した前記第2の温度が前記第2の範囲から外れたとき、前記溶接装置に前記肉盛溶接を中断させた後、前記溶接装置と前記予熱装置とのいずれか一方又は両方の前記出力を変更し、前記出力が変更された状態で前記溶接装置に前記肉盛溶接を再開させる。 Preferably, the control device is configured such that when the first temperature measured by the first sensor is out of the first range, or when the second temperature measured by the second sensor is the first temperature. When the welding apparatus is out of the range 2, after the build-up welding is interrupted by the welding apparatus, the output of one or both of the welding apparatus and the preheating apparatus is changed, and the output is changed. Then, the weld welding is restarted by the welding apparatus.
 この場合、溶接を中断することによって溶接品質の劣化を未然に回避でき、溶接条件の設定を変更した後に溶接を再開することによって、溶接品質を安定させることができる。 In this case, the welding quality can be prevented from deteriorating by interrupting the welding, and the welding quality can be stabilized by restarting the welding after changing the setting of the welding conditions.
 好ましくは、溶接システムは、(e)前記溶接装置が前記肉盛溶接を行う間、前記溶接装置の溶接トーチと前記ワークとが予め設定された経路に沿って相対移動するように、前記溶接トーチと前記ワークとのいずれか一方又は両方を移動させる相対移動装置と、(f)前記ワークの位置を検出する第3のセンサと、をさらに備える。前記制御装置は、前記第3のセンサによって検出された前記予熱後の前記ワークの位置に応じて、予め設定された前記経路を補正し、前記溶接装置が前記肉盛溶接を行う間、前記溶接トーチと前記ワークとが、補正された前記経路に沿って相対移動するように、前記相対移動装置を動作させる。 Preferably, the welding system includes: (e) the welding torch so that the welding torch of the welding apparatus and the workpiece relatively move along a preset path while the welding apparatus performs the overlay welding. And a relative movement device for moving one or both of the workpiece and (f) a third sensor for detecting the position of the workpiece. The control device corrects the preset route according to the position of the workpiece after the preheating detected by the third sensor, and the welding device performs the welding while the welding device performs the overlay welding. The relative movement device is operated so that the torch and the workpiece move relative to each other along the corrected path.
 この場合、予熱後のワークの位置に応じて、適切な経路で溶接することができるので、ワークの位置決め誤差や予熱に伴うワークの熱変形などに影響されない。そのため、溶接品質が一層安定する。 In this case, since welding can be performed with an appropriate path in accordance with the position of the workpiece after preheating, it is not affected by workpiece positioning error or thermal deformation of the workpiece due to preheating. Therefore, the welding quality is further stabilized.
 好ましくは、前記溶接装置は、ガスと前記溶接材料の粉末とを供給する粉末送給装置を備えた粉体プラズマ溶接装置又はレーザ溶接装置である。 Preferably, the welding device is a powder plasma welding device or a laser welding device provided with a powder feeding device for supplying gas and powder of the welding material.
 粉体プラズマ溶接装置やレーザ溶接装置を用いて1層又は2層以上の肉盛溶接する場合、溶接品質を確保するためには十分な熱管理(予熱温度、層間温度・パス間温度及び後熱処理の管理)が必要であるため、特に顕著な効果が得られる。また、溶接中のスパッタの飛び散りが少なく、温度計測が容易である。 When performing overlay welding of one or more layers using powder plasma welding equipment or laser welding equipment, sufficient thermal management (preheating temperature, interlayer temperature / interpass temperature and post-heat treatment to ensure welding quality Therefore, a particularly remarkable effect can be obtained. Moreover, there is little spatter scattering during welding, and temperature measurement is easy.
 好ましくは、前記制御装置は、前記溶接装置と前記予熱装置とのいずれか一方又は両方の前記出力を、前記溶接装置が自動で前記肉盛溶接を行っているときに手動で変更するための手動操作盤を含む。 Preferably, the control device is configured to manually change the output of one or both of the welding device and the preheating device when the welding device is automatically performing the overlay welding. Including operation panel.
 この場合、溶接条件が制御装置によって変更される前に、手動で溶接条件を変更することができる。そのため、作業員が溶接状態を監視し、適切な溶接状態となるように、より迅速に溶接条件を変更するができ、溶接品質をより安定させることが可能になる。 In this case, the welding conditions can be changed manually before the welding conditions are changed by the control device. Therefore, an operator can monitor the welding state and change the welding conditions more quickly so as to obtain an appropriate welding state, so that the welding quality can be further stabilized.
 好ましくは、前記制御装置に接続され、前記溶接装置の前記出力の制御を含む制御条件の実績を記録する記録装置を、さらに備える。 Preferably, the recording apparatus further includes a recording device connected to the control device and for recording a record of control conditions including control of the output of the welding device.
 この場合、記録装置から過去の制御条件を読み出し、必要に応じて修正して利用することによって、溶接品質の向上を図ることができる。 In this case, it is possible to improve the welding quality by reading the past control conditions from the recording device and modifying and using them as necessary.
 また、本発明は、上記課題を解決するために、以下のように構成した溶接方法を提供する。 Also, the present invention provides a welding method configured as follows in order to solve the above problems.
 溶接方法は、第1ないし第3のステップを備える。前記第1のステップにおいて、予熱装置を用いてワークを予熱した後、前記予熱装置を用いて前記ワークを保温しながら、溶接装置のトーチと前記ワークとを、予め設定された経路に沿って相対移動させて、前記ワークの表面に溶接材料を溶着させて肉盛溶接を行う。前記第2のステップにおいて、前記第1のステップで前記肉盛溶接を行う間、前記ワークの前記表面で溶融している前記溶接材料の温度である第1の温度を計測する。前記第3のステップにおいて、前記第2のステップで計測した前記第1の温度に基づいて、前記第1の温度が第1の範囲内に収まるように、前記予熱装置の出力を制御する。 The welding method includes first to third steps. In the first step, after preheating the work using a preheating device, the work is kept warm using the preheating device, and the torch of the welding apparatus and the work are relatively moved along a preset path. It is moved, and welding welding is performed on the surface of the workpiece to perform overlay welding. In the second step, a first temperature, which is a temperature of the welding material melted on the surface of the workpiece, is measured during the build-up welding in the first step. In the third step, the output of the preheating device is controlled based on the first temperature measured in the second step so that the first temperature falls within the first range.
 上記方法によれば、溶接品質に影響を与える要因を第1の温度に集約し、定量的な基準に基づいて溶接状態を制御することができ、熱管理の再現性が高い。したがって、溶接品質を安定させることが容易である。 According to the above method, the factors affecting the welding quality can be concentrated at the first temperature, the welding state can be controlled based on a quantitative standard, and the reproducibility of the thermal management is high. Therefore, it is easy to stabilize the welding quality.
 好ましくは、前記第2のステップにおいて、前記第1のステップで前記肉盛溶接を行う間、前記ワークの前記表面の温度である第2の温度を計測する。前記第3のステップにおいて、前記第2のステップで計測した前記第2の温度に基づいて、前記第2の温度が第2の範囲内に収まるように、前記溶接装置の出力を制御する。 Preferably, in the second step, the second temperature, which is the temperature of the surface of the workpiece, is measured during the build-up welding in the first step. In the third step, based on the second temperature measured in the second step, the output of the welding apparatus is controlled so that the second temperature falls within the second range.
 上記方法によれば、溶接品質に影響を与える要因を第1及び第2の温度に集約し、定量的な基準に基づいて溶接状態を制御することができ、熱管理の再現性が高い。したがって、溶接品質を安定させることが容易である。 According to the above method, the factors affecting the welding quality can be concentrated on the first and second temperatures, and the welding state can be controlled on the basis of a quantitative standard, and the reproducibility of the thermal management is high. Therefore, it is easy to stabilize the welding quality.
 本発明によれば、溶接品質を安定させることが容易である。 According to the present invention, it is easy to stabilize the welding quality.
図1は溶接システムの構成図である。(実施例1)FIG. 1 is a configuration diagram of a welding system. Example 1 図2は溶接システムの動作のフローチャートである。(実施例1)FIG. 2 is a flowchart of the operation of the welding system. Example 1 図3は粉体プラズマ溶接装置の概略図である。(従来例1)FIG. 3 is a schematic view of a powder plasma welding apparatus. (Conventional example 1)
 以下、本発明の実施の形態について、図面を参照しながら説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
 <実施例1> 実施例1の溶接システム50について、図1及び図2を参照しながら説明する。 <Example 1> The welding system 50 of Example 1 is demonstrated referring FIG.1 and FIG.2.
 図1は、溶接システム50の構成を概念的に示した構成図である。図1に示すように、溶接システム50は、大略、ワーク2の表面4に溶接材料を溶着させて肉盛溶接を行う溶接装置10と、ワーク2を加熱し保温する予熱装置30と、溶接装置10の溶接トーチ11を把持しながら移動させる把持ロボット20と、溶湯6の温度(ワーク2の表面4で溶融している溶接材料の温度、以下「第1の温度Ta」ともいう。)を検出する第1のセンサ40と、ワーク2の温度(以下「第2の温度Tb」ともいう。)を検出する第2のセンサ42と、ワーク2の位置を検出する第3のセンサ44と備えている。なお、第3のセンサ44を備えない構成とすることも可能である。また、第1及び第2のセンサ40,42のいずれか一方を備え、他方は備えない構成とすることも可能である。 FIG. 1 is a configuration diagram conceptually showing the configuration of the welding system 50. As shown in FIG. 1, a welding system 50 is roughly composed of a welding device 10 that performs welding by welding a welding material to the surface 4 of the workpiece 2, a preheating device 30 that heats and keeps the workpiece 2 warm, and a welding device. The gripping robot 20 that moves while gripping the ten welding torches 11 and the temperature of the molten metal 6 (the temperature of the welding material melted on the surface 4 of the workpiece 2, hereinafter also referred to as “first temperature Ta”) are detected. A first sensor 40 that detects the temperature of the workpiece 2 (hereinafter also referred to as “second temperature Tb”), and a third sensor 44 that detects the position of the workpiece 2. Yes. Note that a configuration without the third sensor 44 is also possible. It is also possible to have a configuration in which either one of the first and second sensors 40 and 42 is provided but the other is not provided.
 溶接装置10は、例えば、溶接材料として粉体を用いる粉体プラズマ溶接装置である。この場合、溶接装置10は、溶接トーチ11にガスと溶接材料の粉末とを供給する粉末送給装置12と、溶接トーチ11に冷却水を供給し回収する冷却水循環装置14と、電圧を印加して溶接トーチ11内部の電極とワーク2の表面4との間にプラズマアークを発生させるためのプラズマ溶接電源16と、制御装置18とを備えている。 The welding apparatus 10 is, for example, a powder plasma welding apparatus that uses powder as a welding material. In this case, the welding device 10 applies a voltage to a powder feeding device 12 that supplies gas and welding material powder to the welding torch 11, a cooling water circulation device 14 that supplies and recovers cooling water to the welding torch 11, and a voltage. A plasma welding power source 16 for generating a plasma arc between the electrode inside the welding torch 11 and the surface 4 of the workpiece 2 and a control device 18 are provided.
 なお、溶接装置10は、粉体プラズマ溶接装置に限らず、適宜な溶融溶接法によってワークの表面に溶接材料を溶着させて肉盛溶接を行う溶接装置であればよく、例えば、通常のアーク溶接装置や、レーザ溶接装置や、レーザとアークを組み合わせたハイブリッド溶接装置などでもよい。ガスと溶接材料の粉末とを供給する粉末送給装置を備えた粉体プラズマ溶接装置やレーザ溶接装置等は、溶接中のスパッタが少なく、温度計測が容易である。 The welding apparatus 10 is not limited to a powder plasma welding apparatus, and may be any welding apparatus that performs overlay welding by welding a welding material to the surface of a workpiece by an appropriate fusion welding method. For example, normal arc welding An apparatus, a laser welding apparatus, a hybrid welding apparatus combining a laser and an arc, or the like may be used. A powder plasma welding apparatus, a laser welding apparatus, or the like provided with a powder feeding device that supplies gas and powder of a welding material has few spatters during welding, and temperature measurement is easy.
 予熱装置30は、溶接前にワーク2を予熱し、溶接中にワーク2を保温し、溶接後にワーク2の後熱処理を行うために用いることができる。予熱装置30は、例えば、ワーク2が載置される載置面34を有する本体32と、制御器36とを備える。本体32には、不図示の加熱器と温度検出器が内蔵されている。制御器36は、予め設定された保持温度まで載置面34が加熱された後、載置面34の温度が保持温度に維持されるように、本体32内の加熱器を制御する。制御器36には、制御装置18から制御信号が入力され、予熱装置30の予熱・保温や後熱処理の開始や終了、保持温度の設定や変更などが、制御装置18によって制御される。 The preheating device 30 can be used for preheating the workpiece 2 before welding, keeping the workpiece 2 warm during welding, and performing post-heat treatment of the workpiece 2 after welding. The preheating device 30 includes, for example, a main body 32 having a placement surface 34 on which the workpiece 2 is placed, and a controller 36. The main body 32 includes a heater and a temperature detector (not shown). The controller 36 controls the heater in the main body 32 so that the temperature of the mounting surface 34 is maintained at the holding temperature after the mounting surface 34 is heated to a preset holding temperature. A control signal is input from the control device 18 to the controller 36, and the control device 18 controls the start and end of preheating / warming and post-heat treatment of the preheating device 30, setting and changing of the holding temperature, and the like.
 なお、予熱装置30は、ワークの温度を計測する温度センサ(第2のセンサ42と兼用しても、第2のセンサ42とは別でもよい)を用いて、ワークの所定部分の温度が所定温度になるように、ワークを加熱し保温するように構成してもよい。この場合、温度むらが生じやすい大型のワークなどの温度管理が容易になる。 The preheating device 30 uses a temperature sensor for measuring the temperature of the workpiece (which may be used as the second sensor 42 or may be separate from the second sensor 42), so that the temperature of a predetermined portion of the workpiece is predetermined. You may comprise so that a workpiece | work may be heated and heat-retained so that it may become temperature. In this case, temperature management of a large workpiece or the like that is likely to cause temperature unevenness is facilitated.
 直接接触による伝熱によってワーク2を加熱する予熱装置30の代わりに、熱線照射、電磁誘導加熱、アーク放電、ガスバーナ、レーザ照射などの適宜な方法で、ワークを加熱し保温する予熱装置を用いてもよい。また、予熱装置は、ワークを支持する装置(例えば、載置されたワークを移動させる移動テーブルや、ワークを把持しワークの位置や向きを変えるワーク把持装置など)に組み込んでも、ワークを支持する装置とは別に設けても構わない。また、複数台の予熱装置30でワーク2を加熱してもよい。 Instead of the preheating device 30 that heats the work 2 by heat transfer by direct contact, a preheating device that heats and keeps the work by an appropriate method such as heat ray irradiation, electromagnetic induction heating, arc discharge, gas burner, or laser irradiation is used. Also good. In addition, the preheating device supports the workpiece even if it is incorporated in a device that supports the workpiece (for example, a moving table that moves the mounted workpiece or a workpiece gripping device that grips the workpiece and changes the position and orientation of the workpiece). You may provide separately from an apparatus. Further, the workpiece 2 may be heated by a plurality of preheating devices 30.
 把持ロボット20は、予め決められた経路でワーク2の表面4にビードを形成するように、ワーク2の表面4に沿って溶接トーチ11を移動させる。溶接トーチ11の軌道は、例えば3Dシミュレーションで予め検討し設定しておく。 The gripping robot 20 moves the welding torch 11 along the surface 4 of the workpiece 2 so as to form a bead on the surface 4 of the workpiece 2 along a predetermined path. The trajectory of the welding torch 11 is examined and set in advance by, for example, 3D simulation.
 把持ロボット20は、相対移動装置(すなわち、溶接装置10が肉盛溶接を行う間、溶接装置10の溶接トーチ11とワーク2とが予め設定された経路に沿って相対移動するように、溶接トーチ11とワーク2といずれか一方又は両方を移動させる相対移動装置)である。相対移動装置は、例えば、ワークが載置され、固定された溶接トーチに対してワークを移動させる移動テーブルでもよいし、ワークを把持しワークの位置や向きを変えるワーク把持装置と、溶接トーチの位置や向きを変える把持ロボットとを組み合わせてもよい。 The gripping robot 20 is a welding torch so that the welding torch 11 of the welding apparatus 10 and the workpiece 2 relatively move along a preset path while the welding apparatus 10 performs overlay welding. 11 and a relative movement device that moves one or both of the workpiece 2 and the workpiece 2). The relative movement device may be, for example, a moving table that moves a workpiece with respect to a welding torch on which a workpiece is placed and is fixed, a workpiece holding device that holds the workpiece and changes the position and orientation of the workpiece, and a welding torch. A gripping robot that changes the position and orientation may be combined.
 温度を計測する第1及び第2のセンサ40,42は、熱電対や光ファイバー温度計等も使用可能であるが、赤外線放射温度計やサーモカメラなどの非接触タイプが好ましい。第1及び第2のセンサ40,42は適宜に配置すればよく、例えば、把持ロボット20に取り付けてもよいし、把持ロボット20と協調動作する別のロボットに取り付けてもよい。第1及び第2のセンサ40,42は別々である必要はなく、例えば1台のサーモカメラで、溶湯6とワーク2との両方の温度を計測しても構わない。この場合、第1及び第2のセンサ40,42を、静止箇所に固定することができる。 As the first and second sensors 40 and 42 for measuring the temperature, a thermocouple, an optical fiber thermometer or the like can be used, but a non-contact type such as an infrared radiation thermometer or a thermo camera is preferable. The first and second sensors 40 and 42 may be appropriately disposed. For example, the first and second sensors 40 and 42 may be attached to the gripping robot 20 or may be attached to another robot that operates in cooperation with the gripping robot 20. The first and second sensors 40 and 42 do not need to be separate. For example, the temperature of both the molten metal 6 and the workpiece 2 may be measured by a single thermo camera. In this case, the 1st and 2nd sensors 40 and 42 can be fixed to a stationary part.
 第1のセンサ40は、例えば、溶接トーチ11付近から斜めの角度で溶湯6の温度を計測する。 The first sensor 40 measures the temperature of the molten metal 6 at an oblique angle from the vicinity of the welding torch 11, for example.
 第2のセンサ42は、ワーク2の表面4のうち溶接トーチ11の進行方向の肉盛溶接される予定の領域又はその近傍の温度を計測することが好ましいが、ワーク2の温度を計測する位置は、適宜に選択すればよい。例えば、肉盛溶接される予定の領域から離れた部分の温度を計測するように構成することも可能である。また、ワーク2の内部の温度を計測するように構成することも可能である。 The second sensor 42 preferably measures the temperature of the surface 4 of the workpiece 2 where the welding torch 11 is to be welded in the direction of build-up or in the vicinity thereof, but the position at which the temperature of the workpiece 2 is measured. May be appropriately selected. For example, it is also possible to configure so as to measure the temperature of the part away from the region to be welded. It is also possible to configure to measure the temperature inside the workpiece 2.
 第2のセンサ42は、例えば、ワーク2の表面4のうち、溶湯6の進行方向、すなわち溶湯6が凝固したビードを形成する方向に対して斜め後方の、凝固直後のビードから所定距離離れた位置の温度を計測する。この場合、溶接直後の溶接層との界面近傍の母材の温度を精度よく推定し管理することができるので、溶接層の密着強度や界面近傍の母材の変質を安定させることが容易である。 The second sensor 42 is, for example, a predetermined distance away from the bead immediately after solidification, which is obliquely rearward with respect to the traveling direction of the molten metal 6 on the surface 4 of the workpiece 2, that is, the direction in which the molten metal 6 forms a solidified bead. Measure the temperature at the location. In this case, since the temperature of the base material near the interface with the weld layer immediately after welding can be accurately estimated and managed, it is easy to stabilize the adhesion strength of the weld layer and the deterioration of the base material near the interface. .
 1つ又は2つ以上の第2のセンサ42によって、ワーク2の複数箇所の温度を計測するように構成すると、ワーク2の温度分布に対応した適切な制御が可能になる。 If one or two or more second sensors 42 are configured to measure the temperature at a plurality of locations of the workpiece 2, appropriate control corresponding to the temperature distribution of the workpiece 2 is possible.
 例えば、予熱である程度均一に加熱されたワーク2は、予熱装置30によって保温された状態で溶接される。一般的には、予熱装置30の出力(発熱量)は、予熱時より保温時の方が小さい。溶接部位の付近の母材は、溶接で発生する熱が直ぐに伝わるため、温度が上昇しやすい。一方、溶接部位から遠い箇所の母材は、相対的に温度が上昇しにくく、場合によっては、予熱装置30で保温されているのに温度が下がる。そのままでは、溶接されるときの温度は、母材の部位による差が大きくなり、品質ムラの原因となる。また、溶接された部位の母材温度は溶接後に降下するが、温度の降下が想定より大きい箇所では、溶接後の割れなどが発生する可能性有ある。 For example, the workpiece 2 heated to some extent by preheating is welded while being kept warm by the preheating device 30. Generally, the output (heat generation amount) of the preheating device 30 is smaller during the heat retention than during the preheating. Since the base metal near the welded part is immediately transmitted with heat generated by welding, the temperature is likely to rise. On the other hand, the temperature of the base material at a location far from the welding site is relatively less likely to rise, and in some cases, the temperature is lowered even though the temperature is maintained by the preheating device 30. As it is, the temperature at the time of welding increases greatly depending on the part of the base material, which causes quality unevenness. In addition, although the base metal temperature of the welded part drops after welding, there is a possibility that cracking after welding may occur at a place where the temperature drop is larger than expected.
 溶接部位の付近の母材温度のみで制御すると、その数値から想定できる以上に、実際には、溶接部位から遠い箇所の母材温度が下がった場合には、適切な制御ができない。そこで、温度センサ2で複数箇所の母材温度を計測し、平均化又はそれぞれにウェイトを適切に持たせた制御を行うなどすれば、ワーク2の温度分布に対応した適切な制御が可能になる。 When controlling only with the base metal temperature in the vicinity of the welded part, it is actually impossible to control appropriately when the base metal temperature in the part far from the welded part is lower than expected from the numerical value. Therefore, by measuring the temperature of the base material at a plurality of locations with the temperature sensor 2 and averaging or performing control with appropriate weights, it is possible to perform appropriate control corresponding to the temperature distribution of the workpiece 2. .
 ワーク2の位置を検出する第3のセンサ44は、例えばタッチプローブセンサであり、溶接開始直前のワーク2の位置を検出するために用いる。制御装置18は、把持ロボット20により移動するように予め設定された溶接トーチ11の軌道を、第3のセンサ44で検出したワーク2の位置に応じて補正し、実際のワークの位置に応じた適切な軌道を溶接トーチ11が移動するように制御する。すなわち、溶接トーチ11とワーク2とが相対移動するように予め設定された経路が補正され、補正された経路に沿って溶接トーチ11とワーク2とが相対移動する。これによって、ワークの位置決めがずれていたり、予熱でワークが熱変形したりしても、適切な経路で溶接することができ、溶接品質が安定する。 The third sensor 44 that detects the position of the work 2 is, for example, a touch probe sensor, and is used to detect the position of the work 2 immediately before the start of welding. The control device 18 corrects the trajectory of the welding torch 11 set in advance so as to be moved by the gripping robot 20 according to the position of the workpiece 2 detected by the third sensor 44, and according to the actual position of the workpiece. The welding torch 11 is controlled to move along an appropriate track. That is, a preset path is corrected so that the welding torch 11 and the work 2 move relative to each other, and the welding torch 11 and the work 2 move relative to each other along the corrected path. As a result, even if the workpiece is misaligned or the workpiece is thermally deformed by preheating, welding can be performed with an appropriate path, and the welding quality is stabilized.
 制御装置18は、溶接装置10の粉末送給装置12、冷却水循環装置14、及びプラズマ溶接電源16を制御し、さらに、把持ロボット20と予熱装置30とを制御する。 The control device 18 controls the powder feeding device 12, the cooling water circulation device 14, and the plasma welding power source 16 of the welding device 10, and further controls the gripping robot 20 and the preheating device 30.
 制御装置18は、制御信号を出力したり第1ないし第3のセンサ40,42,44からの検出信号が入力されたりするインターフェースと、動作状況等を表示する表示灯や表示パネルなどの表示機器と、起動・溶接開始などの操作や溶接条件の入力等に用いる操作スイッチ・操作ボタン・データ読取装置などの入力機器と、メモリ等の記憶装置と、CPU等の演算処理装置とを含み、予め決められたプログラムに従って制御を実行するように構成されている。 The control device 18 includes an interface that outputs a control signal and a detection signal from the first to third sensors 40, 42, and 44, and a display device such as an indicator lamp or a display panel that displays an operation status or the like. And input devices such as operation switches, operation buttons, and data reading devices used for operations such as starting and starting welding and inputting welding conditions, a storage device such as a memory, and an arithmetic processing device such as a CPU. Control is executed according to a predetermined program.
 制御装置18は、溶接装置10と予熱装置30とのうちいずれか一方又は両方の出力を手動で変更するため手動操作盤19を含むことが好ましい。この場合、手動操作盤19は、図示したように、制御装置18の本体18aとは別体であり、制御装置18の本体18aに接続されてもよいし、制御装置18の本体18a内に組み込まれてもよい。手動操作盤19は、溶接条件を手動操作で微調整できるように構成されている。手動操作盤19を用いると、溶接条件が自動的に変更され前に、溶接条件を変更することができる。そのため、作業員が溶接状態を監視し、適切な溶接状態となるように、より迅速に溶接条件を変更するができ、溶接品質をより安定させることが可能になる。 The control device 18 preferably includes a manual operation panel 19 for manually changing the output of one or both of the welding device 10 and the preheating device 30. In this case, as shown in the figure, the manual operation panel 19 is separate from the main body 18a of the control device 18, and may be connected to the main body 18a of the control device 18 or incorporated in the main body 18a of the control device 18. May be. The manual operation panel 19 is configured so that the welding conditions can be finely adjusted manually. When the manual operation panel 19 is used, the welding conditions can be changed before the welding conditions are automatically changed. Therefore, an operator can monitor the welding state and change the welding conditions more quickly so as to obtain an appropriate welding state, so that the welding quality can be further stabilized.
 さらに、第1及び第2のセンサ40,42で計測した第1及び第2の温度Ta,Tbのいずれか一方又は両方が表示される温度表示装置を備えることが好ましい。この場合、定量的なデータ(計測された第1及び第2の温度Ta,Tb)に基づいて、溶接条件をより適切に変更することでき、溶接品質をより一層安定させることが可能になる。 Furthermore, it is preferable to include a temperature display device for displaying either one or both of the first and second temperatures Ta and Tb measured by the first and second sensors 40 and 42. In this case, based on quantitative data (measured first and second temperatures Ta and Tb), the welding conditions can be changed more appropriately, and the welding quality can be further stabilized.
 制御装置18に接続され、溶接装置10の出力を含み、好ましくは予熱装置30の出力を含む制御条件の実績を記録する記録装置19xを備えてもよい。これにより、記録装置19xから過去の制御条件を読み出し、必要に応じて修正して利用することによって、溶接品質の向上を図ることができる。 A recording device 19x that is connected to the control device 18 and includes the output of the welding device 10 and preferably records the results of the control conditions including the output of the preheating device 30 may be provided. Thereby, it is possible to improve the welding quality by reading the past control conditions from the recording device 19x and correcting and using them as necessary.
 例えば、形状やワーク蓄熱環境が変化がめまぐるしい様なアイテムにおいては、予め、制御条件の実績である過去のプロファイル(横軸が時間、縦軸が予熱装置・溶接装置の出力)を記録装置19xから読み出し、必要に応じて修正した上、制御装置18に制御条件として設定(入力)する。そして、記録装置19xに記録されたプロファイル(制御条件の実績)は、リアルタイムの自動制御・手動制御(手動操作盤からの出力の微調整)によって上書きされる。これにより、プロファイル精度が上がり、溶接品質の向上を図ることができる。例えば、溶接しているときに形状が激しく変わると、滑らかでない出力制御を手動ですることがあり、そのプロファイルを記録し利用することで、人手によらずに再現でき、溶接品質の向上を図ることができる。 For example, in an item where the shape and work heat storage environment change rapidly, a past profile (the time is plotted on the horizontal axis and the output of the preheating device / welding device on the vertical axis) is recorded in advance from the recording device 19x. The data is read out, corrected as necessary, and set (input) as a control condition in the control device 18. Then, the profile (actual result of control conditions) recorded in the recording device 19x is overwritten by real-time automatic control / manual control (fine adjustment of output from the manual operation panel). Thereby, profile accuracy can be improved and welding quality can be improved. For example, if the shape changes drastically during welding, the smooth output control may be performed manually. By recording and using the profile, it can be reproduced without human intervention, and the welding quality is improved. be able to.
 次に、溶接システム50の動作について、図2を参照しながら説明する。図2は、溶接システム50の基本的な動作のフローチャートである。 Next, the operation of the welding system 50 will be described with reference to FIG. FIG. 2 is a flowchart of the basic operation of the welding system 50.
 まず、ワーク2に応じた溶接条件(溶接装置10の出力を決める電流値・電流プロファイル・粉末送り出し量等や、溶接トーチ11の軌道・動作条件・移動速度、予熱装置30の保持温度等)が設定される。 First, the welding conditions (current value, current profile, powder feed amount, etc. that determine the output of the welding apparatus 10, the trajectory / operation conditions / movement speed of the welding torch 11, the holding temperature of the preheating apparatus 30) according to the workpiece 2 are set. Is set.
 次いで、制御装置18の入力機器を用いて作業員が所定の起動操作を行うと、制御装置18は、予熱装置30に加熱・保温モードの動作を開始させ、第2のセンサ42がワーク2の温度(第2の温度Tb)の計測を開始する(S10)。予熱装置30の載置面34の温度は、予め決められた保持温度に達するまで上昇する一方、保持温度に達したら保持温度を維持するように自動制御される。予熱装置30の載置面34の温度上昇に伴ってワーク2の温度が上昇し、ワーク2の温度は、予熱装置30の載置面34の温度以下になる。 Next, when an operator performs a predetermined starting operation using the input device of the control device 18, the control device 18 causes the preheating device 30 to start the heating / warming mode operation, and the second sensor 42 detects the work 2. Measurement of temperature (second temperature Tb) is started (S10). While the temperature of the mounting surface 34 of the preheating device 30 rises until reaching a predetermined holding temperature, the temperature is automatically controlled to maintain the holding temperature when the holding temperature is reached. The temperature of the workpiece 2 rises as the temperature of the placement surface 34 of the preheating device 30 rises, and the temperature of the workpiece 2 becomes equal to or lower than the temperature of the placement surface 34 of the preheating device 30.
 次いで、第2のセンサ42が計測したワーク2の温度(第2の温度Tb)が、予め設定された溶接開始基準温度Tに達すると(S12でY)、溶接段取りが完了する。 Then, the second sensor 42 is a temperature of the workpiece 2 measured (second temperature Tb) is pre-set welding start reference temperature T 0 is reached, (Y in S12), the welding setup is completed.
 次いで、制御装置18の入力機器を用いて作業員が所定の溶接開始操作をするのを待ち(S14でN)、溶接開始操作がされると(S14でY)、溶接工程を開始する。システム上は、ステップS14をなくし、溶接段取り完了後に溶接工程を自動スタートにすることも可能であるが、安全性の観点から手動スタートにすることが好ましい。 Next, the operator waits for the operator to perform a predetermined welding start operation using the input device of the control device 18 (N in S14). When the welding start operation is performed (Y in S14), the welding process is started. On the system, it is possible to eliminate step S14 and automatically start the welding process after completion of welding setup, but it is preferable to manually start from the viewpoint of safety.
 溶接工程では、まず、第3のセンサ44がワーク2の位置を検出し、制御装置18は、第3のセンサ44が計測したワーク2の位置に応じて、予め設定された溶接トーチ11の軌道を補正する(S16)。これによって、予熱後のワーク位置に応じて、適切な経路で溶接することができるので、ワークの位置決め誤差や予熱に伴うワークの熱変形などに影響されない。そのため、溶接品質が一層安定する。なお、ワークの位置決め誤差やワークの熱変形などが溶接品質に影響しない場合や、影響しても問題にならない場合などには、ステップ16をなくしてもよい。 In the welding process, first, the third sensor 44 detects the position of the workpiece 2, and the control device 18 sets the trajectory of the welding torch 11 that is set in advance according to the position of the workpiece 2 measured by the third sensor 44. Is corrected (S16). As a result, since welding can be performed with an appropriate path in accordance with the workpiece position after preheating, the workpiece is not affected by positioning errors of the workpiece or thermal deformation of the workpiece caused by preheating. Therefore, the welding quality is further stabilized. It should be noted that step 16 may be omitted if the workpiece positioning error or the thermal deformation of the workpiece does not affect the welding quality, or if it does not cause a problem even if it affects the workpiece quality.
 次いで、制御装置18は、溶接装置10と把持ロボット20を動作させて溶接を開始する(S18)。すなわち、溶接装置10の溶接トーチ11からワーク2の表面4に、溶融している溶接材料が供給される。把持ロボット20は、補正された軌道に沿って、溶接トーチ11を移動させる。 Next, the control device 18 operates the welding device 10 and the gripping robot 20 to start welding (S18). In other words, the molten welding material is supplied from the welding torch 11 of the welding apparatus 10 to the surface 4 of the workpiece 2. The gripping robot 20 moves the welding torch 11 along the corrected trajectory.
 溶接中に、第1のセンサ40は溶湯6の温度(第1の温度Ta)を計測し、第2のセンサはワーク2の温度(第2の温度Tb)を計測する。制御装置18は、第1及び第2のセンサ40,42が計測した第1及び第2の温度Ta,Tbに基づいて、第1及び第2の温度Ta,Tbがそれぞれ予め決められた第1及び第2の範囲内に収まるように、溶接装置10と予熱装置30との少なくとも一方の出力を制御する。 During welding, the first sensor 40 measures the temperature of the molten metal 6 (first temperature Ta), and the second sensor measures the temperature of the workpiece 2 (second temperature Tb). Based on the first and second temperatures Ta and Tb measured by the first and second sensors 40 and 42, the control device 18 has first and second temperatures Ta and Tb determined in advance, respectively. And the output of at least one of the welding apparatus 10 and the preheating apparatus 30 is controlled so that it may be settled in the 2nd range.
 具体的には、第1の温度Taが第1の基準温度Tに達するまで(S20でY)、出力を変更せず、ステップS24に進む。第1の温度Taが第1の基準温度Tを超えると(S20でN)、制御装置18が予熱装置30の出力を制御する。すなわち、制御装置18は、予熱装置30に設定されている保温温度を所定値分だけ小さくする制御信号を予熱装置30の制御器36に送り、予熱装置30の出力(加熱器の発熱量)を低下させる(S22)。この場合、溶接を継続しながら溶接条件を微調整することによって、溶接品質のばらつきを抑制することができる。 Specifically, to a first temperature Ta reaches the first reference temperature T 1 (Y at S20), without changing the output, the process proceeds to step S24. When the first temperature Ta exceeds the first reference temperature T 1 (N at S20), the controller 18 controls the output of the preheating apparatus 30. That is, the control device 18 sends a control signal for reducing the heat retention temperature set in the preheating device 30 by a predetermined value to the controller 36 of the preheating device 30, and outputs the output of the preheating device 30 (heat generation amount of the heater). Decrease (S22). In this case, it is possible to suppress variations in welding quality by finely adjusting the welding conditions while continuing welding.
 次いで、ステップS24では、第2の温度Tbが第2の基準温度Tに達するまで(S24でN)、出力を変更せず、ステップS26に進む。第2の温度Tbが第2の基準温度Tを超えると(S24でN)、制御装置18は、溶接装置10と把持ロボット20の動作を一時的に停止させ、溶接を中断する(S30)。次いで、制御装置18は、予熱装置30に設定されている保温温度を所定値分だけ小さくする制御信号を予熱装置30の制御器36に送り、予熱装置30の出力(加熱器の発熱量)を低下させる(S32)。 Then, in step S24, to a second temperature Tb reaches the second reference temperature T 2 (N at S24), without changing the output, the process proceeds to step S26. When the second temperature Tb exceeds the second reference temperature T 2 (N at S24), the controller 18 temporarily stops the operation of the welding apparatus 10 and the grab robot 20, interrupting the welding (S30) . Next, the control device 18 sends a control signal for reducing the heat retention temperature set in the preheating device 30 by a predetermined value to the controller 36 of the preheating device 30, and outputs the output of the preheating device 30 (heat generation amount of the heater). Decrease (S32).
 次いで、溶接条件を変更する(S34)。具板的には、溶接開始基準温度Tを、所定値分Δだけ小さい値(T-Δ)に変更するとともに、第2の基準温度Tを、所定値分Δだけ小さい値(T-Δ)に変更する。 Next, the welding conditions are changed (S34). Specifically, the welding start reference temperature T 0 is changed to a value (T 0 −Δ 0 ) that is lower by a predetermined value Δ 0 , and the second reference temperature T 2 is lower by a predetermined value Δ 2. Change to the value (T 2 −Δ 2 ).
 次いで、第2の温度Tbが変更後の溶接開始基準温度Tまで低下するのを待つ(S36でN)。第2の温度Tbが変更後の溶接開始基準温度Tまで低下したら(S36でY)、制御装置18は、溶接装置10と把持ロボット20の動作の一時的な停止を解除し、動作を再開させ(S38)、ステップ20に戻る。 Next, the process waits for the second temperature Tb to decrease to the welding start reference temperature T 0 after the change (N in S36). When the second temperature Tb decreases to the welding start reference temperature T 0 after the change (Y in S36), the control device 18 releases the temporary stop of the operation of the welding device 10 and the gripping robot 20 and resumes the operation. (S38) and return to step 20.
 このように、溶接を中断することによって溶接品質の悪化を未然に回避でき、溶接条件の設定を変更した後に溶接を再開することによって、溶接品質を安定させることができる。 Thus, the welding quality can be prevented from deteriorating by interrupting the welding, and the welding quality can be stabilized by restarting the welding after changing the setting of the welding conditions.
 次いで、ステップS26では、予め決められた範囲の溶接が終了するまで(S26でN)、ステップS20に戻り、溶接を継続する。なお、図2に図示されていないが、ステップS22で低下させた予熱装置30の出力は、再びステップS22に進んでも、所定時間が経過するまでは変更しない。 Next, in step S26, the process returns to step S20 to continue welding until welding in a predetermined range is completed (N in S26). Although not shown in FIG. 2, the output of the preheating device 30 reduced in step S <b> 22 is not changed until a predetermined time elapses even when the process proceeds to step S <b> 22 again.
 予め決められた範囲の溶接が完了したら(S26でY)、制御装置18は、溶接装置10と把持ロボット20を停止させて溶接を終了し(S40)、予熱装置30の予熱・加熱モードの動作を停止させる(S42)。 When the welding in the predetermined range is completed (Y in S26), the control device 18 stops the welding device 10 and the gripping robot 20 to finish the welding (S40), and the preheating device 30 operates in the preheating / heating mode. Is stopped (S42).
 次いで、制御装置18は、予熱装置30に後熱処理モードの動作を開始させる(S44)。後熱モードにおいて、予熱装置30の載置面34の温度は、予め決められたプロファイルに従って自動制御され、予熱装置の載置面34に載置された溶接完了後のワークは、後熱処理される。 Next, the control device 18 causes the preheating device 30 to start the operation in the post heat treatment mode (S44). In the post-heating mode, the temperature of the mounting surface 34 of the preheating device 30 is automatically controlled according to a predetermined profile, and the workpiece after completion of welding mounted on the mounting surface 34 of the preheating device is post-heat treated. .
 予熱装置30は後熱処理を終えると停止し、溶接システム50は動作を終了する(S46)。 The preheating device 30 is stopped when the post-heat treatment is finished, and the welding system 50 ends the operation (S46).
 なお、上述した制御や、後述する変形例1~8の制御を適宜に取捨選択し、組み合わせて、溶接システム50の溶接装置10及び/又は予熱装置30の出力を制御することができる。 It should be noted that the output of the welding device 10 and / or the preheating device 30 of the welding system 50 can be controlled by appropriately selecting and combining the above-described control and the controls of Modifications 1 to 8 described later.
 以上に説明したように、制御装置18は、第1の温度Ta(溶湯6の温度)及び第2の温度Tb(ワーク2の温度、すなわち母材の温度)の計測値に基づいて、第1及び第2の温度Ta,Tbが、それぞれ良好な溶接状態になる第1及び第2の範囲内に収まるように、溶接装置10及び/又は予熱装置30の出力を制御する。これによって、溶接中に、溶接条件が適切に制御され、良好な溶接状態が維持される。 As described above, the control device 18 determines the first temperature Ta (the temperature of the molten metal 6) and the second temperature Tb (the temperature of the workpiece 2, that is, the temperature of the base material) based on the measured values. And the output of the welding apparatus 10 and / or the preheating apparatus 30 is controlled so that the 2nd temperature Ta and Tb may be settled in the 1st and 2nd range which becomes a favorable welding state, respectively. Thereby, during welding, the welding conditions are appropriately controlled, and a good welding state is maintained.
 溶接システム50は、溶接品質に影響を与える要因を第1及び第2の温度に集約し、定量的な基準に基づいて溶接状態を制御することができ、熱管理の再現性が高い。したがって、溶接品質を安定させることが容易である。 The welding system 50 aggregates the factors affecting the welding quality into the first and second temperatures, can control the welding state based on a quantitative standard, and has high reproducibility of thermal management. Therefore, it is easy to stabilize the welding quality.
 通常のアーク溶接では、母材の溶け込みが溶接金属の硬さの低下を招くため、2層以上の肉盛溶接が必要になる。これに対し、粉体プラズマ溶接は、母材の溶け込みが少なく、1層のみの肉盛溶接も可能である。粉体プラズマアーク溶接装置は、耐摩耗性、耐ヒートクラック性、耐剥離性に優れた鍛造用の金型など、通常のアーク溶接では製作が困難な製品を製作することができ、例えば、SKD61の母材に、溶接難易度が高いステライトを肉盛可能である。しかしながら、より厳しい熱管理が必要となるため、溶接装置10が粉体プラズマアーク溶接装置の場合、本発明の効果が特に顕著である。ガスと溶接材料の粉末とを供給する粉末送給装置を備えたレーザ溶接装置の場合も、同様に、本発明の効果が特に顕著である。 In normal arc welding, since the penetration of the base material causes a decrease in the hardness of the weld metal, it is necessary to build up two or more layers. On the other hand, powder plasma welding has little penetration of the base material, and can also perform overlay welding of only one layer. The powder plasma arc welding apparatus can produce products that are difficult to produce by ordinary arc welding, such as a forging die having excellent wear resistance, heat crack resistance, and peel resistance. For example, SKD61 It is possible to build up stellite having a high degree of difficulty in welding on the base material. However, since stricter thermal management is required, the effect of the present invention is particularly remarkable when the welding apparatus 10 is a powder plasma arc welding apparatus. Similarly, in the case of a laser welding apparatus provided with a powder feeding device that supplies gas and welding material powder, the effect of the present invention is particularly remarkable.
 次に、溶接中に、溶接装置及び予熱装置のいずれか一方又は両方の出力を変更する制御について、変形例1~7を説明する。 Next, modified examples 1 to 7 will be described for the control of changing the output of one or both of the welding apparatus and the preheating apparatus during welding.
 <変形例1> 第1の温度(溶湯の温度)の計測値が第1の基準温度を超えたとき、制御装置が溶接装置の出力を制御する。例えば、制御装置は、溶接装置の電流値を、所定値分だけ小さい電流値に変更する。 <Modification 1> When the measured value of the first temperature (molten metal temperature) exceeds the first reference temperature, the control device controls the output of the welding device. For example, the control device changes the current value of the welding device to a current value that is smaller by a predetermined value.
 通常動作時には電流値の減少に連動して粉末送り出し量(溶接トーチに供給する粉末量)が減少するように溶接装置が制御される場合、例えば事前に選択した次のような手法により、単位長さあたりの盛り量(溶着量)の変動を抑制するように制御することが好ましい。ひとつの手法は、第1の温度(溶湯の温度)の計測値が第1の基準温度を超えたとき、溶接装置の電流値を小さくするともに、粉末送り出し量を、溶接装置で制御する電流値と関連づけて割り込み制御し、通常動作時に比べ粉末送り出し量を増やし、粉末送り出し量の変動を抑制する。もうひとつの手法は、第1の温度(溶湯の温度)の計測値が第1の基準温度を超えたとき、溶接装置の電流値を小さくするともに、溶接装置で制御する電流値と関連づけて、予め決められた時間(例えば所定秒数)が経過した後に、溶接トーチとワークの相対移動速度を小さくするように把持ロボットを制御する。このような手法により、ビードの均一性を維持し、溶接品質を安定させることができる。 When the welding equipment is controlled so that the amount of powder delivered (the amount of powder supplied to the welding torch) decreases in conjunction with the decrease in the current value during normal operation, for example, the unit length can be determined by the following preselected method: It is preferable to control so as to suppress fluctuations in the amount of deposit (welding amount). One method is to reduce the current value of the welding device when the measured value of the first temperature (melt temperature) exceeds the first reference temperature, and to control the powder feed amount with the welding device. In association with the control, interrupt control is performed, and the amount of powder delivered is increased compared to the normal operation, and fluctuations in the amount of powder delivered are suppressed. Another method is to reduce the current value of the welding apparatus when the measured value of the first temperature (molten metal temperature) exceeds the first reference temperature, and relate it to the current value controlled by the welding apparatus, After a predetermined time (for example, a predetermined number of seconds) elapses, the gripping robot is controlled so as to reduce the relative movement speed between the welding torch and the workpiece. By such a method, the uniformity of a bead can be maintained and welding quality can be stabilized.
 <変形例2> 第1の温度(溶湯の温度)の計測値の計測値が、予め定められた第3の基準温度を下回ったとき、制御装置が溶接装置の出力を制御する。例えば、制御装置は、溶接装置の電流値を、所定値分だけ大きい電流値に変更する。 <Modification 2> When the measured value of the measured value of the first temperature (melt temperature) falls below a predetermined third reference temperature, the control device controls the output of the welding device. For example, the control device changes the current value of the welding device to a current value that is larger by a predetermined value.
 通常動作時には電流値の増加に連動して粉末送り出し量(溶接トーチに供給する粉末量)が増加するように溶接装置が制御される場合、例えば事前に選択した次のような手法により、単位長さあたりの盛り量(溶着量)の変動を抑制するように制御することが好ましい。ひとつの手法は、第1の温度(溶湯の温度)の計測値の計測値が、予め定められた第3の基準温度を下回ったとき、溶接装置の電流値を大きくするとともに、粉末送り出し量を、溶接装置で制御する電流値と関連づけて割り込み制御し、通常動作時に比べ粉末送り出し量を減らし、粉末送り出し量の変動を抑制する。もうひとつ手法は、第1の温度(溶湯の温度)の計測値の計測値が、予め定められた第3の基準温度を下回ったとき、溶接装置の電流値を大きくするとともに、溶接装置で制御する電流値と関連づけて、予め決められた時間(例えば所定秒数)が経過した後に、溶接トーチとワークの相対移動速度を大きくするように把持ロボットを制御する。このような手法により、ビードの均一性を維持し、溶接品質を安定させることができる。 When the welding equipment is controlled so that the amount of powder delivered (the amount of powder supplied to the welding torch) increases in conjunction with an increase in the current value during normal operation, the unit length can be determined by, for example, the following preselected method: It is preferable to control so as to suppress fluctuations in the amount of deposit (welding amount). One method is to increase the current value of the welding device and to reduce the powder feed amount when the measured value of the first temperature (melt temperature) falls below a predetermined third reference temperature. Then, interrupt control is performed in association with the current value controlled by the welding apparatus, and the powder feed amount is reduced compared with the normal operation, and fluctuations in the powder feed amount are suppressed. Another method is to increase the current value of the welding device and control it with the welding device when the measured value of the first temperature (melt temperature) falls below a predetermined third reference temperature. The gripping robot is controlled so as to increase the relative movement speed between the welding torch and the workpiece after a predetermined time (for example, a predetermined number of seconds) has elapsed in association with the current value. By such a method, the uniformity of a bead can be maintained and welding quality can be stabilized.
 <変形例3> 第2の温度(母材の温度)の計測値が、第2の基準温度を超えたとき、制御装置が溶接装置の出力を制御する。例えば、制御装置は、溶接装置に設定されている電流値を、所定値分だけ小さい電流値に変更する。 <Modification 3> When the measured value of the second temperature (the temperature of the base material) exceeds the second reference temperature, the control device controls the output of the welding device. For example, the control device changes the current value set in the welding device to a current value that is smaller by a predetermined value.
 通常動作時には電流値の減少に連動して粉末送り出し量(溶接トーチに供給する粉末量)が減少するように溶接装置が制御される場合、例えば事前に選択した次のような手法により、単位長さあたりの盛り量(溶着量)の変動を抑制するように制御することが好ましい。ひとつの手法は、第2の温度(母材の温度)の計測値が、第2の基準温度を超えたとき、溶接装置の電流値を小さくするとともに、粉末送り出し量を、溶接装置で制御する電流値と関連づけて割り込み制御し、通常動作時に比べ粉末送り出し量を増やし、粉末送り出し量の変動を抑制する。もうひとつの手法は、第2の温度(母材の温度)の計測値が、第2の基準温度を超えたとき、溶接装置で制御する電流値と関連づけて、予め決められた時間(例えば所定秒数)が経過した後に、溶接トーチとワークの相対移動速度を小さくするように把持ロボットを制御する。このような手法により、ビードの均一性を維持し、溶接品質を安定させることができる。 When the welding equipment is controlled so that the amount of powder delivered (the amount of powder supplied to the welding torch) decreases in conjunction with the decrease in the current value during normal operation, It is preferable to control so as to suppress fluctuations in the amount of deposit (welding amount). One method is to reduce the current value of the welding apparatus and control the amount of powder delivered by the welding apparatus when the measured value of the second temperature (the temperature of the base material) exceeds the second reference temperature. Interrupt control is performed in association with the current value, and the amount of powder delivery is increased compared to that during normal operation, thereby suppressing fluctuations in the amount of powder delivery. In another method, when the measured value of the second temperature (the temperature of the base material) exceeds the second reference temperature, it is associated with the current value controlled by the welding apparatus and is determined in advance (for example, a predetermined value). After the elapse of seconds, the gripping robot is controlled so as to reduce the relative movement speed of the welding torch and the workpiece. By such a method, the uniformity of a bead can be maintained and welding quality can be stabilized.
 例えば、小径のピン盛り等のように、溶接速度が非常に早く、短時間であるため、作業員が溶接条件を微調整しても間に合わない場合に、母材温度を溶接中に計測し、計測値が所望の母材温度プロファイル(良い品質が得られるときの母材温度プロファイル)に一致するように、溶接装置の出力などの溶接条件をリアルタイムに変える制御を行う。これによって、溶接品質を安定させることができる。 For example, because the welding speed is very fast and short, such as a pin with a small diameter, if the worker does not make it in time even if the welding conditions are fine-tuned, measure the base material temperature during welding, Control is performed to change the welding conditions such as the output of the welding apparatus in real time so that the measured value matches the desired base material temperature profile (base material temperature profile when good quality is obtained). Thereby, welding quality can be stabilized.
 <変形例4> 第2の温度(母材の温度)の計測値が、予め定められた第4の基準温度を下回ったとき、制御装置が予熱装置の出力を制御する。例えば、制御装置は、予熱装置に設定されている保温温度を、所定値分だけ大きい温度に変更する。 <Modification 4> When the measured value of the second temperature (the temperature of the base material) falls below a predetermined fourth reference temperature, the control device controls the output of the preheating device. For example, the control device changes the heat retention temperature set in the preheating device to a temperature that is higher by a predetermined value.
 <変形例5> 第1及び第2の温度(溶湯と母材の温度)の計測値に基づいて、制御装置が、溶接装置及び予熱装置の両方の出力を変更してもよい。 <Modification 5> Based on the measured values of the first and second temperatures (the temperatures of the molten metal and the base metal), the control device may change the outputs of both the welding device and the preheating device.
 例えば、通常は、第1の温度(溶湯の温度)が所定温度に保たれるように第1の温度に基づいて溶接装置の出力を制御し、第2の温度(母材の温度)が所定温度に保たれるように第2の温度に基づいて予熱装置の出力を制御する。 For example, normally, the output of the welding apparatus is controlled based on the first temperature so that the first temperature (molten metal temperature) is maintained at a predetermined temperature, and the second temperature (base metal temperature) is predetermined. The output of the preheating device is controlled based on the second temperature so that the temperature is maintained.
 第1の温度が所定の上限値又は下限値を超えたとき、第2の温度に基づく予熱装置の通常の制御よりも、第1の温度に基づく予熱装置の制御を優先し、第1の温度に基づいて予熱装置の出力を制御する。ただし、ワークのサイズが大きい場合で、第2の温度計測位置が、溶接部位から遠い場合には、その第2の温度計測位置に関わる予熱装置の制御は、そのまま第2の温度によって継続してもよい。 When the first temperature exceeds a predetermined upper limit value or lower limit value, the control of the preheating device based on the first temperature is prioritized over the normal control of the preheating device based on the second temperature, and the first temperature To control the output of the preheating device. However, when the size of the workpiece is large and the second temperature measurement position is far from the welding site, the control of the preheating device related to the second temperature measurement position is continued as it is at the second temperature. Also good.
 溶接の進行方向前方の母材温度(第2の温度)を測定し、第2の温度に基づいて溶接装置の目標値を定め、母材温度を測定した地点を実際に溶接するときに、溶湯の温度(第1の温度)に基づいて溶接装置の目標値をリアルタイム補正してもよい。この場合、制御の応答性を高めることができ、特に、小物のワークに有効である。 When the base material temperature (second temperature) ahead of the welding direction is measured, the target value of the welding apparatus is determined based on the second temperature, and the point where the base material temperature is measured is actually welded. The target value of the welding apparatus may be corrected in real time based on the temperature (first temperature). In this case, control responsiveness can be enhanced, and this is particularly effective for small workpieces.
 第2の温度が所定の上限値又は下限値を超えたとき、第1の温度に基づく溶接装置の通常の制御と、第2の温度に基づく溶接装置の制御を併用してもよい。例えば、溶接の進行方向と並行する地点で母材温度(第2の温度)を測定し、第1の温度に基づく溶接装置の制御目標値に対して、第2の温度に基づいてリアルタイム補正する。 When the second temperature exceeds a predetermined upper limit value or lower limit value, normal control of the welding apparatus based on the first temperature and control of the welding apparatus based on the second temperature may be used in combination. For example, the base material temperature (second temperature) is measured at a point parallel to the welding direction, and the control target value of the welding apparatus based on the first temperature is corrected in real time based on the second temperature. .
 <変形例6> 溶接装置及び/又は予熱装置の出力は、第1の温度(溶湯の温度)が第1の範囲内(第3の基準温度以上、かつ、第1の基準温度以下)のときから変更してもよい。例えば、第1の範囲内の第1の目標温度を設定し、第1の温度が第1の範囲内であっても第1の目標温度から外れているときは、溶接装置及び/又は予熱装置の出力を変更する。同様に、溶接装置及び/又は予熱装置の出力は、第2の温度(母材の温度)が第2の範囲(第4の基準温度以上、かつ、第2の基準温度以下)内のときから変更してもよい。 <Modification 6> The output of the welding apparatus and / or the preheating apparatus is when the first temperature (the temperature of the molten metal) is within the first range (above the third reference temperature and below the first reference temperature). You may change from For example, when a first target temperature within the first range is set, and the first temperature is within the first range but deviates from the first target temperature, the welding device and / or the preheating device Change the output of. Similarly, the output of the welding apparatus and / or the preheating apparatus is from the time when the second temperature (the temperature of the base material) is within the second range (the fourth reference temperature or more and the second reference temperature or less). It may be changed.
 <変形例7> 第1及び第2の温度(溶湯と母材の温度)のいずれか一方又は両方の温度の計測値が変化する速度又は加速度に基づいて、制御装置が、溶接装置及び予熱装置のいずれか一方又は両方の出力を変更してもよい。 <Modification 7> Based on the speed or acceleration at which the measured value of one or both of the first and second temperatures (the temperatures of the molten metal and the base material) changes, the control device is a welding device and a preheating device. Either or both of the outputs may be changed.
 例えば、小径のピン盛り等のように、溶接速度が非常に早く、短時間である場合に、母材温度変化の加速度に基づいて、先の溶接条件を予め予測変更する制御を行う。 For example, when the welding speed is very fast and short, such as a small-diameter pin pile, control is performed to predict and change the previous welding conditions in advance based on the acceleration of the base material temperature change.
 <変形例8> 第1の温度(溶湯の温度)を計測する第1のセンサと、第2の温度(母材の温度)を計測する第2のセンサとのいずれか一方のみを備える。溶接装置が肉盛溶接を行う間、制御装置は、第1の温度が第1の範囲内に収まるように予熱装置の出力を制御し、又は、第2の温度が第2の範囲内に収まるように溶接装置の出力を制御する。 <Modification 8> Only one of the first sensor that measures the first temperature (the temperature of the molten metal) and the second sensor that measures the second temperature (the temperature of the base material) is provided. While the welding device performs overlay welding, the control device controls the output of the preheating device so that the first temperature falls within the first range, or the second temperature falls within the second range. So as to control the output of the welding apparatus.
 <まとめ> 以上に説明した溶接システムは、溶接品質に影響を与える要因を第1及び第2の温度に集約し、定量的な基準に基づいて溶接状態を制御することができ、熱管理の再現性が高い。したがって、溶接品質を安定させることが容易である。 <Summary> The welding system described above is capable of consolidating the factors affecting the welding quality into the first and second temperatures and controlling the welding state based on quantitative criteria, and reproducing thermal management. High nature. Therefore, it is easy to stabilize the welding quality.
 なお、本発明は、上記実施の形態に限定されるものではなく、種々変更を加えて実施することが可能である。 It should be noted that the present invention is not limited to the above embodiment, and can be implemented with various modifications.
 例えば、実施例1では、溶接システムの制御装置として溶接装置の制御装置を用いる構成を例示したが、溶接システムの制御装置は、適宜に構成すればよい。例えば、溶接システムの制御装置として、相対移動装置(把持ロボット)の制御装置を用いる構成でも、溶接装置及び相対移動装置(把持ロボット)とは別の独立した制御装置を用いる構成でも構わない。 For example, in the first embodiment, the configuration in which the control device of the welding apparatus is used as the control device of the welding system is illustrated, but the control device of the welding system may be appropriately configured. For example, as a control device of the welding system, a configuration using a control device of a relative movement device (gripping robot) or a configuration using an independent control device different from the welding device and the relative movement device (gripping robot) may be used.
 相対移動装置は、全自動でも、半自動でも、手動でも構わない。 The relative movement device may be fully automatic, semi-automatic or manual.
 本発明の溶接システムにIoT技術を適用して、遠隔メンテナンスができるようにしたり、システム稼働状況や加熱器の制御状況、安全性などを遠隔でモニタできるようにしたりすることも可能である。 It is also possible to apply the IoT technology to the welding system of the present invention so that remote maintenance can be performed, and the system operating status, heater control status, safety, etc. can be monitored remotely.
  2 ワーク
  4 表面
  6 溶湯(溶融されている溶接材料)
 10 溶接装置
 11 溶接トーチ
 12 粉末送給装置
 14 冷却水循環装置
 16 プラズマ溶接電源
 18 制御装置
 19 手動操作盤
 19x 記録装置
 20 把持ロボット(相対移動装置)
 30 予熱装置
 34 載置面
 40 第1のセンサ
 42 第2のセンサ
 44 第3のセンサ
 50 溶接システム
 Ta 第1の温度
 Tb 第2の温度
2 Work 4 Surface 6 Molten metal (melted welding material)
DESCRIPTION OF SYMBOLS 10 Welding device 11 Welding torch 12 Powder feeding device 14 Cooling water circulation device 16 Plasma welding power source 18 Control device 19 Manual operation panel 19x Recording device 20 Grasping robot (relative movement device)
30 Preheating device 34 Mounting surface 40 First sensor 42 Second sensor 44 Third sensor 50 Welding system Ta First temperature Tb Second temperature

Claims (10)

  1.  ワークの表面に溶接材料を溶着させて肉盛溶接を行う溶接装置と、
     前記ワークを予熱し保温する予熱装置と、
     前記ワークの予熱後に前記肉盛溶接を開始するように、前記溶接装置及び前記予熱装置を動作させる制御装置と、
     前記溶接装置によって前記ワークの前記表面で溶融されている前記溶接材料の温度である第1の温度を計測する第1のセンサと、
    を備え、
     前記制御装置は、前記溶接装置が前記肉盛溶接を行う間、前記第1のセンサが計測した前記第1の温度に基づいて、前記第1の温度が第1の範囲内に収まるように、前記予熱装置の出力を制御することを特徴とする、溶接システム。
    A welding apparatus for performing overlay welding by welding a welding material to the surface of the workpiece;
    A preheating device for preheating and keeping the workpiece warm;
    A control device for operating the welding device and the preheating device so as to start the build-up welding after preheating the workpiece;
    A first sensor for measuring a first temperature which is a temperature of the welding material melted on the surface of the workpiece by the welding device;
    With
    The control device, based on the first temperature measured by the first sensor, while the welding apparatus performs the overlay welding, so that the first temperature falls within a first range, A welding system for controlling an output of the preheating device.
  2.  前記ワークの温度である第2の温度を計測する第2のセンサを、
    さらに備え、
     前記制御装置は、前記溶接装置が前記肉盛溶接を行う間、前記第2のセンサが計測した前記第2の温度に基づいて、前記第2の温度が第2の範囲内に収まるように前記溶接装置の出力を制御することを特徴とする、請求項1に記載の溶接システム。
    A second sensor for measuring a second temperature which is the temperature of the workpiece;
    In addition,
    The control device is configured so that the second temperature falls within a second range based on the second temperature measured by the second sensor while the welding device performs the overlay welding. The welding system according to claim 1, wherein the output of the welding apparatus is controlled.
  3.  前記制御装置は、
     前記第1のセンサが計測した前記第1の温度が前記第1の範囲から外れたとき、又は、前記第2のセンサが計測した前記第2の温度が前記第2の範囲から外れたとき、
     前記溶接装置と前記予熱装置とのいずれか一方又は両方の前記出力を変更することを特徴とする、請求項1又は2に記載の溶接システム。
    The control device includes:
    When the first temperature measured by the first sensor is out of the first range, or when the second temperature measured by the second sensor is out of the second range,
    The welding system according to claim 1 or 2, wherein the output of one or both of the welding device and the preheating device is changed.
  4.  前記制御装置は、
     前記第1のセンサが計測した前記第1の温度が前記第1の範囲から外れたとき、又は、前記第2のセンサが計測した前記第2の温度が前記第2の範囲から外れたとき、
     前記溶接装置に前記肉盛溶接を中断させた後、前記溶接装置と前記予熱装置とのいずれか一方又は両方の前記出力を変更し、前記出力が変更された状態で前記溶接装置に前記肉盛溶接を再開させることを特徴とする、請求項1又は2に記載の溶接システム。
    The control device includes:
    When the first temperature measured by the first sensor is out of the first range, or when the second temperature measured by the second sensor is out of the second range,
    After the weld welding is interrupted by the welding device, the output of either one or both of the welding device and the preheating device is changed, and the overlay is added to the welding device in a state where the output is changed. The welding system according to claim 1, wherein welding is resumed.
  5.  前記溶接装置が前記肉盛溶接を行う間、前記溶接装置の溶接トーチと前記ワークとが予め設定された経路に沿って相対移動するように、前記溶接トーチと前記ワークとのいずれか一方又は両方を移動させる相対移動装置と、
     前記ワークの位置を検出する第3のセンサと、
    をさらに備え、
     前記制御装置は、
     前記第3のセンサによって検出された前記予熱後の前記ワークの位置に応じて、予め設定された前記経路を補正し、
     前記溶接装置が前記肉盛溶接を行う間、前記溶接トーチと前記ワークとが、補正された前記経路に沿って相対移動するように、前記相対移動装置を動作させることを特徴とする、請求項1ないし4のいずれか一つに記載の溶接システム。
    While the welding apparatus performs the overlay welding, either or both of the welding torch and the workpiece are moved so that the welding torch and the workpiece of the welding apparatus move relative to each other along a preset path. A relative movement device for moving
    A third sensor for detecting the position of the workpiece;
    Further comprising
    The control device includes:
    According to the position of the workpiece after the preheating detected by the third sensor, the preset route is corrected,
    The relative movement device is operated so that the welding torch and the workpiece relatively move along the corrected path while the welding device performs the overlay welding. The welding system according to any one of 1 to 4.
  6.  前記溶接装置は、ガスと前記溶接材料の粉末とを供給する粉末送給装置を備えた粉体プラズマ溶接装置又はレーザ溶接装置であることを特徴とする、請求項1ないし5のいずれか一つに記載の溶接システム。 6. The welding apparatus according to claim 1, wherein the welding apparatus is a powder plasma welding apparatus or a laser welding apparatus including a powder feeding device that supplies gas and powder of the welding material. The welding system described in.
  7.  前記制御装置は、
     前記溶接装置と前記予熱装置とのいずれか一方又は両方の前記出力を、前記溶接装置が自動で前記肉盛溶接を行っているときに手動で変更するための手動操作盤を含むことを特徴とする、請求項1ないし6のいずれか一つに記載の溶接システム。
    The control device includes:
    A manual operation panel for manually changing the output of one or both of the welding device and the preheating device when the welding device is automatically performing the overlay welding; The welding system according to any one of claims 1 to 6.
  8.  前記制御装置に接続され、前記溶接装置の前記出力の制御を含む制御条件の実績を記録する記録装置を、さらに備えたことを特徴とする、請求項1ないし7のいずれか一つに記載の溶着層形成システム。 8. The recording apparatus according to claim 1, further comprising a recording device connected to the control device and for recording a record of control conditions including control of the output of the welding device. Welding layer forming system.
  9.  予熱装置を用いてワークを予熱した後、前記予熱装置を用いて前記ワークを保温しながら、溶接装置のトーチと前記ワークとを、予め設定された経路に沿って相対移動させて、前記ワークの表面に溶接材料を溶着させて肉盛溶接を行う第1のステップと、
     前記第1のステップで前記肉盛溶接を行う間、前記ワークの前記表面で溶融している前記溶接材料の温度である第1の温度を計測する第2のステップと、
     前記第2のステップで計測した前記第1の温度に基づいて、前記第1の温度が第1の範囲内に収まるように、前記予熱装置の出力を制御する第3のステップと、
    を備えたことを特徴とする、溶接方法。
    After preheating the workpiece using the preheating device, while keeping the workpiece warm using the preheating device, the welding device's torch and the workpiece are moved relative to each other along a preset path, A first step of performing overlay welding by welding a welding material to the surface;
    A second step of measuring a first temperature which is a temperature of the welding material melted on the surface of the workpiece while performing the overlay welding in the first step;
    A third step of controlling the output of the preheating device based on the first temperature measured in the second step so that the first temperature falls within a first range;
    A welding method characterized by comprising:
  10.  前記第2のステップにおいて、前記第1のステップで前記肉盛溶接を行う間、前記ワークの前記表面の温度である第2の温度を計測し、
     前記第3のステップにおいて、前記第2のステップで計測した前記第2の温度に基づいて、前記第2の温度が第2の範囲内に収まるように、前記溶接装置の出力を制御することを特徴とする、請求項9に記載の溶接方法。
    In the second step, during the build-up welding in the first step, a second temperature that is the temperature of the surface of the workpiece is measured,
    In the third step, based on the second temperature measured in the second step, controlling the output of the welding apparatus so that the second temperature falls within the second range. The welding method according to claim 9, wherein the welding method is characterized.
PCT/JP2018/021773 2017-06-12 2018-06-06 Welding system and welding method WO2018230419A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-115503 2017-06-12
JP2017115503A JP6289713B1 (en) 2017-06-12 2017-06-12 Welding system and welding method

Publications (1)

Publication Number Publication Date
WO2018230419A1 true WO2018230419A1 (en) 2018-12-20

Family

ID=61558057

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/021773 WO2018230419A1 (en) 2017-06-12 2018-06-06 Welding system and welding method

Country Status (2)

Country Link
JP (1) JP6289713B1 (en)
WO (1) WO2018230419A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112301604A (en) * 2019-07-30 2021-02-02 尼德克株式会社 Dyeing apparatus and dyeing method
CN116748651A (en) * 2023-05-31 2023-09-15 扬州宏运车业有限公司 Anti-deformation welding process for lengthened pick-up truck frame assembly
JP7469005B2 (en) 2019-07-30 2024-04-16 株式会社ニデック Dyeing apparatus and dyeing method

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2019251514B2 (en) * 2018-04-14 2021-02-25 AML3D Limited Method and apparatus for manufacturing 3d metal parts
JP6923484B2 (en) * 2018-05-15 2021-08-18 ファナック株式会社 Machining condition adjustment device and machine learning device
CN115194306A (en) * 2022-09-14 2022-10-18 南通市征荣冷冻设备制造有限公司 Plasma arc welding machine with autonomic accuse temperature function

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56160877A (en) * 1980-05-16 1981-12-10 Hitachi Seiko Ltd Controller for welding machine
JPH07148585A (en) * 1990-06-13 1995-06-13 Gebr Sulzer Ag Method and device for forming surface layer on workpiece capable of undergoing induction heating
JP2006095575A (en) * 2004-09-30 2006-04-13 Kawasaki Heavy Ind Ltd Welding equipment
JP2009274136A (en) * 2008-05-15 2009-11-26 General Electric Co <Ge> Preheating using laser beam
JP2014161858A (en) * 2013-02-22 2014-09-08 Mitsui Eng & Shipbuild Co Ltd Apparatus and method for hardening build-up welding
JP2017505237A (en) * 2013-11-29 2017-02-16 ザウアー ゲーエムベーハー レーザーテックSauer GmbH Lasertec Machine tool, measuring device, machining data generation method, cladding execution method, and workpiece temperature control device

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5554837A (en) * 1993-09-03 1996-09-10 Chromalloy Gas Turbine Corporation Interactive laser welding at elevated temperatures of superalloy articles
EP1396556A1 (en) * 2002-09-06 2004-03-10 ALSTOM (Switzerland) Ltd Method for controlling the microstructure of a laser metal formed hard layer
JP4364064B2 (en) * 2004-06-08 2009-11-11 住友金属工業株式会社 Disk roll and manufacturing method thereof
JP2010203258A (en) * 2009-02-27 2010-09-16 Mitsubishi Heavy Ind Ltd Repairing method of moving blade
JP5611757B2 (en) * 2010-10-18 2014-10-22 株式会社東芝 Heat repair device and heat repair method
JP5955125B2 (en) * 2012-06-22 2016-07-20 三菱日立パワーシステムズ株式会社 Turbine rotor, manufacturing method thereof, and steam turbine using the turbine rotor
EP2878409B2 (en) * 2013-11-27 2022-12-21 SLM Solutions Group AG Method of and device for controlling an irradiation system
JP6254036B2 (en) * 2014-03-31 2017-12-27 三菱重工業株式会社 Three-dimensional laminating apparatus and three-dimensional laminating method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56160877A (en) * 1980-05-16 1981-12-10 Hitachi Seiko Ltd Controller for welding machine
JPH07148585A (en) * 1990-06-13 1995-06-13 Gebr Sulzer Ag Method and device for forming surface layer on workpiece capable of undergoing induction heating
JP2006095575A (en) * 2004-09-30 2006-04-13 Kawasaki Heavy Ind Ltd Welding equipment
JP2009274136A (en) * 2008-05-15 2009-11-26 General Electric Co <Ge> Preheating using laser beam
JP2014161858A (en) * 2013-02-22 2014-09-08 Mitsui Eng & Shipbuild Co Ltd Apparatus and method for hardening build-up welding
JP2017505237A (en) * 2013-11-29 2017-02-16 ザウアー ゲーエムベーハー レーザーテックSauer GmbH Lasertec Machine tool, measuring device, machining data generation method, cladding execution method, and workpiece temperature control device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112301604A (en) * 2019-07-30 2021-02-02 尼德克株式会社 Dyeing apparatus and dyeing method
JP7469005B2 (en) 2019-07-30 2024-04-16 株式会社ニデック Dyeing apparatus and dyeing method
CN116748651A (en) * 2023-05-31 2023-09-15 扬州宏运车业有限公司 Anti-deformation welding process for lengthened pick-up truck frame assembly

Also Published As

Publication number Publication date
JP6289713B1 (en) 2018-03-07
JP2019000854A (en) 2019-01-10

Similar Documents

Publication Publication Date Title
WO2018230419A1 (en) Welding system and welding method
JP3200387U (en) System using consumables with welding puddles
KR102285103B1 (en) Metal heating and working systems and method with heating and/or cooling using an induction heating head
CN107378249A (en) Laser overlaying welding method
US20140008354A1 (en) Method and system of using induction heating to heat consumable during hot wire process
KR101678307B1 (en) Welding method of automatic welding apparatus for pressure vessel and steel pipe
WO2014006488A2 (en) Method and system for heating consumable during hot wire process
KR20180118540A (en) Method and system for welding with temperature detector
WO2014006491A1 (en) Hot-wire consumable incapable of sustaining an arc
US20210023642A1 (en) Systems and methods for adaptive control of wire preheating
CN105722629A (en) System and method for automatic height adjustment of a torch
US9700953B2 (en) Adaptive welding apparatus, control system, and method of controlling an adaptive welding apparatus
US20230234153A1 (en) Method for defining welding parameters for a welding process on a workpiece and welding device for carrying out a welding process on a workpiece with defined welding parameters
JP6050141B2 (en) Hardfacing welding apparatus and method
JP4491996B2 (en) Welding control apparatus and welding control method for feedback control of melt temperature
JP4235873B2 (en) Friction stir welding method heating device
CN115485096A (en) Additive manufacturing apparatus and additive manufacturing method
JP7303383B2 (en) Method and apparatus for welding weld seams
Tyralla et al. Temperature field based closed-loop control of laser hot wire cladding for low dilution
CN105986109A (en) Postweld heat treatment process
US11872659B2 (en) Welding device and welding method with self-setting welding wire feed speed
KR102189501B1 (en) Brazing automation apparatus and brazing method using the same
KR20190008085A (en) Method and system of using a consumable and a heat source with a weld puddle
WO2022030162A1 (en) Ultra-narrow-gap submerged arc welding method and ultra-narrow-gap submerged arc welding device
GB2618618A (en) Method and apparatus for manufacturing a metal structure

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18818378

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18818378

Country of ref document: EP

Kind code of ref document: A1