WO2018225683A1 - Liquefied fuel gas vaporization system and liquid heat medium temperature controlling method for same - Google Patents

Liquefied fuel gas vaporization system and liquid heat medium temperature controlling method for same Download PDF

Info

Publication number
WO2018225683A1
WO2018225683A1 PCT/JP2018/021362 JP2018021362W WO2018225683A1 WO 2018225683 A1 WO2018225683 A1 WO 2018225683A1 JP 2018021362 W JP2018021362 W JP 2018021362W WO 2018225683 A1 WO2018225683 A1 WO 2018225683A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
heat medium
line
fuel gas
medium
Prior art date
Application number
PCT/JP2018/021362
Other languages
French (fr)
Japanese (ja)
Inventor
尚則 木梨
春名 一生
和晶 加藤
直毅 西田
Original Assignee
住友精化株式会社
サノヤス造船株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友精化株式会社, サノヤス造船株式会社 filed Critical 住友精化株式会社
Priority to JP2018567755A priority Critical patent/JP6557793B2/en
Publication of WO2018225683A1 publication Critical patent/WO2018225683A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H21/00Use of propulsion power plant or units on vessels
    • B63H21/38Apparatus or methods specially adapted for use on marine vessels, for handling power plant or unit liquids, e.g. lubricants, coolants, fuels or the like
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B43/00Engines characterised by operating on gaseous fuels; Plants including such engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M21/00Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form
    • F02M21/02Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form for gaseous fuels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M21/00Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form
    • F02M21/02Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form for gaseous fuels
    • F02M21/06Apparatus for de-liquefying, e.g. by heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C9/00Methods or apparatus for discharging liquefied or solidified gases from vessels not under pressure
    • F17C9/02Methods or apparatus for discharging liquefied or solidified gases from vessels not under pressure with change of state, e.g. vaporisation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/30Use of alternative fuels, e.g. biofuels

Definitions

  • the present invention relates to a liquefied fuel gas vaporization system for heating and vaporizing a liquefied fuel gas such as liquefied natural gas with a liquid heat medium such as water and supplying the vaporized gas as a fuel gas to a combustion apparatus.
  • a liquefied fuel gas such as liquefied natural gas
  • a liquid heat medium such as water
  • the gas engine is a diesel engine, and is widely used in generators, automobile engines, ship engines, and the like. Compared to liquid fuel diesel engines, gas engines have a narrower stable combustion area between the knocking and misfire areas, and are more sensitive to conditions such as excess air ratio, supply air temperature, fuel gas composition, and fuel gas temperature. It has a problem that its combustion state is affected. For this reason, generally, a gas engine uses a governor (speed governor) to prevent the engine speed from greatly changing due to minute fluctuations in engine load.
  • governor speed governor
  • LNG liquefied natural gas
  • a vaporizer or the like is used as the heating source of the vaporizer.
  • water liquid heat medium
  • the natural gas supply system of the prior art in the case of a marine diesel engine whose load fluctuation greatly changes as a gas engine, the amount of fuel gas corresponding to the engine output is within a predetermined temperature range. (For example, ⁇ 5 ° C.) could not be supplied to the engine.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2015-147508
  • the present invention has been conceived under such circumstances and uses only the exhaust heat of the combustion device without using a means for forcibly heating or cooling, and is discharged from the vaporizer and burned.
  • the main object is to provide a liquefied natural gas vaporization system suitable for supplying gas fuel (natural gas) supplied to the apparatus in a predetermined temperature range.
  • the liquefied natural gas vaporization system provided by the first aspect of the present invention is for vaporizing liquefied fuel gas and supplying it to a combustion apparatus, and vaporizing the liquefied fuel gas by heating with a liquid heat medium.
  • a heat recovery part for recovering exhaust heat of the combustion device with the liquid heat medium
  • a heat medium circulation line for circulating the liquid heat medium between the heat recovery part and the vaporizer.
  • the heat medium circulation line is provided with a mixing unit that mixes the liquid heat medium that has been discharged from the vaporizer and has not passed through the heat recovery unit with the liquid heat medium that has passed through the heat recovery unit. It has been.
  • the heat medium circulation line includes a low temperature side line that is discharged from the vaporizer and sends the liquid heat medium having a relatively low temperature to the heat recovery unit, and a relative passage that passes through the heat recovery unit.
  • a high-temperature side line for sending the liquid heat medium having a high temperature to the vaporizer, and the mixing unit has a first end connected to the low-temperature side line and the other end connected to the high-temperature side line. Includes one bypass line.
  • the gas temperature detection unit for detecting the temperature of the fuel gas discharged from the vaporizer, and the fuel gas temperature detected by the gas temperature detection unit so as to be within a predetermined range from a target temperature.
  • a first temperature adjusting unit that adjusts a flow rate of the liquid heat medium that passes through the first bypass line and is supplied to the high temperature side line.
  • the mixing portion has one end connected to the heat recovery portion closer to the heat recovery portion than the connection portion of the first bypass line in the low temperature side line, and the other end connected to the first bypass line in the high temperature side line.
  • Including a second bypass line connected closer to the heat recovery part than the location, provided between the first bypass line and the second bypass line in the high temperature side line, and the temperature of the liquid heat medium A heating medium temperature detection unit for detecting the temperature of the liquid heating medium, and the liquid heating medium detected by the heating medium temperature detection unit through the second bypass line so as to be maintained at a substantially constant temperature within a predetermined range.
  • a second temperature adjusting unit for adjusting a flow rate of the liquid heat medium mixed in the high temperature side line.
  • the combustion apparatus is a marine dual fuel engine.
  • the high temperature side line further includes a temperature maintaining chamber provided between the first bypass line and the second bypass line, and the heating medium temperature detecting unit is provided in the temperature maintaining chamber. ing.
  • the heat recovery unit includes a heat exchanger provided between the low temperature side line and the high temperature side line, and in the heat exchanger, the cooling water from the combustion device and the low temperature side line are connected. It is comprised so that heat exchange may be performed between the flowing heat media.
  • the fuel gas is natural gas and the heat medium is water.
  • a liquid heat medium temperature control method used in a liquefied fuel gas vaporization system for vaporizing liquefied fuel gas and supplying it to a combustion apparatus.
  • the liquid heat medium is circulated between a vaporizer that heats and vaporizes the liquefied fuel gas with a liquid heat medium and a heat recovery unit that recovers exhaust heat of the combustion device.
  • the liquid heat medium that has been discharged and has not passed through the heat recovery section is mixed with the liquid heat medium that has passed through the heat recovery section so that the temperature of the liquid heat medium after mixing is within a predetermined range. Control.
  • the fuel gas is natural gas and the heat medium is water.
  • the liquefied fuel gas vaporization system includes a low-temperature side line that is discharged from the vaporizer and sends the liquid heat medium having a relatively low temperature to the heat recovery unit, and has passed through the heat recovery unit.
  • a heat medium circulation line including a high temperature side line for sending the liquid heat medium having a high temperature to the vaporizer, and a first bypass having one end connected to the low temperature side line and the other end connected to the high temperature side line
  • a gas temperature detector for detecting the temperature of the fuel gas discharged from the vaporizer, and a flow rate of the liquid heat medium supplied to the high temperature side line through the first bypass line.
  • the temperature of the liquid heat medium is provided between the first bypass line and the second bypass line in the second bypass line, which is connected closer to the heat recovery unit than the location, and in the high temperature side line.
  • the temperature control unit is supplied to the high temperature side line through the first bypass line so that the temperature of the fuel gas detected by the gas temperature detection unit falls within a predetermined range from a target temperature.
  • the flow rate of the liquid heat medium is adjusted, and the second temperature adjustment unit is configured to maintain the temperature of the liquid heat medium detected by the heat medium temperature detection unit at a substantially constant temperature within a predetermined range. 2 Pass through the bypass line Adjusting the flow rate of the liquid heat medium to be mixed with serial high temperature side line.
  • the liquefied fuel gas vaporization system further includes a temperature maintenance chamber provided between the first bypass line and the second bypass line in the high temperature side line, and the heating medium temperature detection unit Provided in the maintenance chamber and mixed with the high temperature side line through the second bypass line so that the temperature of the liquid heat medium in the temperature maintenance chamber is maintained at a substantially constant temperature within a predetermined range. The flow rate of the liquid heat medium is adjusted.
  • the first temperature adjusting unit passes through the first bypass line and is supplied to the high temperature side line so as to be within a range of 15 to 50 ° C. that is ⁇ 5 ° C. from the target temperature of the fuel gas.
  • the second temperature adjusting unit adjusts the flow rate of the liquid heating medium so that the temperature of the liquid heating medium detected by the heating medium temperature detecting unit is maintained at a substantially constant temperature within a range of 25 to 60 ° C.
  • the flow rate of the liquid heat medium that passes through the second bypass line and is mixed with the high temperature side line is adjusted.
  • FIG. 1 shows an embodiment of a liquefied natural gas vaporization system according to the present invention.
  • the liquefied natural gas vaporization system X1 of this embodiment includes a fuel storage tank 1, a vaporizer 2, a buffer tank 3, a heat recovery unit 4 (heat exchanger), and lines connected to these. .
  • the liquefied natural gas vaporization system X ⁇ b> 1 supplies fuel gas to the combustion device 5.
  • the combustion device 5 may be a marine engine, for example, and is mounted on the bottom portion of the marine vessel.
  • the fuel gas may be natural gas, for example. In the following, for the sake of simplicity, the description will be given assuming that the combustion device 5 is a marine engine and the fuel gas is natural gas.
  • the fuel storage tank 1 is for storing liquefied natural gas (LNG) as fuel.
  • the fuel storage tank 1 has a double peripheral wall, and a heat insulating material is filled between the two peripheral walls, and the pressure is reduced to a vacuum to block intrusion heat from outside air. .
  • LNG is stored at a temperature of ⁇ 160 ° C. or lower.
  • the fuel storage tank 1 receives natural gas generated by vaporizing LNG in the vaporizer 2 in a state of being pressurized to about 0.7 MPaG through the gas line 67.
  • a fuel supply line 61 is connected to the lower part of the fuel storage tank 1.
  • the fuel supply line 61 is a flow path for transferring LNG delivered from the fuel storage tank 1 to the vaporizer 2.
  • the fuel supply line 61 is provided with a shutoff valve 611.
  • a gas extraction line 612 is connected to the upper portion of the fuel storage tank 1.
  • the gas extraction line 612 is for extracting gas in the space in the fuel storage tank 1 and flowing it to the fuel supply line 61 when LNG is replenished to the fuel storage tank 1.
  • a shutoff valve 613 is provided in the gas extraction line 612.
  • the vaporizer 2 is for evaporating and vaporizing LNG using a liquid heat medium (hereinafter simply referred to as “heat medium”) as a heating source.
  • the vaporizer 2 includes a heat medium container 21 and heat transfer tubes 22 and 23 disposed inside the heat medium container 21.
  • the heat medium container 21 is a sealed container for housing a heat medium for heating and vaporizing the LNG in the heat transfer tube 22.
  • the heating medium can be replenished.
  • An example of the heat medium is water.
  • the heat medium container 21 has a structure in which a substantially bell-shaped container body 212 is mounted on a disk-shaped bottom plate 211, and the container body 212 and the bottom plate 211 are bolted with a sealing gasket interposed therebetween. It is fixed integrally. According to such a configuration, when performing periodic inspections required by laws and regulations concerning high-pressure gas or ships, the bell-shaped container body 212 can be connected to the LNG pipe (with the bolt removed by removing the heat medium).
  • the heat transfer tubes 22 and 23 can be directly inspected by simply pulling them upward without removing the fuel supply line 61) and the heat medium piping (the heat medium circulation lines 62 and 63 described later).
  • Heat medium circulation lines 62 and 63 are connected to the heat medium container 21.
  • the heat medium circulation lines 62 and 63 circulate the heat medium between the vaporizer 2 and the heat recovery unit 4.
  • the heat medium circulation line 62 is connected to the bottom plate 211 of the heat medium container 21 and is a flow path for sending the heat medium that has passed through the heat recovery unit 4 to the heat medium container 21 (vaporizer 2).
  • the heat medium circulation line 63 is connected to the bottom plate 211 of the heat medium container 21 and is connected to the overflow pipe 24 that penetrates the bottom plate 211 in a sealed state.
  • the heat medium that has passed through the inside of the heat medium container 21 by being supplied via the heat medium circulation line 62 is discharged to the heat medium circulation line 63 via the overflow pipe 24.
  • the heat medium discharged from the heat medium container 21 is reheated in the heat recovery unit 4, supplied again to the heat medium container 21 (vaporizer 2), and recycled.
  • the heat medium circulation line 62 is provided with a circulation pump 621.
  • the heat medium passing through the heat recovery unit 4 and flowing through the heat medium circulation line 62 is relatively hot.
  • the heat medium that passes through the heat medium container 21 (vaporizer 2) and flows through the heat medium circulation line 63 has a relatively low temperature. Therefore, the heat medium circulation line 62 can also be called a high temperature side line, and the heat medium circulation line 63 can also be called a low temperature side line.
  • bypass lines 71 and 72 are connected to the heat medium circulation lines 62 and 63.
  • Each of the bypass lines 71 and 72 has one end connected to the heat medium circulation line 63 (low temperature side line) and the other end connected to the heat medium circulation line 62 (high temperature side line).
  • Each of the bypass lines 71 and 72 is a flow path for mixing the heat medium that has passed through the heat recovery unit 4 with the heat medium that has been discharged from the vaporizer 2 and has not passed through the heat recovery unit 4.
  • the temperature of the heat medium flowing through the bypass lines 71 and 72 is lower than the temperature of the heat medium flowing through the heat medium circulation line 62.
  • connection point of the bypass line 72 to the heat medium circulation line 63 is closer to the heat recovery unit 4 than the connection point of the bypass line 71 to the heat medium circulation line 63. Further, the connection point of the bypass line 72 to the heat medium circulation line 62 is closer to the heat recovery unit 4 than the connection point of the bypass line 71 to the heat medium circulation line 62.
  • a temperature adjusting unit 73 is provided at a connection point of the bypass line 71 with respect to the heat medium circulation line 62.
  • the temperature adjustment unit 73 adjusts the flow rate of the heat medium that passes through the bypass line 71 and is mixed with the heat medium circulation line 62, and includes, for example, a three-way valve.
  • the temperature adjusting unit 73 passes through the bypass line 71 and is mixed with the heat medium circulation line 62 (high temperature side line) based on the temperature of natural gas detected by a gas temperature detecting unit 641 described later. Adjust.
  • a temperature adjustment unit 74 is provided at a connection point of the bypass line 72 with respect to the heat medium circulation line 62.
  • the temperature adjusting unit 74 adjusts the flow rate of the heat medium that passes through the bypass line 72 and is mixed with the heat medium circulation line 62, and includes, for example, a three-way valve.
  • the temperature adjustment unit 74 passes through the bypass line 72 and enters the heat medium circulation line 62 (high temperature side line) so that the heat medium temperature detected by the heat medium temperature detection unit 622 falls within a predetermined range. The flow rate of the heat medium to be mixed is adjusted.
  • the heat medium temperature detection unit 622 is provided between the connection point with the bypass line 72 (additional bypass line) and the connection point with the bypass line 71 in the heat medium circulation line 62.
  • a temperature maintaining chamber 623 is provided between the connection point with the bypass line 72 and the connection point with the bypass line 71 in the heat medium circulation line 62.
  • a predetermined amount of the heat medium is accommodated in the temperature maintenance chamber 623, and the heat medium temperature detection unit 622 detects the temperature of the heat medium in the temperature maintenance chamber 623.
  • the heat transfer tube 22 is a flow path through which LNG introduced into the heat medium container 21 flows, and is wound, for example, in a coil shape.
  • the upstream end of the heat transfer tube 22 passes through the bottom plate 211 of the heat medium container 21 and is connected to the fuel supply line 61.
  • a gas line 64 is also connected to the bottom plate 211 of the heat medium container 21.
  • the downstream end of the heat transfer tube 22 passes through the bottom plate 211 and is connected to the gas line 64.
  • the LNG in the heat transfer tube 22 is heated and evaporated by a surrounding heat medium, and the vaporized natural gas is discharged to a gas line 64 that leads to the outside of the heat medium container 21.
  • the downstream end of the gas line 64 is connected to the buffer tank 3.
  • the natural gas vaporized in the heat transfer tube 22 is sent to the buffer tank 3 through the gas line 64.
  • the water flows inside the heat medium container 21 (vaporizer 2) in a state where water in a temperature range of, for example, 20 to 60 ° C. is filled.
  • the natural gas vaporized in the heat transfer tube 22 is heated to, for example, a temperature range of 15 to 50 ° C., preferably 20 to 45 ° C., and discharged to the gas line 64 at a pressure of about 0.70 MPaG.
  • a gas temperature detector 641 is provided in a portion of the gas line 64 near the heat medium container 21 (vaporizer 2). The gas temperature detector 641 detects the temperature of natural gas discharged from the vaporizer 2.
  • the heat transfer tube 23 is a flow path through which LNG introduced into the heat medium container 21 flows, and is wound, for example, in a coil shape.
  • the heat transfer tube 23 increases the pressure in the space portion inside the fuel storage tank 1 by the vaporized natural gas.
  • the upstream end of the heat transfer tube 23 passes through the bottom plate 211 of the heat medium container 21 and is connected to the fuel supply line 66.
  • the fuel supply line 66 branches off from the middle of the fuel supply line 61.
  • a shutoff valve 661 is provided in the fuel supply line 66.
  • a gas line 67 is also connected to the bottom plate 211 of the heat medium container 21.
  • the downstream end of the heat transfer tube 23 passes through the bottom plate 211 and is connected to the gas line 67.
  • the gas line 67 is provided with a pressure control valve 671.
  • the natural gas vaporized in the heat transfer tube 23 is sent to the fuel storage tank 1 through the gas line 67.
  • the gas pressure is increased to, for example, 0.75 MPaG.
  • This pressurization pressure becomes the LNG supply pressure from the fuel storage tank 1, and becomes a gas fuel supply pressure source necessary for the marine gas engine 5 (diesel engine) which is an internal combustion engine.
  • the buffer tank 3 is a sealed container that can store natural gas.
  • the buffer tank 3 is used for absorbing the load fluctuation of the consumption gas amount of the subsequent combustion device 5 (marine gas engine) for the natural gas fuel fed through the gas line 64.
  • the configuration in which natural gas is stored by the buffer tank 3 is effective in absorbing load fluctuations.
  • a gas line 65 is connected to the buffer tank 3.
  • the gas line 65 is provided with a pressure control valve 651. In the pressure control valve 651, the natural gas flowing through the gas line 65 is reduced to a pressure suitable for consumption in the marine gas engine 5 at the subsequent stage.
  • the natural gas that has passed through the gas line 65 is supplied to the marine gas engine 5.
  • the marine gas engine 5 is, for example, a dual fuel engine (dual fuel diesel engine).
  • liquid fuel such as heavy oil
  • the gas fuel is supplied.
  • the gas fuel supplied to the marine gas engine 5 is burned at a consumption amount commensurate with the output of the marine gas engine 5 through the governor 51 (governor).
  • the marine gas engine 5 is always cooled during operation by circulating the engine coolant with the coolant pump 681 or the engine drive pump 682 (driven by the engine 5).
  • the engine coolant circulates in a temperature range of 55 to 90 ° C. in a steady operation state while repeating exhaust heat recovery and cooling.
  • the engine cooling water exiting the marine gas engine 5 passes through the cooling water circulation line 68 and is introduced into the heat recovery unit 4 while the temperature is detected by the cooling water temperature detection unit 683.
  • the heat recovery unit 4 is for recovering the exhaust heat of the marine gas engine 5 with a heat medium.
  • the heat recovery unit 4 is configured with an indirect heat exchanger. In the heat recovery unit 4, heat exchange between the heat medium discharged from the vaporizer 2 and flowing through the heat medium circulation line 63 and the engine cooling water flowing through the cooling water circulation line 68 is performed, and the exhaust heat of the marine gas engine 5 is heated. It is recovered in the medium.
  • the engine coolant removed by the heat recovery unit 4 is further cooled by seawater at the cooler 684 and mixed with a part of the engine coolant flowing through the coolant bypass line 686 while being adjusted by the cooling temperature control valve 685. Then, the pressure is increased again by the cooling water pump 681 or the engine driven pump 682 and sent to the marine gas engine 5.
  • the heat medium discharged from the vaporizer 2 and flowing through the heat medium circulation line 63 has a relatively low temperature due to heat exchange with LNG or vaporized natural gas in the heat transfer tube 22 in the vaporizer 2.
  • the heat medium flowing through the heat medium circulation line 63 is temporarily stored in the temperature maintenance chamber 623 after the exhaust heat of the marine gas engine 5 is recovered by passing through the heat recovery unit 4 and the heat medium temperature rises.
  • the heat medium temperature in the temperature maintenance chamber 623 is detected by the heat medium temperature detection unit 622, and a part of the heat medium flowing through the heat medium circulation line 63 passes through the bypass line 72 so that the heat medium temperature becomes a constant temperature. Then, the flow rate is adjusted by the temperature adjusting unit 74 and mixed with the heat medium in the heat medium circulation line 62.
  • the heat medium accommodated in the temperature maintenance chamber 623 is a basic temperature heat medium.
  • the temperature of the basic temperature heat medium is set to a predetermined temperature in a temperature range of 25 to 60 ° C., for example.
  • the temperature adjusting unit 73 located on the downstream side of the basic temperature heating medium is discharged from the vaporizer 2 and the temperature is lowered (heating medium circulation). Part of the heating medium flowing through the line 63 is mixed via the bypass line 71. The degree of such mixing is adjusted such that the temperature of the heat medium after mixing is lower than the set temperature of the basic temperature heat medium, and the temperature detected by the gas temperature detection unit 641 becomes the target temperature.
  • the temperature of the heat medium after mixing is adjusted to a predetermined temperature in a temperature range of 20 to 60 ° C., for example.
  • the mixing of the low-temperature heat medium by the temperature adjustment unit 74 and the temperature adjustment unit 73 is performed on the upstream side of the circulation pump 621.
  • This is effective in quantifying the amount of the heat medium after mixing using the characteristics of the circulation pump 621.
  • a heating medium circulation rate of 15 m 3 / h or more is appropriate. is there.
  • the flow rate of LNG flowing from the fuel storage tank 1 to the vaporizer 2 is determined by the amount of gas fuel consumed in the marine gas engine 5.
  • the amount of gas fuel consumption is also changed accordingly.
  • the temperature of the natural gas discharged from the vaporizer 2 is detected by the gas temperature detector 641 in the vicinity of the vaporizer 2.
  • the detected temperature of the natural gas discharged from the vaporizer 2 becomes a target temperature within a temperature range of fuel gas suitable for supplying to the marine gas engine 5 (for example, 25 ⁇ 5 ° C. to 40 ⁇ 5 ° C.).
  • the temperature of the heat medium supplied to the vaporizer 2 via the heat medium circulation line 62 is controlled.
  • the change characteristic of the gas fuel consumption with respect to the operating time of the marine gas engine 5 will be described.
  • the marine gas engine 5 dual fuel diesel engine
  • the liquid fuel mode is changed to the gas fuel mode to shift to the operation of the gas engine.
  • the gas fuel consumption is switched from 0 to 100% in about 30 seconds as indicated by the rising line at the left end of FIG.
  • the engine coolant has already circulated through the coolant circulation line 68 in the liquid fuel mode and has been cooled by seawater in the cooler 684, so that the heat recovery unit 4 changes to a state in which exhaust heat is recovered. .
  • the exhaust heat recovery function by the heat recovery unit 4 is such that as the gas fuel consumption increases, the amount of heat corresponding to the heat of vaporization of the liquefied natural gas is deprived from the heat medium and returned from the vaporizer 2. As the temperature begins to drop, the engine automatically changes to a state in which more exhaust heat is recovered from the engine coolant.
  • the temperature adjustment unit 73 reduces the temperature of the temperature emitted from the vaporizer 2. Operates to reduce the amount of media mixed. Thereby, following the increase in the amount of LNG vaporized, the temperature of the heat medium circulated toward the vaporizer 2 increases and the heating capacity increases. Accordingly, in the heat medium circulation lines 62 and 63, the temperature adjusting unit 74 always operates by detecting the temperature of the heat medium in the temperature maintaining chamber 623, and sets the basic temperature by setting the temperature within a temperature range of 25 to 60 ° C. A heating medium must be prepared.
  • the vaporizer 2 has a structure set in a state in which a coiled heat transfer tube 22 is immersed in a heat medium container 21 that contains a heat medium.
  • the heat medium flowing in from the lower part of the heat medium container 21 rises while circling along the inner wall of the heat medium container 21, passes through the overflow pipe 24 penetrating from the upper part of the heat medium container 21 to the outside heat medium circulation. It flows out to the line 63.
  • the size of the vaporizer 2 is fixed, so that the total heat transfer area formed by the heat transfer tube 22 in the heat transfer medium container 21 is constant. is there.
  • the amount of vaporized natural gas sent from the heat transfer tube 22 to the engine 5 is reduced (that is, the amount of vaporized natural gas remaining in the heat transfer tube 22 is increased).
  • the heat transfer area of (a region where LNG or LNG and vaporized gas coexist) decreases, and the heat transfer area of the gas heating unit (region where only vaporized natural gas exists) increases.
  • the amount of the heat medium accommodated in the vaporizer 2 (heat medium container 21) is constant regardless of the gas fuel consumption.
  • the degree of the temperature drop of the heat medium due to the cooling in the vaporizer 2 is reduced, the temperature difference between the heat medium and the LNG in the heat transfer tube 22 is increased, and the heat transfer And the temperature of the vaporized natural gas discharged from the vaporizer 2 rises.
  • the gas fuel consumption increases, the heat transfer area of the evaporation section increases and the heat transfer area of the gas heating section decreases.
  • the temperature drop of the heat medium is increased, the temperature difference between the heat medium and LNG in the heat transfer tube 22 is reduced, the heat transfer is delayed, and the temperature of the natural gas discharged from the vaporizer 2 is decreased.
  • the present invention has been made paying attention to such characteristics in the carburetor 2 having a constant capacity when the gas fuel consumption varies.
  • FIG. 3 shows five examples in which the temperature of the heat medium (the temperature of the basic temperature heat medium) is different, and each curve shows the basic temperature heat medium adjusted to each predetermined temperature by the temperature adjusting unit 73 in the vaporizer 2. It shows how the temperature of the natural gas discharged from the carburetor 2 changes with respect to the amount of gas fuel consumption that changes depending on the load fluctuation of the gas engine when it is fed.
  • the temperature of the basic temperature heating medium is 45 ° C., 40 ° C., 35 ° C., 30 ° C., and 25 ° C., respectively.
  • the minimum load factor is usually 15% when the maximum load factor is 100%, and the minimum load factor of gas fuel consumption corresponding to it is 19% when the maximum load factor is 100%. Therefore, if the maximum gas fuel consumption is about 400 kg / h, the minimum is about 76 kg / h.
  • the temperature of the natural gas discharged from the vaporizer 2 is about 45 ° C., which is substantially the same as the heat medium temperature.
  • the temperature of natural gas discharged from the vaporizer 2 drops to 34 ° C. when the maximum fuel load factor is 100%. At this time, the temperature of the heat medium discharged from the vaporizer 2 is cooled in the vaporizer 2 and lowered to about 41 ° C.
  • the temperature adjusting unit 74 adjusts the temperature of the basic temperature heating medium to 45 ° C., and the gas fuel consumption varies with the change of the gas engine load. That is, while detecting the temperature of the natural gas discharged from the vaporizer 2, the temperature adjustment is performed so that the temperature of the natural gas discharged from the vaporizer 2 (detected temperature at the gas temperature detection unit 641) is 40 ° C. What is necessary is just to increase / decrease the mixing amount of the heat medium (heat medium which is relatively low temperature) which flows through the bypass line 71 in the part 73.
  • the temperature adjusting unit 73 adjusts the mixed heat medium to be about 40 ° C., and the gas fuel consumption is the highest (fuel load factor 100%). ), The temperature adjusting unit 73 is adjusted so that the temperature of the heating medium supplied to the vaporizer 2 is about 45 ° C. (specifically, mixing of the low-temperature-side heating medium via the bypass line 71) To stop). At this time, even if the gas fuel consumption rapidly increases to 100%, the temperature of the natural gas discharged from the vaporizer 2 does not fall below 34 ° C., and the gas fuel consumption rapidly decreases.
  • the temperature of the natural gas discharged from the vaporizer 2 does not exceed 45 ° C., which is the temperature of the basic temperature heat medium.
  • the target value of gas fuel temperature of 40 ° C. ⁇ 5 ° C. can be almost achieved.
  • the temperature adjusting unit 74 adjusts the temperature of the basic temperature heating medium to 35 ° C., and the temperature adjusting unit 73 sets the mixing amount of the low temperature heating medium.
  • the temperature may be adjusted so that the temperature of the natural gas discharged from the vaporizer 2 becomes 27 ° C.
  • the temperature adjusting unit 73 adjusts the mixed heat medium to be about 27 ° C., and the gas fuel consumption is the highest (fuel load factor 100%). ),
  • the temperature adjusting unit 73 is adjusted so that the temperature of the heat medium supplied to the vaporizer 2 is about 35 ° C.
  • the temperature of the natural gas discharged from the vaporizer 2 does not fall below 20 ° C., and the gas fuel consumption rapidly decreases.
  • the temperature of the natural gas discharged from the vaporizer 2 does not exceed 35 ° C. Therefore, the target value of the gas fuel temperature of 27 ° C. ⁇ 5 ° C. can be almost achieved.
  • the temperature of the basic temperature heating medium needs to be set at any temperature within a temperature range of 25 ° C to 60 ° C. It is assumed that if the target temperature of natural gas (gas fuel) discharged from the carburetor 2 is determined, the temperature of the natural gas discharged from the carburetor 2 will change according to the change in gas fuel consumption. Thus, the arithmetic average value of the gas temperature and the temperature of the basic temperature heat medium in the case of the 100% load factor with the largest consumption of gas fuel becomes the target value of the gas fuel temperature. According to the example shown in FIG.
  • the gas temperature when the gas fuel consumption is a maximum 100% load factor is 34 ° C.
  • the temperature of the basic temperature heating medium (45 ° C.) is about 40 ° C.
  • the change in the amount of heat recovered by the heat recovery unit 4 becomes small, and the temperature of the basic temperature heat medium starts from 25 ° C. It becomes almost constant within the temperature range of 60 ° C., and the change width becomes small.
  • the amount of the heat medium circulating through the vaporizer 2 is large, even if the change in gas fuel consumption is large, the change width of the heat medium temperature in the vaporizer 2 is small, and the temperature controller 73 alone is the vaporizer. It becomes possible to adjust the temperature of the natural gas discharged from 2 stably. In such a case, the operation of the temperature adjustment unit 74 can be stopped or the temperature adjustment unit 74 can be eliminated.
  • the structure of the vaporizer is not limited to the heat medium tank type vaporizer described in FIG. 1, and any vaporizer capable of vaporizing liquefied natural gas by circulating the heat medium, Any structure may be adopted.

Abstract

This liquefied fuel gas vaporization system (X1) for supplying a fuel gas to a combustion device (5) by vaporizing a liquefied fuel gas so as to obtain a gas that serves as the fuel gas is provided with a vaporizer (2) for vaporizing a liquefied fuel gas by heating the liquefied fuel gas with a liquid heat medium; a heat recovery unit (4) for recovering the exhaust heat of the combustion device (5) by means of the liquid heat medium; and heat medium circulation lines (62, 63) for circulating the liquid heat medium between the heat recovery unit (4) and the vaporizer (2). The heat medium circulation lines (62, 63) are provided with mixing units (71, 72) for mixing the liquid heat medium which has passed through the heat recovery unit (4) with the liquid heat medium which is discharged from the vaporizer (2) and has not passed through the heat recovery unit (4).

Description

液化燃料ガス気化システムおよびそのための液体熱媒温度制御方法Liquefied fuel gas vaporization system and liquid heating medium temperature control method therefor
 本発明は、液化天然ガスなどの液化燃料ガスを水などの液体熱媒で加熱して気化し、当該気化ガスを燃料ガスとして燃焼装置に供給するための液化燃料ガス気化システムに関する。 The present invention relates to a liquefied fuel gas vaporization system for heating and vaporizing a liquefied fuel gas such as liquefied natural gas with a liquid heat medium such as water and supplying the vaporized gas as a fuel gas to a combustion apparatus.
 ガスエンジンはディーゼルエンジンであり、発電機、自動車のエンジン、船舶のエンジンなどで幅広く用いられている。ガスエンジンは液体燃料のディーゼルエンジンと比べて、ノッキング域と失火域にはさまれた安定燃焼域が狭く、空気過剰率、給気温度、燃料ガス組成、及び燃料ガス温度などの条件により敏感にその燃焼状態が影響を受けるという課題を抱えている。このため、一般的にガスエンジンは、ガバナ(調速機)を用いて、エンジン負荷の微細な変動によりエンジンの回転数が大きく変化するのを防止している。 The gas engine is a diesel engine, and is widely used in generators, automobile engines, ship engines, and the like. Compared to liquid fuel diesel engines, gas engines have a narrower stable combustion area between the knocking and misfire areas, and are more sensitive to conditions such as excess air ratio, supply air temperature, fuel gas composition, and fuel gas temperature. It has a problem that its combustion state is affected. For this reason, generally, a gas engine uses a governor (speed governor) to prevent the engine speed from greatly changing due to minute fluctuations in engine load.
 ガスエンジンなどの燃焼装置に天然ガス燃料を供給する設備では、LNG(液化天然ガス)を-160℃以下の低温で燃料貯槽に蓄え、気化器などで加熱し蒸発気化させてガス状にする。気化器の加熱源としては、例えば水(液体熱媒)が使用される。 In a facility that supplies natural gas fuel to a combustion device such as a gas engine, LNG (liquefied natural gas) is stored in a fuel storage tank at a low temperature of −160 ° C. or lower, and heated by a vaporizer or the like to be evaporated and vaporized into a gaseous state. For example, water (liquid heat medium) is used as the heating source of the vaporizer.
 特許文献1では、燃焼装置としての船舶用ガスエンジン(デュアルフューエルエンジン)において、燃料ガスを効率的にかつ安全に供給するために、機関冷却水(エンジン冷却水)を直接気化器の加温用水として用いている。ガスエンジンには、燃料噴射ポンプのようなものがないので、ガス燃料温度が変化すると標準状態(0℃、大気圧)でのガス燃料供給量が変わり、供給カロリーが変わって、ガバナの調節機能が損なわれてしまう。したがって、例えば燃料ガス温度が急激に変化した場合はガバナでは制御しきれないという問題があった。これに対し、従来技術の天然ガス供給システムをそのまま用いると、ガスエンジンとして負荷変動が大きく変化する船舶用ディーゼルエンジンのような場合では、エンジンの出力に応じた燃料ガス量を所定の温度範囲内(例えば±5℃)でエンジンに供給することができなかった。 In Patent Document 1, in a marine gas engine (dual fuel engine) as a combustion apparatus, in order to efficiently and safely supply fuel gas, engine cooling water (engine cooling water) is directly used as heating water for a carburetor. It is used as. Since there is no fuel injection pump in the gas engine, when the gas fuel temperature changes, the gas fuel supply amount in the standard state (0 ° C, atmospheric pressure) changes, the supply calories change, and the governor adjustment function Will be damaged. Therefore, for example, when the fuel gas temperature changes abruptly, there is a problem that the governor cannot fully control. On the other hand, if the natural gas supply system of the prior art is used as it is, in the case of a marine diesel engine whose load fluctuation greatly changes as a gas engine, the amount of fuel gas corresponding to the engine output is within a predetermined temperature range. (For example, ± 5 ° C.) could not be supplied to the engine.
 特許文献1:特開2015-147508号公報 Patent Document 1: Japanese Patent Application Laid-Open No. 2015-147508
 本発明は、このような事情の下で考え出されたものであって、強制的に加熱や冷却をする手段を用いずに燃焼装置の排熱のみを利用し、気化器から排出されて燃焼装置に供給されるガス燃料(天然ガス)を所定の温度範囲で供給するのに適した液化天然ガス気化システムを提供することを主たる目的とする。 The present invention has been conceived under such circumstances and uses only the exhaust heat of the combustion device without using a means for forcibly heating or cooling, and is discharged from the vaporizer and burned. The main object is to provide a liquefied natural gas vaporization system suitable for supplying gas fuel (natural gas) supplied to the apparatus in a predetermined temperature range.
 本発明の第1の側面によって提供される液化天然ガス気化システムは、液化燃料ガスを気化して燃焼装置に供給するためのものであり、液化燃料ガスを液体熱媒で加熱して気化させる気化器と、上記燃焼装置の排熱を上記液体熱媒により回収する熱回収部と、上記熱回収部と上記気化器の間で上記液体熱媒を循環させるための熱媒循環ラインと、を備え、上記熱媒循環ラインには、上記気化器から排出され、かつ上記熱回収部を通過していない上記液体熱媒を、上記熱回収部を通過した上記液体熱媒に混合する混合部が設けられている。 The liquefied natural gas vaporization system provided by the first aspect of the present invention is for vaporizing liquefied fuel gas and supplying it to a combustion apparatus, and vaporizing the liquefied fuel gas by heating with a liquid heat medium. And a heat recovery part for recovering exhaust heat of the combustion device with the liquid heat medium, and a heat medium circulation line for circulating the liquid heat medium between the heat recovery part and the vaporizer. The heat medium circulation line is provided with a mixing unit that mixes the liquid heat medium that has been discharged from the vaporizer and has not passed through the heat recovery unit with the liquid heat medium that has passed through the heat recovery unit. It has been.
 好ましくは、上記熱媒循環ラインは、上記気化器から排出された、相対的に低温である上記液体熱媒を上記熱回収部まで送る低温側ラインと、上記熱回収部を通過した、相対的に高温である上記液体熱媒を上記気化器まで送る高温側ラインと、を含み、上記混合部は、一端が上記低温側ラインに接続され、かつ他端が上記高温側ラインに接続された第1バイパスラインを含む。 Preferably, the heat medium circulation line includes a low temperature side line that is discharged from the vaporizer and sends the liquid heat medium having a relatively low temperature to the heat recovery unit, and a relative passage that passes through the heat recovery unit. A high-temperature side line for sending the liquid heat medium having a high temperature to the vaporizer, and the mixing unit has a first end connected to the low-temperature side line and the other end connected to the high-temperature side line. Includes one bypass line.
 好ましくは、上記気化器から排出される燃料ガスの温度を検出するガス温度検出部と、上記ガス温度検出部で検出される燃料ガスの温度が目標温度からの所定範囲内に収まるように、上記第1バイパスラインを通過して上記高温側ラインに供給される上記液体熱媒の流量を調節する第1温度調節部と、を更に備える。 Preferably, the gas temperature detection unit for detecting the temperature of the fuel gas discharged from the vaporizer, and the fuel gas temperature detected by the gas temperature detection unit so as to be within a predetermined range from a target temperature. And a first temperature adjusting unit that adjusts a flow rate of the liquid heat medium that passes through the first bypass line and is supplied to the high temperature side line.
 好ましくは、上記混合部は、一端が上記低温側ラインにおいて上記第1バイパスラインの接続箇所よりも上記熱回収部寄りに接続され、かつ他端が上記高温側ラインにおいて上記第1バイパスラインの接続箇所よりも上記熱回収部寄りに接続された、第2バイパスラインを含み、上記高温側ラインにおいて上記第1バイパスラインと上記第2バイパスラインとの間に設けられて、上記液体熱媒の温度を検出する熱媒温度検出部と、上記熱媒温度検出部で検出される上記液体熱媒の温度が所定範囲内の略一定温度に維持されるように、上記第2バイパスラインを通過して上記高温側ラインに混合される上記液体熱媒の流量を調節する第2温度調節部と、を更に備える。 Preferably, the mixing portion has one end connected to the heat recovery portion closer to the heat recovery portion than the connection portion of the first bypass line in the low temperature side line, and the other end connected to the first bypass line in the high temperature side line. Including a second bypass line connected closer to the heat recovery part than the location, provided between the first bypass line and the second bypass line in the high temperature side line, and the temperature of the liquid heat medium A heating medium temperature detection unit for detecting the temperature of the liquid heating medium, and the liquid heating medium detected by the heating medium temperature detection unit through the second bypass line so as to be maintained at a substantially constant temperature within a predetermined range. A second temperature adjusting unit for adjusting a flow rate of the liquid heat medium mixed in the high temperature side line.
 好ましくは、上記燃焼装置は、船舶用のデュアルフューエルエンジンである。 Preferably, the combustion apparatus is a marine dual fuel engine.
 好ましくは、上記高温側ラインにおいて上記第1バイパスラインと上記第2バイパスラインとの間に設けられた温度維持チャンバを更に含んでおり、上記熱媒温度検出部は、上記温度維持チャンバに設けられている。 Preferably, the high temperature side line further includes a temperature maintaining chamber provided between the first bypass line and the second bypass line, and the heating medium temperature detecting unit is provided in the temperature maintaining chamber. ing.
 好ましくは、上記熱回収部は、上記低温側ラインと上記高温側ラインとの間に設けられた熱交換器を含み、当該熱交換器において、前記燃焼装置からの冷却水と前記低温側ラインを流れる熱媒との間で熱交換を行わせるように構成されている。 Preferably, the heat recovery unit includes a heat exchanger provided between the low temperature side line and the high temperature side line, and in the heat exchanger, the cooling water from the combustion device and the low temperature side line are connected. It is comprised so that heat exchange may be performed between the flowing heat media.
 典型的には、上記燃料ガスは天然ガスであり、上記熱媒は水である。 Typically, the fuel gas is natural gas and the heat medium is water.
 本発明の第2の側面によれば、液体熱媒温度制御方法液化燃料ガスを気化して燃焼装置に供給するための液化燃料ガス気化システムに用いられる液体熱媒温度制御方法が提供される。当該方法は、液化燃料ガスを液体熱媒で加熱して気化させる気化器と、上記燃焼装置の排熱を回収する熱回収部と、の間で上記液体熱媒を循環させ、上記気化器から排出され、かつ上記熱回収部を通過していない上記液体熱媒を、上記熱回収部を通過した上記液体熱媒に混合し、混合後の上記液体熱媒の温度が所定範囲となるように制御する。 According to the second aspect of the present invention, there is provided a liquid heat medium temperature control method used in a liquefied fuel gas vaporization system for vaporizing liquefied fuel gas and supplying it to a combustion apparatus. In the method, the liquid heat medium is circulated between a vaporizer that heats and vaporizes the liquefied fuel gas with a liquid heat medium and a heat recovery unit that recovers exhaust heat of the combustion device. The liquid heat medium that has been discharged and has not passed through the heat recovery section is mixed with the liquid heat medium that has passed through the heat recovery section so that the temperature of the liquid heat medium after mixing is within a predetermined range. Control.
 典型的には、上記燃料ガスは天然ガスであり、上記熱媒は水である。 Typically, the fuel gas is natural gas and the heat medium is water.
 上記液化燃料ガス気化システムは、上記気化器から排出された、相対的に低温である上記液体熱媒を上記熱回収部まで送る低温側ライン、及び、上記熱回収部を通過した、相対的に高温である上記液体熱媒を上記気化器まで送る高温側ライン、を含む熱媒循環ラインと、一端が上記低温側ラインに接続され、かつ他端が上記高温側ラインに接続された第1バイパスラインと、上記気化器から排出される燃料ガスの温度を検出するガス温度検出部と、上記第1バイパスラインを通過して上記高温側ラインに供給される上記液体熱媒の流量を調節する第1温度調節部と、一端が上記低温側ラインにおいて上記第1バイパスラインの接続箇所よりも上記熱回収部寄りに接続され、かつ他端が上記高温側ラインにおいて上記第1バイパスラインの接続箇所よりも上記熱回収部寄りに接続された、第2バイパスラインと、上記高温側ラインにおいて上記第1バイパスラインと上記第2バイパスラインとの間に設けられて、上記液体熱媒の温度を検出する熱媒温度検出部と、上記第2バイパスラインを通過して上記高温側ラインに混合される上記液体熱媒の流量を調節する第2温度調節部と、を更に含んでおり、上記第1温度調節部は、上記ガス温度検出部で検出される燃料ガスの温度が目標温度からの所定範囲内に収まるように、上記第1バイパスラインを通過して上記高温側ラインに供給される上記液体熱媒の流量を調節し、上記第2温度調節部は、上記熱媒温度検出部で検出される上記液体熱媒の温度が所定範囲内の略一定温度に維持されるように、上記第2バイパスラインを通過して上記高温側ラインに混合される上記液体熱媒の流量を調節する。 The liquefied fuel gas vaporization system includes a low-temperature side line that is discharged from the vaporizer and sends the liquid heat medium having a relatively low temperature to the heat recovery unit, and has passed through the heat recovery unit. A heat medium circulation line including a high temperature side line for sending the liquid heat medium having a high temperature to the vaporizer, and a first bypass having one end connected to the low temperature side line and the other end connected to the high temperature side line A gas temperature detector for detecting the temperature of the fuel gas discharged from the vaporizer, and a flow rate of the liquid heat medium supplied to the high temperature side line through the first bypass line. One temperature adjusting unit and one end connected to the heat recovery unit closer to the heat recovery unit than the connection point of the first bypass line in the low temperature side line, and the other end connected to the first bypass line in the high temperature side line. The temperature of the liquid heat medium is provided between the first bypass line and the second bypass line in the second bypass line, which is connected closer to the heat recovery unit than the location, and in the high temperature side line. A heat medium temperature detecting unit for detecting; and a second temperature adjusting unit for adjusting a flow rate of the liquid heat medium that passes through the second bypass line and is mixed with the high temperature side line. The temperature control unit is supplied to the high temperature side line through the first bypass line so that the temperature of the fuel gas detected by the gas temperature detection unit falls within a predetermined range from a target temperature. The flow rate of the liquid heat medium is adjusted, and the second temperature adjustment unit is configured to maintain the temperature of the liquid heat medium detected by the heat medium temperature detection unit at a substantially constant temperature within a predetermined range. 2 Pass through the bypass line Adjusting the flow rate of the liquid heat medium to be mixed with serial high temperature side line.
 上記液化燃料ガス気化システムは、上記高温側ラインにおいて上記第1バイパスラインと上記第2バイパスラインとの間に設けられた温度維持チャンバを更に含んでおり、上記熱媒温度検出部は、上記温度維持チャンバに設けられて、当該温度維持チャンバにある上記液体熱媒の温度が所定範囲内の略一定温度に維持されるように、上記第2バイパスラインを通過して上記高温側ラインに混合される上記液体熱媒の流量を調節する。 The liquefied fuel gas vaporization system further includes a temperature maintenance chamber provided between the first bypass line and the second bypass line in the high temperature side line, and the heating medium temperature detection unit Provided in the maintenance chamber and mixed with the high temperature side line through the second bypass line so that the temperature of the liquid heat medium in the temperature maintenance chamber is maintained at a substantially constant temperature within a predetermined range. The flow rate of the liquid heat medium is adjusted.
 上記第1温度調節部は、上記燃料ガスの目標温度から±5℃である15~50℃に収まるように、上記第1バイパスラインを通過して上記高温側ラインに供給される上記液体熱媒の流量を調節し、上記第2温度調節部は、上記熱媒温度検出部で検出される上記液体熱媒の温度が25~60℃の範囲内の略一定温度に維持されるように、上記第2バイパスラインを通過して上記高温側ラインに混合される上記液体熱媒の流量を調節する。 The first temperature adjusting unit passes through the first bypass line and is supplied to the high temperature side line so as to be within a range of 15 to 50 ° C. that is ± 5 ° C. from the target temperature of the fuel gas. The second temperature adjusting unit adjusts the flow rate of the liquid heating medium so that the temperature of the liquid heating medium detected by the heating medium temperature detecting unit is maintained at a substantially constant temperature within a range of 25 to 60 ° C. The flow rate of the liquid heat medium that passes through the second bypass line and is mixed with the high temperature side line is adjusted.
 本発明のその他の特徴および利点は、添付図面を参照して以下に行う詳細な説明によって、より明らかとなろう。 Other features and advantages of the present invention will become more apparent from the detailed description given below with reference to the accompanying drawings.
本発明に係る液化天然ガス気化システムの一実施形態を示す概略構成図である。It is a schematic structure figure showing one embodiment of the liquefied natural gas vaporization system concerning the present invention. ガスエンジン稼働時間に対するガス燃料消費量変化の特性を表すグラフである。It is a graph showing the characteristic of the gas fuel consumption change with respect to gas engine operating time. ガス燃料消費量に対する気化器から排出される天然ガス温度変化の特性を表すグラフである。It is a graph showing the characteristic of the natural gas temperature change discharged | emitted from the vaporizer with respect to gas fuel consumption. 温度調節部の位置を変更した状態を示す概略図である。It is the schematic which shows the state which changed the position of the temperature control part.
 以下、本発明の好ましい実施の形態について、図面を参照して具体的に説明する。 Hereinafter, preferred embodiments of the present invention will be specifically described with reference to the drawings.
 図1は、本発明に係る液化天然ガス気化システムの一実施形態を示している。本実施形態の液化天然ガス気化システムX1は、燃料貯槽1と、気化器2と、バッファタンク3と、熱回収部4(熱交換器)と、これらに接続される各ラインとを含んでいる。液化天然ガス気化システムX1は、燃焼装置5に燃料ガスを供給する。燃焼装置5は、例えば船舶用エンジンであってよく、船舶内の船底部分に搭載されている。また、燃料ガスは、例えば天然ガスであってよい。なお、以下においては、単純化のために、燃焼装置5が船舶用エンジンであり、燃料ガスが天然ガスであるものとして、説明を進める。 FIG. 1 shows an embodiment of a liquefied natural gas vaporization system according to the present invention. The liquefied natural gas vaporization system X1 of this embodiment includes a fuel storage tank 1, a vaporizer 2, a buffer tank 3, a heat recovery unit 4 (heat exchanger), and lines connected to these. . The liquefied natural gas vaporization system X <b> 1 supplies fuel gas to the combustion device 5. The combustion device 5 may be a marine engine, for example, and is mounted on the bottom portion of the marine vessel. The fuel gas may be natural gas, for example. In the following, for the sake of simplicity, the description will be given assuming that the combustion device 5 is a marine engine and the fuel gas is natural gas.
 燃料貯槽1は、燃料となる液化天然ガス(LNG)を貯蔵するためのものである。燃料貯槽1は、周囲壁が2重とされており、当該2つの周囲壁の間には断熱材が充填されるとともに真空に減圧されて、外気からの侵入熱を遮断する構造になっている。燃料貯槽1には、LNGが-160℃以下の温度で貯蔵されている。詳細は後述するが、燃料貯槽1は、気化器2においてLNGが気化して生じた天然ガスを、ガスライン67を通じて0.7MPaG程度に加圧された状態で受け入れている。 The fuel storage tank 1 is for storing liquefied natural gas (LNG) as fuel. The fuel storage tank 1 has a double peripheral wall, and a heat insulating material is filled between the two peripheral walls, and the pressure is reduced to a vacuum to block intrusion heat from outside air. . In the fuel storage tank 1, LNG is stored at a temperature of −160 ° C. or lower. Although details will be described later, the fuel storage tank 1 receives natural gas generated by vaporizing LNG in the vaporizer 2 in a state of being pressurized to about 0.7 MPaG through the gas line 67.
 燃料貯槽1の下部には、燃料供給ライン61が接続されている。燃料供給ライン61は、燃料貯槽1から送り出されるLNGを気化器2に移送するための流路である。燃料供給ライン61には、遮断弁611が設けられている。 A fuel supply line 61 is connected to the lower part of the fuel storage tank 1. The fuel supply line 61 is a flow path for transferring LNG delivered from the fuel storage tank 1 to the vaporizer 2. The fuel supply line 61 is provided with a shutoff valve 611.
 燃料貯槽1の上部には、ガス抜き出しライン612が接続されている。ガス抜き出しライン612は、燃料貯槽1へLNGを補充する際、燃料貯槽1内の空間部のガスを抜き出して燃料供給ライン61に流すものである。ガス抜き出しライン612には、遮断弁613が設けられている。 A gas extraction line 612 is connected to the upper portion of the fuel storage tank 1. The gas extraction line 612 is for extracting gas in the space in the fuel storage tank 1 and flowing it to the fuel supply line 61 when LNG is replenished to the fuel storage tank 1. A shutoff valve 613 is provided in the gas extraction line 612.
 気化器2は、液体熱媒(以下、単に「熱媒」という)を加熱源として、LNGを蒸発気化するためのものである。気化器2は、熱媒容器21と、熱媒容器21の内部に配置された伝熱管22,23とを含んでいる。 The vaporizer 2 is for evaporating and vaporizing LNG using a liquid heat medium (hereinafter simply referred to as “heat medium”) as a heating source. The vaporizer 2 includes a heat medium container 21 and heat transfer tubes 22 and 23 disposed inside the heat medium container 21.
 熱媒容器21は、伝熱管22内のLNGを加熱気化するための熱媒を収容するための密閉状容器である。熱媒は補充可能である。当該熱媒としては、例えば水が挙げられる。 The heat medium container 21 is a sealed container for housing a heat medium for heating and vaporizing the LNG in the heat transfer tube 22. The heating medium can be replenished. An example of the heat medium is water.
 本実施形態において、熱媒容器21は、ディスク状の底板211の上に略釣鐘状の容器体212が載った構造をしており、容器体212と底板211とはシール用ガスケットを挟んでボルトで一体化固定されている。このような構成によれば、高圧ガスや船舶に関する法律や規則などで要求されている定期的な検査を行う場合、熱媒を抜き出してボルトを外せば釣鐘状の容器体212はLNGの配管(燃料供給ライン61)や熱媒の配管(後述の熱媒循環ライン62,63等)を外すことなく上部に単純に引き上げるだけで、伝熱管22,23を直接検査できるようになる。 In the present embodiment, the heat medium container 21 has a structure in which a substantially bell-shaped container body 212 is mounted on a disk-shaped bottom plate 211, and the container body 212 and the bottom plate 211 are bolted with a sealing gasket interposed therebetween. It is fixed integrally. According to such a configuration, when performing periodic inspections required by laws and regulations concerning high-pressure gas or ships, the bell-shaped container body 212 can be connected to the LNG pipe (with the bolt removed by removing the heat medium). The heat transfer tubes 22 and 23 can be directly inspected by simply pulling them upward without removing the fuel supply line 61) and the heat medium piping (the heat medium circulation lines 62 and 63 described later).
 熱媒容器21には、熱媒循環ライン62,63が接続されている。熱媒循環ライン62,63は、気化器2と熱回収部4との間で熱媒を循環させる。熱媒循環ライン62は、熱媒容器21の底板211に接続されており、熱回収部4を通過した熱媒を熱媒容器21(気化器2)まで送る流路である。熱媒循環ライン63は、熱媒容器21の底板211に接続されており、かつ底板211をシールされた状態で貫通するオーバーフロー管24につながっている。熱媒循環ライン62を介して供給されることにより熱媒容器21の内部を通過した熱媒は、オーバーフロー管24を介して熱媒循環ライン63に排出される。詳細は後述するが、熱媒容器21から排出される熱媒は、熱回収部4において再加熱され、再び熱媒容器21(気化器2)に供給されて循環利用される。なお、熱媒循環ライン62には循環用ポンプ621が設けられている。 Heat medium circulation lines 62 and 63 are connected to the heat medium container 21. The heat medium circulation lines 62 and 63 circulate the heat medium between the vaporizer 2 and the heat recovery unit 4. The heat medium circulation line 62 is connected to the bottom plate 211 of the heat medium container 21 and is a flow path for sending the heat medium that has passed through the heat recovery unit 4 to the heat medium container 21 (vaporizer 2). The heat medium circulation line 63 is connected to the bottom plate 211 of the heat medium container 21 and is connected to the overflow pipe 24 that penetrates the bottom plate 211 in a sealed state. The heat medium that has passed through the inside of the heat medium container 21 by being supplied via the heat medium circulation line 62 is discharged to the heat medium circulation line 63 via the overflow pipe 24. Although the details will be described later, the heat medium discharged from the heat medium container 21 is reheated in the heat recovery unit 4, supplied again to the heat medium container 21 (vaporizer 2), and recycled. The heat medium circulation line 62 is provided with a circulation pump 621.
 熱回収部4を通過し、熱媒循環ライン62を流れる熱媒は、相対的に高温である。熱媒容器21(気化器2)を通過し、熱媒循環ライン63を流れる熱媒は、相対的に低温である。従って、熱媒循環ライン62は、高温側ラインと呼ぶこともでき、熱媒循環ライン63は、低温側ラインと呼ぶこともできる。 The heat medium passing through the heat recovery unit 4 and flowing through the heat medium circulation line 62 is relatively hot. The heat medium that passes through the heat medium container 21 (vaporizer 2) and flows through the heat medium circulation line 63 has a relatively low temperature. Therefore, the heat medium circulation line 62 can also be called a high temperature side line, and the heat medium circulation line 63 can also be called a low temperature side line.
 本実施形態において、熱媒循環ライン62,63には、2本のバイパスライン71,72が接続されている。各バイパスライン71,72は、一端が熱媒循環ライン63(低温側ライン)に接続されており、他端が熱媒循環ライン62(高温側ライン)に接続されている。各バイパスライン71,72は、熱回収部4を通過した熱媒に、気化器2から排出され、かつ熱回収部4を通過していない熱媒を混合するための流路である。ここで、バイパスライン71,72を流れる熱媒の温度は、熱媒循環ライン62を流れる熱媒の温度よりも低い。バイパスライン72の熱媒循環ライン63に対する接続箇所は、バイパスライン71の熱媒循環ライン63に対する接続箇所よりも熱回収部4寄りである。また、バイパスライン72の熱媒循環ライン62に対する接続箇所は、バイパスライン71の熱媒循環ライン62に対する接続箇所よりも熱回収部4寄りである。 In the present embodiment, two bypass lines 71 and 72 are connected to the heat medium circulation lines 62 and 63. Each of the bypass lines 71 and 72 has one end connected to the heat medium circulation line 63 (low temperature side line) and the other end connected to the heat medium circulation line 62 (high temperature side line). Each of the bypass lines 71 and 72 is a flow path for mixing the heat medium that has passed through the heat recovery unit 4 with the heat medium that has been discharged from the vaporizer 2 and has not passed through the heat recovery unit 4. Here, the temperature of the heat medium flowing through the bypass lines 71 and 72 is lower than the temperature of the heat medium flowing through the heat medium circulation line 62. The connection point of the bypass line 72 to the heat medium circulation line 63 is closer to the heat recovery unit 4 than the connection point of the bypass line 71 to the heat medium circulation line 63. Further, the connection point of the bypass line 72 to the heat medium circulation line 62 is closer to the heat recovery unit 4 than the connection point of the bypass line 71 to the heat medium circulation line 62.
 本実施形態において、熱媒循環ライン62に対するバイパスライン71の接続箇所には、温度調節部73が設けられている。温度調節部73は、バイパスライン71を通過して熱媒循環ライン62に混合される熱媒の流量を調整するものであり、例えば三方弁を含む。温度調節部73は、後述するガス温度検出部641で検出される天然ガスの温度に基づいて、バイパスライン71を通過して熱媒循環ライン62(高温側ライン)に混合される熱媒の流量を調節する。 In the present embodiment, a temperature adjusting unit 73 is provided at a connection point of the bypass line 71 with respect to the heat medium circulation line 62. The temperature adjustment unit 73 adjusts the flow rate of the heat medium that passes through the bypass line 71 and is mixed with the heat medium circulation line 62, and includes, for example, a three-way valve. The temperature adjusting unit 73 passes through the bypass line 71 and is mixed with the heat medium circulation line 62 (high temperature side line) based on the temperature of natural gas detected by a gas temperature detecting unit 641 described later. Adjust.
 また、本実施形態において、熱媒循環ライン62に対するバイパスライン72の接続箇所には、温度調節部74が設けられている。温度調節部74は、バイパスライン72を通過して熱媒循環ライン62に混合される熱媒の流量を調整するものであり、例えば三方弁を含む。本実施形態において、温度調節部74は、熱媒温度検出部622で検出される熱媒温度が所定の範囲に収まるようにバイパスライン72を通過して熱媒循環ライン62(高温側ライン)に混合される熱媒の流量を調節する。熱媒温度検出部622は、熱媒循環ライン62においてバイパスライン72(追加のバイパスライン)との接続箇所およびバイパスライン71との接続箇所の間に設けられている。本実施形態において、熱媒循環ライン62におけるバイパスライン72との接続箇所およびバイパスライン71との接続箇所の間には、温度維持チャンバ623が設けられている。当該温度維持チャンバ623内には所定量の熱媒が収容されており、熱媒温度検出部622は、温度維持チャンバ623内の熱媒の温度を検出する。 Further, in the present embodiment, a temperature adjustment unit 74 is provided at a connection point of the bypass line 72 with respect to the heat medium circulation line 62. The temperature adjusting unit 74 adjusts the flow rate of the heat medium that passes through the bypass line 72 and is mixed with the heat medium circulation line 62, and includes, for example, a three-way valve. In the present embodiment, the temperature adjustment unit 74 passes through the bypass line 72 and enters the heat medium circulation line 62 (high temperature side line) so that the heat medium temperature detected by the heat medium temperature detection unit 622 falls within a predetermined range. The flow rate of the heat medium to be mixed is adjusted. The heat medium temperature detection unit 622 is provided between the connection point with the bypass line 72 (additional bypass line) and the connection point with the bypass line 71 in the heat medium circulation line 62. In the present embodiment, a temperature maintaining chamber 623 is provided between the connection point with the bypass line 72 and the connection point with the bypass line 71 in the heat medium circulation line 62. A predetermined amount of the heat medium is accommodated in the temperature maintenance chamber 623, and the heat medium temperature detection unit 622 detects the temperature of the heat medium in the temperature maintenance chamber 623.
 伝熱管22は、熱媒容器21内に導入されるLNGが流れる流路であり、例えばコイル状に巻かれている。伝熱管22の上流側端は、熱媒容器21の底板211を貫通して燃料供給ライン61につながっている。熱媒容器21の底板211にはまた、ガスライン64が接続されている。伝熱管22の下流側端は、底板211を貫通してガスライン64につながっている。 The heat transfer tube 22 is a flow path through which LNG introduced into the heat medium container 21 flows, and is wound, for example, in a coil shape. The upstream end of the heat transfer tube 22 passes through the bottom plate 211 of the heat medium container 21 and is connected to the fuel supply line 61. A gas line 64 is also connected to the bottom plate 211 of the heat medium container 21. The downstream end of the heat transfer tube 22 passes through the bottom plate 211 and is connected to the gas line 64.
 伝熱管22内のLNGは、周囲にある熱媒により加熱されて蒸発気化し、気化した天然ガスが、熱媒容器21の外部に通じるガスライン64に排出される。ガスライン64の下流側端は、バッファタンク3につながっている。伝熱管22において気化した天然ガスは、ガスライン64を介してバッファタンク3に送り込まれる。 The LNG in the heat transfer tube 22 is heated and evaporated by a surrounding heat medium, and the vaporized natural gas is discharged to a gas line 64 that leads to the outside of the heat medium container 21. The downstream end of the gas line 64 is connected to the buffer tank 3. The natural gas vaporized in the heat transfer tube 22 is sent to the buffer tank 3 through the gas line 64.
 ここで、熱媒として水を用いる場合、熱媒容器21(気化器2)の内部においては、例えば20~60℃の温度範囲の水が満たされた状態で流れている。伝熱管22内において気化した天然ガスは、例えば15~50℃、好ましくは20~45℃の温度範囲まで加温されて、0.70MPaG程度の圧力でガスライン64に排出される。 Here, when water is used as the heat medium, the water flows inside the heat medium container 21 (vaporizer 2) in a state where water in a temperature range of, for example, 20 to 60 ° C. is filled. The natural gas vaporized in the heat transfer tube 22 is heated to, for example, a temperature range of 15 to 50 ° C., preferably 20 to 45 ° C., and discharged to the gas line 64 at a pressure of about 0.70 MPaG.
 本実施形態において、ガスライン64における熱媒容器21(気化器2)寄りの部位には、ガス温度検出部641が設けられている。ガス温度検出部641は、気化器2から排出された天然ガスの温度を検出するものである。 In the present embodiment, a gas temperature detector 641 is provided in a portion of the gas line 64 near the heat medium container 21 (vaporizer 2). The gas temperature detector 641 detects the temperature of natural gas discharged from the vaporizer 2.
 伝熱管23は、熱媒容器21内に導入されるLNGが流れる流路であり、例えばコイル状に巻かれている。伝熱管23は、気化した天然ガスにより燃料貯槽1内部の空間部分の圧力を高める。伝熱管23の上流側端は、熱媒容器21の底板211を貫通して燃料供給ライン66につながっている。燃料供給ライン66は、燃料供給ライン61の途中から分岐している。燃料供給ライン66には、遮断弁661が設けられている。熱媒容器21の底板211にはまた、ガスライン67が接続されている。伝熱管23の下流側端は、底板211を貫通してガスライン67につながっている。ガスライン67には、圧力制御弁671が設けられている。 The heat transfer tube 23 is a flow path through which LNG introduced into the heat medium container 21 flows, and is wound, for example, in a coil shape. The heat transfer tube 23 increases the pressure in the space portion inside the fuel storage tank 1 by the vaporized natural gas. The upstream end of the heat transfer tube 23 passes through the bottom plate 211 of the heat medium container 21 and is connected to the fuel supply line 66. The fuel supply line 66 branches off from the middle of the fuel supply line 61. A shutoff valve 661 is provided in the fuel supply line 66. A gas line 67 is also connected to the bottom plate 211 of the heat medium container 21. The downstream end of the heat transfer tube 23 passes through the bottom plate 211 and is connected to the gas line 67. The gas line 67 is provided with a pressure control valve 671.
 伝熱管23において気化した天然ガスは、ガスライン67を通じて燃料貯槽1に送られる。ガスライン67内ではガス圧力が例えば0.75MPaGまで加圧される。この加圧圧力は、燃料貯槽1からのLNG供給圧力となり、内燃機関である船舶用ガスエンジン5(ディーゼルエンジン)に必要なガス燃料供給圧力源となる。 The natural gas vaporized in the heat transfer tube 23 is sent to the fuel storage tank 1 through the gas line 67. In the gas line 67, the gas pressure is increased to, for example, 0.75 MPaG. This pressurization pressure becomes the LNG supply pressure from the fuel storage tank 1, and becomes a gas fuel supply pressure source necessary for the marine gas engine 5 (diesel engine) which is an internal combustion engine.
 バッファタンク3は、天然ガスを収容可能な密閉状容器である。バッファタンク3は、ガスライン64で送り込まれた天然ガス燃料について後段の燃焼装置5(船舶用ガスエンジン)の消費ガス量の負荷変動を吸収するために用いられる。例えば燃焼装置が内燃機関の場合、バッファタンク3により天然ガスを貯留する構成は負荷変動を吸収する上で有効である。バッファタンク3にはガスライン65が接続されている。ガスライン65には、圧力制御弁651が設けられている。この圧力制御弁651において、ガスライン65を流れる天然ガスが後段の船舶用ガスエンジン5での消費に適した圧力まで減圧される。 The buffer tank 3 is a sealed container that can store natural gas. The buffer tank 3 is used for absorbing the load fluctuation of the consumption gas amount of the subsequent combustion device 5 (marine gas engine) for the natural gas fuel fed through the gas line 64. For example, when the combustion apparatus is an internal combustion engine, the configuration in which natural gas is stored by the buffer tank 3 is effective in absorbing load fluctuations. A gas line 65 is connected to the buffer tank 3. The gas line 65 is provided with a pressure control valve 651. In the pressure control valve 651, the natural gas flowing through the gas line 65 is reduced to a pressure suitable for consumption in the marine gas engine 5 at the subsequent stage.
 ガスライン65を経た天然ガスは、船舶用ガスエンジン5に供給される。船舶用ガスエンジン5は、例えばデュアルフューエルエンジン(2元燃料ディーゼルエンジン)であり、重油などの液体燃料で起動された後、液体燃料モードからガス燃料モードに切り替えられると、ガス燃料が供給される。船舶用ガスエンジン5に供給されるガス燃料は、ガバナ51(調速機)を通じて当該船舶用ガスエンジン5の出力に見合う消費量で燃焼させられる。 The natural gas that has passed through the gas line 65 is supplied to the marine gas engine 5. The marine gas engine 5 is, for example, a dual fuel engine (dual fuel diesel engine). When the marine gas engine 5 is started with liquid fuel such as heavy oil and then switched from the liquid fuel mode to the gas fuel mode, the gas fuel is supplied. . The gas fuel supplied to the marine gas engine 5 is burned at a consumption amount commensurate with the output of the marine gas engine 5 through the governor 51 (governor).
 船舶用ガスエンジン5は、運転中常時、冷却水ポンプ681もしくはエンジン駆動式ポンプ682(エンジン5により駆動)でエンジン冷却水を循環させながら冷却されている。当該エンジン冷却水は、定常運転状態において、排熱回収および冷却を繰り返しながら55~90℃の温度範囲で循環している。船舶用ガスエンジン5を出たエンジン冷却水は、冷却水循環ライン68を通って冷却水温度検出部683で温度検出されながら熱回収部4に導入される。 The marine gas engine 5 is always cooled during operation by circulating the engine coolant with the coolant pump 681 or the engine drive pump 682 (driven by the engine 5). The engine coolant circulates in a temperature range of 55 to 90 ° C. in a steady operation state while repeating exhaust heat recovery and cooling. The engine cooling water exiting the marine gas engine 5 passes through the cooling water circulation line 68 and is introduced into the heat recovery unit 4 while the temperature is detected by the cooling water temperature detection unit 683.
 熱回収部4は、船舶用ガスエンジン5の排熱を熱媒により回収するためのものである。本実施形態において、熱回収部4は、間接式熱交換器で構成されている。熱回収部4においては、気化器2から排出されて熱媒循環ライン63を流れる熱媒と、冷却水循環ライン68を流れるエンジン冷却水とが熱交換され、船舶用ガスエンジン5の排熱が熱媒に回収されていく。 The heat recovery unit 4 is for recovering the exhaust heat of the marine gas engine 5 with a heat medium. In the present embodiment, the heat recovery unit 4 is configured with an indirect heat exchanger. In the heat recovery unit 4, heat exchange between the heat medium discharged from the vaporizer 2 and flowing through the heat medium circulation line 63 and the engine cooling water flowing through the cooling water circulation line 68 is performed, and the exhaust heat of the marine gas engine 5 is heated. It is recovered in the medium.
 熱回収部4で除熱されたエンジン冷却水は、クーラー684で海水によってさらに冷却され、冷却用温調弁685で調節されながら、冷却水バイパスライン686を流れるエンジン冷却水の一部と混合し、冷却水ポンプ681もしくはエンジン駆動式ポンプ682で再び昇圧されて船舶用ガスエンジン5に送入される。 The engine coolant removed by the heat recovery unit 4 is further cooled by seawater at the cooler 684 and mixed with a part of the engine coolant flowing through the coolant bypass line 686 while being adjusted by the cooling temperature control valve 685. Then, the pressure is increased again by the cooling water pump 681 or the engine driven pump 682 and sent to the marine gas engine 5.
 次に、液化天然ガス気化システムX1の稼働時において、気化器2および熱回収部4の間で循環する熱媒の温度制御方法について説明する。 Next, a method for controlling the temperature of the heat medium that circulates between the vaporizer 2 and the heat recovery unit 4 during the operation of the liquefied natural gas vaporization system X1 will be described.
 気化器2から排出されて熱媒循環ライン63を流れる熱媒は、気化器2において伝熱管22内のLNGないし気化した天然ガスとの熱交換により、相対的に低温となっている。この熱媒循環ライン63を流れる熱媒は、熱回収部4を通過することにより船舶用ガスエンジン5の排熱を回収して熱媒温度が上昇した後、温度維持チャンバ623内に一旦収容される。温度維持チャンバ623内の熱媒温度が熱媒温度検出部622により検出され、この熱媒温度が一定温度となるように、熱媒循環ライン63を流れる熱媒の一部がバイパスライン72を介して温度調節部74により流量が調整されて熱媒循環ライン62内の熱媒に混合される。このようにして、実質的に一定温度の熱媒(以下、適宜「基本温度熱媒」という)が作られる。本実施形態では、温度維持チャンバ623に収容された熱媒が基本温度熱媒である。基本温度熱媒の温度は、例えば25~60℃の温度範囲において所定温度に設定される。 The heat medium discharged from the vaporizer 2 and flowing through the heat medium circulation line 63 has a relatively low temperature due to heat exchange with LNG or vaporized natural gas in the heat transfer tube 22 in the vaporizer 2. The heat medium flowing through the heat medium circulation line 63 is temporarily stored in the temperature maintenance chamber 623 after the exhaust heat of the marine gas engine 5 is recovered by passing through the heat recovery unit 4 and the heat medium temperature rises. The The heat medium temperature in the temperature maintenance chamber 623 is detected by the heat medium temperature detection unit 622, and a part of the heat medium flowing through the heat medium circulation line 63 passes through the bypass line 72 so that the heat medium temperature becomes a constant temperature. Then, the flow rate is adjusted by the temperature adjusting unit 74 and mixed with the heat medium in the heat medium circulation line 62. In this way, a substantially constant temperature heating medium (hereinafter referred to as “basic temperature heating medium” as appropriate) is produced. In this embodiment, the heat medium accommodated in the temperature maintenance chamber 623 is a basic temperature heat medium. The temperature of the basic temperature heat medium is set to a predetermined temperature in a temperature range of 25 to 60 ° C., for example.
 温度調節部74を用いて一定温度になった基本温度熱媒に対しては、その下流側に位置する温度調節部73により、気化器2から排出されて温度の下がった熱媒(熱媒循環ライン63を流れる熱媒)の一部がバイパスライン71を介して混合される。かかる混合の程度は、混合後の熱媒温度が上記基本温度熱媒の設定温度よりも低下して、ガス温度検出部641における検出温度が目標温度となるように調節される。上記混合後の熱媒温度は、例えば20~60℃の温度範囲において所定温度に調節される。 For the basic temperature heating medium that has reached a certain temperature using the temperature adjusting unit 74, the temperature adjusting unit 73 located on the downstream side of the basic temperature heating medium is discharged from the vaporizer 2 and the temperature is lowered (heating medium circulation). Part of the heating medium flowing through the line 63 is mixed via the bypass line 71. The degree of such mixing is adjusted such that the temperature of the heat medium after mixing is lower than the set temperature of the basic temperature heat medium, and the temperature detected by the gas temperature detection unit 641 becomes the target temperature. The temperature of the heat medium after mixing is adjusted to a predetermined temperature in a temperature range of 20 to 60 ° C., for example.
 本実施形態において、温度調節部74および温度調節部73による低温熱媒の混合は、循環用ポンプ621の上流側で行われる。このことは、循環用ポンプ621の特性を利用して混合後の熱媒量を定量化するうえで有効である。例えば船舶用ガスエンジン5の出力が1,200kwで、天然ガス燃料の供給について約400kg/hの気化能力を有する気化器2の場合には、15m3/h以上の熱媒循環量が適当である。 In the present embodiment, the mixing of the low-temperature heat medium by the temperature adjustment unit 74 and the temperature adjustment unit 73 is performed on the upstream side of the circulation pump 621. This is effective in quantifying the amount of the heat medium after mixing using the characteristics of the circulation pump 621. For example, in the case of the carburetor 2 having an output of the marine gas engine 5 of 1,200 kW and a vaporizing capacity of about 400 kg / h for supplying natural gas fuel, a heating medium circulation rate of 15 m 3 / h or more is appropriate. is there.
 一方、燃料貯槽1から気化器2(伝熱管22)に流れるLNGの流量は、船舶用ガスエンジン5におけるガス燃料の消費量によって決定される。船舶用ガスエンジン5の負荷変動があると、それに対応してガス燃料消費量も変動する。 On the other hand, the flow rate of LNG flowing from the fuel storage tank 1 to the vaporizer 2 (heat transfer tube 22) is determined by the amount of gas fuel consumed in the marine gas engine 5. When the load of the marine gas engine 5 is changed, the amount of gas fuel consumption is also changed accordingly.
 伝熱管22の内部では、例えば圧力が0.7MPaGの場合、約-130℃のLNGが気化して、その後15~50℃の温度範囲、好ましくは20~45℃の温度範囲まで昇温される。本実施形態において、気化器2から排出される天然ガスの温度は、気化器2の近傍のガス温度検出部641で検出される。そして、気化器2から排出される天然ガスの検出温度が船舶用ガスエンジン5に供給するのに適した燃料ガスの温度範囲(例えば25±5℃から40±5℃)内の目標温度となるように、熱媒循環ライン62を介して気化器2に供給される熱媒の温度が制御される。 Inside the heat transfer tube 22, for example, when the pressure is 0.7 MPaG, LNG at about −130 ° C. is vaporized, and then the temperature is raised to a temperature range of 15 to 50 ° C., preferably to a temperature range of 20 to 45 ° C. . In the present embodiment, the temperature of the natural gas discharged from the vaporizer 2 is detected by the gas temperature detector 641 in the vicinity of the vaporizer 2. The detected temperature of the natural gas discharged from the vaporizer 2 becomes a target temperature within a temperature range of fuel gas suitable for supplying to the marine gas engine 5 (for example, 25 ± 5 ° C. to 40 ± 5 ° C.). Thus, the temperature of the heat medium supplied to the vaporizer 2 via the heat medium circulation line 62 is controlled.
 次に、図2を参照して、船舶用ガスエンジン5の稼働時間に対するガス燃料消費量の変化特性について説明する。まず、船舶用ガスエンジン5(2元燃料ディーゼルエンジン)が起動して液体燃料モードで運転された後、ガスエンジンの運転に移行すべく液体燃料モードからガス燃料モードになる。そのとき、図2の左端の立ち上がり線のように約30秒間でガス燃料消費量が0から100%に切り替わる。この切り替わりにより、液体燃料モードで既にエンジン冷却水が冷却水循環ライン68を循環し、クーラー684で海水によって冷却されていた状態から、熱回収部4において熱媒が排熱を回収する状態に変化する。この熱回収部4による排熱回収の機能は、ガス燃料消費量が増加するに従って、液化天然ガスの気化熱に相当する熱量が熱媒からより多く奪われ、気化器2から戻ってくる熱媒温度が下がり始めることによって、自動的にエンジン冷却水からより多くの排熱を回収する状態に変化する。 Next, with reference to FIG. 2, the change characteristic of the gas fuel consumption with respect to the operating time of the marine gas engine 5 will be described. First, after the marine gas engine 5 (dual fuel diesel engine) is started and operated in the liquid fuel mode, the liquid fuel mode is changed to the gas fuel mode to shift to the operation of the gas engine. At that time, the gas fuel consumption is switched from 0 to 100% in about 30 seconds as indicated by the rising line at the left end of FIG. As a result of this switching, the engine coolant has already circulated through the coolant circulation line 68 in the liquid fuel mode and has been cooled by seawater in the cooler 684, so that the heat recovery unit 4 changes to a state in which exhaust heat is recovered. . The exhaust heat recovery function by the heat recovery unit 4 is such that as the gas fuel consumption increases, the amount of heat corresponding to the heat of vaporization of the liquefied natural gas is deprived from the heat medium and returned from the vaporizer 2. As the temperature begins to drop, the engine automatically changes to a state in which more exhaust heat is recovered from the engine coolant.
 また、ガス燃料消費量が増加すると、気化器2から排出される天然ガスの温度をガス温度検出部641により検知して、温度調節部73が、気化器2から出てくる温度が低下した熱媒の混合量を減らす動作をする。それによって、LNGの気化量の増加に追随して、気化器2に向けて循環させられる熱媒の温度が上がり加熱容量が増加する。したがって、熱媒循環ライン62,63では、常に温度調節部74が温度維持チャンバ623内の熱媒温度を検知して作動し、25~60℃の温度範囲内の所定温度に設定して基本温度熱媒を用意しておかなければならない。 Further, when the gas fuel consumption increases, the temperature of the natural gas discharged from the vaporizer 2 is detected by the gas temperature detection unit 641, and the temperature adjustment unit 73 reduces the temperature of the temperature emitted from the vaporizer 2. Operates to reduce the amount of media mixed. Thereby, following the increase in the amount of LNG vaporized, the temperature of the heat medium circulated toward the vaporizer 2 increases and the heating capacity increases. Accordingly, in the heat medium circulation lines 62 and 63, the temperature adjusting unit 74 always operates by detecting the temperature of the heat medium in the temperature maintaining chamber 623, and sets the basic temperature by setting the temperature within a temperature range of 25 to 60 ° C. A heating medium must be prepared.
 上述のガス燃料消費量(エンジン負荷)が100%まで上昇する動作とは逆にエンジン負荷が下がり、ガスエンジンのガス燃料消費量が減少すると、図2に示したように100%のガス燃料消費量がエンジン負荷の低下に伴い、最低で19%のガス燃料消費量(エンジン負荷では15%に相当)にまで下がるときがある。このとき、液化天然ガス気化システムX1においては、温度調節部74により基本温度熱媒を用意する動作を常にしているので、LNGの気化熱の消費量が減少しても基本温度熱媒の温度は変わることがない。したがって、ガス燃料消費量が減少しても気化器2から排出される天然ガスの温度が基本温度熱媒の温度よりも高くなることはないので、温度調節部73の制御が不調になっても安全である。これはガスエンジン(船舶用ガスエンジン5)がガス燃料モードから液体燃料モードに切り替わり、船舶が停船状態に入った場合でも上記と同様の動作が行われる。以上のように、液化天然ガス気化システムX1が稼働すると、気化器2から排出される天然ガスの温度を常にガスエンジンが必要とする目標温度に維持しようとする動作が実行される。 Contrary to the operation of increasing the gas fuel consumption (engine load) up to 100% as described above, when the engine load decreases and the gas fuel consumption of the gas engine decreases, 100% gas fuel consumption as shown in FIG. As the engine load decreases, the amount may drop to a minimum 19% gas fuel consumption (equivalent to 15% at engine load). At this time, in the liquefied natural gas vaporization system X1, since the operation of preparing the basic temperature heat medium is always performed by the temperature adjustment unit 74, the temperature of the basic temperature heat medium is reduced even if the consumption of the LNG vaporization heat is reduced. Will not change. Therefore, even if the gas fuel consumption is reduced, the temperature of the natural gas discharged from the carburetor 2 does not become higher than the temperature of the basic temperature heat medium. It is safe. This is the same operation as described above even when the gas engine (the marine gas engine 5) is switched from the gas fuel mode to the liquid fuel mode and the vessel enters a stoppage state. As described above, when the liquefied natural gas vaporization system X1 is operated, an operation for constantly maintaining the temperature of the natural gas discharged from the vaporizer 2 at the target temperature required by the gas engine is executed.
 気化器2は、熱媒を収容する熱媒容器21の内部にコイル状の伝熱管22を浸したような状態でセットされた構造を有している。熱媒容器21の下部から流入した熱媒は、当該熱媒容器21の内壁に沿って周回しながら上昇し、熱媒容器21の上部から中央を貫通するオーバーフロー管24を通り外部の熱媒循環ライン63に流れ出る。ガス燃料消費量、すなわち気化ガス量がどのように負荷変動しても、気化器2の大きさは定まっているので熱媒容器21内の伝熱管22によって形成される全伝熱面積は一定である。したがって、ガス燃料消費量が小さくなると、伝熱管22からエンジン5に送り出される気化天然ガスの量が減る(すなわち、伝熱管22に残る気化天然ガスの量が増える)ので、伝熱管22における蒸発部(LNGあるいはLNGと気化ガスが混在する領域)の伝熱面積が減少し、ガス加温部(気化天然ガスのみが存在する領域)の伝熱面積が増加する。これに対して、気化器2(熱媒容器21)に収容される熱媒の量はガス燃料消費量に関係なく一定である。したがって、ガス燃料消費量の負荷が小さくなると、気化器2内での冷却による熱媒の温度降下の程度が小さくなり、熱媒と伝熱管22内のLNGとの温度差は大きくなり、伝熱が進んで気化器2から排出される気化天然ガスの温度は上昇する。一方、ガス燃料消費量が大きくなると、蒸発部の伝熱面積が増加してガス加温部の伝熱面積は減少する。それと同時に、熱媒の温度降下程度が大きくなり、熱媒と伝熱管22内のLNGとの温度差が縮まり、伝熱が遅くなって気化器2から排出される天然ガスの温度は低下する。本発明は、ガス燃料消費量が変動する際、一定容量の気化器2におけるこのような特性に着目してなされたものである。 The vaporizer 2 has a structure set in a state in which a coiled heat transfer tube 22 is immersed in a heat medium container 21 that contains a heat medium. The heat medium flowing in from the lower part of the heat medium container 21 rises while circling along the inner wall of the heat medium container 21, passes through the overflow pipe 24 penetrating from the upper part of the heat medium container 21 to the outside heat medium circulation. It flows out to the line 63. No matter how the gas fuel consumption, that is, the amount of vaporized gas fluctuates, the size of the vaporizer 2 is fixed, so that the total heat transfer area formed by the heat transfer tube 22 in the heat transfer medium container 21 is constant. is there. Therefore, when the gas fuel consumption is reduced, the amount of vaporized natural gas sent from the heat transfer tube 22 to the engine 5 is reduced (that is, the amount of vaporized natural gas remaining in the heat transfer tube 22 is increased). The heat transfer area of (a region where LNG or LNG and vaporized gas coexist) decreases, and the heat transfer area of the gas heating unit (region where only vaporized natural gas exists) increases. On the other hand, the amount of the heat medium accommodated in the vaporizer 2 (heat medium container 21) is constant regardless of the gas fuel consumption. Therefore, when the load of the gas fuel consumption is reduced, the degree of the temperature drop of the heat medium due to the cooling in the vaporizer 2 is reduced, the temperature difference between the heat medium and the LNG in the heat transfer tube 22 is increased, and the heat transfer And the temperature of the vaporized natural gas discharged from the vaporizer 2 rises. On the other hand, when the gas fuel consumption increases, the heat transfer area of the evaporation section increases and the heat transfer area of the gas heating section decreases. At the same time, the temperature drop of the heat medium is increased, the temperature difference between the heat medium and LNG in the heat transfer tube 22 is reduced, the heat transfer is delayed, and the temperature of the natural gas discharged from the vaporizer 2 is decreased. The present invention has been made paying attention to such characteristics in the carburetor 2 having a constant capacity when the gas fuel consumption varies.
 次に、図3を参照して、ガス燃料消費量に対する気化器2から排出される天然ガス温度の変化特性について説明する。図3は、1,200kwの出力の船舶用ガスエンジン5に適合できるように、気化器2におけるLNGの気化能力を約400kg/hとし、循環用ポンプ621の揚量を20m3/hとした場合において、ガス燃料消費量に対する気化器2から排出される天然ガスの温度変化を表したものである。図3においては、熱媒温度(基本温度熱媒の温度)が異なる5例を示しており、それぞれの曲線は、温度調節部73で各所定温度に調節した基本温度熱媒を気化器2に送入したときに、ガスエンジンの負荷変動によって変わるガス燃料消費量に対して気化器2から排出される天然ガスの温度がどのように変化をするかを表したものである。図3においては、基本温度熱媒の温度が45℃の場合、40℃の場合、35℃の場合、30℃の場合、25℃の場合をそれぞれ示している。ガスエンジンの負荷は、通常最大の負荷率を100%とすると最小の負荷率は15%であり、それに相当するガス燃料消費量の負荷率は最大を100%とすると最小は19%になる。したがって、最大のガス燃料消費量を約400kg/hとすると最小は約76kg/hとなる。 Next, with reference to FIG. 3, the change characteristic of the natural gas temperature discharged | emitted from the vaporizer 2 with respect to gaseous fuel consumption is demonstrated. 3, so that it can be adapted marine gas engine 5 output of 1,200 kW, the LNG vaporization capacity in the vaporizer 2 to about 400 kg / h, the Ageryou of the circulation pump 621 was set to 20 m 3 / h In the case, the temperature change of the natural gas discharged | emitted from the vaporizer | carburetor 2 with respect to gas fuel consumption is represented. FIG. 3 shows five examples in which the temperature of the heat medium (the temperature of the basic temperature heat medium) is different, and each curve shows the basic temperature heat medium adjusted to each predetermined temperature by the temperature adjusting unit 73 in the vaporizer 2. It shows how the temperature of the natural gas discharged from the carburetor 2 changes with respect to the amount of gas fuel consumption that changes depending on the load fluctuation of the gas engine when it is fed. In FIG. 3, when the temperature of the basic temperature heating medium is 45 ° C., 40 ° C., 35 ° C., 30 ° C., and 25 ° C., respectively. As for the load of the gas engine, the minimum load factor is usually 15% when the maximum load factor is 100%, and the minimum load factor of gas fuel consumption corresponding to it is 19% when the maximum load factor is 100%. Therefore, if the maximum gas fuel consumption is about 400 kg / h, the minimum is about 76 kg / h.
 まず、図3に示されたうちの一例として、45℃の基本温度熱媒を20m3/hの流量にて気化器2に流すと、ガス燃料消費量が最も少ない場合(燃料負荷率19%、エンジン負荷率15%)には、気化器2から排出される天然ガスの温度は熱媒温度とほぼ同じ約45℃である。しかし、ガス燃料消費量が増加し、気化ガス量が増加していくと、最大の燃料負荷率100%のときには気化器2から排出される天然ガスの温度は34℃まで降下する。このとき、気化器2から排出される熱媒の温度については、気化器2内で冷却されて約41℃まで下がっている。 First, as an example shown in FIG. 3, when a basic temperature heating medium of 45 ° C. is passed through the vaporizer 2 at a flow rate of 20 m 3 / h, the gas fuel consumption is the smallest (fuel load ratio 19% In the engine load factor 15%), the temperature of the natural gas discharged from the vaporizer 2 is about 45 ° C., which is substantially the same as the heat medium temperature. However, as the amount of gas fuel consumption increases and the amount of vaporized gas increases, the temperature of natural gas discharged from the vaporizer 2 drops to 34 ° C. when the maximum fuel load factor is 100%. At this time, the temperature of the heat medium discharged from the vaporizer 2 is cooled in the vaporizer 2 and lowered to about 41 ° C.
 したがって、ガスエンジンのガス燃料温度の目標値を40℃にしたいときには、温度調節部74で基本温度熱媒の温度を45℃に調節するとともに、ガスエンジン負荷の変化にともなって変わるガス燃料消費量、即ち気化器2から排出される天然ガスの温度を検知しながら、気化器2から排出される天然ガスの温度(ガス温度検出部641での検出温度)が40℃となるように、温度調節部73においてバイパスライン71を流れる熱媒(相対的に低温である熱媒)の混合量を増減すればよい。ガス燃料消費量が最低(燃料負荷率19%)である場合、温度調節部73により混合後の熱媒が約40℃となるように調節され、ガス燃料消費量が最大(燃料負荷率100%)である場合、気化器2に供給される熱媒の温度が約45℃となるように温度調節部73を調節する(具体的には、バイパスライン71を介しての低温側熱媒の混合を停止する)。このとき、ガス燃料消費量が急激に100%まで増大しても、気化器2から排出される天然ガスの温度は34℃を下回ることがなく、また、ガス燃料消費量が急激に減少しても、気化器2から排出される天然ガスの温度は、基本温度熱媒の温度である45℃を上回ることがない。その結果、ガス燃料温度の目標値40℃±5℃は、ほぼ達成できることになる。 Accordingly, when it is desired to set the target value of the gas fuel temperature of the gas engine to 40 ° C., the temperature adjusting unit 74 adjusts the temperature of the basic temperature heating medium to 45 ° C., and the gas fuel consumption varies with the change of the gas engine load. That is, while detecting the temperature of the natural gas discharged from the vaporizer 2, the temperature adjustment is performed so that the temperature of the natural gas discharged from the vaporizer 2 (detected temperature at the gas temperature detection unit 641) is 40 ° C. What is necessary is just to increase / decrease the mixing amount of the heat medium (heat medium which is relatively low temperature) which flows through the bypass line 71 in the part 73. FIG. When the gas fuel consumption is the lowest (fuel load factor 19%), the temperature adjusting unit 73 adjusts the mixed heat medium to be about 40 ° C., and the gas fuel consumption is the highest (fuel load factor 100%). ), The temperature adjusting unit 73 is adjusted so that the temperature of the heating medium supplied to the vaporizer 2 is about 45 ° C. (specifically, mixing of the low-temperature-side heating medium via the bypass line 71) To stop). At this time, even if the gas fuel consumption rapidly increases to 100%, the temperature of the natural gas discharged from the vaporizer 2 does not fall below 34 ° C., and the gas fuel consumption rapidly decreases. However, the temperature of the natural gas discharged from the vaporizer 2 does not exceed 45 ° C., which is the temperature of the basic temperature heat medium. As a result, the target value of gas fuel temperature of 40 ° C. ± 5 ° C. can be almost achieved.
 また、ガスエンジンのガス燃料温度の目標値を27℃としたいときには、温度調節部74で基本温度熱媒の温度を35℃に調節し、温度調節部73による温度の低い熱媒の混合量を増減して、気化器2から排出される天然ガスの温度が27℃になるように調節すればよい。ガス燃料消費量が最低(燃料負荷率19%)である場合、温度調節部73により混合後の熱媒が約27℃となるように調節され、ガス燃料消費量が最大(燃料負荷率100%)である場合、気化器2に供給される熱媒の温度が約35℃となるように温度調節部73が調節される。この結果、ガス燃料消費量が急激に100%まで増大しても、気化器2から排出される天然ガスの温度は20℃を下回ることがなく、また、ガス燃料消費量が急激に減少しても、気化器2から排出される天然ガスの温度は35℃を上回ることがない。したがって、ガス燃料温度の目標値27℃±5℃は、ほぼ達成できることになる。 When the target value of the gas fuel temperature of the gas engine is set to 27 ° C., the temperature adjusting unit 74 adjusts the temperature of the basic temperature heating medium to 35 ° C., and the temperature adjusting unit 73 sets the mixing amount of the low temperature heating medium. The temperature may be adjusted so that the temperature of the natural gas discharged from the vaporizer 2 becomes 27 ° C. When the gas fuel consumption is the lowest (fuel load factor 19%), the temperature adjusting unit 73 adjusts the mixed heat medium to be about 27 ° C., and the gas fuel consumption is the highest (fuel load factor 100%). ), The temperature adjusting unit 73 is adjusted so that the temperature of the heat medium supplied to the vaporizer 2 is about 35 ° C. As a result, even if the gas fuel consumption rapidly increases to 100%, the temperature of the natural gas discharged from the vaporizer 2 does not fall below 20 ° C., and the gas fuel consumption rapidly decreases. However, the temperature of the natural gas discharged from the vaporizer 2 does not exceed 35 ° C. Therefore, the target value of the gas fuel temperature of 27 ° C. ± 5 ° C. can be almost achieved.
 以上から理解されるように、温度調節部74の調節により基本温度熱媒を用意することは有用であり、気化器2から排出される天然ガスの温度を決定させるために有効な働きをする。図3においては5例の基本温度熱媒の温度による曲線しか示していないが、本発明による技術は基本温度熱媒が25℃から60℃の温度範囲であればいずれの温度でも操作が可能であり、ガスエンジンには安定した温度のガス燃料が供給できる。 As can be understood from the above, it is useful to prepare the basic temperature heating medium by adjusting the temperature adjusting unit 74, and it works effectively for determining the temperature of the natural gas discharged from the vaporizer 2. In FIG. 3, only the curves of the temperature of the five basic temperature heating media are shown, but the technology according to the present invention can be operated at any temperature as long as the basic temperature heating media is in the temperature range of 25 ° C. to 60 ° C. Yes, gas fuel with a stable temperature can be supplied to the gas engine.
 以上のように、基本温度熱媒の温度は25℃から60℃の温度範囲のいずれかの温度で設定しておく必要がある。それは気化器2から排出される天然ガス(ガス燃料)の目標温度が決まれば、ガス燃料消費量の変化に応じて気化器2から排出される天然ガスの温度がどのように変化するかを想定して、ガス燃料消費量が最も多い100%負荷率の場合のガス温度と基本温度熱媒の温度との算術平均値がガス燃料温度の目標値となる。図3に示した一例に基づくと、基本温度熱媒の温度が45℃の場合、ガス燃料消費量が最大100%負荷率の場合のガス温度は34℃であり、当該ガス温度(34℃)と基本温度熱媒の温度(45℃)との算術平均値は、約40℃となる。温度調節部73の応答性がよい場合、このようにガス燃料の目標温度を設定して、上述した制御を行うことにより、実際のガス燃料の温度をガス燃料の目標温度±5℃の範囲にほぼ収めることができる。 As described above, the temperature of the basic temperature heating medium needs to be set at any temperature within a temperature range of 25 ° C to 60 ° C. It is assumed that if the target temperature of natural gas (gas fuel) discharged from the carburetor 2 is determined, the temperature of the natural gas discharged from the carburetor 2 will change according to the change in gas fuel consumption. Thus, the arithmetic average value of the gas temperature and the temperature of the basic temperature heat medium in the case of the 100% load factor with the largest consumption of gas fuel becomes the target value of the gas fuel temperature. According to the example shown in FIG. 3, when the temperature of the basic temperature heating medium is 45 ° C., the gas temperature when the gas fuel consumption is a maximum 100% load factor is 34 ° C., and the gas temperature (34 ° C.) And the temperature of the basic temperature heating medium (45 ° C.) is about 40 ° C. When the responsiveness of the temperature adjusting unit 73 is good, the target temperature of the gas fuel is set in this way, and the above-described control is performed, so that the actual temperature of the gas fuel is within the range of the target temperature of the gas fuel ± 5 ° C. Can almost fit.
 ここで、エンジン負荷が変動してもエンジン冷却水温度の高低幅が小さく安定している場合には、熱回収部4で回収する熱量変化が小さくなり、基本温度熱媒の温度は25℃から60℃の温度範囲内でほぼ一定となり変化幅も小さくなる。また、気化器2を循環する熱媒量が多い場合には、ガス燃料消費量の変化が大きくても、気化器2における熱媒温度の変化幅が小さくなり、温度調節部73のみでも気化器2から排出される天然ガスの温度を安定して調節することが可能となる。そのような場合には、温度調節部74の動作を停止するか、あるいは温度調節部74を無くす事ができる。 Here, even if the engine load fluctuates, if the level of the engine coolant temperature is small and stable, the change in the amount of heat recovered by the heat recovery unit 4 becomes small, and the temperature of the basic temperature heat medium starts from 25 ° C. It becomes almost constant within the temperature range of 60 ° C., and the change width becomes small. Further, when the amount of the heat medium circulating through the vaporizer 2 is large, even if the change in gas fuel consumption is large, the change width of the heat medium temperature in the vaporizer 2 is small, and the temperature controller 73 alone is the vaporizer. It becomes possible to adjust the temperature of the natural gas discharged from 2 stably. In such a case, the operation of the temperature adjustment unit 74 can be stopped or the temperature adjustment unit 74 can be eliminated.
 以上、本発明の実施形態を説明したが、本発明の範囲は上記した実施形態に限定されるものではなく、各請求項に記載した事項の範囲内でのあらゆる変更は、すべて本発明の範囲に包摂される。 Although the embodiments of the present invention have been described above, the scope of the present invention is not limited to the above-described embodiments, and all modifications within the scope of the matters described in the claims are all within the scope of the present invention. Is included.
 例えば、気化器の構造については、図1に記載された熱媒槽式気化器に限られたものではなく、熱媒を循環させて液化天然ガスを気化させることができる気化器であれば、いかなる構造を採用してもよい。 For example, the structure of the vaporizer is not limited to the heat medium tank type vaporizer described in FIG. 1, and any vaporizer capable of vaporizing liquefied natural gas by circulating the heat medium, Any structure may be adopted.
 また、温度調節部73,74の取り付け位置については、熱媒の混合点が循環用ポンプ621の近傍であれば、図4に示すように温度調節部73,74の位置を変更して当該温度調節部73,74により熱媒の流れ方向を変えるように構成してもよい。 In addition, as for the attachment positions of the temperature adjusting parts 73 and 74, if the mixing point of the heat medium is in the vicinity of the circulation pump 621, the positions of the temperature adjusting parts 73 and 74 are changed as shown in FIG. You may comprise so that the flow direction of a heat medium may be changed by the adjustment parts 73 and 74. FIG.
X1     液化天然ガス気化システム
1      燃料貯槽
2      気化器
21     熱媒容器
211    底板
212    容器体
22     伝熱管
23     伝熱管
24     オーバーフロー管
3      バッファタンク
4      熱回収部(熱交換器)
5      船舶用ガスエンジン
51     ガバナ
61     燃料供給ライン
611    遮断弁
612    ガス抜き出しライン
613    遮断弁
62     熱媒循環ライン(高温側ライン)
621    循環用ポンプ
622    熱媒温度検出部
623    温度維持チャンバ
63     熱媒循環ライン(低温側ライン)
64     ガスライン
641    ガス温度検出部
65     ガスライン
651    圧力制御弁
66     燃料供給ライン
661    遮断弁
67     ガスライン
671    圧力制御弁
68     冷却水循環ライン
681    冷却水ポンプ
682    エンジン駆動式ポンプ
683    冷却水温度検出部
684    クーラー
685    冷却用温調弁
686    冷却水バイパスライン
71     バイパスライン(第1バイパスライン)
72     バイパスライン(第2バイパスライン)
73     温度調節部(第1温度調節部)
74     温度調節部(第2温度調節部)
X1 Liquefied natural gas vaporization system 1 Fuel storage tank 2 Vaporizer 21 Heat transfer medium container 211 Bottom plate 212 Container body 22 Heat transfer tube 23 Heat transfer tube 24 Overflow tube 3 Buffer tank 4 Heat recovery section (heat exchanger)
5 Marine Gas Engine 51 Governor 61 Fuel Supply Line 611 Shutoff Valve 612 Gas Extraction Line 613 Shutoff Valve 62 Heat Medium Circulation Line (High Temperature Side Line)
621 Circulation pump 622 Heat medium temperature detector 623 Temperature maintenance chamber 63 Heat medium circulation line (low temperature side line)
64 Gas line 641 Gas temperature detector 65 Gas line 651 Pressure control valve 66 Fuel supply line 661 Shutoff valve 67 Gas line 671 Pressure control valve 68 Cooling water circulation line 681 Cooling water pump 682 Engine-driven pump 683 Cooling water temperature detection unit 684 Cooler 685 Temperature control valve for cooling 686 Cooling water bypass line 71 Bypass line (first bypass line)
72 Bypass line (second bypass line)
73 Temperature controller (first temperature controller)
74 Temperature controller (second temperature controller)

Claims (14)

  1.  液化燃料ガスを気化して燃焼装置に供給するための液化燃料ガス気化システムであって、
     液化燃料ガスを液体熱媒で加熱して気化させる気化器と、
     上記燃焼装置の排熱を上記液体熱媒により回収する熱回収部と、
     上記熱回収部と上記気化器の間で上記液体熱媒を循環させるための熱媒循環ラインと、を備え、
     上記熱媒循環ラインには、上記気化器から排出され、かつ上記熱回収部を通過していない上記液体熱媒を、上記熱回収部を通過した上記液体熱媒に混合する混合部が設けられている、液化燃料ガス気化システム。
    A liquefied fuel gas vaporization system for vaporizing liquefied fuel gas and supplying it to a combustion device,
    A vaporizer that heats and vaporizes the liquefied fuel gas with a liquid heat medium;
    A heat recovery unit that recovers exhaust heat of the combustion device with the liquid heat medium;
    A heating medium circulation line for circulating the liquid heating medium between the heat recovery unit and the vaporizer,
    The heat medium circulation line is provided with a mixing unit that mixes the liquid heat medium that has been discharged from the vaporizer and has not passed through the heat recovery unit with the liquid heat medium that has passed through the heat recovery unit. The liquefied fuel gas vaporization system.
  2.  上記熱媒循環ラインは、上記気化器から排出された、相対的に低温である上記液体熱媒を上記熱回収部まで送る低温側ラインと、上記熱回収部を通過した、相対的に高温である上記液体熱媒を上記気化器まで送る高温側ラインと、を含み、
     上記混合部は、一端が上記低温側ラインに接続され、かつ他端が上記高温側ラインに接続された第1バイパスラインを含む、請求項1に記載の液化燃料ガス気化システム。
    The heat medium circulation line includes a low temperature side line that is discharged from the vaporizer and sends the liquid heat medium having a relatively low temperature to the heat recovery unit, and a relatively high temperature that has passed through the heat recovery unit. A high temperature side line for sending the liquid heat medium to the vaporizer,
    The liquefied fuel gas vaporization system according to claim 1, wherein the mixing section includes a first bypass line having one end connected to the low temperature side line and the other end connected to the high temperature side line.
  3.  上記気化器から排出される燃料ガスの温度を検出するガス温度検出部と、
     上記ガス温度検出部で検出される燃料ガスの温度が目標温度からの所定範囲内に収まるように、上記第1バイパスラインを通過して上記高温側ラインに供給される上記液体熱媒の流量を調節する第1温度調節部と、を更に備える、請求項2に記載の液化燃料ガス気化システム。
    A gas temperature detector for detecting the temperature of the fuel gas discharged from the vaporizer;
    The flow rate of the liquid heat medium supplied to the high temperature side line through the first bypass line is adjusted so that the temperature of the fuel gas detected by the gas temperature detection unit falls within a predetermined range from the target temperature. The liquefied fuel gas vaporization system according to claim 2, further comprising a first temperature adjustment unit for adjusting.
  4.  上記混合部は、一端が上記低温側ラインにおいて上記第1バイパスラインの接続箇所よりも上記熱回収部寄りに接続され、かつ他端が上記高温側ラインにおいて上記第1バイパスラインの接続箇所よりも上記熱回収部寄りに接続された、第2バイパスラインを含み、
     上記高温側ラインにおいて上記第1バイパスラインと上記第2バイパスラインとの間に設けられて、上記液体熱媒の温度を検出する熱媒温度検出部と、
     上記熱媒温度検出部で検出される上記液体熱媒の温度が所定範囲内の略一定温度に維持されるように、上記第2バイパスラインを通過して上記高温側ラインに混合される上記液体熱媒の流量を調節する第2温度調節部と、を更に備える、請求項3に記載の液化燃料ガス気化システム。
    One end of the mixing unit is connected closer to the heat recovery unit than the connection point of the first bypass line in the low temperature side line, and the other end is connected to the connection point of the first bypass line in the high temperature side line. Including a second bypass line connected to the heat recovery section,
    A heating medium temperature detection unit that is provided between the first bypass line and the second bypass line in the high temperature side line and detects the temperature of the liquid heating medium;
    The liquid mixed with the high-temperature side line through the second bypass line so that the temperature of the liquid heat medium detected by the heat medium temperature detection unit is maintained at a substantially constant temperature within a predetermined range. The liquefied fuel gas vaporization system according to claim 3, further comprising a second temperature adjustment unit that adjusts a flow rate of the heat medium.
  5.  上記高温側ラインにおいて上記第1バイパスラインと上記第2バイパスラインとの間に設けられた温度維持チャンバを更に含んでおり、
     上記熱媒温度検出部は、上記温度維持チャンバに設けられている、請求項4に記載の液化燃料ガス気化システム。
    A temperature maintaining chamber provided between the first bypass line and the second bypass line in the high temperature side line;
    The liquefied fuel gas vaporization system according to claim 4, wherein the heat medium temperature detection unit is provided in the temperature maintenance chamber.
  6.  上記燃焼装置は、船舶用のデュアルフューエルエンジンである、請求項1ないし5のいずれかに記載の液化燃料ガス気化システム。 The liquefied fuel gas vaporization system according to any one of claims 1 to 5, wherein the combustion device is a marine dual fuel engine.
  7.  上記熱回収部は、上記低温側ラインと上記高温側ラインとの間に設けられた熱交換器を含み、当該熱交換器において、前記燃焼装置からの冷却水と前記低温側ラインを流れる熱媒との間で熱交換を行わせるように構成されている、請求項2ないし6のいずれかに記載の液化燃料ガス気化システム。 The heat recovery unit includes a heat exchanger provided between the low temperature side line and the high temperature side line, and in the heat exchanger, cooling water from the combustion device and a heat medium flowing through the low temperature side line The liquefied fuel gas vaporization system in any one of Claims 2 thru | or 6 comprised so that heat exchange may be performed between these.
  8.  上記燃料ガスは天然ガスである、請求項1ないし7のいずれかに記載の液化燃料ガス気化システム。 The liquefied fuel gas vaporization system according to any one of claims 1 to 7, wherein the fuel gas is natural gas.
  9.  上記熱媒は水である、請求項1ないし8のいずれかに記載の液化燃料ガス気化システム。 The liquefied fuel gas vaporization system according to any one of claims 1 to 8, wherein the heat medium is water.
  10.  液化燃料ガスを気化して燃焼装置に供給するための液化燃料ガス気化システムにおいて、
     液化燃料ガスを液体熱媒で加熱して気化させる気化器と、上記燃焼装置の排熱を回収する熱回収部と、の間で上記液体熱媒を循環させ、
     上記気化器から排出され、かつ上記熱回収部を通過していない上記液体熱媒を、上記熱回収部を通過した上記液体熱媒に混合して、混合後の上記液体熱媒の温度が所定範囲内となるように制御する、液化燃料ガス気化システムの液体熱媒温度制御方法。
    In a liquefied fuel gas vaporization system for vaporizing liquefied fuel gas and supplying it to a combustion device,
    Circulating the liquid heat medium between a vaporizer that heats and vaporizes the liquefied fuel gas with a liquid heat medium, and a heat recovery unit that recovers exhaust heat of the combustion device,
    The liquid heat medium discharged from the vaporizer and not passing through the heat recovery part is mixed with the liquid heat medium passed through the heat recovery part, and the temperature of the liquid heat medium after mixing is predetermined. The liquid heat-medium temperature control method of the liquefied fuel gas vaporization system controlled to become in a range.
  11.  上記燃料ガスは天然ガスであり、上記熱媒は水である、請求項10に記載の液体熱媒温度制御方法。 The liquid heat medium temperature control method according to claim 10, wherein the fuel gas is natural gas and the heat medium is water.
  12.  上記液化燃料ガス気化システムは、上記気化器から排出された、相対的に低温である上記液体熱媒を上記熱回収部まで送る低温側ライン、及び、上記熱回収部を通過した、相対的に高温である上記液体熱媒を上記気化器まで送る高温側ライン、を含む熱媒循環ラインと、
     一端が上記低温側ラインに接続され、かつ他端が上記高温側ラインに接続された第1バイパスラインと、
     上記気化器から排出される燃料ガスの温度を検出するガス温度検出部と、
     上記第1バイパスラインを通過して上記高温側ラインに供給される上記液体熱媒の流量を調節する第1温度調節部と、
     一端が上記低温側ラインにおいて上記第1バイパスラインの接続箇所よりも上記熱回収部寄りに接続され、かつ他端が上記高温側ラインにおいて上記第1バイパスラインの接続箇所よりも上記熱回収部寄りに接続された、第2バイパスラインと、
     上記高温側ラインにおいて上記第1バイパスラインと上記第2バイパスラインとの間に設けられて、上記液体熱媒の温度を検出する熱媒温度検出部と、
     上記第2バイパスラインを通過して上記高温側ラインに混合される上記液体熱媒の流量を調節する第2温度調節部と、を更に含んでおり、
     上記第1温度調節部は、上記ガス温度検出部で検出される燃料ガスの温度が目標温度からの所定範囲内に収まるように、上記第1バイパスラインを通過して上記高温側ラインに供給される上記液体熱媒の流量を調節し、
     上記第2温度調節部は、上記熱媒温度検出部で検出される上記液体熱媒の温度が所定範囲内の略一定温度に維持されるように、上記第2バイパスラインを通過して上記高温側ラインに混合される上記液体熱媒の流量を調節する、請求項11に記載の液体熱媒温度制御方法。
    The liquefied fuel gas vaporization system includes a low-temperature side line that is discharged from the vaporizer and sends the liquid heat medium having a relatively low temperature to the heat recovery unit, and has passed through the heat recovery unit. A heating medium circulation line including a high temperature side line for sending the liquid heating medium having a high temperature to the vaporizer;
    A first bypass line having one end connected to the low temperature side line and the other end connected to the high temperature side line;
    A gas temperature detector for detecting the temperature of the fuel gas discharged from the vaporizer;
    A first temperature adjusting unit that adjusts a flow rate of the liquid heat medium that passes through the first bypass line and is supplied to the high-temperature side line;
    One end of the low temperature side line is connected closer to the heat recovery part than the connection point of the first bypass line, and the other end is closer to the heat recovery part than the connection point of the first bypass line in the high temperature side line. A second bypass line connected to
    A heating medium temperature detection unit that is provided between the first bypass line and the second bypass line in the high temperature side line and detects the temperature of the liquid heating medium;
    A second temperature adjusting unit that adjusts the flow rate of the liquid heat medium that passes through the second bypass line and is mixed with the high-temperature side line;
    The first temperature adjusting unit passes through the first bypass line and is supplied to the high temperature side line so that the temperature of the fuel gas detected by the gas temperature detecting unit falls within a predetermined range from a target temperature. Adjust the flow rate of the liquid heating medium,
    The second temperature adjustment unit passes through the second bypass line and passes the high temperature so that the temperature of the liquid heat medium detected by the heat medium temperature detection unit is maintained at a substantially constant temperature within a predetermined range. The liquid heat-medium temperature control method of Claim 11 which adjusts the flow volume of the said liquid heat-medium mixed with a side line.
  13.  上記液化燃料ガス気化システムは、上記高温側ラインにおいて上記第1バイパスラインと上記第2バイパスラインとの間に設けられた温度維持チャンバを更に含んでおり、
     上記熱媒温度検出部は、上記温度維持チャンバに設けられて、当該温度維持チャンバにある上記液体熱媒の温度が所定範囲内の略一定温度に維持されるように、上記第2バイパスラインを通過して上記高温側ラインに混合される上記液体熱媒の流量を調節する、請求項12に記載の液体熱媒温度制御方法。
    The liquefied fuel gas vaporization system further includes a temperature maintenance chamber provided between the first bypass line and the second bypass line in the high temperature side line,
    The heat medium temperature detection unit is provided in the temperature maintenance chamber, and the second bypass line is provided so that the temperature of the liquid heat medium in the temperature maintenance chamber is maintained at a substantially constant temperature within a predetermined range. The liquid heat-medium temperature control method of Claim 12 which adjusts the flow volume of the said liquid heat-medium which passes and is mixed with the said high temperature side line.
  14.  上記第1温度調節部は、上記燃料ガスの目標温度から±5℃である15~50℃に収まるように、上記第1バイパスラインを通過して上記高温側ラインに供給される上記液体熱媒の流量を調節し、
     上記第2温度調節部は、上記熱媒温度検出部で検出される上記液体熱媒の温度が25~60℃の範囲内の略一定温度に維持されるように、上記第2バイパスラインを通過して上記高温側ラインに混合される上記液体熱媒の流量を調節する、請求項12又は13に記載の液体熱媒温度制御方法。
    The first temperature adjusting unit passes through the first bypass line and is supplied to the high temperature side line so as to be within a range of 15 to 50 ° C. that is ± 5 ° C. from the target temperature of the fuel gas. Adjust the flow rate of
    The second temperature adjusting unit passes through the second bypass line so that the temperature of the liquid heat medium detected by the heat medium temperature detecting unit is maintained at a substantially constant temperature within a range of 25 to 60 ° C. The liquid heat medium temperature control method according to claim 12 or 13, wherein the flow rate of the liquid heat medium mixed in the high temperature side line is adjusted.
PCT/JP2018/021362 2017-06-06 2018-06-04 Liquefied fuel gas vaporization system and liquid heat medium temperature controlling method for same WO2018225683A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018567755A JP6557793B2 (en) 2017-06-06 2018-06-04 Liquefied fuel gas vaporization system and liquid heating medium temperature control method therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-111638 2017-06-06
JP2017111638 2017-06-06

Publications (1)

Publication Number Publication Date
WO2018225683A1 true WO2018225683A1 (en) 2018-12-13

Family

ID=64566710

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/021362 WO2018225683A1 (en) 2017-06-06 2018-06-04 Liquefied fuel gas vaporization system and liquid heat medium temperature controlling method for same

Country Status (2)

Country Link
JP (1) JP6557793B2 (en)
WO (1) WO2018225683A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11344276A (en) * 1998-06-01 1999-12-14 Jgc Corp Cold supplying device of liquefied gas and its operation control method
JP2004324761A (en) * 2003-04-24 2004-11-18 Kobe Steel Ltd Method for operating low-temperature liquefied gas vaporizer
JP2006194337A (en) * 2005-01-13 2006-07-27 Seiko Epson Corp Nitrogen supply system
US20100107634A1 (en) * 2008-11-06 2010-05-06 Air Products And Chemicals, Inc. Rankine Cycle For LNG Vaporization/Power Generation Process
JP2010267707A (en) * 2009-05-13 2010-11-25 Kobe Steel Ltd Data center system, and cooling power generation using data center system
JP2011117486A (en) * 2009-12-01 2011-06-16 Ihi Corp Equipment and method of vaporizing liquefied gas
JP2013507585A (en) * 2009-10-09 2013-03-04 クライオスター・ソシエテ・パール・アクシオンス・サンプリフィエ Conversion of liquefied natural gas
WO2016010478A1 (en) * 2014-07-16 2016-01-21 Keppel Offshore & Marine Technology Centre Pte Ltd Apparatus and method for the regasification of liquefied natural gas

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11344276A (en) * 1998-06-01 1999-12-14 Jgc Corp Cold supplying device of liquefied gas and its operation control method
JP2004324761A (en) * 2003-04-24 2004-11-18 Kobe Steel Ltd Method for operating low-temperature liquefied gas vaporizer
JP2006194337A (en) * 2005-01-13 2006-07-27 Seiko Epson Corp Nitrogen supply system
US20100107634A1 (en) * 2008-11-06 2010-05-06 Air Products And Chemicals, Inc. Rankine Cycle For LNG Vaporization/Power Generation Process
JP2010267707A (en) * 2009-05-13 2010-11-25 Kobe Steel Ltd Data center system, and cooling power generation using data center system
JP2013507585A (en) * 2009-10-09 2013-03-04 クライオスター・ソシエテ・パール・アクシオンス・サンプリフィエ Conversion of liquefied natural gas
JP2011117486A (en) * 2009-12-01 2011-06-16 Ihi Corp Equipment and method of vaporizing liquefied gas
WO2016010478A1 (en) * 2014-07-16 2016-01-21 Keppel Offshore & Marine Technology Centre Pte Ltd Apparatus and method for the regasification of liquefied natural gas

Also Published As

Publication number Publication date
JPWO2018225683A1 (en) 2019-06-27
JP6557793B2 (en) 2019-08-07

Similar Documents

Publication Publication Date Title
KR101342794B1 (en) A Treatment System and Method of Liquefied Gas
KR101809804B1 (en) Natural gas fuel evaporator, natural gas fuel supply device, and method for supplying natural gas fuel to ships and motors
JP2006349084A (en) Evaporative gas supply system of liquefied natural gas carrier
KR101959154B1 (en) Boiler feed-water system, boiler provided with said system, and boiler feed-water method
JP2009248013A (en) Fresh water generating apparatus
KR101686912B1 (en) Devivce for liquefied gas supply
JP6557793B2 (en) Liquefied fuel gas vaporization system and liquid heating medium temperature control method therefor
JP6505852B2 (en) LNG evaporation system for ships, ship equipped with the same, and LNG evaporation method for ships
KR102113919B1 (en) Regasification System of liquefied Gas and Ship Having the Same
WO2019031300A1 (en) Liquefied fuel gas vaporization system and temperature control method for same
JP6959804B2 (en) Vessel and LPG temperature / pressure control method
KR20130004401A (en) Fuel gas supply system of the direct heat exchange form using boiler steam
JP6152155B2 (en) LNG satellite equipment
KR101647465B1 (en) Integrated Cooling and Vaporizing System for a Ship and a Marine Structure
WO2019049789A1 (en) Ship
KR101280216B1 (en) Fuel gas supply system of the direct heat exchange form using boiler steam
KR102282403B1 (en) Marine Fuel Gas Supply System
KR20190041869A (en) VOC reduction appartus using liquified fuel gas and vessel having the same
KR20190123455A (en) gas treatment system and offshore plant having the same
JP2008275127A (en) Liquefied gas transferring and filling device
KR20200135783A (en) Gas supply assembly
KR20180049929A (en) Vessel for supplying liquefied fuel gas
KR20170084742A (en) Cooling control device of condenser for ship

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018567755

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18814374

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18814374

Country of ref document: EP

Kind code of ref document: A1