WO2018202128A1 - 一种通信方法及装置 - Google Patents

一种通信方法及装置 Download PDF

Info

Publication number
WO2018202128A1
WO2018202128A1 PCT/CN2018/085601 CN2018085601W WO2018202128A1 WO 2018202128 A1 WO2018202128 A1 WO 2018202128A1 CN 2018085601 W CN2018085601 W CN 2018085601W WO 2018202128 A1 WO2018202128 A1 WO 2018202128A1
Authority
WO
WIPO (PCT)
Prior art keywords
ptrs
symbols
pattern
block
symbol
Prior art date
Application number
PCT/CN2018/085601
Other languages
English (en)
French (fr)
Inventor
张希
徐明慧
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201710620155.9A external-priority patent/CN108809598B/zh
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to JP2019560672A priority Critical patent/JP6987154B2/ja
Priority to EP18794555.5A priority patent/EP3621235B1/en
Priority to BR112019023206-0A priority patent/BR112019023206B1/pt
Priority to EP21169062.3A priority patent/EP3917057B1/en
Priority to PL18794555T priority patent/PL3621235T3/pl
Priority to CN201880028750.6A priority patent/CN110679109B/zh
Priority to CA3062381A priority patent/CA3062381C/en
Publication of WO2018202128A1 publication Critical patent/WO2018202128A1/zh
Priority to US16/674,261 priority patent/US11201764B2/en
Priority to US17/490,907 priority patent/US11616665B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path

Definitions

  • the present application relates to the field of communications technologies, and in particular, to a communication method and apparatus.
  • the working frequency band of the communication system is above 6 GHz, such as 28 GHz, 39 GHz, 60 GHz, 73 GHz, etc., so the next generation wireless communication network has the remarkable features of the high frequency communication system, which is easy to implement. Higher throughput.
  • the next-generation wireless communication network operating in the range of 6 GHz or higher, with the increase of the operating frequency band, the phase noise level is deteriorated by 20 log (f1/f2), where f1 and f2 are carriers. Frequency point.
  • the phase noise level of the 28G band is 23 dB higher than that of the 2G band. The higher the phase noise level, the larger the phase error caused by the Common Phase Error (CPE) on the transmitted signal.
  • CPE Common Phase Error
  • both the uplink and the downlink use a De-modulation Reference Signal (DMRS) and a Phase Compensation Reference Signal (PCRS) to perform channel estimation, phase noise estimation, and data demodulation. Therefore, phase noise error compensation is performed by the estimated phase noise, thereby improving communication quality.
  • DMRS De-modulation Reference Signal
  • PCRS Phase Compensation Reference Signal
  • the PCRS may also be referred to as a Phase Tracking Reference Signal (PTRS).
  • PTRS Phase Tracking Reference Signal
  • the PTRS is transmitted in a time-domain continuous manner and in a frequency domain corresponding to multiple port frequency divisions, and the port is fixed.
  • a large number of subcarriers are occupied, resulting in a large resource overhead.
  • the present application provides a communication method and device, which realizes configuration of a flexible phase tracking reference signal pattern of different terminals in different modulation and coding modes and/or different scheduling bandwidths, and ensures phase noise error compensation performance while reducing phase tracking reference signals.
  • the overhead increases the efficiency of the spectrum.
  • An embodiment of the present application provides a communication method, where the method includes:
  • the first device determines a pattern of the phase tracking reference signal PTRS according to at least one of a modulation coding mode MCS and a scheduling bandwidth; wherein the pattern of the PTRS includes one or more PTRS blocks, each PTRS block includes one or more PTRS sampling points ;
  • the first device maps the pattern of the PTRS to one or more symbols and sends the pattern to the second device.
  • the first device determines the pattern of the phase tracking reference signal according to at least one of a modulation coding mode threshold and a scheduling bandwidth, and implements phase determination based on different modulation coding modes and/or scheduling bandwidth.
  • the reference signal pattern ensures phase noise error compensation performance while reducing the overhead of the phase tracking reference signal and improving spectral efficiency.
  • the first device determines a pattern of the phase tracking reference signal PTRS according to at least one of a modulation and coding mode MCS and a scheduling bandwidth, including:
  • the at least one associated PTRS block density, the number of PTRS sample points included in the PTRS block is determined as the PTRS block density of the pattern of the PTRS and the number of PTRS sample points included in the PTRS block; the first association criterion is MCS, At least one of the scheduling bandwidths is associated with the PTRS block density and the number of PTRS sampling points included in the PTRS block.
  • the first device maps the pattern of the PTRS to one or more symbols and sends the pattern to the second device, including:
  • the first device maps the pattern of the PTRS to one or more symbols using single carrier modulation and transmits the pattern to the second device.
  • the single carrier is a discrete Fourier transform extended orthogonal frequency division multiplexing DFT-S-OFDM.
  • the pattern of the PTRS is not sent.
  • the first device is a terminal.
  • the method before the first device determines the pattern of the phase tracking reference signal PTRS according to at least one of the modulation and coding mode MCS and the scheduling bandwidth, the method further includes:
  • the first device determines a threshold of the MCS according to at least one of a phase noise level, a subcarrier spacing, and a frequency point, and/or a scheduling bandwidth threshold.
  • the method before the first device determines the pattern of the phase tracking reference signal PTRS according to at least one of the modulation and coding mode MCS and the scheduling bandwidth, the method further includes:
  • the first device feeds back at least one of a phase noise level, a subcarrier spacing, and a frequency point to the second device.
  • An embodiment of the present application provides a communication apparatus, where the apparatus includes: a memory and a processor; the memory is configured to store program code including a computer operation instruction, and the processor runs the computer operation instruction to execute any one of the foregoing Communication method.
  • the embodiment of the present application provides a communication apparatus, which can perform any one of the communication methods provided by the foregoing first aspect.
  • the communication device includes a plurality of functional modules, such as a processing unit and a transceiving unit, for implementing any of the communication methods provided by the foregoing first aspect, for using the modulation coding mode threshold and the scheduling bandwidth.
  • a processing unit and a transceiving unit for implementing any of the communication methods provided by the foregoing first aspect, for using the modulation coding mode threshold and the scheduling bandwidth.
  • At least one of determining the pattern of the phase tracking reference signal enables flexible determination of the pattern of the phase tracking reference signal according to different modulation and coding modes and/or scheduling bandwidth, ensuring phase noise error compensation performance while reducing the overhead of the phase tracking reference signal Increased spectral efficiency.
  • the communication device includes a processor and a transceiver configured to support a base station to perform a corresponding function in the above communication method.
  • the transceiver is configured to support communication between the base station and the terminal, and send information or instructions involved in the foregoing communication method to the terminal.
  • the communication device can also include a memory for coupling with the processor that holds program instructions and data necessary for the communication device.
  • the embodiment of the present application provides a communication method, including:
  • the network device determines, according to the association criterion, an association relationship between the Q DMRS ports and the P PTRS ports in the DMRS group associated with the P PTRS ports, where P is equal to or greater than 1 and less than or equal to Q, and Q is Number of DMRS ports included in the DMRS port group associated with the P PTRS ports;
  • the network device sends the association relationship between the Q DMRS ports of the DMRS group and the P PTRS ports to the terminal.
  • association criterion is any one or more of the following:
  • a DMRS group is associated with a PTRS port
  • the PTRS port is mapped to the DMRS port with the smallest or largest port number in the DMRS group
  • a DMRS group is associated with a PTRS port
  • the PTRS port is mapped to the DMRS port with the largest SNR in the DMRS group.
  • the association between the Q DMRS ports and the PTRS ports in the DMRS group means that the DMRS ports in the DMRS group and the PTRS ports have the same precoding matrix.
  • the network device before determining, by the network device, the association between the Q DMRS ports of the DMRS group associated with the P PTRS ports and the P PTRS ports according to the association criterion, the network device further includes:
  • the network device acquires PTRS port configuration reference information, where the PTRS port configuration reference information includes at least one of the following: a shared local oscillator information of the terminal or a common phase error measured on each PTRS port of the terminal when the terminal is fully equipped with the PTRS port, and a DMRS group. Number, the number of scheduling layers of the terminal, and the maximum number of PTRS ports;
  • the network device determines, according to the PTRS port configuration reference information, the number of PTRS ports that the terminal sends the PTRS.
  • the network device determines, according to the PTRS port configuration reference information, the number of PTRS ports that the terminal sends the PTRS, including:
  • the network device determines that the plurality of medium radio frequency links of the terminal do not share one crystal unit according to the shared local oscillator information of the terminal, and determines that the number of scheduling layers of the terminal is less than or equal to the maximum number of PTRS ports, Then, the number of layers scheduled for the terminal is determined as the number of the PTRS ports.
  • the network device determines that the plurality of medium radio frequency links of the terminal do not share one crystal unit according to the shared local oscillator information of the terminal, and determines that the number of layers scheduled by the terminal is greater than the maximum number of PTRS ports, The number of the maximum PTRS ports is determined as the number of the PTRS ports.
  • the network device determines that the plurality of medium radio frequency links of the terminal share one crystal unit according to the shared local oscillator information of the terminal, the determined number of the PTRS ports is greater than or greater than 1 and less than or equal to the number of DMRS groups. .
  • the embodiment of the present application provides a communication device, including:
  • a processor configured to determine, according to an association criterion, an association relationship between the Q DMRS ports in the DMRS group associated with the P PTRS ports and the P PTRS ports; where P is equal to or greater than 1 and less than or equal to Q, Q is Number of DMRS ports included in the DMRS port group associated with the P PTRS ports;
  • the transceiver is configured to send, to the terminal, an association relationship between the Q DMRS ports of the DMRS group and the P PTRS ports.
  • association criterion is any one or more of the following:
  • a DMRS group is associated with a PTRS port
  • the PTRS port is mapped to the DMRS port with the smallest or largest port number in the DMRS group
  • a DMRS group is associated with a PTRS port
  • the PTRS port is mapped to the DMRS port with the largest SNR in the DMRS group.
  • the association between the Q DMRS ports and the PTRS ports in the DMRS group means that the DMRS ports in the DMRS group and the PTRS ports have the same precoding matrix.
  • the transceiver is also used to:
  • PTRS port configuration reference information includes at least one of the following: a shared local oscillator information of the terminal or a common phase error and a DMRS group number measured on each PTRS port of the terminal when the terminal is fully configured with the PTRS port, The number of scheduling layers and the maximum number of PTRS ports of the terminal;
  • the processor is further configured to determine, according to the PTRS port configuration reference information, a number of PTRS ports that the terminal sends the PTRS.
  • the processor is specifically configured to:
  • the number of layers of the terminal scheduling is determined as the number of the PTRS ports
  • the number of PTRS ports determines the number of the PTRS ports
  • the determined number of the PTRS ports is greater than or greater than 1 and less than or equal to the number of DMRS groups.
  • the embodiment of the present application provides a communication device, including:
  • a processing unit configured to determine, according to the association criterion, an association relationship between the Q DMRS ports and the P PTRS ports in the DMRS group associated with the P PTRS ports; where P is equal to or greater than 1 and less than or equal to Q, Q is Number of DMRS ports included in the DMRS port group associated with the P PTRS ports;
  • the transceiver unit is configured to send, to the terminal, an association relationship between the Q DMRS ports of the DMRS group and the P PTRS ports.
  • association criterion is any one or more of the following:
  • a DMRS group is associated with a PTRS port
  • the PTRS port is mapped to the DMRS port with the smallest or largest port number in the DMRS group
  • a DMRS group is associated with a PTRS port
  • the PTRS port is mapped to the DMRS port with the largest SNR in the DMRS group.
  • the association between the Q DMRS ports and the PTRS ports in the DMRS group means that the DMRS ports in the DMRS group and the PTRS ports have the same precoding matrix.
  • the transceiver unit is further configured to:
  • PTRS port configuration reference information includes at least one of the following: a shared local oscillator information of the terminal or a common phase error and a DMRS group number measured on each PTRS port of the terminal when the terminal is fully configured with the PTRS port, The number of scheduling layers and the maximum number of PTRS ports of the terminal;
  • the processing unit is further configured to determine, according to the PTRS port configuration reference information, the number of PTRS ports that the terminal sends the PTRS.
  • processing unit is specifically configured to:
  • the number of layers of the terminal scheduling is determined as the number of the PTRS ports
  • the number of PTRS ports determines the number of the PTRS ports
  • the determined number of the PTRS ports is greater than or greater than 1 and less than or equal to the number of DMRS groups.
  • the embodiment of the present application provides a communication method, including:
  • a pattern of phase tracking reference signals PTRS Determining, by the first device, a pattern of phase tracking reference signals PTRS, wherein the pattern of PTRSs includes one or more PTRS blocks, each PTRS block including one or more PTRS sampling points;
  • the first device maps the pattern of the PTRS to one or more symbols and sends the pattern to the second device.
  • the first device determines the pattern of the phase tracking reference signal PTRS, and specifically includes: determining, by the first device, a pattern of the phase tracking reference signal PTRS according to at least one of a modulation and coding mode MCS and a scheduling bandwidth.
  • the first device determines the pattern of the phase tracking reference signal PTRS, and specifically includes: determining, by the first device, the pattern of the phase tracking reference signal PTRS according to at least one of the following parameters: PTRS time domain density between symbols , PTRS block density within the symbol, and the number of PTRS sample points.
  • the first device determines the pattern of the phase tracking reference signal PTRS, and specifically includes: determining, by the first device, the pattern of the phase tracking reference signal PTRS according to at least one of the following parameters: PTRS time domain density between symbols , the PTRS block density within the symbol, the number of PTRS sample points, and the distribution position of the PTRS block chunk within the symbol.
  • the method further includes receiving, from the second device, the information for indicating a PTRS block density and a number of PTRS sampling points in the symbol.
  • the method further includes: receiving indication information of a PTRS block density within the symbol from the second device, indication information of a number of PTRS sampling points, and a position of the block within the symbol. Instructions.
  • the PTRS block density, the number of PTRS sample points, and the location of the block distribution within the symbol are collectively identified by X bits, the X being an integer greater than two.
  • the method further includes: determining a PTRS time domain density between symbols according to mapping relationship information between a modulation coding mode MCS and a PTRS time domain density between symbols.
  • the first device maps the pattern of the PTRS to one or more symbols and sends the pattern to the second device, including: the first device mapping the pattern of the PTRS to adopting Single carrier modulated one or more symbols and sent to the second device.
  • the one or more symbols of the single carrier modulation are Discrete Fourier Transform Extended Orthogonal Frequency Division Multiplexing (DFT-S-OFDM).
  • DFT-S-OFDM Discrete Fourier Transform Extended Orthogonal Frequency Division Multiplexing
  • the embodiment of the present application further provides a communication apparatus, including: the processing unit, configured to determine a pattern pattern of a phase tracking reference signal PTRS; wherein the pattern of the PTRS includes one or more PTRS block chunks, each of the The PTRS chunk includes one or more PTRS sample points sample;
  • the transceiver unit is configured to map the pattern of the PTRS to one or more symbols and send the signal to a network device.
  • the processing unit is specifically configured to: determine a pattern of the phase tracking reference signal PTRS according to at least one of a modulation and coding mode MCS and a scheduling bandwidth.
  • the processing unit is specifically configured to: determine a pattern of the phase tracking reference signal PTRS according to at least one of the following parameters: a PTRS time domain density between symbols, a PTRS block density within a symbol, and a PTRS The number of sampling points.
  • the method is specifically configured to: determine a pattern of the phase tracking reference signal PTRS according to at least one of the following parameters: a PTRS time domain density between symbols, a PTRS block density within a symbol, a number of PTRS sampling points, and a PTRS The location of the block chunk within the symbol.
  • the transceiver unit is further configured to receive indication information of a PTRS block density and a quantity of PTRS sampling points in the symbol from the second device.
  • the transceiver unit is further configured to receive indication information of a PTRS block density in the symbol from the second device, indication information of a number of PTRS sampling points, and a PTRS block in a symbol. Indicates the location of the distribution.
  • the transceiver unit is further configured to receive X bits from the second device, where the X bits are used to identify the PTRS block density and the number of PTRS sample points in the symbol, and the PTRS block chunk is in the A distribution position within a symbol, where X is an integer greater than two.
  • the processing unit is further configured to determine a PTRS time domain density between symbols according to mapping relationship information between a modulation coding mode MCS and a PTRS time domain density between symbols.
  • the symbol is a discrete Fourier transform extended orthogonal frequency division multiplexing DFT-S-OFDM.
  • the communication device is a terminal device.
  • the embodiment of the present application further provides a communication method, including: receiving one or more symbols, the one or more symbols are mapped with a pattern of a phase tracking reference signal PTRS, and the pattern of the PTRS includes one or more PTRS blocks.
  • Each PTRS block includes one or more PTRS sample points;
  • a pattern of phase tracking reference signals PTRS is determined from the one or more symbols.
  • the determining the pattern of the phase tracking reference signal PTRS from the one or more symbols comprises: determining the phase tracking reference signal according to at least one of a modulation and coding mode MCS and a scheduling bandwidth.
  • the pattern of PTRS comprises: determining the phase tracking reference signal according to at least one of a modulation and coding mode MCS and a scheduling bandwidth.
  • the determining the pattern of the phase tracking reference signal PTRS from the one or more symbols comprises: determining a pattern of the phase tracking reference signal PTRS according to at least one of the following parameters: between symbols PTRS time domain density, PTRS block density within symbols, and number of PTRS sample points.
  • the determining the pattern of the phase tracking reference signal PTRS from the one or more symbols comprises: determining a pattern of the phase tracking reference signal PTRS according to at least one of the following parameters: between symbols PTRS time domain density, PTRS block density within the symbol, number of PTRS sample points, distribution of PTRS blocks within the symbol.
  • the method further includes: sending indication information of the PTRS block density in the symbol, and indication information of the number of PTRS sampling points.
  • the method further includes: sending indication information of the PTRS block density in the symbol, indication information of the PTRS sample point quantity block, and indication information of the distribution position of the PTRS block in the symbol.
  • the one or more symbols are discrete Fourier transform extended orthogonal frequency division multiplexing DFT-S-OFDM symbols.
  • the embodiment of the present application further provides a communication apparatus, including: a transceiver unit, configured to receive one or more symbols, wherein the one or more symbols are mapped with a pattern of a phase tracking reference signal PTRS, and the pattern of the PTRS includes a pattern Or multiple PTRS blocks, each PTRS block including one or more PTRS sample points;
  • a transceiver unit configured to receive one or more symbols, wherein the one or more symbols are mapped with a pattern of a phase tracking reference signal PTRS, and the pattern of the PTRS includes a pattern Or multiple PTRS blocks, each PTRS block including one or more PTRS sample points;
  • a processing unit configured to determine a pattern of the phase tracking reference signal PTRS from the one or more symbols.
  • the processing unit is configured to determine a pattern of the phase tracking reference signal PTRS according to at least one of a modulation and coding mode MCS and a scheduling bandwidth.
  • the processing unit is configured to determine a pattern of the phase tracking reference signal PTRS according to at least one of the following parameters: a PTRS time domain density between symbols, a PTRS block density within a symbol, and a PTRS sampling point. Quantity.
  • the processing unit is configured to determine, according to at least one of the following parameters, a pattern of the phase tracking reference signal PTRS: a PTRS time domain density between symbols, a PTRS block density within a symbol, and a number of PTRS sampling points , the location of the PTRS block within the symbol.
  • the transceiver unit is further configured to send indication information of the PTRS block density in the symbol and indication information of the number of PTRS sampling points.
  • the transceiver unit is further configured to send indication information of a PTRS block density in the symbol, indication information of a number of PTRS sampling points, and indication information of a distribution position of the PTRS block in the symbol.
  • the one or more symbols are discrete Fourier transform extended orthogonal frequency division multiplexing DFT-S-OFDM symbols.
  • the present application also provides a computer readable storage medium for storing computer software instructions for performing a function designed for any of the above-described communication methods, comprising a communication method for performing any of the above designs Designed program.
  • the embodiment of the present application also provides a computer program product comprising instructions which, when run on a computer, cause the computer to perform the communication method described in the above aspects.
  • FIG. 1 is a schematic structural diagram of an application scenario according to an embodiment of the present disclosure
  • FIG. 2 is a schematic flowchart of a communication method according to an embodiment of the present application.
  • FIG. 3 is a schematic diagram of a PTRS pattern according to an embodiment of the present application.
  • FIG. 4 is a schematic diagram of a PTRS pattern according to an embodiment of the present application.
  • FIG. 5 is a schematic diagram of a PTRS pattern according to an embodiment of the present application.
  • FIG. 6 is a schematic diagram of a relationship between a DMRS port and a PTRS port according to an embodiment of the present disclosure
  • FIG. 7 is a schematic diagram of a relationship between a DMRS port and a PTRS port according to an embodiment of the present disclosure
  • FIG. 8 is a schematic diagram of a relationship between a DMRS port and a PTRS port according to an embodiment of the present disclosure
  • FIG. 9 is a schematic structural diagram of a communication apparatus according to an embodiment of the present application.
  • FIG. 10 is a schematic structural diagram of a communication apparatus according to an embodiment of the present application.
  • FIG. 11 is a schematic structural diagram of a communication apparatus according to an embodiment of the present application.
  • FIG. 12 is a schematic structural diagram of a communication apparatus according to an embodiment of the present application.
  • FIG. 13 is a schematic diagram of interaction of a communication method according to an embodiment of the present application.
  • FIG. 14 is a schematic diagram of a PTRS pattern according to an embodiment of the present application.
  • FIG. 15 is a schematic diagram of a PTRS pattern according to an embodiment of the present application.
  • FIG. 16 is a schematic diagram of a PTRS pattern according to an embodiment of the present application.
  • FIG. 17 is a schematic diagram of a PTRS pattern according to an embodiment of the present application.
  • FIG. 18 is a schematic structural diagram of a communication apparatus according to an embodiment of the present application.
  • GSM Global System of Mobile communication
  • CDMA Code Division Multiple Access
  • Wideband Code Division Multiple Access Wideband Code Division Multiple Access
  • Code Division Multiple Access WCDMA
  • GPRS General Packet Radio Service
  • LTE Long Term Evolution
  • LTE-A Advanced Long Term Evolution
  • UMTS Universal Mobile Telecommunication System
  • eLTE evolved Long Term Evolution
  • 5G New Radio
  • a terminal also called a User Equipment (UE) is a device that provides voice and/or data connectivity to a user, for example, a handheld device with a wireless connection function, an in-vehicle device, and the like.
  • UE User Equipment
  • Common terminals include, for example, mobile phones, tablets, notebook computers, PDAs, mobile internet devices (MIDs), wearable devices such as smart watches, smart bracelets, pedometers, and the like.
  • MIDs mobile internet devices
  • wearable devices such as smart watches, smart bracelets, pedometers, and the like.
  • Network equipment which may be a base station (Base Transceiver Station, BTS) in a GSM system or a CDMA system, or a base station (NodeB, NB) in a WCDMA system, or an evolved base station in an LTE system (Evolutional Node B, eNB or eNodeB), or a wireless controller in a Cloud Radio Access Network (CRAN), or the network device may be a network device in a future 5G network, such as a gNB in an NR system. Or a small station, a micro station, a TRP (transmission reception point), or any other wireless device such as a relay station, an access point, or a network device in a future evolved Public Land Mobile Network (PLMN).
  • BTS Base Transceiver Station
  • NodeB, NB base station
  • LTE Long Term Evolutional Node B, eNB or eNodeB
  • CRAN Cloud Radio Access Network
  • the network device may be a network device in a future 5G network
  • PRB Physical Resource Block
  • OFDM Orthogonal Frequency Division Multiplexing
  • Subcarrier width The smallest granularity in the frequency domain. For example, in LTE, the subcarrier width of one subcarrier is 15 kHz.
  • Multiple means two or more. "and/or”, describing the association relationship of the associated objects, indicating that there may be three relationships, for example, A and/or B, which may indicate that there are three cases where A exists separately, A and B exist at the same time, and B exists separately.
  • the character "/” generally indicates that the contextual object is an "or” relationship.
  • first, second, third, etc. may be used to describe various messages, requests, and terminals in the embodiments of the present application, these messages, requests, and terminals should not be limited to these terms. These terms are only used to distinguish messages, requests, and terminals from one another.
  • FIG. 1 is a schematic structural diagram of an application scenario provided by an embodiment of the present application.
  • the base station 101 and the terminal 102 are mainly included.
  • the base station 101 can communicate with the terminal 102 using a low frequency (mainly below 6 GHz) or a relatively high frequency (6 GHz or higher) millimeter wave band.
  • the millimeter wave band may be 28 GHz, 38 GHz, or an enhanced-band band of a data plane covering a smaller area, such as a band above 70 GHz.
  • the terminal 102 covered by the base station 101 can communicate with the base station 101 using a low frequency or high frequency millimeter wave band.
  • Figure 1 is a simplified schematic diagram of an example, and other devices may be included in the network, which are not shown in Figure 1.
  • the communication method and device provided by the embodiments of the present application may be applied to a terminal, where the terminal includes a hardware layer, an operating system layer running on the hardware layer, and an application layer running on the operating system layer.
  • the hardware layer includes hardware such as a central processing unit (CPU), a memory management unit (MMU), and a memory (also referred to as main memory).
  • the operating system may be any one or more computer operating systems that implement business processing through a process, such as a Linux operating system, a Unix operating system, an Android operating system, an iOS operating system, or a Windows operating system.
  • the application layer includes applications such as a browser, an address book, word processing software, and instant messaging software.
  • the term "article of manufacture” as used in this application encompasses a computer program accessible from any computer-readable device, carrier, or media.
  • the computer readable medium may include, but is not limited to, a magnetic storage device (eg, a hard disk, a floppy disk, or a magnetic tape, etc.), such as a compact disc (CD), a digital versatile disc (Digital Versatile Disc, DVD). Etc.), smart cards and flash memory devices (eg, Erasable Programmable Read-Only Memory (EPROM), cards, sticks or key drivers, etc.).
  • various storage media described herein can represent one or more devices and/or other machine-readable media for storing information.
  • the term "machine-readable medium” may include, but is not limited to, a variety of media capable of storing, containing, and/or carrying instructions and/or data.
  • FIG. 2 is a schematic flowchart of a communication method according to an embodiment of the present application.
  • the method includes:
  • Step 201 The first device determines a pattern of the phase tracking reference signal PTRS according to at least one of a modulation and coding mode and a scheduling bandwidth.
  • the pattern of the PTRS includes one or more PTRS blocks, and each PTRS block includes one or more PTRSs. Sampling point.
  • the parameters used to indicate the pattern of the PTRS include the PTRS time domain density between symbols, the PTRS chunk density within the symbol, and the PTRS sampling point ( Sample) quantity.
  • FIG. 3 a schematic diagram of a PTRS pattern provided by an embodiment of the present application.
  • the PTRS time domain density between the symbols of the PTRS pattern is 1/T, that is, there is one symbol mapping PTRS per T symbols;
  • the PTRS block density is M, that is, the symbols of the mapped PTRS include M PTRSs.
  • the number of PTRS sampling points is N, that is, each PTRS block includes N PTRS sampling points.
  • a PTRS chunk consists of one or more consecutive PTRS signals, and the PTRS sample point may refer to a PTRS signal.
  • Step 202 The first device maps the pattern of the PTRS to one or more symbols and sends the pattern to the second device.
  • the first device in the embodiment of the present application may refer to a terminal, and the corresponding second device may refer to a network device.
  • the first device may also refer to a network device, and the corresponding second device may refer to a terminal.
  • the MCS and the scheduling bandwidth are configured on the network side, and the specific configuration method is not limited in this embodiment.
  • the PTRS block density associated with the at least one of the MCS and the scheduling bandwidth may be determined from the first association rule, and the PTRS block is included in the PTRS block.
  • the number of PTRS sampling points, and the PTRS block density associated with at least one of the MCS and the scheduling bandwidth, and the number of PTRS sampling points included in the PTRS block are determined as the PTRS block density of the pattern of the PTRS and in the PTRS block.
  • the Modulation and Coding Scheme (MCS) threshold and/or the scheduling bandwidth threshold in the first association criterion may be determined according to at least one of a phase noise level, a subcarrier spacing, and a frequency point.
  • the phase noise level refers to the phase noise level of the first device
  • the subcarrier spacing refers to the subcarrier spacing of the carrier that transmits the PTRS
  • the frequency point refers to the frequency of the carrier that transmits the PTRS.
  • the first device may determine the threshold of the MCS and/or the scheduling bandwidth threshold according to at least one of a phase noise level, a subcarrier spacing, and a frequency point.
  • the first device may further feed back at least one of a phase noise level, a subcarrier spacing, and a frequency point to the second device.
  • the second device may determine the MCS threshold and the scheduling bandwidth threshold according to the information fed back by the first device, and send the determined MCS threshold and the scheduling bandwidth threshold to the first device.
  • the specific method for determining the MCS threshold and/or the scheduling bandwidth threshold is not limited in this embodiment of the present application, and details are not described herein again.
  • the determined MCS threshold and the scheduling bandwidth threshold may be sent to the second device.
  • the first device may directly send the MCS threshold and the scheduling bandwidth threshold to the second device, or send the phase noise level of the terminal to the second device, so as to indirectly send the MCS threshold and/or the scheduling bandwidth threshold to the second device.
  • the association relationship between the first association criterion that is, the MCS threshold and the scheduling bandwidth threshold, and the PTRS block density and the number of PTRS sampling points included in the PTRS block may be determined.
  • the first association criterion can be as shown in Table 1.
  • N 22 to N 64 represent the number of PTRS sample points included in the PTRS block
  • M 22 to M 64 represent the PTRS block density.
  • different PTRS block densities and the number of PTRS sampling points included in the PTRS block are mapped.
  • the MCS threshold is The scheduling bandwidth threshold is The associated PTRS block density is M 32
  • the number of PTRS sampling points included in the PTRS block is N 32 .
  • the value of the PTRS block density in the embodiment of the present application may be 1, 2, or 4; the number of PTRS sample points included in the PTRS block may be 1, 2, 4, 8, or 16, etc., of course, the above indication example, the PTRS block density
  • the value and the number of PTRS sampling points included in the PTRS block may also be other forms, which are not illustrated one by one.
  • the pattern of the PTRS is not transmitted, that is, the PTRS block density and the number of PTRS sampling points included in the PTRS block are both 0.
  • the first scheduling bandwidth interval and the first modulation and coding mode interval may be determined according to actual conditions, and details are not described herein again. For example, as shown in Table 1, the first scheduling bandwidth interval is And the first modulation coding mode interval is The PTRS block density and the number of PTRS sample points included in the PTRS block are all zero.
  • Table 1 is only an example of an MCS threshold and a relationship between a scheduling bandwidth threshold and a PTRS block density, and a number of PTRS sampling points included in a PTRS block.
  • the first association criterion may also have other forms, such as in Table 1.
  • the threshold value can also be achieved by setting the threshold of the left side to be equal to or less than the threshold of the right side, and realizing the associated PTRS block density and the number of PTRS sampling points included in the PTRS block.
  • the number of PTRS sampling points included in the PTRS block is fixed to N 33 , and the PTRS block density is fixed to M 33 .
  • the number of PTRS sampling points included in the PTRS block of each row is the same, and the number of PTRS sampling points included in the PTRS block in the single carrier time domain PTRS pattern is only realized by The scheduling bandwidth is determined, and the intra-symbol PTRS block density is determined only by the scheduled MCS.
  • the threshold is related to the phase noise level of the terminal, the subcarrier spacing, the frequency, the correspondence between the MCS and the modulation order/transport block size number, that is, the phase noise level of different terminals, different subcarrier spacing, different frequency points, different MCS Corresponding to the modulation order/transport block size number, corresponding to different associations.
  • the first association criterion may be sent to the first device after the second device is established, or may be pre-agreed by the first device and the second device.
  • the first device may further determine a PTRS time domain density between symbols of the pattern of the PTRS according to the MCS. Specifically, after determining the MCS, the first device may determine, according to the second association criterion, a PTRS time domain density between symbols associated with the MCS, and determine a PTRS time domain density between symbols associated with the MCS as The PTRS time domain density between the symbols of the pattern of the PTRS.
  • the second association criterion is the association between the MCS and the PTRS time domain density between symbols.
  • the first device may pre-establish the association between the MCS and the PTRS time domain density between the symbols.
  • the second association criterion may also be sent to the first device after the second device is established, or may be the first device and the second device in advance. Agreed.
  • the second association criterion can be as shown in Table 2.
  • the PTRS time domain density between the associated symbols is 1/4, that is, one symbol mapping PTRS is transmitted every 4 symbols.
  • Table 2 is only an example of the relationship between the MCS threshold and the PTRS time domain density between the symbols.
  • the second association criterion may also have other forms, and details are not described herein again.
  • the first device may map the pattern of the PTRS to one or more symbols using single carrier modulation, and send the pattern to the second device.
  • the single carrier may be a Discrete Fourier Transform-Spread-Orthogonal Frequency Division Multiplexing (DFT-S-OFDM) and an extended waveform thereof, such as ZP-DFT-s- OFDM (zero power), or other single carrier.
  • DFT-S-OFDM Discrete Fourier Transform-Spread-Orthogonal Frequency Division Multiplexing
  • ZP-DFT-s- OFDM zero power
  • the first device may also determine a pattern of the PTRS according to at least one of the MCS and the scheduling bandwidth.
  • the PTRS pattern includes PTRS time domain density and PTRS frequency domain density.
  • PTRS time domain density refers to the density of symbols that map PTRS in the time domain.
  • PTRS frequency domain density refers to mapping PTRS in the frequency domain. The density of the subcarriers.
  • the first device may determine, according to the scheduled MCS, a PTRS time domain density between symbols associated with the MCS from a third association criterion, and determine a PTRS time domain density associated with the MCS as the PTRS.
  • the third association criterion is the relationship between the MCS and the PTRS time domain density.
  • the first device may pre-establish the association between the MCS and the PTRS time domain density, and may also receive the third association criterion that is established or modified by the second device, or may be pre-agreed with the second device. This is not limited.
  • the third association criterion can be as shown in Table 3.
  • Table 3 is only an example of the association criterion between the MCS and the PTRS time domain density.
  • the association criterion of the MCS and the PTRS time domain density may also be other representations, which is not limited in this application.
  • the MCS threshold is related to the phase noise level, subcarrier spacing, frequency, MCS and modulation order/transport block size number of the terminal, that is, the phase noise level of different terminals, different subcarrier spacing, and different Frequency points, different MCS and modulation order / transport block size serial number correspondence, corresponding to different associations.
  • the threshold in Table 3 can also be achieved by setting the threshold on the left to be equal to or less than the threshold on the right, to achieve any requirement of PTRS time domain density. For example, if in Table 3 Then the time domain density does not support 1/4; if in Table 3 Then the PTRS time domain density only supports 0 and 1.
  • the fourth association criterion is an association relationship between the scheduling bandwidth and the PTRS frequency domain density.
  • the first device may pre-establish the association relationship between the scheduling bandwidth and the PTRS frequency domain density, and may also receive the fourth association criterion that is established or modified by the second device, or may be pre-agreed with the second device. This example is not limited to this.
  • the fourth association criterion can be as shown in Table 4.
  • the threshold value in Table 4 can also be used to set the threshold of the left side to be equal to or less than the threshold of the right side, and the PTRS frequency domain density is required.
  • Table 4 is only an example of the relationship between the scheduling bandwidth and the PTRS frequency domain density.
  • the association between the scheduling bandwidth and the PTRS frequency domain density may also be other representations, which is not limited in this application.
  • FIG. 5 a schematic diagram of a PTRS pattern provided by an embodiment of the present application.
  • the PTRS frequency domain density is 1 (one PTRS per resource block in the frequency domain), the PTRS time domain density is 1, and in (b) of FIG. 5, the PTRS frequency domain density is 1. (There is a PTRS on each resource block subcarrier in the frequency domain), and the PTRS time domain density is 1/2.
  • the PTRS frequency domain density is 1/2 (every 2 resources in the frequency domain) There is a PTRS on the block subcarrier, and the PTRS time domain density is 1.
  • the above embodiment is to configure the pattern of the PTRS in an implicit manner, and the following embodiment configures the pattern of the PTRS in an explicit manner.
  • a schematic flowchart of a communication method provided by an embodiment of the present application includes:
  • Step 1301 The first device determines, according to at least one of the following information: a PTRS time domain density between symbols, a PTRS chunk density within a symbol, a number of PTRS sample points, and a distribution position of a chunk within the symbol. pattern.
  • the PTRS time domain density between symbols refers to one symbol mapping PTRS per several symbols; for example, the PTRS time domain density between symbols is 1/4, then one symbol mapping PTRS is identified for every 4 OFDM symbols;
  • Intra-symbol PTRS block density refers to how many PTRS blocks are included in one symbol
  • the distribution position of a chunk within a symbol refers to mapping position information of a PTRS block within one symbol; for example, mapping on the front, middle, or rear, or on which modulation symbols or data;
  • the number of PTRS sampling points refers to how many sampling points are included in one PTRS block.
  • the intra-symbol PTRS block density is 1, because one symbol includes 1 PTRS block; the number of PTRS sample points is 2, because one PTRS block includes 2 sampling points; The distribution position within the symbol is the front end.
  • PTRS block density in the foregoing may also be referred to as the number of PTRS blocks, and the number of PTRS sampling points may also be referred to as a PTRS block size, which is not limited by the present invention.
  • Step 1302 The first device maps the PTRS to one or more symbols and sends the PTRS to the second device.
  • Step 1303 The second device receives one or more symbols from the first device.
  • Step 1304 The second device determines a pattern of the PTRS from the one or more symbols.
  • the method further includes:
  • Step A The second device sends at least one of information indicating a PTRS chunk density within the indication symbol, information indicating a number of PTRS sample points, and information indicating a distribution position of the chunk within the symbol to the first device.
  • FIG. 3 a schematic diagram of a PTRS pattern provided by an embodiment of the present application.
  • the PTRS inter-symbol time domain density of the PTRS pattern is 1/T, that is, there is one symbol mapping PTRS per T symbols;
  • the PTRS block density is M, that is, the symbols of the mapped PTRS include M PTRS blocks.
  • the number of PTRS sampling points is N, that is, each PTRS block includes N PTRS sampling points.
  • a PTRS chunk consists of one or more consecutive PTRS signals
  • the PTRS sample point may refer to a PTRS signal before the discrete Fourier transform DFT.
  • the first device in the embodiment of the present application may refer to a terminal, and the corresponding second device may refer to a network device.
  • the first device may also refer to a network device, and the corresponding second device may refer to a terminal.
  • the network device When the network device sends the configuration information of the PTRS presence/pattern (Presence/Pattern) to the terminal, it can be indicated as follows:
  • the first way directly indicate the number of PTRS sampling points.
  • the value of the number of PTRS sampling points is directly configured by signaling.
  • the number of PTRS sampling points is 8, which is identified by four bits 1000; for example, the number of PTRS sampling points is 2, which is identified by 2 bits 10.
  • the second way indirectly indicates the number of PTRS sampling points by indicating the number or index. For example, by numbering the number of PTRS sampling points, or establishing a mapping relationship between the number and the number of PTRS sampling points, such as indicating the number of PTRS sampling points by indicating the number.
  • the number of PTRS sampling points can be 2 (Example 1); or, when the label is 1, the number of PTRS sampling points is 4 (Example 2).
  • mapping relationship between the number and the number of PTRS sampling points can be from small to large, or from large to small or other ways; the number of elements of the set of PTRS sampling points (ie, the maximum value of i in N i ) can be 4 or other.
  • the specific value of the number of PTRS sampling points ie, the specific value of N i ) may be 1, 2, 4, 8, or other numbers. In this manner, the mapping relationship between the number of one or more numbers and the number of PTRS sampling points is established in advance, and the configuration signaling overhead can be reduced compared to the direct configuration.
  • intra-symbol PTRS block density there are two ways to configure the intra-symbol PTRS block density by signaling:
  • the first method directly configuring the PTRS block density in the symbol, for example, the PTRS block density in the symbol is 4, and is identified by three bits 100; for example, the PTRS block density in the symbol is 2, which is identified by 2 bits 10 .
  • the second way is to indirectly indicate the PTRS block density in the symbol by number or index.
  • Table 8 is an example:
  • Example 2 Example 3
  • Example 4 Example 5
  • Example 6 0/00 M 1 0 4 0 8 0 2 1/01 M 2 1 2 2 4 2 4 2/10 M 3 2 1 4 2 4 8 3/11 M 4 4 0 8 0 Reserved Reserved
  • the table is only an example, and the present invention is not limited to: the mapping relationship between the number and the PTRS block density in the symbol, and the mapping relationship between the two may be from small to large, or from large to small or other; in-symbol PTRS
  • the number of elements of the block density set ie, the maximum value of i in M i
  • the specific value of the PTRS block density in the symbol ie, the specific value of M i
  • configuration signaling overhead can be reduced compared to direct configuration.
  • the position of the PTRS block may be distributed at the front end or the middle of the symbol. For example, if the current service requires a higher delay, the PTRS is required to estimate the phase noise as early as possible. Therefore, its position can be distributed at the front end of the symbol, as shown in Figure 14(a); the current service requires estimation accuracy. Higher, considering that the entire symbol has only one PTRS block, at this time, the position of the PTRS block can be distributed in the middle of the symbol, as shown in FIG. 14(b).
  • the position distribution pattern of the PTRS block is more.
  • two PTRS blocks can be distributed at both ends of the symbol, as shown in Figure 14(c);
  • the time domain correlation is weak, or the receiving end can jointly estimate the phase noise together with at least two adjacent symbols, the two PTRS blocks can be placed at the front end of the symbol and one at the middle of the symbol, as shown in Figure 14 (d). ); if it is considered that the phase estimate obtained by extrapolation of the last symbol in Fig.
  • the position of the distribution is similar to the case of the two PTRS blocks, and may be any of Figs. 14(c) to 14(e).
  • the distribution position of the block in the symbol may be implicitly indicated according to the PTRS block density and/or the number of PTRS sampling points in the symbol, and may also be directly indicated explicitly.
  • the signaling advance configuration distribution set When implicitly indicated, it is only applicable to the signaling advance configuration distribution set; for example, if the signaling configuration current distribution set is as shown in FIG. 14(a) and FIG. 14(c), according to the intra-symbol PTRS block density and/or The number of PTRS sampling points can directly determine its distribution position. For example, the distribution of one block is Figure 14(a), and the distribution of two or more blocks is Figure 14(c). At this time, the PTRS block density and PTRS sampling point in the direct indicator are directly indicated. The number can be exemplified by Example 1 in Tables 7 and 8, respectively, as shown in Figure 15, where the first two bits represent the number of PTRS sample points and the last two bits represent the intra-symbol PTRS block density.
  • its location distribution may also directly indicate its location distribution by signaling number based on a predefined numbering and location distribution, as shown in Table 9:
  • both ends and uniform are for at least two PTRS blocks. Therefore, the total number of samples of the PTRS can be signaled at this time, and the specific pattern of the PTRS can be confirmed by combining the position distribution manner. For example, if the signaling content indicating the total number of PTRSs is ⁇ 00, 01, 10, 11 ⁇ , corresponding to the total number of PTRSs ⁇ 0, 1, 2, 4 ⁇ , respectively, the example 1 of the above table is as shown in FIG. The first two bits represent the number of total PTRS sampling points, and the last two bits represent the distribution position of the PTRS.
  • the PTRS block density can only be 1, and the PTRS sampling points included in the PTRS block.
  • the number can only be 1, so if the position is distributed at the front end, the pattern is as shown in Figure 16(a); if the total number is 2 and distributed in the middle, the PTRS block density can only be 1, that is, PTRS at this time.
  • the number of PTRS sampling points contained in the block is 2, and the distribution is as shown in Fig. 16(c).
  • the above three parameters may also be jointly numbered.
  • 0000 indicates that the block density is 1, the PTRS sample number is 1, the distribution position is the front end
  • 0001 indicates the block density is 1, the PTRS sample number is 1, and the distribution position is the middle
  • 0011 indicates the block density is 1, the PTRS sample number is 2, the distribution position is the middle, and so on.
  • the idea of this approach is to represent all possible PTRS patterns with multiple bits. For example, there are 20 possible PTRS patterns, which are identified by 5 bits. The number of bits shown in FIG. 17 and the mapping relationship with the PTRS pattern are merely illustrative and are not limited.
  • mapping relationship between the number and the PTRS pattern can also be expressed as a formula or the like.
  • the configuration of the above parameters may be completed by RRC, MAC-CE, DCI, or any one or more of the predefined ones.
  • any of the above-mentioned signaling directly configures parameters of the PTRS, including the PTRS block density, the number of PTRS sampling points, and the distribution position of the blocks within the symbol.
  • the configuration signaling of each parameter may be the same or different, and may be separately configured. Can be configured jointly; the configuration period can be the same or different.
  • the foregoing PTRS parameters may also be jointly configured by multiple signaling: the RRC configuration parameter set 1 and the DCI configuration specific parameters, wherein the parameters of the DCI configuration are elements in the RRC configured parameter set 1: if multiple numbers and PTRS parameters are predefined/ The mapping relationship of the patterns (mapping relationship 1, mapping relationship 2, ...), one of the RRC configurations (the number of the mapping relationship may be, such as 2 indicates the selection mapping relationship 2), and the PTRS parameters/patterns configured by the DCI are mappings.
  • the PTRS block density within the symbol after determining the PTRS time domain density between the symbols of the single carrier PTRS pattern, the PTRS block density within the symbol, and the number of PTRS sampling points, it may be necessary to determine the time domain offset of the pattern of the PTRS, thereby The PTRS pattern is accurately mapped onto the symbol; correspondingly, after determining the multi-carrier PTRS time-frequency density and the PTRS frequency density, it may be necessary to determine the time-domain offset and the frequency-domain offset of the PTRS pattern. Thereby accurately mapping the pattern of the PTRS onto the symbol. Described separately below.
  • PTRS is not required on the Physical Downlink Control Channel (PDCCH), and the DMRS symbol does not need PTRS, so the offset is greater than or equal to The number of symbols occupied by the PDCCH transmitted in the same time domain unit as the PTRS, The number of symbols occupied by the DMRS sent in the same time domain unit as the PTRS.
  • the time domain unit can be a time slot or a time slot aggregation or the like.
  • phase noise on symbols without PTRS is interpolated by phase noise estimated on the symbol with PTRS (the current symbol is a symbol without PTRS, and there are PTRS symbols on the left and right sides of the current symbol, then Interpolation to obtain the phase noise of the current symbol) or extrapolation (the current symbol is a symbol without PTRS, the current symbol can only be extrapolated if there is a PTRS symbol on one side), and the accuracy of extrapolation is less than the accuracy of interpolation. In the actual situation, the number of extrapolated symbols should be as small as possible, or extrapolation should be avoided.
  • the DMRS will estimate the phase noise together as part of the channel, and the phase noise of the PTRS estimation is the actual phase noise and DMRS.
  • the phase noise of the symbol is different, so the phase noise difference of the symbol where the DMRS is located can be considered as 0, and the phase noise estimated by the first PTRS symbol is interpolated.
  • the PTRS pattern of the PTRS time domain density or the PTRS time domain density between the three symbols can be as shown in FIG. 4 and Table 5.
  • the value of offset 2 may or may not be related to the value of offset 1.
  • the total offset T offset can also be expressed as:
  • K represents the number of symbols in the time domain unit except PDCCH and DMRS
  • L represents the reciprocal of the PTRS time domain density or PTRS time domain density between symbols
  • the value is 1, 2, 4
  • H can be expressed as a time domain unit.
  • the total number of symbols, the time domain unit can be a time slot, or can be a time slot aggregation. Indicates rounding up.
  • the sequence number of the symbol mapping the PTRS in a time domain unit can be expressed as
  • CSI-RS Channel-State Information Reference Signal
  • SCset-RSset refers to a set of all numbers within an RB whose elements include 0, 1, ..., 11, or further considering that it is the same as the position of the DMRS, which can be expressed as
  • DMRSset is a set of subcarrier numbers that may appear in the DMRS, and the elements take values from 0 to 11.
  • the second method when colliding with other RSs or DCs, the other RSs or the guaranteed DC subcarriers are preferentially satisfied, that is, the positions that conflict with other RS or DC subcarriers do not map the PTRS.
  • the time domain offset of the pattern of the PTRS is 3 symbols; in the pattern of the PTRS of (a) to (c) in FIG. 5, the time domain offset is For 3 symbols, the frequency domain offset is 4 subcarriers.
  • the ports that send the PTRS are generally fixed ports.
  • the overhead is large, that is, the fixed port is used in different scenarios, such as different. In the middle of the RF hardware link, it is not flexible enough.
  • the network device determines the number of PTRS ports that send the PTRS and the association relationship with the DMRS according to the capability information fed back by the terminal, which is described in detail below.
  • the network device acquires PTRS port configuration reference information, where the PTRS port configuration reference information includes at least one of the following: a shared local oscillator information of the terminal or a common phase error measured on each PTRS port of the terminal when the terminal is fully configured with a PTRS port (Common Phase) Error, CPE), the number of DMRS groups, the number of scheduling layers of the terminal, and the maximum number of PTRS ports.
  • the maximum number of PTRS ports is the maximum number of ports used by the terminal to send PTRS; one DMRS group includes one or more DMRS ports, and signals of each DMRS port are sent from the same medium RF link.
  • the shared local oscillator information of the terminal or the number of CPEs and the maximum number of PTRS ports measured by the terminal on each PTRS port when the terminal is fully configured with the PTRS port can be reported to the network device by the terminal.
  • the terminal may not report the maximum number of PTRS ports to the network device.
  • the network device may configure a fully configured PTRS port for the terminal.
  • the network device can determine the exact number of PTRS ports configured for the terminal.
  • the network device can configure only up to two PTRS ports for the terminal, which can further reduce the PTRS overhead.
  • the network device determines, according to the PTRS port configuration reference information, the number of PTRS ports that the terminal sends the PTRS.
  • the network device determines, according to the shared local oscillator information of the terminal, that multiple radio frequency links of the terminal do not share one crystal unit, and determines that the scheduling layer of the terminal is less than or equal to the maximum PTRS.
  • the number of ports is determined by the number of layers scheduled for the terminal as the number of PTRS ports.
  • the network device determines that the plurality of medium radio frequency links of the terminal do not share one crystal unit according to the shared local oscillator information of the terminal, and determines that the number of layers scheduled by the terminal is greater than the maximum number of PTRS ports, The number of the maximum PTRS ports is determined as the number of the PTRS ports.
  • the determined number of the PTRS ports is greater than or greater than 1 and less than or equal to the number of DMRS groups.
  • the actual radio frequency phase noise level of all DMRS groups on the network side is ideal, and the number of PTRS ports can be configured to be 1. If the phase noise levels of the medium RF links of all DMRS groups on the network side are poor, The number of PTRS ports can be configured as the number of DMRS groups.
  • the mapping relationship between the PTRS port and the DMRS group such as Quasi Co-located (QCL)
  • QCL Quasi Co-located
  • the network device determines that the number of PTRS ports that the terminal sends the PTRS can be as shown in Table 6.
  • the network device After determining the number of PTRS ports that the terminal sends the PTRS, the network device determines the DMRS group associated with the PTRS port according to the association between the PTRS port and the DMRS group. Specifically, how to determine the association between the PTRS port and the DMRS group may be implemented in multiple manners, which is not limited in this embodiment of the present application, and details are not described herein again.
  • Each DMRS group includes at least one DMRS port, and the number of PTRS ports that are associated with each DMRS group is determined according to actual conditions.
  • the following is an example in which a DMRS group is associated with P PTRS ports. For other cases, refer to Description, no longer repeat here.
  • P is equal to or greater than 1 and less than or equal to Q
  • Q is the number of DMRS ports included in the DMRS port group associated with the P PTRS ports.
  • the network device determines, according to the association criterion, the association relationship between the Q DMRS ports and the P PTRS ports in the DMRS group associated with the P PTRS ports.
  • the association relationship between the Q DMRS ports and the PTRS ports in the DMRS group refers to the DMRS group.
  • the inner DMRS port has the same precoding matrix as the PTRS port, including digital and analog, for example, determining the association relationship between multiple PTRS ports and multiple DMRS ports in the DMRS group.
  • the association criterion may be any one or more of the following:
  • FIG. 6 a schematic diagram of a relationship between a DMRS port and a PTRS port according to an embodiment of the present application is shown.
  • two PTRS ports are associated in the DMRS group, the port numbers are #1 and #2 respectively, and the DMRS group includes two DMRS ports, and the port numbers are #1 and #2 respectively.
  • the DMRS group can be The DMRS port with port number #1 is associated with the PTRS port with port number #1, and the DMRS port with port number #2 in the DMRS group is associated with the PTRS port with port number #2.
  • a DMRS group is associated with a PTRS port
  • the PTRS port is mapped to the DMRS port with the smallest or largest port number in the DMRS group
  • FIG. 7 a schematic diagram of a relationship between a DMRS port and a PTRS port according to an embodiment of the present application is shown.
  • the DMRS group is associated with one PTRS port, the port number is #1, and the DMRS group includes two DMRS ports, and the port numbers are #1 and #2 respectively.
  • the port number in the DMRS group can be # A DMRS port of 1 is associated with the PTRS port.
  • the DMRS port with the port number #2 in the DMRS group may be associated with the PTRS port, as shown in FIG. 8.
  • a DMRS group is associated with a PTRS port
  • the PTRS port is mapped to the DMRS port with the largest Signal Noise Ratio (SNR) in the DMRS group.
  • SNR Signal Noise Ratio
  • association criterion may be in other forms, such as a high-level or RRC direct configuration.
  • the RRC may configure a PTRS port and a DMRS port in a DMRS group, and details are not described herein.
  • the network device sends the association or threshold (MCS threshold or scheduling bandwidth threshold) of the DMRS port to the PTRS port to the terminal, it can be indicated in any of the following ways:
  • Display indication association between the DMRS port and the PTRS port by the higher layer signaling or Radio Resource Control (RRC) signaling or Downlink Control Information (DCI) or broadcast or predefined display notification a relationship, wherein the display notification may be terminal-based or cell-based; the indication content may be specific PTRS presence/pattern/port information, or may be an adjustment amount according to an agreed method (pre-defined or last);
  • RRC Radio Resource Control
  • DCI Downlink Control Information
  • the association between the indicated DMRS port and the PTRS port may be determined according to the association criterion, or may be determined by the network device by other means. In this way, the PTRS port can be mapped to a layer with a higher Signal to Interference plus Noise Ratio (SINR) for better tracking performance.
  • SINR Signal to Interference plus Noise Ratio
  • Implicit indication the association criterion may be notified to the terminal by high layer signaling or RRC or DCI or broadcast or pre-defined, etc., and the association criterion may be based on the terminal or based on the cell; the indication content may be an association criterion or The threshold may also be an adjustment amount according to an agreed method;
  • the embodiment of the present application further provides a communication device, which can perform the foregoing method embodiments.
  • the device 900 can be a device such as a terminal.
  • the apparatus 900 includes:
  • the processing unit 901 is configured to determine a pattern of the phase tracking reference signal PTRS according to at least one of a modulation and coding mode MCS and a scheduling bandwidth, where the pattern of the PTRS includes one or more PTRS blocks, and each PTRS block includes one or more PTRS sampling point;
  • the transceiver unit 902 is configured to map the pattern of the PTRS to one or more symbols and send the pattern to the second device.
  • the apparatus 900 includes:
  • the processing unit 901 is configured to determine a pattern of the phase tracking reference signal PTRS according to one of the following parameters:
  • PTRS time domain density between symbols PTRS chunk density within the symbol, number of PTRS sample points, number of sample points of the PTRS included in the PTRS block, and distribution position of the PTRS block chunk within the symbol;
  • the transceiver unit 902 is configured to map the pattern of the PTRS to one or more symbols and send the pattern to the second device.
  • the transceiver unit 902 is further configured to receive, by the second device, the information about the PTRS block density and the number of PTRS sampling points in the indication symbol.
  • the processing unit 901 is further configured to determine a PTRS time domain density between the symbols according to the mapping relationship information between the modulation coding mode MCS and the PTRS time domain density between the symbols.
  • processing unit 901 is specifically configured to:
  • a PTRS block density associated with at least one of the MCS and the scheduling bandwidth, and a number of PTRS sampling points included in the PTRS block Determining, from the first association criterion, a PTRS block density associated with at least one of the MCS and the scheduling bandwidth, and a number of PTRS sampling points included in the PTRS block, and associating with at least one of the MCS and the scheduling bandwidth
  • the PTRS block density, the number of PTRS sample points included in the PTRS block is determined as the PTRS block density of the pattern of the PTRS and the number of PTRS sample points included in the PTRS block;
  • the first association criterion is at least MCS, scheduling bandwidth A relationship between the PTRS block density and the number of PTRS sample points included in the PTRS block.
  • processing unit 901 is specifically configured to:
  • the transceiver unit 902 is further configured to feed back, by the second device, at least one of a phase noise level, a subcarrier spacing, and a frequency point.
  • the transceiver unit 902 can be implemented by a transceiver
  • the processing unit 901 can be implemented by a processor.
  • the communication device 1000 can include a processor 1001, a transceiver 1002, and a memory 1003.
  • the memory 1003 may be used to store a program/code pre-installed at the time of shipment of the communication device 1000, or may store a code or the like for execution of the processor 1001.
  • the embodiment of the present application further provides a communication device, which can perform the foregoing method embodiments.
  • the device 1800 can be a network device.
  • the apparatus 1800 includes:
  • the processing unit 1801 is configured to receive one or more symbols, where the one or more symbols are mapped with a pattern of phase tracking reference signals PTRS, the pattern of the PTRS includes one or more PTRS blocks, and each PTRS block includes one Or multiple PTRS sampling points;
  • a processing unit configured to determine a pattern of the phase tracking reference signal PTRS from the one or more symbols.
  • the processing unit 1801 is configured to determine a pattern of the phase tracking reference signal PTRS according to at least one of a modulation and coding mode MCS and a scheduling bandwidth.
  • the processing unit 1801 is configured to determine a pattern of the phase tracking reference signal PTRS according to at least one of the following parameters:
  • PTRS time domain density between symbols PTRS chunk density within symbols, and number of PTRS sample points.
  • the transceiver unit 1802 is further configured to send a PTRS block density and a number of PTRS sampling points in the symbol.
  • the transceiver unit 902 can be implemented by a transceiver
  • the processing unit 1801 can be implemented by a processor.
  • the communication device 1000 can include a processor 1001, a transceiver 1002, and a memory 1003.
  • the memory 1003 may be used to store a program/code pre-installed at the time of shipment of the communication device 1000, or may store a code or the like for execution of the processor 1001.
  • the embodiment of the present application further provides a communication device, which can perform the foregoing method embodiments.
  • FIG. 11 a schematic structural diagram of a communication apparatus is provided in an embodiment of the present application.
  • the apparatus 1100 includes a processor 1101, a transceiver 1102, and a memory 1103.
  • the memory 1103 may be used to store a program/code pre-installed when the communication device 1100 is shipped from the factory, or may store a code or the like for execution of the processor 1101.
  • the processor 1101 is configured to determine, according to the association criterion, an association relationship between the Q DMRS ports in the DMRS group associated with the P PTRS ports and the P PTRS ports, where P is equal to or greater than 1 and less than or equal to Q, Q. Number of DMRS ports included in the DMRS port group associated with the P PTRS ports;
  • the transceiver 1102 is configured to send, to the terminal, an association relationship between the Q DMRS ports of the DMRS group and the P PTRS ports.
  • association criterion is any one or more of the following:
  • a DMRS group is associated with a PTRS port
  • the PTRS port is mapped to the DMRS port with the smallest or largest port number in the DMRS group
  • a DMRS group is associated with a PTRS port
  • the PTRS port is mapped to the DMRS port with the largest SNR in the DMRS group.
  • the association between the Q DMRS ports and the PTRS ports in the DMRS group means that the DMRS ports in the DMRS group and the PTRS ports have the same precoding matrix.
  • the transceiver 1102 is further configured to:
  • PTRS port configuration reference information includes at least one of the following: a shared local oscillator information of the terminal or a common phase error and a DMRS group number measured on each PTRS port of the terminal when the terminal is fully configured with the PTRS port, The number of scheduling layers and the maximum number of PTRS ports of the terminal;
  • the processor 1101 is further configured to determine, according to the PTRS port configuration reference information, a number of PTRS ports that the terminal sends the PTRS.
  • the processor 1101 is specifically configured to:
  • the number of layers of the terminal scheduling is determined as the number of the PTRS ports
  • the number of PTRS ports determines the number of the PTRS ports
  • the determined number of the PTRS ports is greater than or greater than 1 and less than or equal to the number of DMRS groups.
  • the embodiment of the present application further provides a communication device, which can perform the foregoing method embodiments.
  • FIG. 12 a schematic structural diagram of a communication apparatus is provided in an embodiment of the present application.
  • the apparatus 1200 includes:
  • the processing unit 1201 is configured to determine, according to the association criterion, an association relationship between the Q DMRS ports in the DMRS group associated with the P PTRS ports and the P PTRS ports, where P is equal to or greater than 1 and less than or equal to Q, Q. Number of DMRS ports included in the DMRS port group associated with the P PTRS ports;
  • the transceiver unit 1202 is configured to send, to the terminal, an association relationship between the Q DMRS ports of the DMRS group and the P PTRS ports.
  • association criterion is any one or more of the following:
  • a DMRS group is associated with a PTRS port
  • the PTRS port is mapped to the DMRS port with the smallest or largest port number in the DMRS group
  • a DMRS group is associated with a PTRS port
  • the PTRS port is mapped to the DMRS port with the largest SNR in the DMRS group.
  • the association between the Q DMRS ports and the PTRS ports in the DMRS group means that the DMRS ports in the DMRS group and the PTRS ports have the same precoding matrix.
  • the transceiver unit 1202 is further configured to:
  • PTRS port configuration reference information includes at least one of the following: a shared local oscillator information of the terminal or a common phase error and a DMRS group number measured on each PTRS port of the terminal when the terminal is fully configured with the PTRS port, The number of scheduling layers and the maximum number of PTRS ports of the terminal;
  • the processing unit 1201 is further configured to determine, according to the PTRS port configuration reference information, a number of PTRS ports that the terminal sends the PTRS.
  • processing unit 1201 is specifically configured to:
  • the number of layers of the terminal scheduling is determined as the number of the PTRS ports
  • the number of PTRS ports determines the number of the PTRS ports
  • the determined number of the PTRS ports is greater than or greater than 1 and less than or equal to the number of DMRS groups.
  • the embodiment of the present application further provides a computer readable storage medium for storing computer software instructions required to execute the foregoing processor, which includes a program for executing the above-mentioned processor.
  • embodiments of the present application can be provided as a method, system, or computer program product.
  • the present application can take the form of an entirely hardware embodiment, an entirely software embodiment, or an embodiment in combination of software and hardware.
  • the application can take the form of a computer program product embodied on one or more computer-usable storage media (including but not limited to disk storage, optical storage, etc.) including computer usable program code.
  • the computer program instructions can also be stored in a computer readable memory that can direct a computer or other programmable data processing device to operate in a particular manner, such that the instructions stored in the computer readable memory produce an article of manufacture comprising the instruction device.
  • the apparatus implements the functions specified in one or more blocks of a flow or a flow and/or block diagram of the flowchart.
  • These computer program instructions can also be loaded onto a computer or other programmable data processing device such that a series of operational steps are performed on a computer or other programmable device to produce computer-implemented processing for execution on a computer or other programmable device.
  • the instructions provide steps for implementing the functions specified in one or more of the flow or in a block or blocks of a flow diagram.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种通信方法及装置,其中方法包括:第一设备确定相位跟踪参考信号PTRS的图案;其中,PTRS的图案包括一个或多个PTRS块,每一个PTRS块包括一个或多个PTRS采样点;所述第一设备将所述PTRS的图案映射到一个或多个符号上,发送给第二设备。

Description

一种通信方法及装置 技术领域
本申请涉及通信技术领域,尤其涉及一种通信方法及装置。
背景技术
在下一代无线通信网络中(如5G),通信***的工作频段在6GHz以上,例如28GHz、39GHz、60GHz、73GHz等频段,因此下一代无线通信网络具有高频通信***的显著特点,从而容易实现较高的吞吐量。但是,相对现有的无线通信网络,工作在6GHz以上范围的下一代无线通信网络,随着工作频段的增加,相位噪声水平以20log(f1/f2)的水平恶化,其中f1和f2均为载波的频点。以2G频段和28G频段为例,28G频段的相位噪声水平比2G频段高23dB。相位噪声水平越高,公共相位误差(Common Phase Error,CPE)对传输的信号造成的相位误差就越大。
现有技术中,上行和下行都是采用解调参考信号(De-modulation Reference Signal,DMRS)和相位补偿参考信号(Phase compensation Reference Signal,PCRS)来共同完成信道估计、相位噪声估计以及数据解调,从而通过估计出的相位噪声进行相位噪声误差补偿,从而提高通信质量。其中PCRS也可以称为相位跟踪参考信号(Phase tracking Reference Signal,PTRS),为描述方便,以下均统一称为PTRS。
目前,PTRS采用了时域连续、频域上对应多个端口频分的方式发送,并且端口固定,在大数据带宽下,占用了较多子载波,导致资源开销较大。
综上所述,如何灵活配置PTRS,减少PTRS占用子载波的数量,降低发送PTRS时的开销,提高频谱效率是一项亟待解决的问题。
发明内容
本申请提供一种通信方法及装置,实现了不同终端在不同调制编码方式和/或不同调度带宽下灵活的相位跟踪参考信号图案的配置,保证相位噪声误差补偿性能的同时,降低相位跟踪参考信号的开销,提高了频谱效率。
本申请实施例提供了一种通信方法,该方法包括:
第一设备根据调制编码模式MCS、调度带宽中的至少一种确定相位跟踪参考信号PTRS的图案;其中,PTRS的图案包括一个或多个PTRS块,每一个PTRS块包括一个或多个PTRS采样点;
所述第一设备将所述PTRS的图案映射到一个或多个符号上,发送给第二设备。
根据本申请实施例提供的方法,第一设备根据调制编码方式门限、调度带宽中的至少一种确定相位跟踪参考信号的图案,实现了根据不同调制编码方式和/或调度带宽灵活的确定相位跟踪参考信号的图案,保证相位噪声误差补偿性能的同时,降低相位跟踪参考信号的开销,提高了频谱效率。
可选的,第一设备根据调制编码模式MCS、调度带宽中的至少一种确定相位跟踪参考信号PTRS的图案,包括:
所述第一设备从第一关联准则中确定与所述MCS、调度带宽中的至少一种关联的PTRS块密度、PTRS块中包括的PTRS采样点数量,并将与所述MCS、调度带宽中的至少一种关联的PTRS块密度、PTRS块中包括的PTRS采样点数量确定为所述PTRS的图案的PTRS块密度和PTRS块中包括的PTRS采样点数量;所述第一关联准则为MCS、调度带宽中的至少一种与PTRS块密度、PTRS块中包括的PTRS采样点数量的关联关系。
可选的,所述第一设备将所述PTRS的图案映射到一个或多个符号上,发送给第二设备,包括:
所述第一设备将所述PTRS的图案映射到采用单载波调制的一个或多个符号上,并发送给第二设备。
可选的,所述单载波是离散傅里叶变换扩展正交频分复用DFT-S-OFDM。
可选的,当调度带宽位于第一调度带宽区间,且调制编码模式位于第一调制编码模式区间时,不发送所述PTRS的图案。
可选的,所述第一设备是终端。
可选的,第一设备根据调制编码模式MCS、调度带宽中的至少一种确定相位跟踪参考信号PTRS的图案之前,所述方法还包括:
第一设备根据相噪水平、子载波间隔、频点中至少一种,确定所述MCS的门限,和/或调度带宽门限。
可选的,第一设备根据调制编码模式MCS、调度带宽中的至少一种确定相位跟踪参考信号PTRS的图案之前,所述方法还包括:
所述第一设备向所述第二设备反馈相噪水平、子载波间隔、频点中至少一种。
本申请实施例提供了一种通信装置,所述装置包括:存储器和处理器;所述存储器用于存放包括计算机操作指令的程序代码,所述处理器运行所述计算机操作指令执行上述任意一种通信方法。
本申请实施例提供一种通信装置,可以执行实现上述第一方面提供的任意一种通信方法。
在一种可能的设计中,该通信装置包括多个功能模块,例如处理单元和收发单元,用于实现上述第一方面提供的任意一种通信方法,用于根据调制编码方式门限、调度带宽中的至少一种确定相位跟踪参考信号的图案,实现了根据不同调制编码方式和/或调度带宽灵活的确定相位跟踪参考信号的图案,保证相位噪声误差补偿性能的同时,降低相位跟踪参考信号的开销,提高了频谱效率。
在一种可能的设计中,该通信装置的结构中包括处理器和收发机,所述处理器被配置为支持基站执行上述通信方法中相应的功能。所述收发机用于支持基站与终端之间的通信,向终端发送上述通信方法中所涉及的信息或者指令。通信装置中还可以包括存储器,所述存储器用于与处理器耦合,其保存通信装置必要的程序指令和数据。
本申请实施例提供一种通信方法,包括:
网络设备根据关联准则,确定关联了P个PTRS端口的DMRS组中Q个DMRS端口与所述P个PTRS端口的关联关系;其中,P等于或大于1且小于或等于Q,Q为与所述P个PTRS端口关联的DMRS端口组中包括的DMRS端口数;
所述网络设备将所述DMRS组中Q个的DMRS端口与所述P个PTRS端口的关联关系发送给终端。
可选的,所述关联准则为以下任意一项或多项:
若一个DMRS组关联了多个PTRS端口,则按照端口号顺序,将DMRS组中第i个DMRS端口与所述DMRS组关联的多个PTRS端口中第i个PTRS端口映射,i=1,2,3…;
若一个DMRS组关联了一个PTRS端口,则将该PTRS端口映射到DMRS组中端口号最小或最大的DMRS端口上;
若一个DMRS组关联了一个PTRS端口,则将该PTRS端口映射到DMRS组中信噪比最大的DMRS端口上。
可选的,所述DMRS组内Q个DMRS端口与PTRS端口的关联关系指所述DMRS组内的DMRS端口与所述PTRS端口具有相同的预编码矩阵。
可选的,网络设备根据关联准则,确定关联了P个PTRS端口的DMRS组中Q个DMRS端口与所述P个PTRS端口的关联关系之前,还包括:
网络设备获取PTRS端口配置参考信息,所述PTRS端口配置参考信息包括以下至少一种:终端的共享本振信息或终端在满配PTRS端口时的每个PTRS端口上测量的公共相位误差、DMRS组数,所述终端的调度层数、最大PTRS端口数;
所述网络设备根据所述PTRS端口配置参考信息确定终端发送PTRS的PTRS端口数。
可选的,所述网络设备根据所述PTRS端口配置参考信息确定终端发送PTRS的PTRS端口数,包括:
所述网络设备若根据所述终端的共享本振信息确定所述终端的多个中射频链路不共享一个晶振单元,且确定所述终端的调度层数小于或等于所述最大PTRS端口数,则将为所述终端调度的层数确定为所述PTRS端口数。
所述网络设备若根据所述终端的共享本振信息确定所述终端的多个中射频链路不共享一个晶振单元,且确定为所述终端调度的层数大于所述最大PTRS端口数,则将所述最大PTRS端口数确定所述PTRS端口数。
所述网络设备若根据所述终端的共享本振信息确定所述终端的多个中射频链路共享一个晶振单元,则确定出的所述PTRS端口数大于或大于1且小于或等于DMRS组数。
本申请实施例提供一种通信装置,包括:
处理器,用于根据关联准则,确定关联了P个PTRS端口的DMRS组中Q个DMRS端口与所述P个PTRS端口的关联关系;其中,P等于或大于1且小于或等于Q,Q为与所述P个PTRS端口关联的DMRS端口组中包括的DMRS端口数;
收发机,用于将所述DMRS组中Q个的DMRS端口与所述P个PTRS端口的关联关系发送给终端。
可选的,所述关联准则为以下任意一项或多项:
若一个DMRS组关联了多个PTRS端口,则按照端口号顺序,将DMRS组中第i个DMRS端口与所述DMRS组关联的多个PTRS端口中第i个PTRS端口映射,i=1,2,3…;
若一个DMRS组关联了一个PTRS端口,则将该PTRS端口映射到DMRS组中端口号最小或最大的DMRS端口上;
若一个DMRS组关联了一个PTRS端口,则将该PTRS端口映射到DMRS组中信噪比最大的DMRS端口上。
可选的,所述DMRS组内Q个DMRS端口与PTRS端口的关联关系指所述DMRS组内的DMRS端口与所述PTRS端口具有相同的预编码矩阵。
可选的,收发机还用于:
获取PTRS端口配置参考信息,所述PTRS端口配置参考信息包括以下至少一种:终端的共享本振信息或终端在满配PTRS端口时的每个PTRS端口上测量的公共相位误差、DMRS组数,所述终端的调度层数、最大PTRS端口数;
处理器还用于根据所述PTRS端口配置参考信息确定终端发送PTRS的PTRS端口数。
可选的,所述处理器具体用于:
若根据所述终端的共享本振信息确定所述终端的多个中射频链路不共享一个晶振单元,且确定所述终端的调度层数小于或等于所述最大PTRS端口数,则将为所述终端调度的层数确定为所述PTRS端口数;
若根据所述终端的共享本振信息确定所述终端的多个中射频链路不共享一个晶振单元,且确定为所述终端调度的层数大于所述最大PTRS端口数,则将所述最大PTRS端口数确定所述PTRS端口数;
若根据所述终端的共享本振信息确定所述终端的多个中射频链路共享一个晶振单元,则确定出的所述PTRS端口数大于或大于1且小于或等于DMRS组数。
本申请实施例提供一种通信装置,包括:
处理单元,用于根据关联准则,确定关联了P个PTRS端口的DMRS组中Q个DMRS端口与所述P个PTRS端口的关联关系;其中,P等于或大于1且小于或等于Q,Q为与所述P个PTRS端口关联的DMRS端口组中包括的DMRS端口数;
收发单元,用于将所述DMRS组中Q个的DMRS端口与所述P个PTRS端口的关联关系发送给终端。
可选的,所述关联准则为以下任意一项或多项:
若一个DMRS组关联了多个PTRS端口,则按照端口号顺序,将DMRS组中第i个DMRS端口与所述DMRS组关联的多个PTRS端口中第i个PTRS端口映射,i=1,2,3…;
若一个DMRS组关联了一个PTRS端口,则将该PTRS端口映射到DMRS组中端口号最小或最大的DMRS端口上;
若一个DMRS组关联了一个PTRS端口,则将该PTRS端口映射到DMRS组中信噪比最大的DMRS端口上。
可选的,所述DMRS组内Q个DMRS端口与PTRS端口的关联关系指所述DMRS组内的DMRS端口与所述PTRS端口具有相同的预编码矩阵。
可选的,收发单元还用于:
获取PTRS端口配置参考信息,所述PTRS端口配置参考信息包括以下至少一种:终端的共享本振信息或终端在满配PTRS端口时的每个PTRS端口上测量的公共相位误差、DMRS组数,所述终端的调度层数、最大PTRS端口数;
处理单元还用于根据所述PTRS端口配置参考信息确定终端发送PTRS的PTRS端口数。
可选的,所述处理单元具体用于:
若根据所述终端的共享本振信息确定所述终端的多个中射频链路不共享一个晶振单元,且确定所述终端的调度层数小于或等于所述最大PTRS端口数,则将为所述终端调度的层数确定为所述PTRS端口数;
若根据所述终端的共享本振信息确定所述终端的多个中射频链路不共享一个晶振单 元,且确定为所述终端调度的层数大于所述最大PTRS端口数,则将所述最大PTRS端口数确定所述PTRS端口数;
若根据所述终端的共享本振信息确定所述终端的多个中射频链路共享一个晶振单元,则确定出的所述PTRS端口数大于或大于1且小于或等于DMRS组数。
本申请实施例提供一种通信方法,包括:
第一设备确定相位跟踪参考信号PTRS的图案,其中,PTRS的图案包括一个或多个PTRS块,每一个PTRS块包括一个或多个PTRS采样点;
所述第一设备将所述PTRS的图案映射到一个或多个符号上,发送给第二设备。
一种可能的设计中,第一设备确定相位跟踪参考信号PTRS的图案,具体包括:第一设备根据调制编码模式MCS、调度带宽中的至少一种确定所述相位跟踪参考信号PTRS的图案。
另一种可能的设计中,第一设备确定相位跟踪参考信号PTRS的图案,具体包括:第一设备根据至少之一以下参数确定所述相位跟踪参考信号PTRS的图案:符号间的PTRS时域密度、符号内的PTRS块密度、PTRS采样点数量。
另一种可能的设计中,第一设备确定相位跟踪参考信号PTRS的图案,具体包括:第一设备根据至少之一以下参数确定所述相位跟踪参考信号PTRS的图案:符号间的PTRS时域密度,符号内的PTRS块密度、PTRS采样点数量、PTRS块chunk在符号内的分布位置。
另一种可能的设计中,所述方法还包括:接收来自所述第二设备的所述用于指示符号内的PTRS块密度和PTRS采样点数量的信息。
另一种可能的设计中,所述方法还包括:接收来自所述第二设备的所述符号内的PTRS块密度的指示信息、PTRS采样点数量的指示信息、以及块在符号内分布位置的指示信息。
另一种可能的设计中,通过X个比特位来共同标识所述符号内的PTRS块密度、PTRS采样点数量、以及块在符号内分布位置,所述X为大于2的整数。
另一种可能的设计中,所述方法还包括:根据调制编码模式MCS与符号间的PTRS时域密度的映射关系信息,确定符号间的PTRS时域密度。
另一种可能的设计中,所述第一设备将所述PTRS的图案映射到一个或多个符号上,发送给第二设备,包括:所述第一设备将所述PTRS的图案映射到采用单载波调制的一个或多个符号上,并发送给第二设备。
另一种可能的设计中,所述单载波调制的一个或多个符号是离散傅里叶变换扩展正交频分复用DFT-S-OFDM。
本申请实施例还提供一种通信装置,包括:所述处理单元,用于确定相位跟踪参考信号PTRS的图案pattern;其中,所述PTRS的pattern包括一个或多个PTRS块chunk,每一个所述PTRS chunk包括一个或多个PTRS采样点sample;
所述收发单元,用于将所述PTRS的图案映射到一个或多个符号上,发送给网络设备。
一种可能的设计中,所述处理单元,具体用于:根据调制编码模式MCS、调度带宽中的至少一种确定所述相位跟踪参考信号PTRS的图案。
另一种可能的设计中,所述处理单元,具体用于:根据至少以下之一参数确定所述相位跟踪参考信号PTRS的图案:符号间的PTRS时域密度、符号内的PTRS块密度、PTRS采样点数量。
另一种可能的设计中,具体用于:根据至少以下之一参数确定所述相位跟踪参考信号PTRS的图案:符号间的PTRS时域密度,符号内的PTRS块密度、PTRS采样点数量、PTRS块chunk在符号内的分布位置。
另一种可能的设计中,所述收发单元,还用于接收来自所述第二设备的所述符号内的PTRS块密度的指示信息和PTRS采样点数量的指示信息。
另一种可能的设计中,所述收发单元,还用于接收来自所述第二设备的所述符号内的PTRS块密度的指示信息、PTRS采样点数量的指示信息、PTRS块在符号内的分布位置的指示信息。
另一种可能的设计中,所述收发单元,还用于接收来自第二设备的X比特,其中,所述X比特用于标识符号内的PTRS块密度和PTRS采样点数量、PTRS块chunk在符号内的分布位置,其中,X为大于2的整数。
另一种可能的设计中,所述处理单元,还用于根据调制编码模式MCS与符号间的PTRS时域密度的映射关系信息,确定符号间的PTRS时域密度。
另一种可能的设计中,所述符号为离散傅里叶变换扩展正交频分复用DFT-S-OFDM。
另一种可能的设计中,所述通信装置为终端设备。
本申请实施例还提供一种通信方法,包括:接收一个或多个符号,所述一个或多个符号上映射有相位跟踪参考信号PTRS的图案,所述PTRS的图案包括一个或多个PTRS块,每一个PTRS块包括一个或多个PTRS采样点;
从所述一个或多个符号上确定相位跟踪参考信号PTRS的图案。
一种可能的设计中,所述从所述一个或多个符号上确定相位跟踪参考信号PTRS的图案,具体包括:根据调制编码模式MCS、调度带宽中的至少一种确定所述相位跟踪参考信号PTRS的图案。
另一种可能的设计中,所述从所述一个或多个符号上确定相位跟踪参考信号PTRS的图案,具体包括:根据至少以下之一参数确定所述相位跟踪参考信号PTRS的图案:符号间的PTRS时域密度、符号内的PTRS块密度、PTRS采样点数量。
另一种可能的设计中,所述从所述一个或多个符号上确定相位跟踪参考信号PTRS的图案,具体包括:根据至少以下之一参数确定所述相位跟踪参考信号PTRS的图案:符号间的PTRS时域密度、符号内的PTRS块密度、PTRS采样点数量、PTRS块在符号内的分布位置。
另一种可能的设计中,所述方法还包括:发送所述符号内的PTRS块密度的指示信息、PTRS采样点数量的指示信息。
另一种可能的设计中,所述方法还包括:发送所述符号内的PTRS块密度的指示信息、PTRS采样点数量块的指示信息以及PTRS块在符号内的分布位置的指示信息。
另一种可能的设计中,所述一个或多个符号为离散傅里叶变换扩展正交频分复用DFT-S-OFDM符号。
本申请实施例还提供一种通信装置,包括:收发单元,用于接收一个或多个符号,所述一个或多个符号上映射有相位跟踪参考信号PTRS的图案,所述PTRS的图案包括一个或多个PTRS块,每一个PTRS块包括一个或多个PTRS采样点;
处理单元,用于从所述一个或多个符号上确定相位跟踪参考信号PTRS的图案。
一种可能的设计中,所述处理单元,用于根据调制编码模式MCS、调度带宽中的至少 一种确定所述相位跟踪参考信号PTRS的图案。
另一种可能的设计中,所述处理单元,用于根据至少以下之一参数确定所述相位跟踪参考信号PTRS的图案:符号间的PTRS时域密度、符号内的PTRS块密度、PTRS采样点数量。
另一种可能的设计中,所述处理单元,用于至少以下之一参数确定所述相位跟踪参考信号PTRS的图案:符号间的PTRS时域密度,符号内的PTRS块密度、PTRS采样点数量、PTRS块在符号内的分布位置。
另一种可能的设计中,所述收发单元,还用于发送所述符号内的PTRS块密度的指示信息、PTRS采样点数量的指示信息。
另一种可能的设计中,所述收发单元,还用于发送所述符号内的PTRS块密度的指示信息、PTRS采样点数量的指示信息以及PTRS块在符号内的分布位置的指示信息。
另一种可能的设计中,所述一个或多个符号为离散傅里叶变换扩展正交频分复用DFT-S-OFDM符号。
本申请还提供了一种计算机可读存储介质,用于存储为执行上述任一通信方法的任意一种设计的功能所用的计算机软件指令,其包含用于执行上述任意一种设计的通信方法所设计的程序。
本申请实施例还提供了一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机执行上述各方面所述的通信方法。
附图说明
图1为本申请实施例提供的一种应用场景的示意性架构图;
图2为本申请实施例提供的一种通信方法流程示意图;
图3为本申请实施例提供的一种PTRS图案示意图;
图4为本申请实施例提供的一种PTRS图案示意图;
图5为本申请实施例提供的一种PTRS图案示意图;
图6为本申请实施例提供的一种DMRS端口与PTRS端口的关联关系示意图;
图7为本申请实施例提供的一种DMRS端口与PTRS端口的关联关系示意图;
图8为本申请实施例提供的一种DMRS端口与PTRS端口的关联关系示意图;
图9为本申请实施例提供的一种通信装置结构示意图;
图10为本申请实施例提供的一种通信装置结构示意图;
图11为本申请实施例提供的一种通信装置结构示意图;
图12为本申请实施例提供的一种通信装置结构示意图;
图13为本申请实施例提供的一种通信方法交互示意图;
图14为本申请实施例提供的一种PTRS图案示意图;
图15为本申请实施例提供的一种PTRS图案示意图;
图16为本申请实施例提供的一种PTRS图案示意图;
图17为本申请实施例提供的一种PTRS图案示意图;
图18为申请实施例提供的一种通信装置结构示意图。
具体实施方式
下面将结合附图对本申请作进一步地详细描述。
本申请实施例可以应用于各种移动通信***,例如:全球移动通讯(Global System of Mobile communication,GSM)***、码分多址(Code Division Multiple Access,CDMA)***、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)***、通用分组无线业务(General Packet Radio Service,GPRS)、长期演进(Long Term Evolution,LTE)***、先进的长期演进(Advanced long term evolution,LTE-A)***、通用移动通信***(Universal Mobile Telecommunication System,UMTS)、演进的长期演进(evolved Long Term Evolution,eLTE)***、5G***(例如新无线(New Radio,NR)***)等其它移动通信***。
以下,对本申请中的部分用语进行解释说明,以便于本领域技术人员理解。
1)、终端,又称之为用户设备(User Equipment,UE),是一种向用户提供语音和/或数据连通性的设备,例如,具有无线连接功能的手持式设备、车载设备等。常见的终端例如包括:手机、平板电脑、笔记本电脑、掌上电脑、移动互联网设备(mobile internet device,MID)、可穿戴设备,例如智能手表、智能手环、计步器等。
2)、网络设备,可以是GSM***或CDMA***中的基站(Base Transceiver Station,BTS),也可以是WCDMA***中的基站(NodeB,NB),还可以是LTE***中的演进型基站(Evolutional Node B,eNB或eNodeB),或者是云无线接入网络(Cloud Radio Access Network,CRAN)中的无线控制器,或者所述网络设备可以为未来5G网络中的网络设备,如NR***中的gNB或小站、微站,TRP(transmission reception point,传输接收点),还可以是中继站、接入点或者未来演进的公共陆地移动网络(Public Land Mobile Network,PLMN)中的网络设备等任何其它无线接入设备,但本申请实施例不限于此。
3)、物理资源块(Physical Resource Block,PRB):一种时频资源的单位,在时域上占用1个子帧或1个时隙,在频域上占用连续的多个子载波。LTE中,PRB在时域上占一个子帧中连续的14个正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)符号,频域上占用连续的12个子载波。
4)子载波宽度:频域上最小的粒度。例如,LTE中,1个子载波的子载波宽度为15KHz。
5)、“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。字符“/”一般表示前后关联对象是一种“或”的关系。同时,应当理解,尽管在本申请实施例中可能采用术语第一、第二、第三等来描述各种消息、请求和终端,但这些消息、请求和终端不应限于这些术语。这些术语仅用来将消息、请求和终端彼此区分开。
图1为本申请实施例提供的一种应用场景的示意性架构图。如图1所示的组网架构中,主要包括基站101和终端102。基站101可以使用低频(主要为6GHz以下)或者相对较高的频率(6GHz以上)的毫米波频段与终端102通信。例如,毫米波频段可以是28GHz、38GHz,或覆盖面积较小的数据平面的增强带宽(Enhanced-band)频段,比如70GHz以上的频段。基站101覆盖下的终端102可以使用低频或者频率较高的毫米波频段与基站101进行通信。图1只是举例的简化示意图,网络中还可以包括其他设备,图1中未予以画出。
本申请实施例提供的通信方法和设备,可以应用于终端,所述终端包括硬件层、运行在硬件层之上的操作***层,以及运行在操作***层上的应用层。所述硬件层包括中央处理器(Central Processing Unit,CPU)、内存管理单元(Memory Management Unit,MMU)和内存(也称为主存)等硬件。所述操作***可以是任意一种或多种通过进程(Process)实现业务处理的计算机操作***,例如,Linux操作***、Unix操作***、Android操作***、iOS操作***或windows操作***等。所述应用层包含浏览器、通讯录、文字处理软件、即时通信软件等应用。
此外,本申请的各个方面或特征可以实现成方法、装置或使用标准编程和/或工程技术的制品。本申请中使用的术语“制品”涵盖可从任何计算机可读器件、载体或介质访问的计算机程序。例如,计算机可读介质可以包括,但不限于:磁存储器件(例如,硬盘、软盘或磁带等),光盘(例如,压缩盘(Compact Disc,CD)、数字通用盘(Digital Versatile Disc,DVD)等),智能卡和闪存器件(例如,可擦写可编程只读存储器(Erasable Programmable Read-Only Memory,EPROM)、卡、棒或钥匙驱动器等)。另外,本文描述的各种存储介质可代表用于存储信息的一个或多个设备和/或其它机器可读介质。术语“机器可读介质”可包括但不限于,能够存储、包含和/或承载指令和/或数据的各种介质。
为了更好地理解本申请,以下将结合附图对本申请进行说明。
结合上述描述,参见图2,为本申请实施例提供的一种通信方法流程示意图。该方法包括:
步骤201:第一设备根据调制编码模式、调度带宽中的至少一种确定相位跟踪参考信号PTRS的图案;其中,PTRS的图案包括一个或多个PTRS块,每一个PTRS块包括一个或多个PTRS采样点。
在通过单载波发送PTRS的场景下,单载波的PTRS在时域时,用于指示PTRS的图案的参数包括符号间的PTRS时域密度,符号内的PTRS块(chunk)密度和PTRS采样点(sample)数量。举例来说,如图3所示,为本申请实施例提供的一种PTRS图案示意图。图3中,PTRS的图案(pattern)的符号间的PTRS时域密度为1/T,即每T个符号有一个符号映射PTRS;PTRS块密度为M,即映射PTRS的符号中包括M个PTRS块;PTRS采样点数量为N,即每个PTRS块中包括N个PTRS采样点。
本申请实施例中,PTRS块(chunk):由1个或以上连续的PTRS信号组成,PTRS采样点(sample)可以是指一个PTRS信号。
步骤202:所述第一设备将所述PTRS的图案映射到一个或多个符号上,发送给第二设备。
本申请实施例中第一设备可以是指终端,相应的第二设备可以是指网络设备。或者,第一设备也可以是指网络设备,相应的第二设备可以是指终端。
步骤201中,MCS、调度带宽为网络侧配置的,具体的配置方法本申请实施例并不限定。
第一设备在确定MCS、调度带宽中的至少一种之后,可以从第一关联准则(association rules)中确定与所述MCS、调度带宽中的至少一种关联的PTRS块密度、PTRS块中包括的PTRS采样点数量,并将与所述MCS、调度带宽中的至少一种关联的PTRS块密度、PTRS块中包括的PTRS采样点数量确定为所述PTRS的图案的PTRS块密度和PTRS块中包括的PTRS采样点数量。
第一关联准则中的调制编码模式(Modulation and Coding Scheme,MCS)门限和/或调度带宽门限可以根据相噪水平、子载波间隔、频点中至少一种确定。其中,相噪水平是指第一设备的相噪水平,子载波间隔是指发送PTRS的载波的子载波间隔,频点是指发送PTRS的载波的频点。
第一设备可以直接根据相噪水平、子载波间隔、频点中至少一种,确定所述MCS的门限,和/或调度带宽门限。所述第一设备还可以向所述第二设备反馈相噪水平、子载波间隔、频点中至少一种。所述第二设备从而可以根据所述第一设备反馈的信息确定MCS门限、调度带宽门限,并将确定的MCS门限、调度带宽门限发送给第一设备。
MCS门限和/或调度带宽门限的具体确定方法,本申请实施例对此并不限定,在此不再赘述。
第一设备确定出MCS门限以及调度带宽门限之后,可以将确定出的MCS门限以及调度带宽门限发送给第二设备。第一设备可以直接将MCS门限以及调度带宽门限发送给第二设备,也可以将终端的相噪水平发送给第二设备,从而间接将MCS门限和/或调度带宽门限发送给第二设备。
第一设备确定出MCS门限以及调度带宽门限之后,可以确定第一关联准则,即MCS门限以及调度带宽门限中的至少一种与PTRS块密度、PTRS块中包括的PTRS采样点数量的关联关系。举例来说,第一关联准则可以如表1所示。
表1 第一关联准则
Figure PCTCN2018085601-appb-000001
表1中,
Figure PCTCN2018085601-appb-000002
为MCS门限,
Figure PCTCN2018085601-appb-000003
为调度带宽门限。N 22至N 64表示PTRS块中包括的PTRS采样点数量,M 22至M 64表示PTRS块密度。在不同MCS门限以及调度带宽门限下,映射着不同的PTRS块密度、PTRS块中包括的PTRS采样点数量,例如,MCS门限为
Figure PCTCN2018085601-appb-000004
调度带宽门限为
Figure PCTCN2018085601-appb-000005
时,关联的PTRS块密度为M 32、PTRS块中包括的PTRS采样点数量为N 32。本申请实施例中PTRS块密度的取值可以为1、2或4;PTRS块中包括的PTRS采样点数量可以为1、2、4、8或16等,当然以上指示示例,PTRS块密度的取值、PTRS块中包括的PTRS采样点数量还可以为其他形式,在此不再逐一举例说明。
当调度带宽位于第一调度带宽区间,且调制编码模式位于第一调制编码模式区间时, 不发送所述PTRS的图案,即PTRS块密度、PTRS块中包括的PTRS采样点数量均为0。第一调度带宽区间和第一调制编码模式区间可以根据实际情况确定,在此不再赘述。例如由表1可知,第一调度带宽区间为
Figure PCTCN2018085601-appb-000006
且第一调制编码模式区间为
Figure PCTCN2018085601-appb-000007
时,PTRS块密度、PTRS块中包括的PTRS采样点数量均为0。
应理解,表1仅是一种MCS门限以及调度带宽门限与PTRS块密度、PTRS块中包括的PTRS采样点数量的关联关系的示例,第一关联准则还可以有其他形式,例如表1中的门限值还可以通过设置左边的门限等于或小于右边的门限,实现关联的PTRS块密度、PTRS块中包括的PTRS采样点数量的任意需求。例如,若表1中
Figure PCTCN2018085601-appb-000008
则表1中第二列无效;若表1中
Figure PCTCN2018085601-appb-000009
以及
Figure PCTCN2018085601-appb-000010
则实现在有PTRS的条件下,PTRS块中包括的PTRS采样点数量固定为N 33,PTRS块密度固定为M 33。再例如,可通过设置表1中每一列的PTRS块密度相同,每一行的PTRS块中包括的PTRS采样点数量相同,实现单载波时域PTRS图案中PTRS块中包括的PTRS采样点数量仅由调度带宽决定,符号内PTRS块密度仅由调度的MCS决定。
由于不同终端的相噪水平不同,不同子载波间隔抵抗相噪的能力不同,不同频点对应的相噪水平不同,同一MCS可能对应不同的调制阶数/码率等,因此表1中的MCS门限与终端的相噪水平、子载波间隔、频率、MCS与调制阶数/传输块大小序号的对应关系等均有关,即不同终端的相噪水平,不同子载波间隔,不同频点,不同MCS与调制阶数/传输块大小序号对应关系,对应不同的关联关系。
本申请实施例中,第一关联准则也可以是第二设备建立好之后发送给第一设备的,也可以是第一设备与第二设备预先约定的。
本申请实施例中,第一设备还可以根据所述MCS确定所述PTRS的图案的符号间的PTRS时域密度。具体的,第一设备在确定MCS之后,可以从第二关联准则中确定与所述MCS关联的符号间的PTRS时域密度,并将与所述MCS关联的符号间的PTRS时域密度确定为所述PTRS的图案的符号间的PTRS时域密度。第二关联准则为MCS与符号间的PTRS时域密度的关联关系。第一设备可以预先建立MCS与符号间的PTRS时域密度的关联关系,第二关联准则也可以是第二设备建立好之后发送给第一设备的,也可以是第一设备与第二设备预先约定的。
举例来说,第二关联准则可以如表2所示。
表2 第二关联准则
MCS 符号间的PTRS时域密度
[MCS1,MCS2] 0
(MCS2,MCS3] 1/4
(MCS3,MCS4] 1/2
(MCS4,MCS5] 1
结合表2,当MCS为大于MCS2且小于或等于MCS3时,关联的符号间的PTRS时域密度为1/4,即每4个符号发送一个映射了PTRS的符号。其他情况可以参考此处的描述,在此不再赘述。
应理解,表2仅是一种MCS门限值与符号间的PTRS时域密度的关联关系的示例,第二关联准则还可以有其他形式,在此不再赘述。
步骤202中,所述第一设备可以将所述PTRS的图案映射到采用单载波调制的一个或多个符号上,并发送给第二设备。
其中,所述单载波可以是离散傅里叶变换扩展正交频分复用(Discrete Fourier Transform-Spread-Orthogonal Frequency Division Multiplexing,DFT-S-OFDM)以及其扩展波形,如ZP-DFT-s-OFDM(zero power),或其他单载波。
本申请实施例中,在多载波场景下,第一设备也可以根据MCS、调度带宽中的至少一种确定PTRS的图案。在多载波场景下,PTRS的图案包括PTRS时域密度和PTRS频域密度,PTRS时域密度是指在时域上映射PTRS的符号的密度,PTRS频域密度是指在频域上映射PTRS的子载波的密度。
具体的,第一设备可根据调度的MCS,从第三关联准则中确定与所述MCS关联的符号间的PTRS时域密度,并将与所述MCS关联的PTRS时域密度确定为所述PTRS的图案的PTRS时域密度。第三关联准则为MCS与PTRS时域密度的关联关系。第一设备可以预先建立MCS与PTRS时域密度的关联关系,也可以接收第二设备建立好或修改的第三关联准则,也可以与第二设备预先约定的第三关联准则,本申请实施例对此并不限定。
举例来说,第三关联准则可以如表3所示。
表3 第三关联准则
Figure PCTCN2018085601-appb-000011
表3中,
Figure PCTCN2018085601-appb-000012
为MCS门限。
应理解,表3仅是一种MCS与PTRS时域密度的关联准则的示例,MCS与PTRS时域密度的关联准则还可以是其他的表现形式,本申请不做限定。
表3中,MCS门限与终端的相噪水平、子载波间隔、频率、MCS与调制阶数/传输块大小序号的对应关系等均有关,即不同终端的相噪水平,不同子载波间隔,不同频点,不同MCS与调制阶数/传输块大小序号对应关系,对应不同的关联关系。表3中的门限值还可以通过设置左边的门限等于或小于右边的门限,实现PTRS时域密度的任意需求。例如,若表3中
Figure PCTCN2018085601-appb-000013
则此时的时域密度不支持1/4;若表3中
Figure PCTCN2018085601-appb-000014
则PTRS时域密度仅支持0和1。
第一设备根据调度带宽从第四关联准则中确定与所述调度带宽关联的PTRS频域密度,并将与所述调度带宽关联的PTRS频域密度确定为所述PTRS的图案的PTRS频域密度。第四关联准则为调度带宽与PTRS频域密度的关联关系。第一设备可以预先建立调度带宽与PTRS频域密度的关联关系,也可以接收第二设备建立好或修改的第四关联准则,也可以与第二设备预先约定的第四关联准则,本申请实施例对此并不限定。
举例来说,第四关联准则可以如表4所示。
表4 第四关联准则
Figure PCTCN2018085601-appb-000015
Figure PCTCN2018085601-appb-000016
表4中,
Figure PCTCN2018085601-appb-000017
为调度带宽门限。
表4中的门限值还可以通过设置左边的门限等于或小于右边的门限,实现关联的PTRS频域密度的任意需求,具体可以参考前面的描述,在此不再赘述。
应理解,表4仅是一种调度带宽与PTRS频域密度的关联关系的示例,调度带宽与PTRS频域密度的关联关系还可以是其他的表现形式,本申请不做限定。
举例来说,结合表3和表4,如图5所示,为本申请实施例提供的一种PTRS图案的示意图。在图5中的(a),PTRS频域密度为1(频域上每个资源块有一个PTRS),PTRS时域密度为1,在图5中的(b),PTRS频域密度为1(频域上每个资源块子载波上有一个PTRS),PTRS时域密度为1/2,在图5中的(c),PTRS频域密度为1/2(频域上每2个资源块子载波上有一个PTRS),PTRS时域密度为1。
上述实施例为通过隐式的方式来配置PTRS的图案,以下实施例通过显式的方式来配置PTRS的图案。
如图13所示,本申请实施例提供的一种通信方法流程示意图,该方法包括:
步骤1301、第一设备根据以下信息中的至少一种:符号间的PTRS时域密度、符号内的PTRS块(chunk)密度、PTRS采样点(sample)数量、chunk在符号内的分布位置确定PTRS图案。
其中,符号间的PTRS时域密度是指每几个符号有一个符号映射PTRS;比如,符号间的PTRS时域密度为1/4,则标识每4个OFDM符号有一个符号映射PTRS;
符号内PTRS块密度是指一个符号内包括多少个PTRS块;
chunk在符号内的分布位置是指PTRS块在一个符号内的映射位置信息;比如,映射在前部、中部、或者后部、或者映射在哪些调制符号上或者数据上;
PTRS采样点数量是指一个PTRS块包括多少个采样点。
举例来说,如图14(a)所示,符号内PTRS块密度为1,因为一个符号内包括1个PTRS块;PTRS采样点数量为2,因为一个PTRS块包括2个采样点;chunk在符号内的分布位置是前端。
应理解,上述中的PTRS块密度还可以称为PTRS块的数量、PTRS采样点数量还可以称为PTRS块大小,本发明不予限定。
步骤1302、第一设备映射所述PTRS到一个或多个符号,并发送给第二设备。
步骤1303、第二设备接收来自第一设备的一个或多个符号。
步骤1304、第二设备从所述一个或多个符号上确定PTRS的图案。
可选地,在步骤1301之前,所述方法还包括:
步骤A:第二设备将指示符号内的PTRS块(chunk)密度的信息、指示PTRS采样点 (sample)数量的信息、指示chunk在符号内的分布位置的信息中的至少之一发送给第一设备。
举例来说,如图3所示,为本申请实施例提供的一种PTRS图案示意图。图3中,PTRS的图案(pattern)的PTRS符号间时域密度为1/T,即每T个符号有一个符号映射PTRS;PTRS块密度为M,即映射PTRS的符号中包括M个PTRS块;PTRS采样点数量为N,即每个PTRS块中包括N个PTRS采样点。
本申请实施例中,PTRS块(chunk):由1个或以上连续的PTRS信号组成,PTRS采样点(sample)可以是指离散傅里叶变换DFT之前的一个PTRS信号。
本申请实施例中第一设备可以是指终端,相应的第二设备可以是指网络设备。或者,第一设备也可以是指网络设备,相应的第二设备可以是指终端。
应理解,符号间的时域密度,可以通过MCS来隐式指示,指示的方式可以参考上面实施例所提到的表2或者表3,这里不再赘述。
网络设备将PTRS存在/图案(Presence/Pattern)的配置信息发送给终端时,可以按照以下方式指示:
对于PTRS块所包含的PTRS采样点数量来说,通过信令配置该参数有两种方式:
第一种方式:直接指示PTRS采样点数量。比如,由信令直接配置PTRS采样点数量的值,例如,PTRS采样点数量为8,通过四个比特位1000来标识;比如,PTRS采样点数量为2,通过2个比特位10来标识。
第二种方式:通过指示编号或者索引来间接指示PTRS采样点数量。比如,通过对PTRS采样点数量进行编号,或者建立编号与PTRS采样点数量之间的映射关系,如通过指示编号的方式来指示PTRS采样点数量。以PTRS采样点数量的取值有4种为例,此时,指示信息占2个比特,以表7为例:
表7
编号/信令具体内容 PTRS采样点数量 例1 例2 例3 例4 例5 例6
0/00 N 1 1 8 2 16 1 2
1/01 N 2 2 4 4 8 2 4
2/10 N 3 4 2 8 4 4 8
3/11 N 4 8 1 16 6 保留 保留
表7中,当编号为1(比特为01),标识PTRS采样点数量可以为2(例1);或者,当标号为1时,标识PTRS采样点数量为4(例2)。
需注意的是,表中的取值仅为示例,本发明不予限定。编号与PTRS采样点数量的映射关系可以从小到大,或从大到小或者其他方式;PTRS采样点数量的取值集合的元素个数(即N i中i的最大值)可以为4或其他数;PTRS采样点数量的具体取值(即N i的具体取值)可以为1、2、4、8或其他数。该种方式通过预先建立一种或多种编号与PTRS采样点数量的映射关系,相比直接配置,可减少配置信令开销。
对于符号内PTRS块密度来说,通过信令配置符号内PTRS块密度有两种方式:
第一种方式:直接配置符号内PTRS块密度,比如,符号内PTRS块密度为4,通过三个比特位100来标识;比如,符号内PTRS块密度为2,通过2个比特位10来标识。
第二种方式:通过编号或索引间接指示符号内PTRS块密度,比如,表8为例:
表8
编号/信令具体内容 符号内PTRS块密度 例1 例2 例3 例4 例5 例6
0/00 M 1 0 4 0 8 0 2
1/01 M 2 1 2 2 4 2 4
2/10 M 3 2 1 4 2 4 8
3/11 M 4 4 0 8 0 保留 保留
需注意的是,表中所示仅为举例,本发明不限定:编号与符号内PTRS块密度的映射关系,二者的映射关系可以从小到大,或从大到小或者其他;符号内PTRS块密度的取值集合的元素个数(即M i中i的最大值)可以为4或其他数;符号内PTRS块密度的具体取值(即M i的具体取值)可以为1、2、4、8或其他值。该方式通过预先建立一种或多种编号与符号内PTRS块密度的映射关系,相比直接配置,可减少配置信令开销。
对于块在符号内的分布位置的配置来说,需要考虑多种需求,比如,块的数量、业务需求、接收端的相位噪声估计算法、相位噪声的时域相关性等需求。
若当前符号内PTRS块密度为1,即一个符号内只有一个PTRS块时,该PTRS块的位置可以分布在符号的前端或者中间。比如,当前的业务对延时要求较高,则要求PTRS能尽早估计出相位噪声,因此,其位置可以分布在符号的前端,如图14(a)所示;当前的业务对估计准确度要求较高,则考虑到整个符号只有一个PTRS块,此时,PTRS块的位置可以分布在符号的中间,如图14(b)所示。
若当前符号内PTRS块密度为2,即一个符号内只有两个PTRS块,该PTRS块的位置分布方式较多。比如,当相位噪声的时域相关性较强,其相干时间大于等于一个符号的时间,则可以将两个PTRS块分布在符号的两端,如图14(c)所示;当相位噪声的时域相关性较弱,或者接收端可以联合至少两个相邻的符号一起估计相位噪声时,两个PTRS块则可以一个放在符号的前端,一个放在符号的中间,如图14(d)所示;若考虑到图14(d)中最后一个符号由外推得到的相位估计值较多,还可以考虑将图14(d)的PTRS分布整体加一个时间偏移,使得外推得到的相位估计值值的数量平均分布在第一个符号和最后一个符号,如图14(e)所示。若进一步考虑到终端间的PTRS可映射在不同位置,则可以给不同终端配置不同的时域偏移量K,其中K表示偏移量为DFT之前的K个数据符号/调制符号的持续时间。
若块的数量为除了1和2以外的其他值,其分布的位置与两个PTRS块的情况类似,可以是图14(c)~图14(e)中任意一种。
其中,块在符号内的分布位置可以根据符号内PTRS块密度和/或PTRS采样点数量来隐式指示,还可以直接显式指示。
当隐式指示时,仅适用于信令提前配置分布集合;比如,若信令配置当前的分布集合是图14(a)和图14(c)所示,根据符号内PTRS块密度和/或PTRS采样点数量可以直接确定其分布位置,如一个块的分布即图14(a),两个及以上块的分布即图14(c),此时直接指示符号内PTRS块密度和PTRS采样点数量即可,分别以表7和表8中的例子1为示例,如图15所示,其中前两个比特表示PTRS采样点数量,后两个比特表示符号内PTRS块密度。
当显式指示时,其位置分布还可基于预先定义的编号与位置分布方式,通过信令通知编号直接指示其位置分布,如表9所示:
表9
编号/信令具体内容 块位置 例1 例2
0/00 分布1
1/01 分布2
2/10 分布3 均匀分布 两端
3/11 分布4 保留 均匀分布
其中“前”和“中”仅针对一个PTRS块而言,两端和均匀即针对至少两个PTRS块而言。因此此时可由信令通知PTRS的总采样数量,结合位置分布方式,即可确认PTRS的具体图案。如:若指示PTRS总数量的信令内容为{00,01,10,11},分别对应PTRS的总数量{0,1,2,4},则以上述表格的例1举例如图16所示,其中前两个比特表示PTRS总采样点的数量,后两个比特表示PTRS的分布位置,如总数量为1,此时PTRS块密度只能是1,且PTRS块内包含的PTRS采样点数量也只能是1,因此若位置分布在前端时其图案即图16(a)所示;如总数量为2,且分布在中间,则PTRS块密度也只能是1,即此时PTRS块内包含的PTRS采样点数量为2,分布如图16(c)所示。
另外,上述三种参数还可以联合编号,比如,0000表示块密度为1,PTRS采样数量为1,分布位置为前端;0001表示块密度为1,PTRS采样数量为1,分布位置为中间;0010表示块密度为1,PTRS采样数量为2,分布位置为前端;0011表示块密度为1,PTRS采样数量为2,分布位置为中间,依次类推。该种方式的思想是将所有可能的PTRS图案用多个比特来表示,比如,所有可能的PTRS图案有20种,那么通过5个比特来标识。图17中所示比特位数,以及与PTRS图案的映射关系仅为示意,并不限定。
需注意的是,上述表格与图仅为示意,编号与PTRS图案的映射关系还可以表示为公式等形式。
应理解,上述参数的配置可由RRC、MAC-CE、DCI或预先定义的任意一种或多种完成。如:上述任一种信令直接配置PTRS的参数,包括PTRS块密度,PTRS采样点数量,块在符号内的分布位置,各参数的配置信令可相同,也可不同,可单独配置,也可联合配置;配置周期可相同也可不同。上述PTRS参数还可由多种信令联合配置:由RRC配置参数集合1,DCI配置具体参数,其中DCI配置的参数是RRC配置的参数集合1中的元素:如预先定义多种编号与PTRS参数/图案的映射关系(映射关系1,映射关系2,…),RRC配置其中一种(可由所述映射关系的编号,如2则表示选择映射关系2),DCI配置的PTRS参数/图案则是映射关系2中的一种;或MAC-CE配置参数集合1,DCI配置具体参数,其中DCI配置的参数是RRC配置的参数集合1中的元素;或RRC配置参数集合1,MAC-CE配置参数子集合1,其中子集合1中的参数是RRC配置的参数集合1中的元素,基于子集合1,DCI配置具体参数;或基于预先定义的参数(集合),由RRC、MAC-CE、DCI修改预先定义的参数(集合);或基于当前选择的参数(集合),由RRC、MAC-CE、DCI修改预先定义的参数(集合)。
本申请实施例中,在确定了单载波PTRS图案的符号间的PTRS时域密度,符号内的PTRS块密度和PTRS采样点数量之后,还可能需要确定PTRS的图案的时域偏移量,从而 准确的将PTRS的图案映射到符号上;相应的,在确定了多载波的PTRS时频密度、PTRS频频密度之后,还可能需要确定PTRS的图案的时域偏移量和频域偏移量,从而准确的将PTRS的图案映射到符号上。下面分别描述。
时域偏移量:
当符号间的PTRS时域密度或PTRS时域密度不是1时,需考虑PTRS放置在哪些符号上。主要考虑点有:
(1)与其他信道和其他参考信号(Reference Signal,RS)的冲突:物理下行控制信道(Physical Downlink Control Channel,PDCCH)上不需要PTRS,DMRS所在符号不需要PTRS,因此偏移量大于等于
Figure PCTCN2018085601-appb-000018
为与PTRS处于同一时域单元发送的PDCCH占用的符号数,
Figure PCTCN2018085601-appb-000019
为与PTRS处于同一时域单元发送的DMRS占用的符号数。时域单元可以为时隙或时隙聚合等。
(2)相位噪声的估计性能:没有PTRS的符号上的相位噪声由有PTRS的符号上估计的相位噪声插值(当前符号为无PTRS的符号,当前符号左边和右边都存在有PTRS符号,则可以插值获取当前符号的相位噪声)或外推(当前符号为无PTRS的符号,当前符号只有单边存在有PTRS符号时只能外推)得到,且外推的准确性小于插值的准确性,因此在实际情况中应尽量使得外推的符号数少,或避免外推;另外,DMRS在估计信道时会把相位噪声作为信道的一部分一起估计,且PTRS估计的相位噪声为与实际相位噪声与DMRS所在符号的相位噪声的差,因此DMRS所在符号的相位噪声差可认为是0,与第一个PTRS符号估计的相位噪声进行插值。
考虑上述情况,当PDCCH的符号数为2,DMRS的符号数为1时,三种符号间的PTRS时域密度或PTRS时域密度的PTRS图案可如图4以及表5所示。
表5
Figure PCTCN2018085601-appb-000020
其中偏移2的值可以与偏移1的值有关,也可以无关。
总偏移T offset还可以表示为:
Figure PCTCN2018085601-appb-000021
其中K表示时域单元中除了PDCCH和DMRS的符号数,L表示符号间的PTRS时域密度或PTRS时域密度的倒数,取值为1,2,4,H可表示为时域单元中的总符号数,时域单元可以是一个时隙,也可以是一个时隙聚合,
Figure PCTCN2018085601-appb-000022
表示向上取整。
基于总偏移,一个时域单元中映射PTRS的符号的序号可表示为
Figure PCTCN2018085601-appb-000023
上述内容用在上行时,可做类似的操作。
频域偏移量:
与其他信道和其他RS(不包括DMRS)的冲突:信道状态信息参考信号(Channel-State Information Reference Signal,CSI-RS);
与直流(direct current,DC)子载波的冲突;
上述两种冲突的解决办法都可以是以下任意一种:
第一种方法:若DC子载波的位置和其他RS(不包括DMRS)的位置确定为只能出现在子载波RSset={SC序号}上,其中SC序号为一个RB内的编号,即取值为0~11,在设计PTRS的时候,可以通过设置频域偏移量F offset避开与上述子载波序号的冲突,如:
F offset=min(RSset)-1或者
F offset=max(RSset)+1或者
F offset∈SCset-RSset,其中SCset指一个RB内的所有编号的集合,其元素包括0,1,…,11,或者进一步考虑到其与DMRS的位置相同,可表示为
F offset∈(SCset-RSset)∩DMRSset,其中DMRSset是DMRS可能出现的子载波编号集合,元素取值为0~11。
第二种方法:与其他RS或DC冲突时,优先满足其他RS或保证DC子载波,即与其他RS或DC子载波冲突的位置不映射PTRS。
或者可以优先考虑第一种方法,在无法避免的情况下,用第二种方法。
具体的,结合前面的描述,图4中,PTRS的图案的时域偏移量均为3个符号;图5中的(a)至(c)的PTRS的图案中,时域偏移量均为3个符号,频域偏移量均为4个子载波。
现有技术中,发送PTRS的端口一般都是固定的端口,在PTRS的端口数远大于所需要的端口数时,开销较大,即其采用固定的端口,在不同的场景下,如不同的中射频硬件链路下,不够灵活。
本申请实施例中,为了更灵活的配置调度PTRS的端口,网络设备根据终端反馈的能力信息来确定发送PTRS的PTRS端口数以及与DMRS的关联关系,下面详细描述。
网络设备获取PTRS端口配置参考信息,所述PTRS端口配置参考信息包括以下至少一种:终端的共享本振信息或终端在满配PTRS端口时的每个PTRS端口上测量的公共相位误差(Common Phase Error,CPE)、DMRS组数,所述终端的调度层数、最大PTRS端口数。其中,所述最大PTRS端口数为所述终端发送PTRS时使用的最大端口数;一个DMRS组包括一个或多个DMRS端口,且每个DMRS端口的信号从同一个中射频链路发出。
终端的共享本振信息或终端在满配PTRS端口时的每个PTRS端口上测量的CPE以及最大PTRS端口数可以为终端上报给网络设备的。需要说明的是,终端也可以不向网络设备上报最大PTRS端口数,此时网络设备可为终端配置满配的PTRS端口。终端向网络设备上报最大PTRS端口数时,可以让网络设备确定为该终端配置的PTRS端口的确切数量。例如,如果终端已经报告它支持的最大PTRS端口数为2,则当调度层数大于最大PTRS端口数时,网络设备可以仅为该终端配置最多两个PTRS端口,这可以进一步降低PTRS开销。
随后,所述网络设备根据所述PTRS端口配置参考信息确定终端发送PTRS的PTRS端口数。
具体的,所述网络设备若根据所述终端的共享本振信息确定所述终端的多个中射频链路不共享一个晶振单元,且确定所述终端的调度层数小于或等于所述最大PTRS端口数,则将为所述终端调度的层数确定为所述PTRS端口数。
所述网络设备若根据所述终端的共享本振信息确定所述终端的多个中射频链路不共享一个晶振单元,且确定为所述终端调度的层数大于所述最大PTRS端口数,则将所述最大PTRS端口数确定所述PTRS端口数。
所述网络设备若根据所述终端的共享本振信息确定所述终端的多个中射频链路共享一个晶振单元,则确定出的所述PTRS端口数大于或大于1且小于或等于DMRS组数,具体可以实际情况确定,如若网络侧所有DMRS组的中射频相噪水平都较理想,则PTRS端口数可配置为1,若网络侧所有DMRS组的中射频链路相噪水平都较差,则PTRS端口数可配置为DMRS组数。当PTRS端口数小于DMRS组数时,需通知或按预先定义或预先约定的准则建立PTRS端口与DMRS组的映射关系,如准同位关系(Quasi Co-located,QCL)。
举例来说,网络设备确定终端发送PTRS的PTRS端口数可以如表6所示。
表6
Figure PCTCN2018085601-appb-000024
网络设备确定终端发送PTRS的PTRS端口数之后,根据PTRS端口与DMRS组的关联关系,确定关联了PTRS端口的DMRS组。具体如何确定PTRS端口与DMRS组之间的关联关系,可以有多种方法实现,本申请实施例对此并不限定,在此不再赘述。
每个DMRS组中包括至少一个DMRS端口,且每个DMRS组具体关联的PTRS端口数量根据实际情况确定,下面以一个DMRS组关联了P个PTRS端口为例进行说明,其他情况可以参考此处的描述,在此不再赘述。其中,P等于或大于1且小于或等于Q,Q为与所述P个PTRS端口关联的DMRS端口组中包括的DMRS端口数。
网络设备根据关联准则,确定关联了P个PTRS端口的DMRS组中Q个DMRS端口与P个PTRS端口的关联关系;所述DMRS组内Q个DMRS端口与PTRS端口的关联关系指所述DMRS组内的DMRS端口与所述PTRS端口具有相同的预编码矩阵,包括数字和模拟,例如,确定多个PTRS端口与DMRS组内多个DMRS端口的关联关系。
所述网络设备将所述DMRS组中Q个的DMRS端口与所述P个PTRS端口的关联关系发送给终端
所述关联准则可以为以下任意一项或多项:
若一个DMRS组关联了多个PTRS端口,则按照端口号顺序,将DMRS组中第i个 DMRS端口与所述DMRS组关联的多个PTRS端口中第i个PTRS端口映射,i=1,2,3…;
例如,如图6所示,为本申请实施例提供的一种DMRS端口与PTRS端口的关联关系示意图。图6中,DMRS组中关联了2个PTRS端口,端口号分别为#1和#2,DMRS组中包括2个DMRS端口,端口号分别为#1和#2,此时可以将DMRS组中端口号为#1的DMRS端口与端口号为#1的PTRS端口关联、将DMRS组中端口号为#2的DMRS端口与端口号为#2的PTRS端口关联。
若一个DMRS组关联了一个PTRS端口,则将该PTRS端口映射到DMRS组中端口号最小或最大的DMRS端口上;
例如,如图7所示,为本申请实施例提供的一种DMRS端口与PTRS端口的关联关系示意图。图7中,DMRS组中关联了1个PTRS端口,端口号为#1,DMRS组中包括2个DMRS端口,端口号分别为#1和#2,此时可以将DMRS组中端口号为#1的DMRS端口与该PTRS端口关联。当然,也可以将DMRS组中端口号为#2的DMRS端口与该PTRS端口关联,具体可以如图8所示。
若一个DMRS组关联了一个PTRS端口,则将该PTRS端口映射到DMRS组中信噪比(Signal Noise Ratio,SNR)最大的DMRS端口上。
当然,以上只是示例,关联准则还可以有其他形式,如高层或RRC直接配置,例如RRC可配置一个PTRS端口与一个DMRS组内的DMRS端口的关联关系,在此不再赘述。
网络设备将DMRS端口与PTRS端口的关联关系或门限(MCS门限或调度带宽门限)发送给终端时,可以按照以下任意方式指示:
(1)显示指示:由高层信令或无线资源控制(Radio Resource Control,RRC)信令或者下行控制信息(Downlink Control Information,DCI)或广播或预先定义显示通知给终端DMRS端口与PTRS端口的关联关系,其中该显示通知可以是基于终端的,也可以是基于小区的;指示内容可以是具体的PTRS存在/图案/端口信息,也可以是按约定方法(预先定义或上一次)的调整量;
需要说明的是,网络设备显示指示DMRS端口与PTRS端口的关联关系时,指示的DMRS端口与PTRS端口的关联关系可以是根据关联准则确定出的,也可以是网络设备通过其他方式确定出的,通过这种方式可以使得PTRS端口能够被映射到具有更高信号与干扰加噪声比(Signal to Interference plus Noise Ratio,SINR)的层上,获得更好的跟踪性能。
(2)隐式指示:关联准则可由高层信令或RRC或DCI或广播或预先定义等通知给终端,关联准则限可以是基于终端的,也可以是基于小区的;指示内容可以是关联准则或门限,也可以是按约定方法的调整量;
(3)显示指示加隐式指示:由高层信令或RRC或DCI或广播或预先定义等指示关联准则或门限的基础上,网络侧和终端由调度的MCS,带宽,子载波间隔,MCS与传输块大小序号的映射关系,MCS与调制阶数的映射关系,终端的能力,调度层数和码字数等按隐式关联准则确定PTRS的存在/图案/端口,同时由高层信令或RRC或DCI显示或者隐示配置PTRS存在/图案/端口,该配置内容可以是PTRS存在/图案/端口的调整量。
基于相同的技术构思,本申请实施例还提供一种通信装置,该装置可执行上述方法实施例。
如图9所示,为本申请实施例提供一种通信装置结构示意图。该装置900可以为终端 等设备。
参见图9,该装置900包括:
处理单元901,用于根据调制编码模式MCS、调度带宽中的至少一种确定相位跟踪参考信号PTRS的图案;其中,PTRS的图案包括一个或多个PTRS块,每一个PTRS块包括一个或多个PTRS采样点;
收发单元902,用于将所述PTRS的图案映射到一个或多个符号上,发送给第二设备。
或者,该装置900包括:
处理单元901,用于根据以下之一参数确定所述相位跟踪参考信号PTRS的图案:
符号间的PTRS时域密度,符号内的PTRS块(chunk)密度、PTRS采样点(sample)数量、PTRS块所包含的PTRS的采样点数量、PTRS块chunk在符号内的分布位置;
收发单元902,用于将所述PTRS的图案映射到一个或多个符号上,发送给第二设备。
可选地,所述收发单元902,还用于接收来自所述第二设备的所述用于指示符号内的PTRS块密度和PTRS采样点数量的信息。
可选地,所述处理单元901,还用于根据调制编码模式MCS与符号间的PTRS时域密度的映射关系信息,确定符号间的PTRS时域密度。
可选地,处理单元901,具体用于:
从第一关联准则中确定与所述MCS、调度带宽中的至少一种关联的PTRS块密度、PTRS块中包括的PTRS采样点数量,并将与所述MCS、调度带宽中的至少一种关联的PTRS块密度、PTRS块中包括的PTRS采样点数量确定为所述PTRS的图案的PTRS块密度和PTRS块中包括的PTRS采样点数量;所述第一关联准则为MCS、调度带宽中的至少一种与PTRS块密度、PTRS块中包括的PTRS采样点数量的关联关系。
可选地,所述处理单元901,具体用于:
根据相噪水平、子载波间隔、频点中至少一种,确定所述MCS的门限,和/或调度带宽门限。
可选地,所述收发单元902,还用于向所述第二设备反馈相噪水平、子载波间隔、频点中至少一种。
该通信装置900可以执行的其他内容可以参考前面的描述,在此不再赘述。
应理解,以上各个单元的划分仅仅是一种逻辑功能的划分,实际实现时可以全部或部分集成到一个物理实体上,也可以物理上分开。本申请实施例中,收发单元902可以由收发机实现,处理单元901可以由处理器实现。如图10所示,通信装置1000可以包括处理器1001、收发机1002和存储器1003。其中,存储器1003可以用于存储通信装置1000出厂时预装的程序/代码,也可以存储用于处理器1001执行时的代码等。
基于相同的技术构思,本申请实施例还提供一种通信装置,该装置可执行上述方法实施例。
如图18所示,为本申请实施例提供一种通信装置结构示意图。该装置1800可以为网络设备。
参见图18,该装置1800包括:
处理单元1801,用于接收一个或多个符号,所述一个或多个符号上映射有相位跟踪参考信号PTRS的图案,所述PTRS的图案包括一个或多个PTRS块,每一个PTRS块包括一个或多个PTRS采样点;
处理单元,用于从所述一个或多个符号上确定相位跟踪参考信号PTRS的图案。
可选地,所述处理单元1801,用于根据调制编码模式MCS、调度带宽中的至少一种确定所述相位跟踪参考信号PTRS的图案。
可选地,所述处理单元1801,用于根据至少以下之一参数确定所述相位跟踪参考信号PTRS的图案:
符号间的PTRS时域密度、符号内的PTRS块(chunk)密度、PTRS采样点(sample)数量。
可选地,所述收发单元1802,还用于发送所述符号内的PTRS块密度、PTRS采样点数量。
该通信装置1800可以执行的其他内容可以参考前面的描述,在此不再赘述。
应理解,以上各个单元的划分仅仅是一种逻辑功能的划分,实际实现时可以全部或部分集成到一个物理实体上,也可以物理上分开。本申请实施例中,收发单元902可以由收发机实现,处理单元1801可以由处理器实现。如图10所示,通信装置1000可以包括处理器1001、收发机1002和存储器1003。其中,存储器1003可以用于存储通信装置1000出厂时预装的程序/代码,也可以存储用于处理器1001执行时的代码等。
基于相同的技术构思,本申请实施例还提供一种通信装置,该装置可执行上述方法实施例。
如图11所示,为本申请实施例提供一种通信装置结构示意图。
参见图11,该装置1100包括:处理器1101、收发机1102和存储器1103。其中,存储器1103可以用于存储通信装置1100出厂时预装的程序/代码,也可以存储用于处理器1101执行时的代码等。
处理器1101,用于根据关联准则,确定关联了P个PTRS端口的DMRS组中Q个DMRS端口与所述P个PTRS端口的关联关系;其中,P等于或大于1且小于或等于Q,Q为与所述P个PTRS端口关联的DMRS端口组中包括的DMRS端口数;
收发机1102,用于将所述DMRS组中Q个的DMRS端口与所述P个PTRS端口的关联关系发送给终端。
可选的,所述关联准则为以下任意一项或多项:
若一个DMRS组关联了多个PTRS端口,则按照端口号顺序,将DMRS组中第i个DMRS端口与所述DMRS组关联的多个PTRS端口中第i个PTRS端口映射,i=1,2,3…;
若一个DMRS组关联了一个PTRS端口,则将该PTRS端口映射到DMRS组中端口号最小或最大的DMRS端口上;
若一个DMRS组关联了一个PTRS端口,则将该PTRS端口映射到DMRS组中信噪比最大的DMRS端口上。
可选的,所述DMRS组内Q个DMRS端口与PTRS端口的关联关系指所述DMRS组内的DMRS端口与所述PTRS端口具有相同的预编码矩阵。
可选的,收发机1102还用于:
获取PTRS端口配置参考信息,所述PTRS端口配置参考信息包括以下至少一种:终端的共享本振信息或终端在满配PTRS端口时的每个PTRS端口上测量的公共相位误差、DMRS组数,所述终端的调度层数、最大PTRS端口数;
处理器1101还用于根据所述PTRS端口配置参考信息确定终端发送PTRS的PTRS端 口数。
可选的,所述处理器1101具体用于:
若根据所述终端的共享本振信息确定所述终端的多个中射频链路不共享一个晶振单元,且确定所述终端的调度层数小于或等于所述最大PTRS端口数,则将为所述终端调度的层数确定为所述PTRS端口数;
若根据所述终端的共享本振信息确定所述终端的多个中射频链路不共享一个晶振单元,且确定为所述终端调度的层数大于所述最大PTRS端口数,则将所述最大PTRS端口数确定所述PTRS端口数;
若根据所述终端的共享本振信息确定所述终端的多个中射频链路共享一个晶振单元,则确定出的所述PTRS端口数大于或大于1且小于或等于DMRS组数。
基于相同的技术构思,本申请实施例还提供一种通信装置,该装置可执行上述方法实施例。
如图12所示,为本申请实施例提供一种通信装置结构示意图。
参见图12,该装置1200包括:
处理单元1201,用于根据关联准则,确定关联了P个PTRS端口的DMRS组中Q个DMRS端口与所述P个PTRS端口的关联关系;其中,P等于或大于1且小于或等于Q,Q为与所述P个PTRS端口关联的DMRS端口组中包括的DMRS端口数;
收发单元1202,用于将所述DMRS组中Q个的DMRS端口与所述P个PTRS端口的关联关系发送给终端。
可选的,所述关联准则为以下任意一项或多项:
若一个DMRS组关联了多个PTRS端口,则按照端口号顺序,将DMRS组中第i个DMRS端口与所述DMRS组关联的多个PTRS端口中第i个PTRS端口映射,i=1,2,3…;
若一个DMRS组关联了一个PTRS端口,则将该PTRS端口映射到DMRS组中端口号最小或最大的DMRS端口上;
若一个DMRS组关联了一个PTRS端口,则将该PTRS端口映射到DMRS组中信噪比最大的DMRS端口上。
可选的,所述DMRS组内Q个DMRS端口与PTRS端口的关联关系指所述DMRS组内的DMRS端口与所述PTRS端口具有相同的预编码矩阵。
可选的,收发单元1202还用于:
获取PTRS端口配置参考信息,所述PTRS端口配置参考信息包括以下至少一种:终端的共享本振信息或终端在满配PTRS端口时的每个PTRS端口上测量的公共相位误差、DMRS组数,所述终端的调度层数、最大PTRS端口数;
处理单元1201还用于根据所述PTRS端口配置参考信息确定终端发送PTRS的PTRS端口数。
可选的,所述处理单元1201具体用于:
若根据所述终端的共享本振信息确定所述终端的多个中射频链路不共享一个晶振单元,且确定所述终端的调度层数小于或等于所述最大PTRS端口数,则将为所述终端调度的层数确定为所述PTRS端口数;
若根据所述终端的共享本振信息确定所述终端的多个中射频链路不共享一个晶振单元,且确定为所述终端调度的层数大于所述最大PTRS端口数,则将所述最大PTRS端口 数确定所述PTRS端口数;
若根据所述终端的共享本振信息确定所述终端的多个中射频链路共享一个晶振单元,则确定出的所述PTRS端口数大于或大于1且小于或等于DMRS组数。
本申请实施例还提供了一种计算机可读存储介质,用于存储为执行上述处理器所需执行的计算机软件指令,其包含用于执行上述处理器所需执行的程序。
本领域内的技术人员应明白,本申请的实施例可提供为方法、***、或计算机程序产品。因此,本申请可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本申请可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、光学存储器等)上实施的计算机程序产品的形式。
本申请是参照根据本申请的方法、设备(***)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的精神和范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (63)

  1. 一种通信方法,其特征在于,所述方法包括:
    第一设备确定相位跟踪参考信号PTRS的图案,其中,PTRS的图案包括一个或多个PTRS块,每一个PTRS块包括一个或多个PTRS采样点;
    所述第一设备将所述PTRS的图案映射到一个或多个符号上,发送给第二设备。
  2. 根据权利要求1所述的方法,其特征在于,第一设备确定相位跟踪参考信号PTRS的图案,具体包括:
    第一设备根据调制编码模式MCS、调度带宽中的至少一种确定所述相位跟踪参考信号PTRS的图案。
  3. 根据权利要求1所述的方法,其特征在于,第一设备确定相位跟踪参考信号PTRS的图案,具体包括:
    第一设备根据至少之一以下参数确定所述相位跟踪参考信号PTRS的图案:
    符号间的PTRS时域密度、符号内的PTRS块密度、PTRS采样点数量。
  4. 根据权利要求1所述的方法,其特征在于,第一设备确定相位跟踪参考信号PTRS的图案,具体包括:
    第一设备根据至少之一以下参数确定所述相位跟踪参考信号PTRS的图案:
    符号间的PTRS时域密度,符号内的PTRS块密度、PTRS采样点数量、PTRS块在符号内的分布位置。
  5. 根据权利要求3或4所述的方法,所述方法之前还包括:
    接收来自所述第二设备的所述符号内的PTRS块密度的指示信息和所述PTRS采样点数量的指示信息。
  6. 根据权利要去3~5任意一项所述的方法,其特征在于,所述方法还包括:
    根据调制编码模式MCS与所述符号间的PTRS时域密度的映射关系信息,确定所述符号间的PTRS时域密度。
  7. 根据权利要求2所述的方法,其特征在于,第一设备根据调制编码模式MCS、调度带宽中的至少一种确定相位跟踪参考信号PTRS的图案,包括:
    所述第一设备从第一关联准则中确定与所述MCS、调度带宽中的至少一种关联的PTRS块密度、PTRS块中包括的PTRS采样点数量,并将与所述MCS、调度带宽中的至少一种关联的PTRS块密度、PTRS块中包括的PTRS采样点数量确定为所述PTRS的图案的PTRS块密度和PTRS块中包括的PTRS采样点数量;所述第一关联准则为MCS、调度带宽中的至少一种与PTRS块密度、PTRS块中包括的PTRS采样点数量的关联关系。
  8. 根据权利要求1~7任意一项所述的方法,其特征在于,所述第一设备将所述PTRS的图案映射到一个或多个符号上,发送给第二设备,包括:
    所述第一设备将所述PTRS的图案映射到采用单载波调制的一个或多个符号上,并发送给第二设备。
  9. 根据权利要求8所述的方法,其特征在于,所述单载波调制的一个或多个符号是离散傅里叶变换扩展正交频分复用DFT-S-OFDM。
  10. 根据权利要求1至9任一所述的方法,其特征在于,当调度带宽位于第一调度带宽区间,且调制编码模式位于第一调制编码模式区间时,不发送所述PTRS的图案。
  11. 根据权利要求1至10任一所述的方法,其特征在于,所述第一设备是终端。
  12. 根据权利要求1所述的方法,其特征在于,第一设备根据调制编码模式MCS、调度带宽中的至少一种确定相位跟踪参考信号PTRS的图案之前,所述方法还包括:
    第一设备根据相噪水平、子载波间隔、频点中至少一种,确定所述MCS的门限,和/或调度带宽门限。
  13. 根据权利要求1或12所述的方法,其特征在于,第一设备根据调制编码模式MCS、调度带宽中的至少一种确定相位跟踪参考信号PTRS的图案之前,所述方法还包括:
    所述第一设备向所述第二设备反馈相噪水平、子载波间隔、频点中至少一种。
  14. 根据权利要求1至13任一所述的方法,其特征在于,所述PTRS块的数量为1、2或4;所述PTRS采样点的数量为1、2、4或8。
  15. 一种通信装置,其特征在于,包括处理单元和收发单元,其中,
    所述处理单元,用于确定相位跟踪参考信号PTRS的图案pattern;其中,所述PTRS的pattern包括一个或多个PTRS块chunk,每一个所述PTRS chunk包括一个或多个PTRS采样点sample;
    所述收发单元,用于将所述PTRS的图案映射到一个或多个符号上,发送给网络设备。
  16. 根据权利要求15所述的装置,其特征在于,所述处理单元,具体用于:
    根据调制编码模式MCS、调度带宽中的至少一种确定所述相位跟踪参考信号PTRS的图案。
  17. 根据权利要求15所述的装置,其特征在于,所述处理单元,具体用于:
    根据至少以下之一参数确定所述相位跟踪参考信号PTRS的图案:
    符号间的PTRS时域密度、符号内的PTRS块密度、PTRS采样点数量。
  18. 根据权利要求15所述的装置,其特征在于,所述处理单元,具体用于:
    根据至少以下之一参数确定所述相位跟踪参考信号PTRS的图案:
    符号间的PTRS时域密度,符号内的PTRS块密度、PTRS采样点数量、PTRS块chunk在符号内的分布位置。
  19. 根据权利要求17或18所述的装置,其特征在于,所述收发单元,还用于接收来自所述第二设备的所述用于指示符号内的PTRS块密度和PTRS采样点数量的信息。
  20. 根据权利要求17~19任意一项所述的装置,其特征在于,所述处理单元,还用于根据调制编码模式MCS与符号间的PTRS时域密度的映射关系信息,确定符号间的PTRS时域密度。
  21. 根据权利要求16所述的装置,其特征在于,处理单元,具体用于:
    从第一关联准则中确定与所述MCS、调度带宽中的至少一种关联的PTRS块密度、PTRS块中包括的PTRS采样点数量,并将与所述MCS、调度带宽中的至少一种关联的PTRS块密度、PTRS块中包括的PTRS采样点数量确定为所述PTRS的图案的PTRS块密度和PTRS块中包括的PTRS采样点数量;所述第一关联准则为MCS、调度带宽中的至少一种与PTRS块密度、PTRS块中包括的PTRS采样点数量的关联关系。
  22. 根据权利要求15~21任意一项所述的装置,其特征在于,所述符号为离散傅里叶变换扩展正交频分复用DFT-S-OFDM。
  23. 根据权利要求16或21所述的装置,其特征在于,所述处理单元,具体用于:
    根据相噪水平、子载波间隔、频点中至少一种,确定所述MCS的门限,和/或调度带 宽门限。
  24. 根据权利要求16或21或23任意一项所述的装置,其特征在于,所述收发单元,还用于向所述第二设备反馈相噪水平、子载波间隔、频点中至少一种。
  25. 一种通信方法,其特征在于,所述方法包括:
    接收一个或多个符号,所述一个或多个符号上映射有相位跟踪参考信号PTRS的图案,所述PTRS的图案包括一个或多个PTRS块,每一个PTRS块包括一个或多个PTRS采样点;
    从所述一个或多个符号上确定相位跟踪参考信号PTRS的图案。
  26. 根据权利要求25所述的方法,其特征在于,所述从所述一个或多个符号上确定相位跟踪参考信号PTRS的图案,具体包括:
    根据调制编码模式MCS、调度带宽中的至少一种确定所述相位跟踪参考信号PTRS的图案。
  27. 根据权利要求25所述的方法,其特征在于,所述从所述一个或多个符号上确定相位跟踪参考信号PTRS的图案,具体包括:
    根据至少以下之一参数确定所述相位跟踪参考信号PTRS的图案:
    符号间的PTRS时域密度、符号内的PTRS块密度、PTRS采样点数量。
  28. 根据权利要求25所述的方法,其特征在于,所述从所述一个或多个符号上确定相位跟踪参考信号PTRS的图案,具体包括:
    根据至少以下之一参数确定所述相位跟踪参考信号PTRS的图案:
    符号间的PTRS时域密度,符号内的PTRS块密度、PTRS采样点数量、PTRS块chunk在符号内的分布位置。
  29. 根据权利要求27所述的方法,其特征在于,所述方法还包括:
    发送所述符号内的PTRS块密度的指示信息、PTRS采样点数量的指示信息。
  30. 根据权利要求28所述的方法,其特征在于,所述方法还包括:
    发送所述符号内的PTRS块密度的指示信息、PTRS采样点数量块的指示信息以及PTRS块在符号内的分布位置的指示信息。
  31. 根据权利要求25~30任意一项所述的方法,其特征在于,所述一个或多个符号为离散傅里叶变换扩展正交频分复用DFT-S-OFDM符号。
  32. 根据权利要求26所述的方法,其特征在于,所述方法还包括:
    根据相噪水平、子载波间隔、频点中至少一种,确定所述MCS的门限,和/或调度带宽门限。
  33. 根据权利要求26或32所述的方法,其特征在于,所述方法还包括:
    从终端设备接收相噪水平、子载波间隔、频点中至少一种。
  34. 根据权利要求25至33任一所述的方法,其特征在于,所述PTRS块的数量为1、2或4;所述PTRS采样点的数量为1、2、4或8。
  35. 一种通信装置,其特征在于,包括:
    收发单元,用于接收一个或多个符号,所述一个或多个符号上映射有相位跟踪参考信号PTRS的图案,所述PTRS的图案包括一个或多个PTRS块,每一个PTRS块包括一个或多个PTRS采样点;
    处理单元,用于从所述一个或多个符号上确定相位跟踪参考信号PTRS的图案。
  36. 根据权利要去35所述的通信装置,其特征在于,所述处理单元,用于根据调制编码模式MCS、调度带宽中的至少一种确定所述相位跟踪参考信号PTRS的图案。
  37. 根据权利要求35所述的通信装置,其特征在于,所述处理单元,用于根据至少以下之一参数确定所述相位跟踪参考信号PTRS的图案:
    符号间的PTRS时域密度、符号内的PTRS块密度、PTRS采样点数量。
  38. 根据权利要求35所述的通信装置,其特征在于,所述处理单元,用于至少以下之一参数确定所述相位跟踪参考信号PTRS的图案:
    符号间的PTRS时域密度,符号内的PTRS块密度、PTRS采样点数量、PTRS块在符号内的分布位置。
  39. 根据权利要求37所述的通信装置,其特征在于,所述收发单元,还用于发送所述符号内的PTRS块密度的指示信息、PTRS采样点数量的指示信息。
  40. 根据权利要求38所述的通信装置,其特征在于,所述收发单元,还用于发送所述符号内的PTRS块密度的指示信息、PTRS采样点数量的指示信息以及PTRS块在符号内的分布位置的指示信息。
  41. 根据权利要求35~40任意一项所述的通信装置,其特征在于,所述一个或多个符号为离散傅里叶变换扩展正交频分复用DFT-S-OFDM符号。
  42. 根据权利要求36所述的通信装置,其特征在于,所述处理单元,具体用于:
    根据相噪水平、子载波间隔、频点中至少一种,确定所述MCS的门限,和/或调度带宽门限。
  43. 根据权利要求36或42所述的通信装置,其特征在于,所述收发单元,还用于从终端设备接收相噪水平、子载波间隔、频点中至少一种。
  44. 一种通信方法,其特征在于,所述方法包括:
    第一设备根据以下一种或多种信息确定相位跟踪参考信号PTRS的图案:符号间的PTRS时域密度、符号内的PTRS块密度、PTRS采样点的数量、PTRS块在符号内的分布位置;
    所述第一设备将所述PTRS的图案映射到一个或多个符号,发送第二设备。
  45. 根据权44所述的方法,其特征在于,所述PTRS的块密度为1、2、4或8;所述PTRS采样点的数量为1、2、4或8。
  46. 根据权44所述的方法,其特征在于,所述PTRS块在符号中的分布位置由所述PTRS块密度和/或所述PTRS采样点数量指示。
  47. 根据权44所述的方法,其特征在于,当所述PTRS块密度为2时,两个PTRS块分布在符号的两端。
  48. 根据权44所述的方法,其特征在于,当所述PTRS块密度为2时,两个PTRS块分别位于符号的前端和所述符号的中间,并且添加一个时间偏移。
  49. 根据权44所述的方法,其特征在于,当所述PTRS块密度为2时,两个PTRS块平均分布在第一个符号和最后一个符号上。
  50. 如权利要求44-49任意一项所述的方法,其特征在于:
    所述符号间的PTRS时域密度是指每几个符号中有一个符号映射PTRS;
    所述符号内的PTRS块密度是指一个符号内包括PTRS块的数量;
    所述PTRS采样点的数量是指一个PTRS块包括采样点的数量;
    所述PTRS块在符号内的分布位置是指PTRS块在一个符号内的映射位置信息。
  51. 一种通信方法,其特征在于,所述方法包括:
    所述第二设备接收第一设备发送的一个或多个符号;
    第二设备根据以下一种或多种信息从接收的一个或多个符号中获取相位跟踪参考信号PTRS的图案:符号间的PTRS时域密度、符号内的PTRS块密度、PTRS采样点的数量、PTRS块在符号内的分布位置。
  52. 根据权51所述的方法,其特征在于,所述PTRS的块密度为1、2、4或8;所述PTRS采样点的数量为1、2、4或8。
  53. 根据权51所述的方法,其特征在于,所述PTRS块在符号中的分布位置由所述PTRS块密度和/或所述PTRS采样点数量指示。
  54. 根据权51所述的方法,其特征在于,当所述PTRS块密度为2时,两个PTRS块分布在符号的两端。
  55. 根据权51所述的方法,其特征在于,当所述PTRS块密度为2时,两个PTRS块分别位于符号的前端和所述符号的中间,并且添加一个时间偏移。
  56. 根据权51所述的方法,其特征在于,当所述PTRS块密度为2时,两个PTRS块平均分布在第一个符号和最后一个符号上。
  57. 如权利要求51-56任意一项所述的方法,其特征在于:
    所述符号间的PTRS时域密度是指每几个符号中有一个符号映射PTRS;
    所述符号内的PTRS块密度是指一个符号内包括PTRS块的数量;
    所述PTRS采样点的数量是指一个PTRS块包括采样点的数量;
    所述PTRS块在符号内的分布位置是指PTRS块在一个符号内的映射位置信息。
  58. 一种通信装置,其特征在于,包括:
    处理模块:用于根据以下一种或多种信息确定相位跟踪参考信号PTRS的图案:符号间的PTRS时域密度、符号内的PTRS块密度、PTRS采样点的数量、PTRS块在符号内的分布位置;
    收发模块:用于将所述PTRS的图案映射到一个或多个符号并发送。
  59. 一种通信装置,其特征在于,所述方法包括:
    收发模块:用于接收一个或多个符号;
    处理模块:用于根据以下一种或多种信息从接收的一个或多个符号中获取相位跟踪参考信号PTRS的图案:符号间的PTRS时域密度、符号内的PTRS块密度、PTRS采样点的数量、PTRS块在符号内的分布位置。
  60. 一种通信方法,应用于多载波场景,其特征在于:
    第一设备根据调制编码方式MCS确定相位跟踪参考信号PTRS的时域密度;
    根据调度带宽确定PTRS的频域密度;
    所述第一设备将所述PTRS映射到一个或多个符号和/或一个或多个子载波上,发送给第二设备;其中,当所述PTRS的子载波与其他参考信号RS或直流子载波冲突时,在冲突的子载波上不映射PTRS,或通过PTRS的频率偏移量,避开冲突。
  61. 根据权利要求60所述的方法,其特征在于,当第一设备为终端设备,第二设备为网络设备时;
    在该方法之前,第一设备发送最大PTRS端口数给第二设备;
    接收第二指示信息,其中第二指示信息用于指示PTRS端口关联的DMRS端口号;和/或所述第二指示信息用于指示一个PTRS端口关联的多个DMRS端口组中DMRS端口号。
  62. 一种通信装置,应用于多载波场景,其特征在于:
    处理模块:用于根据调制编码方式MCS确定相位跟踪参考信号PTRS的时域密度,以及根据调度带宽确定PTRS的频域密度;
    收发模块:用于将所述PTRS映射到一个或多个符号和/或一个或多个子载波上并发送;其中,当所述PTRS的子载波与其他参考信号RS或直流子载波冲突时,在冲突的子载波上不映射PTRS,或通过PTRS的频率偏移量,避开冲突。
  63. 根据权利要求62所述的装置,其中,所述收发模块还用于:
    发送最大PTRS端口数给第二设备;
    接收第二指示信息,其中第二指示信息用于指示PTRS端口关联的DMRS端口号;和/或所述第二指示信息用于指示一个PTRS端口关联的多个DMRS端口组中DMRS端口号。
PCT/CN2018/085601 2017-05-05 2018-05-04 一种通信方法及装置 WO2018202128A1 (zh)

Priority Applications (9)

Application Number Priority Date Filing Date Title
JP2019560672A JP6987154B2 (ja) 2017-05-05 2018-05-04 通信方法および通信装置
EP18794555.5A EP3621235B1 (en) 2017-05-05 2018-05-04 Communication method and device
BR112019023206-0A BR112019023206B1 (pt) 2017-05-05 2018-05-04 Métodos de comunicação e aparelhos de comunicação
EP21169062.3A EP3917057B1 (en) 2017-05-05 2018-05-04 Communication method and communications apparatus
PL18794555T PL3621235T3 (pl) 2017-05-05 2018-05-04 Sposób i urządzenie do komunikacji
CN201880028750.6A CN110679109B (zh) 2017-05-05 2018-05-04 一种通信方法及装置
CA3062381A CA3062381C (en) 2017-05-05 2018-05-04 Communication method and communications apparatus
US16/674,261 US11201764B2 (en) 2017-05-05 2019-11-05 Communication method and communications apparatus
US17/490,907 US11616665B2 (en) 2017-05-05 2021-09-30 Communication method and communications apparatus

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201710313932 2017-05-05
CN201710313932.5 2017-05-05
CN201710620155.9 2017-07-26
CN201710620155.9A CN108809598B (zh) 2017-05-05 2017-07-26 一种通信方法及装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/674,261 Continuation US11201764B2 (en) 2017-05-05 2019-11-05 Communication method and communications apparatus

Publications (1)

Publication Number Publication Date
WO2018202128A1 true WO2018202128A1 (zh) 2018-11-08

Family

ID=64016430

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/085601 WO2018202128A1 (zh) 2017-05-05 2018-05-04 一种通信方法及装置

Country Status (1)

Country Link
WO (1) WO2018202128A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022241711A1 (en) * 2021-05-20 2022-11-24 Huawei Technologies Co., Ltd. Methods and apparatus for using a phase tracking reference signal with a single carrier waveform

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104980247A (zh) * 2014-04-04 2015-10-14 北京三星通信技术研究有限公司 自适应调整调制编码方式和参考信号图样的方法、基站、终端和***
CN105144817A (zh) * 2013-03-28 2015-12-09 夏普株式会社 用于解调参考信号选择的***和方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105144817A (zh) * 2013-03-28 2015-12-09 夏普株式会社 用于解调参考信号选择的***和方法
CN104980247A (zh) * 2014-04-04 2015-10-14 北京三星通信技术研究有限公司 自适应调整调制编码方式和参考信号图样的方法、基站、终端和***

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
HUAWEI: "PTRS for DFT-s-OFDM", 3GPPP TSG RAN WG1 AD HOC MEETING RL-1709940, 17 June 2017 (2017-06-17), XP051304680 *
HUAWEI: "PTRS for DFT-s-OFDM; Rl-1708142", 3GPPP TSG RAN WG1 MEETING #89, 14 May 2017 (2017-05-14), XP051273338 *
See also references of EP3621235A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022241711A1 (en) * 2021-05-20 2022-11-24 Huawei Technologies Co., Ltd. Methods and apparatus for using a phase tracking reference signal with a single carrier waveform

Similar Documents

Publication Publication Date Title
CN110679109B (zh) 一种通信方法及装置
US20230239098A1 (en) Joint resource map design of dm-rs and pt-rs
CN110622454B (zh) 无线通信的方法和装置
RU2507688C2 (ru) Обратная связь о качестве канала в системах с многими несущими
WO2020220330A1 (zh) 无线通信的方法、终端设备和网络设备
US20140219237A1 (en) Method and Apparatus for Establishing a Time-Frequency Reference Signal Pattern Configuration in a Carrier Extension or Carrier Segment
WO2018082544A1 (zh) 无线通信的方法和装置
CN110870242A (zh) 用于相位跟踪参考信号设计的方法和装置
KR102321036B1 (ko) 유저단말 및 무선 통신 방법
JP7096156B2 (ja) 端末、無線通信方法及びシステム
WO2018033148A1 (en) A method to transmit channel state information reference signals in large mimo systems
WO2020238808A1 (zh) 一种信息上报的方法及装置
JPWO2019225685A1 (ja) ユーザ端末及び無線通信方法
CN115715456A (zh) 用于上行链路发送波束选择的方法和装置
CN114826524B (zh) 混合自动重传请求确认harq-ack资源确定方法
WO2018202128A1 (zh) 一种通信方法及装置
WO2022228117A1 (zh) 一种确定ptrs图案的方法和装置
CN114902774A (zh) 一种确定参考信号的方法及装置
WO2021227849A1 (zh) 通信方法和通信装置
CN118282597A (zh) 无线通信***中的装置及由其执行方法
CN117641566A (zh) 一种基于旁路的定位方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18794555

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3062381

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 2019560672

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112019023206

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 2018794555

Country of ref document: EP

Effective date: 20191202

ENP Entry into the national phase

Ref document number: 112019023206

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20191105