WO2018229822A1 - Power module - Google Patents

Power module Download PDF

Info

Publication number
WO2018229822A1
WO2018229822A1 PCT/JP2017/021618 JP2017021618W WO2018229822A1 WO 2018229822 A1 WO2018229822 A1 WO 2018229822A1 JP 2017021618 W JP2017021618 W JP 2017021618W WO 2018229822 A1 WO2018229822 A1 WO 2018229822A1
Authority
WO
WIPO (PCT)
Prior art keywords
lead
electronic element
bonding surface
power module
leads
Prior art date
Application number
PCT/JP2017/021618
Other languages
French (fr)
Japanese (ja)
Inventor
貴大 及川
Original Assignee
新電元工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新電元工業株式会社 filed Critical 新電元工業株式会社
Priority to PCT/JP2017/021618 priority Critical patent/WO2018229822A1/en
Publication of WO2018229822A1 publication Critical patent/WO2018229822A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R15/00Details of measuring arrangements of the types provided for in groups G01R17/00 - G01R29/00, G01R33/00 - G01R33/26 or G01R35/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C13/00Resistors not provided for elsewhere
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/07Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L29/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/18Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different subgroups of the same main group of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N

Definitions

  • the present invention relates to a power module.
  • Patent Document 1 discloses a semiconductor device in which a resistance wire (electronic element) as a shunt resistor for detecting a current flowing in a circuit (semiconductor element) is joined to two strip-shaped inner leads by welding. Yes.
  • the present invention has been made in view of the above-described circumstances, and an object of the present invention is to provide a power module capable of preventing the electrical characteristics of an electronic element joined to a lead of the power module from fluctuating depending on the joining situation.
  • One embodiment of the present invention is a power module configured by mounting electronic components on a lead frame having a plurality of leads and performing power control, and an electronic element having a predetermined electrical function is arranged in a plate thickness direction.
  • the power module is bonded to the bonding surfaces of the leads facing each other in the orthogonal direction, and the bonding surfaces of the leads and the bonding surfaces of the electronic elements bonded to the bonding surfaces of the leads are different from each other.
  • the power module 100 performs various types of power control. As shown in FIGS. 1 and 2, the power module 100 includes a lead frame 3 having a plurality of leads 1 and 2, various electronic components 4 (see FIG. 7) mounted on the lead frame 3, and a predetermined electric power. And an electronic element 5 having a typical function. 1 and 2 show only the electronic element 5 and the leads 1 and 2 of the lead frame 3 that are joined to the electronic element 5, and the electronic component 4 and the lead frame 3 on which the electronic component 4 is mounted. The part of is omitted.
  • the lead frame 3 is obtained, for example, by subjecting a conductive plate material having conductivity, such as a copper plate, to press processing.
  • Each lead 1, 2 of the lead frame 3 is formed in a plate shape.
  • the plurality of leads 1 and 2 are arranged at intervals from each other in a direction orthogonal to the plate thickness direction (Z-axis direction) of the lead frame 3.
  • the plurality of leads 1 and 2 are electrically connected to the electronic component 4 and the electronic element 5 to constitute a circuit of the power module 100 together with the electronic component 4 and the electronic element 5.
  • the electronic element 5 is electrically connected to the leads 1 and 2 by being joined to the leads 1 and 2.
  • a portion of the electronic element 5 that is joined to the leads 1 and 2 is an electrode of the electronic element 5.
  • the electrodes of the electronic element 5 are provided at both ends of a predetermined linear direction (hereinafter referred to as “electrode arrangement direction”). The number of electrodes at each end may be plural, for example, but is one in this embodiment.
  • the electronic element 5 may be a switching element (semiconductor element) such as a thyristor, or may be a chip capacitor.
  • the electronic element 5 of this embodiment is a shunt resistor (resistive element).
  • the shunt resistor is made of, for example, a different type of conductive member than the lead frame 3.
  • the shape of the electronic element 5 may be arbitrary, such as a block shape, but the electronic element 5 of the present embodiment is formed in a plate shape.
  • the electronic component 4 includes main surfaces 11 and 21 of a plurality of leads 1 and 2 (main surfaces of the lead frame 3; surfaces orthogonal to the plate thickness direction of the leads 1 and 2 and the lead frame 3). As a result, the lead frame 3 is mounted.
  • the specific configuration of the electronic component 4 may be arbitrary.
  • the electronic component 4 illustrated in FIG. 7 includes a built-in electronic element 41 having a predetermined electrical function and a terminal 42 connected to the electrode of the built-in electronic element 41.
  • the built-in electronic element 41 may be the same as the electronic element 5 described above, for example, but is not limited thereto.
  • the built-in electronic element 41 and the terminal 42 may be directly connected, for example, or may be connected via a connector such as a wire.
  • the electronic component 4 may include a resin 43 that seals the built-in electronic element 41 and the terminal 42.
  • the built-in electronic element 41 may be buried in the resin 43 and the terminal 42 may be exposed to the outside of the resin 43.
  • the terminal 42 may protrude from the resin 43 as shown in FIG. 7, for example, but may not protrude, for example.
  • the electronic component 4 is mounted on the lead frame 3 by, for example, joining the terminal 42 to the main surfaces 11 and 21 of the leads 1 and 2.
  • the electronic element 5 includes two leads (first lead 1 and second lead 2) spaced apart from each other in a direction orthogonal to the plate thickness direction (X-axis direction). It is sandwiched and joined by the side part.
  • the electronic element 5 of the present embodiment is a shunt resistor and detects a current (for example, a power supply current) flowing through the circuit of the power module 100. For this reason, the electronic element 5 is joined to the two leads 1 and 2 so as to electrically connect the two leads 1 and 2.
  • the two leads 1 and 2 are formed in a strip shape extending in a direction coinciding with the arrangement direction (X-axis direction) of the two leads.
  • the electronic element 5 is joined to a side portion of the two leads 1 and 2 that extends in the short direction (Y-axis direction).
  • the side portion of the lead to which the electronic element 5 is bonded is the side surface of the lead that extends in the plate thickness direction (Z-axis direction) of the lead frame 3.
  • the side surface of the electronic element 5 extending in the thickness direction of the electronic element 5 is joined to the side surface of the lead.
  • the electronic element 5 includes a first bonding surface 51 that is a side surface that is bonded to the first lead 1 and a second bonding surface 52 that is a side surface bonded to the second lead 2.
  • the first bonding surface 51 and the second bonding surface 52 are planes provided at both ends in the electrode arrangement direction, and the normal direction coincides with the electrode arrangement direction.
  • the electrodes are exposed on at least a part of the first bonding surface 51 and the second bonding surface 52, and the first bonding surface 51 and the second bonding surface 52 are bonded to the leads, so that the electronic element 5 can be Connected.
  • the first lead 1 has a first lead bonding surface 10 that is a side surface bonded to the electronic element 5.
  • the second lead 2 has a second lead bonding surface 20 that is a side surface bonded to the electronic element 5.
  • the first lead joint surface 10 and the second lead joint surface 20 are arranged at intervals in the X-axis direction. Further, the first lead bonding surface 10 and the second lead bonding surface 20 are disposed to face both sides with a space in between, and the first lead bonding surface 10 and the second lead bonding surface 20 are positioned in parallel. is doing.
  • the electronic element 5 is disposed in a space sandwiched between the first lead joint surface 10 and the second lead joint surface 20 so that the electrode arrangement direction coincides with the X-axis direction.
  • the first lead bonding surface 10 and the first bonding surface 51 are bonded, and the second lead bonding surface 20 and the second bonding surface 52 are bonded.
  • the lead 2 is electrically joined.
  • the first lead joint surface 10 and the first joint surface 51, and the second lead joint surface 20 and the second joint surface 52 are joined by soldering or welding. Joining by welding can increase joining durability compared to joining by soldering. Therefore, joining by welding is suitable as a constituent circuit of a power module used at high voltage and high current.
  • the electronic element 5 is not bonded to one main surface 11 orthogonal to the Z-axis direction of the first lead 1. Further, the electronic element 5 is not bonded to one main surface 21 orthogonal to the Z-axis direction of the second lead 2.
  • the main surface (11, 21) of the lead can be effectively used for mounting other electric parts and electronic parts.
  • the electronic element 5 is joined to form the same flat surface together with the other main surface 12 of the first lead 1 and the other main surface 22 of the second lead 2.
  • the power module 100 is accommodated in a case formed of, for example, a metal plate having a heat dissipation member. By bringing the same flat surface of the power module 100 into contact with the surface of the case where the heat dissipation member is formed, the power module 100 can be mounted on the heat dissipation member of the case without any gap.
  • the length of the first lead bonding surface 10 is shorter than the length of the first bonding surface 51 in a plan view viewed from the Z-axis direction. As shown in FIG. 2, the length of the first lead bonding surface 10 is shorter than the length of the first bonding surface 51 in a side view as viewed from the Y-axis direction. That is, the area of the first lead bonding surface 10 is smaller than the area of the first bonding surface 51.
  • the length of the second lead bonding surface 20 is shorter than the length of the second bonding surface 52 in a plan view viewed from the Z-axis direction. Further, as shown in FIG. 2, the length of the second lead bonding surface 20 is shorter than the length of the second bonding surface 52 in a side view as viewed from the Y-axis direction. That is, the area of the second lead bonding surface 20 is smaller than the area of the second bonding surface 52.
  • the bonding portion between the electronic element 5 and the first lead bonding surface 10 and the second lead bonding surface 20 It can suppress suitably that an area changes. Therefore, in the power module 100, it can suppress that the electrical property (for example, resistance value of a resistance component) of the electronic element 5 changes.
  • the power module 100 since the electronic element 5 is not mounted on the main surfaces 11 and 21 of the leads, the main surfaces 11 and 21 of the leads are mounted with other electrical components and electronic components. It can be used effectively. Thereby, size reduction of the power module 100 can be achieved.
  • the power module 100 can set the protruding height of the electronic element 5 protruding from the main surfaces 11 and 21 of the lead to be lower than that when the electronic element 5 is mounted on the main surfaces 11 and 21 of the lead. Thereby, thickness reduction of the power module 100 can also be achieved. Further, the power module 100 can also bring the electronic element 5 into contact with the same heat radiating member as the lead. Thereby, the heat generated in the electronic element 5 by energization can be efficiently released to the outside. It can suppress suitably that the temperature value of the electronic element 5 is suppressed and the resistance value of the electronic element 5 changes.
  • the power module 100 has the electronic element 5, the first lead bonding surface 10, and the second lead bonding surface. It can suppress suitably that the area of a junction part with the surface 20 changes. Therefore, in the power module 100, it can suppress that the electrical property (for example, resistance value of resistance components) of an electronic element changes.
  • the electronic element 5 is bonded to the two leads 1 and 2.
  • the joining mode of the electronic element 5 in the power module 100 is not limited to this.
  • a plurality of electronic elements 5 may be bonded to a plurality of leads of the power module 100.
  • Each electronic element 5 may be bonded to two of the plurality of leads in the manner described in the above embodiment.
  • the number of leads joined to the electronic element is not limited to two, and may be changed according to the type of the electronic element.
  • the electronic element has three electrodes, such as a switching element, for example, the two electrodes provided at one end of the electronic element are joined to the sides of the two leads, Another side of one lead may be joined to one electrode provided at the other end.
  • first lead joint surface 10 and the second lead joint surface 20 are arranged in parallel so as to face both sides across the space.
  • the aspect of the first lead joint surface 10 and the second lead joint surface 20 is not limited to this.
  • the first lead bonding surface 10 and the second lead bonding surface 20 may not be arranged in parallel. If at least a part of the first lead bonding surface 10 is in contact with the first bonding surface 51 of the electronic element 5, the first lead bonding surface 10 is disposed in parallel to the second lead bonding surface 20. It does not have to be. Similarly, if at least a part of the second lead bonding surface 20 is in contact with the second bonding surface 52 of the electronic element 5, the second lead bonding surface 20 is parallel to the first lead bonding surface 10. It may not be arranged.
  • the length of the 1st lead joint surface 10 is compared with the length of the 1st joint surface 51 also in the planar view seen from the Z-axis direction, and the side view seen from the Y-axis direction. It was short.
  • the aspect of the first lead joint surface 10 is not limited to this.
  • the length of the first lead bonding surface 10 and the length of the first bonding surface 51 may be equal in a side view as viewed from the Y-axis direction.
  • the length of the first lead bonding surface 10 is shorter than the length of the first bonding surface 51 in a plan view viewed from the Z-axis direction, even if the electronic element 5 is displaced in the Y-axis direction, It can suppress suitably that the area of the junction part of the electronic element 5, and the 1st lead joint surface 10 and the 2nd lead joint surface 20 changes. The same applies to the second lead joint surface 20.
  • the power module 100 is arranged with a gap in the Z-axis direction with respect to the electronic element 5 and is connected to the two leads arranged in the X-axis direction. And an electronic component 4 (parallel connection component) connected in parallel.
  • the main surfaces (11, 12) of the leads can be used for mounting the electronic component 4 to reduce the size of the power module 100 as a whole.
  • the power module 100B has a lead frame 3 having a plurality of leads 1B and 2B, various electronic components 4 (see FIG. 7) mounted on the lead frame 3, and a predetermined electrical function. And an electronic element 5. 3 and 4 show only the electronic element 5 and leads 1B and 2B to be joined to the electronic element 5 among the lead frame 3, and the electronic component 4 and the lead frame 3 on which the electronic component 4 is mounted. The part of is omitted.
  • the electronic element 5 of the present embodiment is bonded to the sides of two leads (first lead 1B and second lead 2B) facing each other.
  • the two leads 1B and 2B are formed in a strip shape extending in a direction coinciding with the arrangement direction (X-axis direction) of the two leads 1B and 2B.
  • the electronic element 5 is joined to a side portion of the two leads 1 and 2 that extends in the short direction (Y-axis direction).
  • the side portion of the lead to which the electronic element 5 is bonded is the side surface of the lead that extends in the plate thickness direction (Z-axis direction) of the lead frame 3.
  • the side surface of the electronic element 5 extending in the thickness direction of the electronic element 5 is joined to the side surface of the lead.
  • the first lead 1 ⁇ / b> B has a first lead bonding surface 10 ⁇ / b> B that is a side surface bonded to the electronic element 5.
  • the second lead 2 ⁇ / b> B has a second lead bonding surface 20 ⁇ / b> B that is a side surface bonded to the electronic element 5.
  • the first lead bonding surface 10 ⁇ / b> B and the second lead bonding surface 20 ⁇ / b> B are arranged at an interval in the X-axis direction. Further, the first lead bonding surface 10B and the second lead bonding surface 20B are arranged to face both sides with a space therebetween, and the first lead bonding surface 10B and the second lead bonding surface 20B are positioned in parallel. is doing.
  • the electronic element 5 is disposed in a space sandwiched between the first lead joint surface 10B and the second lead joint surface 20B so that the electrode arrangement direction coincides with the X-axis direction.
  • the first lead bonding surface 10B and the first bonding surface 51 are bonded, and the second lead bonding surface 20B and the second bonding surface 52 are bonded.
  • the lead 2B is electrically joined.
  • the length of the first lead bonding surface 10 ⁇ / b> B is longer than the length of the first bonding surface 51 in a plan view viewed from the Z-axis direction.
  • the length of the first lead bonding surface 10 ⁇ / b> B is longer than the length of the first bonding surface 51 in a side view as viewed from the Y-axis direction. That is, the area of the first lead bonding surface 10 ⁇ / b> B is larger than the area of the first bonding surface 51.
  • the length of the second lead bonding surface 20 ⁇ / b> B is longer than the length of the second bonding surface 52 in a plan view viewed from the Z-axis direction.
  • the length of the second lead bonding surface 20 ⁇ / b> B is longer than the length of the second bonding surface 52 in a side view as viewed from the Y-axis direction. That is, the area of the second lead bonding surface 20B is larger than the area of the second bonding surface 52.
  • the power module 100B includes the electronic element 5 and the first element even when the electronic element 5 is displaced in the direction along the first lead bonding surface 10B and the second lead bonding surface 20B. It can suppress suitably that the area of the junction part with the 1 lead joint surface 10B and the 2nd lead joint surface 20B changes. Therefore, in the power module 100B, it can suppress that the electrical characteristic (for example, resistance value of a resistance component) of an electronic element changes. Further, the mounting error of the electronic element 5 with respect to the lead can be suppressed to a small value.
  • the length of the first lead bonding surface 10B is compared with the length of the first bonding surface 51 both in a plan view viewed from the Z-axis direction and in a side view viewed from the Y-axis direction. It was long.
  • the aspect of the first lead joint surface 10B is not limited to this.
  • the length of the first lead bonding surface 10B and the length of the first bonding surface 51 may be equal in a side view viewed from the Y-axis direction.
  • the length of the first lead bonding surface 10B is longer than the length of the first bonding surface 51 in a plan view as viewed from the Z-axis direction, even if the electronic element 5 is displaced in the Y-axis direction, It can suppress suitably that the area of the junction part of the element 5, and the 1st lead joint surface 10B and the 2nd lead joint surface 20B changes. The same applies to the second lead bonding surface 20B.
  • the power module 100C has a lead frame 3 having a plurality of leads 1C and 2C, various electronic components 4 (see FIG. 7) mounted on the lead frame 3, and a predetermined electrical function. And an electronic element 5.
  • FIG. 5 shows only the electronic element 5 and the leads 1C and 2C to be joined to the electronic element 5 of the lead frame 3.
  • the electronic component 4 and the part of the lead frame 3 on which the electronic component 4 is mounted are shown. It is omitted.
  • the two leads are each formed in a strip shape extending in a direction orthogonal to the plate thickness direction of the lead frame 3.
  • the two leads 1C and 2C may extend in different directions, for example, but in this embodiment, extend in the same direction.
  • the two leads 1C and 2C extend in a direction (Y-axis direction) orthogonal to the arrangement direction (X-axis direction) of the two leads 1C and 2C.
  • the electronic element 5 is bonded to a side portion extending in the longitudinal direction (Y-axis direction) of the two leads 1C and 2C.
  • the first lead 1 ⁇ / b> C has a first protrusion 13 ⁇ / b> C that protrudes in the X-axis direction that is the first bonding surface 51 side of the electronic element 5.
  • the first protruding portion 13 ⁇ / b> C of the first lead 1 ⁇ / b> C has a first lead bonding surface 10 ⁇ / b> C at the tip in the protruding direction.
  • the second lead 2 ⁇ / b> C has a second protruding portion 23 ⁇ / b> C that protrudes in the X-axis direction that is the second bonding surface 52 side of the electronic element 5.
  • the second protrusion 23 ⁇ / b> C of the second lead 2 ⁇ / b> C has a second lead bonding surface 20 ⁇ / b> C at the tip in the protrusion direction.
  • the first lead joint surface 10C and the second lead joint surface 20C are arranged with a space therebetween in the X-axis direction. Further, the first lead bonding surface 10C and the second lead bonding surface 20C are arranged to face both sides with a space therebetween, and the first lead bonding surface 10C and the second lead bonding surface 20C are positioned in parallel. is doing.
  • the side portions of the lead to which the electronic element 5 is bonded are the side surfaces 10 ⁇ / b> C and 20 ⁇ / b> C of the protruding portion of the lead extending in the plate thickness direction (Z-axis direction) of the lead frame 3.
  • the side surfaces 51 and 52 of the electronic element extending in the plate thickness direction of the electronic element 5 are joined to the side surfaces 10C and 20C of the protruding portion of the lead.
  • the electronic element 5 may be bonded to a midway portion of the lead in the longitudinal direction (Y-axis direction) of the side portion of the lead.
  • the electronic element 5 is bonded to the end portion in the longitudinal direction of the lead among the side portions of the lead.
  • the length of the first lead bonding surface 10 ⁇ / b> C is shorter than the length of the first bonding surface 51 in a plan view viewed from the Z-axis direction. As shown in FIG. 5, the length of the first lead bonding surface 10 ⁇ / b> C is shorter than the length of the first bonding surface 51 in a side view viewed from the Y-axis direction. That is, the area of the first lead bonding surface 10 ⁇ / b> C is smaller than the area of the first bonding surface 51.
  • the length of the second lead bonding surface 20 ⁇ / b> C is shorter than the length of the second bonding surface 52 in a plan view viewed from the Z-axis direction. As shown in FIG. 5, the length of the second lead bonding surface 20 ⁇ / b> C is shorter than the length of the second bonding surface 52 in a side view as viewed from the Y-axis direction. That is, the area of the second lead bonding surface 20 ⁇ / b> C is smaller than the area of the second bonding surface 52.
  • the bonding portion between the electronic element 5 and the first lead bonding surface 10C and the second lead bonding surface 20C It can suppress suitably that an area changes. Therefore, it is possible to suppress a change in electrical characteristics of the electronic element (for example, the resistance value of the resistive component) in the power module 100C.
  • the electronic element 5 is positioned in a direction along the first lead bonding surface 10C and the second lead bonding surface 20C, as in the power module 100 of the first embodiment. Even if it shift
  • the power module 100C has the first protrusion 13C and the second lead 2C even when the first lead 1C and the second lead 2C are formed in a strip shape extending in the direction along the bonding surface of the electronic element 5.
  • the electronic element 5 can be bonded to the lead bonding surfaces (the first lead bonding surface 10C and the second lead bonding surface 20C) facing in the X-axis direction.
  • the first lead 1C has the first protrusion 13C
  • the second lead 2C also has the second protrusion 23C.
  • the aspects of the first lead 1C and the second lead 2C are not limited to this.
  • only the first lead 1C may have the first protrusion 13C
  • the second lead 2C may not have the second protrusion 23C.
  • the second lead 2C can be joined to the second joint surface 52 of the electronic element 5 as long as the second lead joint surface is provided on the side surface of the second lead 2C. Can do.
  • the power module 100D has a lead frame 3 having a plurality of leads 1D and 2D, various electronic components 4 (see FIG. 7) mounted on the lead frame 3, and a predetermined electrical function. And an electronic element 5.
  • FIG. 6 shows only the electronic element 5 and the leads 1D and 2D to be joined to the electronic element 5 of the lead frame 3, and the electronic component 4 and the portion of the lead frame 3 on which the electronic component 4 is mounted are shown. It is omitted.
  • the two leads are each formed in a strip shape extending in a direction orthogonal to the plate thickness direction of the lead frame 3.
  • the two leads 1D and 2D may extend in different directions, for example, but in this embodiment, extend in the same direction.
  • the two leads 1D and 2D extend in a direction (Y-axis direction) orthogonal to the arrangement direction (X-axis direction) of the two leads 1D and 2D.
  • the electronic element 5 is bonded to a side portion extending in the longitudinal direction (Y-axis direction) of the two leads 1D and 2D.
  • the first lead 1 ⁇ / b> D has a first protrusion 13 ⁇ / b> D that protrudes in the X-axis direction that is the first bonding surface 51 side of the electronic element 5.
  • the first protrusion 13D of the first lead 1D has a first lead bonding surface 10D at the front end in the protrusion direction.
  • the second lead 2 ⁇ / b> D has a second protrusion 23 ⁇ / b> D that protrudes in the X-axis direction that is the second bonding surface 52 side of the electronic element 5.
  • the second protrusion 23D of the second lead 2D has a second lead bonding surface 20D at the front end in the protrusion direction.
  • the first lead joint surface 10D and the second lead joint surface 20D are arranged with a space therebetween in the X-axis direction. Further, the first lead bonding surface 10D and the second lead bonding surface 20D are arranged to face both sides with a space therebetween, and the first lead bonding surface 10D and the second lead bonding surface 20D are positioned in parallel. is doing.
  • the side portions of the lead to which the electronic element 5 is bonded are the side surfaces 10D and 20D of the protruding portion of the lead extending in the plate thickness direction (Z-axis direction) of the lead frame 3.
  • the side surfaces 51 and 52 of the electronic element extending in the plate thickness direction of the electronic element 5 are joined to the side surfaces 10D and 20D of the protruding portion of the lead.
  • the electronic element 5 may be bonded to a midway portion of the lead in the longitudinal direction (Y-axis direction) of the side portion of the lead.
  • the electronic element 5 is bonded to the end portion in the longitudinal direction of the lead among the side portions of the lead.
  • the length of the first lead bonding surface 10 ⁇ / b> D is longer than the length of the first bonding surface 51 in a plan view viewed from the Z-axis direction. As shown in FIG. 5, the length of the first lead bonding surface 10 ⁇ / b> D is longer than the length of the first bonding surface 51 in a side view viewed from the Y-axis direction. That is, the area of the first lead bonding surface 10 ⁇ / b> D is larger than the area of the first bonding surface 51.
  • the length of the second lead joint surface 20 ⁇ / b> D is longer than the length of the second joint surface 52 in a plan view seen from the Z-axis direction. As shown in FIG. 6, the length of the second lead bonding surface 20 ⁇ / b> D is longer than the length of the second bonding surface 52 in a side view as viewed from the Y-axis direction. That is, the area of the second lead bonding surface 20 ⁇ / b> D is larger than the area of the second bonding surface 52.
  • the bonding portion between the electronic element 5 and the first lead bonding surface 10D and the second lead bonding surface 20D It can suppress suitably that an area changes. Therefore, in the power module 100D, it can suppress that the electrical characteristic (for example, resistance value of a resistance component) of an electronic element changes.
  • the electronic element 5 is positioned in the direction along the first lead bonding surface 10D and the second lead bonding surface 20D, similarly to the power module 100B of the second embodiment. Even if it shift
  • the power module 100D includes the first protrusion 13D and the second lead 2D even when the first lead 1D and the second lead 2D are formed in a strip shape extending in the direction along the bonding surface of the electronic element 5.
  • the electronic element 5 can be bonded to the lead bonding surfaces (the first lead bonding surface 10D and the second lead bonding surface 20D) facing in the X-axis direction.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Lead Frames For Integrated Circuits (AREA)

Abstract

A power module that: is formed by mounting an electronic component on a lead frame that has a plurality of leads; and performs power control. The power module comprises an electronic element that has a prescribed electrical function and is bonded to bonding surfaces of leads that face in a direction that is orthogonal to a plate-thickness direction. The bonding surfaces of the leads and bonding surfaces of the electronic element that is bonded to the bonding surfaces of the leads have different areas.

Description

パワーモジュールPower module
 本発明は、パワーモジュールに関する。 The present invention relates to a power module.
 近年、パワーモジュールにおいては、リードフレームを利用して回路用の配線を構成することが考えられている。特許文献1には、回路(半導体素子)に流れる電流を検出するためのシャント抵抗としての抵抗線(電子素子)を、溶接によって帯板状の二つのインナーリードに接合した半導体装置が開示されている。 Recently, in power modules, it has been considered to configure circuit wiring using a lead frame. Patent Document 1 discloses a semiconductor device in which a resistance wire (electronic element) as a shunt resistor for detecting a current flowing in a circuit (semiconductor element) is joined to two strip-shaped inner leads by welding. Yes.
特開平6―181277号公報JP-A-6-181277
 パワーモジュールの小型化、薄型化のためには、電子素子を二つのリードの間に配置して、各リードの側面に接合することが考えられる。しかし、この場合、電子素子がリードの側面に対して位置ずれすると、電子素子とリードとの接合部分の面積が大きく変動する。その結果、パワーモジュールにおける電子素子の電気的特性(例えば、抵抗部品の抵抗値)が意図せず変化してしまう。 In order to reduce the size and thickness of the power module, it is conceivable that an electronic element is disposed between two leads and joined to the side surface of each lead. However, in this case, when the electronic element is displaced with respect to the side surface of the lead, the area of the joint portion between the electronic element and the lead varies greatly. As a result, the electrical characteristics of the electronic elements in the power module (for example, the resistance value of the resistance component) change unintentionally.
本発明は、上述した事情に鑑みたものであって、パワーモジュールのリードに接合される電子素子の電気的特性が、その接合状況により変動することを防止可能なパワーモジュールを提供することを目的とする。 The present invention has been made in view of the above-described circumstances, and an object of the present invention is to provide a power module capable of preventing the electrical characteristics of an electronic element joined to a lead of the power module from fluctuating depending on the joining situation. And
本発明の一態様は、複数のリードを有するリードフレームに電子部品を実装して構成され、電力制御を行うパワーモジュールであって、所定の電気的な機能を有する電子素子が、板厚方向に直交する方向に向かいあう前記リードの接合面に接合され、前記リードの接合面、および、前記リードの接合面に接合される前記電子素子の接合面の面積が互いに異なるパワーモジュールである。 One embodiment of the present invention is a power module configured by mounting electronic components on a lead frame having a plurality of leads and performing power control, and an electronic element having a predetermined electrical function is arranged in a plate thickness direction. The power module is bonded to the bonding surfaces of the leads facing each other in the orthogonal direction, and the bonding surfaces of the leads and the bonding surfaces of the electronic elements bonded to the bonding surfaces of the leads are different from each other.
本発明によれば、パワーモジュールのリードに接合される電子素子の電気的特性が、その接合状況により変動することを防止することができる。 ADVANTAGE OF THE INVENTION According to this invention, it can prevent that the electrical property of the electronic element joined to the lead | read | reed of a power module changes with the joining conditions.
本発明の第一実施形態に係るパワーモジュールの要部の平面図である。It is a top view of the important section of the power module concerning a first embodiment of the present invention. 本発明の第一実施形態に係るパワーモジュールの要部の側面図である。It is a side view of the principal part of the power module which concerns on 1st embodiment of this invention. 本発明の第二実施形態に係るパワーモジュールの要部の平面図である。It is a top view of the principal part of the power module which concerns on 2nd embodiment of this invention. 本発明の第二実施形態に係るパワーモジュールの要部の側面図であるIt is a side view of the principal part of the power module which concerns on 2nd embodiment of this invention. 本発明の第三実施形態に係るパワーモジュールの要部の全体構成を示す斜視図である。It is a perspective view which shows the whole structure of the principal part of the power module which concerns on 3rd embodiment of this invention. 本発明の第四実施形態に係るパワーモジュールの要部の全体構成を示す斜視図である。It is a perspective view which shows the whole structure of the principal part of the power module which concerns on 4th embodiment of this invention. 本発明の第一実施形態に係るパワーモジュールの要部の変形例の側面図である。It is a side view of the modification of the principal part of the power module which concerns on 1st embodiment of this invention.
〔第一実施形態〕
以下、本発明に係るパワーモジュールの第一実施形態を、図1および図2を参照しながら説明する。なお、図面を見やすくするため、各構成要素の厚さや寸法の比率は適宜調整されている。
[First embodiment]
Hereinafter, a first embodiment of a power module according to the present invention will be described with reference to FIGS. 1 and 2. In addition, in order to make the drawings easy to see, the thicknesses and dimensional ratios of the respective constituent elements are appropriately adjusted.
本実施形態に係るパワーモジュール100は、各種の電力制御を行うものである。図1および図2に示すように、パワーモジュール100は、複数のリード1,2を有するリードフレーム3と、リードフレーム3に実装される各種の電子部品4(図7参照)と、所定の電気的な機能を有する電子素子5と、を備える。図1および図2には、電子素子5、及び、リードフレーム3のうち電子素子5と接合されるリード1,2だけが図示され、電子部品4や、電子部品4が実装されるリードフレーム3の部位は省略されている。 The power module 100 according to the present embodiment performs various types of power control. As shown in FIGS. 1 and 2, the power module 100 includes a lead frame 3 having a plurality of leads 1 and 2, various electronic components 4 (see FIG. 7) mounted on the lead frame 3, and a predetermined electric power. And an electronic element 5 having a typical function. 1 and 2 show only the electronic element 5 and the leads 1 and 2 of the lead frame 3 that are joined to the electronic element 5, and the electronic component 4 and the lead frame 3 on which the electronic component 4 is mounted. The part of is omitted.
リードフレーム3は、例えば、銅板等のように導電性を有する導電性板材に、プレス加工等を施すことで得られる。
リードフレーム3の各リード1,2は、板状に形成されている。複数のリード1,2は、リードフレーム3の板厚方向(Z軸方向)に直交する方向に、互いに間隔をあけて配列されている。複数のリード1,2は、電子部品4や電子素子5と電気的に接続されることで、電子部品4や電子素子5と共にパワーモジュール100の回路を構成する。
The lead frame 3 is obtained, for example, by subjecting a conductive plate material having conductivity, such as a copper plate, to press processing.
Each lead 1, 2 of the lead frame 3 is formed in a plate shape. The plurality of leads 1 and 2 are arranged at intervals from each other in a direction orthogonal to the plate thickness direction (Z-axis direction) of the lead frame 3. The plurality of leads 1 and 2 are electrically connected to the electronic component 4 and the electronic element 5 to constitute a circuit of the power module 100 together with the electronic component 4 and the electronic element 5.
電子素子5は、リード1,2に接合されることでリード1,2と電気的に接続される。電子素子5のうちリード1,2に接合される部分は、電子素子5の電極である。本実施形態において、電子素子5の電極は、所定の直線方向(以降、「電極配列方向」と称す)の両端部に設けられている。各端部における電極の数は、例えば複数であってもよいが、本実施形態では一つである。
電子素子5は、例えばサイリスタ等のスイッチング素子(半導体素子)であってもよいし、チップコンデンサであってもよい。本実施形態の電子素子5は、シャント抵抗(抵抗素子)である。シャント抵抗は、例えばリードフレーム3と異なる種類の導電性部材によって構成されている。
電子素子5の形状は、ブロック状など任意であってよいが、本実施形態の電子素子5は、板状に形成されている。
The electronic element 5 is electrically connected to the leads 1 and 2 by being joined to the leads 1 and 2. A portion of the electronic element 5 that is joined to the leads 1 and 2 is an electrode of the electronic element 5. In the present embodiment, the electrodes of the electronic element 5 are provided at both ends of a predetermined linear direction (hereinafter referred to as “electrode arrangement direction”). The number of electrodes at each end may be plural, for example, but is one in this embodiment.
The electronic element 5 may be a switching element (semiconductor element) such as a thyristor, or may be a chip capacitor. The electronic element 5 of this embodiment is a shunt resistor (resistive element). The shunt resistor is made of, for example, a different type of conductive member than the lead frame 3.
The shape of the electronic element 5 may be arbitrary, such as a block shape, but the electronic element 5 of the present embodiment is formed in a plate shape.
図7に例示するように、電子部品4は、複数のリード1,2の主面11,21(リードフレーム3の主面;リード1,2やリードフレーム3の板厚方向に直交する面)に重ねて配されることで、リードフレーム3に実装される。
電子部品4の具体的な構成は任意であってよい。図7に例示する電子部品4は、所定の電気的な機能を有する内蔵電子素子41と、内蔵電子素子41の電極に接続された端子42と、を備える。内蔵電子素子41は、例えば前述した電子素子5と同じであってもよいが、これに限ることはない。内蔵電子素子41と端子42とは、例えば直接接続されてもよいし、例えばワイヤ等の接続子を介して接続されてもよい。
As illustrated in FIG. 7, the electronic component 4 includes main surfaces 11 and 21 of a plurality of leads 1 and 2 (main surfaces of the lead frame 3; surfaces orthogonal to the plate thickness direction of the leads 1 and 2 and the lead frame 3). As a result, the lead frame 3 is mounted.
The specific configuration of the electronic component 4 may be arbitrary. The electronic component 4 illustrated in FIG. 7 includes a built-in electronic element 41 having a predetermined electrical function and a terminal 42 connected to the electrode of the built-in electronic element 41. The built-in electronic element 41 may be the same as the electronic element 5 described above, for example, but is not limited thereto. The built-in electronic element 41 and the terminal 42 may be directly connected, for example, or may be connected via a connector such as a wire.
電子部品4は、これら内蔵電子素子41及び端子42を封止する樹脂43を備えてもよい。この場合、内蔵電子素子41は樹脂43の内部に埋められ、端子42は樹脂43の外部に露出していればよい。端子42は、例えば図7のように樹脂43から突出してもよいが、例えば突出しなくてもよい。電子部品4は、例えば端子42をリード1,2の主面11,21に接合することで、リードフレーム3に実装される。 The electronic component 4 may include a resin 43 that seals the built-in electronic element 41 and the terminal 42. In this case, the built-in electronic element 41 may be buried in the resin 43 and the terminal 42 may be exposed to the outside of the resin 43. The terminal 42 may protrude from the resin 43 as shown in FIG. 7, for example, but may not protrude, for example. The electronic component 4 is mounted on the lead frame 3 by, for example, joining the terminal 42 to the main surfaces 11 and 21 of the leads 1 and 2.
図1および図2に示すように、電子素子5は、板厚方向に直交する方向(X軸方向)に互いに間隔をあけて配された二つのリード(第一リード1および第二リード2)の側部に挟まれて接合されている。本実施形態の電子素子5は、シャント抵抗であり、パワーモジュール100の回路に流れる電流(例えば電源電流)を検出する。このため、電子素子5は、二つのリード1,2を電気的に接続するように二つのリード1,2に接合されている。 As shown in FIGS. 1 and 2, the electronic element 5 includes two leads (first lead 1 and second lead 2) spaced apart from each other in a direction orthogonal to the plate thickness direction (X-axis direction). It is sandwiched and joined by the side part. The electronic element 5 of the present embodiment is a shunt resistor and detects a current (for example, a power supply current) flowing through the circuit of the power module 100. For this reason, the electronic element 5 is joined to the two leads 1 and 2 so as to electrically connect the two leads 1 and 2.
 本実施形態において、二つのリード1,2は、二つのリードの配列方向(X軸方向)に一致する方向に延びる帯板状に形成されている。電子素子5は、二つのリード1,2のうち短手方向(Y軸方向)に延びる側部に接合される。 In the present embodiment, the two leads 1 and 2 are formed in a strip shape extending in a direction coinciding with the arrangement direction (X-axis direction) of the two leads. The electronic element 5 is joined to a side portion of the two leads 1 and 2 that extends in the short direction (Y-axis direction).
本実施形態において、電子素子5が接合されるリードの側部は、リードフレーム3の板厚方向(Z軸方向)に延びるリードの側面である。リードの側面には、電子素子5の板厚方向に延びる電子素子5の側面が接合される。 In the present embodiment, the side portion of the lead to which the electronic element 5 is bonded is the side surface of the lead that extends in the plate thickness direction (Z-axis direction) of the lead frame 3. The side surface of the electronic element 5 extending in the thickness direction of the electronic element 5 is joined to the side surface of the lead.
電子素子5は、第一リード1と接合される側面である第一接合面51と、第二リード2と接合される側面である第二接合面52と、を有する。第一接合面51および第二接合面52は、図1および図2に示すように、電極配列方向の両端部に設けられた平面であり、法線方向は電極配列方向と一致している。第一接合面51および第二接合面52の少なくとも一部に電極が露出しており、第一接合面51および第二接合面52がリードと接合されることで、電子素子5はリードと電気的に接続される。 The electronic element 5 includes a first bonding surface 51 that is a side surface that is bonded to the first lead 1 and a second bonding surface 52 that is a side surface bonded to the second lead 2. As shown in FIGS. 1 and 2, the first bonding surface 51 and the second bonding surface 52 are planes provided at both ends in the electrode arrangement direction, and the normal direction coincides with the electrode arrangement direction. The electrodes are exposed on at least a part of the first bonding surface 51 and the second bonding surface 52, and the first bonding surface 51 and the second bonding surface 52 are bonded to the leads, so that the electronic element 5 can be Connected.
第一リード1は、電子素子5と接合される側面である第一リード接合面10を有している。また、第二リード2は、電子素子5と接合される側面である第二リード接合面20を有している。図1および図2に示すように、第一リード接合面10と第二リード接合面20とは、X軸方向に互いに間隔をあけて配列されている。また、第一リード接合面10と第二リード接合面20とは、空間を挟んで両側に対向して配置されており、第一リード接合面10と第二リード接合面20とは平行に位置している。 The first lead 1 has a first lead bonding surface 10 that is a side surface bonded to the electronic element 5. The second lead 2 has a second lead bonding surface 20 that is a side surface bonded to the electronic element 5. As shown in FIGS. 1 and 2, the first lead joint surface 10 and the second lead joint surface 20 are arranged at intervals in the X-axis direction. Further, the first lead bonding surface 10 and the second lead bonding surface 20 are disposed to face both sides with a space in between, and the first lead bonding surface 10 and the second lead bonding surface 20 are positioned in parallel. is doing.
 電子素子5は、第一リード接合面10と第二リード接合面20とに挟まれた空間に、電極配列方向をX軸方向に一致させるように配置される。また、第一リード接合面10と第一接合面51とが接合され、第二リード接合面20と第二接合面52とが接合されることで、電子素子5は第一リード1と第二リード2とを電気的に接合する。 The electronic element 5 is disposed in a space sandwiched between the first lead joint surface 10 and the second lead joint surface 20 so that the electrode arrangement direction coincides with the X-axis direction. In addition, the first lead bonding surface 10 and the first bonding surface 51 are bonded, and the second lead bonding surface 20 and the second bonding surface 52 are bonded. The lead 2 is electrically joined.
 第一リード接合面10と第一接合面51、および第二リード接合面20と第二接合面52とは、半田付けや溶接により接合される。溶接による接合は、半田付けによる接合と比較して、接合耐久性を高くすることができる。そのため、溶接による接合は、高圧高電流で使用されるパワーモジュールの構成回路として好適である。 The first lead joint surface 10 and the first joint surface 51, and the second lead joint surface 20 and the second joint surface 52 are joined by soldering or welding. Joining by welding can increase joining durability compared to joining by soldering. Therefore, joining by welding is suitable as a constituent circuit of a power module used at high voltage and high current.
 図2に示すように、第一リード1のZ軸方向に対して直交する一方の主面11には、電子素子5は接合されない。また、第二リード2のZ軸方向に対して直交する一方の主面21には、電子素子5は接合されない。リードの主面(11、21)を他の電気部品や電子部品の搭載などに有効に活用できる。 As shown in FIG. 2, the electronic element 5 is not bonded to one main surface 11 orthogonal to the Z-axis direction of the first lead 1. Further, the electronic element 5 is not bonded to one main surface 21 orthogonal to the Z-axis direction of the second lead 2. The main surface (11, 21) of the lead can be effectively used for mounting other electric parts and electronic parts.
 図2に示すように、電子素子5は、第一リード1の他方の主面12と第二リード2の他方の主面22と共に同一の平坦面をなすように接合されている。パワーモジュール100は、例えば、放熱部材を有する金属板等で形成されたケースに収容される。パワーモジュール100の同一の平坦面を、ケースの放熱部材が形成された面と接触させることで、隙間なくケースの放熱部材にパワーモジュール100を装着することができる。 As shown in FIG. 2, the electronic element 5 is joined to form the same flat surface together with the other main surface 12 of the first lead 1 and the other main surface 22 of the second lead 2. The power module 100 is accommodated in a case formed of, for example, a metal plate having a heat dissipation member. By bringing the same flat surface of the power module 100 into contact with the surface of the case where the heat dissipation member is formed, the power module 100 can be mounted on the heat dissipation member of the case without any gap.
図1に示すように、Z軸方向から見た平面視で、第一リード接合面10の長さは、第一接合面51の長さと比較して短い。また、図2に示すように、Y軸方向から見た側面視で、第一リード接合面10の長さは、第一接合面51の長さと比較して短い。すなわち、第一リード接合面10の面積は、第一接合面51の面積と比較して小さい。 As shown in FIG. 1, the length of the first lead bonding surface 10 is shorter than the length of the first bonding surface 51 in a plan view viewed from the Z-axis direction. As shown in FIG. 2, the length of the first lead bonding surface 10 is shorter than the length of the first bonding surface 51 in a side view as viewed from the Y-axis direction. That is, the area of the first lead bonding surface 10 is smaller than the area of the first bonding surface 51.
同様に、図1に示すように、Z軸方向から見た平面視で、第二リード接合面20の長さは、第二接合面52の長さと比較して短い。また、図2に示すように、Y軸方向から見た側面視で、第二リード接合面20の長さは、第二接合面52の長さと比較して短い。すなわち、第二リード接合面20の面積は、第二接合面52の面積と比較して小さい。 Similarly, as shown in FIG. 1, the length of the second lead bonding surface 20 is shorter than the length of the second bonding surface 52 in a plan view viewed from the Z-axis direction. Further, as shown in FIG. 2, the length of the second lead bonding surface 20 is shorter than the length of the second bonding surface 52 in a side view as viewed from the Y-axis direction. That is, the area of the second lead bonding surface 20 is smaller than the area of the second bonding surface 52.
電子素子5が第一リード接合面10および第二リード接合面20に沿う方向に位置ずれしても、電子素子5と、第一リード接合面10および第二リード接合面20との接合部分の面積が変化することを好適に抑制できる。したがって、パワーモジュール100において電子素子5の電気的特性(例えば、抵抗部品の抵抗値)が変化することを抑制できる。 Even if the electronic element 5 is displaced in the direction along the first lead bonding surface 10 and the second lead bonding surface 20, the bonding portion between the electronic element 5 and the first lead bonding surface 10 and the second lead bonding surface 20 It can suppress suitably that an area changes. Therefore, in the power module 100, it can suppress that the electrical property (for example, resistance value of a resistance component) of the electronic element 5 changes.
 以上のように構成された本実施形態に係るパワーモジュール100は、電子素子5がリードの主面11,21に搭載されないので、リードの主面11,21を他の電気部品や電子部品の搭載などに有効に活用できる。これにより、パワーモジュール100の小型化を図ることができる。
 また、パワーモジュール100は、電子素子5をリードの主面11,21に搭載する場合と比較して、リードの主面11,21から突出する電子素子5の突出高さを低く設定できる。これにより、パワーモジュール100の薄型化も図ることができる。また、パワーモジュール100は、電子素子5をリードと同じ放熱部材に接触させることもできる。これにより、通電により電子素子5で生じる熱を効率よく外部に逃がすことができる。電子素子5の温度変化を抑えて電子素子5の抵抗値が変化することを好適に抑制できる。
In the power module 100 according to the present embodiment configured as described above, since the electronic element 5 is not mounted on the main surfaces 11 and 21 of the leads, the main surfaces 11 and 21 of the leads are mounted with other electrical components and electronic components. It can be used effectively. Thereby, size reduction of the power module 100 can be achieved.
In addition, the power module 100 can set the protruding height of the electronic element 5 protruding from the main surfaces 11 and 21 of the lead to be lower than that when the electronic element 5 is mounted on the main surfaces 11 and 21 of the lead. Thereby, thickness reduction of the power module 100 can also be achieved. Further, the power module 100 can also bring the electronic element 5 into contact with the same heat radiating member as the lead. Thereby, the heat generated in the electronic element 5 by energization can be efficiently released to the outside. It can suppress suitably that the temperature value of the electronic element 5 is suppressed and the resistance value of the electronic element 5 changes.
また、パワーモジュール100は、電子素子5が第一リード接合面10および第二リード接合面20に沿う方向に位置ずれしても、電子素子5と、第一リード接合面10および第二リード接合面20との接合部分の面積が変化することを好適に抑制できる。したがって、パワーモジュール100において電子素子の電気的特性(例えば、抵抗部品の抵抗値)が変化することを抑制できる。 Moreover, even if the electronic element 5 is displaced in the direction along the first lead bonding surface 10 and the second lead bonding surface 20, the power module 100 has the electronic element 5, the first lead bonding surface 10, and the second lead bonding surface. It can suppress suitably that the area of a junction part with the surface 20 changes. Therefore, in the power module 100, it can suppress that the electrical property (for example, resistance value of resistance components) of an electronic element changes.
(変形例)
以上、本発明の第一実施形態について図面を参照して詳述したが、具体的な構成はこの実施形態に限られるものではなく、本発明の要旨を逸脱しない範囲の設計変更等も含まれる。また、上述の第一実施形態および以下で示す変形例において示した構成要素は適宜に組み合わせて構成することが可能である。
(Modification)
The first embodiment of the present invention has been described in detail with reference to the drawings. However, the specific configuration is not limited to this embodiment, and design changes and the like within the scope of the present invention are included. . In addition, the constituent elements shown in the above-described first embodiment and the modifications shown below can be combined as appropriate.
 例えば、上記実施形態では、電子素子5は、二つのリード1,2に接合していた。しかしながら、パワーモジュール100における電子素子5の接合態様はこれに限定されない。例えば、パワーモジュール100の複数のリードに複数の電子素子5が接合されていてもよい。それぞれの電子素子5が、複数のリードのうち二つのリードに対して、上記実施形態で示した態様で接合されていればよい。
また、電子素子に接合されるリードの数は、二つに限らず、電子素子の種類に応じて変えればよい。電子素子が、例えばスイッチング素子等のように三つの電極を有する場合には、電子素子の一方の端部に設けられた二つの電極のそれぞれに二つのリードの側部に接合し、電子素子の他方の端部に設けられた一つの電極に別の一つのリードの側部を接合してもよい。
For example, in the above embodiment, the electronic element 5 is bonded to the two leads 1 and 2. However, the joining mode of the electronic element 5 in the power module 100 is not limited to this. For example, a plurality of electronic elements 5 may be bonded to a plurality of leads of the power module 100. Each electronic element 5 may be bonded to two of the plurality of leads in the manner described in the above embodiment.
Further, the number of leads joined to the electronic element is not limited to two, and may be changed according to the type of the electronic element. When the electronic element has three electrodes, such as a switching element, for example, the two electrodes provided at one end of the electronic element are joined to the sides of the two leads, Another side of one lead may be joined to one electrode provided at the other end.
 また、上記実施形態では、第一リード接合面10と第二リード接合面20とは、空間を挟んで両側に対向して平行に配置されていた。しかしながら、第一リード接合面10および第二リード接合面20の態様はこれに限定されない。例えば、第一リード接合面10と第二リード接合面20とは、平行に配置されていなくてもよい。第一リード接合面10の少なくとも一部が、電子素子5の第一接合面51に接触していれば、第一リード接合面10は、第二リード接合面20に対して平行に配置されていなくてもよい。同様に、第二リード接合面20の少なくとも一部が、電子素子5の第二接合面52に接触していれば、第二リード接合面20は、第一リード接合面10に対して平行に配置されていなくてもよい。 Further, in the above embodiment, the first lead joint surface 10 and the second lead joint surface 20 are arranged in parallel so as to face both sides across the space. However, the aspect of the first lead joint surface 10 and the second lead joint surface 20 is not limited to this. For example, the first lead bonding surface 10 and the second lead bonding surface 20 may not be arranged in parallel. If at least a part of the first lead bonding surface 10 is in contact with the first bonding surface 51 of the electronic element 5, the first lead bonding surface 10 is disposed in parallel to the second lead bonding surface 20. It does not have to be. Similarly, if at least a part of the second lead bonding surface 20 is in contact with the second bonding surface 52 of the electronic element 5, the second lead bonding surface 20 is parallel to the first lead bonding surface 10. It may not be arranged.
 また、上記実施形態では、第一リード接合面10の長さは、Z軸方向から見た平面視においても、Y軸方向から見た側面視においても、第一接合面51の長さと比較して短かった。しかしながら、第一リード接合面10の態様はこれに限定されない。例えば、Y軸方向から見た側面視においてにおいて、第一リード接合面10の長さと第一接合面51の長さとが等しくてもよい。Z軸方向から見た平面視において、第一リード接合面10の長さが、第一接合面51の長さと比較して短かければ、電子素子5がY軸方向に位置ずれしても、電子素子5と、第一リード接合面10および第二リード接合面20との接合部分の面積が変化することを好適に抑制できる。
 第二リード接合面20についても同様である。
Moreover, in the said embodiment, the length of the 1st lead joint surface 10 is compared with the length of the 1st joint surface 51 also in the planar view seen from the Z-axis direction, and the side view seen from the Y-axis direction. It was short. However, the aspect of the first lead joint surface 10 is not limited to this. For example, the length of the first lead bonding surface 10 and the length of the first bonding surface 51 may be equal in a side view as viewed from the Y-axis direction. If the length of the first lead bonding surface 10 is shorter than the length of the first bonding surface 51 in a plan view viewed from the Z-axis direction, even if the electronic element 5 is displaced in the Y-axis direction, It can suppress suitably that the area of the junction part of the electronic element 5, and the 1st lead joint surface 10 and the 2nd lead joint surface 20 changes.
The same applies to the second lead joint surface 20.
また、図7に示すように、パワーモジュール100は、電子素子5に対してZ軸方向に間隔をあけて配され、X軸方向に並ぶ二つの前記リードに接続されることで、電子素子5と並列接続された電子部品4(並列接続部品)を備えていてもよい。リードの主面(11,12)を電子部品4の搭載に活用し、パワーモジュール100全体の小型化を図ることができる。 In addition, as shown in FIG. 7, the power module 100 is arranged with a gap in the Z-axis direction with respect to the electronic element 5 and is connected to the two leads arranged in the X-axis direction. And an electronic component 4 (parallel connection component) connected in parallel. The main surfaces (11, 12) of the leads can be used for mounting the electronic component 4 to reduce the size of the power module 100 as a whole.
〔第二実施形態〕
 次に本発明の第二実施形態について、図3および図4を参照して説明する。なお、以降の説明において、すでに説明したものと共通する構成等については、同一の符号を付して重複する説明を省略する。
[Second Embodiment]
Next, a second embodiment of the present invention will be described with reference to FIG. 3 and FIG. In the following description, the same components as those already described are denoted by the same reference numerals and redundant description is omitted.
本実施形態に係るパワーモジュール100Bは、複数のリード1B,2Bを有するリードフレーム3と、リードフレーム3に実装される各種の電子部品4(図7参照)と、所定の電気的な機能を有する電子素子5と、を備える。図3および図4には、電子素子5、及び、リードフレーム3のうち電子素子5と接合されるリード1B,2Bだけが図示され、電子部品4や、電子部品4が実装されるリードフレーム3の部位は省略されている。 The power module 100B according to the present embodiment has a lead frame 3 having a plurality of leads 1B and 2B, various electronic components 4 (see FIG. 7) mounted on the lead frame 3, and a predetermined electrical function. And an electronic element 5. 3 and 4 show only the electronic element 5 and leads 1B and 2B to be joined to the electronic element 5 among the lead frame 3, and the electronic component 4 and the lead frame 3 on which the electronic component 4 is mounted. The part of is omitted.
本実施形態の電子素子5は、互いに向かい合う二つのリード(第一リード1Bおよび第二リード2B)の側部に接合されている。本実施形態において、二つのリード1B,2Bは、二つのリード1B,2Bの配列方向(X軸方向)に一致する方向に延びる帯板状に形成されている。電子素子5は、二つのリード1,2のうち短手方向(Y軸方向)に延びる側部に接合される。 The electronic element 5 of the present embodiment is bonded to the sides of two leads (first lead 1B and second lead 2B) facing each other. In the present embodiment, the two leads 1B and 2B are formed in a strip shape extending in a direction coinciding with the arrangement direction (X-axis direction) of the two leads 1B and 2B. The electronic element 5 is joined to a side portion of the two leads 1 and 2 that extends in the short direction (Y-axis direction).
本実施形態において、電子素子5が接合されるリードの側部は、リードフレーム3の板厚方向(Z軸方向)に延びるリードの側面である。リードの側面には、電子素子5の板厚方向に延びる電子素子5の側面が接合される。 In the present embodiment, the side portion of the lead to which the electronic element 5 is bonded is the side surface of the lead that extends in the plate thickness direction (Z-axis direction) of the lead frame 3. The side surface of the electronic element 5 extending in the thickness direction of the electronic element 5 is joined to the side surface of the lead.
第一リード1Bは、電子素子5と接合される側面である第一リード接合面10Bを有している。また、第二リード2Bは、電子素子5と接合される側面である第二リード接合面20Bを有している。図3および図4に示すように、第一リード接合面10Bと第二リード接合面20Bとは、X軸方向に互いに間隔をあけて配列されている。また、第一リード接合面10Bと第二リード接合面20Bとは、空間を挟んで両側に対向して配置されており、第一リード接合面10Bと第二リード接合面20Bとは平行に位置している。 The first lead 1 </ b> B has a first lead bonding surface 10 </ b> B that is a side surface bonded to the electronic element 5. The second lead 2 </ b> B has a second lead bonding surface 20 </ b> B that is a side surface bonded to the electronic element 5. As shown in FIGS. 3 and 4, the first lead bonding surface 10 </ b> B and the second lead bonding surface 20 </ b> B are arranged at an interval in the X-axis direction. Further, the first lead bonding surface 10B and the second lead bonding surface 20B are arranged to face both sides with a space therebetween, and the first lead bonding surface 10B and the second lead bonding surface 20B are positioned in parallel. is doing.
 電子素子5は、第一リード接合面10Bと第二リード接合面20Bとに挟まれた空間に、電極配列方向をX軸方向に一致させるように配置される。また、第一リード接合面10Bと第一接合面51とが接合され、第二リード接合面20Bと第二接合面52とが接合されることで、電子素子5は第一リード1Bと第二リード2Bとを電気的に接合する。 The electronic element 5 is disposed in a space sandwiched between the first lead joint surface 10B and the second lead joint surface 20B so that the electrode arrangement direction coincides with the X-axis direction. In addition, the first lead bonding surface 10B and the first bonding surface 51 are bonded, and the second lead bonding surface 20B and the second bonding surface 52 are bonded. The lead 2B is electrically joined.
図3に示すように、Z軸方向から見た平面視で、第一リード接合面10Bの長さは、第一接合面51の長さと比較して長い。また、図4に示すように、Y軸方向から見た側面視で、第一リード接合面10Bの長さは、第一接合面51の長さと比較して長い。すなわち、第一リード接合面10Bの面積は、第一接合面51の面積と比較して大きい。 As shown in FIG. 3, the length of the first lead bonding surface 10 </ b> B is longer than the length of the first bonding surface 51 in a plan view viewed from the Z-axis direction. As shown in FIG. 4, the length of the first lead bonding surface 10 </ b> B is longer than the length of the first bonding surface 51 in a side view as viewed from the Y-axis direction. That is, the area of the first lead bonding surface 10 </ b> B is larger than the area of the first bonding surface 51.
同様に、図3に示すように、Z軸方向から見た平面視で、第二リード接合面20Bの長さは、第二接合面52の長さと比較して長い。また、図4に示すように、Y軸方向から見た側面視で、第二リード接合面20Bの長さは、第二接合面52の長さと比較して長い。すなわち、第二リード接合面20Bの面積は、第二接合面52の面積と比較して大きい。 Similarly, as shown in FIG. 3, the length of the second lead bonding surface 20 </ b> B is longer than the length of the second bonding surface 52 in a plan view viewed from the Z-axis direction. Further, as shown in FIG. 4, the length of the second lead bonding surface 20 </ b> B is longer than the length of the second bonding surface 52 in a side view as viewed from the Y-axis direction. That is, the area of the second lead bonding surface 20B is larger than the area of the second bonding surface 52.
以上のように構成された本実施形態に係るパワーモジュール100Bは、電子素子5が第一リード接合面10Bおよび第二リード接合面20Bに沿う方向に位置ずれしても、電子素子5と、第一リード接合面10Bおよび第二リード接合面20Bとの接合部分の面積が変化することを好適に抑制できる。したがって、パワーモジュール100Bにおいて電子素子の電気的特性(例えば、抵抗部品の抵抗値)が変化することを抑制できる。また、リードに対する電子素子5の実装誤差を小さく抑えることができる。 The power module 100B according to the present embodiment configured as described above includes the electronic element 5 and the first element even when the electronic element 5 is displaced in the direction along the first lead bonding surface 10B and the second lead bonding surface 20B. It can suppress suitably that the area of the junction part with the 1 lead joint surface 10B and the 2nd lead joint surface 20B changes. Therefore, in the power module 100B, it can suppress that the electrical characteristic (for example, resistance value of a resistance component) of an electronic element changes. Further, the mounting error of the electronic element 5 with respect to the lead can be suppressed to a small value.
(変形例)
以上、本発明の第二実施形態について図面を参照して詳述したが、具体的な構成はこの実施形態に限られるものではなく、本発明の要旨を逸脱しない範囲の設計変更等も含まれる。また、上述の第二実施形態および以下で示す変形例において示した構成要素は適宜に組み合わせて構成することが可能である。
(Modification)
The second embodiment of the present invention has been described in detail with reference to the drawings. However, the specific configuration is not limited to this embodiment, and design changes and the like within a scope not departing from the gist of the present invention are included. . In addition, the constituent elements shown in the above-described second embodiment and the modified examples described below can be configured in appropriate combination.
 例えば、上記実施形態では、第一リード接合面10Bの長さは、Z軸方向から見た平面視においても、Y軸方向から見た側面視においても、第一接合面51の長さと比較して長かった。しかしながら、第一リード接合面10Bの態様はこれに限定されない。例えば、Y軸方向から見た側面視においてにおいて、第一リード接合面10Bの長さと第一接合面51の長さとが等しくてもよい。Z軸方向から見た平面視において、第一リード接合面10Bの長さが、第一接合面51の長さと比較して長ければ、電子素子5がY軸方向に位置ずれしても、電子素子5と、第一リード接合面10Bおよび第二リード接合面20Bとの接合部分の面積が変化することを好適に抑制できる。
 第二リード接合面20Bについても同様である。
For example, in the above embodiment, the length of the first lead bonding surface 10B is compared with the length of the first bonding surface 51 both in a plan view viewed from the Z-axis direction and in a side view viewed from the Y-axis direction. It was long. However, the aspect of the first lead joint surface 10B is not limited to this. For example, the length of the first lead bonding surface 10B and the length of the first bonding surface 51 may be equal in a side view viewed from the Y-axis direction. If the length of the first lead bonding surface 10B is longer than the length of the first bonding surface 51 in a plan view as viewed from the Z-axis direction, even if the electronic element 5 is displaced in the Y-axis direction, It can suppress suitably that the area of the junction part of the element 5, and the 1st lead joint surface 10B and the 2nd lead joint surface 20B changes.
The same applies to the second lead bonding surface 20B.
〔第三実施形態〕
 次に本発明の第三実施形態について、図5を参照して説明する。なお、以降の説明において、すでに説明したものと共通する構成等については、同一の符号を付して重複する説明を省略する。
[Third embodiment]
Next, a third embodiment of the present invention will be described with reference to FIG. In the following description, the same components as those already described are denoted by the same reference numerals and redundant description is omitted.
本実施形態に係るパワーモジュール100Cは、複数のリード1C,2Cを有するリードフレーム3と、リードフレーム3に実装される各種の電子部品4(図7参照)と、所定の電気的な機能を有する電子素子5と、を備える。図5には、電子素子5、及び、リードフレーム3のうち電子素子5と接合されるリード1C,2Cだけが図示され、電子部品4や、電子部品4が実装されるリードフレーム3の部位は省略されている。 The power module 100C according to the present embodiment has a lead frame 3 having a plurality of leads 1C and 2C, various electronic components 4 (see FIG. 7) mounted on the lead frame 3, and a predetermined electrical function. And an electronic element 5. FIG. 5 shows only the electronic element 5 and the leads 1C and 2C to be joined to the electronic element 5 of the lead frame 3. The electronic component 4 and the part of the lead frame 3 on which the electronic component 4 is mounted are shown. It is omitted.
本実施形態において、二つのリード(第一リード1Cおよび第二リード2C)は、それぞれリードフレーム3の板厚方向に直交する方向に延びる帯板状に形成されている。二つのリード1C,2Cは、例えば互いに異なる方向に延びていてもよいが、本実施形態では互いに同じ方向に延びている。二つのリード1C,2Cは、二つのリード1C,2Cの配列方向(X軸方向)に直交する方向(Y軸方向)に延びている。電子素子5は、二つのリード1C,2Cのうち長手方向(Y軸方向)に延びる側部に接合される。 In the present embodiment, the two leads (first lead 1 </ b> C and second lead 2 </ b> C) are each formed in a strip shape extending in a direction orthogonal to the plate thickness direction of the lead frame 3. The two leads 1C and 2C may extend in different directions, for example, but in this embodiment, extend in the same direction. The two leads 1C and 2C extend in a direction (Y-axis direction) orthogonal to the arrangement direction (X-axis direction) of the two leads 1C and 2C. The electronic element 5 is bonded to a side portion extending in the longitudinal direction (Y-axis direction) of the two leads 1C and 2C.
第一リード1Cは、図5に示すように、電子素子5の第一接合面51側であるX軸方向に突出する第一突出部13Cを有する。第一リード1Cの第一突出部13Cは、図5に示すように、突出方向先端に第一リード接合面10Cを有している。 As shown in FIG. 5, the first lead 1 </ b> C has a first protrusion 13 </ b> C that protrudes in the X-axis direction that is the first bonding surface 51 side of the electronic element 5. As shown in FIG. 5, the first protruding portion 13 </ b> C of the first lead 1 </ b> C has a first lead bonding surface 10 </ b> C at the tip in the protruding direction.
第二リード2Cは、図5に示すように、電子素子5の第二接合面52側であるX軸方向に突出する第二突出部23Cを有する。第二リード2Cの第二突出部23Cは、図5に示すように、突出方向先端に第二リード接合面20Cを有している。 As shown in FIG. 5, the second lead 2 </ b> C has a second protruding portion 23 </ b> C that protrudes in the X-axis direction that is the second bonding surface 52 side of the electronic element 5. As shown in FIG. 5, the second protrusion 23 </ b> C of the second lead 2 </ b> C has a second lead bonding surface 20 </ b> C at the tip in the protrusion direction.
 第一リード接合面10Cと第二リード接合面20Cとは、X軸方向に互いに間隔をあけて配列されている。また、第一リード接合面10Cと第二リード接合面20Cとは、空間を挟んで両側に対向して配置されており、第一リード接合面10Cと第二リード接合面20Cとは平行に位置している。 The first lead joint surface 10C and the second lead joint surface 20C are arranged with a space therebetween in the X-axis direction. Further, the first lead bonding surface 10C and the second lead bonding surface 20C are arranged to face both sides with a space therebetween, and the first lead bonding surface 10C and the second lead bonding surface 20C are positioned in parallel. is doing.
本実施形態において、電子素子5が接合されるリードの側部は、リードフレーム3の板厚方向(Z軸方向)に延びるリードの突出部の側面10C,20Cである。リードの突出部の側面10C,20Cには、電子素子5の板厚方向に延びる電子素子の側面51,52が接合される。
電子素子5は、例えばリードの側部のうちリードの長手方向(Y軸方向)の中途部に接合されてもよい。本実施形態において、電子素子5は、リードの側部のうちリードの長手方向の端部に接合されている。
In the present embodiment, the side portions of the lead to which the electronic element 5 is bonded are the side surfaces 10 </ b> C and 20 </ b> C of the protruding portion of the lead extending in the plate thickness direction (Z-axis direction) of the lead frame 3. The side surfaces 51 and 52 of the electronic element extending in the plate thickness direction of the electronic element 5 are joined to the side surfaces 10C and 20C of the protruding portion of the lead.
For example, the electronic element 5 may be bonded to a midway portion of the lead in the longitudinal direction (Y-axis direction) of the side portion of the lead. In the present embodiment, the electronic element 5 is bonded to the end portion in the longitudinal direction of the lead among the side portions of the lead.
Z軸方向から見た平面視で、第一リード接合面10Cの長さは、第一接合面51の長さと比較して短い。また、図5に示すように、Y軸方向から見た側面視で、第一リード接合面10Cの長さは、第一接合面51の長さと比較して短い。すなわち、第一リード接合面10Cの面積は、第一接合面51の面積と比較して小さい。 The length of the first lead bonding surface 10 </ b> C is shorter than the length of the first bonding surface 51 in a plan view viewed from the Z-axis direction. As shown in FIG. 5, the length of the first lead bonding surface 10 </ b> C is shorter than the length of the first bonding surface 51 in a side view viewed from the Y-axis direction. That is, the area of the first lead bonding surface 10 </ b> C is smaller than the area of the first bonding surface 51.
同様に、Z軸方向から見た平面視で、第二リード接合面20Cの長さは、第二接合面52の長さと比較して短い。また、図5に示すように、Y軸方向から見た側面視で、第二リード接合面20Cの長さは、第二接合面52の長さと比較して短い。すなわち、第二リード接合面20Cの面積は、第二接合面52の面積と比較して小さい。 Similarly, the length of the second lead bonding surface 20 </ b> C is shorter than the length of the second bonding surface 52 in a plan view viewed from the Z-axis direction. As shown in FIG. 5, the length of the second lead bonding surface 20 </ b> C is shorter than the length of the second bonding surface 52 in a side view as viewed from the Y-axis direction. That is, the area of the second lead bonding surface 20 </ b> C is smaller than the area of the second bonding surface 52.
電子素子5が第一リード接合面10Cおよび第二リード接合面20Cに沿う方向に位置ずれしても、電子素子5と、第一リード接合面10Cおよび第二リード接合面20Cとの接合部分の面積が変化することを好適に抑制できる。したがって、パワーモジュール100Cにおいて電子素子の電気的特性(例えば、抵抗部品の抵抗値)が変化することを抑制できる。 Even if the electronic element 5 is displaced in the direction along the first lead bonding surface 10C and the second lead bonding surface 20C, the bonding portion between the electronic element 5 and the first lead bonding surface 10C and the second lead bonding surface 20C It can suppress suitably that an area changes. Therefore, it is possible to suppress a change in electrical characteristics of the electronic element (for example, the resistance value of the resistive component) in the power module 100C.
 以上のように構成された本実施形態に係るパワーモジュール100Cは、第一実施形態のパワーモジュール100と同様、電子素子5が第一リード接合面10Cおよび第二リード接合面20Cに沿う方向に位置ずれしても、電子素子5と、第一リード接合面10Cおよび第二リード接合面20Cとの接合部分の面積が変化することを好適に抑制できる。したがって、パワーモジュール100Cにおいて電子素子の電気的特性(例えば、抵抗部品の抵抗値)が変化することを抑制できる。 In the power module 100C according to the present embodiment configured as described above, the electronic element 5 is positioned in a direction along the first lead bonding surface 10C and the second lead bonding surface 20C, as in the power module 100 of the first embodiment. Even if it shift | deviates, it can suppress suitably that the area of the junction part of the electronic element 5, and the 1st lead joint surface 10C and the 2nd lead joint surface 20C changes. Therefore, it is possible to suppress a change in electrical characteristics of the electronic element (for example, the resistance value of the resistive component) in the power module 100C.
 さらに、パワーモジュール100Cは、第一リード1Cおよび第二リード2Cが電子素子5の接合面に沿う方向に延びる帯板状に形成されている場合であっても、第一突出部13Cおよび第二突出部23Cを設けることで、電子素子5をX軸方向に向かいあうリードの接合面(第一リード接合面10Cおよび第二リード接合面20C)に接合させることができる。 Furthermore, the power module 100C has the first protrusion 13C and the second lead 2C even when the first lead 1C and the second lead 2C are formed in a strip shape extending in the direction along the bonding surface of the electronic element 5. By providing the protrusion 23C, the electronic element 5 can be bonded to the lead bonding surfaces (the first lead bonding surface 10C and the second lead bonding surface 20C) facing in the X-axis direction.
(変形例)
以上、本発明の第三実施形態について図面を参照して詳述したが、具体的な構成はこの実施形態に限られるものではなく、本発明の要旨を逸脱しない範囲の設計変更等も含まれる。また、上述の第三実施形態および以下で示す変形例において示した構成要素は適宜に組み合わせて構成することが可能である。
(Modification)
The third embodiment of the present invention has been described in detail with reference to the drawings. However, the specific configuration is not limited to this embodiment, and includes design changes and the like within a scope that does not depart from the gist of the present invention. . In addition, the constituent elements shown in the above-described third embodiment and the modifications shown below can be combined as appropriate.
 例えば、上記実施形態においては、第一リード1Cは第一突出部13Cを有し、第二リード2Cも第二突出部23Cを有していた。しかしながら、第一リード1Cおよび第二リード2Cの態様はこれに限定されない。例えば、第一リード1Cのみが第一突出部13Cを有し、第二リード2Cは第二突出部23Cを有さなくてもよい。第二リード2Cは、第二突出部23Cを有さなくても、第二リード接合面を第二リード2Cの側面に有していれば、電子素子5の第二接合面52と接合することができる。 For example, in the above embodiment, the first lead 1C has the first protrusion 13C, and the second lead 2C also has the second protrusion 23C. However, the aspects of the first lead 1C and the second lead 2C are not limited to this. For example, only the first lead 1C may have the first protrusion 13C, and the second lead 2C may not have the second protrusion 23C. Even if the second lead 2C does not have the second projecting portion 23C, the second lead 2C can be joined to the second joint surface 52 of the electronic element 5 as long as the second lead joint surface is provided on the side surface of the second lead 2C. Can do.
〔第四実施形態〕
 次に本発明の第四実施形態について、図6を参照して説明する。なお、以降の説明において、すでに説明したものと共通する構成等については、同一の符号を付して重複する説明を省略する。
[Fourth embodiment]
Next, a fourth embodiment of the present invention will be described with reference to FIG. In the following description, the same components as those already described are denoted by the same reference numerals and redundant description is omitted.
本実施形態に係るパワーモジュール100Dは、複数のリード1D,2Dを有するリードフレーム3と、リードフレーム3に実装される各種の電子部品4(図7参照)と、所定の電気的な機能を有する電子素子5と、を備える。図6には、電子素子5、及び、リードフレーム3のうち電子素子5と接合されるリード1D,2Dだけが図示され、電子部品4や、電子部品4が実装されるリードフレーム3の部位は省略されている。 The power module 100D according to the present embodiment has a lead frame 3 having a plurality of leads 1D and 2D, various electronic components 4 (see FIG. 7) mounted on the lead frame 3, and a predetermined electrical function. And an electronic element 5. FIG. 6 shows only the electronic element 5 and the leads 1D and 2D to be joined to the electronic element 5 of the lead frame 3, and the electronic component 4 and the portion of the lead frame 3 on which the electronic component 4 is mounted are shown. It is omitted.
本実施形態において、二つのリード(第一リード1Dおよび第二リード2D)は、それぞれリードフレーム3の板厚方向に直交する方向に延びる帯板状に形成されている。二つのリード1D,2Dは、例えば互いに異なる方向に延びていてもよいが、本実施形態では互いに同じ方向に延びている。二つのリード1D,2Dは、二つのリード1D,2Dの配列方向(X軸方向)に直交する方向(Y軸方向)に延びている。電子素子5は、二つのリード1D,2Dのうち長手方向(Y軸方向)に延びる側部に接合される。 In the present embodiment, the two leads (first lead 1 </ b> D and second lead 2 </ b> D) are each formed in a strip shape extending in a direction orthogonal to the plate thickness direction of the lead frame 3. The two leads 1D and 2D may extend in different directions, for example, but in this embodiment, extend in the same direction. The two leads 1D and 2D extend in a direction (Y-axis direction) orthogonal to the arrangement direction (X-axis direction) of the two leads 1D and 2D. The electronic element 5 is bonded to a side portion extending in the longitudinal direction (Y-axis direction) of the two leads 1D and 2D.
第一リード1Dは、図6に示すように、電子素子5の第一接合面51側であるX軸方向に突出する第一突出部13Dを有する。第一リード1Dの第一突出部13Dは、図6に示すように、突出方向先端に第一リード接合面10Dを有している。 As shown in FIG. 6, the first lead 1 </ b> D has a first protrusion 13 </ b> D that protrudes in the X-axis direction that is the first bonding surface 51 side of the electronic element 5. As shown in FIG. 6, the first protrusion 13D of the first lead 1D has a first lead bonding surface 10D at the front end in the protrusion direction.
第二リード2Dは、図6に示すように、電子素子5の第二接合面52側であるX軸方向に突出する第二突出部23Dを有する。第二リード2Dの第二突出部23Dは、図6に示すように、突出方向先端に第二リード接合面20Dを有している。 As shown in FIG. 6, the second lead 2 </ b> D has a second protrusion 23 </ b> D that protrudes in the X-axis direction that is the second bonding surface 52 side of the electronic element 5. As shown in FIG. 6, the second protrusion 23D of the second lead 2D has a second lead bonding surface 20D at the front end in the protrusion direction.
 第一リード接合面10Dと第二リード接合面20Dとは、X軸方向に互いに間隔をあけて配列されている。また、第一リード接合面10Dと第二リード接合面20Dとは、空間を挟んで両側に対向して配置されており、第一リード接合面10Dと第二リード接合面20Dとは平行に位置している。 The first lead joint surface 10D and the second lead joint surface 20D are arranged with a space therebetween in the X-axis direction. Further, the first lead bonding surface 10D and the second lead bonding surface 20D are arranged to face both sides with a space therebetween, and the first lead bonding surface 10D and the second lead bonding surface 20D are positioned in parallel. is doing.
本実施形態において、電子素子5が接合されるリードの側部は、リードフレーム3の板厚方向(Z軸方向)に延びるリードの突出部の側面10D,20Dである。リードの突出部の側面10D,20Dには、電子素子5の板厚方向に延びる電子素子の側面51,52が接合される。
電子素子5は、例えばリードの側部のうちリードの長手方向(Y軸方向)の中途部に接合されてもよい。本実施形態において、電子素子5は、リードの側部のうちリードの長手方向の端部に接合されている。
In the present embodiment, the side portions of the lead to which the electronic element 5 is bonded are the side surfaces 10D and 20D of the protruding portion of the lead extending in the plate thickness direction (Z-axis direction) of the lead frame 3. The side surfaces 51 and 52 of the electronic element extending in the plate thickness direction of the electronic element 5 are joined to the side surfaces 10D and 20D of the protruding portion of the lead.
For example, the electronic element 5 may be bonded to a midway portion of the lead in the longitudinal direction (Y-axis direction) of the side portion of the lead. In the present embodiment, the electronic element 5 is bonded to the end portion in the longitudinal direction of the lead among the side portions of the lead.
Z軸方向から見た平面視で、第一リード接合面10Dの長さは、第一接合面51の長さと比較して長い。また、図5に示すように、Y軸方向から見た側面視で、第一リード接合面10Dの長さは、第一接合面51の長さと比較して長い。すなわち、第一リード接合面10Dの面積は、第一接合面51の面積と比較して大きい。 The length of the first lead bonding surface 10 </ b> D is longer than the length of the first bonding surface 51 in a plan view viewed from the Z-axis direction. As shown in FIG. 5, the length of the first lead bonding surface 10 </ b> D is longer than the length of the first bonding surface 51 in a side view viewed from the Y-axis direction. That is, the area of the first lead bonding surface 10 </ b> D is larger than the area of the first bonding surface 51.
同様に、Z軸方向から見た平面視で、第二リード接合面20Dの長さは、第二接合面52の長さと比較して長い。また、図6に示すように、Y軸方向から見た側面視で、第二リード接合面20Dの長さは、第二接合面52の長さと比較して長い。すなわち、第二リード接合面20Dの面積は、第二接合面52の面積と比較して大きい。 Similarly, the length of the second lead joint surface 20 </ b> D is longer than the length of the second joint surface 52 in a plan view seen from the Z-axis direction. As shown in FIG. 6, the length of the second lead bonding surface 20 </ b> D is longer than the length of the second bonding surface 52 in a side view as viewed from the Y-axis direction. That is, the area of the second lead bonding surface 20 </ b> D is larger than the area of the second bonding surface 52.
電子素子5が第一リード接合面10Dおよび第二リード接合面20Dに沿う方向に位置ずれしても、電子素子5と、第一リード接合面10Dおよび第二リード接合面20Dとの接合部分の面積が変化することを好適に抑制できる。したがって、パワーモジュール100Dにおいて電子素子の電気的特性(例えば、抵抗部品の抵抗値)が変化することを抑制できる。 Even if the electronic element 5 is displaced in the direction along the first lead bonding surface 10D and the second lead bonding surface 20D, the bonding portion between the electronic element 5 and the first lead bonding surface 10D and the second lead bonding surface 20D It can suppress suitably that an area changes. Therefore, in the power module 100D, it can suppress that the electrical characteristic (for example, resistance value of a resistance component) of an electronic element changes.
 以上のように構成された本実施形態に係るパワーモジュール100Dは、第二実施形態のパワーモジュール100Bと同様、電子素子5が第一リード接合面10Dおよび第二リード接合面20Dに沿う方向に位置ずれしても、電子素子5と、第一リード接合面10Dおよび第二リード接合面20Dとの接合部分の面積が変化することを好適に抑制できる。したがって、パワーモジュール100Dにおいて電子素子の電気的特性(例えば、抵抗部品の抵抗値)が変化することを抑制できる。 In the power module 100D according to the present embodiment configured as described above, the electronic element 5 is positioned in the direction along the first lead bonding surface 10D and the second lead bonding surface 20D, similarly to the power module 100B of the second embodiment. Even if it shift | deviates, it can suppress suitably that the area of the junction part of the electronic element 5, 1D lead joining surface 10D, and 2nd lead joining surface 20D changes. Therefore, in the power module 100D, it can suppress that the electrical characteristic (for example, resistance value of a resistance component) of an electronic element changes.
 さらに、パワーモジュール100Dは、第一リード1Dおよび第二リード2Dが電子素子5の接合面に沿う方向に延びる帯板状に形成されている場合であっても、第一突出部13Dおよび第二突出部23Dを設けることで、電子素子5をX軸方向に向かいあうリードの接合面(第一リード接合面10Dおよび第二リード接合面20D)に接合させることができる。 Further, the power module 100D includes the first protrusion 13D and the second lead 2D even when the first lead 1D and the second lead 2D are formed in a strip shape extending in the direction along the bonding surface of the electronic element 5. By providing the protrusion 23D, the electronic element 5 can be bonded to the lead bonding surfaces (the first lead bonding surface 10D and the second lead bonding surface 20D) facing in the X-axis direction.
(変形例)
以上、本発明の第四実施形態について図面を参照して詳述したが、具体的な構成はこの実施形態に限られるものではなく、本発明の要旨を逸脱しない範囲の設計変更等も含まれる。また、上述の第四実施形態および変形例において示した構成要素は適宜に組み合わせて構成することが可能である。
(Modification)
The fourth embodiment of the present invention has been described in detail with reference to the drawings. However, the specific configuration is not limited to this embodiment, and includes design changes and the like within a scope not departing from the gist of the present invention. . In addition, the constituent elements shown in the above-described fourth embodiment and the modification examples can be combined as appropriate.
 100,100B,100C,100D パワーモジュール   
1,1B,1C,1D 第一リード
10,10B,10C,10D 第一リード接合面
13C,13D 第一突出部
2,2B,2C,2D 第二リード
20,20B,20C,20D 第二リード接合面
23C,23D 第二突出部
3   リードフレーム
4   電子部品
5   電子素子
51  第一接合面
52  第二接合面
100, 100B, 100C, 100D power module
1, 1B, 1C, 1D First lead 10, 10B, 10C, 10D First lead joint surface 13C, 13D First protrusion 2, 2B, 2C, 2D Second lead 20, 20B, 20C, 20D Second lead joint Surfaces 23C and 23D Second protrusion 3 Lead frame 4 Electronic component 5 Electronic element 51 First joint surface 52 Second joint surface

Claims (8)

  1. 複数のリードを有するリードフレームに電子部品を実装して構成され、電力制御を行うパワーモジュールであって、
    所定の電気的な機能を有する電子素子が、板厚方向に直交する方向に向かいあう前記リードの接合面に接合され、
    前記リードの接合面、および、前記リードの接合面に接合される前記電子素子の接合面の面積が互いに異なる、
    パワーモジュール。
    A power module configured by mounting electronic components on a lead frame having a plurality of leads and performing power control,
    An electronic element having a predetermined electrical function is bonded to the bonding surface of the lead facing the direction orthogonal to the plate thickness direction,
    The areas of the bonding surfaces of the leads and the bonding surfaces of the electronic elements bonded to the bonding surfaces of the leads are different from each other.
    Power module.
  2. 前記電子素子の接合面の面積が、前記リードの接合面の面積よりも大きい、
    請求項1に記載のパワーモジュール。
    The area of the bonding surface of the electronic element is larger than the area of the bonding surface of the lead,
    The power module according to claim 1.
  3. 前記電子素子の接合面の面積が、前記リードの接合面の面積よりも小さい、
    請求項1に記載のパワーモジュール。
    The area of the bonding surface of the electronic element is smaller than the area of the bonding surface of the lead,
    The power module according to claim 1.
  4. 前記板厚方向から見た平面視で、
    前記リードの接合面の長さおよび前記電子素子の接合面の長さが互いに異なる、
    請求項1から請求項3のいずれか一項に記載のパワーモジュール。
    In a plan view seen from the plate thickness direction,
    The length of the joint surface of the lead and the length of the joint surface of the electronic element are different from each other.
    The power module according to any one of claims 1 to 3.
  5. 前記リードは、前記電子素子の接合面に沿う方向に延びる帯板状に形成され、
    前記リードは、前記電子素子の接合面側に突出する突出部を有し、
    前記突出部の突出方向先端が、前記リードの接合面として前記電子素子の接合面に接合されている、
    請求項1から請求項4のいずれか一項に記載のパワーモジュール。
    The lead is formed in a strip shape extending in a direction along the bonding surface of the electronic element,
    The lead has a protruding portion that protrudes to the bonding surface side of the electronic element,
    The protrusion direction tip of the protrusion is bonded to the bonding surface of the electronic element as the bonding surface of the lead.
    The power module according to any one of claims 1 to 4.
  6.  前記リードと前記電子素子とは溶接により接合している、
    請求項1から請求項5のいずれか一項に記載のパワーモジュール。
    The lead and the electronic element are joined by welding,
    The power module according to any one of claims 1 to 5.
  7. 前記電子素子が、前記リードの少なくとも一方の主面と共に同一の平坦面をなすように、前記リードの接合面に接合された請求項1から請求項6のいずれか一項に記載のパワーモジュール。 The power module according to any one of claims 1 to 6, wherein the electronic element is joined to a joint surface of the lead so as to form the same flat surface with at least one main surface of the lead.
  8. 前記電子素子がシャント抵抗であり、
    さらに、前記シャント抵抗に対して前記板厚方向に間隔をあけて配され、前記板厚方向に直交する方向に並ぶ二つの前記リードに接続されることで、前記シャント抵抗と並列接続された並列接続部品を備える請求項1から請求項7のいずれか一項に記載のパワーモジュール。
    The electronic element is a shunt resistor;
    Further, the shunt resistor is arranged in parallel with the shunt resistor in parallel with the shunt resistor by being connected to the two leads arranged in the plate thickness direction at an interval and connected in a direction orthogonal to the plate thickness direction. The power module according to claim 1, further comprising a connection component.
PCT/JP2017/021618 2017-06-12 2017-06-12 Power module WO2018229822A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/021618 WO2018229822A1 (en) 2017-06-12 2017-06-12 Power module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/021618 WO2018229822A1 (en) 2017-06-12 2017-06-12 Power module

Publications (1)

Publication Number Publication Date
WO2018229822A1 true WO2018229822A1 (en) 2018-12-20

Family

ID=64659121

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/021618 WO2018229822A1 (en) 2017-06-12 2017-06-12 Power module

Country Status (1)

Country Link
WO (1) WO2018229822A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06216308A (en) * 1993-01-14 1994-08-05 Mitsubishi Electric Corp Semiconductor device sealed with resin
US20050173783A1 (en) * 2004-02-05 2005-08-11 St Assembly Test Services Ltd. Semiconductor package with passive device integration
JP2009182022A (en) * 2008-01-29 2009-08-13 Renesas Technology Corp Semiconductor device
WO2015115596A1 (en) * 2014-02-03 2015-08-06 コーア株式会社 Resistor and current detector
JP2017005204A (en) * 2015-06-15 2017-01-05 Koa株式会社 Resistor and manufacturing method of the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06216308A (en) * 1993-01-14 1994-08-05 Mitsubishi Electric Corp Semiconductor device sealed with resin
US20050173783A1 (en) * 2004-02-05 2005-08-11 St Assembly Test Services Ltd. Semiconductor package with passive device integration
JP2009182022A (en) * 2008-01-29 2009-08-13 Renesas Technology Corp Semiconductor device
WO2015115596A1 (en) * 2014-02-03 2015-08-06 コーア株式会社 Resistor and current detector
JP2017005204A (en) * 2015-06-15 2017-01-05 Koa株式会社 Resistor and manufacturing method of the same

Similar Documents

Publication Publication Date Title
US9263722B2 (en) Connection structure for a wiring member
US7626256B2 (en) Compact power semiconductor module having a connecting device
US7847390B2 (en) Semiconductor device
US11587717B2 (en) Inductor element
JP6809294B2 (en) Power module
US10438872B2 (en) Semiconductor device and lead frame
WO2018229820A1 (en) Power module
JP5189616B2 (en) Semiconductor device
WO2018229822A1 (en) Power module
JP4787749B2 (en) Capacitor module and manufacturing method thereof
WO2018229817A1 (en) Power module
WO2022004332A1 (en) Circuit structure
WO2018229816A1 (en) Production method for power module
WO2020255666A1 (en) Board structure
US8502484B2 (en) Power stage for driving an electric machine
US10709008B2 (en) Power module assembly structure
JP5644223B2 (en) Electrical junction box
US11029339B2 (en) Current measuring apparatus
JP3685046B2 (en) Junction box
JP6236553B1 (en) Semiconductor device
JP2004343146A (en) Thermoelectric module
JP7490351B2 (en) Shunt resistor module and mounting structure of the shunt resistor module
WO2016117361A1 (en) Circuit structure and electrical junction box
JPH1065224A (en) Thermomodule
JP6004579B2 (en) Semiconductor device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17913136

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17913136

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP