WO2018227676A1 - 一种实时测量突水过程中颗粒流失的试验***及方法 - Google Patents

一种实时测量突水过程中颗粒流失的试验***及方法 Download PDF

Info

Publication number
WO2018227676A1
WO2018227676A1 PCT/CN2017/092119 CN2017092119W WO2018227676A1 WO 2018227676 A1 WO2018227676 A1 WO 2018227676A1 CN 2017092119 W CN2017092119 W CN 2017092119W WO 2018227676 A1 WO2018227676 A1 WO 2018227676A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
particle
screen
particles
soil
Prior art date
Application number
PCT/CN2017/092119
Other languages
English (en)
French (fr)
Inventor
王迎超
耿凡
杨圣奇
张强
靖洪文
韩立军
孟凡树
赵宁
孟波
孟庆彬
Original Assignee
中国矿业大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国矿业大学 filed Critical 中国矿业大学
Priority to US16/344,319 priority Critical patent/US20200116610A1/en
Priority to CA3050020A priority patent/CA3050020C/en
Publication of WO2018227676A1 publication Critical patent/WO2018227676A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/02Devices for withdrawing samples
    • G01N1/10Devices for withdrawing samples in the liquid or fluent state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B07SEPARATING SOLIDS FROM SOLIDS; SORTING
    • B07BSEPARATING SOLIDS FROM SOLIDS BY SIEVING, SCREENING, SIFTING OR BY USING GAS CURRENTS; SEPARATING BY OTHER DRY METHODS APPLICABLE TO BULK MATERIAL, e.g. LOOSE ARTICLES FIT TO BE HANDLED LIKE BULK MATERIAL
    • B07B1/00Sieving, screening, sifting, or sorting solid materials using networks, gratings, grids, or the like
    • B07B1/28Moving screens not otherwise provided for, e.g. swinging, reciprocating, rocking, tilting or wobbling screens
    • B07B1/40Resonant vibration screens
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B07SEPARATING SOLIDS FROM SOLIDS; SORTING
    • B07BSEPARATING SOLIDS FROM SOLIDS BY SIEVING, SCREENING, SIFTING OR BY USING GAS CURRENTS; SEPARATING BY OTHER DRY METHODS APPLICABLE TO BULK MATERIAL, e.g. LOOSE ARTICLES FIT TO BE HANDLED LIKE BULK MATERIAL
    • B07B1/00Sieving, screening, sifting, or sorting solid materials using networks, gratings, grids, or the like
    • B07B1/46Constructional details of screens in general; Cleaning or heating of screens
    • B07B1/4609Constructional details of screens in general; Cleaning or heating of screens constructional details of screening surfaces or meshes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/34Purifying; Cleaning
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/02Investigating particle size or size distribution
    • G01N15/0272Investigating particle size or size distribution with screening; with classification by filtering
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/24Earth materials
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N5/00Analysing materials by weighing, e.g. weighing small particles separated from a gas or liquid
    • G01N5/04Analysing materials by weighing, e.g. weighing small particles separated from a gas or liquid by removing a component, e.g. by evaporation, and weighing the remainder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B07SEPARATING SOLIDS FROM SOLIDS; SORTING
    • B07BSEPARATING SOLIDS FROM SOLIDS BY SIEVING, SCREENING, SIFTING OR BY USING GAS CURRENTS; SEPARATING BY OTHER DRY METHODS APPLICABLE TO BULK MATERIAL, e.g. LOOSE ARTICLES FIT TO BE HANDLED LIKE BULK MATERIAL
    • B07B2201/00Details applicable to machines for screening using sieves or gratings
    • B07B2201/04Multiple deck screening devices comprising one or more superimposed screens
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/02Devices for withdrawing samples
    • G01N1/10Devices for withdrawing samples in the liquid or fluent state
    • G01N2001/1006Dispersed solids
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N2015/0042Investigating dispersion of solids
    • G01N2015/0053Investigating dispersion of solids in liquids, e.g. trouble

Definitions

  • the invention relates to a test system for real-time automatic measurement of particle loss in a tunnel water inrush test process, and belongs to the field of tunnel engineering geological disaster model test.
  • the present invention reduces the workload of scientific researchers by fully automated measurement, automatically stores various parameter data and uploads the data to a designated receiving system for scientific analysis, comparison, and statistics.
  • the present invention provides an automatic screening, automatic weighing and simulation of the loss of soil particles and the distribution of water inrush during tunnel water inrush, and can be symmetric at any time.
  • a system for automatic screening weighing for query analysis is recorded.
  • a test system for real-time measurement of particle loss during water inrush comprising a vibrating screening device, a water collecting device, a transport device, a weighing device, and an acquisition computing device, wherein:
  • the vibrating screening device is used for sifting the soil particles lost during the water inrush by vibration
  • the water collecting device is configured to collect water flowing out during the water inrush process, measure the quality of the water, and transmit the measured water quality to the collecting operation device;
  • a transport device for transporting the sieved soil particles to a weighing device
  • the weighing device is configured to weigh the weight of the sieved soil particles, and transfer the measured weight of the soil particles to the collecting operation device;
  • the acquisition operation device is used for controlling the operation of the experimental system, inputting parameters, and calculating the total distribution rule of particles of different particle sizes according to the input parameters, the quality of the returned water and the weight of the soil particles, and different time intervals. Diameter granule Loss weight and water loss;
  • the vibrating screening device comprises three or more vibrating screen boxes, a drawer type bracket and a screening vibrating table; the three or more vibrating screen boxes are placed on a drawer type bracket, and the drawer type bracket is placed on the screening vibration
  • the top of the drawer bracket is provided with a water inlet
  • each side of the vibrating screen box is provided with a soil particle outlet
  • the interior is provided with a screen
  • the frame of the screen is connected with the soil particle outlet
  • the vibrating screen box is arranged from top to bottom according to the grid of the corresponding screen from the largest to the smallest, and the bottom of the bottom of the bottom vibrating screen box is provided with a water outlet;
  • the water collecting device includes a pressure sensor and a water collecting tank, the pressure sensor is disposed at an inner bottom of the water collecting tank, and the screening vibration table is mounted on the water collecting tank by a spring;
  • the transport device comprises a soil particle transport passage, a pusher mechanism and a small platform; the soil particle outlet is connected to an inlet end of the soil particle transport passage, and the outlet end of the soil particle transport passage is connected to the inlet end of the small platform
  • the pusher mechanism is configured to push the soil particles sieved by the screening device to a weighing device for weighing;
  • the weighing device includes a particle collecting box, an electronic scale and a platform bracket; an outlet end of the small platform is connected to one end of the particle collecting box, and the particle collecting box is disposed on the electronic scale, the electron The scale is arranged on the platform bracket;
  • the acquisition computing device includes a controller for controlling operation of the experimental system, and a computer storage device for storing and calculating data returned by the electronic scale and the pressure sensor;
  • a storage device is coupled to the controller, the controller is coupled to an electronic scale, and the controller is further coupled to the screening shaker, the fader mechanism, and the pressure sensor.
  • the frequency of the vibration of the screening vibration table is controlled by the controller, and the mesh diameter parameter and the number of screens can be input to the computer storage device connected through the controller, and the parameters are input into the computer to calculate different particles.
  • the pusher mechanism comprises a brush, a slide rail, a transmission belt, a servo motor, a pair of tensioning pulleys, a driving wheel, a driven wheel 1 and a driven wheel 2; the sliding rails along the screen, the soil particle transport passage and The small platform is arranged, the driving wheel is fixed at the end of the sliding rail, the driven wheel is fixed at the starting end of the sliding rail, and the driven wheel 2 is fixed on the sliding rail at the intersection of the soil particle transporting passage and the small platform, and the driving wheel passes through the transmission belt and
  • the driven wheel 1 and the driven wheel are connected by a drive, and the servo motor is connected to the driving wheel through a coupling; the brush is slidably connected with the sliding rail, and one end of the driving belt is fixed on one of the pair of tensioning wheels.
  • the other end of the transmission belt is fixed on the other of the pair of tensioning pulleys; and the tensioning pulley is fixed on the brush; thereby realizing the reciprocating motion of the brush from the screen to the outlet end of the small platform; the pusher mechanism pushes The frequency is controlled by the controller.
  • the joint between the soil particle transport passage, the small platform and the screen is hinged, so that the inclination angle of the soil particle transport passage is adjusted according to actual needs.
  • the bottom surface of the bottommost vibrating screen box is provided with a certain inclination angle, and the lower end of the bottom surface is the water outlet side, and the higher end of the bottom surface is away from the water outlet side.
  • the vibrating screen box is a rectangular parallelepiped screen box, and the screen mesh is a rectangular screen.
  • the screen material is made of stainless steel, and the vibrating screen box body is made of iron.
  • the screening shaker comprises an electromagnet.
  • the screen, the transport device and the weighing device are arranged one by one;
  • a test method for real-time measurement of particle loss during water inrush comprising the following steps:
  • the mass data obtained by the electronic scale and the mass of water obtained by the pressure sensor are used to calculate the total distribution of particles of different particle sizes, and particles of different diameters in each time interval. Loss weight and water loss.
  • the invention has the following beneficial effects:
  • the vibrating screen box of each level is free from the traditional circular structure, and adopts a rectangular parallelepiped structure, which can be freely opened and closed like a drawer. This will help us to change the screen specifications as needed, and it is very easy to control the size of the mesh grid and the number of layers of the screen, which is more practical.
  • the invention realizes the continuous data by connecting the weighing device and the water collecting device with the computer storage device, not only can obtain continuous quality change, but also is convenient to query and analyze the data after being stored, Contrast and statistical operations have greatly reduced the workload.
  • the device is automatically screened, automatically weighed and automatically calculated; the soil particle transport channel and the small platform and the screen are hinged, and the screening vibration table includes an electromagnet, which achieves a stable structure, convenient use and easy disassembly. Achieve the goal of improving screening and weighing efficiency.
  • the device can not only be used to measure the distribution of different solid particle loss in the simulated tunnel water inrush test, but also can be used to measure the gradation analysis of other solid particles, and the scope of use is very wide.
  • 1 is a test system for measuring particle loss in a water inrush process in real time according to the present invention
  • FIG. 2 is a screening device and a water collecting device of a test system for real-time measurement of particle loss in a water inrush process according to the present invention
  • 3 is a transport device, a weighing device and an acquisition computing device of a test system for real-time measurement of particle loss during water inrush in the present invention.
  • Figure 1 shows a test system for real-time measurement of particle loss during water inrush, including a vibrating screening device, a water collecting device, a transport device, a weighing device, and an acquisition computing device, wherein:
  • the vibrating screening device is used for sifting the soil particles lost during the water inrush by vibration
  • the water collecting device is configured to collect water flowing out during the water inrush process, measure the quality of the water, and transmit the measured water quality to the collecting operation device;
  • a transport device for transporting the sieved soil particles to a weighing device
  • the weighing device is configured to weigh the weight of the sieved soil particles, and transfer the measured weight of the soil particles to the collecting operation device;
  • the acquisition operation device is used for controlling the operation of the experimental system, inputting parameters, and calculating the total distribution rule of particles of different particle sizes according to the input parameters, the quality of the returned water and the weight of the soil particles, and different time intervals.
  • the vibrating screening device comprises three vibrating screen boxes 2, a drawer bracket and a screening vibrating table 3; the three vibrating screen boxes 2 are placed on a drawer bracket, the drawer bracket Placed on the sieve vibrating table 3, and the top of the drawer bracket is provided with a water inlet; each side of the vibrating screen box 2 is provided with a soil particle outlet, and the inside is equipped with a screen, and the screen is The frame is intersected with the soil particle outlet, and the vibrating screen box 2 is arranged in order from top to bottom according to the grid of the corresponding screen, and the bottom of the bottom layer of the bottom vibrating screen box 2 is provided with a water outlet.
  • the bottom surface of the lowermost vibrating screen box is provided with a certain inclination angle, and the lower end of the bottom surface is the side of the water outlet, and the higher end of the bottom surface is away from the water outlet side; the number of layers of the screen 1 and the screen 1
  • the grid size is adjustable, and the screen 1 grid diameter parameter can be input to the computer storage device 9 connected through the controller 10, and the parameter is input through the computer storage device 9 to calculate the total distribution rule of the particles of different particle sizes. And the ratio of the loss of particles of different diameters in each time interval .
  • the vibrating screen box 2 is a rectangular parallelepiped box, and the screen 1 is a rectangular screen which can be freely opened and closed like a drawer.
  • the rectangular screen 1 material is made of stainless steel
  • the box of the vibrating screen box 2 is made of iron, and in order to prevent the vibrating screen box 2 from being unstable due to vibration during the screening process, the screening vibrating table 3 is energized. It has a magnet effect behind to keep the unit stable.
  • the water collecting device includes a pressure sensor and a water collecting tank, the pressure sensor is disposed at an inner bottom of the water collecting tank, and the screening vibration table 3 is mounted on the water collecting tank by a spring;
  • the transport device includes a soil particle transport passage 4, a pusher mechanism 5, and a small platform 8; the soil particle outlet is connected to an inlet end of the soil particle transport passage 4, and the soil particle transport passage 4 The outlet end is connected to the inlet end of the small platform 8, and the pusher mechanism 5 is used for pushing the soil particles sieved by the screening device to the weighing device for weighing;
  • the pusher mechanism 5 includes a brush and a slippery Rail, transmission belt, servo motor, pair of tensioning pulleys, driving wheel, driven wheel 1 and driven wheel 2;
  • the sliding rail is arranged along the screen 1, the soil particle transport passage 4 and the small platform 8, the driving wheel is fixed at At the end of the slide rail, the driven wheel is fixed at the start end of the slide rail, and the driven wheel 2 is fixed on the slide rail at the intersection of the soil particle transport passage and the small platform, and the drive wheel is connected to the driven wheel and the driven wheel through the transmission belt.
  • the servo motor is connected to the driving wheel through a coupling; the brush is slidably connected to the sliding rail, one end of the driving belt is fixed on one of a pair of tensioning wheels, and the other end of the driving belt is fixed at one end On the other side of the tensioner; The tensioning wheel is fixed on the brush; thereby realizing the reciprocating motion of the brush from the screen 1 to the outlet end of the small platform 8; adding the small platform 8 allows the large particles to fall from the soil particle transport passage without directly impacting the particles
  • the collection box caused the electronic scale to show excessive weight.
  • the soil particle transport passage 4, the small platform 8 and the screen 1 are hinged, and the inclination angle of the soil particle transport passage 4 can be adjusted according to actual needs.
  • the weighing device comprises a particle collecting box 6, an electronic scale 7 and a platform support; an outlet end of the small platform 8 is connected to one end of the particle collecting box 6, and the particle collecting box 6 is disposed on the electronic scale 7 , the electronic scale 7 is disposed on the platform bracket; the screen 1, the transport device, the weighing device are arranged one by one;
  • the acquisition computing device includes a controller 10 for controlling operation of the experimental system, and a computer storage device for storing and calculating data returned by the electronic scale and the pressure sensor;
  • the computer storage device 9 is connected to the controller 10, and the controller 10 is connected to an electronic scale 7, which is also connected to the screening vibration table 3, the fader mechanism 5, and the pressure sensor.
  • the sifted soil particles that need to be screened by the vibrating screening device are provided by the water inrush test. It is necessary to ensure that the screening device is located at the lower part of the water inrush position, and try to ensure that the lost water and soil particles fall in the middle part, according to the screening scheme. It is required to flexibly configure rectangular screens 1 of various grid diameters to meet the needs of field experiments; the soil particles passing through the sieve screen of the layer in one time interval are transported to the respective weighing devices by the fader mechanism 5 Up, wherein the frequency of movement of the fader mechanism 5 can be controlled by the controller 10, and the vibration frequency of the sieve shaker 3 can be adjusted by the controller 10.
  • the total amount of water inrush is also an indispensable data, so there is a water outlet at the bottom of the screening device, through which the protruding water is collected, in order to obtain the amount of water inrush during each time of the water inrush,
  • the bottom surface of the bottom vibrating screen box is provided with a certain inclination angle, and a water collecting tank is placed under the device for collecting water, and the data is recorded and transmitted to the storage device in real time using a pressure sensor, and is analyzed and calculated together with the quality of the particles.
  • the particle collection box 6 is placed on the electronic scale 7, the data is recorded every 5 s and then recorded by digital signal transmission.
  • a test method for real-time measurement of particle loss during water inrush comprising the following steps:
  • the mass data obtained by the electronic scale and the mass of water obtained by the pressure sensor are used to calculate the total distribution of particles of different particle sizes, and particles of different diameters in each time interval. Loss weight and water loss.
  • the system can not only be used to automatically weigh the quality of particles of different particle sizes during the water inrush process, but also to measure the gradation analysis of other solid particles. It is only necessary to select the sieve 1 of the appropriate size according to the screening object. If it is only necessary to measure the particle gradation of the sample, the weighing device, the water collecting device, the transport device and the collecting and calculating device can be removed, and only the sieving device is left, and after sieving, the particles on each layer of the sieve 1 are poured. Weigh on the electronic scale 7.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Geology (AREA)
  • Dispersion Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Remote Sensing (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Combined Means For Separation Of Solids (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)
  • Separation Of Solids By Using Liquids Or Pneumatic Power (AREA)

Abstract

一种用来实时测量突水过程中不同粒径的土颗粒流失的试验***,用来研究突水过程中颗粒大小的影响。***主要分为用于通过振动来筛分突水过程中流失的土颗粒的振动筛分装置、用于收集突水过程中流出的水、测量水的质量并将测得的水的质量传给采集运算装置的集水装置、用于将筛分出的土颗粒运送到称量装置的运输装置、用于称量筛分出的土颗粒的重量,并将测得的土颗粒的重量传给采集运算装置的称量装置;用于控制实验***的运行,输入参数和计算数据的采集运算装置;试验***的特色是能够实时自动测量隧道模拟突水过程中的颗粒流失情况,为研究隧道突水过程中充填物的颗粒大小对突水的影响提供依据。

Description

一种实时测量突水过程中颗粒流失的试验***及方法 技术领域
本发明涉及一种用于实时自动测量隧道突水试验过程颗粒流失的试验***,属于隧道工程地质灾害模型试验领域。
背景技术
随着交通和水利水电重大基础设施工程的建设,我国已成为世界上隧道修建规模与难度最大的国家。特别是随着重大工程建设重心向地形地质极端复杂的西部山区与岩溶地区转移,正在或即将修建大量的高风险深长隧道工程,建设过程中极易遭遇突水重大灾害,严重影响了隧道工程建设安全。
对于隧道突水模拟实验过程中土颗粒的收集分析,目前都是采取整体收集,并不能获得不同时间点的土颗粒的颗粒级配,只能够等突水过程结束后再进行筛析分析,这样不利于我们对实验过程的分析。
同时,目前大部分振动筛分装置还需要人工操作,需要耗费大量的人力,物力,而且后续的处理工作也是很繁琐的。但本发明通过全自动化的测量减少科研人员工作量,将各种参数数据自动存储并将数据上传至指定接收***,以便科学的对数据分析、对比、统计。
此外,传统称量装置称量历史记录不能存储,使用者不方便后续的查询。
发明内容
发明目的:为了克服现有技术中存在的不足,本发明提供一种自动筛分、自动称量且能够模拟隧道突水过程中土颗粒的流失情况和突水量的分布情况,同时可以随时对称量记录进行查询分析的自动筛分称量的***。
技术方案:为实现上述目的,本发明采用的技术方案为:
一种实时测量突水过程中颗粒流失的试验***,包括振动筛分装置、集水装置、运输装置、称量装置、采集运算装置,其中:
振动筛分装置用于通过振动来筛分突水过程中流失的土颗粒;
集水装置用于收集突水过程中流出的水、测量水的质量并将测得的水的质量传给采集运算装置;
运输装置用于将筛分出的土颗粒运送到称量装置;
称量装置用于称量筛分出的土颗粒的重量,并将测得的土颗粒的重量传给采集运算装置;
采集运算装置用于控制所述实验***的运行,输入参数,并根据输入的参数、传回的水的质量和土颗粒的重量计算不同粒径颗粒的总的分布规律、每个时间间隔内不同直径颗粒的 流失比重及水的流失量;
所述振动筛分装置包括三个以上的振动筛箱、抽屉式支架和筛分振动台;所述三个以上的振动筛箱放置于抽屉式支架上,所述抽屉式支架放置于筛分振动台上,且所述抽屉式支架顶部设置有入水口;每个振动筛箱的侧面均设置有土颗粒出口,而内部均装有筛网,且所述筛网的边框与土颗粒出口相交接,同时所述振动筛箱从上到下按对应的筛网的网格从大到小依次设置,且最下一层振动筛箱的侧面底部设置有出水口;
所述集水装置包括压力传感器、集水箱,所述压力传感器设置于集水箱的内侧底部,而所述筛分振动台通过弹簧安装在集水箱上;
所述运输装置包括土颗粒运输通道、推子机构和小平台;所述土颗粒出口与土颗粒运输通道的入口端相连接,所述土颗粒运输通道的出口端与小平台的入口端相连接,所述推子机构用于将筛分装置筛分的土颗粒推送至称量装置进行称量;
所述称量装置包括颗粒收集箱、电子秤和平台支架;所述小平台的出口端与所述颗粒收集箱的一端相接,所述颗粒收集箱设置于所述电子秤上,所述电子秤设置于平台支架上;
所述采集运算装置包括控制器和电脑存储设备,所述控制器用于控制所述实验***的运行,所述电脑存储设备用于存储、计算电子秤及压力传感器所传回的数据;所述电脑存储设备与所述控制器连接,所述控制器与电子秤连接,所述控制器还与筛分振动台、推子机构以及压力传感器相连。
优选的:筛分振动台振动的频率通过控制器进行控制,并可以将筛网网格直径参数及筛网数量输入到通过控制器连接的电脑存储设备,通过电脑存储设备将参数输入计算不同粒径颗粒的总的分布规律和每个时间间隔内不同直径颗粒的流失比重。
优选的:所述推子机构包括毛刷、滑轨、传动带、伺服电机、一对张紧轮、主动轮、从动轮一和从动轮二;所述滑轨沿筛网、土颗粒运输通道和小平台设置,所述主动轮固定在滑轨末端,从动轮一固定在滑轨起始端,从动轮二固定在土颗粒运输通道与小平台交接处的滑轨上,所述主动轮通过传动带与从动轮一和从动轮二传动连接,所述伺服电机通过联轴器与主动轮传动连接;所述毛刷与滑轨滑动连接,所述传动带的一端固定在一对张紧轮的其中一个上,所述传动带的另一端固定在一对张紧轮的另一个上;而所述张紧轮固定在毛刷上;从而实现毛刷从筛网到小平台出口端的往复运动;推子机构推送的频率通过控制器进行控制。
优选的:土颗粒运输通道、小平台和筛网之间采取铰接,使得土颗粒运输通道的倾斜角度根据实际需要进行调整。
优选的:最下一层振动筛箱的底面设置有一定的倾角,且底面的较低端为出水口一侧,底面的较高端为远离出水口一侧。
优选的:振动筛箱为长方体筛箱,筛网采用的是矩形筛网。
优选的:筛网材质均为不锈钢材料,振动筛箱箱体为铁质。
优选的:筛分振动台包括电磁铁。
优选的:所述筛网、运输装置、称量装置一一对应设置;
一种实时测量突水过程中颗粒流失的试验方法,包括以下步骤:
(1)将装置置于突水位置下方,调整好需要的振动筛箱的个数和相应筛网的规格和数量,通上电源使装置随时处于使用状态,将筛网的网格直径参数和筛网数量输入到通过控制器连接的电脑存储设备;
(2)突水开始发生,流失物从突水位置落入振动筛箱内,在筛网上不断振动,颗粒直径小的落入下一级筛网上,而留下来的土颗粒将被推子推送到运输装置里面;
(3)推子将相应一级的土颗粒推送至称量装置中,电子秤记录下土颗粒的质量并将数据通过控制器传输到电脑存储设备上;
(4)出水口流出的水进入集水箱,水的质量由集水箱底部的压力传感器记录下来,传输到电脑存储设备中;
(5)待突水情况完全停止不带有流失物时,通过电子秤得到的质量数据和压力传感器得到的水的质量计算不同粒径颗粒的总的分布规律、每个时间间隔内不同直径颗粒的流失比重和水的流失量。
本发明相比现有技术,具有以下有益效果:
1.在本装置中各级振动筛箱摆脱传统式圆形结构,采用长方体结构,像抽屉一样可以自由开关。这样就有利于我们随时根据需要更换筛网规格,可以很轻松的控制筛网网格的大小和筛网的层数,实用性更强。
2.本发明通过将称量装置、集水装置与电脑存储设备相连,实现了数据的连续化,不仅能够获得连续的质量变化,而且由于被存储下来,还十分方便查询与之后的数据分析、对比、统计操作,大大减少了工作量。
3.该装置自动筛分,自动称量,自动计算;土颗粒运输通道和小平台以及筛网之间采取了铰接,筛分振动台包括电磁铁,达到了结构稳固,使用方便,拆卸简易,达到提高筛分和称量效率的目的。
4.该装置不仅仅能用来测量模拟隧道突水试验不同固体颗粒流失分布情况,还可以用来测量其他固体颗粒的级配分析,使用范围非常广泛。
附图说明
图1为本发明一种实时测量突水过程中颗粒流失的试验***;
图2为本发明一种实时测量突水过程中颗粒流失的试验***的筛分装置和集水装置;
图3为本发明一种实时测量突水过程中颗粒流失的试验***的运输装置、称量装置与采集运算装置。
图中:1-筛网,2-振动筛箱,3-筛分振动台,4-土颗粒运输通道,5-推子机构,6-颗粒收集箱,7-电子秤,8-小平台,9-电脑存储设备,10-控制器,11-出水口。
具体实施方式
下面结合附图和具体实施例,进一步阐明本发明,应理解这些实例仅用于说明本发明而不用于限制本发明的范围,在阅读了本发明之后,本领域技术人员对本发明的各种等价形式的修改均落于本申请所附权利要求所限定的范围。
如图1所示为一种实时测量突水过程中颗粒流失的试验***,包括振动筛分装置、集水装置、运输装置、称量装置、采集运算装置,其中:
振动筛分装置用于通过振动来筛分突水过程中流失的土颗粒;
集水装置用于收集突水过程中流出的水、测量水的质量并将测得的水的质量传给采集运算装置;
运输装置用于将筛分出的土颗粒运送到称量装置;
称量装置用于称量筛分出的土颗粒的重量,并将测得的土颗粒的重量传给采集运算装置;
采集运算装置用于控制所述实验***的运行,输入参数,并根据输入的参数、传回的水的质量和土颗粒的重量计算不同粒径颗粒的总的分布规律、每个时间间隔内不同直径颗粒的流失比重及水的流失量;
如图2所示,所述振动筛分装置包括三个振动筛箱2、抽屉式支架和筛分振动台3;所述三个振动筛箱2放置于抽屉式支架上,所述抽屉式支架放置于筛分振动台3上,且所述抽屉式支架顶部设置有入水口;每个振动筛箱2的侧面均设置有土颗粒出口,而内部均装有筛网,且所述筛网的边框与土颗粒出口相交接,同时所述振动筛箱2从上到下按对应的筛网的网格从大到小依次设置,且最下一层振动筛箱2的侧面底部设置有出水口;而最下一层振动筛箱的底面设置有一定的倾角,且底面的较低端为出水口一侧,底面的较高端为远离出水口一侧;筛网1的层数以及筛网1的网格大小是可调的,并可以将筛网1网格直径参数输入到通过控制器10连接的电脑存储设备9,通过电脑存储设备9将参数输入计算不同粒径颗粒的总的分布规律和每个时间间隔内不同直径颗粒的流失比重。振动筛箱2为长方体筛箱,筛网1采用的是矩形筛网,像抽屉一样可以自由开关。因为有水的参与所以矩形筛网1材质均为不锈钢材料,振动筛箱2的箱体为铁质,而且为了防止振动筛箱2在筛分过程因为振动而不稳定,筛分振动台3通电后具有磁铁效果,从而使装置保持稳定。
所述集水装置包括压力传感器、集水箱,所述压力传感器设置于集水箱的内侧底部,而所述筛分振动台3通过弹簧安装在集水箱上;
如图3所示,所述运输装置包括土颗粒运输通道4、推子机构5和小平台8;所述土颗粒出口与土颗粒运输通道4的入口端相连接,所述土颗粒运输通道4的出口端与小平台8的入口端相连接,所述推子机构5用于将筛分装置筛分的土颗粒推送至称量装置进行称量;所述推子机构5包括毛刷、滑轨、传动带、伺服电机、一对张紧轮、主动轮、从动轮一和从动轮二;所述滑轨沿筛网1、土颗粒运输通道4和小平台8设置,所述主动轮固定在滑轨末端,从动轮一固定在滑轨起始端,从动轮二固定在土颗粒运输通道与小平台交接处的滑轨上,所述主动轮通过传动带与从动轮一和从动轮二传动连接,所述伺服电机通过联轴器与主动轮传动连接;所述毛刷与滑轨滑动连接,所述传动带的一端固定在一对张紧轮的其中一个上,所述传动带的另一端固定在一对张紧轮的另一个上;而所述张紧轮固定在毛刷上;从而实现毛刷从筛网1到小平台8出口端的往复运动;增加小平台8可以使得大的颗粒从土颗粒运输通道上落下时不至于直接冲击颗粒收集箱,造成电子秤显示过重。土颗粒运输通道4、小平台8和筛网1之间采取铰接,所述土颗粒运输通道4的倾斜角度是可以根据实际需要进行调整的。
所述称量装置包括颗粒收集箱6、电子秤7和平台支架;所述小平台8的出口端与所述颗粒收集箱6的一端相接,所述颗粒收集箱6设置于所述电子秤7上,所述电子秤7设置于平台支架上;所述筛网1、运输装置、称量装置一一对应设置;
所述采集运算装置包括控制器10和电脑存储设备9,所述控制器用于控制所述实验***的运行,所述电脑存储设备用于存储、计算电子秤及压力传感器所传回的数据;所述电脑存储设备9与所述控制器10连接,所述控制器10与电子秤7连接,所述控制器10还与筛分振动台3、推子机构5以及压力传感器相连。
振动筛分装置需要筛分的流失土颗粒由突水试验提供,其中要确保筛分装置位于突水位置的下部,且尽量保证流失的水和土颗粒落在中间部分,根据筛分方案按不同要求灵活配置各种不同网格直径的矩形筛网1,以满足现场实验的需求;通过推子机构5将在一个时间间隔内经过本层筛网筛下的土颗粒运送到各自的称量装置上去,其中这个推子机构5的运动频率可以通过控制器10来进行控制,筛分振动台3的振动频率可以通过控制器10来调节。
同时,突水的总量也是必不可少的数据,因此在筛分装置的底部有个出水口,通过这个出水口收集突出的水,为了获得突水过程中每个时间段的突水量,在最下一层振动筛箱的底面设置有一定的倾角,且在收集水的装置下放置一个集水箱,使用压力传感器将数据实时记录、传输到存储设备当中,和颗粒的质量一起分析计算。颗粒收集箱6置于电子秤7上,数据每隔5s记录一次然后通过数字信号传输记录下来。
一种实时测量突水过程中颗粒流失的试验方法,包括以下步骤:
(1)将装置置于突水位置下方,调整好需要的振动筛箱2的个数和相应筛网1的规格和数量,通上电源使装置随时处于使用状态,将筛网1的网格直径参数和筛网1数量输入到通过控制器10连接的电脑存储设备9;
(2)突水开始发生,流失物从突水位置落入振动筛箱2内,在筛网1上不断振动,颗粒直径小的落入下一级筛网1上,而留下来的土颗粒将被推子5推送到运输装置里面;
(3)推子5将相应一级的土颗粒推送至称量装置中,电子秤7记录下土颗粒的质量并将数据通过控制器10传输到电脑存储设备9上;
(4)出水口流出的水进入集水箱,水的质量由集水箱底部的压力传感器记录下来,传输到电脑存储设备9中;
(5)待突水情况完全停止不带有流失物时,通过电子秤得到的质量数据和压力传感器得到的水的质量计算不同粒径颗粒的总的分布规律、每个时间间隔内不同直径颗粒的流失比重和水的流失量。
该***不仅仅能用来实时自动称量突水过程中不同粒径颗粒的质量,还可以用来测量其他固体颗粒的级配分析,只需根据筛分对象选用合适规格的筛网1。如果仅仅需要测量样本的颗粒级配还可以将称量装置、集水装置、运输装置和采集运算装置取下,只留筛分装置,筛分完毕后将各层筛网1上的颗粒倒入电子秤7上称量即可。
以上所述仅是本发明的优选实施方式,应当指出:对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (10)

  1. 一种实时测量突水过程中颗粒流失的试验***,其特征在于:包括振动筛分装置、集水装置、运输装置、称量装置、采集运算装置,其中:
    振动筛分装置用于通过振动来筛分突水过程中流失的土颗粒;
    集水装置用于收集突水过程中流出的水、测量水的质量并将测得的水的质量传给采集运算装置;
    运输装置用于将筛分出的土颗粒运送到称量装置;
    称量装置用于称量筛分出的土颗粒的重量,并将测得的土颗粒的重量传给采集运算装置;
    采集运算装置用于控制所述实验***的运行,输入参数,并根据输入的参数、传回的水的质量和土颗粒的重量计算不同粒径颗粒的总的分布规律、每个时间间隔内不同直径颗粒的流失比重及水的流失量;
    所述振动筛分装置包括三个以上的振动筛箱(2)、抽屉式支架和筛分振动台(3);所述三个以上的振动筛箱(2)放置于抽屉式支架上,所述抽屉式支架放置于筛分振动台(3)上,且所述抽屉式支架顶部设置有入水口;每个振动筛箱(2)的侧面均设置有土颗粒出口,而内部均装有筛网(1),且所述筛网(1)的边框与土颗粒出口相交接,同时所述振动筛箱(2)从上到下按对应的筛网(1)的网格从大到小依次设置,且最下一层振动筛箱(2)的侧面底部设置有出水口;
    所述集水装置包括压力传感器、集水箱,所述压力传感器设置于集水箱的内侧底部,而所述筛分振动台(3)通过弹簧安装在集水箱上;
    所述运输装置包括土颗粒运输通道(4)、推子机构(5)和小平台(8);所述土颗粒出口与土颗粒运输通道(4)的入口端相连接,所述土颗粒运输通道(4)的出口端与小平台(8)的入口端相连接,所述推子机构(5)用于将筛分装置筛分的土颗粒推送至称量装置进行称量;
    所述称量装置包括颗粒收集箱(6)、电子秤(7)和平台支架;所述小平台(8)的出口端与所述颗粒收集箱(6)的一端相接,所述颗粒收集箱(6)设置于所述电子秤(7)上,所述电子秤(7)设置于平台支架上;
    所述采集运算装置包括控制器(10)和电脑存储设备(9),所述控制器用于控制所述实验***的运行,所述电脑存储设备用于存储、计算电子秤及压力传感器所传回的数据;所述电脑存储设备(9)与所述控制器(10)连接,所述控制器(10)与电子秤(7)连接,所述控制器(10)还与筛分振动台(3)、推子机构(5)以及压力传感器相连。
  2. 根据权利要求1所述的实时测量突水过程中颗粒流失的试验***,其特征在于:筛分振动 台(3)振动的频率通过控制器(10)进行控制,并可以将筛网(1)网格直径参数及筛网(1)数量输入到通过控制器(10)连接的电脑存储设备(9),通过电脑存储设备(9)将参数输入计算不同粒径颗粒的总的分布规律和每个时间间隔内不同直径颗粒的流失比重。
  3. 根据权利要求1所述的实时测量突水过程中颗粒流失的试验***,其特征在于:所述推子机构(5)包括毛刷、滑轨、传动带、伺服电机、一对张紧轮、主动轮、从动轮一和从动轮二;所述滑轨沿筛网(1)、土颗粒运输通道(4)和小平台(8)设置,所述主动轮固定在滑轨末端,从动轮一固定在滑轨起始端,从动轮二固定在土颗粒运输通道与小平台交接处的滑轨上,所述主动轮通过传动带与从动轮一和从动轮二传动连接,所述伺服电机通过联轴器与主动轮传动连接;所述毛刷与滑轨滑动连接,所述传动带的一端固定在一对张紧轮的其中一个上,所述传动带的另一端固定在一对张紧轮的另一个上;而所述张紧轮固定在毛刷上;从而实现毛刷从筛网(1)到小平台(8)出口端的往复运动;推子机构(5)推送的频率通过控制器(10)进行控制。
  4. 根据权利要求1所述的实时测量突水过程中颗粒流失的试验***,其特征在于:土颗粒运输通道(4)、小平台(8)和筛网(1)之间采取铰接,使得土颗粒运输通道(4)的倾斜角度根据实际需要进行调整。
  5. 根据权利要求1所述的实时测量突水过程中颗粒流失的试验***,其特征在于:最下一层振动筛箱(2)的底面设置有一定的倾角,且底面的较低端为出水口一侧,底面的较高端为远离出水口一侧。
  6. 根据权利要求1所述的实时测量突水过程中颗粒流失的试验***,其特征在于:振动筛箱(2)为长方体筛箱,筛网(1)采用的是矩形筛网。
  7. 根据权利要求1所述的实时测量突水过程中颗粒流失的试验***,其特征在于:筛网(1)材质均为不锈钢材料,振动筛箱(2)箱体为铁质。
  8. 根据权利要求1所述的实时测量突水过程中颗粒流失的试验***,其特征在于:筛分振动台(3)包括电磁铁。
  9. 根据权利要求1所述的实时测量突水过程中颗粒流失的试验***,其特征在于:所述筛网(1)、运输装置、称量装置一一对应设置。
  10. 根据权利要求1所述的实时测量突水过程中颗粒流失的试验方法,其特征在于,包括以下步骤:
    (1)将装置置于突水位置下方,调整好需要的振动筛箱(2)的个数和相应筛网(1)的规格和数量,通上电源使装置随时处于使用状态,将筛网(1)的网格直径参数和筛网(1)数量输入到通过控制器(10)连接的电脑存储设备(9);
    (2)突水开始发生,流失物从突水位置落入振动筛箱(2)内,在筛网(1)上不断振动,颗粒直径小的落入下一级筛网(1)上,而留下来的土颗粒将被推子(5)推送到运输装置里面;
    (3)推子(5)将相应一级的土颗粒推送至称量装置中,电子秤(7)记录下土颗粒的质量并将数据通过控制器(10)传输到电脑存储设备(9)上;
    (4)出水口流出的水进入集水箱,水的质量由集水箱底部的压力传感器记录下来,传输到电脑存储设备(9)中;
    (5)待突水情况完全停止不带有流失物时,通过电子秤得到的质量数据和压力传感器得到的水的质量计算不同粒径颗粒的总的分布规律、每个时间间隔内不同直径颗粒的流失比重和水的流失量。
PCT/CN2017/092119 2017-06-14 2017-07-06 一种实时测量突水过程中颗粒流失的试验***及方法 WO2018227676A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US16/344,319 US20200116610A1 (en) 2017-06-14 2017-07-06 Testing system and method for measuring loss of particles in water inrush process in real time
CA3050020A CA3050020C (en) 2017-06-14 2017-07-06 Testing system and method for measuring loss of particles in water inrush process in real time

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710447853.3A CN107036929B (zh) 2017-06-14 2017-06-14 一种实时测量突水过程中颗粒流失的试验***及方法
CN201710447853.3 2017-06-14

Publications (1)

Publication Number Publication Date
WO2018227676A1 true WO2018227676A1 (zh) 2018-12-20

Family

ID=59542381

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/092119 WO2018227676A1 (zh) 2017-06-14 2017-07-06 一种实时测量突水过程中颗粒流失的试验***及方法

Country Status (4)

Country Link
US (1) US20200116610A1 (zh)
CN (1) CN107036929B (zh)
CA (1) CA3050020C (zh)
WO (1) WO2018227676A1 (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109932305A (zh) * 2019-03-27 2019-06-25 西安交通大学 一种测试非饱和颗粒材料粒间接触角的实验装置和方法
CN110333162A (zh) * 2019-07-12 2019-10-15 中冶长天国际工程有限责任公司 一种烧结混合料水分和粒度组成的检测方法及***
CN111766175A (zh) * 2020-07-08 2020-10-13 华侨大学 模拟砂土地层漏水漏砂的模型装置及使用方法
CN112082896A (zh) * 2020-09-29 2020-12-15 广西壮族自治区水利科学研究院 一种多坡度抗天然雨水冲刷性能试验装置及测试方法
CN112100727A (zh) * 2020-09-23 2020-12-18 西安理工大学 一种断层破碎带影响下的富水隧道突水的预警防控方法
CN115350913A (zh) * 2022-08-16 2022-11-18 江苏徐工工程机械研究院有限公司 空心钢丸检测装置以及方法

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117253055A (zh) 2016-10-28 2023-12-19 贝克曼库尔特有限公司 物质准备评估***
CN108176580A (zh) * 2017-12-27 2018-06-19 国电甘肃电力有限公司兰州范坪热电厂 智能化全自动煤炭筛分试验装置
CN108709833A (zh) * 2018-05-17 2018-10-26 北京城建勘测设计研究院有限责任公司 一种用于原位测试的颗粒分析装置及方法
CN109078835B (zh) * 2018-08-07 2021-11-05 东北大学 一种建筑用细颗粒物的自动筛选与比例测量装置及方法
CN109030782B (zh) * 2018-08-20 2020-12-22 临沂大学 一种水砂突涌试验***及监测方法
CN111855334A (zh) * 2019-04-24 2020-10-30 北京兰友科技有限公司 一种用于制备土壤样品的研磨筛分称重组件
CN110608972A (zh) * 2019-10-21 2019-12-24 中国地质科学院岩溶地质研究所 一种直接式土壤含水率检测设备
CN111272605A (zh) * 2020-04-09 2020-06-12 国网河北省电力有限公司电力科学研究院 一种滚筒式煤粉细度自动测量试验装置
CN111982764B (zh) * 2020-08-20 2021-03-26 西南石油大学 一种基于岩屑粒径分布的井下故障分析处理方法及装置
CN114199728B (zh) * 2020-09-18 2023-09-01 宝武碳业科技股份有限公司 一种用于针状焦自动分析检测方法和检测装置
CN113252521B (zh) * 2021-05-08 2023-06-27 浙江理工大学 具有粒径自动分筛的气固两相流动沉积特性实验装置
CN114700253B (zh) * 2021-11-17 2024-03-19 重庆灏真现代农业有限公司 大米除杂筛选机
CN114192397B (zh) * 2021-12-17 2024-03-22 平耐新材料科技(山东)有限公司 实现超耐候涂料粒块状原料径分级振动的筛料装置
CN114062028B (zh) * 2021-12-24 2023-08-01 四川农业大学 一种土壤样品取样器
CN115201076B (zh) * 2022-07-05 2024-04-19 山东唐口煤业有限公司 一种巷帮大直径钻孔煤粉自动筛分与称重装置及测量方法
CN115684490B (zh) * 2022-10-31 2024-06-25 中国科学院武汉岩土力学研究所 一种隧道突水灾变试验台及其使用方法
CN116773421B (zh) * 2023-06-15 2023-12-26 中国水利水电科学研究院 一种用于分离和测量渗出土水的试验装置以及试验方法
CN117871320B (zh) * 2024-01-21 2024-06-21 水利部交通运输部国家能源局南京水利科学研究院 一种简易细粒土质量和尺寸实时监测装置及监测方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08285954A (ja) * 1995-04-18 1996-11-01 Meisei Electric Co Ltd 地下湧水の検知方法及び地下湧水監視装置
CN105944955A (zh) * 2015-12-21 2016-09-21 河海大学 一种颗粒物料级配测定仪及其测定方法
CN205643100U (zh) * 2016-05-19 2016-10-12 中国矿业大学 破碎岩体水沙渗流实验***
CN106197944A (zh) * 2016-07-13 2016-12-07 中国矿业大学 模拟复杂条件下深埋隧道断层突水的试验***装置及方法
CN206194252U (zh) * 2016-06-27 2017-05-24 中国矿业大学 突水溃沙模拟实验装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013030667A1 (en) * 2011-09-02 2013-03-07 Marshall Graham Bailey Vibratory screening apparatus
CN103076252A (zh) * 2013-01-05 2013-05-01 周永乾 泥浆粘度和岩屑粒度一体式检测器
CN103480579B (zh) * 2013-10-10 2015-07-01 鞍钢集团矿业公司 散体岩石粒度分布的筛分称量装置及筛分称量方法
CN104807960B (zh) * 2015-04-15 2017-01-25 中国矿业大学 一种模拟隧道突水的可视化试验装置及方法
CN205496028U (zh) * 2016-03-09 2016-08-24 安徽理工大学 一种用于土颗粒级配试验的一体式自动筛分装置
CN105921398B (zh) * 2016-05-31 2017-11-10 昆明理工大学 一种散体介质颗粒的机械激振筛分装置
CN205808669U (zh) * 2016-07-13 2016-12-14 中国矿业大学 模拟复杂条件下深埋隧道断层突水的试验***装置
CN206199667U (zh) * 2016-08-31 2017-05-31 昆明理工大学 一种散土体颗粒自动筛分装置
CN207181207U (zh) * 2017-06-14 2018-04-03 中国矿业大学 一种实时测量突水过程中颗粒流失的试验***

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08285954A (ja) * 1995-04-18 1996-11-01 Meisei Electric Co Ltd 地下湧水の検知方法及び地下湧水監視装置
CN105944955A (zh) * 2015-12-21 2016-09-21 河海大学 一种颗粒物料级配测定仪及其测定方法
CN205643100U (zh) * 2016-05-19 2016-10-12 中国矿业大学 破碎岩体水沙渗流实验***
CN206194252U (zh) * 2016-06-27 2017-05-24 中国矿业大学 突水溃沙模拟实验装置
CN106197944A (zh) * 2016-07-13 2016-12-07 中国矿业大学 模拟复杂条件下深埋隧道断层突水的试验***装置及方法

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109932305A (zh) * 2019-03-27 2019-06-25 西安交通大学 一种测试非饱和颗粒材料粒间接触角的实验装置和方法
CN109932305B (zh) * 2019-03-27 2024-04-12 西安交通大学 一种测试非饱和颗粒材料粒间接触角的实验装置和方法
CN110333162A (zh) * 2019-07-12 2019-10-15 中冶长天国际工程有限责任公司 一种烧结混合料水分和粒度组成的检测方法及***
CN110333162B (zh) * 2019-07-12 2022-04-12 中冶长天国际工程有限责任公司 一种烧结混合料水分和粒度组成的检测方法及***
CN111766175A (zh) * 2020-07-08 2020-10-13 华侨大学 模拟砂土地层漏水漏砂的模型装置及使用方法
CN112100727A (zh) * 2020-09-23 2020-12-18 西安理工大学 一种断层破碎带影响下的富水隧道突水的预警防控方法
CN112100727B (zh) * 2020-09-23 2023-09-12 西安理工大学 一种断层破碎带影响下的富水隧道突水的预警防控方法
CN112082896A (zh) * 2020-09-29 2020-12-15 广西壮族自治区水利科学研究院 一种多坡度抗天然雨水冲刷性能试验装置及测试方法
CN115350913A (zh) * 2022-08-16 2022-11-18 江苏徐工工程机械研究院有限公司 空心钢丸检测装置以及方法
CN115350913B (zh) * 2022-08-16 2024-04-30 江苏徐工工程机械研究院有限公司 空心钢丸检测装置以及方法

Also Published As

Publication number Publication date
CA3050020A1 (en) 2018-12-20
US20200116610A1 (en) 2020-04-16
CN107036929B (zh) 2023-06-23
CA3050020C (en) 2021-09-28
CN107036929A (zh) 2017-08-11

Similar Documents

Publication Publication Date Title
WO2018227676A1 (zh) 一种实时测量突水过程中颗粒流失的试验***及方法
WO2019095479A1 (zh) 充填型岩溶渗透破坏全过程模拟试验***与方法
CN112229745B (zh) 一种煤岩石硬度检测试验装置及试验方法
CN106771277A (zh) 一种粮食自动在线检验***
CN108872235B (zh) 碎米率及留胚率分析机
CN107159586B (zh) 一种水果分拣机
CN208924988U (zh) 一种鱼苗筛选计数装置
CN108355973A (zh) 一种高精度钢球加工用直径检测设备
CN207181207U (zh) 一种实时测量突水过程中颗粒流失的试验***
CN206387485U (zh) 一种用于检验粮食杂质含量的计量装置
CN109724770A (zh) 一种模拟水槽
CN211926765U (zh) 一种用于新能源电池全尺寸测量的检测装置
CN103977950A (zh) 一种散土体颗粒自动筛分装置
CN201072399Y (zh) 测定烟丝结构的检测振筛
CN205749343U (zh) 一种粮食水分容重智能检测装置
CN210466528U (zh) 一种硬币筛分及包装的装置
CN112317345A (zh) 一种自动种子分选装置
CN112748234A (zh) 一种土工自由膨胀试验装置及实验方法
CN109557002A (zh) 一种集料粒形粒度在线检测装置
CN203853254U (zh) 一种散土体颗粒自动筛分装置
CN220804309U (zh) 一种煤质实验室筛分装置
CN110220577B (zh) 颗粒天然橡胶自动称重装置
CN219737187U (zh) 一种基于重力作用下岩堆斜坡颗粒分选及堆积模拟装置
CN212514106U (zh) 基于并联曲柄连杆的振动式谷物种粒千粒重测定装置
CN206897871U (zh) 管材筛选装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17913553

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3050020

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17913553

Country of ref document: EP

Kind code of ref document: A1