WO2018228465A1 - 一种发送功率的确定方法、处理芯片及通信设备 - Google Patents

一种发送功率的确定方法、处理芯片及通信设备 Download PDF

Info

Publication number
WO2018228465A1
WO2018228465A1 PCT/CN2018/091226 CN2018091226W WO2018228465A1 WO 2018228465 A1 WO2018228465 A1 WO 2018228465A1 CN 2018091226 W CN2018091226 W CN 2018091226W WO 2018228465 A1 WO2018228465 A1 WO 2018228465A1
Authority
WO
WIPO (PCT)
Prior art keywords
ptrs
power ratio
dmrs
data channel
relative power
Prior art date
Application number
PCT/CN2018/091226
Other languages
English (en)
French (fr)
Inventor
张希
管鹏
唐小勇
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201710698502.XA external-priority patent/CN109151970B/zh
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CA3067081A priority Critical patent/CA3067081C/en
Priority to EP21172621.1A priority patent/EP3955655A1/en
Priority to ES18765529T priority patent/ES2907757T3/es
Priority to JP2019569410A priority patent/JP7028899B2/ja
Priority to EP18765529.5A priority patent/EP3442278B1/en
Priority to BR112019026152-4A priority patent/BR112019026152B1/pt
Priority to US16/204,879 priority patent/US10652829B2/en
Publication of WO2018228465A1 publication Critical patent/WO2018228465A1/zh
Priority to US16/855,686 priority patent/US11122514B2/en
Priority to US17/473,496 priority patent/US11864121B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/22TPC being performed according to specific parameters taking into account previous information or commands
    • H04W52/226TPC being performed according to specific parameters taking into account previous information or commands using past references to control power, e.g. look-up-table
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/06TPC algorithms
    • H04W52/16Deriving transmission power values from another channel
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/261Details of reference signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/06TPC algorithms
    • H04W52/14Separate analysis of uplink or downlink
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • H04W52/32TPC of broadcast or control channels
    • H04W52/325Power control of control or pilot channels

Definitions

  • the present invention relates to the field of communications technologies, and in particular, to a method for determining transmit power, a processing chip, and a communication device.
  • a higher carrier frequency (referred to as high frequency) relative to Long Term Evolution (LTE) will be adopted.
  • LTE Long Term Evolution
  • the frequency is generally higher than 6 GHz, and the currently focused frequency band is 28 GHz. 38GHz, 72GHz, etc., to achieve wireless communication with greater bandwidth and higher transmission rate.
  • the radio frequency distortion of high-frequency systems will be more serious, especially the influence of phase noise.
  • the effects of Doppler and Carrier Frequency Offset (CFO) will increase as the frequency becomes higher.
  • MIMO-OFDM Massive input massive output-Orthogonal Frequency Division Multiplexing
  • FFT Fourier Transform
  • a channel representing the mth transmit antenna to the nth receive antenna on the kth subcarrier Indicates the transmission data of the mth antenna on the kth subcarrier, Represents noise on the kth subcarrier on the nth receive antenna.
  • FIG. 1A is a constellation point where a 64QAM modulated signal is not affected by phase noise
  • FIG. 1B is a constellation point of a 2G band 64QAM modulated signal affected by phase noise
  • FIG. 1C is a constellation point of a 28GAM modulated signal affected by phase noise in a 28G band.
  • the phase noise level deteriorates at a level of 20*log (f1/f2) .
  • the phase noise level of the 28G band is 23 dB higher than that of the 2G band. The higher the phase noise level, the greater the influence of the Common Phase Error (CPE), and the greater the phase error caused by the CPE.
  • CPE Common Phase Error
  • PCRS Phase Compensation Reference Signals
  • PTRS Phase Tracking Reference Signals
  • the embodiment of the present application provides a method for determining a transmit power, which can flexibly adapt to different DMRS port numbers, PTRS port numbers, and port multiplexing mode configurations to ensure efficient use of energy and improve accuracy of PTRS measurements.
  • the embodiment of the present application provides a method for determining transmit power, including: determining, by a first device, a relative power ratio of a phase tracking reference signal PTRS and a data channel, or a relative power ratio of a PTRS and a demodulation reference signal DMRS, Wherein the relative power ratio of the PTRS and the data channel is determined by the first function and the first variable, and the relative power ratio of the PTRS and the DMRS is determined by the second function, the first variable, and the second variable, wherein the first variable includes the number of transmission layers or the DMRS The number of ports, the second variable includes the frequency domain density of the DMRS; the first device determines the transmit power of the PTRS based on the relative power ratio of the PTRS and the data channel and the transmit power of the data channel, or the relative power ratio of the PTRS and the DMRS and the transmit power of the DMRS; The first device transmits the PTRS to the second device using the transmit power of the PTRS
  • the first device includes a terminal device
  • the second device includes a base station device
  • the data channel includes a physical uplink shared channel PUSCH.
  • the first device includes a base station device
  • the second device includes a terminal device
  • the data channel includes a physical downlink shared channel PDSCH.
  • the relative power ratio of the PTRS and the data channel is determined by the first function and the first variable, including:
  • the relative power ratio of the PTRS and the DMRS is determined by the second function, the first variable, and the second variable, including:
  • X includes the first variable and Y includes the second variable.
  • the embodiment of the present application provides a method for determining a transmit power, including: determining, by a lookup table, a relative power ratio of a phase tracking reference signal PTRS and a data channel, or a relative of a PTRS and a demodulation reference signal DMRS; Power ratio; the first device determines the transmit power of the PTRS based on the relative power ratio of the PTRS and the data channel and the transmit power of the data channel, or the relative power ratio of the PTRS and the DMRS and the transmit power of the DMRS; the first device uses the transmit power of the PTRS The second device sends a PTRS.
  • the first device includes a terminal device
  • the second device includes a base station device
  • the data channel includes a physical uplink shared channel PUSCH.
  • the first device includes a base station device
  • the second device includes a terminal device
  • the data channel includes a physical downlink shared channel PDSCH.
  • the first device determines, by using a lookup table, a relative power ratio of the PTRS and the data channel, including:
  • the first device determines the relative power ratio of the PTRS and the data channel by looking up the following table:
  • the first device determines, by using a lookup table, a relative power ratio of the PTRS and the data channel, including:
  • the first device determines the relative power ratio of the PTRS and the data channel by looking up the following table:
  • the first device determines, by using a lookup table, a relative power ratio of the PTRS and the DMRS, including:
  • the first device determines the relative power ratio of PTRS and DMRS by looking up the following table:
  • Transport layer layer Frequency domain density of DMRS Relative power ratio (dB) of PTRS and DMRS 1 1/4 (-)6 2 1/4 (-)3 3 1/4 (-) 1.23 4 1/4 0 5 1/4 0 6 1/4 0 7 1/4 0 8 1/4 3
  • DMRS port number Frequency domain density of DMRS Relative power ratio (dB) of PTRS and DMRS 1 1/4 (-)6
  • an embodiment of the present application provides a processing chip, configured to: determine a relative power ratio of a phase tracking reference signal PTRS and a data channel, or a relative power ratio of a PTRS and a demodulation reference signal DMRS, where the PTRS and the data channel
  • the relative power ratio is determined by the first function and the first variable
  • the relative power ratio of the PTRS and the DMRS is determined by the second function, the first variable, and the second variable, wherein the first variable includes the number of transmission layers or the number of DMRS ports, and the second
  • the variable includes the frequency domain density of the DMRS
  • the transmission power of the PTRS is determined based on the relative power ratio of the PTRS and the data channel and the transmission power of the data channel, or the relative power ratio of the PTRS and the DMRS and the transmission power of the DMRS.
  • the data channel includes a physical uplink shared channel PUSCH or a physical downlink shared channel PDSCH.
  • the relative power ratio of the PTRS and the data channel is determined by the first function and the first variable, including:
  • the relative power ratio of the PTRS and the DMRS is determined by the second function, the first variable, and the second variable, including:
  • X includes the first variable and Y includes the second variable.
  • the embodiment of the present application provides a processing chip, configured to: determine, by using a lookup table, a relative power ratio of a phase tracking reference signal PTRS and a data channel, or a relative power ratio of a PTRS and a demodulation reference signal DMRS;
  • the transmission power of the PTRS is determined by the relative power ratio of the data channel and the transmission power of the data channel, or the relative power ratio of the PTRS and the DMRS and the transmission power of the DMRS.
  • the data channel includes a physical uplink shared channel PUSCH.
  • the data channel includes a physical downlink shared channel PDSCH.
  • determining, by looking up the table, a relative power ratio of the PTRS and the data channel includes:
  • determining, by looking up the table, a relative power ratio of the PTRS and the data channel includes:
  • determining a relative power ratio of the PTRS and the DMRS by using a lookup table includes:
  • Transport layer layer Frequency domain density of DMRS Relative power ratio (dB) of PTRS and DMRS 1 1/4 (-)6 2 1/4 (-)3 3 1/4 (-) 1.23 4 1/4 0 5 1/4 0 6 1/4 0 7 1/4 0 8 1/4 3
  • DMRS port number Frequency domain density of DMRS Relative power ratio (dB) of PTRS and DMRS 1 1/4 (-)6 2 1/4 (-)3 3 1/4 (-) 1.23 4 1/4 0 5 1/4 0 6 1/4 0 7 1/4 0 8 1/4 3
  • the present application provides a communication device, including a processor and a transmitter, for performing the method provided by the first aspect and all possible implementations thereof.
  • the present application provides a communication device, including a processor and a transmitter, for performing the method provided by the second aspect and all possible implementations thereof.
  • the present application provides a method for determining transmit power, including: a first device mapping data onto multiple transport layers, where multiple transport layers include a first transport layer, and a first transport layer corresponds to the first
  • the RE set and the second RE set, the first RE set and the second RE set both comprise a plurality of REs, and each of the first RE sets is mapped with a phase tracking reference signal PTRS, each of the second RE sets None of the REs can be used to map data;
  • the first device uses the power of all REs in the second RE set to enhance the transmit power of the PTRS mapped on all REs in the first RE set; the first device uses the enhanced transmit power to transmit the PTRS .
  • the embodiment of the present application provides a communications device, including: a processor, configured to map data to multiple transport layers, where multiple transport layers include a first transport layer, and the first transport layer corresponds to the first a RE set and a second RE set, the first RE set and the second RE set both comprise a plurality of REs, and each of the first RE sets is mapped with a phase tracking reference signal PTRS, each of the second RE sets None of the REs can be used to map data; the power of all REs in the second RE set is used to enhance the transmit power of the PTRS mapped on all REs in the first RE set; and the transmitter is configured to use the enhanced transmit power to transmit the PTRS .
  • the transmitting device first determines the relative power ratio of the PTRS and the data channel or the DMRS by looking up the table or calculating, and then determining the sending power of the PTRS according to the data channel or the transmitting power of the DMRS, and then transmitting the PTRS by using the sending power. It can flexibly adapt to different DMRS port numbers, PTRS port numbers, and port multiplexing mode configuration to ensure efficient use of energy.
  • 1A is a constellation point where a 64QAM modulated signal is not affected by phase noise
  • 1B is a constellation point of a 2G band 64QAM modulated signal affected by phase noise
  • Figure 1C shows the constellation points of the 64GAM modulated signal in the 28G band affected by phase noise
  • FIG. 2 is a schematic structural diagram of an application scenario according to an embodiment of the present disclosure
  • 3 is a resource grid diagram of an LTE system
  • 4A is a schematic diagram of a pilot pattern (uplink transmission, one transport layer, one DMRS port, one PTRS port) according to an embodiment of the present application;
  • FIG. 4B is a schematic diagram of a pilot pattern according to an embodiment of the present disclosure (uplink transmission, two transmission layers, two DMRS ports, one PTRS port, and two DMRS ports are one group);
  • FIG. 4C is a schematic diagram of a pilot pattern according to an embodiment of the present disclosure (uplink transmission, two transport layers, two DMRS ports, two PTRS ports, and two DMRS ports are two groups);
  • FIG. 5 is a schematic flowchart of a method for determining transmission power according to an embodiment of the present disclosure
  • FIG. 6 is a schematic structural diagram of hardware of a communication device according to an embodiment of the present disclosure.
  • GSM Global System of Mobile communication
  • CDMA Code Division Multiple Access
  • Wideband Code Division Multiple Access Wideband Code Division Multiple Access
  • Code Division Multiple Access WCDMA
  • GPRS General Packet Radio Service
  • LTE Long Term Evolution
  • LTE-A Advanced Long Term Evolution
  • UMTS Universal Mobile Telecommunication System
  • eLTE evolved Long Term Evolution
  • 5G New Radio
  • a terminal also called a User Equipment (UE) is a device that provides voice and/or data connectivity to a user, for example, a handheld device with a wireless connection function, an in-vehicle device, and the like.
  • UE User Equipment
  • Common terminals include, for example, mobile phones, tablets, notebook computers, PDAs, mobile internet devices (MIDs), wearable devices such as smart watches, smart bracelets, pedometers, and the like.
  • MIDs mobile internet devices
  • wearable devices such as smart watches, smart bracelets, pedometers, and the like.
  • Network equipment which may be a base station (Base Transceiver Station, BTS) in a GSM system or a CDMA system, or a base station (NodeB, NB) in a WCDMA system, or an evolved base station in an LTE system (Evolutional Node B, eNB or eNodeB), or a wireless controller in a Cloud Radio Access Network (CRAN), or the network device may be a network device in a future 5G network, such as a gNB in an NR system. Or a small station, a micro station, a TRP (transmission reception point), or any other wireless device such as a relay station, an access point, or a network device in a future evolved Public Land Mobile Network (PLMN).
  • BTS Base Transceiver Station
  • NodeB, NB base station
  • LTE Long Term Evolutional Node B, eNB or eNodeB
  • CRAN Cloud Radio Access Network
  • the network device may be a network device in a future 5G network
  • Multiple means two or more. "and/or”, describing the association relationship of the associated objects, indicating that there may be three relationships, for example, A and/or B, which may indicate that there are three cases where A exists separately, A and B exist at the same time, and B exists separately.
  • the character "/” generally indicates that the contextual object is an "or” relationship.
  • first, second, third, etc. may be used to describe various messages, requests, and terminals in the embodiments of the present application, these messages, requests, and terminals should not be limited to these terms. These terms are only used to distinguish messages, requests, and terminals from one another.
  • FIG. 2 is a schematic structural diagram of an application scenario provided by an embodiment of the present application.
  • the base station 101 and the terminal 102 are mainly included.
  • the base station 101 can communicate with the terminal 102 using a low frequency (mainly below 6 GHz) or a relatively high frequency (6 GHz or higher) millimeter wave band.
  • the millimeter wave band may be 28 GHz, 38 GHz, or an enhanced-band band of a data plane covering a smaller area, such as a band above 70 GHz.
  • the terminal 102 covered by the base station 101 can communicate with the base station 101 using a low frequency or high frequency millimeter wave band.
  • FIG. 2 is only a simplified schematic diagram of an example, and other devices may be included in the network, which are not shown in FIG. 2.
  • the communication method and device provided by the embodiments of the present application may be applied to a terminal, where the terminal includes a hardware layer, an operating system layer running on the hardware layer, and an application layer running on the operating system layer.
  • the hardware layer includes hardware such as a central processing unit (CPU), a memory management unit (MMU), and a memory (also referred to as main memory).
  • the operating system may be any one or more computer operating systems that implement business processing through a process, such as a Linux operating system, a Unix operating system, an Android operating system, an iOS operating system, or a Windows operating system.
  • the application layer includes applications such as a browser, an address book, word processing software, and instant messaging software.
  • the term "article of manufacture” as used in this application encompasses a computer program accessible from any computer-readable device, carrier, or media.
  • the computer readable medium may include, but is not limited to, a magnetic storage device (eg, a hard disk, a floppy disk, or a magnetic tape, etc.), such as a compact disc (CD), a digital versatile disc (Digital Versatile Disc, DVD). Etc.), smart cards and flash memory devices (eg, Erasable Programmable Read-Only Memory (EPROM), cards, sticks or key drivers, etc.).
  • various storage media described herein can represent one or more devices and/or other machine-readable media for storing information.
  • the term "machine-readable medium” may include, but is not limited to, a variety of media capable of storing, containing, and/or carrying instructions and/or data.
  • Embodiment 1 is a diagrammatic representation of Embodiment 1:
  • FIG. 3 is a resource grid diagram of an LTE system.
  • the transmission of the channel in the LTE system is in units of radio frames, and one radio frame includes 10 subframes, each of which has a length of 1 millisecond (ms), and each subframe includes Two slots, each slot is 0.5ms.
  • the number of symbols included in each slot is related to the length of the CP (cyclic prefix) in the subframe. If the CP is a normal (normal) CP, each slot includes 7 symbols, and each subframe consists of 14 symbols. If the CP is an extended (long) CP, each slot includes 6 symbols, and each subframe consists of 12 symbols. Symbol composition.
  • the downlink symbols are called orthogonal frequency division multiplexing (OFDM) symbols.
  • a resource element (RE) is the smallest unit in the time-frequency domain, and is uniquely identified by an index pair (k, l), where k is a subcarrier index and l is a symbol index.
  • next-generation wireless communication networks operating in the range above 6 GHz will suffer from more severe medium-frequency distortion, especially phase noise.
  • the PTRS occupies some REs, and the occupied REs are originally used to transmit data channels (in the case of uplink transmission, the data channel includes a physical uplink shared channel (PUSCH), and in the downlink transmission, the data channel includes a physical downlink. Physical downlink shared channel (PDSCH) or other reference signal.
  • PUSCH physical uplink shared channel
  • PDSCH Physical downlink shared channel
  • the most common case is that the occupied RE is originally used to transmit a data channel.
  • the total power of the PTRS should be equal to the total power of the data channel to be sent on the occupied RE (in the embodiment of the present application)
  • the "power" is equivalent to the "transmit power").
  • the total power available at the transmitting end is pre-configured, if the transmission power of the PTRS is greater than the transmission power of the data channel originally to be transmitted on the occupied RE, the total power available may be exceeded, and if the PTRS is If the transmission power is smaller than the transmission power of the data channel to be sent on the occupied RE, the power is wasted.
  • the transmission power of the PTRS is only slightly smaller than the difference (the difference does not exceed the preset threshold), the RE is occupied.
  • the transmission power of the data channel to be transmitted is also feasible.
  • the above line transmission is taken as an example.
  • the transmission power of the PTRS is equal to the transmission power of the data channel originally to be transmitted on the occupied RE, and the formula (1) can be obtained:
  • N layers ⁇ N RE/layers ⁇ P PUSCH N PTRS ports ⁇ N RE/PTRS ports ⁇ P PTRS (1)
  • N layers are the number of transmission layers, and N RE/layers is the number of REs that cannot be used due to PTRS on each transport layer (in units of 1 resource block (RB), 1 ODFM symbol), and P PUSCH is the transmission.
  • the power of the PUSCH on the layer in units of 1 RE
  • the number of PTRS ports in the N PTRS ports , and the number of REs occupied by each PTRS port in the N RE/PTRS ports (in units of 1 RB, 1 ODFM symbols, The assumption is 1)
  • P PTRS is the power of PTRS (in units of 1 RE).
  • Equation (2) can be further derived from equation (1):
  • N RE / layerss N PTRS ports ⁇ N RE / PTRS ports
  • Formula (3) can be further derived:
  • Equation (4) can be further derived from equation (3):
  • Relative power ratio of PTRS and PUSCH 10log 10 (N layers ) (4)
  • Relative power ratio of PTRS and PUSCH 10log 10 (N DMRS ports ) (5)
  • the terminal device may calculate the relative power ratio of the PTRS and the PUSCH by using Equation (4) or (5), and then combine the power of the PUSCH to finally obtain the power of the PTRS, and use the power of the PTRS to transmit the PTRS.
  • the formula (4) or (5) can be used to calculate the relative power of PTRS and PUSCH when the number of transmission layers is 1-8, the number of DMRS ports is 1-8, and the number of PTRS ports is equal to or less than the number of DMRS ports. Ratio, as shown in Table (1):
  • Table (1) can be further extended, as shown in Table (2):
  • the values of the relative power ratios of PTRS and PUSCH in Tables (1) and (2) can be removed by decimals, and integers are used, for example, when the number of transmission layers is 3 and the number of DMRS ports is 3.
  • the value of the relative power ratio of PTRS and PUSCH can be an integer of 4.77, and the value obtained is 4. It is also possible to reserve only one decimal place for the relative power ratios of PTRS and PUSCH in Table (1) and Table (2), for example, when the number of transmission layers is 3 and the number of DMRS ports is 3, the relative power ratio of PTRS and PUSCH
  • the value can hold one decimal for 4.77 and the value is 4.7. Whether to take an integer or to keep a decimal number rounded off, the embodiment of the present application is not limited.
  • the terminal device can also obtain the relative power ratio of the PTRS and the PUSCH by looking up a table (for example, Table (1) or Table (2)), and then combining the power of the PUSCH to finally obtain the power of the PTRS, and using the power of the PTRS.
  • a table for example, Table (1) or Table (2)
  • the transmission power of the DMRS is equal to the transmission power of the data channel originally to be transmitted on the occupied RE, and formula (6) can be obtained:
  • N layers ⁇ N' RE/layers ⁇ P PUSCH N DMRS ports ⁇ N RE/DMRS ports ⁇ P DMRS (6)
  • N layers are the number of transmission layers
  • N DMRS ports are the number of DMRS ports
  • N' RE/layers is the number of REs per transmission layer (in units of 1 RB 1 OFDM symbols, usually 12 REs)
  • N RE/DMRS ports The number of REs occupied by each DMRS port (in units of 1 RB, 1 OFDM symbol)
  • P DMRS is the power spectrum density (PSD) of the DMRS (in units of 1 RE)
  • P PUSCH is the PUSCH on the transport layer. Power (in 1 RE unit).
  • Equation (7) can be further derived from equation (6):
  • D DMRS is the frequency domain density of DMRS, equal to Can draw the formula (9):
  • Equation (12) can be further obtained according to formula (11):
  • Relative power ratio of PTRS and DMRS 10log 10 (N layers D DMRS ) (13)
  • the terminal device can calculate the relative power ratio of the PTRS and the DMRS through the formula (13) or (14), and combine the power of the DMRS to finally obtain the power of the PTRS, and use the power of the PTRS to transmit the PTRS.
  • the formula (13) or (14) can be used to calculate the relative power of PTRS and DMRS when the number of transmission layers is 1-8, the number of DMRS ports is 1-8, and the number of PTRS ports is equal to or less than the number of DMRS ports. Ratio, as shown in Table (3):
  • Transport layer layer layer DMRS port number Frequency domain density of DMRS Relative power ratio (dB) of PTRS and DMRS 1 1 1/4 (-)6 2 2 1/4 (-)3 3 3 1/4 (-) 1.23 4 4 1/4 0 5 5 1/4 0 6 6 1/4 0 7 7 1/4 0
  • Table (3) can be further extended, as shown in Table (4):
  • Transport layer layer layer DMRS port number Frequency domain density of DMRS Relative power ratio (dB) of PTRS and DMRS 1 1 1/4 (-)6 2 2 1/4 (-)3 3 3 1/4 (-) 1.23 4 4 1/4 0 5 5 1/4 0 6 6 1/4 0 7 7 1/4 0 8 8 1/4 3 9 9 1/6 1.76 10 10 1/6 2.22 11 11 1/6 2.63 12 12 1/6 3.01
  • the frequency domain density of the DMRS can also be other values, such as 1/2, 1/3, etc., assuming that the frequency domain density of the DMRS can be 1/2, 1/3 for each transmission layer or each DMRS port number. , 1/4 and 1/6, then we can get the table (5) as follows:
  • Table (5) provides a relative power ratio of the PTRS and the DMRS including a plurality of configuration possibilities, which can be arbitrarily split and used in the embodiment of the present application.
  • the first two columns can retain only one of the columns.
  • the value of the relative power ratio of PTRS and DMRS in Tables (3)-(5) can be removed by a decimal number, for example, when the number of transmission layers is 9, and the number of DMRS ports is 9.
  • the value of the relative power ratio of PTRS and DMRS can be an integer of 1.76, and the value obtained is 1.
  • the terminal device can obtain the relative power ratio of the PTRS and the DMRS by looking up a table (for example, Table (3), Table (4) or Table (5)), and combining the power of the DMRS to finally obtain the power of the PTRS, and use The power of the PTRS is used to transmit the PTRS.
  • a table for example, Table (3), Table (4) or Table (5)
  • the N RE/PTRS ports that is, the number of REs occupied by each PTRS port (in units of 1 RB, 1 ODFM symbols) is assumed to be 1, but in implementation, 1 RB, 1 ODFM Within the symbol, the number of REs occupied by each PTRS port may also be greater than 1, that is, N RE / PTRS ports > 1, in this case, formula (4), formula (5), formula (13), formula (14) In the middle, you need to add the frequency domain density of PTRS as another variable, as shown in formula (15):
  • Relative power ratio of PTRS and PUSCH 10log 10 (N layers D PTRS )
  • Relative power ratio of PTRS and PUSCH 10log 10 (N DMRS ports D PTRS )
  • Relative power ratio of PTRS and DMRS 10log 10 (N layers D DMRS D PTRS )
  • Relative power ratio of PTRS and DMRS 10log 10 (N DMRS ports D DMRS D PTRS ) (15)
  • D PTRS is the frequency domain density of PTRS.
  • the terminal device calculates by using the formula (4) or (5), or obtains the relative power ratio of the PTRS and the PUSCH by using the table (1) or the table (2), and can combine the power of the PUSCH.
  • another parameter OFFSET PTRS-PUSCH which finally derives the power of the PTRS and uses the power of the PTRS to transmit the PTRS.
  • OFFSET PTRS-PUSCH indicates a reference offset between PTRS power and PUSCH power, which can be configured by the base station.
  • the terminal device calculates by formula (13) or (14), or obtains the relative power ratio of PTRS and DMRS through table (3), table (4) or table (5), and can combine PUSCH.
  • the power, as well as another parameter, OFFSET PTRS-DMRS ultimately yields the power of the PTRS and uses the power of the PTRS to transmit the PTRS.
  • the OFFSET PTRS-DMRS indicates a reference offset between the PTRS power and the DMRS power, which can be configured by the base station, and can be obtained by accumulating the OFFSET PTRS-PUSCH and the reference offset OFFSET DMRS-PUSCH between the DMRS power and the PUSCH power. .
  • the relative power ratio of the PTRS and the PUSCH, and the relative power ratio of the PTRS and the DMRS may also be preset or configured by the base station, and the terminal device directly acquires the relative power ratio of the PTRS and the PUSCH, and the relative power ratio of the PTRS and the DMRS. Thereafter, the power of the PTRS is derived according to the method described in the embodiment of the present application.
  • the base station may also configure the maximum power P MAX of the PTRS.
  • P MAX the maximum power of the PTRS calculated by the terminal device calculated by any formula in the embodiment of the present application.
  • the embodiment of the present application will verify the formula (4), the formula (5), the formula (13), the formula (14), and the tables (1) to (5) by way of example.
  • the DMRS ports are grouped according to the crystal oscillator, and the DMRS ports of the same local oscillator are divided into one group, and the phase noise experienced by all the ports in the group can be measured by the PTRS on one port.
  • FIG. 4A is a schematic diagram of a pilot pattern (uplink transmission, one transport layer, one DMRS port, one PTRS port) according to an embodiment of the present application.
  • the powers of the PTRS and the PUSCH are consistent, and the relative power ratio of the PTRS and the PUSCH is 0 dB.
  • FIG. 4B is a schematic diagram of a pilot pattern according to an embodiment of the present disclosure (uplink transmission, two transmission layers, two DMRS ports, one PTRS port, and two DMRS ports are one group).
  • FIG. 4B(1) is a schematic diagram of a pilot pattern of the transmission layer 1
  • FIG. 4B(2) is a schematic diagram of a pilot pattern of the transmission layer 2. Since two layers of transmission are used, the power of the PUSCH of each layer is only half of the total power, and the PTRS is transmitted by only one port, and the total power is used, so the relative power ratio of the PTRS and the PUSCH is 3 dB.
  • FIG. 4C is a schematic diagram of a pilot pattern according to an embodiment of the present disclosure (uplink transmission, two transmission layers, two DMRS ports, two PTRS ports, and two DMRS ports are two groups).
  • FIG. 4C(1) is a schematic diagram of a pilot pattern of the transmission layer 1
  • FIG. 4C(2) is a schematic diagram of a pilot pattern of the transmission layer 2. Due to the orthogonal assumption between the PTRS and the data, the RE transmitting the PTRS at the transport layer 1 cannot map the data at the transport layer 2. Then the power on these unused REs can be used to enhance the transmit power of the PTRS. That is, in order to maintain the total power consistency, the PTRS power transmitted at each layer should be twice the power of the data channel.
  • FIG. 5 is a schematic flowchart of a method for determining transmission power according to an embodiment of the present disclosure. As shown in Figure 5, it includes:
  • the terminal device determines a relative power ratio of the PTRS and the PUSCH.
  • the terminal device may determine the relative power ratio of the PTRS and the PUSCH according to the formula provided in the embodiment of the present application, or by searching the table provided in the embodiment of the present application, or the terminal device may also determine the relative power ratio of the PTRS and the DMRS.
  • the terminal device determines a transmit power of the PTRS.
  • the terminal device determines the transmission power of the PTRS based on the relative power ratio of the PTRS and the PUSCH, and the transmission power of the PUSCH, or determines the transmission power of the PTRS based on the relative power ratio of the PTRS and the DMRS, and the transmission power of the DMRS.
  • the terminal device sends the PTRS by using the determined transmit power.
  • the above-mentioned line transmission is taken as an example for description.
  • the new radio adopts the uplink and downlink symmetric DMRS and PTRS pilot pattern design, so in the embodiment of the present application, All formulas and tables are still applicable to the determination of the downlink PTRS power, as long as the "PUSCH" involved is changed to "PDSCH".
  • the sentence pattern is changed.
  • the pilot pattern indicates that the PTRS to be transmitted and other reference signals to be transmitted occupy the same or the same RE (collision RE)
  • the PTRS is not allowed to occupy the RE of other reference signals, that is, sending other
  • the priority of the reference signal is greater than the priority of the transmitted PTRS.
  • the base station device maps other reference signals to be transmitted to the conflicting RE, and transmits only other reference signals on the conflicting RE. The method described in the previous embodiment can be used to determine the PTRS transmission power.
  • the PTRS to be transmitted is allowed to occupy the RE of other reference signals to be transmitted.
  • the base station device maps the PTRS to be transmitted to the conflicting RE, and only transmits the PTRS on the conflicting RE.
  • the power of the RE originally used to transmit other reference signals can be used to power enhance the PTRS.
  • the embodiment of the present application uses an RE that does not map data.
  • the meanings of the following expressions may be the same: an RE that cannot be used for mapping data, an RE that is not used for mapping data, an RE that does not map data, and a muted.
  • the power of the PTRS is enhanced by the power of the PTRS, and the relative power ratio of the enhanced PTRS and the data (which may also be referred to as "the difference between the power of the PTRS and the power of the data") is equal to the number of transmission layers (in the multilayer transmission, The number of transmission layers is greater than or equal to 2), that is, 10log 10 (N layers ).
  • the number of PTRS ports is equal to the number of DMRS ports
  • some REs on a certain transport layer will not map data, and the power of these unmapped REs will be Used to enhance the power of the PTRS of the transport layer.
  • the relative power ratio of the PTRS and the data on each transport layer is equal to the logarithm of the number of transport layers; when the number of PTRS ports is less than the number of DMRS ports, the power can be "borrowed" across layers, that is, using a certain transmission.
  • the power of the RE of the data is not mapped on the layer to enhance the power of the PTRS on the other transport layer, and the relative power ratio of the transmission power of the PTRS and the data on the transport layer where the PTRS is located is equal to the logarithm of the number of transport layers.
  • the transmitting device first determines the relative power ratio of the PTRS and the data channel or the DMRS by looking up the table or calculating, and then determining the sending power of the PTRS according to the data channel or the transmitting power of the DMRS, and then transmitting the PTRS by using the sending power. It can flexibly adapt to different DMRS port numbers, PTRS port numbers, and port multiplexing mode configuration to ensure efficient use of energy.
  • FIG. 6 is a schematic structural diagram of hardware of a communication device according to an embodiment of the present disclosure. As shown in FIG. 6, the communication device 60 includes:
  • a memory 61 configured to store program code including computer operating instructions
  • the processor 62 is configured to execute the computer operation instruction to execute:
  • a relative power ratio of the phase tracking reference signal PTRS and the data channel or a relative power ratio of the PTRS and the demodulation reference signal DMRS, wherein the relative power ratio of the PTRS and the data channel is determined by the first function and the first variable, PTRS and DMRS
  • the relative power ratio is determined by the second function, the first variable, and the second variable, wherein the first variable includes a number of transmission layers or a number of DMRS ports, and the second variable includes a frequency domain density of the DMRS;
  • the transmitter 63 is configured to send the PTRS to another communication device by using the transmit power of the PTRS.
  • processor 62 is further configured to execute the computer operating instructions to perform:
  • the transmission power of the PTRS is determined based on the relative power ratio of the PTRS and the data channel and the transmission power of the data channel, or the relative power ratio of the PTRS and the DMRS and the transmission power of the DMRS.
  • Embodiment 2 is a diagrammatic representation of Embodiment 1:
  • the sending end first obtains the relative power ratio of the PTRS and the data channel or the DMRS, and determines the sending power of the PTRS according to the data channel or the transmitting power of the DMRS.
  • the sending power of the PTRS is directly calculated in the embodiment of the present application. .
  • the uplink transmit power should satisfy the signal-to-interference plus noise ratio required for the PUSCH data transmission to achieve a 10% error rate based on different modulation and coding schemes (MCS). , SINR), the base station device determines the PUSCH transmission power based on this requirement.
  • MCS modulation and coding schemes
  • the calculation formula of the transmission power of the data channel can be:
  • i denotes a subframe number (or slot number, symbol number)
  • c denotes a cell number (or beam number, beam group number)
  • j denotes a preset value, which can be configured or preset by the base station device ;
  • P PUSCH,c (i) represents the transmission power of the terminal device transmitting the PUSCH to the cell c in the subframe i;
  • the linear value of c(i) , P CMAX,c (i) represents the available transmit power of the terminal device
  • P PUCCH (i) a linear value
  • P PUCCH (i) denotes a transmission power of the terminal apparatus on the subframe i used in the PUCCH
  • M PUSCH,c (i) represents the bandwidth occupied by the PUSCH resources on the subframe i, in units of the number of RBs;
  • P O_PUSCH,c (j) represents PUSCH reference power
  • P O_PUSCH,c (j) P O_UE_PUSCH,c (j)+P O_NOMINAL_PUSCH,c (j), where P O_NOMINAL_PUSCH,c (j) represents half of cell c
  • the static transmit power reference is usually a common value configured by the base station device for all terminal devices in the cell
  • P O_UE_PUSCH,c (j) represents the power offset of each terminal device in the cell c on the semi-static transmit power reference of the cell c. , usually a unique value configured by the base station device for each terminal device;
  • ⁇ c (j) represents the degree of road damage compensation
  • PL c denotes a reference signal of the terminal device to the cell c (for example, a channel state information reference signal (CSI-RS), a cell-specific reference signal (CRS), a synchronization signal block (Synchronization) Signal block, referred to as SS Block), etc.) measured path loss value;
  • CSI-RS channel state information reference signal
  • CRS cell-specific reference signal
  • SS Block synchronization signal block
  • ⁇ TF,c (i) indicates that the transmission power per RB is allowed to be adaptive to the transmission information data rate according to the transmission format
  • DCI Downlink Control Information
  • the terminal device acquires preset adjustment parameters and a transmission bandwidth of the PTRS
  • the terminal device determines a transmit power of the PTRS, where the transmit power of the PTRS is determined by at least a preset function, an adjustment parameter, and a transmission bandwidth of the PTRS;
  • the terminal device transmits the PTRS to the base station device using the transmission power of the PTRS.
  • the transmission power of the PTRS is determined by the following formula. :
  • P CMAX,c (i), P O_PUSCH,c (j), ⁇ c (j), PL c and f c (i) are all multiplexed from equation (16).
  • P PTRS,c (i) represents the transmission power of the PTRS, including the transmission power of the terminal device transmitting the PTRS to the cell c in the subframe i, and the unit of the value is dBm;
  • M PTRS,c indicates the transmission of the PTRS Bandwidth;
  • the base station device may configure or preset parameters by using RRC signaling or DCI.
  • the transmission power of the PTRS is obtained by directly calculating, so that the terminal device can conveniently determine the transmission power of the PTRS.
  • Embodiment 3 is a diagrammatic representation of Embodiment 3
  • the embodiment of the present application provides another method for directly calculating the transmit power of the PTRS, including:
  • the terminal device acquires the PTRS reference power
  • the terminal device determines a transmit power of the PTRS, where the transmit power of the PTRS is determined by at least a preset function and a PTRS reference power;
  • the terminal device transmits the PTRS to the base station device using the transmission power of the PTRS.
  • the terminal device can determine the transmit power of the PTRS by using the following formula:
  • P PTRS,c (i), P CMAX,c (i), ⁇ c (j) and PL c are the same as in the formula (17).
  • P O_PTRS,c (j) represents PTRS reference power
  • P O_PTRS,c (j) P O_NOMINAL_PTRS +P O_UE_PTRS
  • P O_NOMINAL_PTRS indicates that the base station device configures a common value for all terminal devices in the cell c
  • P O_UE_PTRS indicates the base station.
  • the device is a unique value configured for each terminal device in the cell c.
  • parameter g(i) may also be added in the formula (18), so that each terminal device can adjust the transmission power of the PTRS according to its own condition, as shown in the following formula:
  • g(i) represents an adjustment parameter specific to the terminal device.
  • n RS represents a priority parameter of the PTRS
  • h(n RS ) represents a power offset obtained by the terminal device through the n RS ;
  • F denotes a pilot pattern
  • ⁇ PTRS (F) denotes an adjustment amount caused by the pilot pattern, and different adjustment amounts caused by different pilot patterns
  • N PTRS-port indicates the number of antenna ports that transmit the PTRS
  • ⁇ TxD indicates the amount of adjustment of the power caused by the number of antenna ports. Different antenna port numbers also cause different adjustment amounts.
  • the transmission power of the PTRS is obtained by directly calculating, so that the terminal device can conveniently determine the transmission power of the PTRS.
  • the method for determining the transmission power provided by the second embodiment and the third embodiment may also be performed by the communication device shown in FIG. 6.
  • the memory 61 is configured to store a program code including a computer operation instruction
  • the processor 62 uses The required parameters are obtained, and the transmission power of the PTRS is calculated by using one of the parameters and equations (17)-(20), and the transmitter 63 is configured to transmit the PTRS to another communication device using the transmission power of the PTRS.
  • the embodiment of the present application further provides a computer readable storage medium for storing computer software instructions required to execute the foregoing processor, which includes a program for executing the above-mentioned processor.
  • embodiments of the present application can be provided as a method, system, or computer program product.
  • the present application can take the form of an entirely hardware embodiment, an entirely software embodiment, or an embodiment in combination of software and hardware.
  • the application can take the form of a computer program product embodied on one or more computer-usable storage media (including but not limited to disk storage, optical storage, etc.) including computer usable program code.
  • the computer program instructions can also be stored in a computer readable memory that can direct a computer or other programmable data processing device to operate in a particular manner, such that the instructions stored in the computer readable memory produce an article of manufacture comprising the instruction device.
  • the apparatus implements the functions specified in one or more blocks of a flow or a flow and/or block diagram of the flowchart.
  • These computer program instructions can also be loaded onto a computer or other programmable data processing device such that a series of operational steps are performed on a computer or other programmable device to produce computer-implemented processing for execution on a computer or other programmable device.
  • the instructions provide steps for implementing the functions specified in one or more of the flow or in a block or blocks of a flow diagram.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例提供了一种发送功率的确定方法,包括:第一设备确定相位跟踪参考信号PTRS和数据信道的相对功率比,或者PTRS和解调参考信号DMRS的相对功率比,其中PTRS和数据信道的相对功率比通过第一函数和第一变量确定,PTRS和DMRS的相对功率比通过第二函数、第一变量和第二变量确定,其中第一变量包括传输层数或DMRS端口数,第二变量包括DMRS的频域密度;基于PTRS和数据信道相对功率比和数据信道的发送功率,或者PTRS和DMRS的相对功率比和DMRS的发送功率确定PTRS的发送功率;使用PTRS的发送功率向第二设备发送PTRS。

Description

一种发送功率的确定方法、处理芯片及通信设备 技术领域
本发明涉及通信技术领域,尤其涉及一种发送功率的确定方法、处理芯片及通信设备。
背景技术
5G通信***中将会采用相对于长期演进(Long Term Evolution,LTE)更高的载波频率(简称高频),根据当前的标准规定一般为6GHz以上为高频,当前重点研究的频段有28GHz、38GHz、72GHz等,来实现更大带宽、更高传输速率的无线通信。然而,相对传统的低频通信,高频***的中射频失真会更加严重,尤其是相位噪声的影响。另外,多普勒和载波频率偏移(Carrier Frequency Offset,CFO)带来的影响也会随着频率变高而增大。
以多输入多输出正交频分复用(Massive input massive output-Orthogonal Frequency Division Multiplexing,MIMO-OFDM)为例,同时考虑接收端和发送端相位噪声和载波频率偏移的情况,接收端快速傅里叶变换(Fast Fourier Transform,FFT)之后第n个接收天线第k个子载波上的接收表达式为:
Figure PCTCN2018091226-appb-000001
其中,
Figure PCTCN2018091226-appb-000002
即:
Figure PCTCN2018091226-appb-000003
其中,
Figure PCTCN2018091226-appb-000004
表示第m个发送天线到第n个接收天线在第k个子载波上的信道,
Figure PCTCN2018091226-appb-000005
表示第k个子载波上的第m个天线的发送数据,
Figure PCTCN2018091226-appb-000006
表示第n个接收天线上的第k个子载波上的噪声。
Figure PCTCN2018091226-appb-000007
表示接收端相位噪声和CFO对第n个接收天线上第k个子载波造成的相位偏差,
Figure PCTCN2018091226-appb-000008
表示发送端相位噪声和CFO对第m个接收天线上第k个子载波造成的相位偏差。从表达式可以看出,相位噪声对OFDM性能的影响主要体现在公共相位误差(Common Phase Error,CPE)和载波间干扰(Inter-carrier Interference,ICI)两个方面;CFO对OFDM性能的影响主要体现ICI上。其中ICI在实际***中对性能的影响较CPE小,因此通常相位噪声补偿方案中优先考虑对CPE进行补偿。
图1A为64QAM调制信号未受相位噪声影响的星座点;图1B为2G频段64QAM调制信号受相位噪声影响的星座点;图1C为28G频段64QAM调制信号受相位噪声影响后的星座点。如图1A~图1C所示,以相位噪声为例,随着频段的增加,相位噪声水平以20*log (f1/f2)的水平恶化。以2G频段和28G频段为例,28G频段的相位噪声水平比2G频段高23dB。相位噪声水平越高,公共相位误差(Common Phase Error,CPE)影响越大,CPE造成的相位误差就越大。
同一OFDM符号的不同子载波受CPE的影响相同,由于受高斯白噪声的影响,导致不同子载波上的相位误差不一样,因此。在频域上,需要通过一定数量的相位补偿参考信号(Phase compensation Reference Signal,PCRS)(也可以称为相位跟踪参考信号(Phase tracking Reference Signal,PTRS)),目前业界并未有统一的命名,本发明为方便,后续统一称为PTRS)来估计CPE并求平均,以尽量减少高斯白噪声的影响。
目前,对于如何确定PTRS的发送功率是一项亟待解决的技术问题。
发明内容
本申请实施例提供一种发送功率的确定方法,可以灵活地适应不同的DMRS端口数、PTRS端口数,以及端口复用方式的配置,保证能量的有效使用,同时提高PTRS测量的准确性。
第一方面,本申请实施例提供了一种发送功率的确定方法,包括:第一设备确定相位跟踪参考信号PTRS和数据信道的相对功率比,或者PTRS和解调参考信号DMRS的相对功率比,其中PTRS和数据信道的相对功率比通过第一函数和第一变量确定,PTRS和DMRS的相对功率比通过第二函数、第一变量和第二变量确定,其中第一变量包括传输层数或DMRS端口数,第二变量包括DMRS的频域密度;第一设备基于PTRS和数据信道相对功率比和数据信道的发送功率,或者PTRS和DMRS的相对功率比和DMRS的发送功率确定PTRS的发送功率;第一设备使用PTRS的发送功率向第二设备发送PTRS。
根据第一方面,在一种可能的实现方式中,第一设备包括终端设备,第二设备包括基站设备,数据信道包括物理上行共享信道PUSCH。
根据第一方面,在一种可能的实现方式中,第一设备包括基站设备,第二设备包括终端设备,数据信道包括物理下行共享信道PDSCH。
根据第一方面及其所有可能的实现方式,在一种可能的实现方式中,PTRS和数据信道的相对功率比通过第一函数和第一变量确定包括:
PTRS和数据信道的相对功率比=10log 10(X)
其中,X包括第一变量。
根据第一方面及其所有可能的实现方式,在一种可能的实现方式中,PTRS和DMRS的相对功率比通过第二函数、第一变量和第二变量确定包括:
PTRS和DMRS的相对功率比=10log 10(XY)
其中,X包括第一变量,Y包括第二变量。
第二方面,本申请实施例提供了一种发送功率的确定方法,包括:第一设备通过查表确定相位跟踪参考信号PTRS和数据信道的相对功率比,或者PTRS和解调参考信号DMRS的相对功率比;第一设备基于PTRS和数据信道相对功率比和数据信道的发送功率,或者PTRS和DMRS的相对功率比和DMRS的发送功率确定PTRS的发送功率;第一设备使用PTRS的发送功率向第二设备发送PTRS。
根据第二方面,在一种可能的实现方式中,第一设备包括终端设备,第二设备包括基站设备,数据信道包括物理上行共享信道PUSCH。
根据第二方面,在一种可能的实现方式中,第一设备包括基站设备,第二设备包括终端设备,数据信道包括物理下行共享信道PDSCH。
根据第二方面及其所有可能的实现方式,在一种可能的实现方式中,第一设备通过查表确定PTRS和数据信道的相对功率比包括:
第一设备通过查找以下表格确定PTRS和数据信道的相对功率比:
传输层layer数 PTRS和PUSCH的相对功率比(dB)
1 0
2 3
3 4.77
4 6
5 7
6 7.78
7 8.45
8 9
或者
DMRS端口数 PTRS和PUSCH的相对功率比(dB)
1 0
2 3
3 4.77
4 6
5 7
6 7.78
7 8.45
8 9
根据第二方面及其所有可能的实现方式,在一种可能的实现方式中,第一设备通过查表确定PTRS和数据信道的相对功率比包括:
第一设备通过查找以下表格确定PTRS和数据信道的相对功率比:
传输层layer数 PTRS和PDSCH的相对功率比(dB)
1 0
2 3
3 4.77
4 6
5 7
6 7.78
7 8.45
8 9
或者
DMRS端口数 PTRS和PDSCH的相对功率比(dB)
1 0
2 3
3 4.77
4 6
5 7
6 7.78
7 8.45
8 9
根据第二方面及其所有可能的实现方式,在一种可能的实现方式中,第一设备通过查表确定PTRS和DMRS的相对功率比包括:
第一设备通过查找以下表格确定PTRS和DMRS的相对功率比:
传输层layer数 DMRS的频域密度 PTRS和DMRS的相对功率比(dB)
1 1/4 (-)6
2 1/4 (-)3
3 1/4 (-)1.23
4 1/4 0
5 1/4 0
6 1/4 0
7 1/4 0
8 1/4 3
或者
DMRS端口数 DMRS的频域密度 PTRS和DMRS的相对功率比(dB)
1 1/4 (-)6
2 1/4 (-)3
3 1/4 (-)1.23
4 1/4 0
5 1/4 0
6 1/4 0
7 1/4 0
8 1/4 3
第三方面,本申请实施例提供了一种处理芯片,用于:确定相位跟踪参考信号PTRS和数据信道的相对功率比,或者PTRS和解调参考信号DMRS的相对功率比,其中PTRS和数据信道的相对功率比通过第一函数和第一变量确定,PTRS和DMRS的相对功率比通过第二函数、第一变量和第二变量确定,其中第一变量包括传输层数或DMRS端口数,第二变量包括DMRS的频域密度;基于PTRS和数据信道相对功率比和数据信道的发送功率,或者PTRS和DMRS的相对功率比和DMRS的发送功率确定PTRS的发送功率。
根据第三方面,在一种可能的实现方式中,数据信道包括物理上行共享信道PUSCH或者物理下行共享信道PDSCH。
根据第三方面及其所有可能的实现方式,在一种可能的实现方式中,PTRS和数据信道的相对功率比通过第一函数和第一变量确定包括:
PTRS和数据信道的相对功率比=10log 10(X)
其中,X包括第一变量。
根据第三方面及其所有可能的实现方式,在一种可能的实现方式中,PTRS和DMRS的相对功率比通过第二函数、第一变量和第二变量确定包括:
PTRS和DMRS的相对功率比=10log 10(XY)
其中,X包括第一变量,Y包括第二变量。
第四方面,本申请实施例提供了一种处理芯片,用于:通过查表确定相位跟踪参考信号PTRS和数据信道的相对功率比,或者PTRS和解调参考信号DMRS的相对功率比;基于PTRS和数据信道相对功率比和数据信道的发送功率,或者PTRS和DMRS的相对功率比和DMRS的发送功率确定PTRS的发送功率。
根据第四方面,在一种可能的实现方式中,数据信道包括物理上行共享信道PUSCH。
根据第四方面及其所有可能的实现方式,在一种可能的实现方式中,数据信道包括物理下行共享信道PDSCH。
根据第四方面及其所有可能的实现方式,在一种可能的实现方式中,通过查表确定PTRS和数据信道的相对功率比包括:
通过查找以下表格确定PTRS和数据信道的相对功率比:
传输层layer数 PTRS和PUSCH的相对功率比(dB)
1 0
2 3
3 4.77
4 6
5 7
6 7.78
7 8.45
8 9
或者
DMRS端口数 PTRS和PUSCH的相对功率比(dB)
1 0
2 3
3 4.77
4 6
5 7
6 7.78
7 8.45
8 9
根据第四方面及其所有可能的实现方式,在一种可能的实现方式中,通过查表确定PTRS和数据信道的相对功率比包括:
通过查找以下表格确定PTRS和数据信道的相对功率比:
传输层layer数 PTRS和PDSCH的相对功率比(dB)
1 0
2 3
3 4.77
4 6
5 7
6 7.78
7 8.45
8 9
或者
DMRS端口数 PTRS和PDSCH的相对功率比(dB)
1 0
2 3
3 4.77
4 6
5 7
6 7.78
7 8.45
8 9
根据第四方面及其所有可能的实现方式,在一种可能的实现方式中,通过查表确定PTRS和DMRS的相对功率比包括:
通过查找以下表格确定PTRS和DMRS的相对功率比:
传输层layer数 DMRS的频域密度 PTRS和DMRS的相对功率比(dB)
1 1/4 (-)6
2 1/4 (-)3
3 1/4 (-)1.23
4 1/4 0
5 1/4 0
6 1/4 0
7 1/4 0
8 1/4 3
或者
DMRS端口数 DMRS的频域密度 PTRS和DMRS的相对功率比(dB)
1 1/4 (-)6
2 1/4 (-)3
3 1/4 (-)1.23
4 1/4 0
5 1/4 0
6 1/4 0
7 1/4 0
8 1/4 3
第五方面,本申请提供了一种通信设备,包括处理器和发送器,用于执行第一方面提供的方法及其所有可能的实现方式。
第六方面,本申请提供了一种通信设备,包括处理器和发送器,用于执行第二方面提供的方法及其所有可能的实现方式。
第七方面,本申请提供了一种发送功率的确定方法,包括:第一设备将数据映射到多个传输层上,其中多个传输层包括第一传输层,第一传输层对应于第一RE集合和第二RE集合,第一RE集合和第二RE集合都包括多个RE,第一RE集合中的每个RE上都映射了相位跟踪参考信号PTRS,第二RE集合中的每个RE都不能用于映射数据;第一设备使用第二RE集合中所有RE的功率来增强第一RE集合中所有RE上映射的PTRS的发送功率;第一设备使用增强后的发送功率来发送PTRS。
第八方面,本申请实施例提供了一种通信设备,包括:处理器,用于将数据映射到多个传输层上,其中多个传输层包括第一传输层,第一传输层对应于第一RE集合和第二RE集合,第一RE集合和第二RE集合都包括多个RE,第一RE集合中的每个RE上都映射了相位跟踪参考信号PTRS,第二RE集合中的每个RE都不能用于映射数据;使用第二RE集合中所有 RE的功率来增强第一RE集合中所有RE上映射的PTRS的发送功率;发送器,用于使用增强后的发送功率来发送PTRS。
本申请实施例中,发送端设备先通过查表或者计算得出PTRS和数据信道或者DMRS的相对功率比,再结合数据信道或者DMRS的发送功率确定PTRS的发送功率,然后使用该发送功率发送PTRS,可以灵活地适应不同的DMRS端口数、PTRS端口数,以及端口复用方式的配置,保证能量的有效使用。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1A为64QAM调制信号未受相位噪声影响的星座点;
图1B为2G频段64QAM调制信号受相位噪声影响的星座点;
图1C为28G频段64QAM调制信号受相位噪声影响后的星座点;
图2为本申请实施例提供的一种应用场景的示意性架构图;
图3为LTE***的资源栅格(resource grid)图;
图4A为本申请实施例提供的一种导频图案示意图(上行传输,1个传输层,1个DMRS端口,1个PTRS端口);
图4B为本申请实施例提供的一种导频图案示意图(上行传输,2个传输层,2个DMRS端口,1个PTRS端口,2个DMRS端口为1组);
图4C为本申请实施例提供的一种导频图案示意图(上行传输,2个传输层,2个DMRS端口,2个PTRS端口,2个DMRS端口为2组);
图5为本申请实施例提供的一种发送功率的确定方法流程示意图;
图6为本申请实施例提供的一种通信设备的硬件结构示意图。
具体实施方式
下面将结合附图对本申请作进一步地详细描述。
本申请实施例可以应用于各种移动通信***,例如:全球移动通讯(Global System of Mobile communication,GSM)***、码分多址(Code Division Multiple Access,CDMA)***、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)***、通用分组无 线业务(General Packet Radio Service,GPRS)、长期演进(Long Term Evolution,LTE)***、先进的长期演进(Advanced long term evolution,LTE-A)***、通用移动通信***(Universal Mobile Telecommunication System,UMTS)、演进的长期演进(evolved Long Term Evolution,eLTE)***、5G***(例如新无线(New Radio,NR)***)等其它移动通信***。
以下,对本申请中的部分用语进行解释说明,以便于本领域技术人员理解。
1)、终端,又称之为用户设备(User Equipment,UE),是一种向用户提供语音和/或数据连通性的设备,例如,具有无线连接功能的手持式设备、车载设备等。常见的终端例如包括:手机、平板电脑、笔记本电脑、掌上电脑、移动互联网设备(mobile internet device,MID)、可穿戴设备,例如智能手表、智能手环、计步器等。
2)、网络设备,可以是GSM***或CDMA***中的基站(Base Transceiver Station,BTS),也可以是WCDMA***中的基站(NodeB,NB),还可以是LTE***中的演进型基站(Evolutional Node B,eNB或eNodeB),或者是云无线接入网络(Cloud Radio Access Network,CRAN)中的无线控制器,或者所述网络设备可以为未来5G网络中的网络设备,如NR***中的gNB或小站、微站,TRP(transmission reception point,传输接收点),还可以是中继站、接入点或者未来演进的公共陆地移动网络(Public Land Mobile Network,PLMN)中的网络设备等任何其它无线接入设备,但本申请实施例不限于此。
3)、“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。字符“/”一般表示前后关联对象是一种“或”的关系。同时,应当理解,尽管在本申请实施例中可能采用术语第一、第二、第三等来描述各种消息、请求和终端,但这些消息、请求和终端不应限于这些术语。这些术语仅用来将消息、请求和终端彼此区分开。
图2为本申请实施例提供的一种应用场景的示意性架构图。如图2所示的组网架构中,主要包括基站101和终端102。基站101可以使用低频(主要为6GHz以下)或者相对较高的频率(6GHz以上)的毫米波频段与终端102通信。例如,毫米波频段可以是28GHz、38GHz,或覆盖面积较小的数据平面的增强带宽(Enhanced-band)频段,比如70GHz以上的频段。基站101覆盖下的终端102可以使用低频或者频率较高的毫米波频段与基站101进行通信。图2只是举例的简化示意图,网络中还可以包括其他设备,图2中未予以画出。
本申请实施例提供的通信方法和设备,可以应用于终端,所述终端包括硬件层、运行在硬件层之上的操作***层,以及运行在操作***层上的应用层。所述硬件层包括中央处理器(Central Processing Unit,CPU)、内存管理单元(Memory Management Unit,MMU)和内存 (也称为主存)等硬件。所述操作***可以是任意一种或多种通过进程(Process)实现业务处理的计算机操作***,例如,Linux操作***、Unix操作***、Android操作***、iOS操作***或windows操作***等。所述应用层包含浏览器、通讯录、文字处理软件、即时通信软件等应用。
此外,本申请的各个方面或特征可以实现成方法、装置或使用标准编程和/或工程技术的制品。本申请中使用的术语“制品”涵盖可从任何计算机可读器件、载体或介质访问的计算机程序。例如,计算机可读介质可以包括,但不限于:磁存储器件(例如,硬盘、软盘或磁带等),光盘(例如,压缩盘(Compact Disc,CD)、数字通用盘(Digital Versatile Disc,DVD)等),智能卡和闪存器件(例如,可擦写可编程只读存储器(Erasable Programmable Read-Only Memory,EPROM)、卡、棒或钥匙驱动器等)。另外,本文描述的各种存储介质可代表用于存储信息的一个或多个设备和/或其它机器可读介质。术语“机器可读介质”可包括但不限于,能够存储、包含和/或承载指令和/或数据的各种介质。
为了更好地理解本申请,以下将结合附图对本申请进行说明。
实施例一:
图3为LTE***的资源栅格(resource grid)图。如图所示,LTE***中信道的发送以无线帧为单位,一个无线帧(radio frame)包括10个子帧(subframe),每一个子帧的长度为1毫秒(ms),每个子帧均包括两个时隙(slot),每个slot为0.5ms。每个slot包括的符号的个数与子帧中CP(cyclic prefix,循环前缀)长度相关。如果CP为normal(普通)CP,则每个slot包括7个符号,每个子帧由14个符号组成,如果CP为extended(长)CP,每个slot包括6个符号,每个子帧由12个符号组成。下行符号称为正交频分多址(orthogonal frequency division multiplexing,OFDM)符号。LTE***中,资源单元(resource element,RE)是时频域上最小的单元,由索引对(k,l)唯一标识,其中,k为子载波索引,l为符号索引。
相对现有的无线通信网络,工作在6GHz以上范围的下一代无线通信网络将遭受更加严重的中射频失真,尤其是相位噪声带来的影响,相位噪声水平越高,CPE影响越大。因此引入了PTRS用于相位噪声估计。
但是PTRS会占用一些RE,而被占用的RE原本是用于发送数据信道(其中上行传输时,数据信道包括物理上行共享信道(physical uplink shared channel,PUSCH),下行传输时,数据信道包括物理下行共享信道(physical downlink shared channel,PDSCH))或者其他参考信号的。其中最为常见的情况是,被占用的RE原本用于发送数据信道,对于这种情况,PTRS的总功率应当等于被占用的RE上原本要发送的数据信道的总功率(本申请实施例中所述的 “功率”等同于“发送功率”)。因为发送端可用的总功率都是预先配置好的,如果PTRS的发送功率大于被占用的RE上原本要发送的数据信道的发送功率,则会造成超出可用的总功率的情况,而如果PTRS的发送功率小于被占用的RE上原本要发送的数据信道的发送功率,则会造成功率浪费的情况,当然,如果PTRS的发送功率只是略小于(差值不超过预设阈值)被占用的RE上原本要发送的数据信道的发送功率,也是可行的。
以上行传输为例,由PTRS的发送功率等于被占用的RE上原本要发送的数据信道的发送功率,可以得出公式(1):
N layers×N RE/layers×P PUSCH=N PTRS ports×N RE/PTRS ports×P PTRS          (1)
其中,N layers为传输层数,N RE/layers为每个传输层上由于PTRS而无法使用的RE数(以1资源块(resource block,RB),1ODFM符号为单位),P PUSCH为该传输层上PUSCH的功率(以1个RE为单位),N PTRS ports为PTRS端口(port)数,N RE/PTRS ports为每一个PTRS端口所占用的RE数(以1RB,1ODFM符号为单位,此处假设为1),P PTRS为PTRS的功率(以1个RE为单位)。
由公式(1)可以进一步得出公式(2):
Figure PCTCN2018091226-appb-000009
又由于:N RE/layers=N PTRS ports×N RE/PTRS ports
可以进一步得出公式(3):
Figure PCTCN2018091226-appb-000010
由公式(3)可以进一步得出公式(4):
PTRS和PUSCH的相对功率比=10log 10(N layers)          (4)
又由于:传输层数等于DMRS端口数,因此也可以得出公式(5):
PTRS和PUSCH的相对功率比=10log 10(N DMRS ports)         (5)
终端设备可以通过公式(4)或(5)计算得出PTRS和PUSCH的相对功率比,再结合PUSCH的功率,最终得出PTRS的功率,并且使用PTRS的功率来发送PTRS。
通过公式(4)或(5),可以计算得出,当传输层数为1-8,DMRS端口数为1-8,PTRS端口数等于或小于DMRS端口数的情况下PTRS和PUSCH的相对功率比,如表(1)所示:
表(1)
传输层layer数 DMRS端口数 PTRS和PUSCH的相对功率比(dB)
1 1 0
2 2 3
3 3 4.77
4 4 6
5 5 7
6 6 7.78
7 7 8.45
8 8 9
当传输层数为1-12,DMRS端口数为1-12,PTRS端口数等于或小于DMRS端口数的情况下,还可以对表(1)进一步扩展,如表(2)所示:
表(2)
传输层layer数 DMRS端口数 PTRS和PUSCH的相对功率比(dB)
1 1 0
2 2 3
3 3 4.77
4 4 6
5 5 7
6 6 7.78
7 7 8.45
8 8 9
9 9 9.54
10 10 10
11 11 10.41
12 12 10.79
出于便于工业实践的考虑,可以对表(1)和表(2)中PTRS和PUSCH的相对功率比的值去掉小数,取整数,例如当传输层数为3,DMRS端口数为3时,PTRS和PUSCH的相对功率比的值可以对4.77取整数,得到的值为4。还可以对表(1)和表(2)中PTRS和PUSCH的相对功率比的值只保留1位小数,例如当传输层数为3,DMRS端口数为3时,PTRS和PUSCH的相对功率比的值可以对4.77保留一位小数,得到的值为4.7。取整数或者保留一位小数时是否四舍五入,本申请实施例不做限定。
终端设备还可以通过查表(例如表(1)或表(2))的方式得出PTRS和PUSCH的相对功率比,再结合PUSCH的功率,最终得出PTRS的功率,并且使用PTRS的功率来发送PTRS。
另一方面,以上行传输为例,由DMRS的发送功率等于被占用的RE上原本要发送的数据信道的发送功率,可以得出公式(6):
N layers×N' RE/layers×P PUSCH=N DMRS ports×N RE/DMRS ports×P DMRS          (6)
其中,N layers为传输层数,N DMRS ports为DMRS端口数,N' RE/layers为每个传输层的RE数(以1RB 1OFDM符号为单位,通常为12个RE),N RE/DMRS ports为每一个DMRS端口所占用的RE数(以1RB,1OFDM符号为单位),P DMRS为DMRS的功率谱密度(power spectrum density,PSD)(以1RE为单位),P PUSCH为该传输层上PUSCH的功率(以1个RE为单位)。
由公式(6)可以进一步得出公式(7):
Figure PCTCN2018091226-appb-000011
又由于:传输层数等于DMRS端口数,因此可以得出公式(8):
Figure PCTCN2018091226-appb-000012
又由于:D DMRS是DMRS的频域密度,等于
Figure PCTCN2018091226-appb-000013
可以得出公式(9):
Figure PCTCN2018091226-appb-000014
根据公式(9)可以进一步得到公式(10):
Figure PCTCN2018091226-appb-000015
根据公式(3)和公式(9),可以进一步得到公式(11):
Figure PCTCN2018091226-appb-000016
根据公式(11)可以进一步得到公式(12):
Figure PCTCN2018091226-appb-000017
根据公式(12)可以进一步得到公式(13):
PTRS和DMRS的相对功率比=10log 10(N layersD DMRS)        (13)
又由于:传输层数等于DMRS端口数,因此还可以得出公式(14):
PTRS和DMRS的相对功率比=10log 10(N DMRS portsD DMRS)        (14)
终端设备可以通过公式(13)或(14)计算得出PTRS和DMRS的相对功率比,再结合DMRS的功率,最终得出PTRS的功率,并且使用PTRS的功率来发送PTRS。
通过公式(13)或(14),可以计算得出,当传输层数为1-8,DMRS端口数为1-8,PTRS端口数等于或小于DMRS端口数的情况下PTRS和DMRS的相对功率比,如表(3)所示:
表(3)
传输层layer数 DMRS端口数 DMRS的频域密度 PTRS和DMRS的相对功率比(dB)
1 1 1/4 (-)6
2 2 1/4 (-)3
3 3 1/4 (-)1.23
4 4 1/4 0
5 5 1/4 0
6 6 1/4 0
7 7 1/4 0
8 8 1/4 3
当传输层数为1-12,DMRS端口数为1-12,PTRS端口数等于或小于DMRS端口数的情况下,还可以对表(3)进一步扩展,如表(4)所示:
表(4)
传输层layer数 DMRS端口数 DMRS的频域密度 PTRS和DMRS的相对功率比(dB)
1 1 1/4 (-)6
2 2 1/4 (-)3
3 3 1/4 (-)1.23
4 4 1/4 0
5 5 1/4 0
6 6 1/4 0
7 7 1/4 0
8 8 1/4 3
9 9 1/6 1.76
10 10 1/6 2.22
11 11 1/6 2.63
12 12 1/6 3.01
DMRS的频域密度还可以为其他值,例如1/2,1/3等,假设对于每个传输层数或每个DMRS端口数,DMRS的频域密度都可以为1/2,1/3,1/4和1/6,则可以得到表(5),如下所述:
表(5)
Figure PCTCN2018091226-appb-000018
Figure PCTCN2018091226-appb-000019
表(5)提供了包括很多配置可能性的PTRS和DMRS的相对功率比值,可以任意拆分使用,本申请实施例对此不做限定。
表(3)—(5)中,因为传输层数等于DMRS端口数,因此前两列可以只保留其中一列。此外,出于便于工业实践的考虑,可以对表(3)—(5)中PTRS和DMRS的相对功率比的值去掉小数,取整数,例如当传输层数为9,DMRS端口数为9时,PTRS和DMRS的相对功率比的值可以对1.76取整数,得到的值为1。还可以对表(3)—(5)中PTRS和DMRS 的相对功率比的值只保留1位小数,例如当传输层数为9,DMRS端口数为9时,PTRS和PUSCH的相对功率比的值可以对1.76保留一位小数,得到的值为1.7。取整数或者保留一位小数时是否四舍五入,本申请实施例不做限定。
终端设备可以通过查表(例如表(3)、表(4)或表(5))的方式得出PTRS和DMRS的相对功率比,再结合DMRS的功率,最终得出PTRS的功率,并且使用PTRS的功率来发送PTRS。
本申请实施例在进行公式推导的过程中,将N RE/PTRS ports,即每一个PTRS端口所占用的RE数(以1RB,1ODFM符号为单位)假设为1,但是在实现中,1RB,1ODFM符号内,每一个PTRS端口所占用的RE数也有可能大于1,即N RE/PTRS ports>1,在这种情况下,公式(4)、公式(5)、公式(13)、公式(14)中都需要加入PTRS的频域密度作为另一个变量,如公式(15)所示:
PTRS和PUSCH的相对功率比=10log 10(N layersD PTRS)
PTRS和PUSCH的相对功率比=10log 10(N DMRS portsD PTRS)
PTRS和DMRS的相对功率比=10log 10(N layersD DMRSD PTRS)
PTRS和DMRS的相对功率比=10log 10(N DMRS portsD DMRSD PTRS)       (15)
其中,D PTRS为PTRS的频域密度。
相应地,表格(1)—(5)中相对功率比的数值会根据不同的PTRS的频域密度产生变化,但都可以通过公式(15)计算得出。
本申请实施例中,终端设备通过公式(4)或(5)计算得出,或者通过表(1)或表(2)查表得出PTRS和PUSCH的相对功率比后,可以结合PUSCH的功率,以及另一个参数OFFSET PTRS-PUSCH,最终得出PTRS的功率,并使用PTRS的功率来发送PTRS。其中,OFFSET PTRS-PUSCH表示PTRS功率和PUSCH功率之间的基准偏移量,可以由基站配置。类似的,终端设备通过公式(13)或(14)计算得出,或者通过表(3)、表(4)或表(5)查表得出PTRS和DMRS的相对功率比后,可以结合PUSCH的功率,以及另一个参数OFFSET PTRS-DMRS,最终得出PTRS的功率,并使用PTRS的功率来发送PTRS。其中,OFFSET PTRS-DMRS表示PTRS功率和DMRS功率之间的基准偏移量,可以由基站配置,可以由OFFSET PTRS-PUSCH和DMRS功率和PUSCH功率之间的基准偏移量OFFSET DMRS-PUSCH累加得到。
本申请实施例中,PTRS和PUSCH的相对功率比、PTRS和DMRS的相对功率比还可以预先设定或者由基站配置,终端设备直接获取PTRS和PUSCH的相对功率比、PTRS和DMRS的相对功率比后,根据本申请实施例描述的方法得出PTRS的功率。
本申请实施例中,基站还可以配置PTRS的最大功率P MAX,当终端设备通过本申请实施例中的任一公式计算得出的PTRS的功率大于P MAX时,终端设备使用P MAX发送PTRS。
接下来,本申请实施例会通过举例的方式来对公式(4)、公式(5)、公式(13)、公式(14)以及表格(1)—(5)进行验证。在下述举例中,根据晶振的不同,将DMRS端口进行分组,同一个本振的DMRS端口分为1组,该组内所有端口经历的的相位噪声可以由一个端口上的PTRS测得。
图4A为本申请实施例提供的一种导频图案示意图(上行传输,1个传输层,1个DMRS端口,1个PTRS端口)。从图4A可以看出,在这种PTRS的时频资源映射方式下,PTRS和PUSCH的功率是一致的,PTRS和PUSCH的相对功率比为0dB。
图4B为本申请实施例提供的一种导频图案示意图(上行传输,2个传输层,2个DMRS端口,1个PTRS端口,2个DMRS端口为1组)。从图4B可以看出,图4B(1)为传输层1的导频图案示意图,图4B(2)为传输层2的导频图案示意图。由于采用了两层传输,因此每一层的PUSCH的功率只有总功率的一半,而PTRS只由一个端口发送,使用全部功率,因此PTRS和PUSCH的相对功率比为3dB。
图4C为本申请实施例提供的一种导频图案示意图(上行传输,2个传输层,2个DMRS端口,2个PTRS端口,2个DMRS端口为2组)。从图4C可以看出,图4C(1)为传输层1的导频图案示意图,图4C(2)为传输层2的导频图案示意图。由于PTRS和数据之间的正交假设,导致在传输层1发送PTRS的RE在传输层2也不能映射数据。那么这些没有使用的RE上的功率可以用来增强PTRS的发送功率。即为了保持总功率一致,在每一层发送的PTRS功率都应该是数据信道功率的两倍。
可见,图4A-图4C验证了本申请实施例中的所有公式和表格,其他传输层数、DMRS端口数、PTRS端口数的例子同样如此,此处不再一一列举。图4A-图4C中的“其他”是指不限定该RE的上映射的是什么,可以映射数据信道或者其他参考信号。“不使用”是指由于PTRS和数据信道正交多路复用的原因,该RE不可用,或者不能用于映射数据。
图5为本申请实施例提供的一种发送功率的确定方法流程示意图。如图5所示,包括:
S50:终端设备确定PTRS和PUSCH的相对功率比;
终端设备可以根据本申请实施例中提供的公式,或者通过查找本申请实施例中提供的表格来确定PTRS和PUSCH的相对功率比,或者终端设备还可以确定PTRS和DMRS的相对功率比。
S51:终端设备确定PTRS的发送功率;
终端设备基于PTRS和PUSCH的相对功率比,以及PUSCH的发送功率确定PTRS的发送功率,或者基于PTRS和DMRS的相对功率比,以及DMRS的发送功率确定PTRS的发送功率。
S52:终端设备使用确定的发送功率来发送PTRS。
本申请实施例中都是以上行传输为例进行说明,对于下行传输来说,由于新空口(new radio,NR)采用了上下行对称的DMRS和PTRS导频图案设计,因此本申请实施例中的所有公式和表格对于下行PTRS功率确定仍然适用,只要把涉及到的“PUSCH”变更为“PDSCH”即可。
本申请实施例中,基站设备获取导频图案后,当待发送的PTRS的导频图案和待发送的其他参考信号(即除PTRS以外的其他参考信号)的导频图案出现冲突时,换句话说,当导频图案指示待发送的PTRS和待发送的其他参考信号要占用同一个或同几个RE(冲突RE)时,可选的,不允许PTRS占用其他参考信号的RE,即发送其他参考信号的优先级大于发送PTRS的优先级。此时,基站设备将待发送的其他参考信号映射到冲突RE上,并在冲突RE上只发送其他参考信号。可以使用前述实施例描述的方法来确定PTRS发送功率。
或者,允许待发送的PTRS占用待发送的其他参考信号的RE。此时,基站设备将待发送的PTRS映射到冲突的RE上,并在冲突RE上只发送PTRS。并且,原本用于发送其他参考信号的RE(不包括映射了待发送的PTRS的冲突RE)的功率可以用来对PTRS进行功率增强。
总体来说,本申请实施例使用不映射数据的RE(本申请实施例中,以下表述的含义可以相同:不能用于映射数据的RE、不用于映射数据的RE、不映射数据的RE、muted RE)的功率来对PTRS的功率进行增强,增强后的PTRS和数据的相对功率比(也可以称为“PTRS的功率和数据的功率的差值”)等于传输层数(多层传输中,传输层数大于等于2)的对数,即10log 10(N layers)。当PTRS端口数等于DMRS端口数时,为了保证UE的不同传输层的PTRS和数据的正交多路,某一传输层上的一些RE将不映射数据,这些不映射数据的RE的功率将被用来增强该传输层的PTRS的功率。在这种情况下,每一传输层上的PTRS和数据的相对功率比等于传输层数的对数;当PTRS端口数小于DMRS端口数时,可以跨层“借用”功率,即使用某一传输层上不映射数据的RE的功率来增强另一传输层上的PTRS的功率,该PTRS的传输功率和该PTRS所在传输层上的数据的相对功率比等于传输层数的对数。
本申请实施例中,发送端设备先通过查表或者计算得出PTRS和数据信道或者DMRS的相对功率比,再结合数据信道或者DMRS的发送功率确定PTRS的发送功率,然后使用该发 送功率发送PTRS,可以灵活地适应不同的DMRS端口数、PTRS端口数,以及端口复用方式的配置,保证能量的有效使用。
图6为本申请实施例提供的一种通信设备的硬件结构示意图。如图6所示,该通信设备60包括:
存储器61,用于存放包括计算机操作指令的程序代码;
处理器62,用于运行所述计算机操作指令以执行:
确定相位跟踪参考信号PTRS和数据信道的相对功率比,或者PTRS和解调参考信号DMRS的相对功率比,其中PTRS和数据信道的相对功率比通过第一函数和第一变量确定,PTRS和DMRS的相对功率比通过第二函数、第一变量和第二变量确定,其中第一变量包括传输层数或DMRS端口数,第二变量包括DMRS的频域密度;
基于PTRS和数据信道相对功率比和数据信道的发送功率,或者PTRS和DMRS的相对功率比和DMRS的发送功率确定PTRS的发送功率;
发送器63,用于使用PTRS的发送功率向另一通信设备发送PTRS。
可选地,处理器62还用于运行所述计算机操作指令以执行:
通过查表确定相位跟踪参考信号PTRS和数据信道的相对功率比,或者PTRS和解调参考信号DMRS的相对功率比;
基于PTRS和数据信道相对功率比和数据信道的发送功率,或者PTRS和DMRS的相对功率比和DMRS的发送功率确定PTRS的发送功率。
实施例二:
和实施例一中,发送端先得出PTRS和数据信道或者DMRS的相对功率比,再结合数据信道或者DMRS的发送功率确定PTRS的发送功率不同,本申请实施例直接计算得出PTRS的发送功率。
LTE***中,上行发送功率应满足基于不同调制与编码策略(Modulation and Coding Scheme,MCS)下,PUSCH的数据传输达到10%误码率所需信号与干扰加噪声比(Signal to Interference plus Noise Ratio,SINR)的要求,基站设备基于此要求来确定PUSCH发送功率。
以上行传输为例,数据信道的发送功率计算公式可以为:
Figure PCTCN2018091226-appb-000020
公式(16)中,i表示子帧编号(或者时隙编号、符号编号),c表示小区编号(或者波束编号、波束组编号),j表示预设值,可以由基站设备配置或预先设定;
P PUSCH,c(i)表示终端设备在子帧i对小区c发送PUSCH的发送功率;
Figure PCTCN2018091226-appb-000021
PCMAX,c(i)的线性值,P CMAX,c(i)表示终端设备的可用发送功率;
Figure PCTCN2018091226-appb-000022
为P PUCCH(i)的线性值,P PUCCH(i)表示终端设备在子帧i上用在PUCCH上的发送功率;
M PUSCH,c(i)表示在子帧i上PUSCH资源所占带宽,以RB数目为单位;
P O_PUSCH,c(j)表示PUSCH基准功率,P O_PUSCH,c(j)=P O_UE_PUSCH,c(j)+P O_NOMINAL_PUSCH,c(j),其中,P O_NOMINAL_PUSCH,c(j)表示小区c的半静态发射功率基准,通常为基站设备为小区内所有终端设备配置的一个公共值,P O_UE_PUSCH,c(j)表示小区c中每个终端设备在小区c的半静态发射功率基准上的功率偏移,通常为基站设备为每个终端设备配置的特有值;
α c(j)表示路损补偿程度;
PL c表示所述终端设备对小区c参考信号(例如信道状态信息参考信号(Channel Status Information Reference Signal,CSI-RS)、小区特定参考信号(Cell-specific Reference Signals,CRS)、同步信号块(Synchronization Signal Block,简称SS Block)等)测量得到的路损值;
Δ TF,c(i)表示根据传输格式允许每RB的发射功率自适应于传输信息数据速率;
f c(i)表示终端设备特定的闭环功率控制,可以分为累计值和绝对值两种,采用哪种模式通过基站设备配置的accumulationEnable(是否采用TPC累积)参数决定,若采用TPC累积,则f c(i)=f c(i-1)+δ PUSCH,c(i-K PUSCH),即f c(i)为在第i子帧前的TPC累计值与第i-K PUSCH子帧上收到的下行控制信息(Downlink Control Information,DCI)中指示的TPC值δ PUSCH,c之和。
本申请实施例中,考虑到PTRS是用于跟踪相位以辅助数据解调,在直接计算得出PTRS的发送功率时,可以参考公式(16)中的部分参数,得到一种发送功率的确定方法,包括:
终端设备获取预设调整参数和PTRS的传输带宽;
终端设备确定PTRS的发送功率,其中,PTRS的发送功率至少通过预设函数、调整参数和PTRS的传输带宽确定;
终端设备使用PTRS的发送功率向基站设备发送PTRS。
本申请实施例中,考虑到PTRS是用于跟踪相位以辅助数据解调,在直接计算得出PTRS的发送功率时,可以参考公式(16)中的部分参数,通过如下公式确定PTRS的发送功率:
Figure PCTCN2018091226-appb-000023
公式(17)中,参数P CMAX,c(i)、P O_PUSCH,c(j)、α c(j)、PL c和f c(i)均复用自公式(16)。此外,P PTRS,c(i)表示PTRS的发送功率,包括所述终端设备在子帧i对小区c发送所述PTRS的发送功率,其值的单位为dBm;M PTRS,c表示PTRS的传输带宽;P PTRS_OFFSET,c(m)表示预设调整参数,m=0或1。
本申请实施例中,基站设备可以通过RRC信令或DCI来配置或者预设参数。
本申请实施例中,通过直接计算得出PTRS的发送功率,使得终端设备能够便捷得确定PTRS的发送功率。
实施例三:
本申请实施例提供了另外一种直接计算得出PTRS的发送功率的方法,包括:
终端设备获取PTRS基准功率;
终端设备确定PTRS的发送功率,其中,PTRS的发送功率至少通过预设函数和PTRS基准功率确定;
终端设备使用PTRS的发送功率向基站设备发送PTRS。
其中,终端设备可以通过如下公式确定PTRS的发送功率:
Figure PCTCN2018091226-appb-000024
公式(18)中,参数P PTRS,c(i)、P CMAX,c(i)、α c(j)和PL c的含义和公式(17)中相同。此外,P O_PTRS,c(j)表示PTRS基准功率,P O_PTRS,c(j)=P O_NOMINAL_PTRS+P O_UE_PTRS,P O_NOMINAL_PTRS表示基站设备为小区c内所有终端设备配置的一个公共值,P O_UE_PTRS表示基站设备为小区c内每个终端设备配置的特有值。
进一步地,公式(18)中还可以加入参数g(i),以使得每个终端设备可以根据自己的条件调整PTRS的发送功率,如下公式所示:
Figure PCTCN2018091226-appb-000025
其中,g(i)表示终端设备特有的调整参数。
进一步的,公式(18)中还可以加入参数h(n RS)、Δ PTRS(F)和Δ TxD(N PTRS-port),得到如下公式:
Figure PCTCN2018091226-appb-000026
公式(20)中,n RS表示PTRS的优先级参数,h(n RS)表示终端设备通过n RS获取的功率偏移量;
F表示导频图案,Δ PTRS(F)表示导频图案导致的调整量,不同的导频图案会导致的不同调整量;
N PTRS-port表示发送所述PTRS的天线端口数,Δ TxD(N PTRS-port)表示天线端口数导致的功率的调整量,不同的天线端口数也会导致的不同调整量。
本申请实施例中,通过直接计算得出PTRS的发送功率,使得终端设备能够便捷得确定PTRS的发送功率。
实施例二和实施例三所提供的发送功率的确定方法,也可以由图6所示的通信装置来执行,例如,存储器61,用于存放包括计算机操作指令的程序代码,处理器62,用于获取所需参数,并通过这些参数和公式(17)—(20)之一来计算得出PTRS的发送功率,发送器63,用于使用PTRS的发送功率向另一通信设备发送PTRS。
本申请实施例还提供了一种计算机可读存储介质,用于存储为执行上述处理器所需执行的计算机软件指令,其包含用于执行上述处理器所需执行的程序。
本领域内的技术人员应明白,本申请的实施例可提供为方法、***、或计算机程序产品。因此,本申请可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本申请可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、光学存储器等)上实施的计算机程序产品的形式。
本申请是参照根据本申请的方法、设备(***)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的精神和范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (58)

  1. 一种发送功率的确定方法,其特征在于,包括:
    第一设备确定相位跟踪参考信号PTRS和数据信道的相对功率比,或者PTRS和解调参考信号DMRS的相对功率比,其中所述PTRS和数据信道的相对功率比通过第一函数和第一变量确定,所述PTRS和DMRS的相对功率比通过第二函数、所述第一变量和第二变量确定,其中所述第一变量包括传输层数或DMRS端口数,所述第二变量包括所述DMRS的频域密度;
    所述第一设备基于所述PTRS和数据信道相对功率比和所述数据信道的发送功率,或者所述PTRS和DMRS的相对功率比和所述DMRS的发送功率确定所述PTRS的发送功率;
    所述第一设备使用所述PTRS的发送功率向第二设备发送所述PTRS。
  2. 根据权利要求1所述的方法,其特征在于,所述第一设备包括终端设备,所述第二设备包括基站设备,所述数据信道包括物理上行共享信道PUSCH。
  3. 根据权利要求1所述的方法,其特征在于,所述第一设备包括基站设备,所述第二设备包括终端设备,所述数据信道包括物理下行共享信道PDSCH。
  4. 根据权利要求1-3任一项所述的方法,其特征在于,所述PTRS和数据信道的相对功率比通过第一函数和第一变量确定包括:
    PTRS和数据信道的相对功率比=10log 10(X)
    其中,所述X包括所述第一变量。
  5. 根据权利要求1-3任一项所述的方法,其特征在于,所述PTRS和DMRS的相对功率比通过第二函数、所述第一变量和第二变量确定包括:
    PTRS和DMRS的相对功率比=10log 10(XY)
    其中,所述X包括所述第一变量,所述Y包括所述第二变量。
  6. 一种发送功率的确定方法,其特征在于,包括:
    第一设备通过查表确定相位跟踪参考信号PTRS和数据信道的相对功率比,或者PTRS和解调参考信号DMRS的相对功率比;
    所述第一设备基于所述PTRS和数据信道相对功率比和所述数据信道的发送功率,或者所述PTRS和DMRS的相对功率比和所述DMRS的发送功率确定所述PTRS的发送功率;
    所述第一设备使用所述PTRS的发送功率向第二设备发送所述PTRS。
  7. 根据权利要求6所述的方法,其特征在于,所述第一设备包括终端设备,所述第二设备包括基站设备,所述数据信道包括物理上行共享信道PUSCH。
  8. 根据权利要求6所述的方法,其特征在于,所述第一设备包括基站设备,所述第二设备包括终端设备,所述数据信道包括物理下行共享信道PDSCH。
  9. 根据权利要求7所述的方法,其特征在于,所述第一设备通过查表确定PTRS和数据信道的相对功率比包括:
    所述第一设备通过查找以下表格确定所述PTRS和数据信道的相对功率比:
    传输层layer数 PTRS和PUSCH的相对功率比(dB) 1 0 2 3 3 4.77 4 6 5 7 6 7.78 7 8.45 8 9
    或者
    DMRS端口数 PTRS和PUSCH的相对功率比(dB) 1 0 2 3 3 4.77 4 6 5 7 6 7.78 7 8.45 8 9
  10. 根据权利要求8所述的方法,其特征在于,所述第一设备通过查表确定PTRS和数据信道的相对功率比包括:
    所述第一设备通过查找以下表格确定所述PTRS和数据信道的相对功率比:
    传输层layer数 PTRS和PDSCH的相对功率比(dB) 1 0 2 3 3 4.77 4 6 5 7 6 7.78 7 8.45 8 9
    或者
    DMRS端口数 PTRS和PDSCH的相对功率比(dB)
    1 0 2 3 3 4.77 4 6 5 7 6 7.78 7 8.45 8 9
  11. 根据权利要求6-8任一项所述的方法,其特征在于,所述第一设备通过查表确定PTRS和DMRS的相对功率比包括:
    所述第一设备通过查找以下表格确定所述PTRS和DMRS的相对功率比:
    传输层layer数 DMRS的频域密度 PTRS和DMRS的相对功率比(dB) 1 1/4 (-)6 2 1/4 (-)3 3 1/4 (-)1.23 4 1/4 0 5 1/4 0 6 1/4 0 7 1/4 0 8 1/4 3
    或者
    DMRS端口数 DMRS的频域密度 PTRS和DMRS的相对功率比(dB) 1 1/4 (-)6 2 1/4 (-)3 3 1/4 (-)1.23 4 1/4 0 5 1/4 0 6 1/4 0 7 1/4 0 8 1/4 3
  12. 一种处理芯片,其特征在于,所述处理芯片用于:
    确定相位跟踪参考信号PTRS和数据信道的相对功率比,或者PTRS和解调参考信号DMRS的相对功率比,其中所述PTRS和数据信道的相对功率比通过第一函数和第一变量确定,所述PTRS和DMRS的相对功率比通过第二函数、所述第一变量和第二变量确定,其中所述第一变量包括传输层数或DMRS端口数,所述第二变量包括所述DMRS的频域密度;
    基于所述PTRS和数据信道相对功率比和所述数据信道的发送功率,或者所述PTRS和DMRS的相对功率比和所述DMRS的发送功率确定所述PTRS的发送功率。
  13. 根据权利要求12所述的处理芯片,其特征在于,所述数据信道包括物理上行共享信道PUSCH或者物理下行共享信道PDSCH。
  14. 根据权利要求12或13所述的处理芯片,其特征在于,所述PTRS和数据信道的相对功率比通过第一函数和第一变量确定包括:
    PTRS和数据信道的相对功率比=10log 10(X)
    其中,所述X包括所述第一变量。
  15. 根据权利要求12或13所述的处理芯片,其特征在于,所述PTRS和DMRS的相对功率比通过第二函数、所述第一变量和第二变量确定包括:
    PTRS和DMRS的相对功率比=10log 10(XY)
    其中,所述X包括所述第一变量,所述Y包括所述第二变量。
  16. 一种处理芯片,其特征在于,所述处理芯片用于:
    通过查表确定相位跟踪参考信号PTRS和数据信道的相对功率比,或者PTRS和解调参考信号DMRS的相对功率比;
    基于所述PTRS和数据信道相对功率比和所述数据信道的发送功率,或者所述PTRS和DMRS的相对功率比和所述DMRS的发送功率确定所述PTRS的发送功率。
  17. 根据权利要求16所述的处理芯片,其特征在于,所述数据信道包括物理上行共享信道PUSCH。
  18. 根据权利要求16所述的处理芯片,其特征在于,所述数据信道包括物理下行共享信道PDSCH。
  19. 根据权利要求17所述的方法,其特征在于,所述通过查表确定PTRS和数据信道的相对功率比包括:
    通过查找以下表格确定所述PTRS和数据信道的相对功率比:
    传输层layer数 PTRS和PUSCH的相对功率比(dB) 1 0 2 3 3 4.77 4 6 5 7 6 7.78 7 8.45 8 9
    或者
    DMRS端口数 PTRS和PUSCH的相对功率比(dB) 1 0 2 3 3 4.77
    4 6 5 7 6 7.78 7 8.45 8 9
  20. 根据权利要求18所述的处理芯片,其特征在于,所述通过查表确定PTRS和数据信道的相对功率比包括:
    通过查找以下表格确定所述PTRS和数据信道的相对功率比:
    传输层layer数 PTRS和PDSCH的相对功率比(dB) 1 0 2 3 3 4.77 4 6 5 7 6 7.78 7 8.45 8 9
    或者
    DMRS端口数 PTRS和PDSCH的相对功率比(dB) 1 0 2 3 3 4.77 4 6 5 7 6 7.78 7 8.45 8 9
  21. 根据权利要求16-18任一项所述的处理芯片,其特征在于,所述通过查表确定PTRS和DMRS的相对功率比包括:
    通过查找以下表格确定所述PTRS和DMRS的相对功率比:
    DMRS端口数 DMRS的频域密度 PTRS和DMRS的相对功率比(dB) 1 1/4 (-)6 2 1/4 (-)3 3 1/4 (-)1.23 4 1/4 0 5 1/4 0 6 1/4 0 7 1/4 0 8 1/4 3
    或者
    DMRS端口数 DMRS的频域密度 PTRS和DMRS的相对功率比(dB) 1 1/4 (-)6 2 1/4 (-)3 3 1/4 (-)1.23 4 1/4 0 5 1/4 0 6 1/4 0 7 1/4 0 8 1/4 3
  22. 一种通信设备,其特征在于,包括:
    处理器,用于确定相位跟踪参考信号PTRS和数据信道的相对功率比,或者PTRS和解调参考信号DMRS的相对功率比,其中所述PTRS和数据信道的相对功率比通过第一函数和第一变量确定,所述PTRS和DMRS的相对功率比通过第二函数、所述第一变量和第二变量确定,其中所述第一变量包括传输层数或DMRS端口数,所述第二变量包括所述DMRS的频域密度;
    基于所述PTRS和数据信道相对功率比和所述数据信道的发送功率,或者所述PTRS和DMRS的相对功率比和所述DMRS的发送功率确定所述PTRS的发送功率;
    发送器,用于使用所述PTRS的发送功率向另一通信设备发送所述PTRS。
  23. 根据权利要求22所述的通信设备,其特征在于,所述通信设备包括终端设备,所述另一通信设备包括基站设备,所述数据信道包括物理上行共享信道PUSCH。
  24. 根据权利要求22所述的通信设备,其特征在于,所述通信设备包括基站设备,所述另一通信设备包括终端设备,所述数据信道包括物理下行共享信道PDSCH。
  25. 根据权利要求22-24任一项所述的通信设备,其特征在于,所述PTRS和数据信道的相对功率比通过第一函数和第一变量确定包括:
    PTRS和数据信道的相对功率比=10log 10(X)
    其中,所述X包括所述第一变量。
  26. 根据权利要求22-24任一项所述的通信设备,其特征在于,所述PTRS和DMRS的相对功率比通过第二函数、所述第一变量和第二变量确定包括:
    PTRS和DMRS的相对功率比=10log 10(XY)
    其中,所述X包括所述第一变量,所述Y包括所述第二变量。
  27. 一种通信设备,其特征在于,包括:
    处理器,用于通过查表确定相位跟踪参考信号PTRS和数据信道的相对功率比,或者 PTRS和解调参考信号DMRS的相对功率比;
    基于所述PTRS和数据信道相对功率比和所述数据信道的发送功率,或者所述PTRS和DMRS的相对功率比和所述DMRS的发送功率确定所述PTRS的发送功率;
    发送器,用于使用所述PTRS的发送功率向第二设备发送所述PTRS。
  28. 根据权利要求27所述的通信设备,其特征在于,所述通信设备包括终端设备,所述另一通信设备包括基站设备,所述数据信道包括物理上行共享信道PUSCH。
  29. 根据权利要求27所述的通信设备,其特征在于,所述通信设备包括基站设备,所述另一通信设备包括终端设备,所述数据信道包括物理下行共享信道PDSCH。
  30. 根据权利要求28所述的通信设备,其特征在于,所述通过查表确定PTRS和数据信道的相对功率比包括:
    通过查找以下表格确定所述PTRS和数据信道的相对功率比:
    传输层layer数 PTRS和PUSCH的相对功率比(dB) 1 0 2 3 3 4.77 4 6 5 7 6 7.78 7 8.45 8 9
    或者
    DMRS端口数 PTRS和PUSCH的相对功率比(dB) 1 0 2 3 3 4.77 4 6 5 7 6 7.78 7 8.45 8 9
  31. 根据权利要求29所述的通信设备,其特征在于,所述通过查表确定PTRS和数据信道的相对功率比包括:
    通过查找以下表格确定所述PTRS和数据信道的相对功率比:
    传输层layer数 PTRS和PDSCH的相对功率比(dB) 1 0 2 3 3 4.77
    4 6 5 7 6 7.78 7 8.45 8 9
    或者
    DMRS端口数 PTRS和PDSCH的相对功率比(dB) 1 0 2 3 3 4.77 4 6 5 7 6 7.78 7 8.45 8 9
  32. 根据权利要求27-29任一项所述的通信设备,其特征在于,所述通过查表确定PTRS和DMRS的相对功率比包括:
    通过查找以下表格确定所述PTRS和DMRS的相对功率比:
    传输层layer数 DMRS的频域密度 PTRS和DMRS的相对功率比(dB) 1 1/4 (-)6 2 1/4 (-)3 3 1/4 (-)1.23 4 1/4 0 5 1/4 0 6 1/4 0 7 1/4 0 8 1/4 3
    或者
    DMRS端口数 DMRS的频域密度 PTRS和DMRS的相对功率比(dB) 1 1/4 (-)6 2 1/4 (-)3 3 1/4 (-)1.23 4 1/4 0 5 1/4 0 6 1/4 0 7 1/4 0 8 1/4 3
  33. 一种发送功率的确定方法,其特征在于,包括:
    第一设备将数据映射到多个传输层上,其中所述多个传输层包括第一传输层,所述第一 传输层对应于第一RE集合和第二RE集合,所述第一RE集合和所述第二RE集合都包括多个RE,所述第一RE集合中的每个RE上都映射了相位跟踪参考信号PTRS,所述第二RE集合中的每个RE都不能用于映射数据;
    所述第一设备使用所述第二RE集合中所有RE的功率来增强所述第一RE集合中所有RE上映射的PTRS的发送功率;
    所述第一设备使用增强后的发送功率来发送所述PTRS。
  34. 一种通信设备,其特征在于,包括:
    处理器,用于将数据映射到多个传输层上,其中所述多个传输层包括第一传输层,所述第一传输层对应于第一RE集合和第二RE集合,所述第一RE集合和所述第二RE集合都包括多个RE,所述第一RE集合中的每个RE上都映射了相位跟踪参考信号PTRS,所述第二RE集合中的每个RE都不能用于映射数据;
    使用所述第二RE集合中所有RE的功率来增强所述第一RE集合中所有RE上映射的PTRS的发送功率;
    发送器,用于使用增强后的发送功率来发送所述PTRS。
  35. 一种发送功率的确定方法,其特征在于,包括:
    终端设备根据预设公式确定相位跟踪参考信号PTRS的发送功率;
    所述终端设备使用所述PTRS的发送功率向所述基站设备发送PTRS;
    其中所述预设公式包括:
    Figure PCTCN2018091226-appb-100001
    其中,所述i表示子帧编号,所述c表示小区编号,所述j表示预设值,所述P PTRS,c(i)表示所述PTRS的发送功率,所述PTRS的发送功率包括所述终端设备在子帧i对小区c发送所述PTRS的发送功率,所述P CMAX,c(i)表示所述终端设备的可用发送功率,所述P PTRS_OFFSET,c(m)表示预设调整参数,所述m=0或1,所述M PTRS,c表示所述PTRS的传输带宽,所述P O_PUSCH,c(j)表示PUSCH基准功率,所述α c(j)表示路损补偿程度,所述PL c表示所述终端设备对小区c参考信号测量得到的路损值,所述f c(i)表示所述终端设备特定的闭环功率控制。
  36. 一种发送功率的确定方法,其特征在于,包括:
    终端设备根据预设公式确定PTRS的发送功率;
    所述终端设备使用所述PTRS的发送功率向所述基站设备发送PTRS;
    其中所述预设公式包括:
    Figure PCTCN2018091226-appb-100002
    其中,所述i表示子帧编号,所述c表示小区编号,所述j表示预设值,所述P PTRS,c(i)表示所述PTRS的发送功率,所述PTRS的发送功率包括所述终端设备在子帧i对小区c发送所述PTRS的发送功率,所述P CMAX,c(i)表示所述终端设备的可用发送功率,所述P O_PTRS,c(j)表示PTRS基准功率,所述α c(j)表示路损补偿程度,所述PL c表示所述终端设备对小区c参考信号测量得到的路损值。
  37. 根据权利要求36所述的方法,其特征在于,所述预设公式进一步包括:
    Figure PCTCN2018091226-appb-100003
    其中,所述g(i)表示所述终端设备特有的调整参数。
  38. 根据权利要求37所述的方法,其特征在于,所述预设公式进一步包括:
    Figure PCTCN2018091226-appb-100004
    其中,所述n RS表示所述PTRS的优先级参数,所述h(n RS)表示所述终端设备通过所述n RS获取的功率偏移量,所述F表示导频图案,所述Δ PTRS(F)表示所述导频图案导致的功率的调整量,所述N PTRS-port表示发送所述PTRS的天线端口数,所述Δ TxD(N PTRS-port)表示所述天线端口数导致的功率的调整量。
  39. 一种终端设备,其特征在于,包括:
    处理器,用于根据预设公式确定相位跟踪参考信号PTRS的发送功率;
    发送器,用于使用所述PTRS的发送功率向所述基站设备发送PTRS;
    其中所述预设公式包括:
    Figure PCTCN2018091226-appb-100005
    其中,所述i表示子帧编号,所述c表示小区编号,所述j表示预设值,所述P PTRS,c(i)表示所述PTRS的发送功率,所述PTRS的发送功率包括所述终端设备在子帧i对小区c发送所述PTRS的发送功率,所述P CMAX,c(i)表示所述终端设备的可用发送功率,所述P PTRS_OFFSET,c(m)表示预设调整参数,所述m=0或1,所述M PTRS,c表示所述PTRS的传输带宽,所述P O_PUSCH,c(j)表示PUSCH基准功率,所述α c(j)表示路损补偿程度,所述PL c表示所述终端设备对小区c参考信号测量得到的路损值,所述f c(i)表示所述终端设备特定的闭环功率控制。
  40. 一种终端设备,其特征在于,包括:
    处理器,用于根据预设公式确定PTRS的发送功率;
    发送器,用于使用所述PTRS的发送功率向所述基站设备发送PTRS;
    其中所述预设公式包括:
    Figure PCTCN2018091226-appb-100006
    其中,所述i表示子帧编号,所述c表示小区编号,所述j表示预设值,所述P PTRS,c(i)表示所述PTRS的发送功率,所述PTRS的发送功率包括所述终端设备在子帧i对小区c发送所述PTRS的发送功率,所述P CMAX,c(i)表示所述终端设备的可用发送功率,所述P O_PTRS,c(j)表示PTRS基准功率,所述α c(j)表示路损补偿程度,所述PL c表示所述终端设备对小区c参考信号测量得到的路损值。
  41. 根据权利要求40所述的终端设备,其特征在于,所述预设公式进一步包括:
    Figure PCTCN2018091226-appb-100007
    其中,所述g(i)表示所述终端设备特有的调整参数。
  42. 根据权利要求41所述的终端设备,其特征在于,所述预设公式进一步包括:
    Figure PCTCN2018091226-appb-100008
    其中,所述n RS表示所述PTRS的优先级参数,所述h(n RS)表示所述终端设备通过所述n RS获取的功率偏移量,所述F表示导频图案,所述Δ PTRS(F)表示所述导频图案导致的功率的调整量,所述N PTRS-port表示发送所述PTRS的天线端口数,所述Δ TxD(N PTRS-port)表示所述天线端口数导致的功率的调整量。
  43. 一种发送功率的确定方法,其特征在于,包括:
    第一设备确定相位跟踪参考信号PTRS和数据信道的相对功率比;
    所述第一设备基于所述PTRS和数据信道相对功率比确定所述PTRS的发送功率;
    所述第一设备使用所述PTRS的发送功率向第二设备发送所述PTRS;
    其中,在上行传输或者下行传输中,传输层数为1时,所述PTRS和数据信道的相对功率比为0dB。
  44. 根据权利要求43所述的方法,其特征在于,所述第一设备基于所述PTRS和数据信道相对功率比确定所述PTRS的发送功率包括:
    所述第一设备基于所述PTRS和数据信道相对功率比以及所述数据信道的发送功率确定 所述PTRS的发送功率。
  45. 根据权利要求43或44所述的方法,其特征在于,在上行传输或者下行传输中,传输层数为2时,所述PTRS和数据信道的相对功率比为3dB。
  46. 根据权利要求43或44所述的方法,其特征在于,在上行传输或者下行传输中,传输层数为3时,所述PTRS和数据信道的相对功率比为4.77dB。
  47. 根据权利要求43或44所述的方法,其特征在于,其中,在上行传输或者下行传输中,传输层数为4时,所述PTRS和数据信道的相对功率比为6dB。
  48. 根据权利要求43或44所述的方法,其特征在于,其中,在下行传输中,传输层数为5时,所述PTRS和数据信道的相对功率比为7dB。
  49. 根据权利要求43或44所述的方法,其特征在于,其中,在下行传输中,传输层数为6时,所述PTRS和数据信道的相对功率比为7.78dB。
  50. 一种通信装置,其特征在于,包括:
    处理器:用于确定相位跟踪参考信号PTRS和数据信道的相对功率比;
    基于所述PTRS和数据信道相对功率比确定所述PTRS的发送功率;
    发送器:用于使用所述PTRS的发送功率向第二设备发送所述PTRS;
    其中,在上行传输或者下行传输中,传输层数为1时,所述PTRS和数据信道的相对功率比为0dB。
  51. 根据权利要求50所述的装置,其特征在于,所述处理器具体用于基于所述PTRS和数据信道相对功率比以及所述数据信道的发送功率确定所述PTRS的发送功率。
  52. 根据权利要求50或51所述的装置,其特征在于,其中,在上行传输或者下行传输中,传输层数为2时,所述PTRS和数据信道的相对功率比为3dB。
  53. 根据权利要求50或51所述的装置,其特征在于,其中,在上行传输或者下行传输中,传输层数为3时,所述PTRS和数据信道的相对功率比为4.77dB。
  54. 根据权利要求50或51所述的装置,其特征在于,其中,在上行传输或者下行传输中,传输层数为4时,所述PTRS和数据信道的相对功率比为6dB。
  55. 根据权利要求50或51所述的装置,其特征在于,其中,在下行传输中,传输层数为5时,所述PTRS和数据信道的相对功率比为7dB。
  56. 根据权利要求50或51所述的装置,其特征在于,其中,在下行传输中,传输层数为6时,所述PTRS和数据信道的相对功率比为7.78dB。
  57. 一种计算机存储介质,其上存储有计算机程序,其特征在于,该程序被处理器执行 时实现如权利要求43-49任一项所述的方法。
  58. 一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机执行如权利要求43-49任一项所述的方法。
PCT/CN2018/091226 2017-06-16 2018-06-14 一种发送功率的确定方法、处理芯片及通信设备 WO2018228465A1 (zh)

Priority Applications (9)

Application Number Priority Date Filing Date Title
CA3067081A CA3067081C (en) 2017-06-16 2018-06-14 Transmit power determining method, processing chip, and communications device
EP21172621.1A EP3955655A1 (en) 2017-06-16 2018-06-14 Transmit power determining method, processing chip, and communications device
ES18765529T ES2907757T3 (es) 2017-06-16 2018-06-14 Método de determinación de potencia de transmisión, chip de procesamiento y dispositivo de comunicaciones
JP2019569410A JP7028899B2 (ja) 2017-06-16 2018-06-14 送信電力決定方法、処理チップ、及び通信デバイス
EP18765529.5A EP3442278B1 (en) 2017-06-16 2018-06-14 Determination method for sending power, processing chip and communication device
BR112019026152-4A BR112019026152B1 (pt) 2017-06-16 2018-06-14 Método de comunicação sem fio, aparelho de comunicações, meio de armazenamento em computador, e aparelho de comunicação
US16/204,879 US10652829B2 (en) 2017-06-16 2018-11-29 Transmit power determining method, processing chip, and communications device
US16/855,686 US11122514B2 (en) 2017-06-16 2020-04-22 Transmit power determining method, processing chip, and communications device
US17/473,496 US11864121B2 (en) 2017-06-16 2021-09-13 Transmit power determining method, processing chip, and communications device

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201710459810.7 2017-06-16
CN201710459810 2017-06-16
CN201710698502.X 2017-08-15
CN201710698502.XA CN109151970B (zh) 2017-06-16 2017-08-15 一种发送功率的确定方法、处理芯片及通信设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/204,879 Continuation US10652829B2 (en) 2017-06-16 2018-11-29 Transmit power determining method, processing chip, and communications device

Publications (1)

Publication Number Publication Date
WO2018228465A1 true WO2018228465A1 (zh) 2018-12-20

Family

ID=64078860

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/091226 WO2018228465A1 (zh) 2017-06-16 2018-06-14 一种发送功率的确定方法、处理芯片及通信设备

Country Status (2)

Country Link
CN (1) CN108811066B (zh)
WO (1) WO2018228465A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022530525A (ja) * 2019-04-28 2022-06-29 エルジー エレクトロニクス インコーポレイティド Nr v2xにおけるサイドリンク送信電力を制御する方法及び装置

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB201802576D0 (en) * 2018-02-16 2018-04-04 Samsung Electronics Co Ltd Reference signal power boosting in a telecommunication system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140112194A1 (en) * 2012-10-19 2014-04-24 Samsung Electronics Co., Ltd System and method for ad-hoc/network assisted device discovery protocol for device to device communications
US20150327095A1 (en) * 2014-05-09 2015-11-12 Samsung Electronics Co., Ltd. Interference measurement method and apparatus for use in mobile communication system
CN106664664A (zh) * 2014-05-09 2017-05-10 三星电子株式会社 用于由装置到装置通信终端执行通信的方法和设备

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5165397B2 (ja) * 2008-01-16 2013-03-21 株式会社エヌ・ティ・ティ・ドコモ 無線基地局
CN103124210A (zh) * 2011-03-25 2013-05-29 北京新岸线移动多媒体技术有限公司 无线通信***中导频的配置方法及装置
CN103298088A (zh) * 2012-02-24 2013-09-11 电信科学技术研究院 一种资源调度方法及装置
CN103533628B (zh) * 2012-07-04 2016-05-04 普天信息技术研究院有限公司 一种下行功率分配方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140112194A1 (en) * 2012-10-19 2014-04-24 Samsung Electronics Co., Ltd System and method for ad-hoc/network assisted device discovery protocol for device to device communications
CN104813713A (zh) * 2012-10-19 2015-07-29 三星电子株式会社 用于设备对设备通信的ad-hoc/网络辅助的设备发现协议的***和方法
US20150327095A1 (en) * 2014-05-09 2015-11-12 Samsung Electronics Co., Ltd. Interference measurement method and apparatus for use in mobile communication system
CN106664664A (zh) * 2014-05-09 2017-05-10 三星电子株式会社 用于由装置到装置通信终端执行通信的方法和设备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3442278A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022530525A (ja) * 2019-04-28 2022-06-29 エルジー エレクトロニクス インコーポレイティド Nr v2xにおけるサイドリンク送信電力を制御する方法及び装置
JP7340036B2 (ja) 2019-04-28 2023-09-06 エルジー エレクトロニクス インコーポレイティド Nr v2xにおけるサイドリンク送信電力を制御する方法及び装置
US11838871B2 (en) 2019-04-28 2023-12-05 Lg Electronics Inc. Method and device for controlling sidelink transmission power in NR V2X

Also Published As

Publication number Publication date
CN108811066A (zh) 2018-11-13
CN108811066B (zh) 2019-05-10

Similar Documents

Publication Publication Date Title
CN109151970B (zh) 一种发送功率的确定方法、处理芯片及通信设备
US11218974B2 (en) Method, terminal device and network device for transmitting signals
AU2018339746B2 (en) Power control method and apparatus
CN102884846B (zh) 高级电信网络中上行链路功率控制模式的调整
JP2020519185A (ja) 通信方法および通信装置
WO2018228268A1 (zh) 资源单元的设置、传输方法及装置
CN113615280B (zh) 功率控制方法及相关装置
WO2017193996A1 (zh) 一种上行共享信道的导频传输方法及相关设备
US20200068502A1 (en) Power control method and apparatus
JP6482093B2 (ja) 端末装置および方法
US11159951B2 (en) System and method of signaling spectrum flatness configuration
BR112019026150A2 (pt) terminal e método de radiocomunicação
WO2018228465A1 (zh) 一种发送功率的确定方法、处理芯片及通信设备
CN111107032B (zh) 参考信号的生成方法、终端设备和网络侧设备
WO2023164913A1 (en) Sounding reference signal transmission techniques
WO2018202128A1 (zh) 一种通信方法及装置
WO2021114173A1 (zh) 无线通信方法和装置
WO2016154924A1 (zh) 一种发射功率调整方法及设备
JP2014045350A (ja) 無線通信システム、送信装置、受信装置、および無線通信方法。

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2018765529

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2018765529

Country of ref document: EP

Effective date: 20181001

ENP Entry into the national phase

Ref document number: 2018765529

Country of ref document: EP

Effective date: 20181107

ENP Entry into the national phase

Ref document number: 3067081

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 2019569410

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112019026152

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112019026152

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20191210