WO2018228099A1 - 一种多核-单壳结构凝胶聚合物涂覆隔膜及其制备方法与应用 - Google Patents

一种多核-单壳结构凝胶聚合物涂覆隔膜及其制备方法与应用 Download PDF

Info

Publication number
WO2018228099A1
WO2018228099A1 PCT/CN2018/086432 CN2018086432W WO2018228099A1 WO 2018228099 A1 WO2018228099 A1 WO 2018228099A1 CN 2018086432 W CN2018086432 W CN 2018086432W WO 2018228099 A1 WO2018228099 A1 WO 2018228099A1
Authority
WO
WIPO (PCT)
Prior art keywords
weight
parts
core
gel polymer
shell structure
Prior art date
Application number
PCT/CN2018/086432
Other languages
English (en)
French (fr)
Inventor
廖柳辉
曹江
杨雪梅
谭斌
陈良
Original Assignee
深圳市星源材质科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市星源材质科技股份有限公司 filed Critical 深圳市星源材质科技股份有限公司
Priority to PL18793160.5T priority Critical patent/PL3496184T3/pl
Priority to JP2018557138A priority patent/JP6814816B2/ja
Priority to FIEP18793160.5T priority patent/FI3496184T3/fi
Priority to DK18793160.5T priority patent/DK3496184T3/da
Priority to EP18793160.5A priority patent/EP3496184B1/en
Priority to KR1020187031544A priority patent/KR102197146B1/ko
Publication of WO2018228099A1 publication Critical patent/WO2018228099A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/46Separators, membranes or diaphragms characterised by their combination with electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/44Fibrous material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • H01M50/451Separators, membranes or diaphragms characterised by the material having a layered structure comprising layers of only organic material and layers containing inorganic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/403Manufacturing processes of separators, membranes or diaphragms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/005Reinforced macromolecular compounds with nanosized materials, e.g. nanoparticles, nanofibres, nanotubes, nanowires, nanorods or nanolayered materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/60Selection of substances as active materials, active masses, active liquids of organic compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/42Acrylic resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/431Inorganic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/431Inorganic material
    • H01M50/434Ceramics
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/443Particulate material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/446Composite material consisting of a mixture of organic and inorganic materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • H01M50/457Separators, membranes or diaphragms characterised by the material having a layered structure comprising three or more layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • H01M50/491Porosity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • H01M50/497Ionic conductivity
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the invention designs the field of lithium ion batteries, in particular to a multi-core-single shell structure gel polymer coated membrane and a preparation method and application thereof.
  • Lithium-ion batteries are attracting more and more attention due to their high energy density, high operating voltage, long cycle life and low self-discharge rate, and their application range is gradually expanding.
  • the diaphragm is one of the key inner layer components, isolating the positive and negative electrodes, preventing short circuits, and has the basic function of providing lithium ion conduction holes.
  • the traditional lithium ion battery separator adopts a polyolefin diaphragm, which can only realize the basic functions of the lithium battery separator, and is difficult to meet the technical requirements of the new generation lithium ion battery.
  • the main solution is to apply a functional coating on the surface of the polyolefin separator, mainly ceramic coating, polymer. Coating, etc.
  • the ceramic coated diaphragm improves the heat shrinkage and wettability of the separator to a certain extent, thereby improving the cycle life and safety performance of the lithium ion battery, but the electrolyte in the ceramic coated diaphragm is liquid, causing leakage The safety issue is inevitable and the battery hardness is not improved.
  • the polymer-coated separator has the property of absorbing electrolyte gel, the battery internal resistance is too large, which affects battery performance, and the rate and cycle life are reduced.
  • composite coated separators obtained by blending polymers and ceramic powders, but all of them affect the performance of the battery due to poor interfacial properties of the composite coating.
  • One of the objects of the present invention is to provide a multi-core-single-shell structured gel polymer coated separator having high ionic conductivity, high dielectric constant, and excellent battery performance.
  • a second object of the present invention is to provide a method for preparing a multi-core-single-shell structure gel polymer in the above-mentioned multi-core-single-shell gel polymer coated separator, which is advantageous for improving the stability strength of the finished coating film, Comprehensive properties such as flame retardancy, surface strength and toughness.
  • a third object of the present invention is to provide a multi-core-single-shell structure gel polymer prepared by the above-mentioned preparation method of a multi-core-single-shell structure gel polymer, which is advantageous for improving polynuclear-single shell structure gel polymerization.
  • the properties of the coated membrane are advantageous for improving polynuclear-single shell structure gel polymerization.
  • a fourth object of the present invention is to provide a method for preparing the above-mentioned multi-core-single-shell structure gel polymer coated separator, which is simple and practical, and the finished product thus obtained is of good quality.
  • a fifth object of the present invention is to provide an application of the above-described multi-core-single-shell structure gel polymer coated separator, for example, which can be used in a lithium ion battery, including a polymer lithium ion battery for preparing a gel state. It can improve the manufacturing efficiency, safety and consistency of the battery.
  • the present invention can adopt the following technical solutions:
  • the invention provides a multi-core-single-shell gel polymer coated membrane comprising a base film and a multi-core-single-shell structured gel polymer coating on one or both sides, the above-mentioned multi-core-single shell structure gel polymerization
  • the composition consists of 60-70 parts by weight of highly elastic nanoparticles, 20-30 parts by weight of inorganic nanoparticles, 20-40 parts by weight of polymethyl methacrylate, 70-80 parts by weight of acrylonitrile.
  • the above polynuclear-single shell structure gel polymer is composed of the following raw materials: 68-70 parts by weight of highly elastic nanoparticles, 25-30 parts by weight of inorganic nanoparticles, 30-40 parts by weight of polymethyl group Methyl acrylate, 72-79 parts by weight of acrylonitrile, 0.9-1 part by weight of dicumyl peroxide, 4-5 parts by weight of allyl polyethylene glycol, 0.6-1 part by weight of methyltriethyl Oxysilane, 2.5-3 parts by weight of phosphorus tetramethylolsulfate, 0.8-1 parts by weight of 2-thiolbenzimidazole, 2.5-3 parts by weight of glyceryl tristearate, 1.5-2 parts by weight 2,2-Dimethylolpropionic acid, 0.6-0.9 parts by weight of zinc pyrithione, 0.8-0.9 parts by weight of ethoxylated alkyl ammonium sulfate, 3.5-4 parts by weight of hydroxy
  • the above polynuclear-single shell structure gel polymer is composed of the following raw materials: 70 parts by weight of highly elastic nanoparticles, 30 parts by weight of inorganic nanoparticles, 40 parts by weight of polymethyl methacrylate, 72 weights A portion of acrylonitrile, 0.95 parts by weight of dicumyl peroxide, 4 parts by weight of allyl polyethylene glycol, 0.8 parts by weight of methyltriethoxysilane, and 2.8 parts by weight of phosphorus tetramethylol sulfate 0.9 parts by weight of 2-thiolbenzimidazole, 2.8 parts by weight of glyceryl tristearate, 1.8 parts by weight of 2,2-dimethylolpropionic acid, 0.6 parts by weight of zinc pyrithione, 0.85 Parts by weight of ethoxylated alkyl ammonium sulfate, 3.8 parts by weight of hydroxyethyl cellulose and 1.8 parts by weight of fatty alcohol polyoxyethylene
  • the high elastic nanoparticles are nitrile-polyvinyl chloride composite elastomer, vulcanized rubber, polyurethane elastomer, nitrile rubber, styrene butadiene rubber, fluoroelastomer, polyester-polyether, butadiene rubber and silicon. Any one of or all of the oxyalkylenes.
  • the inorganic nanoparticles are any one of or consist of nano-silica, nano-alumina, nano-barium titanate, nano-titanium oxide, nano-barium sulfate, nano-montmorillonite, nano-calcium carbonate and nano-zirconia. Composition of at least two substances.
  • the base film is a polypropylene porous film, a polyethylene porous film, a polypropylene-polyethylene-polypropylene three-layer composite porous film, a single-sided ceramic coated separator, a double-sided ceramic coated separator, and a non-woven membrane. Any one of or consists of at least two of them.
  • the base film has a thickness of 5 to 50 ⁇ m; preferably, the above thickness is 15 to 40 ⁇ m; more preferably, the above thickness is 25 to 30 ⁇ m.
  • the base film has a porosity of 20% to 70%; preferably, the above porosity is 30% to 60%; more preferably, the above porosity is 40 to 50%.
  • the base film has an average pore diameter of 10 to 1000 nm; preferably, the above average pore diameter is 100 to 800 nm; more preferably, the above average pore diameter is 400 to 500 nm.
  • the invention also provides a preparation method of the multi-core-single-shell structure gel polymer in the above multi-core-single-shell gel polymer coated membrane, comprising the following steps:
  • 2,2-dimethylolpropionic acid is added, added to deionized water, stirred uniformly, inorganic nanoparticles are added, stirred while stirring, filtered, and dried at room temperature to obtain carboxyl nanoparticles.
  • the weight ratio of 2,2-dimethylolpropionic acid to deionized water is (1:20)-(1:30).
  • the temperature of the agitation stirring is 65-70 ° C.
  • the incubation time is 40-50 minutes.
  • the weight ratio of tetramethylolsulfate to deionized water is (1:41)-(1:50).
  • the temperature after the temperature rise is 80-85 ° C.
  • the time of the agitation stirring is 10-22 minutes.
  • 2-thiolbenzimidazole is added, added to absolute ethanol, stirred uniformly, mixed with the fiber dispersion, sent to the reaction kettle, kept under stirring, discharged, mixed with zinc pyrithione, and stirred.
  • an esterified dispersion is obtained.
  • the weight ratio of 2-thiol phenylimidazole to absolute ethanol during the preparation of the above esterification dispersion is (1:5)-(1:8).
  • the temperature of the agitation stirring is 90-95 °C.
  • the incubation time is 1-2 hours.
  • allyl polyethylene glycol is added, methyltriethoxysilane is added, stirred while stirring, mixed with the carboxyl nanoparticle, and stirred uniformly to obtain a silanol dispersion.
  • the allyl polyethylene glycol is incubated at 60-80 ° C for 16-20 minutes before the addition of methyltriethoxysilane.
  • the incubation time is 4-10 minutes.
  • the ultrasonic step is further included after stirring uniformly; alternatively, the ultrasonic time is 10-15 minutes.
  • acrylonitrile is taken, added to the silanol dispersion, stirred uniformly, dicumyl peroxide is added, sent to the reaction vessel, nitrogen gas is introduced, the mixture is stirred, discharged, and mixed with the esterification dispersion. Stirring to normal temperature gave a silane polymer solution.
  • the temperature of the agitation stirring is 75-80 ° C.
  • the incubation time is 1-2 hours.
  • a silane polymer solution is taken, mixed with highly elastic nanoparticles, polymethyl methacrylate, glyceryl tristearate, and stirred, ie, a multi-core-single-shell structured gel polymer.
  • the stirring speed is 300-400 rpm.
  • the stirring time is 20-30 minutes.
  • the present invention also provides a polynuclear-single shell structure gel polymer prepared by the above-described method for preparing a multinuclear-single shell structure gel polymer.
  • the invention also provides a preparation method for the above-mentioned multi-core-single-shell structure gel polymer coated separator, comprising the steps of: coating a multi-core-single-shell structure gel polymer on one side or both sides of a base film, Then drying; optionally, drying is performed by hot air drying.
  • the above coating speed is 0.5 to 40 m/min; preferably, the above coating speed is 10 to 30 m/min; more preferably, the above coating speed is 15 to 25 m/min.
  • the hot air drying temperature is 30-80 ° C; preferably, the hot air drying temperature is 40-70 ° C; more preferably, the hot air drying temperature is 50-60 ° C.
  • the above coating thickness is from 0.5 to 5 ⁇ m; preferably, the above coating thickness is from 1 to 4 ⁇ m; more preferably, the above coating thickness is from 2-3 ⁇ m.
  • the present invention also provides an application of the above-described multi-core-single-shell structure gel polymer coated separator for use in a lithium ion battery, including a polymer lithium ion battery for preparing a gel state. Because the multi-core-single-shell gel polymer coated diaphragm has the advantages of ceramic diaphragm and polymer diaphragm, it can maintain the high temperature resistance while maintaining close adhesion with the pole piece, greatly reducing the internal resistance and interface of the core. Impedance to improve the safety of the battery.
  • the beneficial effects of the invention include: the multi-core-single-shell structure gel polymer coated membrane provided by the invention has the function of efficiently absorbing electrolyte and gel, compared with the aqueous PVDF and water-based acrylate polymer coated membrane.
  • Multi-core-single-shell gel polymer coated membranes provide excellent battery performance, including cycle and rate performance.
  • the multi-core-single-shell gel polymer coated separator is used in lithium ion batteries to develop a polymer lithium ion battery in a gel state, so that battery manufacturing efficiency, safety, and consistency can be improved.
  • the inorganic nanoparticles are treated by carboxylation and then dispersed in a silanol solution, which can effectively improve the compatibility between the inorganic nanofiller and the polymer, and improve the stability strength of the finished coating film.
  • the alcohol dispersion of 2-thiolbenzimidazole is mixed with acidic fiber to obtain an esterified fiber, which can effectively improve the flame retardancy, surface strength and toughness of the coating film, and improve the overall performance of the coating film.
  • silane polymer solution By using acrylonitrile as a monomer, mixing the obtained silane polymer solution with each inorganic filler can effectively improve the dispersibility of the filler between the polymers, reduce agglomeration, and improve the stability strength of the coating film.
  • the inorganic nanoparticles dispersed in the core layer and the gel polymer are in a state in which the coating absorbs the swelling gel of the electrolyte. Microphase separation occurs, and a large number of inorganic-organic interfacial voids will be produced after separation, which will form a channel that facilitates rapid ion conduction, ie, a fast ion channel. Therefore, at the same time, after the coating absorbs the electrolyte gel, the dispersed nanoparticles inside the core-shell structure are metastable, and the particles will be separated from the inside of the polymer gel and concentrated on the surface of the coating.
  • the battery is charged.
  • the high elastic nanoparticles are deformed by the extrusion caused by the expansion of the negative electrode.
  • the discharge process the electrode layer shrinks, and the deformation of the high elastic nanoparticles recovers; therefore, there is always an interaction between the separator and the electrode during charge and discharge.
  • the force keeps the diaphragm and the pole piece in close contact, effectively avoids the contact gap caused by the expansion and contraction of the electrode material, and can effectively suppress the thickness variation of the battery; and the high dielectric constant inorganic nanoparticle can effectively reduce the lithium ion from the electrode
  • the energy barrier of the process of transferring the electrolyte serves to reduce the interface resistance of the lithium battery and improve the performance of the battery rate.
  • the entire coating system increases the wettability and liquid absorption of the separator, which effectively improves the cycle performance of the battery.
  • Figure 1 is a scanning electron micrograph of a multi-core-single-shell structured gel polymer coated membrane provided by the present invention
  • FIG. 2 is a schematic view showing the action of a multi-core-single-shell structure gel polymer coated separator provided by the present invention
  • Figure 3 is an electrochemical window of a multi-core-single shell gel polymer coated membrane provided by the present invention.
  • Figure 5 is a graph showing the rate performance of a multi-core-single-shell gel polymer coated separator, an aqueous PVDF coated separator, and a base film assembled lithium battery in the test example of the present invention
  • Fig. 6 is a graph showing the discharge of a multi-core-single-shell gel polymer coated separator, an aqueous PVDF coated separator, and a base film assembled lithium battery in the test example of the present invention (1000th cycle).
  • the multi-core-single-shell structure gel polymer coated separator of the embodiment of the present invention and a preparation method and application thereof will be specifically described below.
  • the multi-core-single-shell gel polymer coated membrane in the embodiment of the present invention mainly comprises a base film and a multi-core-single-shell structure gel polymer coating on one side or both sides.
  • the multi-core-single-shell structured gel polymer coating is located on one or both sides of the base film.
  • the multi-core-single-shell gel polymer coating has the advantages of ceramic separator and polymer separator, and ensures the high temperature resistance while maintaining the close bonding with the pole piece, greatly reducing the internal resistance and interface of the core. Impedance, the safety of the battery is improved.
  • Multi-core-single-shell gel polymer coated membrane having the multi-core-single-shell gel polymer coating has the function of efficiently absorbing electrolyte and gel, and coating membrane with aqueous PVDF and water-based acrylate polymer In contrast, multicore-single-shell gel polymer coated membranes offer excellent battery performance, including cycle and rate performance.
  • the above multi-core-single-shell structured gel polymer coating can be mainly composed of the following raw materials: high elastic nanoparticles, inorganic nanoparticles, polymethyl methacrylate, acrylonitrile, dicumyl peroxide, allyl polyethyl b Glycol, methyltriethoxysilane, tetramethylolsulfate, 2-thiolbenzimidazole, glyceryl tristearate, 2,2-dimethylolpropionic acid, zinc pyrithione, Ethoxylated alkyl ammonium sulfate, hydroxyethyl cellulose and fatty alcohol polyoxyethylene ether.
  • the ratio of the above raw materials may be, for example, 60-70 parts by weight, 20-30 parts by weight, 20-40 parts by weight, 70-80 parts by weight, 0.8-1 parts by weight, 3-5 parts by weight, 0.4. -1 parts by weight, 2-3 parts by weight, 0.6-1 parts by weight, 2-3 parts by weight, 1-2 parts by weight, 0.3-1 parts by weight, 0.7-1 parts by weight, 3-4 parts by weight, and 1-2 parts by weight Parts by weight.
  • the ratio of the above raw materials may be, for example, 68-70 parts by weight, 25-30 parts by weight, 30-40 parts by weight, 72-79 parts by weight, 0.9-1 parts by weight, 4-5 parts by weight, 0.6-. 1 part by weight, 2.5-3 parts by weight, 0.8-1 part by weight, 2.5-3 parts by weight, 1.5-2 parts by weight, 0.6-0.9 parts by weight, 0.8-0.9 parts by weight, 3.5-4 parts by weight and 1.5-2 by weight Share.
  • the ratio of the above raw materials may be, for example, 70 parts by weight, 30 parts by weight, 40 parts by weight, 72 parts by weight, 0.95 parts by weight, 4 parts by weight, 0.8 parts by weight, 2.8 parts by weight, 0.9 parts by weight, or 2.8.
  • the high elastic nanoparticles may be a nitrile-polyvinyl chloride composite elastomer, a vulcanized rubber, a polyurethane elastomer, a nitrile rubber, a styrene butadiene rubber, a fluoroelastomer, a polyester-polyether, a butadiene rubber, and Any of the siloxanes may also be composed of at least two of them.
  • the inorganic nanoparticles may be any one of nano silica, nano alumina, nano barium titanate, nano titanium oxide, nano barium sulfate, nano montmorillonite, nano calcium carbonate and nano zirconia. It may consist of at least two of them.
  • the base film may be a polypropylene porous film, a polyethylene porous film, a polypropylene-polyethylene-polypropylene three-layer composite porous film, a single-sided ceramic coated separator, a double-sided ceramic coated separator, and a non-woven separator. Any one of or consists of at least two of them.
  • the thickness of the base film in the embodiment of the present invention may be 5-50 ⁇ m, and the base film is within the thickness range. Preferably, the thickness thereof is 15 to 40 ⁇ m; more preferably, the thickness is 25 to 30 ⁇ m.
  • the base film in the embodiment of the invention has a porosity of 20% to 70%. Preferably, the porosity is from 30% to 60%; more preferably, the porosity is from 40 to 50%.
  • the base film in the embodiment of the invention has an average pore diameter of 10 to 1000 nm. Preferably, it has an average pore diameter of from 100 to 800 nm; more preferably, it has an average pore diameter of from 400 to 500 nm.
  • the embodiment of the present invention further provides a preparation method of the multi-core-single-shell structure gel polymer in the above-mentioned multi-core-single-shell gel polymer coated separator, and the following steps can be referred to:
  • it can be prepared by the following method: (1) 2,2-dimethylolpropionic acid, inorganic nanoparticles are mixed with water according to a ratio, filtered, and dried to obtain carboxyl nanoparticles.
  • the 2,2-dimethylolpropionic acid is first added to the deionized water, stirred uniformly, and then the inorganic nanoparticles are added, stirred while stirring, filtered, and dried at room temperature to obtain carboxyl nanoparticles.
  • the inorganic nanoparticles are treated by carboxylation and then dispersed in a silanol solution, which can effectively improve the compatibility between the inorganic nanofiller and the polymer, and improve the stability strength of the finished coating film.
  • the weight ratio of 2,2-dimethylolpropionic acid to deionized water in the above step may be (1:20)-(1:30).
  • the temperature of the agitation stirring in the above step may be 65-70 °C.
  • the incubation time in the above step may be 40-50 minutes.
  • a mixture of phosphorus tetramethylolsulfate, hydroxyethylcellulose, and ethoxylated ammonium sulfate was mixed with water to obtain a fiber dispersion.
  • the tetramethylolsulfate may be first added to the deionized water, stirred uniformly, then the hydroxyethyl cellulose is added, the temperature is raised, the mixture is kept warm, and then the ethoxylated ammonium alkyl sulfate is added, and the mixture is stirred to normal temperature.
  • a fiber dispersion is obtained.
  • the weight ratio of phosphorus tetramethylolsulfate to deionized water in step (2) may be (1:41)-(1:50).
  • the temperature after the temperature is raised may be 80 to 85 °C.
  • the incubation time may be 10-22 minutes.
  • the 2-thiol benzoimidazole, the fiber dispersion obtained in the step (2), and the zinc pyrithione are mixed with absolute ethanol to obtain an esterified dispersion.
  • the 2-thiol benzoimidazole can be first added to the absolute ethanol, stirred uniformly, and then mixed with the fiber dispersion in the step (2), sent to the reaction vessel, stirred and discharged, and discharged. The mixture was mixed with zinc pyrithione and stirred to normal temperature to obtain an esterified dispersion.
  • the flame retardancy, surface strength and toughness of the coating film can be effectively improved to improve the overall performance of the coating film.
  • step (3) the weight ratio of 2-thiol benzoimidazole to absolute ethanol may be (1:5)-(1:8).
  • the temperature of the heat stirring may be 90-95 ° C.
  • the incubation time may be 1-2 hours.
  • Allyl polyethylene glycol and methyltriethoxysilane are mixed with the carboxyl group nanoparticles obtained in the step (1) in a ratio to obtain a silanol dispersion.
  • allyl polyethylene glycol is first added to methyltriethoxysilane, stirred under heat, and then mixed with the carboxyl nanoparticles in the step (1), and stirred uniformly to obtain a silanol dispersion.
  • the allyl polyethylene glycol is preferably incubated at 60-80 ° C for 16-20 minutes before the addition of methyl triethoxysilane.
  • the incubation time may be 4-10 minutes.
  • an ultrasonic step is further included, and optionally, the ultrasonic time may be 10-15 minutes.
  • acrylonitrile, the silanol dispersion obtained in the step (4), dicumyl peroxide, and the esterified dispersion obtained in the step (3) are mixed in a ratio to obtain a silanol dispersion.
  • acrylonitrile can be first added to the silanol dispersion, stirred uniformly, then dicumyl peroxide is added, sent to the reaction vessel, nitrogen is introduced, the mixture is stirred, discharged, and then dispersed with esterification.
  • the liquid was mixed and stirred to normal temperature to obtain a silane polymer solution.
  • the silane polymer solution is mixed with each inorganic filler by using acrylonitrile as a monomer, which can effectively improve the dispersibility of the filler between the polymers, effectively reduce agglomeration, and improve the stability strength of the coating film.
  • the temperature of the agitation stirring in the step (5) may be 75-80 °C.
  • the incubation time may be 1-2 hours.
  • the stirring speed in the step (6) may be 300-400 rpm, and alternatively, the stirring time in the step (6) may be 20-30 minutes.
  • the compatibility between the inorganic nanofiller and the polymer can be effectively improved, and the stability of the finished coating film can be improved. strength.
  • an alcohol dispersion of 2-thiol phenyl imidazole with an acid fiber to obtain an esterified fiber, the flame retardancy, surface strength and toughness of the coating film can be effectively improved, and the overall performance of the coating film can be improved.
  • the dispersibility of the filler between the polymers can be effectively improved, the agglomeration can be effectively reduced, and the stability strength of the coating film can be improved.
  • an embodiment of the present invention further provides a method for preparing a multi-core-single-shell structure gel polymer coated separator, which may include the following steps: coating a multi-core-single-shell structure gel polymer onto a base film Side or sides, then dry.
  • the coating may be performed by a coating machine, and the drying may be performed by hot air drying.
  • the coating speed may be from 0.5 to 40 m/min; preferably, the coating speed is from 10 to 30 m/min; more preferably, the coating speed is from 15 to 25 m/min.
  • the hot air drying temperature is 30-80 ° C; preferably, the hot air drying temperature is 40-70 ° C; more preferably, the hot air drying temperature is 50-60 ° C.
  • the coating thickness is between 0.5 and 5 ⁇ m; preferably, the coating thickness is between 1-4 ⁇ m; more preferably, the coating thickness is between 2-3 ⁇ m.
  • embodiments of the present invention also provide a multi-core-single-shell structure gel polymer coated separator, for example, which can be used in a lithium ion battery, including a polymer lithium ion battery for preparing a gel state. It can improve the manufacturing efficiency, safety and consistency of the battery.
  • the principle is: due to the special structure of the multi-core-single-shell gel polymer coated membrane, the inorganic nanoparticles dispersed in the core layer and the gel polymer occur in the state in which the coating absorbs the swelling gel of the electrolyte. Microphase separation, a large number of inorganic-organic interfacial voids will be produced after separation, which will form a channel that facilitates rapid ion conduction, ie, a fast ion channel. At the same time, after the coating absorbs the electrolyte gel, the dispersed nanoparticles inside the core-shell structure are metastable, and the particles will be separated from the inside of the polymer gel and concentrated on the surface of the coating. The battery is high during charging.
  • the elastic nanoparticles are deformed by the extrusion caused by the expansion of the negative electrode.
  • the discharge process the electrode layer shrinks, and the deformation of the high elastic nanoparticles recovers. Therefore, during the charging and discharging process, there is always an interaction force between the diaphragm and the electrode, so that the diaphragm and the pole piece can maintain close contact, effectively avoid contact gap caused by expansion and contraction of the electrode material, and can effectively suppress the thickness variation of the battery;
  • the high dielectric constant inorganic nanoparticle can effectively reduce the energy barrier of lithium ion transfer from the electrode to the electrolyte, and reduce the interface resistance of the lithium battery and improve the battery rate performance.
  • the entire coating system increases the wettability and liquid absorption of the separator, which effectively improves the cycle performance of the battery.
  • the high elastic nanoparticle is a nitrile-polyvinyl chloride composite elastomer; the inorganic nanoparticle is nano silicon oxide; the base film is a polypropylene porous film, the base film has a thickness of 5 ⁇ m, a porosity of 20%, and an average pore diameter of 10nm.
  • the above polynuclear-single-shell structure gel polymer was applied to one side of the base film at a coating speed of 40 m/min with a coating thickness of 0.5 ⁇ m, and then dried by hot air at a temperature of 80 ° C. That is, a multi-core-single-shell gel polymer coated membrane comprising a base film and a multi-core-single-shell gel polymer coating on one side thereof.
  • the high elastic nanoparticles are vulcanized rubber; the inorganic nanoparticles are nano zirconia; the base film is a polypropylene porous film, the base film has a thickness of 50 ⁇ m, a porosity of 70%, and an average pore diameter of 1000 nm.
  • the above multi-core-single-shell structure gel polymer was applied to one side of the base film at a coating speed of 40 m/min with a coating thickness of 5 ⁇ m, and then dried by hot air at a temperature of 80 ° C, that is, A multi-core-single-shell gel polymer coated membrane comprising a base film and a multi-core-single-shell gel polymer coating on one side thereof is included.
  • the high elastic nanoparticle is styrene-butadiene rubber; the inorganic nanoparticle is nanometer calcium carbonate; the base film is polypropylene-polyethylene-polypropylene three-layer composite porous film, the base film has a thickness of 5 ⁇ m, the porosity is 20%, and the average The pore size is 10 nm.
  • the above multi-core-single-shell structure gel polymer was applied to one side of the base film at a coating speed of 10 m/min with a coating speed of 0.5 ⁇ m, and then dried by hot air at a temperature of 30 ° C. That is, a multi-core-single-shell gel polymer coated membrane comprising a base film and a multi-core-single-shell gel polymer coating on one side thereof.
  • the high elastic nanoparticles are nitrile rubber; the inorganic nanoparticles are nano alumina; the base film is a polypropylene porous film, the base film has a thickness of 50 ⁇ m, a porosity of 70%, and an average pore diameter of 1000 nm.
  • the above multi-core-single-shell structure gel polymer was applied to one side of the base film at a coating speed of 30 m/min with a coating thickness of 5 ⁇ m, and then dried by hot air at a temperature of 50 ° C, that is, A multi-core-single-shell gel polymer coated membrane comprising a base film and a multi-core-single-shell gel polymer coating on one side thereof is included.
  • the high elastic nanoparticle is a nitrile-polyvinyl chloride composite elastomer; the inorganic nanoparticle is nanometer barium titanate; the base film is a polypropylene porous film, the base film has a thickness of 5 ⁇ m, a porosity of 20%, and an average pore diameter. It is 10 nm.
  • the above multi-core-single-shell structure gel polymer was applied to one side of the base film at a coating speed of 10 m/min with a coating speed of 4 ⁇ m, and then dried by hot air at a temperature of 80 ° C, that is, A multi-core-single-shell gel polymer coated membrane comprising a base film and a multi-core-single-shell gel polymer coating on one side thereof is included.
  • the high elastic nanoparticles are polyester-polyether; the inorganic nanoparticles are nano-silica; the base film is a polypropylene porous film, the base film has a thickness of 50 ⁇ m, a porosity of 70%, and an average pore diameter of 1000 nm.
  • the above polynuclear-single-shell structure gel polymer was applied to one side of the base film at a coating speed of 30 m/min with a coating speed of 4 ⁇ m, and then dried by hot air at a temperature of 30 ° C, that is, A multi-core-single-shell gel polymer coated membrane comprising a base film and a multi-core-single-shell gel polymer coating on one side thereof is included.
  • the high elastic nanoparticles are styrene-butadiene rubber; the inorganic nanoparticles are nano-silica; the base film is a polypropylene porous film, the base film has a thickness of 5 ⁇ m, a porosity of 20%, and an average pore diameter of 10 nm.
  • the above multi-core-single-shell structure gel polymer was applied to one side of the base film at a coating speed of 20 m/min with a coating speed of 4 ⁇ m, and then dried by hot air at a temperature of 50 ° C, that is, A multi-core-single-shell gel polymer coated membrane comprising a base film and a multi-core-single-shell gel polymer coating on one side thereof is included.
  • the high elastic nanoparticles are styrene-butadiene rubber; the inorganic nanoparticles are nano-silica; the base film is a polypropylene porous film, the base film has a thickness of 25 ⁇ m, a porosity of 45%, and an average pore diameter of 500 nm.
  • the above multi-core-single-shell structure gel polymer was applied to one side of the base film at a coating speed of 0.5 m/min with a coating thickness of 2.5 ⁇ m, and then dried by hot air at a temperature of 40 ° C. That is, a multi-core-single-shell gel polymer coated membrane comprising a base film and a multi-core-single-shell gel polymer coating on one side thereof.
  • the above high elastic nanoparticle is styrene-butadiene rubber; the inorganic nanoparticle is nano-silica; the base film is a porous polypropylene film, the base film has a thickness of 25 ⁇ m, a porosity of 45%, and an average pore diameter of 500 nm.
  • the above multi-core-single-shell structure gel polymer was applied to one side of the base film at a coating speed of 0.5 m/min with a coating thickness of 2.5 ⁇ m, and then dried by hot air at a temperature of 40 ° C. That is, a multi-core-single-shell gel polymer coated membrane comprising a base film and a multi-core-single-shell gel polymer coating on one side thereof.
  • This embodiment differs from Example 9 in that the ratio of each raw material is: 68 parts by weight of highly elastic nanoparticles, 30 parts by weight of inorganic nanoparticles, 30 parts by weight of polymethyl methacrylate, and 79 parts by weight of propylene.
  • Nitrile 0.9 parts by weight of dicumyl peroxide, 5 parts by weight of allyl polyethylene glycol, 0.6 parts by weight of methyltriethoxysilane, 3 parts by weight of phosphorus tetramethylolsulfate, 0.8 weight Parts of 2-thiol benzoimidazole, 3 parts by weight of glyceryl tristearate, 1.5 parts by weight of 2,2-dimethylolpropionic acid, 0.9 parts by weight of zinc pyrithione, 0.8 parts by weight Ethoxylated alkyl ammonium sulfate, 4 parts by weight of hydroxyethyl cellulose, and 1.5 parts by weight of a fatty alcohol polyoxyethylene ether.
  • the thickness of the base film was 15 ⁇ m, the porosity of the base film was 30%, and the average pore diameter of the base film was 100 nm.
  • the coating speed was 10 m/min, and the coating thickness was 1 ⁇ m.
  • the hot air drying temperature is 40 °C.
  • each raw material ratio is: 70 parts by weight of highly elastic nanoparticles, 25 parts by weight of inorganic nanoparticles, 40 parts by weight of polymethyl methacrylate, and 72 parts by weight of propylene.
  • the thickness of the base film was 40 ⁇ m, the porosity of the base film was 60%, and the average pore diameter of the base film was 800 nm.
  • the coating speed was 30 m/min, and the coating thickness was 4 ⁇ m.
  • the hot air drying temperature was 70 °C.
  • each raw material ratio is: 70 parts by weight of highly elastic nanoparticles, 30 parts by weight of inorganic nanoparticles, 40 parts by weight of polymethyl methacrylate, and 72 parts by weight of propylene.
  • the base film has a thickness of 25 ⁇ m, the base film has a porosity of 40%, and the base film has an average pore diameter of 400 nm.
  • the coating speed was 15 m/min, and the coating thickness was 2 ⁇ m.
  • the hot air drying temperature is 50 °C.
  • This embodiment differs from Example 12 in that the thickness of the base film is 30 ⁇ m, the porosity of the base film is 50%, and the average pore diameter of the base film is 500 nm.
  • the coating speed was 25 m/min, and the coating thickness was 3 ⁇ m.
  • the hot air drying temperature is 60 °C.
  • the high elastic nanoparticle is a mixture of a polyurethane elastomer and a butadiene rubber
  • the inorganic nanoparticle is a mixture of nano titanium oxide and nano montmorillonite
  • the base film is a polyethylene porous film and a single film.
  • the high elastic nanoparticle is a mixture of a fluoroelastomer, a siloxane and a nitrile rubber
  • the inorganic nanoparticle is a mixture of nanometer barium sulfate, nano silicon oxide and nano montmorillonite.
  • the film is a composite film of a double-sided ceramic coated separator and a non-woven membrane.
  • Embodiments 16 to 30 correspond to the above-mentioned Embodiments 1 to 15, respectively, and Embodiments 16 to 30 correspond to Embodiments 1 to 15 in that: in Examples 16 to 30, the multi-core-single-shell structure is gel-polymerized. The object is applied to both sides of the base film.
  • the present comparative example provides an alumina ceramic coated lithium ion battery separator comprising a polypropylene separator and an alumina coating coated and coated on one side, wherein the polypropylene separator has a thickness of 12 ⁇ m and a porosity of 45%.
  • the thickness of the alumina coating was 4 ⁇ m.
  • This comparative example provides an aqueous PVDF coated lithium ion battery separator comprising a polypropylene separator and a PVDF coating applied to both sides, wherein the polypropylene separator has a thickness of 12 ⁇ m, a porosity of 45%, and a coating thickness of 2 ⁇ m.
  • This comparative example uses a polypropylene separator having a thickness of 12 ⁇ m and a porosity of 45%, and the surface is not subjected to coating treatment.
  • the scanning electron micrograph is as shown in FIG. 1
  • the working principle diagram is shown in FIG. 2
  • the multi-core-single-shell structure gel polymer coated membrane obtained in Example 4 was assembled into a model for linear scanning, and its electrochemical window is shown in FIG. 3.
  • the electrochemical window of the separator coating was observed. It reaches 4.5V, which is equivalent to the electrolyte system and can be fully used in lithium ion batteries.
  • Example 5 the cycle performance and the magnification of the lithium battery assembled from the multi-core-single-shell gel polymer coated in Example 5, the aqueous PVDF coated separator in Comparative Example 2, and the base film, respectively.
  • the performance and discharge curves (1000th cycle) are shown in Figure 4-6.
  • the cycle performance of the lithium battery is: the lithium battery assembled by the multi-core-single-shell gel polymer coated membrane of Example 5 has a high capacity retention rate as the number of cycles increases.
  • the capacity of the lithium battery assembled from the base film, and the capacity of the lithium battery assembled from the base film was higher than that of the lithium battery assembled by the aqueous PVDF coated separator in Comparative Example 2.
  • the capacity retention of the lithium battery assembled by the multi-core-single-shell gel polymer coated membrane of Example 5 is higher than that of the lithium battery assembled by the base film, and the lithium assembled by the base film
  • the capacity of the battery was higher than the capacity of the lithium battery assembled by the aqueous PVDF coated separator in Comparative Example 2.
  • the voltage of the lithium battery assembled by the multi-core-single-shell gel polymer coated membrane of Example 5 is higher than the voltage of the lithium battery assembled by the base film, and the voltage of the lithium battery assembled by the base film The voltage was higher than the lithium battery assembled by the aqueous PVDF coated separator in Comparative Example 2.
  • the lithium ion battery prepared by coating the multi-core-single-shell gel polymer coated membrane of Example 5 had a capacity retention rate of 90% or more after 1000 cycles, and the capacity performance was maintained at 50% or more at 2C.
  • Example 6 the obtained multi-core-single-shell gel polymer coated separator and the pole piece were peeled off at a speed of 80 mm/min by a universal tensile tester, and the peeling strength between the separator and the pole piece was 65 N/ Mm, using the three-point bending method to test the hardness of the battery is 21.3N / cm, indicating that its surface hardness and toughness are higher, compared with the surface hardness and toughness of the base film can be increased by about 6-9%.
  • the obtained multi-core-single-shell gel polymer coated separator was subjected to a liquid absorption test, and as a result, the surface suction ratio of the separator to the electrolyte was 15 g/m 2 .
  • the multi-core-single-shell gel polymer coated separators obtained in Examples 3 to 7 and the lithium ion battery separators of Comparative Examples 1-3 were subjected to ion conductivity test, and the separator was assembled into an analog battery, and the separator was tested by using an alternating current impedance. Ionic conductivity, the test results are listed in Table 1.
  • the multi-core-single-shell structure gel polymer coated separators obtained in Examples 10-13 were assembled into a simulated battery, and the ionic conductivity of the separator was tested.
  • the results show that the ionic conductivity corresponding to Examples 10-13 is higher than the ionic conductivity corresponding to Example 9, and the ionic conductivity corresponding to Example 12 and Example 13 is higher than that of Example 10 and Example 11.
  • the ionic conductivity, the ratio of the raw materials of the embodiment 12 and the embodiment 13 and the preparation process are better than those of the embodiment 10 and the embodiment 11, and the ratio of the raw materials of the embodiment 10 and the embodiment 11 and the preparation process are more than that of the embodiment 9. good.
  • the multi-core-single-shell gel polymer coated membranes of Examples 16-30 were assembled into a simulated cell using the same test method, and the ionic conductivity of the separator was tested.
  • the conductivity is higher than that of Comparative Examples 1-3, and the ionic conductivity corresponding to Example 27 and Example 28 is higher than the ionic conductivity of Example 25 and Example 26, indicating the materials of Examples 27 and 28.
  • the ratio and preparation process are better than those of Example 25 and Example 26, and the ratio of raw materials and preparation process of Example 25 and Example 26 are better than that of Example 24.
  • the multi-core-single-shell gel polymer coated separator provided by the present invention has high ionic conductivity, high dielectric constant, and excellent battery performance.
  • the preparation method is simple and practical, and the finished product thus obtained has good quality.
  • the preparation method of the multi-core-single-shell structure gel polymer is advantageous for improving the comprehensive properties such as stability strength, flame retardancy, surface strength and toughness of the finished coating film.
  • the use of a multi-core-single-shell structured gel polymer coated separator for a lithium ion battery, including a polymer lithium ion battery for preparing a gel state can improve the manufacturing efficiency, safety, and uniformity of the battery.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Nanotechnology (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Composite Materials (AREA)
  • Ceramic Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Cell Separators (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)

Abstract

本发明公开了一种多核-单壳结构凝胶聚合物涂覆隔膜及其制备方法与应用,其包括基膜以及位于一侧或两侧的多核-单壳结构凝胶聚合物涂层,凝胶聚合物由高弹性纳米颗粒、无机纳米颗粒、聚甲基丙烯酸甲酯、丙烯腈、过氧化二异丙苯、烯丙基聚乙二醇、甲基三乙氧基硅烷、四羟甲基硫酸磷、2-硫醇基苯骈咪唑、三硬脂酸甘油酯、2,2-二羟甲基丙酸、吡啶硫酮锌、乙氧基化烷基硫酸铵、羟乙基纤维素和脂肪醇聚氧乙烯醚组成。该涂层隔膜具有高效吸收电解液并凝胶的功能,与水性PVDF、水性丙烯酸酯类聚合物涂覆隔膜相比,具备优异循环和倍率性能等。上述涂覆隔膜用于锂离子电池,开发出凝胶态聚合物锂离子电池,可提高电池的制造效率和安全性。

Description

一种多核-单壳结构凝胶聚合物涂覆隔膜及其制备方法与应用
相关申请的交叉引用
本申请要求于2017年06月13日提交中国专利局的申请号为201710445470.2、名称为“一种多核-单壳结构凝胶聚合物涂覆隔膜及其制备方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明设计锂离子电池领域,尤其是涉及一种多核-单壳结构凝胶聚合物涂覆隔膜及其制备方法与应用。
背景技术
锂离子电池以其能量密度大、工作电压高、循环寿命长和自放电率低等特点,越来越受到人们的关注,其应用范围也在逐渐拓展。在锂电池结构中,隔膜是关键的内层组件之一,隔离正负极、防止短路,此外还具有提供锂离子传导孔道的基本功能。传统的锂离子电池隔膜采用聚烯烃隔膜,仅能实现锂电池隔膜的基本功能,难以满足新一代锂离子电池的技术要求。
随着动力汽车的发展,能量密度成为了当前锂离子电池发展的最大挑战,人们都期待电池的能量密度能够达到一个全新的量级,使得产品的续航时间或续航里程不再成为困扰产品的主要因素。而高能量密度下锂离子电池的安全性能、硬度、电池循环寿命等问题相继产生,现有的主要解决方案是在聚烯烃隔膜的表面涂覆功能涂覆层,主要为陶瓷涂覆、聚合物涂覆等。而陶瓷涂覆隔膜虽然在一定程度上改善了隔膜的热收缩、浸润性等,从而提高了锂离子电池的循环寿命和安全性能,但是陶瓷涂覆隔膜的电池中电解液呈液态,漏液导致的安全问题不可避免,同时电池硬度得不到提高。聚合物涂覆隔膜虽有具有吸收电解液凝胶的特性,但因电池内阻过大,影响电池性能,倍率性和循环寿命均有下降。此外,也有将聚合物和陶瓷粉体共混得到的复合涂覆隔膜,但均因复合涂层界面性能不佳而影响到电池的性能。
鉴于此,特提出本发明。
发明内容
本发明的目的之一是提供一种多核-单壳结构凝胶聚合物涂覆隔膜,其具有高离子电导率、高介电常数以及优异的电池性能。
本发明的目的之二是提供一种上述多核-单壳结构凝胶聚合物涂覆隔膜中多核-单壳结构凝胶聚合物的制备方法,此方法有利于提高成品涂膜的稳定性强度、阻燃性、表面强度、韧性等综合性能。
本发明的目的之三是提供一种多核-单壳结构凝胶聚合物,其由上述多核-单壳结构凝胶聚合物的制备方法制备而得,有利于提高多核-单壳结构凝胶聚合物涂覆隔膜的性能。
本发明的目的之四是提供一种上述多核-单壳结构凝胶聚合物涂覆隔膜的制备方法,该方法简单实用,由此制得的成品质量好。
本发明的目的之五是提供一种上述多核-单壳结构凝胶聚合物涂覆隔膜的应用,例如可将其用于锂离子电池中,包括用于制备凝胶态的聚合物锂离子电池,可使电池的制造效率、安全性以及一致性均得以提高。
为实现上述目的,本发明可采用以下技术方案:
本发明提出一种多核-单壳结构凝胶聚合物涂覆隔膜,包括基膜以及位于一侧或两侧的多核-单壳结构凝胶聚合物涂层,上述多核-单壳结构凝胶聚合物由下述原料组成:60-70重量份的高弹性纳米颗粒、20-30重量份的的无机纳米颗粒、20-40重量份的聚甲基丙烯酸甲酯、70-80重量份的丙烯腈、0.8-1重量份的过氧化二异丙苯、3-5重量份的烯丙基聚乙二醇、0.4-1重量份的甲基三乙氧基硅烷、2-3重量份的四羟甲基硫酸磷、0.6-1重量份的2-硫醇基苯骈咪唑、2-3重量份的三硬脂酸甘油酯、1-2重量份的2,2-二羟甲基丙酸、0.3-1重量份的吡啶硫酮锌、0.7-1重量份的乙氧基化烷基硫酸铵、3-4重量份的羟乙基纤维素和1-2重量份的脂肪醇聚氧乙烯醚。
可选地,上述多核-单壳结构凝胶聚合物由下述原料组成:68-70重量份的高弹性纳米颗粒、25-30重量份的无机纳米颗粒、30-40重量份的聚甲基丙烯酸甲酯、72-79重量份的丙烯腈、0.9-1重量份的过氧化二异丙苯、4-5重量份的烯丙基聚乙二醇、0.6-1重量份的甲基三乙氧基硅烷、2.5-3重量份的四羟甲基硫酸磷、0.8-1重量份的2-硫醇基苯骈咪唑、2.5-3重量份的三硬脂酸甘油酯、1.5-2重量份的2,2-二羟甲基丙酸、0.6-0.9重量份的吡啶硫酮锌、0.8-0.9重量份的乙氧基化烷基硫酸铵、3.5-4重量份的羟乙基纤维素和1.5-2重量份的脂肪醇聚氧乙烯醚。
可选地,上述多核-单壳结构凝胶聚合物由下述原料组成:70重量份的高弹性纳米颗粒、30重量份的无机纳米颗粒、40重量份的聚甲基丙烯酸甲酯、72重量份的丙烯腈、0.95重量份的过氧化二异丙苯、4重量份的烯丙基聚乙二醇、0.8重量份的甲基三乙氧基硅烷、2.8重量份的四羟甲基硫酸磷、0.9重量份的2-硫醇基苯骈咪唑、2.8重量份的三硬脂酸甘油酯、1.8重量份的2,2-二羟甲基丙酸、0.6重量份的吡啶硫酮锌、0.85重量份的乙氧基化烷基硫酸铵、3.8重量份的羟乙基纤维素和1.8重量份的脂肪醇聚氧乙烯醚。
可选地,上述高弹性纳米颗粒为丁腈-聚氯乙烯复合物弹性体、硫化橡胶、聚氨酯弹性体、丁腈橡胶、丁苯橡胶、氟弹性体、聚酯-聚醚、顺丁橡胶和硅氧烷中的任意一种或由其中至少两种物质组成。可选地,上述无机纳米颗粒为纳米氧化硅、纳米氧化铝、纳米钛酸钡、纳米氧化钛、纳米硫酸钡、纳米蒙脱土、纳米碳酸钙和纳米氧化锆中的任意一种或由其中至少两种物质组成。可选地,上述基膜为聚丙烯多孔薄膜、聚乙烯多孔薄膜、聚丙烯-聚乙烯-聚丙烯三层复合多孔薄膜、单面陶瓷涂覆隔膜、双面陶瓷涂覆隔膜和无纺布隔膜中的任意一种或由其中至少两种膜组成。
可选地,上述基膜的厚度为5-50μm;优选地,上述厚度为15-40μm;更优地,上述厚度为25-30μm。可选地,上述基膜的孔隙率为20%-70%;优选地,上述孔隙率为30%-60%; 更优地,上述孔隙率为40-50%。可选地,上述基膜的平均孔径为10-1000nm;优选地,上述平均孔径为100-800nm;更优地,上述平均孔径为400-500nm。
本发明还提出一种上述多核-单壳结构凝胶聚合物涂覆隔膜中的多核-单壳结构凝胶聚合物的制备方法,包括以下步骤:
混合2,2-二羟甲基丙酸与无机纳米颗粒,得羧基纳米颗粒;混合四羟甲基硫酸磷、羟乙基纤维素以及乙氧基化烷基硫酸铵,得纤维分散液;混合2-硫醇基苯骈咪唑、上述纤维分散液以及吡啶硫酮锌,得酯化分散液;混合烯丙基聚乙二醇、甲基三乙氧基硅烷以及上述羧基纳米颗粒,得硅烷醇分散液;混合丙烯腈、上述硅烷醇分散液、过氧化二异丙苯以及上述酯化分散液,得硅烷聚合物溶液;混合上述硅烷聚合物溶液、高弹性纳米颗粒、聚甲基丙烯酸甲酯、三硬脂酸甘油酯以及脂肪醇聚氧乙烯醚,得多核-单壳结构凝胶聚合物。
可选地,取2,2-二羟甲基丙酸,加入去离子水中,搅拌均匀,加入无机纳米颗粒,保温搅拌,过滤,常温干燥,得羧基纳米颗粒。可选地,上述羧基纳米颗粒制备过程中,2,2-二羟甲基丙酸与去离子水的重量比为(1:20)-(1:30)。可选地,上述羧基纳米颗粒制备过程中,保温搅拌的温度为65-70℃。可选地,上述羧基纳米颗粒制备过程中,保温搅拌的时间为40-50分钟。
可选地,取四羟甲基硫酸磷,加入去离子水中,搅拌均匀,加入羟乙基纤维素,升高温度后保温搅拌,加入乙氧基化烷基硫酸铵,搅拌至常温,得纤维分散液。可选地,上述纤维分散液制备过程中,四羟甲基硫酸磷与去离子水的重量比为(1:41)-(1:50)。可选地,上述纤维分散液制备过程中,升高温度后的温度为80-85℃。可选地,上述纤维分散液制备过程中,保温搅拌的时间为10-22分钟。
可选地,取2-硫醇基苯骈咪唑,加入无水乙醇中,搅拌均匀,与纤维分散液混合,送入到反应釜中,保温搅拌,出料,与吡啶硫酮锌混合,搅拌至常温,得酯化分散液。可选地,上述酯化分散液制备过程中,2-硫醇基苯骈咪唑与无水乙醇的重量比为(1:5)-(1:8)。可选地,上述酯化分散液制备过程中,保温搅拌的温度为90-95℃。可选地,上述酯化分散液制备过程中,保温搅拌的时间为1-2小时。
可选地,取烯丙基聚乙二醇,加入甲基三乙氧基硅烷,保温搅拌,与羧基纳米颗粒混合,搅拌均匀,得硅烷醇分散液。可选地,上述硅烷醇分散液制备过程中,加入甲基三乙氧基硅烷前,将烯丙基聚乙二醇于60-80℃的条件下保温16-20分钟。可选地,上述硅烷醇分散液制备过程中,保温搅拌的时间为4-10分钟。可选地,上述硅烷醇分散液制备过程中,在与羧基纳米颗粒混合,搅拌均匀后还包括超声步骤;可选地,超声时间为10-15分钟。
可选地,取丙烯腈,加入到硅烷醇分散液中,搅拌均匀,加入过氧化二异丙苯,送入到反应釜中,通入氮气,保温搅拌,出料,与酯化分散液混合,搅拌至常温,得硅烷聚合物溶液。可选地,上述硅烷聚合物溶液制备过程中,保温搅拌的温度为75-80℃。可选地,上述硅烷聚合物溶液制备过程中,保温搅拌的时间为1-2小时。
可选地,取硅烷聚合物溶液,与高弹性纳米颗粒、聚甲基丙烯酸甲酯、三硬脂酸甘油酯混合,搅拌,即得多核-单壳结构凝胶聚合物。可选地,上述多核-单壳结构凝胶聚合物制备过程中,搅拌转速为300-400转/分钟。可选地,上述多核-单壳结构凝胶聚合物制备过程中,搅拌时间为20-30分钟。
本发明还提出一种多核-单壳结构凝胶聚合物,其由上述多核-单壳结构凝胶聚合物的制备方法制备而得。
本发明还提出一种上述多核-单壳结构凝胶聚合物涂覆隔膜中的制备方法,包括以下步骤:将多核-单壳结构凝胶聚合物涂布到基膜的一侧或两侧,然后烘干;可选地,烘干采用热风烘干。
可选地,上述涂布速度为0.5-40m/min;优选地,上述涂布速度为10-30m/min;更优地,上述涂布速度为15-25m/min。可选地,上述热风烘干的温度为30-80℃;优选地,上述热风烘干的温度为40-70℃;更优地,上述热风烘干的温度为50-60℃。可选地,上述涂布厚度介于0.5-5μm;优选地,上述涂布厚度介于1-4μm;更优地,上述涂布厚度介于2-3μm。本发明还提出一种上述多核-单壳结构凝胶聚合物涂覆隔膜中的应用,将其用于锂离子电池中,包括用于制备凝胶态的聚合物锂离子电池。由于多核-单壳结构凝胶聚合物涂覆隔膜同时具备陶瓷隔膜和聚合物隔膜的优点,在保证耐高温性能的同时,保持和极片的紧密粘结,大幅度降低电芯内阻和界面阻抗,提高电池的安全性能。
本发明的有益效果包括:本发明提供的多核-单壳结构凝胶聚合物涂覆隔膜具有高效吸收电解液并凝胶的功能,与水性PVDF、水性丙烯酸酯类聚合物涂覆隔膜相比,多核-单壳结构凝胶聚合物涂覆隔膜具备优异的电池性能,包括循环和倍率性能。多核-单壳结构凝胶聚合物涂覆隔膜用于锂离子电池,开发出凝胶态的聚合物锂离子电池,使得电池制造效率,安全性,一致性均可得到提高。
制备过程中,将无机纳米颗粒通过羧基化处理,然后在硅烷醇溶液中分散,可以有效提高无机纳米填料与聚合物间的相容性,提高成品涂膜的稳定性强度。
将2-硫醇基苯骈咪唑的醇分散液与酸性纤维混合,得到酯化纤维,可以有效提高涂膜的阻燃性、表面强度和韧性,提高涂膜的综合性能。
以丙烯腈为单体,将得到的硅烷聚合物溶液与各无机填料混合,可以有效提高填料在聚合物间的分散性,降低团聚,提高涂膜的稳定性强度。
由于多核-单壳结构凝胶聚合物涂覆隔膜具有特殊的多核-单壳结构,在涂层吸收电解液溶胀凝胶的状态下,核层中分散的无机纳米颗粒与凝胶聚合物之间发生微相分离,分离后将产生的大量的无机-有机界面空隙,这种空隙将形成有利于离子快速传导的通道,即快离子通道。因此同时,涂层吸收电解液凝胶后,核壳结构内部的分散的纳米粒子处于亚稳态,颗粒将从聚合物凝胶体内部离析富集到涂层的表面,电池在充电过程中,高弹性纳米颗粒受到负极膨胀产生的挤压作用而变形,在放电过程中,放电过程,电极层收缩,高弹性纳米颗粒形变恢复;因此在充放电过程中,隔膜与电极之间始终存在相互作用力,使隔膜与极片能保持紧密接触,有效避免电极材料膨胀-收缩导致的接触空隙,且能有效抑制电池的厚度变化;而高介电常数的无机纳米颗粒,可有效降低锂离子从电极向电解质传递过程的能垒,起到降低锂电池界面电阻,提高电池倍率性能的效果。同时,涂层整个体系增加了隔膜的浸润性和吸液量,有效改善了电池循环性能。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对实施例中所需要使用的附图作 简单地介绍,应当理解,以下附图仅示出了本发明的某些实施例,因此不应被看作是对范围的限定,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他相关的附图。
图1本发明提供的多核-单壳结构凝胶聚合物涂覆隔膜的扫描电镜图;
图2本发明提供的多核-单壳结构凝胶聚合物涂覆隔膜的作用原理图;
图3本发明提供的多核-单壳结构凝胶聚合物涂覆隔膜的电化学窗口;
图4本发明试验例中多核-单壳结构凝胶聚合物涂覆隔膜、水性PVDF涂覆隔膜、基膜组装的锂电池的循环性能;
图5本发明试验例中多核-单壳结构凝胶聚合物涂覆隔膜、水性PVDF涂覆隔膜、基膜组装的锂电池的倍率性能;
图6本发明试验例中多核-单壳结构凝胶聚合物涂覆隔膜、水性PVDF涂覆隔膜、基膜组装的锂电池的放电曲线图(第1000个循环)。
注:图2至图6中的“核-壳结构”均指“多核-单壳结构”。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将对本发明实施例中的技术方案进行清楚、完整地描述。实施例中未注明具体条件者,按照常规条件或制造商建议的条件进行。所用试剂或仪器未注明生产厂商者,均为可以通过市售购买获得的常规产品。
下面对本发明实施例的多核-单壳结构凝胶聚合物涂覆隔膜及其制备方法与应用进行具体说明。
本发明实施例中的多核-单壳结构凝胶聚合物涂覆隔膜主要包括基膜以及位于一侧或两侧的多核-单壳结构凝胶聚合物涂层。多核-单壳结构凝胶聚合物涂层位于基膜的一侧或两侧。其中,多核-单壳结构凝胶聚合物涂层同时具备陶瓷隔膜和聚合物隔膜的优点,在保证耐高温性能的同时,保持和极片的紧密粘结,大幅度降低电芯内阻和界面阻抗,电池的安全性能提高。具有该多核-单壳结构凝胶聚合物涂层的多核-单壳结构凝胶聚合物涂覆隔膜具有高效吸收电解液并凝胶的功能,与水性PVDF、水性丙烯酸酯类聚合物涂覆隔膜相比,多核-单壳结构凝胶聚合物涂覆隔膜具备优异的电池性能,包括循环和倍率性能。
上述多核-单壳结构凝胶聚合物涂层可主要由以下原料组成:高弹性纳米颗粒、无机纳米颗粒、聚甲基丙烯酸甲酯、丙烯腈、过氧化二异丙苯、烯丙基聚乙二醇、甲基三乙氧基硅烷、四羟甲基硫酸磷、2-硫醇基苯骈咪唑、三硬脂酸甘油酯、2,2-二羟甲基丙酸、吡啶硫酮锌、乙氧基化烷基硫酸铵、羟乙基纤维素和脂肪醇聚氧乙烯醚。
可选地,上述原料的配比例如可依次为60-70重量份、20-30重量份、20-40重量份、70-80重量份、0.8-1重量份、3-5重量份、0.4-1重量份、2-3重量份、0.6-1重量份、2-3重量份、1-2重量份、0.3-1重量份、0.7-1重量份、3-4重量份和1-2重量份。
优选地,上述原料的配比例如可依次为68-70重量份、25-30重量份、30-40重量份、72-79重量份、0.9-1重量份、4-5重量份、0.6-1重量份、2.5-3重量份、0.8-1重量份、2.5-3重量份、1.5-2重量份、0.6-0.9重量份、0.8-0.9重量份、3.5-4重量份和1.5-2重量份。
更优地,上述原料的配比例如可依次为70重量份、30重量份、40重量份、72重量份、0.95重量份、4重量份、0.8重量份、2.8重量份、0.9重量份、2.8重量份、1.8重量份、0.6重量份、0.85重量份、3.8重量份和1.8重量份。
可选地,上述高弹性纳米颗粒可以为丁腈-聚氯乙烯复合物弹性体、硫化橡胶、聚氨酯弹性体、丁腈橡胶、丁苯橡胶、氟弹性体、聚酯-聚醚、顺丁橡胶和硅氧烷中的任意一种,也可以由其中至少两种物质组成。
可选地,上述无机纳米颗粒可以为纳米氧化硅、纳米氧化铝、纳米钛酸钡、纳米氧化钛、纳米硫酸钡、纳米蒙脱土、纳米碳酸钙和纳米氧化锆中的任意一种,也可以由其中至少两种物质组成。
可选地,基膜可以为聚丙烯多孔薄膜、聚乙烯多孔薄膜、聚丙烯-聚乙烯-聚丙烯三层复合多孔薄膜、单面陶瓷涂覆隔膜、双面陶瓷涂覆隔膜和无纺布隔膜中的任意一种或由其中至少两种膜组成。
可选地,本发明实施例中的基膜的厚度可以为5-50μm,此厚度范围内基膜。优选地,其厚度为15-40μm;更优地,其厚度为25-30μm。可选地,本发明实施例中的基膜的孔隙率为20%-70%。优选地,其孔隙率为30%-60%;更优地,其孔隙率为40-50%。可选地,本发明实施例中的基膜的平均孔径为10-1000nm。优选地,其平均孔径为100-800nm;更优地,其平均孔径为400-500nm。
此外,本发明实施例还提供了一种上述多核-单壳结构凝胶聚合物涂覆隔膜中多核-单壳结构凝胶聚合物的制备方法,可参照如下步骤:
混合2,2-二羟甲基丙酸与无机纳米颗粒,得羧基纳米颗粒;混合四羟甲基硫酸磷、羟乙基纤维素以及乙氧基化烷基硫酸铵,得纤维分散液;混合2-硫醇基苯骈咪唑、上述纤维分散液以及吡啶硫酮锌,得酯化分散液;混合烯丙基聚乙二醇、甲基三乙氧基硅烷以及上述羧基纳米颗粒,得硅烷醇分散液;混合丙烯腈、上述硅烷醇分散液、过氧化二异丙苯以及上述酯化分散液,得硅烷聚合物溶液;混合上述硅烷聚合物溶液、高弹性纳米颗粒、聚甲基丙烯酸甲酯、三硬脂酸甘油酯以及脂肪醇聚氧乙烯醚,得多核-单壳结构凝胶聚合物。
进一步地,例如可参照下述方式制备:(1)按配比将2,2-二羟甲基丙酸、无机纳米颗粒与水混合,过滤,干燥后得羧基纳米颗粒。优选地,先将2,2-二羟甲基丙酸加入去离子水中,搅拌均匀,然后再加入无机纳米颗粒,保温搅拌,过滤,常温干燥,得羧基纳米颗粒。
无机纳米颗粒通过羧基化处理,然后在硅烷醇溶液中分散,可有效提高无机纳米填料与聚合物间的相容性,提高成品涂膜的稳定性强度。
可选地,上述步骤中2,2-二羟甲基丙酸与去离子水的重量比可以为(1:20)-(1:30)。可选地,上述步骤中保温搅拌的温度可以为65-70℃。可选地,上述步骤中保温搅拌的时间 可以为40-50分钟。
(2)按配比将四羟甲基硫酸磷、羟乙基纤维素、乙氧基化烷基硫酸铵与水混合,得纤维分散液。优选地,可先将四羟甲基硫酸磷加入去离子水中,搅拌均匀,然后加入羟乙基纤维素,升高温度后保温搅拌,再加入乙氧基化烷基硫酸铵,搅拌至常温,得纤维分散液。
可选地,步骤(2)中四羟甲基硫酸磷与去离子水的重量比可以为(1:41)-(1:50)。可选地,步骤(2)中,升高温度后的温度可以为80-85℃。可选地,步骤(2)中,保温搅拌的时间可以为10-22分钟。
(3)按配比将2-硫醇基苯骈咪唑、步骤(2)所得的纤维分散液、吡啶硫酮锌与无水乙醇混合,得酯化分散液。优选地,可先将2-硫醇基苯骈咪唑加入无水乙醇中,搅拌均匀,然后与步骤(2)中的纤维分散液混合,送入到反应釜中,保温搅拌,出料,再与吡啶硫酮锌混合,搅拌至常温,得酯化分散液。
通过将2-硫醇基苯骈咪唑的醇分散液与酸性纤维混合,得到酯化纤维,可有效提高涂膜的阻燃性和表面强度、韧性,以提高涂膜的综合性能。
可选地,步骤(3)中,2-硫醇基苯骈咪唑与无水乙醇的重量比可以为(1:5)-(1:8)。可选地,步骤(3)中,保温搅拌的温度可以为90-95℃。可选地,步骤(3)中,保温搅拌的时间可以为1-2小时。
(4)按配比将烯丙基聚乙二醇、甲基三乙氧基硅烷与步骤(1)所得的羧基纳米颗粒混合,得硅烷醇分散液。优选地,先将烯丙基聚乙二醇加入甲基三乙氧基硅烷,保温搅拌,然后与步骤(1)中的羧基纳米颗粒混合,搅拌均匀,得硅烷醇分散液。
可选地,步骤(4)中在加入甲基三乙氧基硅烷前,优选将烯丙基聚乙二醇于60-80℃的条件下保温16-20分钟。可选地,步骤(4)中,保温搅拌的时间可以为4-10分钟。可选地,步骤(4)中在与羧基纳米颗粒混合搅拌后还包括超声步骤,可选地,超声时间可以为10-15分钟。
(5)按配比将丙烯腈、步骤(4)所得的硅烷醇分散液、过氧化二异丙苯以及步骤(3)所得的酯化分散液混合,得硅烷醇分散液。优选地,可先将丙烯腈加入到硅烷醇分散液中,搅拌均匀,然后加入过氧化二异丙苯,送入到反应釜中,通入氮气,保温搅拌,出料,再与酯化分散液混合,搅拌至常温,得硅烷聚合物溶液。
以丙烯腈为单体,将得到的硅烷聚合物溶液与各无机填料混合,可有效提高填料在聚合物间的分散性,有效降低团聚,提高涂膜的稳定性强度。
可选地,步骤(5)中保温搅拌的温度可以为75-80℃。可选地,步骤(5)中,保温搅拌的时间可以为1-2小时。
(6)将步骤(5)所得的硅烷聚合物溶液与高弹性纳米颗粒、聚甲基丙烯酸甲酯、三硬脂酸甘油酯以及脂肪醇聚氧乙烯醚混合,搅拌,得多核-单壳结构凝胶聚合物。可选地,步骤(6)中的搅拌转速可以为300-400转/分钟,可选地,步骤(6)中的搅拌时间可以为20-30分钟。
承上所述,本发明实施例中通过对无机纳米颗粒进行羧基化处理,然后在硅烷醇溶液中分散,可有效提高无机纳米填料与聚合物间的相容性,提高成品涂膜的稳定性强度。通过将2-硫醇基苯骈咪唑的醇分散液与酸性纤维混合,得到酯化纤维,可以有效的提高涂膜的阻燃性和表面强度、韧性,提高涂膜的综合性能。通过以丙烯腈为单体,将得到的硅烷聚合物溶液与各无机填料混合,可以有效的提高填料在聚合物间的分散性,有效的降低团聚,提高涂膜的稳定性强度。
此外,本发明实施例还提供了一种多核-单壳结构凝胶聚合物涂覆隔膜的制备方法,可包括以下步骤:将多核-单壳结构凝胶聚合物用涂布到基膜的一侧或两侧,然后烘干。
可选地,涂布可以采用涂覆机,烘干可采用热风烘干。可选地,涂布速度可以为0.5-40m/min;优选地,涂布速度为10-30m/min;更优地,涂布速度为15-25m/min。可选地,热风烘干的温度为30-80℃;优选地,热风烘干的温度为40-70℃;更优地,热风烘干的温度为50-60℃。可选地,涂布厚度介于0.5-5μm;优选地,涂布厚度介于1-4μm;更优地,涂布厚度介于2-3μm。
此外,本发明实施例还提供了一种多核-单壳结构凝胶聚合物涂覆隔膜的应用,例如可将其用于锂离子电池中,包括用于制备凝胶态的聚合物锂离子电池,可使电池的制造效率、安全性以及一致性均得以提高。
其原理为:由于多核-单壳结构凝胶聚合物涂覆隔膜的特殊结构,在涂层吸收电解液溶胀凝胶的状态下,核层中分散的无机纳米颗粒与凝胶聚合物之间发生微相分离,分离后将产生的大量的无机-有机界面空隙,这种空隙将形成有利于离子快速传导的通道,即快离子通道。同时,涂层吸收电解液凝胶后,核壳结构内部的分散的纳米粒子处于亚稳态,颗粒将从聚合物凝胶体内部离析富集到涂层的表面,电池在充电过程中,高弹性纳米颗粒受到负极膨胀产生的挤压作用而变形,在放电过程中,放电过程,电极层收缩,高弹性纳米颗粒形变恢复。因此在充放电过程中,隔膜与电极之间始终存在相互作用力,使隔膜与极片能保持紧密接触,有效避免电极材料膨胀-收缩导致的接触空隙,且能有效抑制电池的厚度变化;而高介电常数的无机纳米颗粒,可有效降低锂离子从电极向电解质传递过程的能垒,起到降低锂电池界面电阻,提高电池倍率性能的效果。同时,涂层整个体系增加了隔膜的浸润性和吸液量,有效改善了电池循环性能。
实施例1
(1)取1重量份的2,2-二羟甲基丙酸,加入到其重量20倍的去离子水中,搅拌均匀,加入30重量份的无机纳米颗粒,在65℃下保温搅拌40分钟,过滤,常温干燥,得羧基纳米颗粒。
(2)取2重量份的四羟甲基硫酸磷,加入到其重量50倍的去离子水中,搅拌均匀,加入3重量份的羟乙基纤维素,升高温度为85℃,保温搅拌22分钟,加入0.7重量份的乙氧基化烷基硫酸铵,搅拌至常温,得纤维分散液。
(3)取0.6重量份的2-硫醇基苯骈咪唑,加入到其重量8倍的无水乙醇中,搅拌均匀,与上述纤维分散液混合,送入到反应釜中,在95℃下保温搅拌2小时,出料,与0.3重量份的吡啶硫酮锌混合,搅拌至常温,得酯化分散液。
(4)取3重量份的烯丙基聚乙二醇,在70℃下保温20分钟,加入0.4重量份的甲基三乙氧基硅烷,继续保温搅拌10分钟,与上述羧基纳米颗粒混合,搅拌均匀,超声10分钟,得硅烷醇分散液。
(5)取70重量份的丙烯腈,加入到上述硅烷醇分散液中,搅拌均匀,加入0.8重量份的过氧化二异丙苯,送入到反应釜中,通入氮气,在80℃下保温搅拌2小时,出料,与上述酯化分散液混合,搅拌至常温,得硅烷聚合物溶液。
(6)取上述硅烷聚合物溶液与70重量份的高弹性纳米颗粒、40重量份的聚甲基丙烯酸甲酯、2重量份的三硬脂酸甘油酯以及1重量份的脂肪醇聚氧乙烯醚混合,400转/份搅拌30分钟,得多核-单壳结构凝胶聚合物。
其中,高弹性纳米颗粒为丁腈-聚氯乙烯复合物弹性体;无机纳米颗粒为纳米氧化硅;基膜为聚丙烯多孔薄膜,基膜的厚度为5μm,孔隙率为20%,平均孔径为10nm。
将上述多核-单壳结构凝胶聚合物用涂覆机以涂布速度为40m/min涂布到基膜的一侧,涂布厚度为0.5μm,然后通过温度为80℃的热风烘干,即得包括基膜以及位于其一侧的多核-单壳结构凝胶聚合物涂层的多核-单壳结构凝胶聚合物涂覆隔膜。
实施例2
(1)取1重量份的2,2-二羟甲基丙酸,加入到其重量30倍的去离子水中,搅拌均匀,加入30重量份的无机纳米颗粒,在70℃下保温搅拌50分钟,过滤,常温干燥,得羧基纳米颗粒。
(2)取2重量份的四羟甲基硫酸磷,加入到其重量50倍的去离子水中,搅拌均匀,加入3重量份的羟乙基纤维素,升高温度为85℃,保温搅拌22分钟,加入0.7重量份的乙氧基化烷基硫酸铵,搅拌至常温,得纤维分散液。
(3)取0.6重量份的2-硫醇基苯骈咪唑,加入到其重量8倍的无水乙醇中,搅拌均匀,与上述纤维分散液混合,送入到反应釜中,在95℃下保温搅拌2小时,出料,与0.3重量份的吡啶硫酮锌混合,搅拌至常温,得酯化分散液。
(4)取5重量份的烯丙基聚乙二醇,在70℃下保温20分钟,加入1重量份的甲基三乙氧基硅烷,继续保温搅拌10分钟,与上述羧基纳米颗粒混合,搅拌均匀,超声10分钟,得硅烷醇分散液。
(5)取80重量份的丙烯腈,加入到上述硅烷醇分散液中,搅拌均匀,加入1重量份的过氧化二异丙苯,送入到反应釜中,通入氮气,在75℃下保温搅拌1小时,出料,与上述酯化分散液混合,搅拌至常温,得硅烷聚合物溶液。
(6)取上述硅烷聚合物溶液与70重量份的高弹性纳米颗粒、40重量份的聚甲基丙烯酸甲酯、3重量份的三硬脂酸甘油酯以及1重量份的脂肪醇聚氧乙烯醚混合,400转/份搅拌20分钟,得多核-单壳结构凝胶聚合物。
其中,高弹性纳米颗粒为硫化橡胶;无机纳米颗粒为纳米氧化锆;基膜为聚丙烯多孔 薄膜,基膜的厚度为50μm,孔隙率为70%,平均孔径为1000nm。
将上述多核-单壳结构凝胶聚合物用涂覆机以涂布速度为40m/min涂布到基膜的一侧,涂布厚度为5μm,然后通过温度为80℃的热风烘干,即得包括基膜以及位于其一侧的多核-单壳结构凝胶聚合物涂层的多核-单壳结构凝胶聚合物涂覆隔膜。
实施例3
(1)取1重量份的2,2-二羟甲基丙酸,加入到其重量30倍的去离子水中,搅拌均匀,加入30重量份的无机纳米颗粒,在70℃下保温搅拌50分钟,过滤,常温干燥,得羧基纳米颗粒。
(2)取2重量份的四羟甲基硫酸磷,加入到其重量50倍的去离子水中,搅拌均匀,加入3重量份的羟乙基纤维素,升高温度为85℃,保温搅拌22分钟,加入0.7重量份的乙氧基化烷基硫酸铵,搅拌至常温,得纤维分散液。
(3)取0.6重量份的2-硫醇基苯骈咪唑,加入到其重量5倍的无水乙醇中,搅拌均匀,与上述纤维分散液混合,送入到反应釜中,在90℃下保温搅拌1小时,出料,与0.6重量份的吡啶硫酮锌混合,搅拌至常温,得酯化分散液。
(4)取4重量份的烯丙基聚乙二醇,在70℃下保温20分钟,加入0.4重量份的甲基三乙氧基硅烷,继续保温搅拌5分钟,与上述羧基纳米颗粒混合,搅拌均匀,超声10分钟,得硅烷醇分散液。
(5)取72重量份的丙烯腈,加入到上述硅烷醇分散液中,搅拌均匀,加入0.8重量份的过氧化二异丙苯,送入到反应釜中,通入氮气,在80℃下保温搅拌1小时,出料,与上述酯化分散液混合,搅拌至常温,得硅烷聚合物溶液。
(6)取上述硅烷聚合物溶液与70重量份的高弹性纳米颗粒、40重量份的聚甲基丙烯酸甲酯、2重量份的三硬脂酸甘油酯以及1重量份的脂肪醇聚氧乙烯醚混合,400转/份搅拌30分钟,得多核-单壳结构凝胶聚合物。
其中,高弹性纳米颗粒为丁苯橡胶;无机纳米颗粒为纳米碳酸钙;基膜为聚丙烯-聚乙烯-聚丙烯三层复合多孔薄膜,基膜的厚度为5μm,孔隙率为20%,平均孔径为10nm。
将上述多核-单壳结构凝胶聚合物用涂覆机以涂布速度为10m/min涂布到基膜的一侧,涂布厚度为0.5μm,然后通过温度为30℃的热风烘干,即得包括基膜以及位于其一侧的多核-单壳结构凝胶聚合物涂层的多核-单壳结构凝胶聚合物涂覆隔膜。
实施例4
(1)取1重量份的2,2-二羟甲基丙酸,加入到其重量30倍的去离子水中,搅拌均匀,加入20重量份的无机纳米颗粒,在70℃下保温搅拌49分钟,过滤,常温干燥,得羧基纳米颗粒。
(2)取2重量份的四羟甲基硫酸磷,加入到其重量41倍的去离子水中,搅拌均匀, 加入3重量份的羟乙基纤维素,升高温度为80℃,保温搅拌19分钟,加入0.7重量份的乙氧基化烷基硫酸铵,搅拌至常温,得纤维分散液。
(3)取0.6重量份的2-硫醇基苯骈咪唑,加入到其重量5倍的无水乙醇中,搅拌均匀,与上述纤维分散液混合,送入到反应釜中,在95℃下保温搅拌1小时,出料,与0.9重量份的吡啶硫酮锌混合,搅拌至常温,得酯化分散液。
(4)取3重量份的烯丙基聚乙二醇,70℃下保温16分钟,加入0.4重量份的甲基三乙氧基硅烷,继续保温搅拌7分钟,与上述羧基纳米颗粒混合,搅拌均匀,超声10分钟,得硅烷醇分散液。
(5)取79重量份的丙烯腈,加入到上述硅烷醇分散液中,搅拌均匀,加入0.8重量份的过氧化二异丙苯,送入到反应釜中,通入氮气,在75℃下保温搅拌1小时,出料,与上述酯化分散液混合,搅拌至常温,得硅烷聚合物溶液。
(6)取上述硅烷聚合物溶液与68重量份的高弹性纳米颗粒、28重量份的聚甲基丙烯酸甲酯、2重量份的三硬脂酸甘油酯以及1重量份的脂肪醇聚氧乙烯醚混合,400转/份搅拌20分钟,得多核-单壳结构凝胶聚合物。
其中,高弹性纳米颗粒为丁腈橡胶;无机纳米颗粒为纳米氧化铝;基膜为聚丙烯多孔薄膜,基膜的厚度为50μm,孔隙率为70%,平均孔径为1000nm。
将上述多核-单壳结构凝胶聚合物用涂覆机以涂布速度为30m/min涂布到基膜的一侧,涂布厚度为5μm,然后通过温度为50℃的热风烘干,即得包括基膜以及位于其一侧的多核-单壳结构凝胶聚合物涂层的多核-单壳结构凝胶聚合物涂覆隔膜。
实施例5
(1)取2重量份的2,2-二羟甲基丙酸,加入到其重量30倍的去离子水中,搅拌均匀,加入25重量份的无机纳米颗粒,在70℃下保温搅拌50分钟,过滤,常温干燥,得羧基纳米颗粒。
(2)取2重量份的四羟甲基硫酸磷,加入到其重量50倍的去离子水中,搅拌均匀,加入3重量份的羟乙基纤维素,升高温度85℃,保温搅拌22分钟,加入0.7重量份的乙氧基化烷基硫酸铵,搅拌至常温,得纤维分散液。
(3)取0.6重量份的2-硫醇基苯骈咪唑,加入到其重量7倍的无水乙醇中,搅拌均匀,与上述纤维分散液混合,送入到反应釜中,在95℃下保温搅拌1小时,出料,与0.3重量份的吡啶硫酮锌混合,搅拌至常温,得酯化分散液。
(4)取3重量份的烯丙基聚乙二醇,在70℃下保温16分钟,加入0.6重量份的甲基三乙氧基硅烷,继续保温搅拌5分钟,与上述羧基纳米颗粒混合,搅拌均匀,超声10分钟,得硅烷醇分散液。
(5)取70重量份的丙烯腈,加入到上述硅烷醇分散液中,搅拌均匀,加入0.8重量份的过氧化二异丙苯,送入到反应釜中,通入氮气,在80℃下保温搅拌1小时,出料,与 上述酯化分散液混合,搅拌至常温,得硅烷聚合物溶液。
(6)取上述硅烷聚合物溶液与70重量份的高弹性纳米颗粒、26重量份的聚甲基丙烯酸甲酯、2重量份的三硬脂酸甘油酯以及2重量份的脂肪醇聚氧乙烯醚混合,400转/份搅拌30分钟,得多核-单壳结构凝胶聚合物。
其中,高弹性纳米颗粒为丁腈-聚氯乙烯复合物弹性体;无机纳米颗粒为纳米钛酸钡;基膜为聚丙烯多孔薄膜,基膜的厚度为5μm,孔隙率为20%,平均孔径为10nm。
将上述多核-单壳结构凝胶聚合物用涂覆机以涂布速度为10m/min涂布到基膜的一侧,涂布厚度为4μm,然后通过温度为80℃的热风烘干,即得包括基膜以及位于其一侧的多核-单壳结构凝胶聚合物涂层的多核-单壳结构凝胶聚合物涂覆隔膜。
实施例6
(1)取2重量份的2,2-二羟甲基丙酸,加入到其重量30倍的去离子水中,搅拌均匀,加入25重量份的无机纳米颗粒,在65℃下保温搅拌41分钟,过滤,常温干燥,得羧基纳米颗粒。
(2)取2重量份的四羟甲基硫酸磷,加入到其重量46倍的去离子水中,搅拌均匀,加入3重量份的羟乙基纤维素,升高温度为80℃,保温搅拌16分钟,加入0.7重量份的乙氧基化烷基硫酸铵,搅拌至常温,得纤维分散液。
(3)取0.6重量份的2-硫醇基苯骈咪唑,加入到其重量8倍的无水乙醇中,搅拌均匀,与上述纤维分散液混合,送入到反应釜中,在95℃下保温搅拌1小时,出料,与0.3重量份的吡啶硫酮锌混合,搅拌至常温,得酯化分散液。
(4)取5重量份的烯丙基聚乙二醇,在70℃下保温19分钟,加入1重量份的甲基三乙氧基硅烷,继续保温搅拌5分钟,与上述羧基纳米颗粒混合,搅拌均匀,超声10分钟,得硅烷醇分散液。
(5)取70重量份的丙烯腈,加入到上述硅烷醇分散液中,搅拌均匀,加入0.8重量份的过氧化二异丙苯,送入到反应釜中,通入氮气,在80℃下保温搅拌2小时,出料,与上述酯化分散液混合,搅拌至常温,得硅烷聚合物溶液。
(6)取上述硅烷聚合物溶液与67重量份的高弹性纳米颗粒、20重量份的聚甲基丙烯酸甲酯、2重量份的三硬脂酸甘油酯以及1重量份的脂肪醇聚氧乙烯醚混合,400转/份搅拌30分钟,得多核-单壳结构凝胶聚合物。
其中,高弹性纳米颗粒为聚酯-聚醚;无机纳米颗粒为纳米氧化硅;基膜为聚丙烯多孔薄膜,基膜的厚度为50μm,孔隙率为70%,平均孔径为1000nm。
将上述多核-单壳结构凝胶聚合物用涂覆机以涂布速度为30m/min涂布到基膜的一侧,涂布厚度为4μm,然后通过温度为30℃的热风烘干,即得包括基膜以及位于其一侧的多核-单壳结构凝胶聚合物涂层的多核-单壳结构凝胶聚合物涂覆隔膜。
实施例7
(1)取1重量份的2,2-二羟甲基丙酸,加入到其重量30倍的去离子水中,搅拌均匀,加入23重量份的无机纳米颗粒,70℃下保温搅拌50分钟,过滤,常温干燥,得羧基纳米颗粒。
(2)取2重量份的四羟甲基硫酸磷,加入到其重量45倍的去离子水中,搅拌均匀,加入3重量份的羟乙基纤维素,升高温度为85℃,保温搅拌16分钟,加入0.7重量份的乙氧基化烷基硫酸铵,搅拌至常温,得纤维分散液。
(3)取0.6重量份的2-硫醇基苯骈咪唑,加入到其重量8倍的无水乙醇中,搅拌均匀,与上述纤维分散液混合,送入到反应釜中,在95℃下保温搅拌2小时,出料,与0.5重量份的吡啶硫酮锌混合,搅拌至常温,得酯化分散液。
(4)取3重量份的烯丙基聚乙二醇,在70℃下保温20分钟,加入0.4重量份的甲基三乙氧基硅烷,继续保温搅拌8分钟,与上述羧基纳米颗粒混合,搅拌均匀,超声10分钟,得硅烷醇分散液。
(5)取75重量份的丙烯腈,加入到上述硅烷醇分散液中,搅拌均匀,加入0.8重量份的过氧化二异丙苯,送入到反应釜中,通入氮气,在70℃下保温搅拌1小时,出料,与上述酯化分散液混合,搅拌至常温,得硅烷聚合物溶液。
(6)取上述硅烷聚合物溶液与65重量份的高弹性纳米颗粒、25重量份的聚甲基丙烯酸甲酯、2重量份的三硬脂酸甘油酯以及1重量份的脂肪醇聚氧乙烯醚混合,300转/份搅拌20分钟,得多核-单壳结构凝胶聚合物。
上述高弹性纳米颗粒为丁苯橡胶;无机纳米颗粒为纳米氧化硅;基膜为聚丙烯多孔薄膜,基膜的厚度为5μm,孔隙率为20%,平均孔径为10nm。
将上述多核-单壳结构凝胶聚合物用涂覆机以涂布速度为20m/min涂布到基膜的一侧,涂布厚度为4μm,然后通过温度为50℃的热风烘干,即得包括基膜以及位于其一侧的多核-单壳结构凝胶聚合物涂层的多核-单壳结构凝胶聚合物涂覆隔膜。
实施例8
(1)取1.5重量份的2,2-二羟甲基丙酸,加入到其重量25倍的去离子水中,搅拌均匀,加入60重量份的无机纳米颗粒,67.5℃下保温搅拌45分钟,过滤,常温干燥,得羧基纳米颗粒。
(2)取3重量份的四羟甲基硫酸磷,加入到其重量45倍的去离子水中,搅拌均匀,加入4重量份的羟乙基纤维素,升高温度为82.5℃,保温搅拌10分钟,加入1重量份的乙氧基化烷基硫酸铵,搅拌至常温,得纤维分散液。
(3)取1重量份的2-硫醇基苯骈咪唑,加入到其重量6.5倍的无水乙醇中,搅拌均匀,与上述纤维分散液混合,送入到反应釜中,在92.5℃下保温搅拌1.5小时,出料,与1重量份的吡啶硫酮锌混合,搅拌至常温,得酯化分散液。
(4)取4重量份的烯丙基聚乙二醇,在60℃下保温18分钟,加入0.7重量份的甲基三乙氧基硅烷,继续保温搅拌4分钟,与上述羧基纳米颗粒混合,搅拌均匀,超声15分钟,得硅烷醇分散液。
(5)取75重量份的丙烯腈,加入到上述硅烷醇分散液中,搅拌均匀,加入0.9重量份的过氧化二异丙苯,送入到反应釜中,通入氮气,在77.5℃下保温搅拌1.5小时,出料,与上述酯化分散液混合,搅拌至常温,得硅烷聚合物溶液。
(6)取上述硅烷聚合物溶液与65重量份的高弹性纳米颗粒、30重量份的聚甲基丙烯酸甲酯、2.5重量份的三硬脂酸甘油酯以及1.5重量份的脂肪醇聚氧乙烯醚混合,350转/份搅拌25分钟,得多核-单壳结构凝胶聚合物。
上述高弹性纳米颗粒为丁苯橡胶;无机纳米颗粒为纳米氧化硅;基膜为聚丙烯多孔薄膜,基膜的厚度为25μm,孔隙率为45%,平均孔径为500nm。
将上述多核-单壳结构凝胶聚合物用涂覆机以涂布速度为0.5m/min涂布到基膜的一侧,涂布厚度为2.5μm,然后通过温度为40℃的热风烘干,即得包括基膜以及位于其一侧的多核-单壳结构凝胶聚合物涂层的多核-单壳结构凝胶聚合物涂覆隔膜。
实施例9
(1)取1.5重量份的2,2-二羟甲基丙酸,加入到其重量25倍的去离子水中,搅拌均匀,加入60重量份的无机纳米颗粒,67.5℃下保温搅拌45分钟,过滤,常温干燥,得羧基纳米颗粒。
(2)取2.5重量份的四羟甲基硫酸磷,加入到其重量45倍的去离子水中,搅拌均匀,加入3.5重量份的羟乙基纤维素,升高温度为82.5℃,保温搅拌10分钟,加入0.85重量份的乙氧基化烷基硫酸铵,搅拌至常温,得纤维分散液。
(3)取0.8重量份的2-硫醇基苯骈咪唑,加入到其重量6倍的无水乙醇中,搅拌均匀,与上述纤维分散液混合,送入到反应釜中,在92.5℃下保温搅拌1.5小时,出料,与1重量份的吡啶硫酮锌混合,搅拌至常温,得酯化分散液。
(4)取4重量份的烯丙基聚乙二醇,在80℃下保温18分钟,加入0.7重量份的甲基三乙氧基硅烷,继续保温搅拌4分钟,与上述羧基纳米颗粒混合,搅拌均匀,超声12.5分钟,得硅烷醇分散液。
(5)取75重量份的丙烯腈,加入到上述硅烷醇分散液中,搅拌均匀,加入0.9重量份的过氧化二异丙苯,送入到反应釜中,通入氮气,在77.5℃下保温搅拌1.5小时,出料,与上述酯化分散液混合,搅拌至常温,得硅烷聚合物溶液。
(6)取上述硅烷聚合物溶液与65重量份的高弹性纳米颗粒、30重量份的聚甲基丙烯酸甲酯、2.5重量份的三硬脂酸甘油酯以及1.5重量份的脂肪醇聚氧乙烯醚混合,350转/份搅拌25分钟,得多核-单壳结构凝胶聚合物。
上述高弹性纳米颗粒为丁苯橡胶;无机纳米颗粒为纳米氧化硅;基膜为聚丙烯多孔薄 膜,基膜的厚度为25μm,孔隙率为45%,平均孔径为500nm。
将上述多核-单壳结构凝胶聚合物用涂覆机以涂布速度为0.5m/min涂布到基膜的一侧,涂布厚度为2.5μm,然后通过温度为40℃的热风烘干,即得包括基膜以及位于其一侧的多核-单壳结构凝胶聚合物涂层的多核-单壳结构凝胶聚合物涂覆隔膜。
实施例10
本实施例与实施例9的区别在于:各原料配比为:68重量份的高弹性纳米颗粒、30重量份的无机纳米颗粒、30重量份的聚甲基丙烯酸甲酯、79重量份的丙烯腈、0.9重量份的过氧化二异丙苯、5重量份的烯丙基聚乙二醇、0.6重量份的甲基三乙氧基硅烷、3重量份的四羟甲基硫酸磷、0.8重量份的2-硫醇基苯骈咪唑、3重量份的三硬脂酸甘油酯、1.5重量份的2,2-二羟甲基丙酸、0.9重量份的吡啶硫酮锌、0.8重量份的乙氧基化烷基硫酸铵、4重量份的羟乙基纤维素和1.5重量份的脂肪醇聚氧乙烯醚。
基膜的厚度为15μm,基膜的孔隙率为30%,基膜的平均孔径为100nm。
涂布速度为10m/min,涂布厚度为1μm。热风烘干的温度为40℃。
实施例11
本实施例与实施例9的区别在于:各原料配比为:70重量份的高弹性纳米颗粒、25重量份的无机纳米颗粒、40重量份的聚甲基丙烯酸甲酯、72重量份的丙烯腈、1重量份的过氧化二异丙苯、4重量份的烯丙基聚乙二醇、1重量份的甲基三乙氧基硅烷、2.5重量份的四羟甲基硫酸磷、1重量份的2-硫醇基苯骈咪唑、2.5重量份的三硬脂酸甘油酯、2重量份的2,2-二羟甲基丙酸、0.6重量份的吡啶硫酮锌、0.9重量份的乙氧基化烷基硫酸铵、3.5重量份的羟乙基纤维素和2重量份的脂肪醇聚氧乙烯醚。
基膜的厚度为40μm,基膜的孔隙率为60%,基膜的平均孔径为800nm。
涂布速度为30m/min,涂布厚度为4μm。热风烘干的温度为70℃。
实施例12
本实施例与实施例9的区别在于:各原料配比为:70重量份的高弹性纳米颗粒、30重量份的无机纳米颗粒、40重量份的聚甲基丙烯酸甲酯、72重量份的丙烯腈、0.95重量份的过氧化二异丙苯、4重量份的烯丙基聚乙二醇、0.8重量份的甲基三乙氧基硅烷、2.8重量份的四羟甲基硫酸磷、0.9重量份的2-硫醇基苯骈咪唑、2.8重量份的三硬脂酸甘油酯、1.8重量份的2,2-二羟甲基丙酸、0.6重量份的吡啶硫酮锌、0.85重量份的乙氧基化烷基硫酸铵、3.8重量份的羟乙基纤维素和1.8重量份的脂肪醇聚氧乙烯醚。
基膜的厚度为25μm,基膜的孔隙率为40%,基膜的平均孔径为400nm。
涂布速度为15m/min,涂布厚度为2μm。热风烘干的温度为50℃。
实施例13
本实施例与实施例12的区别在于:基膜的厚度为30μm,基膜的孔隙率为50%,基膜的平均孔径为500nm。涂布速度为25m/min,涂布厚度为3μm。热风烘干的温度为60℃。
实施例14
本实施例与实施例12的区别在于:高弹性纳米颗粒为聚氨酯弹性体与顺丁橡胶的混合物,无机纳米颗粒为纳米氧化钛与纳米蒙脱土的混合物,基膜为聚乙烯多孔薄膜和单面陶瓷涂覆隔膜复合而成的薄膜。
实施例15
本实施例与实施例12的区别在于:高弹性纳米颗粒为氟弹性体、硅氧烷以及丁腈橡胶的混合物,无机纳米颗粒为纳米硫酸钡、纳米氧化硅和纳米蒙脱土的混合物,基膜为双面陶瓷涂覆隔膜和无纺布隔膜复合而成的薄膜。
实施例16至实施例30分别对应上述实施例1至实施例15,实施例16-30与实施例1-15对应的区别在于:实施例16-30中是将多核-单壳结构凝胶聚合物涂布到基膜的两侧。
对比例1
本对比例提供一种氧化铝陶瓷涂层锂离子电池隔膜,包括聚丙烯隔膜和涂覆与涂覆于一侧的氧化铝涂层,其中聚丙烯隔膜的厚度为12μm,孔隙率为45%,氧化铝涂层的厚度为4μm。
对比例2
本对比例提供一种水性PVDF涂覆锂离子电池隔膜,包括聚丙烯隔膜与涂覆于两侧的PVDF涂层,其中聚丙烯隔膜的厚度为12μm,孔隙率为45%,涂层的厚度为2μm。
对比例3
本对比例采用厚度为12μm,孔隙率为45%的聚丙烯隔膜,表面不进行涂层处理。
试验例
以实施例4为例,其扫描电镜图如图1所示,其作用原理图如图2所示。将实施例4所得的多核-单壳结构凝胶聚合物涂覆隔膜组装成模型进行线性扫描,其电化学窗口如图3所示,由图3可以看出,该隔膜涂层的电化学窗口达到4.5V,与电解液体系相当,完全可运用于锂离子电池中。
以实施例5为例,分别对由实施例5中的多核-单壳结构凝胶聚合物涂覆隔膜、对比例2中的水性PVDF涂覆隔膜以及基膜组装的锂电池的循环性能、倍率性能以及放电曲线图(第1000个循环)分别如图4-6所示。
由图4-6可以看出,锂电池的循环性能为:随循环周期数的增加,由实施例5中的多核-单壳结构凝胶聚合物涂覆隔膜组装的锂电池的容量保持率高于由基膜组装的锂电池的 容量,且由基膜组装的锂电池的容量高于由对比例2中的水性PVDF涂覆隔膜组装的锂电池的容量。随电流的提高,由实施例5中的多核-单壳结构凝胶聚合物涂覆隔膜组装的锂电池的容量保持率高于由基膜组装的锂电池的容量,且由基膜组装的锂电池的容量高于由对比例2中的水性PVDF涂覆隔膜组装的锂电池的容量。相同容量下,由实施例5中的多核-单壳结构凝胶聚合物涂覆隔膜组装的锂电池的电压高于由基膜组装的锂电池的电压,且由基膜组装的锂电池的电压高于由对比例2中的水性PVDF涂覆隔膜组装的锂电池的电压。由实施例5中的多核-单壳结构凝胶聚合物涂覆隔膜制备的锂离子电池循环1000周后,容量保持率能达到90%以上,倍率性能在2C时,容量保持在50%以上。
以实施例6为例,用万能拉伸试验机将所得的多核-单壳结构凝胶聚合物涂覆隔膜与极片以80mm/min的速度剥离,隔膜与极片间的剥离强度为65N/mm,采用三点弯曲法测试电池的硬度为21.3N/cm,说明其表面硬度和韧性均较高,较基膜的表面硬度和韧性能够提高6-9%左右。
以实施例7为例,对其所得的多核-单壳结构凝胶聚合物涂覆隔膜进行吸液率测试,其结果显示,该隔膜对电解液的面吸液率为15g/m 2
对实施例3至7所得的多核-单壳结构凝胶聚合物涂覆隔膜和对比例1-3的锂离子电池隔膜进行离子电导率测试,隔膜组装成模拟电池,利用交流阻抗,测试隔膜的离子电导率,测试结果列于表1中。
表1隔膜离子电导率(×10 -3)
Figure PCTCN2018086432-appb-000001
由表1可知,在基膜上涂覆一层核-壳结构凝胶聚合物涂层,该涂层吸收大量的电解液凝胶后,无机-有机颗粒之间的微相分离作用提供大量可供离子传导的孔隙通道,有利于锂离子在隔膜中的迁移效率,离子电导率提高。
采用相同的测试方法,将实施例10-13所得的多核-单壳结构凝胶聚合物涂覆隔膜组装成模拟电池,测试隔膜的离子电导率。其结果显示,实施例10-13对应的离子电导率均高于实施例9对应的离子电导率,且实施例12与实施例13对应的离子电导率高于实施例10与实施例11对应的离子电导率,说明实施例12与实施例13的原料配比以及制备工艺较实施例10与实施例11更佳,且实施例10与实施例11的原料配比以及制备工艺较实施例9更佳。
此外,采用相同的测试方法,将实施例16-30的多核-单壳结构凝胶聚合物涂覆隔膜组装成模拟电池,测试隔膜的离子电导率。其电导率均高于对比例1-3,且实施例27与实施例28对应的离子电导率高于实施例25与实施例26对应的离子电导率,说明实施例27与实施例28的原料配比以及制备工艺较实施例25与实施例26更佳,且实施例25与实施例26的原料配比以及制备工艺较实施例24更佳。
以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。
以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。
工业实用性:
本发明提供的多核-单壳结构凝胶聚合物涂覆隔膜具有高离子电导率、高介电常数以及优异的电池性能。其制备方法简单实用,由此制得的成品质量好。其中,多核-单壳结构凝胶聚合物的制备方法有利于提高成品涂膜的稳定性强度、阻燃性、表面强度、韧性等综合性能。将多核-单壳结构凝胶聚合物涂覆隔膜用于锂离子电池中,包括用于制备凝胶态的聚合物锂离子电池,可使电池的制造效率、安全性以及一致性均得以提高。

Claims (17)

  1. 一种多核-单壳结构凝胶聚合物涂覆隔膜,其特征在于,包括基膜以及位于一侧或两侧的多核-单壳结构凝胶聚合物涂层,所述多核-单壳结构凝胶聚合物由下述原料组成:60-70重量份的高弹性纳米颗粒、20-30重量份的无机纳米颗粒、20-40重量份的聚甲基丙烯酸甲酯、70-80重量份的丙烯腈、0.8-1重量份的过氧化二异丙苯、3-5重量份的烯丙基聚乙二醇、0.4-1重量份的甲基三乙氧基硅烷、2-3重量份的四羟甲基硫酸磷、0.6-1重量份的2-硫醇基苯骈咪唑、2-3重量份的三硬脂酸甘油酯、1-2重量份的2,2-二羟甲基丙酸、0.3-1重量份的吡啶硫酮锌、0.7-1重量份的乙氧基化烷基硫酸铵、3-4重量份的羟乙基纤维素和1-2重量份的脂肪醇聚氧乙烯醚。
  2. 根据权利要求1所述的多核-单壳结构凝胶聚合物涂覆隔膜,其特征在于,所述多核-单壳结构凝胶聚合物由下述原料组成:68-70重量份的所述高弹性纳米颗粒、25-30重量份的所述无机纳米颗粒、30-40重量份的所述聚甲基丙烯酸甲酯、72-79重量份的所述丙烯腈、0.9-1重量份的所述过氧化二异丙苯、4-5重量份的所述烯丙基聚乙二醇、0.6-1重量份的所述甲基三乙氧基硅烷、2.5-3重量份的所述四羟甲基硫酸磷、0.8-1重量份的所述2-硫醇基苯骈咪唑、2.5-3重量份的所述三硬脂酸甘油酯、1.5-2重量份的所述2,2-二羟甲基丙酸、0.6-0.9重量份的所述吡啶硫酮锌、0.8-0.9重量份的所述乙氧基化烷基硫酸铵、3.5-4重量份的所述羟乙基纤维素和1.5-2重量份的所述脂肪醇聚氧乙烯醚。
  3. 根据权利要求2所述的多核-单壳结构凝胶聚合物涂覆隔膜,其特征在于,所述多核-单壳结构凝胶聚合物由下述原料组成:70重量份的所述高弹性纳米颗粒、30重量份的所述无机纳米颗粒、40重量份的所述聚甲基丙烯酸甲酯、72重量份的所述丙烯腈、0.95重量份的所述过氧化二异丙苯、4重量份的所述烯丙基聚乙二醇、0.8重量份的所述甲基三乙氧基硅烷、2.8重量份的所述四羟甲基硫酸磷、0.9重量份的所述2-硫醇基苯骈咪唑、2.8重量份的所述三硬脂酸甘油酯、1.8重量份的所述2,2-二羟甲基丙酸、0.6重量份的所述吡啶硫酮锌、0.85重量份的所述乙氧基化烷基硫酸铵、3.8重量份的所述羟乙基纤维素和1.8重量份的所述脂肪醇聚氧乙烯醚。
  4. 根据权利要求1-3任一项所述的多核-单壳结构凝胶聚合物涂覆隔膜,其特征在于,所述高弹性纳米颗粒为丁腈-聚氯乙烯复合物弹性体、硫化橡胶、聚氨酯弹性体、丁腈橡胶、丁苯橡胶、氟弹性体、聚酯-聚醚、顺丁橡胶和硅氧烷中的任意一种或由其中至少两种物质组成。
  5. 根据权利要求1-4任一项所述的多核-单壳结构凝胶聚合物涂覆隔膜,其特征在于:所述无机纳米颗粒为纳米氧化硅、纳米氧化铝、纳米钛酸钡、纳米氧化钛、纳米硫酸钡、纳米蒙脱土、纳米碳酸钙和纳米氧化锆中的任意一种或由其中至少两种物质组成。
  6. 根据权利要求1-5任一项所述的多核-单壳结构凝胶聚合物涂覆隔膜,其特征在于,所述基膜为聚丙烯多孔薄膜、聚乙烯多孔薄膜、聚丙烯-聚乙烯-聚丙烯三层复合多孔薄膜、单面陶瓷涂覆隔膜、双面陶瓷涂覆隔膜和无纺布隔膜中的任意一种或由其中至少两种膜组成。
  7. 根据权利要求1-5任一项所述的多核-单壳结构凝胶聚合物涂覆隔膜,其特征在于,所述基膜的厚度为5-50μm;优选地,所述基膜的厚度为15-40μm;更优地,所述基膜的厚 度为25-30μm。
  8. 根据权利要求1-7任一项所述的多核-单壳结构凝胶聚合物涂覆隔膜,其特征在于,所述基膜的孔隙率为20%-70%;优选地,所述基膜的孔隙率为30%-60%;更优地,所述基膜的孔隙率为40-50%。
  9. 根据权利要求1-8任一项所述的多核-单壳结构凝胶聚合物涂覆隔膜,其特征在于,所述基膜的平均孔径为10-1000nm;优选地,所述基膜的平均孔径为100-800nm;更优地,所述基膜的平均孔径为400-500nm。
  10. 如权利要求1-9任一项所述的多核-单壳结构凝胶聚合物涂覆隔膜中的所述多核-单壳结构凝胶聚合物的制备方法,其特征在于,包括以下步骤:
    混合所述2,2-二羟甲基丙酸与所述无机纳米颗粒,得羧基纳米颗粒;混合所述四羟甲基硫酸磷、所述羟乙基纤维素以及所述乙氧基化烷基硫酸铵,得纤维分散液;混合所述2-硫醇基苯骈咪唑、所述纤维分散液以及所述吡啶硫酮锌,得酯化分散液;混合所述烯丙基聚乙二醇、所述甲基三乙氧基硅烷以及所述羧基纳米颗粒,得硅烷醇分散液;混合所述丙烯腈、所述硅烷醇分散液、所述过氧化二异丙苯以及所述酯化分散液,得硅烷聚合物溶液;混合所述硅烷聚合物溶液、所述高弹性纳米颗粒、所述聚甲基丙烯酸甲酯、所述三硬脂酸甘油酯以及所述脂肪醇聚氧乙烯醚,得多核-单壳结构凝胶聚合物。
  11. 如权利要求10所述的多核-单壳结构凝胶聚合物涂覆隔膜中的所述多核-单壳结构凝胶聚合物的制备方法,其特征在于,包括以下步骤:
    (1)取所述2,2-二羟甲基丙酸,加入去离子水中,搅拌均匀,加入所述无机纳米颗粒,保温搅拌,过滤,常温干燥,得羧基纳米颗粒;
    可选地,步骤(1)中,所述2,2-二羟甲基丙酸与去离子水的重量比为(1:20)-(1:30);可选地,步骤(1)中,保温搅拌的温度为65-70℃;可选地,步骤(1)中,保温搅拌的时间为40-50分钟;
    (2)取所述四羟甲基硫酸磷,加入去离子水中,搅拌均匀,加入所述羟乙基纤维素,升高温度后保温搅拌,加入所述乙氧基化烷基硫酸铵,搅拌至常温,得纤维分散液;
    可选地,步骤(2)中,所述四羟甲基硫酸磷与去离子水的重量比为(1:41)-(1:50);可选地,步骤(2)中,升高温度后的温度为80-85℃;可选地,步骤(2)中,保温搅拌的时间为10-22分钟;
    (3)取所述2-硫醇基苯骈咪唑,加入无水乙醇中,搅拌均匀,与所述纤维分散液混合,送入到反应釜中,保温搅拌,出料,与所述吡啶硫酮锌混合,搅拌至常温,得酯化分散液;
    可选地,步骤(3)中,所述2-硫醇基苯骈咪唑与无水乙醇的重量比为(1:5)-(1:8);可选地,步骤(3)中,保温搅拌的温度为90-95℃;可选地,步骤(3)中,保温搅拌的时间为1-2小时;
    (4)取所述烯丙基聚乙二醇,加入所述甲基三乙氧基硅烷,保温搅拌,与所述羧基纳 米颗粒混合,搅拌均匀,得硅烷醇分散液;
    可选地,步骤(4)中加入所述甲基三乙氧基硅烷前,将所述烯丙基聚乙二醇于60-80℃的条件下保温16-20分钟;可选地,步骤(4)中,保温搅拌的时间为4-10分钟;可选地,步骤(4)中在与所述羧基纳米颗粒混合,搅拌均匀后还包括超声步骤,可选地,超声时间为10-15分钟;
    (5)取所述丙烯腈,加入到所述硅烷醇分散液中,搅拌均匀,加入所述过氧化二异丙苯,送入到反应釜中,通入氮气,保温搅拌,出料,与所述酯化分散液混合,搅拌至常温,得硅烷聚合物溶液;
    可选地,步骤(5)中,保温搅拌的温度为75-80℃;可选地,步骤(5)中,保温搅拌的时间为1-2小时;
    (6)取所述硅烷聚合物溶液,与所述高弹性纳米颗粒、所述聚甲基丙烯酸甲酯、所述三硬脂酸甘油酯混合,搅拌,即得所述多核-单壳结构凝胶聚合物;
    可选地,步骤(6)中的搅拌转速为300-400转/分钟;可选地,步骤(6)中的搅拌时间为20-30分钟。
  12. 一种多核-单壳结构凝胶聚合物涂覆隔膜,其特征在于,所述多核-单壳结构凝胶聚合物涂覆隔膜由如权利要求10或11所述的多核-单壳结构凝胶聚合物涂覆隔膜中的所述多核-单壳结构凝胶聚合物的制备方法制备而得。
  13. 如权利要求1-9任一项所述的多核-单壳结构凝胶聚合物涂覆隔膜的制备方法,其特征在于,包括以下步骤:将所述多核-单壳结构凝胶聚合物涂布到所述基膜的一侧或两侧,然后烘干;可选地,烘干采用热风烘干。
  14. 根据权利要求12所述的多核-单壳结构凝胶聚合物涂覆隔膜的制备方法,其特征在于,涂布速度为0.5-40m/min;优选地,涂布速度为10-30m/min;更优地,涂布速度为15-25m/min。
  15. 根据权利要求13或14所述的多核-单壳结构凝胶聚合物涂覆隔膜的制备方法,其特征在于,热风烘干的温度为30-80℃;优选地,热风烘干的温度为40-70℃;更优地,热风烘干的温度为50-60℃。
  16. 根据权利要求13-15任一项所述的多核-单壳结构凝胶聚合物涂覆隔膜的制备方法,其特征在于,涂布厚度介于0.5-5μm;优选地,涂布厚度介于1-4μm;更优地,涂布厚度介于2-3μm。
  17. 如权利要求1-9任一项所述的多核-单壳结构凝胶聚合物涂覆隔膜的应用,其特征在于,将所述多核-单壳结构凝胶聚合物涂覆隔膜用于制备锂电池;
    优选地,所述多核-单壳结构凝胶聚合物涂覆隔膜用于制备凝胶态的聚合物锂离子电池。
PCT/CN2018/086432 2017-06-13 2018-05-11 一种多核-单壳结构凝胶聚合物涂覆隔膜及其制备方法与应用 WO2018228099A1 (zh)

Priority Applications (6)

Application Number Priority Date Filing Date Title
PL18793160.5T PL3496184T3 (pl) 2017-06-13 2018-05-11 Membrana pokryta polimerem żelowym o strukturze z wieloma rdzeniami i jednym płaszczem oraz sposób jej wytwarzania i zastosowania
JP2018557138A JP6814816B2 (ja) 2017-06-13 2018-05-11 マルチコア−モノシェル構造のゲルポリマーコーティングセパレータ及びその製造方法と使用
FIEP18793160.5T FI3496184T3 (fi) 2017-06-13 2018-05-11 Moniytiminen monoshell-rakenteinen geelipolymeeripinnoitettu kalvo, sen valmistus ja käyttö
DK18793160.5T DK3496184T3 (da) 2017-06-13 2018-05-11 Multikerne/enkeltskal-struktureret gelpolymer-coatet membran samt fremstillingsfremgangsmåde og anvendelse deraf
EP18793160.5A EP3496184B1 (en) 2017-06-13 2018-05-11 Multi-core/single-shell structure gel polymer-coated diaphragm, and manufacturing method and use thereof
KR1020187031544A KR102197146B1 (ko) 2017-06-13 2018-05-11 멀티 코어-모노 쉘 구조의 겔 중합체 코팅 세퍼레이터 및 그 제조방법과 응용

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710445470.2A CN107230766B (zh) 2017-06-13 2017-06-13 一种多核-单壳结构凝胶聚合物涂覆隔膜及其制备方法
CN201710445470.2 2017-06-13

Publications (1)

Publication Number Publication Date
WO2018228099A1 true WO2018228099A1 (zh) 2018-12-20

Family

ID=59935369

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/086432 WO2018228099A1 (zh) 2017-06-13 2018-05-11 一种多核-单壳结构凝胶聚合物涂覆隔膜及其制备方法与应用

Country Status (10)

Country Link
US (1) US10978687B2 (zh)
EP (1) EP3496184B1 (zh)
JP (1) JP6814816B2 (zh)
KR (1) KR102197146B1 (zh)
CN (1) CN107230766B (zh)
DK (1) DK3496184T3 (zh)
FI (1) FI3496184T3 (zh)
HU (1) HUE063308T2 (zh)
PL (1) PL3496184T3 (zh)
WO (1) WO2018228099A1 (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107230766B (zh) * 2017-06-13 2019-10-18 深圳市星源材质科技股份有限公司 一种多核-单壳结构凝胶聚合物涂覆隔膜及其制备方法
CN111987277B (zh) * 2019-05-22 2022-11-08 聚和国际股份有限公司 多孔性载体以及电化学装置隔离膜
CN110707357B (zh) * 2019-10-23 2021-05-07 北京卫蓝新能源科技有限公司 一种核壳结构的凝胶聚合物电解质及其制备方法和应用
CN110854343B (zh) * 2019-11-26 2022-08-23 浙江理工大学 一种皮芯结构纤维素改性纳米纤维锂电池隔膜的制备方法
CN112521779A (zh) * 2020-11-30 2021-03-19 深圳市博盛新材料有限公司 锂离子电池隔膜涂料、锂离子电池隔膜和锂离子电池
CN112993490B (zh) * 2021-03-03 2023-06-09 广州鹏辉能源科技股份有限公司 锂电池隔膜及其制备方法和应用
CN113201181A (zh) * 2021-05-19 2021-08-03 哈尔滨理工大学 一种场致增强型非线性电导聚乙烯复合绝缘材料制备方法
CN115155469B (zh) * 2022-07-26 2023-10-27 中国科学院苏州纳米技术与纳米仿生研究所 水溶性ib族贵金属亚10纳米胶粒、其制备方法及应用
US12006387B1 (en) 2022-11-14 2024-06-11 Piersica, Inc. Polymer composition and methods for making same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006182925A (ja) * 2004-12-28 2006-07-13 Hitachi Maxell Ltd コアシェル型微粒子、および該微粒子を有するリチウム二次電池
CN105602309A (zh) * 2015-12-28 2016-05-25 深圳市星源材质科技股份有限公司 一种高弹性导离子涂层浆料及其锂离子电池隔膜制备方法
CN106519872A (zh) * 2016-12-01 2017-03-22 深圳市星源材质科技股份有限公司 一种涂层浆料、锂离子电池隔膜及其制备方法
CN107230766A (zh) * 2017-06-13 2017-10-03 深圳市星源材质科技股份有限公司 一种多核‑单壳结构凝胶聚合物涂覆隔膜及其制备方法

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE60144235D1 (de) * 2000-08-12 2011-04-28 Lg Chemical Ltd Zusammengesetzter film mit mehreren komponenten und verfahren zu seiner herstellung
US7008722B2 (en) 2002-04-10 2006-03-07 Sui-Yang Huang Polymer-gel lithium ion battery
KR100858801B1 (ko) * 2002-07-27 2008-09-17 삼성에스디아이 주식회사 고분자 전해질 및 이를 채용한 리튬 전지
JP4414165B2 (ja) * 2003-08-07 2010-02-10 株式会社巴川製紙所 電子部品用セパレータおよび電子部品
JP4743747B2 (ja) * 2004-12-08 2011-08-10 日立マクセル株式会社 セパレータおよびその製造方法、並びに非水電解質電池
CN101563807B (zh) * 2006-10-12 2011-10-05 日油株式会社 离子导电聚合物电解质以及使用其的二次电池
EP2705093B1 (en) * 2011-05-04 2018-01-17 Cornell University Shape memory polymer material compositions, methods, and applications
CN102244223A (zh) * 2011-05-26 2011-11-16 东莞新能源科技有限公司 电化学装置及其无机/有机复合多孔性薄膜
KR20130081549A (ko) * 2012-01-09 2013-07-17 도레이첨단소재 주식회사 내구성과 고온 안정성이 우수한 고분자 전해질 조성물 및 이를 이용한 리튬전지
US9187622B2 (en) * 2012-02-09 2015-11-17 Samsung Sdi Co., Ltd. Composite binder for battery, and anode and battery including the composite binder
US9397341B2 (en) * 2012-10-10 2016-07-19 Nthdegree Technologies Worldwide Inc. Printed energy storage device
US10038174B2 (en) * 2013-04-16 2018-07-31 Samsung Sdi Co., Ltd. Separator and lithium battery including the separator
CN103474666B (zh) * 2013-07-23 2016-03-02 江苏华东锂电技术研究院有限公司 锂离子电池负极活性材料的制备方法
CN103474601A (zh) 2013-08-23 2013-12-25 江苏华东锂电技术研究院有限公司 复合隔膜及其制备方法,以及锂离子电池
CN103996815A (zh) * 2014-06-04 2014-08-20 深圳市星源材质科技股份有限公司 单面聚合物涂覆隔膜及其制备方法
CN104282865B (zh) * 2014-09-03 2017-01-11 深圳中兴创新材料技术有限公司 一种凝胶聚合物涂层复合膜的制备方法及电池隔膜
KR102181313B1 (ko) * 2015-04-02 2020-11-26 주식회사 엘지화학 리튬 이차전지용 세퍼레이터 및 그의 제조방법
CN104852006A (zh) * 2015-04-13 2015-08-19 江苏华东锂电技术研究院有限公司 复合隔膜及其制备方法,以及锂离子电池
CN105047845A (zh) * 2015-06-19 2015-11-11 深圳市星源材质科技股份有限公司 一种高介电常数的纳米复合涂层隔膜及其制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006182925A (ja) * 2004-12-28 2006-07-13 Hitachi Maxell Ltd コアシェル型微粒子、および該微粒子を有するリチウム二次電池
CN105602309A (zh) * 2015-12-28 2016-05-25 深圳市星源材质科技股份有限公司 一种高弹性导离子涂层浆料及其锂离子电池隔膜制备方法
CN106519872A (zh) * 2016-12-01 2017-03-22 深圳市星源材质科技股份有限公司 一种涂层浆料、锂离子电池隔膜及其制备方法
CN107230766A (zh) * 2017-06-13 2017-10-03 深圳市星源材质科技股份有限公司 一种多核‑单壳结构凝胶聚合物涂覆隔膜及其制备方法

Also Published As

Publication number Publication date
EP3496184A4 (en) 2019-08-28
EP3496184A1 (en) 2019-06-12
CN107230766B (zh) 2019-10-18
PL3496184T3 (pl) 2023-11-27
EP3496184B1 (en) 2023-06-21
KR102197146B1 (ko) 2020-12-30
KR20190008851A (ko) 2019-01-25
CN107230766A (zh) 2017-10-03
US20180358597A1 (en) 2018-12-13
JP2019521469A (ja) 2019-07-25
HUE063308T2 (hu) 2024-01-28
DK3496184T3 (da) 2023-07-24
JP6814816B2 (ja) 2021-01-20
FI3496184T3 (fi) 2023-09-01
US10978687B2 (en) 2021-04-13

Similar Documents

Publication Publication Date Title
WO2018228099A1 (zh) 一种多核-单壳结构凝胶聚合物涂覆隔膜及其制备方法与应用
CN107799699B (zh) 一种黏土矿物复合锂电池隔膜及其制备方法
WO2016201757A1 (zh) 一种高介电常数的纳米复合涂层隔膜及其制备方法
CN109841796B (zh) 电极制备方法及电池
CN105551830B (zh) 一种活性石墨烯/活性炭复合电极片的制备方法
CN109473609B (zh) 一种有机/无机交联复合锂离子电池隔膜及其制备方法与应用
JP2019057487A (ja) リチウムイオン電池用バインダー水溶液、リチウムイオン電池用スラリー及びその製造方法、リチウムイオン電池用電極、リチウムイオン電池用セパレータ、リチウムイオン電池用セパレータ/電極積層体、並びにリチウムイオン電池
CN105206777B (zh) 含锂离子传导多孔无机氧化物的锂电池隔膜及其制备方法
WO2021155503A1 (zh) 负极片、电极组件、电池和电子装置
JP2012119078A (ja) 蓄電デバイス用電極合剤の製造方法
CN109119574B (zh) 基于交联与线形聚合物的多孔性锂离子电池隔膜及其制备方法与应用
WO2019128643A1 (zh) 固态电解质及其制备方法和全固态电池
CN108630462A (zh) 一种纳米纤维基一体化薄膜超级电容器及其制备方法
CN106486694B (zh) 一种高能量密度三元nca电池及其制备方法
CN107069008B (zh) 硅碳负极材料及其制备方法
CN111180641A (zh) 一种具有自交联作用的隔膜及其制备方法
CN110010824B (zh) 一种聚烯烃锂离子电池隔膜改性方法
CN114050234B (zh) 一种负极片及包括该负极片的锂离子电池
CN113506949A (zh) 一种具有微纳米多孔结构的芳纶纳米纤维基电池隔膜的制备方法
CN114725616A (zh) 一种无机杂化芳纶纳米纤维隔膜、制备方法及其在锂电池中的应用
JP4483784B2 (ja) 電気二重層キャパシタ電極用バインダー
CN113725013A (zh) 一种无集流体电极的制备方法及在超级电容器中的应用
CN107154496B (zh) 一种制备石墨烯/锰酸钠柔性薄膜的方法及利用其制备水系钠锌复合电池的方法
KR20170029235A (ko) 이온성 무기입자가 포함된 코팅 조성물 및 이를 이용한 레독스 흐름 전지용 분리막
CN110911619A (zh) 锂电池隔膜及其制备方法和锂电池

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 20187031544

Country of ref document: KR

Kind code of ref document: A

Ref document number: 2018557138

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18793160

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018793160

Country of ref document: EP

Effective date: 20190308

NENP Non-entry into the national phase

Ref country code: DE