WO2018228604A1 - 一种控制方法、设备、***及计算机存储介质 - Google Patents

一种控制方法、设备、***及计算机存储介质 Download PDF

Info

Publication number
WO2018228604A1
WO2018228604A1 PCT/CN2018/094358 CN2018094358W WO2018228604A1 WO 2018228604 A1 WO2018228604 A1 WO 2018228604A1 CN 2018094358 W CN2018094358 W CN 2018094358W WO 2018228604 A1 WO2018228604 A1 WO 2018228604A1
Authority
WO
WIPO (PCT)
Prior art keywords
radio frequency
relative
preset
antenna
antennas
Prior art date
Application number
PCT/CN2018/094358
Other languages
English (en)
French (fr)
Inventor
任冠佼
蒲立
Original Assignee
纳恩博(北京)科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 纳恩博(北京)科技有限公司 filed Critical 纳恩博(北京)科技有限公司
Publication of WO2018228604A1 publication Critical patent/WO2018228604A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/0011Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots associated with a remote control arrangement
    • G05D1/0022Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots associated with a remote control arrangement characterised by the communication link

Definitions

  • the present application relates to the field of robot technology, and in particular, to a control method, device, system, and computer storage medium.
  • UAVs and robots are hot areas in recent times.
  • Autonomous motion is the basic attribute of these intelligent hardware devices. If a moving object (such as a robot) can track another moving object (such as several other robots or people), then A number of meaningful applications can be implemented, such as automatic tracking of cars, formation flight of drones, and more.
  • the methods of positioning and tracking are limited to the following types, such as computer vision based tracking methods, lidar based tracking methods, and ultrasonic positioning based tracking methods. Therefore, how to research a new location tracking method has become a technical problem to be solved.
  • the present application is intended to provide a control method, apparatus, system, and computer storage medium capable of implementing tracking control of a moving object based on a radio frequency signal.
  • the embodiment of the present application provides a control method, which is applied to a first device, where the first device has at least two antennas, and each antenna is connected to an independent radio frequency module, and the method includes:
  • the determining, by analyzing the related data of the first radio frequency signal, the relative location information of the second device and the first device including:
  • the at least two antennas satisfy at least the following conditions:
  • the main polarization and cross polarization direction axis ratio is greater than or equal to the first preset value
  • the distance between the two antennas is less than half the wavelength of the communication wavelength.
  • the distance between the two antennas is less than a half wavelength of the communication wavelength, and includes:
  • the distance d between the two antennas is greater than 0.7 ⁇ /2, and the d is less than 0.95 ⁇ /2, wherein the ⁇ is a communication wavelength, and d is a distance between two antennas.
  • the first device is controlled to follow the second device based on the relative location information, and the preset relative position between the first device and the second device is maintained. Relationships, including:
  • the first device is controlled to adjust the current motion state, and the second device is followed according to the adjusted motion state, so that the first device and the second device are The relative position of the device satisfies the preset relative positional relationship;
  • the first device is controlled to maintain the current motion state, and the second device is followed according to the current motion state, and the pre-preparation between the first device and the second device is maintained. Set the relative positional relationship.
  • the first device is controlled to adjust a current motion state, and the second device is implemented to follow based on the adjusted motion state.
  • the relative position of the first device and the second device meets a preset relative position relationship, including:
  • the relative position is a relative distance, and when the relative position relationship is a preset distance range, if the relative distance value is not within the preset distance range, the first device is controlled to adjust the running speed, and according to the adjusted speed, the first position is The second device implementation follows until the relative distance value is within the preset distance range;
  • the relative position is a relative angle
  • when the relative position relationship is a preset angle range, if the relative angle value is not in the preset angle range, controlling the second device to rotate until the first device and the second device
  • the relative angle value is located in the preset angle range.
  • the first radio frequency signal is an Ultra Wideband (UWB) signal, or a Wireless Fidelity (WIFI) signal, or a Bluetooth signal.
  • UWB Ultra Wideband
  • WIFI Wireless Fidelity
  • the embodiment of the present application provides a tracking control method, which is applied to a second device, where the second device has an antenna, the antenna is connected with a radio frequency module, and the second device can pass the radio frequency module.
  • the first device performs communication, and the method includes:
  • the first device Transmitting, by the antenna, the first radio frequency signal to the first device by using the antenna, where the first device determines a relative position of the first device and the second device based on the related data of the first radio frequency signal And the first device performs follow-up on the second device based on the relative location information, and maintains a preset relative positional relationship between the first device and the second device.
  • the antenna satisfies at least the following conditions:
  • Circularly polarized antenna
  • the ratio of the main polarization direction to the cross polarization direction axis is less than a second preset value
  • the gain value of the recess on the pattern of the antenna is less than a third threshold, and the radiation direction of the antenna remains consistent.
  • the first radio frequency signal is an ultra wideband (UWB) signal, or a wireless fidelity (WIFI) signal, or a Bluetooth signal.
  • UWB ultra wideband
  • WIFI wireless fidelity
  • Bluetooth a Bluetooth signal.
  • the embodiment of the present application provides a first device, where the first device includes:
  • At least two RF modules each of which is connected to a separate antenna
  • the first processor is configured to receive, by using the at least two antennas, the first radio frequency signal sent by the second device, and determine, by analyzing the related data of the first radio frequency signal, the first device and the second Relative position information of the device; controlling the first device to perform follow-up on the second device based on the relative position information, and maintaining a preset relative positional relationship between the first device and the second device.
  • the first processor is specifically configured to:
  • the at least two antennas satisfy at least the following conditions:
  • the main polarization and cross polarization direction axis ratio is greater than or equal to the first preset value
  • the distance between the two antennas is less than half the wavelength of the communication wavelength.
  • the first processor is specifically configured to:
  • the first device is controlled to adjust the current motion state, and the second device is followed according to the adjusted motion state, so that the first device and the second device are The relative position of the device satisfies the preset relative positional relationship;
  • the first device is controlled to maintain the current motion state, and the second device is followed according to the current motion state, and the pre-preparation between the first device and the second device is maintained. Set the relative positional relationship.
  • the embodiment of the present application provides a second device, where the second device includes:
  • An antenna connected to the radio frequency module
  • a second processor configured to transmit, by the antenna, a first radio frequency signal to the first device during the second motion of the second device, where the first device is based on the first radio frequency signal
  • Correlation data determines relative location information of the first device and the second device, the first device performs follow-up on the second device based on the relative location information, and maintains the first device and the second device Preset relative positional relationship between devices.
  • the antenna satisfies at least the following conditions:
  • Circularly polarized antenna
  • the ratio of the main polarization direction to the cross polarization direction axis is less than a second preset value
  • the gain value of the recess on the pattern of the antenna is less than a third threshold, and the radiation direction of the antenna remains consistent.
  • an embodiment of the present application provides a control system, where the control system includes:
  • the second device is configured to send the first radio frequency signal to the first device
  • the first device has at least two antennas configured to receive the first radio frequency signal sent by the second device by using the at least two antennas, and determine the first device by analyzing related data of the first radio frequency signal Relative position information with the second device; controlling the first device to perform follow-up on the second device based on the relative position information, and maintaining a preset relative relationship between the first device and the second device Positional relationship.
  • an embodiment of the present application provides a computer storage medium, where the computer storage medium stores a computer program, and the computer program is configured to execute the foregoing control method applied to the first device.
  • an embodiment of the present application provides a computer storage medium, where the computer storage medium stores a computer program, where the computer program is used to execute the foregoing control method applied to the second device.
  • the first device receives the first radio frequency signal sent by the second device by using at least two antennas, and determines the first device and the device by analyzing related data of the first radio frequency signal Determining relative position information of the second device; controlling the first device to perform follow-up on the second device based on the relative position information, and maintaining a preset relative positional relationship between the first device and the second device In this way, tracking control of the moving object, that is, the second device, can be realized based on the radio frequency signal.
  • FIG. 1 is a schematic flowchart of an implementation process of a control method applied to a first device according to an embodiment of the present disclosure
  • FIG. 2 is a top view and a three-dimensional perspective view of two UWB antennas in a first device according to an embodiment of the present disclosure
  • FIG. 3 is a schematic diagram of performing ranging by using a TWR method according to an embodiment of the present application.
  • FIG. 4 is a front view and a rear view of a UWB antenna in a second device when the first radio frequency signal is a UWB signal according to an embodiment of the present disclosure
  • FIG. 5 is a schematic structural diagram of a first device according to an embodiment of the present disclosure.
  • FIG. 6 is a schematic structural diagram of a second device according to an embodiment of the present disclosure.
  • FIG. 7 is a schematic diagram of interaction of a control system according to an embodiment of the present application.
  • An embodiment of the present application provides a control method, where the method is applied to a first device, where the first device has at least two antennas, and each antenna is connected with an independent radio frequency module, as shown in FIG. mainly includes:
  • Step 101 The first device receives the first radio frequency signal sent by the second device by using the at least two antennas.
  • the at least two antennas satisfy at least the following conditions:
  • the main polarization and cross polarization direction axis ratio is greater than or equal to the first preset value
  • the distance between the two antennas is less than half the wavelength of the communication wavelength.
  • the first preset value can be set and adjusted according to the empirical value.
  • the first preset value can also be set or adjusted according to the type of the first radio frequency signal.
  • the distance between the two antennas is less than a half wavelength of the communication wavelength, including:
  • the distance d between the two antennas is greater than 0.7 ⁇ /2, and the d is less than 0.95 ⁇ /2, wherein the ⁇ is a communication wavelength, and d is a distance between two antennas.
  • the constraint distance of the distance d between the two antennas is a half wavelength of (0.7 to 0.95).
  • two UWB antennas in the first device satisfy the following conditions:
  • the distance d between the two antennas is a half wavelength of (0.7 to 0.95).
  • the first radio frequency signal may be a UWB signal, or a WIFI signal, or a Bluetooth signal.
  • FIG. 2 is a top view and a three-dimensional perspective view of the UWB antenna in the first device when the first RF signal is a UWB signal.
  • the left The half of the drawing is a top view of the two antennas
  • the right half of the drawing is a three-dimensional view of the two antennas.
  • the first device is a device that implements following the second device.
  • Step 102 Determine relative position information of the first device and the second device by analyzing related data of the first radio frequency signal.
  • the determining the relative location information of the second device and the first device by analyzing the related data of the first radio frequency signal includes:
  • a relative angle value of the second device and the first device may be determined using a PDOA (Phase Difference of Arrival) method.
  • PDOA Phase Difference of Arrival
  • the two radio frequency modules of the first device end can collect the signal phase difference between the final data packet or the poll data packet to reach the respective antennas, where the first device is in the first device.
  • the PD indicates that the first radio frequency signal reaches a phase difference between the first antenna and the second antenna, and the unit is a radian value; ang represents a relative angle value between the first device and the second device, and the unit is
  • a relative angle value of the second device and the first device may be determined using a Time Difference of Arrival (TDOA) method.
  • TDOA Time Difference of Arrival
  • the two radio frequency modules of the first device end can collect the signal time value of the final data packet or the poll data packet to reach the corresponding antenna, in the first device.
  • the first device acquires, by the first device, three times of communication data related to the first radio frequency signal during communication with the second device by using any one of the at least two antennas;
  • the three communication data obtains four time differences associated with the first device and the second device, and calculates a relative distance value between the first device and the second device according to the four time differences.
  • the distance value between the first device and the second device may be obtained by using various techniques to obtain a distance value between the first device and the second device, for example, TOF (Time of Flight) technology, arrival Time difference of Arrival (TDOA), etc.
  • TOF Time of Flight
  • TDOA arrival Time difference of Arrival
  • the first device and the second device may perform ranging by using a two-way ranging (TWR) method, and three times of communication is required for each ranging, which specifically includes the following steps (TWR is an algorithm of TOF).
  • TWR is an algorithm of TOF.
  • FIG. 3 shows a schematic diagram of ranging using the TWR method, and the specific steps include:
  • the second device sends a first data packet (that is, communication data related to the first radio frequency signal), and when sent, the second device records the transmitted time stamp tt1; here, the first data packet may be Poll packet;
  • the first device waits to receive the first radio frequency signal sent by the second device, and after receiving the poll data packet, the first device records the time stamp ta1 of the receiving time, then sends a second data packet, and records and sends the second data packet.
  • a time stamp ta2 of the packet (communication data associated with the first radio frequency signal); here, the second data packet may be a response data packet;
  • the second device waits to receive the second radio frequency signal sent by the first device, and after receiving the response data packet, the second device records the timestamp tt2 of the receiving time, and calculates that the third data packet needs to be sent (with the first radio frequency Timestamp tt3 of the signal-related communication data), when the clock of the second device reaches tt3, the third data packet is sent, and the third data packet contains three timestamp information (tt1, tt2, tt3); here, the first The three data packets can be final packets;
  • the first device After receiving the final data packet, the first device records the reception time stamp ta3. At this time, the first device has recorded three time stamps ta1, ta2, ta3, and at the same time, by reading the content of the final data packet, three time stamps tt1, tt2, tt3 of the second device can also be obtained;
  • the distance between the first device and the second device can be calculated, and the calculation formula is as follows:
  • DIS represents the distance value between the first device and the second device
  • T represents the communication duration between the first device and the second device
  • V represents the speed of light
  • Step 103 Control, according to the relative location information, the first device to perform follow-up on the second device, and maintain a preset relative positional relationship between the first device and the second device.
  • controlling, by the first device, the following device to perform follow-up on the second device, and maintaining a preset relative positional relationship between the first device and the second device include:
  • the first device is controlled to adjust the current motion state, and the second device is followed according to the adjusted motion state, so that the first device and the second device are The relative position of the device satisfies the preset relative positional relationship;
  • the first device is controlled to maintain the current motion state, and the second device is followed according to the current motion state, and the pre-preparation between the first device and the second device is maintained. Set the relative positional relationship.
  • the preset relative position relationship may be set by the first device end, or set by the second device end, and the preset relative position relationship set by the device is sent to the first device, to be first
  • the device follows the second device based on this standard.
  • the first device can acquire relative position information with the second device, and the radio frequency based method can perform relatively accurate relative positioning between the two. Based on the result of the relative positioning, the first device can perform accurate follow-up on the second device.
  • the first device is controlled to adjust a current motion state, and the second device is followed according to the adjusted motion state, so that the first device and the first device are The relative position of the second device meets a preset relative position relationship, including:
  • the relative position is a relative distance, and when the relative position relationship is a preset distance range, if the relative distance value is not within the preset distance range, the first device is controlled to adjust the running speed, and according to the adjusted speed, the first position is The second device implementation follows until the relative distance value is within the preset distance range;
  • the relative position is a relative angle
  • when the relative position relationship is a preset angle range, if the relative angle value is not in the preset angle range, controlling the second device to rotate until the first device and the second device
  • the relative angle value is located in the preset angle range.
  • the preset distance range, the preset angle range may be set by the first device end, or set by the second device end, and the preset distance range set by the first device,
  • the preset angle range is sent to the first device to perform follow-up on the second device by the first device based on the standard.
  • the first device is controlled to move forward, and the relative distance between the second device and the second device is maintained, for example, PID control or adaptive control can be performed on the following distance. Keep the relative position between the two.
  • the first device is controlled to adjust the relative angle, and the relative angle with the second device is maintained, so that tracking can be realized.
  • the first device can acquire the relative distance and relative angle with the second device, and the radio frequency based method can perform relatively accurate relative positioning between the two. Based on the result of the relative positioning, the first device can perform accurate follow-up on the second device.
  • the first device is a tracker, for example, the first device is a robot.
  • the second device is a tracked person or a beacon, for example, the second device can move by itself or by means of an external force, such as the second device is a robot; or the second device is not capable of A moving device that carries the second device by a moving person or object such that the second device moves.
  • the first device receives the first radio frequency signal sent by the second device by using at least two antennas; and determining, by analyzing the related data of the first radio frequency signal, the first device and the The relative position information of the second device is controlled, and the first device is controlled to follow the second device according to the relative position information, and the preset relative positional relationship between the first device and the second device is maintained; In this way, tracking control of the moving object, that is, the second device, can be realized based on the radio frequency signal.
  • the embodiment of the present application provides a control method, where the method is applied to a second device, the second device has an antenna, the antenna is connected with a radio frequency module, and the second device can pass the radio frequency module and the first device.
  • the method mainly includes:
  • the first device Transmitting, by the antenna, the first radio frequency signal to the first device by using the antenna, where the first device determines a relative position of the first device and the second device based on the related data of the first radio frequency signal And the first device performs follow-up on the second device based on the relative location information, and maintains a preset relative positional relationship between the first device and the second device.
  • the first motion state may be a uniform motion or a shift motion
  • the motion speed may be 0 at a certain time or a certain period of time.
  • the antenna satisfies at least the following conditions:
  • Circularly polarized antenna
  • the ratio of the main polarization direction to the cross polarization direction axis is less than a second preset value
  • the gain value of the recess on the pattern of the antenna is less than a third threshold, and the radiation direction of the antenna remains consistent.
  • the second preset value can be set and adjusted according to the empirical value.
  • the second preset value can also be set or adjusted according to the type of the first radio frequency signal.
  • the antenna in the second device is a circularly polarized antenna, and the ratio of the main polarization direction to the cross polarization direction axis is less than 5 dB; meanwhile, the antenna pattern is as circular as possible to ensure radiation comparison in all directions. Consistent.
  • the third preset value can be set and adjusted according to the empirical value.
  • the third preset value can also be set or adjusted according to the type of the first radio frequency signal.
  • FIG. 4 is a schematic diagram showing a front view and a rear view of the UWB antenna in the second device when the first RF signal is a UWB signal.
  • the left half Part of the drawing is a front view of the UWB antenna obtained from the front of the PCB board
  • the right half of the drawing is a rear view of the UWB antenna obtained from the back of the PCB board.
  • the antenna adopts a 3-layer PCB design, and uses a Wilkson power divider plus a delay line to form a quadrature feed to realize a circularly polarized antenna.
  • the first radio frequency signal may be a UWB signal, or a WIFI signal, or a Bluetooth signal.
  • the second device in the process that the second device is in the first motion state, the second device sends a first radio frequency signal to the first device by using the antenna, where the first device is based on The related data of the first radio frequency signal determines relative position information of the first device and the second device, and the first device performs follow-up on the second device based on the relative position information, and maintains the first A preset relative positional relationship between a device and the second device. In this way, tracking control of the moving object, that is, the second device, can be realized based on the radio frequency signal.
  • FIG. 5 is a schematic structural diagram of a first device. As shown in FIG. 5, the first device includes:
  • At least two radio frequency modules 51 each of which is connected to a separate antenna
  • the first processor 52 is configured to receive, by using the at least two antennas, the first radio frequency signal sent by the second device, and determine, by analyzing the related data of the first radio frequency signal, the first device and the first The relative position information of the two devices; controlling the first device to perform follow-up on the second device based on the relative position information, and maintaining a preset relative positional relationship between the first device and the second device.
  • the first processor 52 is specifically configured to:
  • the at least two antennas satisfy at least the following conditions:
  • the main polarization and cross polarization direction axis ratio is greater than or equal to the first preset value
  • the distance between the two antennas is less than half the wavelength of the communication wavelength.
  • the distance between the two antennas is less than a half wavelength of the communication wavelength, and includes:
  • the distance d between the two antennas is greater than 0.7 ⁇ /2, and the d is less than 0.95 ⁇ /2, wherein the ⁇ is a communication wavelength, and d is a distance between two antennas.
  • the first preset value can be set and adjusted according to the empirical value.
  • the first preset value can also be set or adjusted according to the type of the first radio frequency signal.
  • the distance between the two antennas is less than a half wavelength of the communication wavelength, including:
  • the distance d between the two antennas is greater than 0.7 ⁇ /2, and the d is less than 0.95 ⁇ /2, wherein the ⁇ is a communication wavelength, and d is a distance between two antennas.
  • the constraint distance of the distance d between the two antennas is a half wavelength of (0.7 to 0.95).
  • two UWB antennas in the first device satisfy the following conditions:
  • the distance d between the two antennas is a half wavelength of (0.7 to 0.95).
  • the first radio frequency signal may be a UWB signal, or a WIFI signal, or a Bluetooth signal.
  • the first processor 52 is specifically configured to:
  • the first device is controlled to adjust the current motion state, and the second device is followed according to the adjusted motion state, so that the first device and the second device are The relative position of the device satisfies the preset relative positional relationship;
  • the first device is controlled to maintain the current motion state, and the second device is followed according to the current motion state, and the pre-preparation between the first device and the second device is maintained. Set the relative positional relationship.
  • the first processor 52 is specifically configured to:
  • the relative position is a relative distance, and when the relative position relationship is a preset distance range, if the relative distance value is not within the preset distance range, the first device is controlled to adjust the running speed, and according to the adjusted speed, the first position is The second device implementation follows until the relative distance value is within the preset distance range;
  • the relative position is a relative angle
  • when the relative position relationship is a preset angle range, if the relative angle value is not in the preset angle range, controlling the second device to rotate until the first device and the second device
  • the relative angle value is located in the preset angle range.
  • the specific structure of the foregoing first processor 52 may be a Central Processing Unit (CPU), a Micro Controller Unit (MCU), a Digital Signal Processing (DSP), or A collection of electronic components or electronic components having processing functions such as a programmable logic device (PLC).
  • the processor includes executable code
  • the executable code is stored in a storage medium
  • the processor may be connected to the storage medium through a communication interface such as a bus, when performing a corresponding function of each unit Reading and running the executable code from the storage medium.
  • the portion of the storage medium used to store the executable code is preferably a non-transitory storage medium.
  • the first device in this embodiment is capable of implementing tracking control of the second device by the first device based on the radio frequency signal.
  • FIG. 6 is a schematic structural diagram of a second device. As shown in FIG. 6, the second device includes:
  • the radio frequency module 61 is connected to the radio frequency module 61.
  • the second processor 62 is configured to transmit, by the antenna, a first radio frequency signal to the first device during the process that the second device is in the first motion state, where the first device is based on the first radio frequency signal Corresponding data determining relative position information of the first device and the second device, the first device performing follow-up on the second device based on the relative position information, maintaining the first device and the first The preset relative positional relationship between the two devices.
  • the first motion state may be a uniform motion or a shift motion
  • the motion speed may be 0 at a certain time or a certain period of time.
  • the antenna satisfies at least the following conditions:
  • Circularly polarized antenna
  • the ratio of the main polarization direction to the cross polarization direction axis is less than a second preset value
  • the gain value of the recess on the pattern of the antenna is less than a third threshold, and the radiation direction of the antenna remains consistent.
  • the second preset value can be set and adjusted according to the empirical value.
  • the second preset value can also be set or adjusted according to the type of the first radio frequency signal.
  • the antenna in the second device is a circularly polarized antenna, and the ratio of the main polarization direction to the cross polarization direction axis is less than 5 dB; meanwhile, the antenna pattern is as circular as possible to ensure radiation comparison in all directions. Consistent.
  • the specific structure of the second processor 62 may be a collection of electronic components or electronic components having processing functions such as a CPU, an MCU, a DSP, or a PLC.
  • the processor includes executable code
  • the executable code is stored in a storage medium
  • the processor may be connected to the storage medium through a communication interface such as a bus, when performing a corresponding function of each unit Reading and running the executable code from the storage medium.
  • the portion of the storage medium used to store the executable code is preferably a non-transitory storage medium.
  • the second device in this embodiment is capable of implementing tracking control of the second device by the first device based on the radio frequency signal.
  • FIG. 7 shows a schematic structural diagram of the control system.
  • the control system includes:
  • the second device 10 is configured to send the first radio frequency signal to the first device 20;
  • the first device 20 has at least two antennas configured to receive the first radio frequency signal sent by the second device 10 through the at least two antennas, and determine the first by analyzing related data of the first radio frequency signal Relative position information of a device 20 and the second device 10; controlling, according to the relative position information, the first device 20 to follow the second device 10, and maintaining the first device 20 and the second device Preset relative positional relationship between devices 10.
  • the specific composition of the first device 20 is as shown in FIG. 5
  • the specific composition of the second device 10 is as shown in FIG. 6.
  • the first device involved in this embodiment is a tracker, for example, the first device is a robot.
  • the second device involved in this embodiment is a tracked person or a beacon.
  • the second device can move by itself or by means of an external force, such as the second device is a robot; or the second device is The device cannot be self-exercised, and the second device is carried by a moving person or object, so that the second device moves.
  • the control system of this embodiment is capable of implementing tracking control of the second device by the first device based on the radio frequency signal.
  • the embodiment further provides a computer storage medium, where the computer storage medium stores a computer program, and after the computer program is executed by the processor, can implement any one of the foregoing devices applied to the first device or Multiple control methods.
  • the computer storage medium may be various types of storage media, and may be preferably a non-transitory storage medium in this embodiment.
  • the first device has at least two antennas, each of which is connected to an independent radio frequency module.
  • the computer executable instructions are for executing:
  • the computer executable instructions are for executing:
  • the at least two antennas satisfy at least the following conditions:
  • the main polarization and cross polarization direction axis ratio is greater than or equal to the first preset value
  • the distance between the two antennas is less than half the wavelength of the communication wavelength.
  • the distance between the two antennas is less than a half wavelength of the communication wavelength, and includes:
  • the distance d between the two antennas is greater than 0.7 ⁇ /2, and the d is less than 0.95 ⁇ /2, wherein the ⁇ is a communication wavelength, and d is a distance between two antennas.
  • the computer executable instructions are for executing:
  • the first device is controlled to adjust the current motion state, and the second device is followed according to the adjusted motion state, so that the first device and the second device are The relative position of the device satisfies the preset relative positional relationship;
  • the first device is controlled to maintain the current motion state, and the second device is followed according to the current motion state, and the pre-preparation between the first device and the second device is maintained. Set the relative positional relationship.
  • the computer executable instructions are for executing:
  • the relative position is a relative distance, and when the relative position relationship is a preset distance range, if the relative distance value is not within the preset distance range, the first device is controlled to adjust the running speed, and according to the adjusted speed, the first position is The second device implementation follows until the relative distance value is within the preset distance range;
  • the relative position is a relative angle
  • when the relative position relationship is a preset angle range, if the relative angle value is not in the preset angle range, controlling the second device to rotate until the first device and the second device
  • the relative angle value is located in the preset angle range.
  • the first radio frequency signal is an ultra-wideband UWB signal, or a wireless fidelity WIFI signal, or a Bluetooth signal.
  • the embodiment further provides a computer storage medium, where the computer storage medium stores a computer program, and after the computer program is executed by the processor, can implement any one of the foregoing applications applied to the second device or Multiple control methods.
  • the computer storage medium may be various types of storage media, and may be preferably a non-transitory storage medium in this embodiment.
  • the second device has an antenna, the antenna is connected with a radio frequency module, and the second device can communicate with the first device by using the radio frequency module.
  • the computer executable instructions are for executing:
  • the first device Transmitting, by the antenna, the first radio frequency signal to the first device by using the antenna, where the first device determines a relative position of the first device and the second device based on the related data of the first radio frequency signal And the first device performs follow-up on the second device based on the relative location information, and maintains a preset relative positional relationship between the first device and the second device.
  • the antenna satisfies at least the following conditions:
  • Circularly polarized antenna
  • the ratio of the main polarization direction to the cross polarization direction axis is less than a second preset value
  • the gain value of the recess on the pattern of the antenna is less than a third threshold, and the radiation direction of the antenna remains consistent.
  • the first radio frequency signal is an ultra-wideband UWB signal, or a wireless fidelity WIFI signal, or a Bluetooth signal.
  • the disclosed apparatus and method may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner such as: multiple units or components may be combined, or Can be integrated into another system, or some features can be ignored or not executed.
  • the coupling, or direct coupling, or communication connection of the components shown or discussed may be indirect coupling or communication connection through some interfaces, devices or units, and may be electrical, mechanical or other forms. of.
  • the units described above as separate components may or may not be physically separated, and the components displayed as the unit may or may not be physical units, that is, may be located in one place or distributed to multiple network units; Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing module, or each unit may be separately used as one unit, or two or more units may be integrated into one unit;
  • the unit can be implemented in the form of hardware or in the form of hardware plus software functional units.
  • the foregoing program may be stored in a computer readable storage medium, and the program is executed when executed.
  • the foregoing storage device includes the following steps: the foregoing storage medium includes: a mobile storage device, a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk.
  • ROM read-only memory
  • RAM random access memory
  • magnetic disk or an optical disk.
  • optical disk A medium that can store program code.
  • the first device receives the first radio frequency signal sent by the second device by using at least two antennas, and determines, by analyzing the related data of the first radio frequency signal, the first device and the The relative position information of the second device is controlled, and the first device is controlled to follow the second device according to the relative position information, and the preset relative positional relationship between the first device and the second device is maintained; In this way, tracking control of the moving object, that is, the second device, can be realized based on the radio frequency signal.

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Radio Transmission System (AREA)
  • Position Fixing By Use Of Radio Waves (AREA)

Abstract

本申请实施例公开了一种控制方法,应用于第一设备,所述第一设备具有至少两个天线,每一天线都连接有独立的射频模块,所述方法包括:所述第一设备通过所述至少两个天线接收第二设备发送的第一射频信号;通过对所述第一射频信号的相关数据进行分析,确定所述第一设备与所述第二设备的相对位置信息;基于所述相对位置信息控制所述第一设备对所述第二设备实施跟随,保持所述第一设备与所述第二设备之间的预设相对位置关系。本申请实施例还同时公开了一种应用于第一设备的控制设备、应用于第二设备的控制设备、控制***,以及应用于第二设备的控制方法。

Description

一种控制方法、设备、***及计算机存储介质
相关申请的交叉引用
本申请基于申请号为201710442330.X、申请日为2017年06月13日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此以引入方式并入本申请。
技术领域
本申请涉及机器人技术领域,具体涉及一种控制方法、设备、***及计算机存储介质。
背景技术
无人机、机器人是近来的热门领域,自主运动更是这些智能硬件设备的基本属性,那么如果一个运动物体(如一个机器人)可以跟踪另外一个运动物体(如另外几个机器人或者人),则可以实现很多有意义的应用,例如汽车的自动跟踪驾驶、无人机的编队飞行等。
目前定位跟踪的方法仅局限于以下几种,例如基于计算机视觉的跟踪方法、基于激光雷达的跟踪方法、基于超声波定位的跟踪方法等。因此,如何研究出新的定位跟踪方法成为亟待解决的技术问题。
发明内容
有鉴于此,本申请期望提供一种控制方法、设备、***及计算机存储介质,能够基于射频信号实现对运动物体的跟踪控制。
第一方面,本申请实施例提供了一种控制方法,应用于第一设备,所述第一设备具有至少两个天线,每一天线都连接有独立的射频模块,所述 方法包括:
所述第一设备通过所述至少两个天线接收第二设备发送的第一射频信号;
通过对所述第一射频信号的相关数据进行分析,确定所述第一设备与所述第二设备的相对位置信息;
基于所述相对位置信息控制所述第一设备对所述第二设备实施跟随,保持所述第一设备与所述第二设备之间的预设相对位置关系。
上述方案中,可选地,所述通过对所述第一射频信号的相关数据进行分析,确定所述第二设备与所述第一设备的相对位置信息,包括:
通过第一射频信号到达所述至少两个天线的相位差和/或时间差,确定所述第二设备与所述第一设备的相对角度值;和/或
获取所述第一设备通过所述至少两个天线中的任一天线与所述第二设备通讯过程中,与所述第一射频信号相关的三次通讯数据;根据所述三次通讯数据得到与所述第一设备以及所述第二设备相关的四个时间差,并根据所述四个时间差,计算所述第一设备与所述第二设备的相对距离值。
上述方案中,可选地,所述至少两个天线至少满足下述条件:
垂直线极化天线;
主极化与交叉极化方向轴比大于或等于第一预设值;
两天线之间的距离小于通讯波长的半波长。
上述方案中,可选地,所述两天线之间的距离小于通讯波长的半波长,包括:
所述两天线之间的距离d大于0.7×λ/2,且所述d小于0.95×λ/2,其中,所述λ为通讯波长,所述d为两天线之间的距离。
上述方案中,可选地,所述基于所述相对位置信息控制所述第一设备对所述第二设备实施跟随,保持所述第一设备与所述第二设备之间的预设相对位置关系,包括:
基于所述相对位置信息判断所述第一设备与所述第二设备的相对位置是否满足预设相对位置关系;
如果不满足所述预设相对位置关系,控制所述第一设备调整当前运动状态,并基于调整后的运动状态对所述第二设备实施跟随,使所述第一设备与所述第二设备的相对位置满足预设相对位置关系;
如果满足所述预设相对位置关系,控制所述第一设备保持当前运动状态,基于当前运动状态对所述第二设备实施跟随,保持所述第一设备与所述第二设备之间的预设相对位置关系。
上述方案中,可选地,所述如果不满足所述预设相对位置关系,控制所述第一设备调整当前运动状态,并基于调整后的运动状态对所述第二设备实施跟随,使所述第一设备与所述第二设备的相对位置满足预设相对位置关系,包括:
所述相对位置为相对距离,所述相对位置关系为预设距离范围时,如果相对距离值不位于预设距离范围,则控制第一设备调整运行速度,并根据调整后的速度对所述第二设备实施跟随,直至相对距离值位于所述预设距离范围;
所述相对位置为相对角度,所述相对位置关系为预设角度范围时,如果相对角度值不位于预设角度范围,则控制第二设备旋转直至所述第一设备与所述第二设备的相对角度值位于所述预设角度范围。
上述方案中,可选地,所述第一射频信号为超宽带(UWB,Ultra Wideband)信号、或无线保真(WIFI,Wireless Fidelity)信号、或蓝牙信号。
第二方面,本申请实施例提供了一种跟踪控制方法,应用于第二设备,所述第二设备具有天线,所述天线连接有射频模块,所述第二设备能通过所述射频模块与第一设备进行通讯,所述方法包括:
在所述第二设备处于第一运动状态的过程中,
所述第二设备通过所述天线向第一设备发射第一射频信号,供所述第一设备基于所述第一射频信号的相关数据确定所述第一设备与所述第二设备的相对位置信息,所述第一设备基于所述相对位置信息对所述第二设备实施跟随,保持所述第一设备与所述第二设备之间的预设相对位置关系。
上述方案中,可选地,所述天线至少满足下述条件:
圆极化天线;
主极化方向与交叉极化方向轴比小于第二预设值;
所述天线的方向图上凹陷处增益值小于第三阈值,且所述天线的辐射方向保持一致。
上述方案中,可选地,所述第一射频信号为超宽带(UWB)信号、或无线保真(WIFI)信号、或蓝牙信号。
第三方面,本申请实施例提供了一种第一设备,所述第一设备包括:
至少两个射频模块,每个射频模块都连接有独立的天线;
第一处理器,配置为通过所述至少两个天线接收第二设备发送的第一射频信号;通过对所述第一射频信号的相关数据进行分析,确定所述第一设备与所述第二设备的相对位置信息;基于所述相对位置信息控制所述第一设备对所述第二设备实施跟随,保持所述第一设备与所述第二设备之间的预设相对位置关系。
上述方案中,可选地,所述第一处理器,具体配置为:
通过第一射频信号到达所述至少两个天线的相位差和/或时间差,确定所述第二设备与所述第一设备的相对角度值;和/或
获取所述第一设备通过所述至少两个天线中的任一天线与所述第二设备通讯过程中,与所述第一射频信号相关的三次通讯数据;根据所述三次通讯数据得到与所述第一设备以及所述第二设备相关的四个时间差,并根据所述四个时间差,计算所述第一设备与所述第二设备的相对距离值。
上述方案中,可选地,所述至少两个天线至少满足下述条件:
垂直线极化天线;
主极化与交叉极化方向轴比大于或等于第一预设值;
两天线之间的距离小于通讯波长的半波长。
上述方案中,可选地,所述第一处理器,具体配置为:
基于所述相对位置信息判断所述第一设备与所述第二设备的相对位置是否满足预设相对位置关系;
如果不满足所述预设相对位置关系,控制所述第一设备调整当前运动状态,并基于调整后的运动状态对所述第二设备实施跟随,使所述第一设备与所述第二设备的相对位置满足预设相对位置关系;
如果满足所述预设相对位置关系,控制所述第一设备保持当前运动状态,基于当前运动状态对所述第二设备实施跟随,保持所述第一设备与所述第二设备之间的预设相对位置关系。
第四方面,本申请实施例提供了一种第二设备,所述第二设备包括:
射频模块,
与所述射频模块连接的天线,
第二处理器,配置为在所述第二设备处于第一运动状态的过程中,通过所述天线向第一设备发射第一射频信号,供所述第一设备基于所述第一射频信号的相关数据确定所述第一设备与所述第二设备的相对位置信息,所述第一设备基于所述相对位置信息对所述第二设备实施跟随,保持所述第一设备与所述第二设备之间的预设相对位置关系。
上述方案中,可选地,所述天线至少满足下述条件:
圆极化天线;
主极化方向与交叉极化方向轴比小于第二预设值;
所述天线的方向图上凹陷处增益值小于第三阈值,且所述天线的辐射方向保持一致。
第五方面,本申请实施例提供了一种控制***,所述控制***包括:
第二设备,配置为向第一设备发送第一射频信号;
第一设备,具有至少两个天线,配置为通过所述至少两个天线接收第二设备发送的第一射频信号;通过对所述第一射频信号的相关数据进行分析,确定所述第一设备与所述第二设备的相对位置信息;基于所述相对位置信息控制所述第一设备对所述第二设备实施跟随,保持所述第一设备与所述第二设备之间的预设相对位置关系。
第六方面,本申请实施例提供了一种计算机存储介质,所述计算机存储介质中存储有计算机程序,所述计算机程序用于执行以上所述的应用于第一设备的控制方法。
第七方面,本申请实施例提供了一种计算机存储介质,所述计算机存储介质中存储有计算机程序,所述计算机程序用于执行以上所述的应用于第二设备的控制方法。
本申请实施例的技术方案中,第一设备通过至少两个天线接收第二设备发送的第一射频信号;通过对所述第一射频信号的相关数据进行分析,确定所述第一设备与所述第二设备的相对位置信息;基于所述相对位置信息控制所述第一设备对所述第二设备实施跟随,保持所述第一设备与所述第二设备之间的预设相对位置关系;这样,能够基于射频信号实现对运动物体即第二设备的跟踪控制。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本申请实施例提供的应用于第一设备的控制方法的实现流程示意图;
图2为本申请实施例提供的第一设备中两根UWB天线的俯视图以及三维立体图示意图;
图3为本申请实施例提供的采用TWR方法进行测距的示意图;
图4为本申请实施例提供的第一射频信号为UWB信号时,第二设备中UWB天线正视图和后视图示意图;
图5为本申请实施例提供的第一设备的组成结构示意图;
图6为本申请实施例提供的第二设备的组成结构示意图;
图7为本申请实施例提供的控制***的一种交互示意图。
具体实施方式
为了能够更加详尽地了解本申请的特点与技术内容,下面结合附图对本申请的实现进行详细阐述,所附附图仅供参考说明之用,并非用来限定本申请。
本申请实施例提供一种控制方法,所述方法应用于第一设备,所述第一设备具有至少两个天线,每一天线都连接有独立的射频模块,如图1所示,所述方法主要包括:
步骤101、所述第一设备通过所述至少两个天线接收第二设备发送的第一射频信号。
这里,所述至少两个天线至少满足下述条件:
垂直线极化天线;
主极化与交叉极化方向轴比大于或等于第一预设值;
两天线之间的距离小于通讯波长的半波长。
这里,第一预设值可以依据经验值进行设定、并调整。当然,第一预设值还可以第一射频信号的类型而设定或调整。
可选地,所述两天线之间的距离小于通讯波长的半波长,包括:
所述两天线之间的距离d大于0.7×λ/2,且所述d小于0.95×λ/2, 其中,所述λ为通讯波长,所述d为两天线之间的距离。
也就是说,两天线之间的距离d的约束距离为(0.7~0.95)的半波长。
示例性地,所述第一设备中的两个UWB天线,满足以下几个条件:
1)垂直线极化,且主极化与交叉极化方向轴比大于等于12dB。
2)两根天线之间测距离d为(0.7~0.95)的半波长。
其中,所述第一射频信号可以为UWB信号、或WIFI信号、或蓝牙信号。
以第一设备中两天线为UWB天线为例,图2示出了第一射频信号为UWB信号时,第一设备中UWB天线的俯视图以及三维立体图示意图,具体的,如图2所示,左半部分附图为两天线的俯视图,右半部分附图为两天线的三维立体图。在此应用中,UWB通讯频率为6.25GHz~6.75GHz,故,λ=c/f=46mm,若d取0.9×λ/2,则d为20.8mm,即两天线之间的距离为20.8mm。
以第一设备中两天线为WIFI天线为例,在此应用中,WIFI通讯频率为2.4GHz,故,λ=c/f=12.5cm,若d取0.9×λ/2,则d为5.625cm,即两天线之间的距离为5.625cm。
以第一设备中两天线为蓝牙天线为例,在此应用中,WIFI通讯频率为2.4GHz,故,λ=c/f=12.5cm,若d取0.8×λ/2,则d为5cm,即两天线之间的距离为5cm。
本实施例中,所述第一设备是对所述第二设备实施跟随的设备。
步骤102、通过对所述第一射频信号的相关数据进行分析,确定所述第一设备与所述第二设备的相对位置信息。
作为一种实施方式,所述通过对所述第一射频信号的相关数据进行分析,确定所述第二设备与所述第一设备的相对位置信息,包括:
通过第一射频信号到达所述至少两个天线的相位差和/或时间差,确定所述第二设备与所述第一设备的相对角度值。
示例性地,可使用到达相位差(PDOA,Phase Difference of Arrival)方法确定所述第二设备与所述第一设备的相对角度值。
具体地,当第二设备发送出final数据包或poll数据包的时候,第一设备端的两个射频模块可以采集到final数据包或poll数据包到达各自天线的信号相位差,第一设备中的处理器读取两个射频模块的相位值P1和P2,计算出相位差为PD=P1-P2,可得到第二设备与第一设备的相对角度值为ang=(PD/(2∏))/360°;其中,P1表示第一射频信号达到第一设备的第一天线的相位,单位为弧度值;P2表示第一射频信号达到第一设备的第二天线的相位,单位为弧度值;其中,PD表示第一射频信号到达第一天线与第二天线的相位差,单位为弧度值;ang表示第一设备与第二设备之间的相对角度值,单位为度。
示例性地,可使用到达时间差(TDOA,Time Difference of Arrival)方法确定所述第二设备与所述第一设备的相对角度值。
具体地,当第二设备发送出final数据包或poll数据包的时候,第一设备端的两个射频模块可以采集到final数据包或poll数据包到达各自对应天线的信号时间值,第一设备中的处理器读取两个射频模块的时间值T1和T2,可以计算出第一射频信号到两个天线之间的距离差ΔS=(T2-T1)×ν,再根据三角形的相对关系也可以计算出第二设备所在第一设备的方位。
作为一种实施方式,获取所述第一设备通过所述至少两个天线中的任一天线与所述第二设备通讯过程中,与所述第一射频信号相关的三次通讯数据;根据所述三次通讯数据得到与所述第一设备以及所述第二设备相关的四个时间差,并根据所述四个时间差,计算所述第一设备与所述第二设备的相对距离值。
具体地,第一设备与第二设备之间的距离值,可以通过多种技术检测获得第一设备与第二设备之间的距离值,例如:飞行时间(TOF,Time of Flight)技术、到达时间差(TDOA,Time Difference of Arrival)技术等等,
例如,第一设备与第二设备可以采用双向测距(TWR,Two-way ranging)的方法进行测距,每次测距需要3次通讯,其具体包括以下步骤(TWR是TOF的一种算法),图3示出了采用TWR方法进行测距的示意图,具体步骤包括:
(1)第二设备发出一个第一数据包(也即:与第一射频信号相关的通讯数据),发出时,第二设备记录发送的时间戳tt1;这里,所述第一数据包可以是Poll数据包;
(2)第一设备等待接收第二设备发出的第一射频信号,第一设备接收到poll数据包后,记录接收时刻的时间戳ta1,然后发送一个第二数据包,并记录发送第二数据包(与第一射频信号相关的通讯数据)的时间戳ta2;这里,所述第二数据包可以是响应(response)数据包;
(3)第二设备等待接收第一设备发出的第二射频信号,第二设备接收到response数据包后,记录接收时刻的时间戳tt2,并计算出需要发送第三数据包(与第一射频信号相关的通讯数据)的时间戳tt3,第二设备的时钟到达tt3时,发出第三数据包,第三数据包中包含3个时间戳信息(tt1,tt2,tt3);这里,所述第三数据包可以是最终(final)数据包;
(4)第一设备收到final数据包后,记录接收时间戳ta3。此时第一设备已经记录了3个时间戳ta1,ta2,ta3,同时通过读取final数据包的内容,也可以得到第二设备的三个时间戳tt1,tt2,tt3;
(5)由于第一设备与第二设备的时间不同步,因此需要计算第一设备与第二设备各自的时间差,如图2所示,其中:
Tround1=tt2–tt1………………………………[1]
Treply1=ta2–ta1………………………………[2]
Tround2=ta3–ta2………………………………[3]
Treply2=tt3–tt2………………………………[4]
根据上述四个时间差,就可以计算出第一设备与第二设备之间的距离 值,其计算公式如下:
T=(Tround1–Treply1)/2………………………………[5]
T=(Tround2–Treply2)/2………………………………[6]
DIS=T*V………………………………[7]
其中,DIS表示第一设备与第二设备之间的距离值,T表示第一设备与第二设备之间的通信时长,V表示光速。
步骤103、基于所述相对位置信息控制所述第一设备对所述第二设备实施跟随,保持所述第一设备与所述第二设备之间的预设相对位置关系。
作为一种实施方式,所述基于所述相对位置信息控制所述第一设备对所述第二设备实施跟随,保持所述第一设备与所述第二设备之间的预设相对位置关系,包括:
基于所述相对位置信息判断所述第一设备与所述第二设备的相对位置是否满足预设相对位置关系;
如果不满足所述预设相对位置关系,控制所述第一设备调整当前运动状态,并基于调整后的运动状态对所述第二设备实施跟随,使所述第一设备与所述第二设备的相对位置满足预设相对位置关系;
如果满足所述预设相对位置关系,控制所述第一设备保持当前运动状态,基于当前运动状态对所述第二设备实施跟随,保持所述第一设备与所述第二设备之间的预设相对位置关系。
其中,所述预设相对位置关系可由第一设备端进行设定,或由第二设备端进行设定,并将其所设定的预设相对位置关系发送至第一设备,以由第一设备基于此标准对第二设备实施跟随。
如此,第一设备可以获取与第二设备之间的相对位置信息,且基于射频的方法可做两者之间的较高精度的相对定位。根据相对定位的结果,第一设备可对第二设备实施准确跟随。
具体地,所述如果不满足所述预设相对位置关系,控制所述第一设备 调整当前运动状态,并基于调整后的运动状态对所述第二设备实施跟随,使所述第一设备与所述第二设备的相对位置满足预设相对位置关系,包括:
所述相对位置为相对距离,所述相对位置关系为预设距离范围时,如果相对距离值不位于预设距离范围,则控制第一设备调整运行速度,并根据调整后的速度对所述第二设备实施跟随,直至相对距离值位于所述预设距离范围;
所述相对位置为相对角度,所述相对位置关系为预设角度范围时,如果相对角度值不位于预设角度范围,则控制第二设备旋转直至所述第一设备与所述第二设备的相对角度值位于所述预设角度范围。
其中,所述预设距离范围、所述预设角度范围可由第一设备端进行设定,或由第二设备端进行设定,并将其所设定的所述预设距离范围、所述预设角度范围发送至第一设备,以由第一设备基于此标准对第二设备实施跟随。
如此,根据测得的第二设备与第一设备之间的距离,控制第一设备向前运动,保持与第二设备之间的相对距离,例如,可对跟随距离进行PID控制或自适应控制,保持两者之间的相对位置。
如此,根据测得的相对角度,控制第一设备调整相对角度,保持与第二设备之间的相对角度,就可以实现跟踪。
如此,第一设备可以获取与第二设备之间的相对距离与相对角度,且基于射频的方法可做两者之间的较高精度的相对定位。根据相对定位的结果,第一设备可对第二设备实施准确跟随。
这里,所述第一设备为跟踪者,比如,所述第一设备为机器人。
这里,所述第二设备为被跟踪者或信标,比如,所述第二设备能够自己运动或借助于外力而运动,如所述第二设备为机器人;或者所述第二设备为不能自行运动的设备,由运动的人或物承载所述第二设备,使得所述第二设备运动。
本实施例所述控制方法,第一设备通过至少两个天线接收第二设备发送的第一射频信号;通过对所述第一射频信号的相关数据进行分析,确定所述第一设备与所述第二设备的相对位置信息;基于所述相对位置信息控制所述第一设备对所述第二设备实施跟随,保持所述第一设备与所述第二设备之间的预设相对位置关系;这样,能够基于射频信号实现对运动物体即第二设备的跟踪控制。
本申请实施例提供一种控制方法,所述方法应用于第二设备,所述第二设备具有天线,所述天线连接有射频模块,所述第二设备能通过所述射频模块与第一设备进行通讯,所述方法主要包括:
在所述第二设备处于第一运动状态的过程中,
所述第二设备通过所述天线向第一设备发射第一射频信号,供所述第一设备基于所述第一射频信号的相关数据确定所述第一设备与所述第二设备的相对位置信息,所述第一设备基于所述相对位置信息对所述第二设备实施跟随,保持所述第一设备与所述第二设备之间的预设相对位置关系。
这里,所述第一运动状态可以为匀速运动或变速运动,且在某一时刻或某一时间段的运动速度可以为0。
这里,所述天线至少满足下述条件:
圆极化天线;
主极化方向与交叉极化方向轴比小于第二预设值;
所述天线的方向图上凹陷处增益值小于第三阈值,且所述天线的辐射方向保持一致。
这里,第二预设值可以依据经验值进行设定、并调整。当然,第二预设值还可以第一射频信号的类型而设定或调整。
示例性地,所述第二设备中的天线为圆极化天线,且主极化方向与交叉极化方向轴比小于5dB;同时,该天线的方向图要尽量圆,从而保证各个方向辐射比较一致。
这里,第三预设值可以依据经验值进行设定、并调整。当然,第三预设值还可以第一射频信号的类型而设定或调整。
以第二设备中天线为UWB天线为例,图4示出了第一射频信号为UWB信号时,第二设备中UWB天线正视图和后视图示意图,具体的,如图4所示,左半部分附图为从PCB板正面看获得的UWB天线正视图,右半部分附图为从PCB板背面看获得的UWB天线后视图。如图4所示,该天线采用3层PCB设计,并使用威尔金森(Wilkson)功分器加延迟线的方法形成正交馈电,实现圆极化天线。
其中,所述第一射频信号可以为UWB信号、或WIFI信号、或蓝牙信号。
本申请实施例所述控制方法,在所述第二设备处于第一运动状态的过程中,所述第二设备通过所述天线向第一设备发射第一射频信号,供所述第一设备基于所述第一射频信号的相关数据确定所述第一设备与所述第二设备的相对位置信息,所述第一设备基于所述相对位置信息对所述第二设备实施跟随,保持所述第一设备与所述第二设备之间的预设相对位置关系。这样,能够基于射频信号实现对运动物体即第二设备的跟踪控制。
本申请实施例还记载了一种第一设备,图5示出了第一设备的一种组成结构示意图,如图5所示,所述第一设备包括:
至少两个射频模块51,每个射频模块51都连接有独立的天线;
第一处理器52,配置为通过所述至少两个天线接收第二设备发送的第一射频信号;通过对所述第一射频信号的相关数据进行分析,确定所述第一设备与所述第二设备的相对位置信息;基于所述相对位置信息控制所述第一设备对所述第二设备实施跟随,保持所述第一设备与所述第二设备之间的预设相对位置关系。
在一实施方式中,所述第一处理器52,具体配置为:
通过第一射频信号到达所述至少两个天线的相位差和/或时间差,确定 所述第二设备与所述第一设备的相对角度值;和/或
获取所述第一设备通过所述至少两个天线中的任一天线与所述第二设备通讯过程中,与所述第一射频信号相关的三次通讯数据;根据所述三次通讯数据得到与所述第一设备以及所述第二设备相关的四个时间差,并根据所述四个时间差,计算所述第一设备与所述第二设备的相对距离值。
其中,所述至少两个天线至少满足下述条件:
垂直线极化天线;
主极化与交叉极化方向轴比大于或等于第一预设值;
两天线之间的距离小于通讯波长的半波长。
其中,所述两天线之间的距离小于通讯波长的半波长,包括:
所述两天线之间的距离d大于0.7×λ/2,且所述d小于0.95×λ/2,其中,所述λ为通讯波长,所述d为两天线之间的距离。
这里,第一预设值可以依据经验值进行设定、并调整。当然,第一预设值还可以第一射频信号的类型而设定或调整。
可选地,所述两天线之间的距离小于通讯波长的半波长,包括:
所述两天线之间的距离d大于0.7×λ/2,且所述d小于0.95×λ/2,其中,所述λ为通讯波长,所述d为两天线之间的距离。
也就是说,两天线之间的距离d的约束距离为(0.7~0.95)的半波长。
示例性地,所述第一设备中的两个UWB天线,满足以下几个条件:
1)垂直线极化,且主极化与交叉极化方向轴比大于等于12dB。
2)两根天线之间测距离d为(0.7~0.95)的半波长。
这里,所述第一射频信号可以为UWB信号、或WIFI信号、或蓝牙信号。
在一实施方式中,所述第一处理器52,具体配置为:
基于所述相对位置信息判断所述第一设备与所述第二设备的相对位置是否满足预设相对位置关系;
如果不满足所述预设相对位置关系,控制所述第一设备调整当前运动状态,并基于调整后的运动状态对所述第二设备实施跟随,使所述第一设备与所述第二设备的相对位置满足预设相对位置关系;
如果满足所述预设相对位置关系,控制所述第一设备保持当前运动状态,基于当前运动状态对所述第二设备实施跟随,保持所述第一设备与所述第二设备之间的预设相对位置关系。
在一实施方式中,所述第一处理器52,具体配置为:
所述相对位置为相对距离,所述相对位置关系为预设距离范围时,如果相对距离值不位于预设距离范围,则控制第一设备调整运行速度,并根据调整后的速度对所述第二设备实施跟随,直至相对距离值位于所述预设距离范围;
所述相对位置为相对角度,所述相对位置关系为预设角度范围时,如果相对角度值不位于预设角度范围,则控制第二设备旋转直至所述第一设备与所述第二设备的相对角度值位于所述预设角度范围。
本领域技术人员应当理解,本实施例的第一设备中各单元的功能,可参照前述应用于第一设备中的控制方法的相关描述而理解。
实际应用中,上述第一处理器52的具体的结构可以为中央处理器(CPU,Central Processing Unit)、微处理器(MCU,Micro Controller Unit)、数字信号处理器(DSP,Digital Signal Processing)或可编程逻辑器件(PLC,Programmable Logic Controller)等具有处理功能的电子元器件或电子元器件的集合。其中,所述处理器包括可执行代码,所述可执行代码存储在存储介质中,所述处理器可以通过总线等通信接口与所述存储介质中相连,在执行具体的各单元的对应功能时,从所述存储介质中读取并运行所述可执行代码。所述存储介质用于存储所述可执行代码的部分优选为非瞬间存储介质。
本实施例所述第一设备,能够基于射频信号实现第一设备对第二设备 的跟踪控制。
实施例四
本申请实施例还记载了一种第二设备,图6示出了第二设备的一种组成结构示意图,如图6所示,所述第二设备包括:
射频模块61,所述射频模块61连接有天线,
第二处理器62,配置为在所述第二设备处于第一运动状态的过程中,通过所述天线向第一设备发射第一射频信号,供所述第一设备基于所述第一射频信号的相关数据确定所述第一设备与所述第二设备的相对位置信息,所述第一设备基于所述相对位置信息对所述第二设备实施跟随,保持所述第一设备与所述第二设备之间的预设相对位置关系。
这里,所述第一运动状态可以为匀速运动或变速运动,且在某一时刻或某一时间段的运动速度可以为0。
其中,所述天线至少满足下述条件:
圆极化天线;
主极化方向与交叉极化方向轴比小于第二预设值;
所述天线的方向图上凹陷处增益值小于第三阈值,且所述天线的辐射方向保持一致。
这里,第二预设值可以依据经验值进行设定、并调整。当然,第二预设值还可以第一射频信号的类型而设定或调整。
示例性地,所述第二设备中的天线为圆极化天线,且主极化方向与交叉极化方向轴比小于5dB;同时,该天线的方向图要尽量圆,从而保证各个方向辐射比较一致。
本领域技术人员应当理解,本实施例的第二设备中各单元的功能,可参照前述应用于第二设备中的控制方法的相关描述而理解。
实际应用中,上述第二处理器62的具体的结构可以为CPU、MCU、DSP或PLC等具有处理功能的电子元器件或电子元器件的集合。其中,所 述处理器包括可执行代码,所述可执行代码存储在存储介质中,所述处理器可以通过总线等通信接口与所述存储介质中相连,在执行具体的各单元的对应功能时,从所述存储介质中读取并运行所述可执行代码。所述存储介质用于存储所述可执行代码的部分优选为非瞬间存储介质。
本实施例所述第二设备,能够基于射频信号实现第一设备对第二设备的跟踪控制。
实施例五
基于本申请实施例一至四,本申请实施例还记载了一种控制***,图7示出了控制***的一种组成结构示意图,如图7所示,所述控制***包括:
第二设备10,配置为向第一设备20发送第一射频信号;
第一设备20,具有至少两个天线,配置为通过所述至少两个天线接收第二设备10发送的第一射频信号;通过对所述第一射频信号的相关数据进行分析,确定所述第一设备20与所述第二设备10的相对位置信息;基于所述相对位置信息控制所述第一设备20对所述第二设备10实施跟随,保持所述第一设备20与所述第二设备10之间的预设相对位置关系。
这里,所述第一设备20的具体的组成结构如图5所示,所述第二设备10的具体的组成结构如图6所示。
本实施例所涉及的第一设备为跟踪者,比如,所述第一设备为机器人。
本实施例所涉及的第二设备为被跟踪者或信标,比如,所述第二设备能够自己运动或借助于外力而运动,如所述第二设备为机器人;或者所述第二设备为不能自行运动设备,由运动的人或物承载所述第二设备,使得所述第二设备运动。
本实施例所述控制***,能够基于射频信号实现第一设备对第二设备的跟踪控制。
本实施例还提供一种计算机存储介质,所述计算机存储介质存储有计算机程序,所述计算机程序被处理器执行之后,能够实现前述各实施例所 述的应用于第一设备的任意一项或多项控制方法。
所述计算机存储介质可为各种类型的存储介质,在本实施例中可优选为非瞬间存储介质。
所述第一设备具有至少两个天线,每一天线都连接有独立的射频模块。
作为一种实施方式,所述计算机可执行指令用于执行:
通过所述至少两个天线接收第二设备发送的第一射频信号;
通过对所述第一射频信号的相关数据进行分析,确定所述第一设备与所述第二设备的相对位置信息;
基于所述相对位置信息控制所述第一设备对所述第二设备实施跟随,保持所述第一设备与所述第二设备之间的预设相对位置关系。
作为一种实施方式,所述计算机可执行指令用于执行:
通过第一射频信号到达所述至少两个天线的相位差和/或时间差,确定所述第二设备与所述第一设备的相对角度值;和/或
获取所述第一设备通过所述至少两个天线中的任一天线与所述第二设备通讯过程中,与所述第一射频信号相关的三次通讯数据;根据所述三次通讯数据得到与所述第一设备以及所述第二设备相关的四个时间差,并根据所述四个时间差,计算所述第一设备与所述第二设备的相对距离值。
其中,所述至少两个天线至少满足下述条件:
垂直线极化天线;
主极化与交叉极化方向轴比大于或等于第一预设值;
两天线之间的距离小于通讯波长的半波长。
其中,所述两天线之间的距离小于通讯波长的半波长,包括:
所述两天线之间的距离d大于0.7×λ/2,且所述d小于0.95×λ/2,其中,所述λ为通讯波长,所述d为两天线之间的距离。
作为一种实施方式,所述计算机可执行指令用于执行:
基于所述相对位置信息判断所述第一设备与所述第二设备的相对位置 是否满足预设相对位置关系;
如果不满足所述预设相对位置关系,控制所述第一设备调整当前运动状态,并基于调整后的运动状态对所述第二设备实施跟随,使所述第一设备与所述第二设备的相对位置满足预设相对位置关系;
如果满足所述预设相对位置关系,控制所述第一设备保持当前运动状态,基于当前运动状态对所述第二设备实施跟随,保持所述第一设备与所述第二设备之间的预设相对位置关系。
作为一种实施方式,所述计算机可执行指令用于执行:
所述相对位置为相对距离,所述相对位置关系为预设距离范围时,如果相对距离值不位于预设距离范围,则控制第一设备调整运行速度,并根据调整后的速度对所述第二设备实施跟随,直至相对距离值位于所述预设距离范围;
所述相对位置为相对角度,所述相对位置关系为预设角度范围时,如果相对角度值不位于预设角度范围,则控制第二设备旋转直至所述第一设备与所述第二设备的相对角度值位于所述预设角度范围。
其中,所述第一射频信号为超宽带UWB信号、或无线保真WIFI信号、或蓝牙信号。
本实施例还提供一种计算机存储介质,所述计算机存储介质存储有计算机程序,所述计算机程序被处理器执行之后,能够实现前述各实施例所述的应用于第二设备的任意一项或多项控制方法。
所述计算机存储介质可为各种类型的存储介质,在本实施例中可优选为非瞬间存储介质。
所述第二设备具有天线,所述天线连接有射频模块,所述第二设备能通过所述射频模块与第一设备进行通讯。
作为一种实施方式,所述计算机可执行指令用于执行:
在所述第二设备处于第一运动状态的过程中,
所述第二设备通过所述天线向第一设备发射第一射频信号,供所述第一设备基于所述第一射频信号的相关数据确定所述第一设备与所述第二设备的相对位置信息,所述第一设备基于所述相对位置信息对所述第二设备实施跟随,保持所述第一设备与所述第二设备之间的预设相对位置关系。
其中,所述天线至少满足下述条件:
圆极化天线;
主极化方向与交叉极化方向轴比小于第二预设值;
所述天线的方向图上凹陷处增益值小于第三阈值,且所述天线的辐射方向保持一致。
其中,所述第一射频信号为超宽带UWB信号、或无线保真WIFI信号、或蓝牙信号。
在本申请所提供的几个实施例中,应该理解到,所揭露的设备和方法,可以通过其它的方式实现。以上所描述的设备实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,如:多个单元或组件可以结合,或可以集成到另一个***,或一些特征可以忽略,或不执行。另外,所显示或讨论的各组成部分相互之间的耦合、或直接耦合、或通信连接可以是通过一些接口,设备或单元的间接耦合或通信连接,可以是电性的、机械的或其它形式的。
上述作为分离部件说明的单元可以是、或也可以不是物理上分开的,作为单元显示的部件可以是、或也可以不是物理单元,即可以位于一个地方,也可以分布到多个网络单元上;可以根据实际的需要选择其中的部分或全部单元来实现本实施例方案的目的。
另外,在本申请各实施例中的各功能单元可以全部集成在一个处理模块中,也可以是各单元分别单独作为一个单元,也可以两个或两个以上单元集成在一个单元中;上述集成的单元既可以采用硬件的形式实现,也可以采用硬件加软件功能单元的形式实现。
本领域普通技术人员可以理解:实现上述方法实施例的全部或部分步骤可以通过程序指令相关的硬件来完成,前述的程序可以存储于一计算机可读取存储介质中,该程序在执行时,执行包括上述方法实施例的步骤;而前述的存储介质包括:移动存储设备、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。
工业实用性
本申请实施例的技术方案,第一设备通过至少两个天线接收第二设备发送的第一射频信号;通过对所述第一射频信号的相关数据进行分析,确定所述第一设备与所述第二设备的相对位置信息;基于所述相对位置信息控制所述第一设备对所述第二设备实施跟随,保持所述第一设备与所述第二设备之间的预设相对位置关系;这样,能够基于射频信号实现对运动物体即第二设备的跟踪控制。

Claims (17)

  1. 一种控制方法,应用于第一设备,所述第一设备具有至少两个天线,每一天线都连接有独立的射频模块,所述方法包括:
    通过所述至少两个天线接收第二设备发送的第一射频信号;
    通过对所述第一射频信号的相关数据进行分析,确定所述第一设备与所述第二设备的相对位置信息;
    基于所述相对位置信息控制所述第一设备对所述第二设备实施跟随,保持所述第一设备与所述第二设备之间的预设相对位置关系。
  2. 如权利要求1所述的方法,其中,所述通过对所述第一射频信号的相关数据进行分析,确定所述第二设备与所述第一设备的相对位置信息,包括:
    通过第一射频信号到达所述至少两个天线的相位差和/或时间差,确定所述第二设备与所述第一设备的相对角度值;和/或
    获取所述第一设备通过所述至少两个天线中的任一天线与所述第二设备通讯过程中,与所述第一射频信号相关的三次通讯数据;根据所述三次通讯数据得到与所述第一设备以及所述第二设备相关的四个时间差,并根据所述四个时间差,计算所述第一设备与所述第二设备的相对距离值。
  3. 如权利要求1所述的方法,其中,所述至少两个天线至少满足下述条件:
    垂直线极化天线;
    主极化与交叉极化方向轴比大于或等于第一预设值;
    两天线之间的距离小于通讯波长的半波长。
  4. 如权利要求3所述的方法,其中,所述两天线之间的距离小于通讯波长的半波长,包括:
    所述两天线之间的距离d大于0.7×λ/2,且所述d小于0.95×λ/2, 其中,所述λ为通讯波长,所述d为两天线之间的距离。
  5. 如权利要求1所述的方法,其中,所述基于所述相对位置信息控制所述第一设备对所述第二设备实施跟随,保持所述第一设备与所述第二设备之间的预设相对位置关系,包括:
    基于所述相对位置信息判断所述第一设备与所述第二设备的相对位置是否满足预设相对位置关系;
    如果不满足所述预设相对位置关系,控制所述第一设备调整当前运动状态,并基于调整后的运动状态对所述第二设备实施跟随,使所述第一设备与所述第二设备的相对位置满足预设相对位置关系;
    如果满足所述预设相对位置关系,控制所述第一设备保持当前运动状态,基于当前运动状态对所述第二设备实施跟随,保持所述第一设备与所述第二设备之间的预设相对位置关系。
  6. 如权利要求5所述的方法,其中,所述如果不满足所述预设相对位置关系,控制所述第一设备调整当前运动状态,并基于调整后的运动状态对所述第二设备实施跟随,使所述第一设备与所述第二设备的相对位置满足预设相对位置关系,包括:
    所述相对位置为相对距离,所述相对位置关系为预设距离范围时,如果相对距离值不位于预设距离范围,则控制第一设备调整运行速度,并根据调整后的速度对所述第二设备实施跟随,直至相对距离值位于所述预设距离范围;
    所述相对位置为相对角度,所述相对位置关系为预设角度范围时,如果相对角度值不位于预设角度范围,则控制第二设备旋转直至所述第一设备与所述第二设备的相对角度值位于所述预设角度范围。
  7. 如权利要求1所述的方法,其中,所述第一射频信号为超宽带UWB信号、或无线保真WIFI信号、或蓝牙信号。
  8. 一种跟踪控制方法,应用于第二设备,所述第二设备具有天线,所 述天线连接有射频模块,所述第二设备能通过所述射频模块与第一设备进行通讯,所述方法包括:
    在所述第二设备处于第一运动状态的过程中,
    所述第二设备通过所述天线向第一设备发射第一射频信号,供所述第一设备基于所述第一射频信号的相关数据确定所述第一设备与所述第二设备的相对位置信息,所述第一设备基于所述相对位置信息对所述第二设备实施跟随,保持所述第一设备与所述第二设备之间的预设相对位置关系。
  9. 如权利要求8所述的方法,其中,所述天线至少满足下述条件:
    圆极化天线;
    主极化方向与交叉极化方向轴比小于第二预设值;
    所述天线的方向图上凹陷处增益值小于第三阈值,且所述天线的辐射方向保持一致。
  10. 如权利要求8所述的方法,其中,所述第一射频信号为超宽带UWB信号、或无线保真WIFI信号、或蓝牙信号。
  11. 一种第一设备,所述第一设备包括:
    至少两个射频模块,每个射频模块都连接有独立的天线;
    第一处理器,配置为通过所述至少两个天线接收第二设备发送的第一射频信号;通过对所述第一射频信号的相关数据进行分析,确定所述第一设备与所述第二设备的相对位置信息;基于所述相对位置信息控制所述第一设备对所述第二设备实施跟随,保持所述第一设备与所述第二设备之间的预设相对位置关系。
  12. 如权利要求11所述的第一设备,其中,所述至少两个天线至少满足下述条件:
    垂直线极化天线;
    主极化与交叉极化方向轴比大于或等于第一预设值;
    两天线之间的距离小于通讯波长的半波长。
  13. 一种第二设备,所述第二设备包括:
    射频模块,
    与所述射频模块连接的天线,
    第二处理器,配置为在所述第二设备处于第一运动状态的过程中,通过所述天线向第一设备发射第一射频信号,供所述第一设备基于所述第一射频信号的相关数据确定所述第一设备与所述第二设备的相对位置信息,所述第一设备基于所述相对位置信息对所述第二设备实施跟随,保持所述第一设备与所述第二设备之间的预设相对位置关系。
  14. 如权利要求13所述的第二设备,其中,所述天线至少满足下述条件:
    圆极化天线;
    主极化方向与交叉极化方向轴比小于第二预设值;
    所述天线的方向图上凹陷处增益值小于第三阈值,且所述天线的辐射方向保持一致。
  15. 一种控制***,所述控制***包括:
    第二设备,配置为向第一设备发送第一射频信号;
    第一设备,具有至少两个天线,配置为通过所述至少两个天线接收第二设备发送的第一射频信号;通过对所述第一射频信号的相关数据进行分析,确定所述第一设备与所述第二设备的相对位置信息;基于所述相对位置信息控制所述第一设备对所述第二设备实施跟随,保持所述第一设备与所述第二设备之间的预设相对位置关系。
  16. 一种计算机存储介质,所述计算机存储介质中存储有计算机可执行指令,所述计算机可执行指令用于执行权利要求1至7任一项所述的控制方法。
  17. 一种计算机存储介质,所述计算机存储介质中存储有计算机可执行指令,所述计算机可执行指令用于执行权利要求8至10任一项所述的控 制方法。
PCT/CN2018/094358 2017-06-13 2018-07-03 一种控制方法、设备、***及计算机存储介质 WO2018228604A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710442330.XA CN107368066A (zh) 2017-06-13 2017-06-13 一种控制方法、设备及***
CN201710442330.X 2017-06-13

Publications (1)

Publication Number Publication Date
WO2018228604A1 true WO2018228604A1 (zh) 2018-12-20

Family

ID=60304864

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/094358 WO2018228604A1 (zh) 2017-06-13 2018-07-03 一种控制方法、设备、***及计算机存储介质

Country Status (2)

Country Link
CN (1) CN107368066A (zh)
WO (1) WO2018228604A1 (zh)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107368066A (zh) * 2017-06-13 2017-11-21 纳恩博(北京)科技有限公司 一种控制方法、设备及***
CN108549410A (zh) * 2018-01-05 2018-09-18 灵动科技(北京)有限公司 主动跟随方法、装置、电子设备及计算机可读存储介质
CN108415436A (zh) * 2018-04-09 2018-08-17 重庆鲁班机器人技术研究院有限公司 机器人引导方法、装置及机器人
CN108594171B (zh) 2018-04-28 2021-06-22 纳恩博(北京)科技有限公司 定位通信设备、定位方法及计算机存储介质
CN111480133B (zh) * 2018-11-22 2021-09-21 华为技术有限公司 判断两个终端设备相对位置的方法和装置
CN113923769A (zh) * 2020-07-07 2022-01-11 Oppo广东移动通信有限公司 定位方法及装置
CN111983559A (zh) * 2020-08-14 2020-11-24 Oppo广东移动通信有限公司 室内定位导航方法及装置
CN112163061A (zh) * 2020-10-10 2021-01-01 Oppo广东移动通信有限公司 用户定位方法及装置、存储介质和电子设备
CN114384465A (zh) * 2020-10-20 2022-04-22 Oppo广东移动通信有限公司 方位角确定方法及装置
CN114430601B (zh) * 2020-10-29 2023-10-03 Oppo广东移动通信有限公司 照明控制方法及相关装置
CN112637951A (zh) * 2020-12-31 2021-04-09 Oppo广东移动通信有限公司 定位方法及装置、电子设备及计算机可读存储介质
CN114697894A (zh) * 2020-12-31 2022-07-01 华为技术有限公司 一种室内定位方法、终端以及***
CN112929832A (zh) * 2021-01-22 2021-06-08 维沃移动通信有限公司 位置追踪方法、装置、电子设备和可读存储介质
CN115248414A (zh) * 2021-04-28 2022-10-28 Oppo广东移动通信有限公司 方位角确定方法及相关产品

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030191602A1 (en) * 2002-04-08 2003-10-09 Samsung Electronics Co., Ltd. Apparatus and method for measuring position of mobile robot
US20140060949A1 (en) * 2012-08-31 2014-03-06 Autonomous Tractor Corporation Navigation system and method
CN203759546U (zh) * 2014-03-07 2014-08-06 湖北师范学院 一种跟随装置
CN106598081A (zh) * 2016-10-27 2017-04-26 纳恩博(北京)科技有限公司 一种图像采集方法及电子设备
CN106680763A (zh) * 2016-11-18 2017-05-17 纳恩博(北京)科技有限公司 一种定位方法和装置
CN107368066A (zh) * 2017-06-13 2017-11-21 纳恩博(北京)科技有限公司 一种控制方法、设备及***

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103984971B (zh) * 2014-05-31 2017-09-12 范志广 基于天线阵列相位差测向射频识别的无线定位方法及***
CN105843226B (zh) * 2016-04-06 2019-04-12 江西省新干县华兴箱包有限公司 一种智能行李箱的多图像跟随方法
CN106023251A (zh) * 2016-05-16 2016-10-12 西安斯凯智能科技有限公司 一种跟踪***及跟踪方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030191602A1 (en) * 2002-04-08 2003-10-09 Samsung Electronics Co., Ltd. Apparatus and method for measuring position of mobile robot
US20140060949A1 (en) * 2012-08-31 2014-03-06 Autonomous Tractor Corporation Navigation system and method
CN203759546U (zh) * 2014-03-07 2014-08-06 湖北师范学院 一种跟随装置
CN106598081A (zh) * 2016-10-27 2017-04-26 纳恩博(北京)科技有限公司 一种图像采集方法及电子设备
CN106680763A (zh) * 2016-11-18 2017-05-17 纳恩博(北京)科技有限公司 一种定位方法和装置
CN107368066A (zh) * 2017-06-13 2017-11-21 纳恩博(北京)科技有限公司 一种控制方法、设备及***

Also Published As

Publication number Publication date
CN107368066A (zh) 2017-11-21

Similar Documents

Publication Publication Date Title
WO2018228604A1 (zh) 一种控制方法、设备、***及计算机存储介质
US20210157323A1 (en) Positioning method and system, electronic device, and computer-readable storage medium
Kempke et al. Surepoint: Exploiting ultra wideband flooding and diversity to provide robust, scalable, high-fidelity indoor localization
Hepp et al. Omni-directional person tracking on a flying robot using occlusion-robust ultra-wideband signals
US10935625B2 (en) Methods and systems for selecting the shortest path in a multi-path environment
WO2018018760A1 (zh) 一种信息传输方法、设备及计算机存储介质
US20090304374A1 (en) Device for tracking a moving object
JP2019532285A (ja) 位置決め方法、装置及びコンピュータ記憶媒体
US20230063193A1 (en) Location system with ultra-wideband (uwb) infrastructure and discovery infrastructure
CN111148058A (zh) 室内环境下移动目标的定位方法、***及移动机器人
US11722834B2 (en) Low level smartphone audio and sensor clock synchronization
CN112327944A (zh) 一种电子设备控制方法、装置、电子设备及存储介质
WO2022006908A1 (zh) 一种物联网设备的控制方法及通信装置
CN114866953A (zh) 基于ble-uwb的定位调度方法、装置、***及存储介质
Lee et al. Drone positioning system using UWB sensing and out-of-band control
Cao et al. Uwb based integrated communication and positioning system for multi-uavs close formation
CN110806755A (zh) 一种无人机跟踪拍摄方法、终端及计算机可读存储介质
TWI555998B (zh) A positioning system and method
US12050476B2 (en) Method of determining location for swarm flight using UWB
CN114845386A (zh) 基于uwb基站二次自修正的时间同步与定位方法及***
CN107678030A (zh) 一种基于毫米波雷达的无人机避障***
CN113660604A (zh) 定位方法、定位装置、移动终端和存储介质
CN113259843A (zh) 受控设备的控制方法、装置、***、终端设备及uwb组件
Meunier Wireless indoor localisation within the 5G internet of radio light
Astapov et al. Collective acoustic localization in a network of dual channel low power devices

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18818613

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18818613

Country of ref document: EP

Kind code of ref document: A1