WO2018225664A1 - Defect detection device, defect detection method, wafer, semiconductor chip, die bonder, semiconductor manufacturing method, and semiconductor device manufacturing method - Google Patents

Defect detection device, defect detection method, wafer, semiconductor chip, die bonder, semiconductor manufacturing method, and semiconductor device manufacturing method Download PDF

Info

Publication number
WO2018225664A1
WO2018225664A1 PCT/JP2018/021298 JP2018021298W WO2018225664A1 WO 2018225664 A1 WO2018225664 A1 WO 2018225664A1 JP 2018021298 W JP2018021298 W JP 2018021298W WO 2018225664 A1 WO2018225664 A1 WO 2018225664A1
Authority
WO
WIPO (PCT)
Prior art keywords
defect
focus position
defect detection
workpiece
work
Prior art date
Application number
PCT/JP2018/021298
Other languages
French (fr)
Japanese (ja)
Inventor
悠 田井
永元 信裕
義和 下川
洋児 清水
篤正 上林
Original Assignee
キヤノンマシナリー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by キヤノンマシナリー株式会社 filed Critical キヤノンマシナリー株式会社
Priority to CN201880037126.2A priority Critical patent/CN110741464B/en
Priority to JP2018563639A priority patent/JP6595130B2/en
Priority to SG11201911669SA priority patent/SG11201911669SA/en
Publication of WO2018225664A1 publication Critical patent/WO2018225664A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/95Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
    • G01N21/956Inspecting patterns on the surface of objects
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/52Mounting semiconductor bodies in containers

Definitions

  • the present invention relates to a defect detection apparatus, a defect detection method, a die bonder, and a bonding method for detecting a crack formed on the surface of a work piece such as a wafer, a chip cut from the wafer, and the like, and further, a wafer,
  • the present invention relates to a semiconductor chip, a semiconductor manufacturing method, and a semiconductor device manufacturing method.
  • Patent Documents 1 to 3 Various detection devices for detecting a crack generated in a chip (semiconductor chip) have been conventionally proposed (Patent Documents 1 to 3).
  • Patent Document 1 an image of a semiconductor surface is picked up by an image pickup means, a correlation coefficient of a plurality of color signals output from the image pickup means is obtained by a detection means, and a defect on the semiconductor surface is detected from these correlation coefficients. It is. For this reason, defects such as discoloration and dirt can be detected.
  • Patent Document 2 from the back surface side of the wafer on which the resin layer for sealing the main surface side is formed, the optical axis is intersected with the main surface of the wafer and irradiated with infrared rays, and the reflected light is received.
  • a crack generated in the wafer is detected. That is, by irradiating infrared rays from the back side of the wafer separated by dicing, the infrared rays can be transmitted to the wafer, and the reflected infrared rays diffusely reflected at the interface of the cracks generated inside the wafer.
  • a crack generated inside the wafer can be visualized.
  • Patent Document 3 deformation of a semiconductor chip and occurrence of a crack are detected by detecting elastic waves from the semiconductor chip.
  • the workpiece may be a semiconductor chip 3 having a wiring pattern layer 1 and a covering layer 2 on the wiring pattern layer.
  • the illumination light when the illumination light is incident on the surface of the workpiece, the illumination light is reflected by the surface of the coating layer 2, passes through the coating layer 2, is absorbed by the coating layer 2, and It is scattered and reflected from the wiring pattern layer 1.
  • the present invention provides a defect detection apparatus and a detection method that can stably detect the presence or absence of defects such as cracks formed on the surface of a workpiece.
  • a die bonder and a bonding method capable of stably detecting the presence or absence of defects such as cracks are provided.
  • a defect detection apparatus is a defect detection apparatus that detects a defect having at least an inclined surface portion in a semiconductor product or a work that is a part of the semiconductor product, and illuminates the work with bright-field illumination light.
  • an imaging device that constitutes an observation optical system and that observes the observation site of the workpiece irradiated by the illuminator, and the inspection mechanism is decoupled from the in-focus position in the optical axis direction. Observe the reflected light from the workpiece emitted from the focused out-of-focus position, and form a defect on the observed image formed by the reflected light from the out-of-focus position by the reflected light from the in-focus position. It emphasizes rather than defects on the observed image.
  • the semiconductor product includes not only a completed product but also an unfinished product in the middle of manufacturing.
  • the in-focus position is an arbitrary position on the in-focus surface (the surface having a conjugate relationship with the image surface (sensor surface)), and the out-of-focus position is a position other than the in-focus surface. .
  • a case where the object plane does not coincide with the in-focus position is said to be defocused.
  • the defect detection apparatus of the present invention in the case of irradiating bright-field illumination light and observing reflected light, the reflected light from the work is apparently seen from the out-of-focus position shifted from the in-focus position in the optical axis direction.
  • the so-called defocusing is performed.
  • the bright field illumination light is illumination (substantially parallel light) from the extension direction of the principal ray of the observation optical system.
  • enhancement means that the defect on the image is enlarged more than the defect on the observation image formed by the reflected light from the in-focus position, or the contrast between the defect on the observation image and other parts is increased. Is to do. That is, the emphasis in the present invention means that at least one of enlargement or increase in contrast occurs.
  • the reflected light may be emitted from two different positions including at least the out-of-focus position of the in-focus position and the out-of-focus position.
  • This position includes the in-focus position. That is, the at least two different positions include a focus position and one or more non-focus positions, and two or more non-focus positions.
  • positioning for detecting the position of the workpiece on the inspection or image may be performed based on the reflected light from at least one of the positions.
  • the observation optical system has a positioning function in addition to the inspection function, and is effective for an apparatus (particularly a die bonder or the like) that requires positioning in the vicinity of the in-focus position (range of depth of field). .
  • the inspection mechanism is based on reflected light emitted from each of a non-focus position on the side close to the imaging device and a non-focus position on the side remote from the imaging device with the focus position as a boundary. May be inspected.
  • the focus position as a boundary
  • the color of the defect on the observation image at the non-focus position on the side close to the imaging device and the color of the defect on the observation image at the non-focus position on the side away from the imaging device Will be different.
  • the NA on the illuminator side may be smaller than the NA on the observation optical system side.
  • the inspection mechanism includes defocusing means for emitting reflected light from the work from a non-focusing position shifted from the focusing position in the optical axis direction, and the defocusing means moves the work and the optical system to the optical axis.
  • defocusing means for emitting reflected light from the work from a non-focusing position shifted from the focusing position in the optical axis direction
  • the defocusing means moves the work and the optical system to the optical axis.
  • a variable means capable of changing at least one of the NA on the illumination means side and the NA on the observation optical system side may be provided.
  • a NA control unit that sets at least the NA on the observation optical system side or the illuminator side may be provided according to the tilt or defocus amount of the workpiece.
  • the inspection may be performed at a position defocused by 100 ⁇ m or more from the in-focus position in the observation optical system.
  • the defocus amount from the position of the workpiece to the out-of-focus position is orthogonal to the minimum detection width ⁇ min of the imaging device and the optical axis
  • the angle ⁇ 1 formed by the line and one surface portion, the angle ⁇ 2 formed by the line orthogonal to the optical axis and the other surface portion, and the separation width w between the pair of surface portions are calculated by the equation ⁇ min ⁇ w / (tan2 ⁇ 1 + tan2 ⁇ 2). It can be greater than the value. Thereby, the certainty which can enlarge the defect on an observation image can be improved.
  • a control unit that controls the defocusing means may be provided so that a predetermined defocus amount is obtained.
  • the defect detection apparatus automatically performs defocusing.
  • the control unit may include a calculation unit that calculates the defocus amount based on a predetermined parameter.
  • the defect detection apparatus automatically determines the defocus amount only by setting the parameter by the user.
  • the illumination unit may include an inspection light source, a positioning light source, and an NA switching unit that switches the light source to electrically switch the NA on the illumination side.
  • a detection unit that detects the inclination angle of the surface portion and the defect width from the defocus amount and the separation width may be provided. Thereby, the angle measurement of the surface part of a defect can be performed.
  • the change in the size of the defect means enlargement or reduction.
  • the workpiece may have a multilayer structure, and the intensity of light reflected or scattered from the layer to be inspected and incident on the imaging device may be a wavelength larger than the intensity from other layers.
  • the workpiece includes a shading layer having a shading pattern derived from a semiconductor manufacturing process, and a covering layer covering the shading pattern of the shading layer, and the illumination light irradiated from the illumination unit is at least a shading layer.
  • the wavelength of the light that is reflected or scattered from the coating layer and incident on the imaging device is larger than the light that is reflected from and incident on the imaging device, and the influence of the shading pattern of the shading layer is reduced. be able to.
  • Lowering the influence of the light and shade pattern means a case where these light and shade patterns at the time of observing the defect are erased or thinly reflected and the observation of the defect is not impaired. That is, the brightness contrast caused by the shading pattern is lower than when light other than this light is used. Thereby, the light reflected or scattered from the surface of the coating layer can be projected, the luminance contrast generated by the light and shade pattern is lowered, and the influence of the light and shade pattern can be reduced (small).
  • the covering layer is an organic layer, and the organic layer can be set to be a polyimide resin.
  • the coating layer can be set to have a thickness of 1 ⁇ m to 100 ⁇ m.
  • the covering layer may be composed of two or more layers, and each layer may be made of the same material, different materials in each layer, or a plurality of predetermined layers made of the same material.
  • the observed wavelength of the illumination light of the illumination means is 450 nm or less or 1000 nm or more.
  • the coating layer is made of polyimide resin, and the shading layer having the shading pattern can stably lower the influence of the wiring pattern. it can.
  • the work placing portion of the table is formed of a porous material that attracts and holds the work by suction.
  • the work placing portion of the table can be configured by an electrostatic chuck structure that attracts and holds the work by static electricity. If the work placement part of the table is made of a porous material or has an electrostatic chuck structure, the work is held uniformly on the table as a whole. For this reason, even if the workpiece is warped, it can be made flat, and it is possible to prevent the warped portion from being observed darkly during observation.
  • the workpiece may be a wafer whose wiring pattern constitutes the shading pattern, or an individual piece (semiconductor chip) obtained by dividing the wafer into individual pieces. That is, as a workpiece, an individual piece mounted on a lead frame or a substrate (not packaged, that is, an individual piece not covered), or composed of a plurality of individual pieces (single piece For example, a stacked memory chip, SiP (System in Package).
  • SiP System in Package
  • the defect detection method of the present invention is a defect detection method for detecting a defect having at least an inclined surface part which is a semiconductor product or a part of the semiconductor product, and irradiates the workpiece with bright-field illumination light,
  • the reflected light is emitted from a non-focus position defocused from the focus position in the optical axis direction, and defects on the observation image formed by the reflected light from the non-focus position are removed from the focus position. It emphasizes more than defects on the observation image formed by reflected light.
  • the defect detection method of the present invention in the case of irradiating bright field illumination light and observing reflected light, the reflected light from the work is apparently seen from the out-of-focus position shifted from the in-focus position in the optical axis direction.
  • the so-called defocusing is performed.
  • the bright field illumination light is illumination (substantially parallel light) from the extension direction of the principal ray of the observation optical system.
  • a second defect detection method of the present invention is a defect detection method for detecting a defect having at least an inclined surface portion in a semiconductor product or a workpiece that is a part of the semiconductor product, and the workpiece is formed of a porous material. Placed on a table having a work placement part, sucked the work through the pores of the porous material and adsorbed to the table, irradiated bright-field illumination light to the work, The reflected light is emitted from a non-focus position defocused from the focus position in the optical axis direction, and defects on the observation image formed by the reflected light from the non-focus position are removed from the focus position. It emphasizes more than defects on the observation image formed by reflected light.
  • a third defect detection method of the present invention is a defect detection method for detecting a defect having at least an inclined surface portion in a semiconductor product or a workpiece that is a part of the semiconductor product, and the workpiece is configured with an electrostatic chuck structure.
  • the workpiece is placed on a table having a placement portion, the workpiece is attracted by static electricity and held on the table, the field is irradiated with bright field illumination light, and the reflected light from the workpiece is reflected in the optical axis direction.
  • the defect on the observation image formed by the reflected light from the out-of-focus position is observed by the reflected light from the in-focus position. It emphasizes more than defects on the image.
  • the defect detection apparatus may be used as the defect detection method.
  • a criterion for determining whether or not the defect detected by the defect detection method is defective as a product may be set in advance, and the defect image may be determined based on the criterion for determining whether the defect is defective or non-defective.
  • the defect When inspecting from two different positions including at least a non-focus position, a focus position and a non-focus position, the defect is determined based on a change in the brightness of the defect and / or a change in the size of the defect. May be.
  • the change in the size of the defect means enlargement or reduction.
  • a defect may not be detected by the defect detection method, or the detected defect may be configured as a single piece that is determined to be a non-defective product by the defect detection method.
  • the die bonder of the present invention is a die bonder provided with a bonding section for picking up a workpiece at a pick-up position, transporting the picked-up workpiece to a bonding position, and bonding the workpiece at the bonding position. Is arranged.
  • the die bonder of the present invention it is possible to detect defects such as cracks on the surface of the workpiece to be bonded at a position other than the bonding portion or the bonding portion, that is, an arbitrary position of the die bonder. That is, defects (cracks) of a workpiece (semiconductor chip or the like) can be detected before, during and after the bonding operation, and shipment of defective products can be prevented. In the case of a product in which semiconductor chips (die) are stacked, the yield can be greatly improved. For example, if a chip is bonded on a defective chip, or a defective chip is stacked on a non-defective chip, the stacked body becomes defective or the product rank is lowered.
  • the die bonder it is possible to detect the position at the pickup position and to detect the position at the bonding position.
  • the die bonder may have an intermediate stage in which a workpiece is transferred between a pickup position and a bonding position, and the intermediate stage may be provided with the defect detection device of the present invention. It may be possible to detect positioning at at least one of the intermediate positions between the bonding position and the pickup position and the bonding position.
  • a first bonding method of the present invention is a bonding method including a bonding step of picking up a workpiece at a pickup position, transporting the picked-up workpiece to a bonding position, and bonding the workpiece at the bonding position.
  • the defect detection device detects a defect with respect to the workpiece at least one of before and after the pickup.
  • a second bonding method of the present invention is a bonding method including a bonding step of picking up a workpiece at a pickup position, transporting the picked-up workpiece to a bonding position, and bonding the workpiece at the bonding position. , Having an intermediate stage between the pick-up position and the bonding position, and at least one of before the workpiece is supplied to the intermediate stage and after the workpiece is discharged from the intermediate stage, the defect detection device detects defects on the workpiece. It is to detect.
  • a third bonding method of the present invention is a bonding method including a bonding step of picking up a workpiece at a pickup position, transporting the picked-up workpiece to a bonding position, and bonding the workpiece at the bonding position.
  • the defect is detected by the defect detection device with respect to the workpiece at least one of before bonding and after bonding.
  • a fourth bonding method of the present invention is a bonding method including a bonding step of picking up a workpiece at a pickup position, transporting the picked-up workpiece to a bonding position, and bonding the workpiece at the bonding position.
  • the inspection process using the defect detection method described above is performed at least one of before supplying the work to the bonding process and after discharging the work from the bonding process.
  • the semiconductor manufacturing method includes an inspection process using the defect detection method, and further includes a dicing process for cutting the wafer into individual pieces, and a mold sealing process for sealing the semiconductor chips formed into individual pieces with a resin. It comprises at least one of the steps.
  • a semiconductor device manufacturing method is a semiconductor device manufacturing method for manufacturing a semiconductor device having an individual body assembly made up of a plurality of individual bodies, and is an assembly of one individual body or a predetermined number of individual bodies. And at least one of another object to be assembled to the object is inspected by using the depression detection method.
  • the defect on the observation image formed by the reflected light from the out-of-focus position is observed more magnified than the defect on the observation image formed by the reflected light from the in-focus position. Since the defect that could not be seen by the apparatus can be seen, the defect (crack) can be detected stably.
  • FIG. 1 is a simplified diagram of a defect detection apparatus according to the present invention. It is the schematic which shows the bonding process using the die bonder of this invention. It is a simplified perspective view of a die bonder.
  • FIG. 2 is a simplified diagram of a die bonder showing a die bonder of the present invention and having a defect detection device at a pickup position. It is a simplified perspective view which shows a wafer. It is a principal part expanded sectional view of the workpiece
  • FIG. 3 is a simplified cross-sectional view showing a defect (crack) generated in a workpiece and having a V-shaped cross section.
  • FIG. 3 is a simplified cross-sectional view showing a defect (crack) generated in a workpiece and having a cross-sectional right triangle shape. It is a defect (crack) which arises in a work, and is a simplified sectional view in the state where a work was cut in the shape of a trough, and an inclined surface part was formed on the upper surface of a pair of cut end faces.
  • FIG. 3 is a simplified cross-sectional view showing a defect (crack) generated in a workpiece and having a V-shaped cross section.
  • FIG. 3 is a simplified cross-sectional view showing a defect (crack) generated in a workpiece and having a cross-sectional right triangle shape. It is a defect (crack) which arises in a work, and is a simplified sectional view in the state where a work was cut in the
  • FIG. 5 is a simplified cross-sectional view showing a defect (crack) generated in a workpiece, in which the workpiece is cut in a mountain shape, and an inclined surface portion is formed on the upper surface of one cut end surface.
  • a defect (crack) which arises in a work, and is a simplified sectional view in the state where a work was bent in the shape of a trough.
  • a defect (crack) which arises in a work, and is a simplified sectional view in the state where a work was bent in the shape of a mountain.
  • disconnected by the trough shape is shown, and is an image in the upper non-focus position.
  • disconnected by the trough shape is shown, and is an image in the upper non-focus position.
  • disconnected by the trough shape is shown, and is an image in the upper non-focus position.
  • valley shape is shown, and is an image in the lower in-focus position.
  • valley shape is shown, and is an image in the lower in-focus position.
  • FIG. 6 is a simplified diagram showing a method for adsorbing a semiconductor chip on a pickup stage of a die bonder according to the present invention, and showing a state before adsorption. It is the simplified diagram which shows the method to adsorb
  • FIG. 1 shows a simplified diagram of a workpiece defect detection apparatus according to the present invention.
  • This defect detection apparatus includes a semiconductor wafer 29 (see FIG. 4) and a semiconductor chip 21 obtained by dividing the semiconductor wafer 29 (FIG. 2A, FIG. 2B) or the presence or position of a defect 50 (see FIG. 7) such as a crack formed on a workpiece such as a die.
  • the work has a shading layer 11 that is a shading pattern and a covering layer 12 that covers the shading pattern of the shading layer 11.
  • the covering layer 12 is composed of one layer in FIG. 5A, and in FIG. 5B, a plurality of layers (in this example, the first layer 13 on the side of the light and dark layer and the second layer 14 on the upper side of the first layer 13) 2 layers).
  • it can comprise with a wiring pattern as a light / dark pattern, and when comprised with a wiring pattern, the light / dark layer 11 can be called a wiring pattern layer.
  • the light and shade pattern is derived from the semiconductor manufacturing process and is formed by the semiconductor manufacturing process.
  • the shade pattern of the work may be formed by a semiconductor manufacturing process, and the base material thereof may be a semiconductor, glass, or a polymer material.
  • lithography including ion implantation and etching
  • a film forming process and the like.
  • the covering layer 12 can be made of, for example, a silicone resin or a polyimide resin.
  • the first layer 13 and the second layer 14 may be made of the same material or different materials. That is, as shown in FIG. 5A, if the coating layer 12 is one layer, the material can be composed of silicone resin, polyimide resin, or the like, and the coating layer 12 has a plurality of layers as shown in FIG. 5B.
  • the first layer 13 is made of polyimide resin
  • the second layer is made of silicone resin
  • the first layer 13 is made of silicone resin
  • the second layer is made of polyimide resin
  • the first layer 13 and the second layer 14 May be a polyimide resin
  • the first layer 13 and the second layer 14 may be a silicone resin.
  • the same kind of resin is used for the first layer 13 and the second layer 14, those having different characteristics and the like may be used.
  • the thickness dimension of the covering layer 12 for example, even if it is a single layer shown in FIG. 5A or a plurality of layers as shown in FIG. 5B, it can be set to be 1 ⁇ m to 100 ⁇ m, for example. Can be about 1 ⁇ m to 20 ⁇ m.
  • the coating layer may be three or more layers. In this case, each layer may be made of the same material, different materials of each layer, or a plurality of predetermined layers made of the same material.
  • the defect detection apparatus 100 is disposed at an arbitrary position of the die bonder as shown in FIGS. 2B and 22.
  • the die bonder includes a bonding unit that pips up a chip 21 cut out from a wafer 29 (see FIG. 4) at a pickup position P and transfers (mounts) the chip 21 to a bonding position Q of a substrate 22 such as a lead frame.
  • the wafer 29 is divided (divided) into a large number of chips 21 by a dicing process. For this reason, the chips 21 are arranged in a matrix on a table (pickup table) as shown in FIG. In the die bonder shown in FIG.
  • a table (intermediate stage) is disposed between the pickup position P and the bonding position Q, as will be described later.
  • the defect detection apparatus 100 is arranged at a pickup position P, a bonding position Q, at least one position on the intermediate stage, any position from the pickup position P to the bonding position Q, and a position other than the bonding portion. It will be.
  • the table in this embodiment, the pickup table 101
  • the table includes a rectangular porous material 102 and a support portion 103 that supports the porous material 102 from the periphery.
  • a suction mechanism such as a pump is connected.
  • the porous material is a material having innumerable small pores, and includes various materials such as metals and ceramics.
  • the porous material 102 preferably has, for example, a mesh particle size of 240 and an average pore size of about 55 ⁇ m.
  • the upper surface of the porous material 102 serves as a placement portion on which the workpiece is placed.
  • the suction mechanism When the suction mechanism is driven in a state where the workpiece is placed on the porous material 102, the workpiece is passed through the closed space formed below the porous material 102 and the support portion 103 and the countless pores of the porous material 102. Is sucked, and the work is entirely adsorbed by the porous material 102.
  • the porous material 102 is slightly larger than the outer diameter size of the workpiece (chip).
  • the outer peripheral length of the porous material 102 is preferably about chip size + 0.1 mm.
  • a vacuum pressure sensor 104 (or a flow rate sensor) for measuring the vacuum pressure is provided in the flow path between the pickup table 101 and the suction mechanism. It can be determined whether or not it is sucked.
  • the diameter of the suction port is as large as about 300 ⁇ m, and the workpiece is drawn into the suction port when the workpiece is fixed to the table such as the pickup table 101. It is. As a result, the surface of the workpiece is tilted and may be observed dark. Further, residual stress is generated by the process of forming the workpiece, the workpiece is warped, and the warped portion may be observed darkly.
  • the workpiece is held on the entire stage uniformly by using the porous material 102 as the workpiece mounting portion of the pickup table 101.
  • the pickup table 101 is not provided with a large suction port as conventionally provided, it is possible to prevent the workpiece from being drawn into the suction port and tilted to be observed in the dark.
  • This die bonder includes a collet (adsorption collet) 23 as shown in FIG. 2A.
  • This collet 23 is moved by an unillustrated moving mechanism in the direction of arrow a and in the direction of arrow b on the pickup position P, and in the direction of arrow c and in the direction of arrow d on the bonding position Q.
  • the reciprocation between the pickup position P and the bonding position Q in the directions of arrows e and f is possible.
  • the moving mechanism the movement of the arrows a, b, c, d, e, and f is controlled by a control unit configured by, for example, a microcomputer.
  • a moving mechanism it can comprise with various mechanisms, such as a cylinder mechanism, a ball screw mechanism, and a linear motor mechanism.
  • the suction collet 23 includes a head (suction nozzle) 24 having a suction hole 28 opened on the lower surface thereof, and the chip 21 is vacuum-sucked through the suction hole 28, and the chip 21 is placed on the lower end surface (tip surface) of the head 24. Adsorbs. When this vacuum suction (evacuation) is released, the chip 21 is detached from the head 24.
  • the wafer 29 divided (divided) into a large number of chips 21 is arranged on, for example, an XY ⁇ table 25 (see FIG. 4), and the XY ⁇ table 25 is provided with push-up means having push-up pins. That is, the chip 21 to be picked up is pushed up from below by the pushing-up means, and is easily peeled off from the adhesive sheet. In this state, the chip 21 is adsorbed to the adsorbing collet 23 that has been lowered.
  • the collet 23 is lowered as shown by the arrow b to pick up the chip 21. Thereafter, the collet 23 is raised as indicated by an arrow a.
  • the collet is moved in the direction of arrow e and positioned above the island portion, and then the collet is moved down as indicated by arrow d to supply the chip 21 to the island portion. Further, after supplying the chip 21 to the island portion, the collet is raised as indicated by an arrow c, and then returned to the standby position above the pip-up position P as indicated by an arrow f.
  • the collet 23 is sequentially moved as indicated by arrows b, a, e, d, c, and f, whereby the chip 21 is picked up by the collet 23 at the pickup position P, and the chip 21 is chipped at the bonding position Q. 21 to be mounted.
  • the chip 21 to be picked up is observed with a confirmation camera disposed above the pickup position P
  • the collet 23 is positioned above the chip 21 to be picked up
  • the bonding position The island of the lead frame is observed with a confirmation camera disposed above Q, and the collet 23 is positioned above the island.
  • This positioning apparatus includes the defect detection apparatus 100 according to the present invention. That is, the positioning device includes an inspection mechanism 30 as shown in FIG.
  • the inspection mechanism 30 includes an imaging device 31 for observing the chip 21, an illumination unit 32 that illuminates the chip 21, a half mirror 33 that reflects light emitted from the illumination unit 32, and reflected light from the chip 21.
  • defocusing means 39 for emitting light from a non-focus position shifted (defocused) from the focus position in the optical axis direction.
  • the in-focus position is a position where the light beams intersect on the optical axis when a parallel light beam is put into the lens
  • the out-of-focus position is a position other than the in-focus position described above, and from the in-focus position. This is the defocused position.
  • the imaging device 31 constituting the observation optical system has a camera 34 and a lens 35.
  • the camera 34 can be composed of a CCD, a CMOS image sensor, or the like.
  • any device that can image light having an illumination wavelength may be used. For this reason, you may use what has a sensitivity in visible light, ultraviolet, and infrared.
  • the lens 35 can be constituted by a telecentric lens, a non-telecentric lens, or the like.
  • the imaging device 31 is controlled by the control means 43.
  • the control means 43 includes an inspection processor 44 that performs defect inspection and a positioning processor 45 that detects the position of the workpiece on the image (for example, image matching).
  • the illumination means 32 is a bright field illuminator provided with a light source 36 and a lens 37 as shown in FIG.
  • Bright field illumination refers to illumination from the extension direction of the principal ray of the observation optical system 31 (parallel light). That is, in general, the bright field is for observing direct light reflected or transmitted by the illuminated light, and the illumination method in this case is called a direct light illumination method.
  • the normal part of the workpiece surface (chip 21 surface) is observed brightly, and the direct light reflected by the majority (normal part) of the chip 21 surface is mainly observed.
  • “Illuminate from the direction of extension of the principal ray of the observation optical system 31” means, for example, as disclosed in Japanese Patent Application Laid-Open No.
  • the light emitted from the light emitting means is refracted by a lens to be converged light that is nearly parallel.
  • the light refracted by this lens is reflected by a half mirror and irradiated on substantially the entire surface of the inspection object, the light reflected by the inspection object surface is guided to an imaging means provided at a portion where the light converges Etc.
  • the NA (numerical aperture) on the illumination means side is smaller than the NA on the observation optical system side. That is, the light beam tilts as shown in FIGS. 6A and 6B due to reflection (transmission) on the tilted surface of the workpiece (chip 21).
  • FIG. 6B when the NA on the illumination means side is larger than the NA on the observation optical system side, images other than the principal ray are blocked by the stop of the observation optical system and do not form an image. For this reason, the position of the image does not change (not enlarged) even when defocused.
  • FIG. 6B when the NA on the illumination means side is larger than the NA on the observation optical system side, images other than the principal ray are blocked by the stop of the observation optical system and do not form an image. For this reason, the position of the image does not change (not enlarged) even when defocused.
  • variable means capable of changing at least one of the NA on the illumination means side and the NA on the observation optical system side.
  • the variable means may be, for example, an aperture stop mechanism, and this aperture stop mechanism is provided in either one or both of the imaging device 31 and the illumination means 32.
  • the aperture stop mechanism is controlled to have a predetermined NA according to the workpiece tilt or the defocus amount.
  • an aperture stop mechanism is provided in each of the imaging device 31 and the illumination unit 32.
  • the defocusing means 39 of the present embodiment is provided below the image pickup device 31 and includes a table 38 on which the chip 21 is placed and a driving means (not shown) that reciprocates the table 38 up and down.
  • the driving means can be constituted by various publicly known mechanisms (preferably highly accurate) such as a cylinder mechanism, a ball screw mechanism, and a linear motor mechanism.
  • the chip 21 can move up and down as indicated by the arrow in FIG. 1, and moves closer to or away from the imaging device 31.
  • the defocusing means 39 moves the chip 21 up and down to position the chip 21 at the in-focus position or the non-focus position, and reflects the reflected light from the surface of the chip 21 in the optical axis direction. In so-called defocusing, the light is emitted from a non-focus position shifted from the focus position.
  • the defocusing means 39 (driving means) is driven based on the control of the control unit 40.
  • the control unit 40 can be configured by a microcomputer in which a ROM (Read Only Memory), a RAM (Random Access Memory), and the like are connected to each other via a bus with a CPU (Central Processing Unit) as a center.
  • the control unit 40 includes a calculation unit 41. For example, the calculation unit 41 automatically determines the defocus amount only when the user sets a predetermined parameter by a method described later.
  • the workpiece is the wafer 29.
  • the workpiece is placed on the pickup table 101, the workpiece is sucked through the pores of the porous material 102, and the workpiece is adsorbed on the pickup table 101.
  • another bright field illumination means 42 is provided below the image pickup device 31, the bright field illumination means 42 detects the position of the chip 21 to be picked up on the image, and the positioning processor 45 performs image matching processing or the like. To position the workpiece. Thereafter, a defect of the workpiece is detected.
  • the defect 50 on the workpiece surface has, for example, various shapes as shown in FIG.
  • FIG. 7A shows that the inclined surface portions S, S are formed at the upper ends of the pair of cut end surfaces 51, 52
  • FIG. 7B shows the inclined surface portion S formed at the upper end of one of the cut end surfaces 51.
  • FIG. 7C shows a groove 53 having a V-shaped cross section, and a pair of inclined surface portions S is formed.
  • FIG. 7D a groove 54 having a right-angled triangular cross section is formed, and an inclined surface portion S is formed.
  • FIG. 7E shows that the workpiece covering layer 12 is cut in a valley shape, and inclined surface portions S, S are formed at the upper ends of the pair of cut end surfaces 51, 52, and FIG.
  • FIG. 7F shows a workpiece coating in a mountain shape.
  • the layer 12 is cut, and an inclined surface portion S is formed at the upper end of one cut end surface 51.
  • FIG. 7G shows that the workpiece covering layer 12 is bent in a valley shape, and the inclined surface portions S and S are formed via a bent line.
  • FIG. 7H shows the workpiece covering layer 12 in a mountain shape. 7 is bent, and the inclined surface portions S and S are formed through the bent line.
  • FIG. 7I shows that the workpiece covering layer 12 is cut in a valley shape, and the upper ends of the cut end faces 51 and 52 are cut. In FIG.
  • the workpiece covering layer 12 is cut in a mountain-like shape, and the inclined surface portions S, S extending flatly from the upper ends of the cut end surfaces 51, 52 are formed. Is formed.
  • a defect 50 (a crack, a bend, a cut and the like having an inclined surface portion S at any position) as shown in FIG. Etc.).
  • the defect detection apparatus 100 of the present embodiment can emphasize and observe the defect image on the observation image of the defect 50 formed on the workpiece. Emphasis enlarges the defect on the image more than the defect on the observation image formed by the reflected light from the in-focus position, or increases the contrast between the defect on the observation image and other parts. That is. That is, the emphasis in the present invention means that at least one of enlargement or increase in contrast occurs. The reason for this will be described, for example, in the case of detecting a defect as shown in FIGS. 7I and 8 (those having a valley shape and having a cut portion). In FIG. 8, the separation width (crack width) between one (right side in FIG. 8) inclined surface portion S1 and the other (left side in FIG.
  • inclined surface portion S2 is w, a line perpendicular to the optical axis and one inclined surface portion S1. Is defined as ⁇ 1, the angle formed between the line perpendicular to the optical axis and the other inclined surface S2 is ⁇ 2, and the crack angle ⁇ is ⁇ 1 + ⁇ 2.
  • the dotted line is illumination light and the solid line is reflected light.
  • the reflected light emission position moves (shifts downward) on the optical axis and is observed.
  • the image IB is observed as a shift in a direction parallel to the image IA.
  • the image positional deviation amount can be calculated as focus movement amount ⁇ tan (2 ⁇ ).
  • the illumination-side numerical aperture NA may be reduced to increase the depth of field (the range in which blur can be allowed). This prevents the image from being blurred even when defocused.
  • FIG. 12G shows an image at the lower out-of-focus position farthest from the object plane, and the defect 50 is most enlarged (thickened).
  • FIG. 12E is an image close to the object plane.
  • FIGS. 12A to 12D In the luminance cross section on the surface including the out-of-focus position Fa, the reflected light beam A and the reflected light beam B overlap, so that the defect on the image becomes white, the contrast becomes large, and the crack width w becomes large.
  • FIGS. 12A to 12D As the focus is defocused upward from the out-of-focus position Fa, as shown in FIGS. 12A to 12D, the defect on the image expands in white.
  • FIG. 12A shows an image at an upper out-of-focus position farthest from the object plane, and the defect 50 is most enlarged (thickened).
  • FIG. 12D is an image close to the out-of-focus position Fc.
  • the reflected light is emitted from at least two different positions, so that the defect on the observed image is emphasized (enlarged, contrasted with other parts, or both enlarged and contrasted).
  • defect inspection can be performed.
  • positioning for detecting the position of the workpiece on the inspection or image can be performed based on the reflected light from the at least one position.
  • the inspection is preferably performed at a position defocused by 100 ⁇ m or more from the in-focus position in the observation optical system. Further, with the in-focus position F as a boundary, the non-focus position Fa on the side close to the image pickup device 31 (upper side) and the non-focus position Fb on the side farther from the image pickup device 31 (lower side). By defocusing, the defect 50 can be inspected with different colors.
  • the minimum defocus amount z is formed by the line L perpendicular to the optical axis and one surface portion as shown in Equations (1), (2), and (3).
  • the angle ⁇ 1, the angle ⁇ 2 formed by the line L perpendicular to the optical axis and the other surface portion, the crack width w, and the minimum detection width ⁇ min are calculated.
  • ⁇ x1 is the amount of enlargement on one side
  • ⁇ x2 is the amount of enlargement on the other side
  • ⁇ Xd is the size of the enlarged defect.
  • the calculation is performed using ⁇ 1, ⁇ 2, w, and ⁇ min as in Expression 6 and Expression 5.
  • ⁇ Xl is a dimension of the enlarged defect.
  • NA numerical aperture of the observation optical system
  • ⁇ sin ⁇ 1 (NA) ⁇ ⁇ 1 ⁇ sin ⁇ 1 (NA) and ⁇ sin ⁇ 1 (NA) ⁇ ⁇ 2 ⁇ sin ⁇ 1 (NA) Is preferred.
  • ⁇ min is, for example, about 1/5 of the resolution of the imaging apparatus. This is because cracks usually occur continuously in a line shape, brightness fluctuations of about 10% of the dynamic range (DR) can be stably detected by image processing, and the surrounding brightness is reduced to DR by defocusing.
  • the workpiece is irradiated with illumination light, as shown in FIGS. 5A and 5B, it is reflected on the surface of the coating layer 12, transmitted through the coating layer 12, absorbed by the coating layer 12, or coated layer 12. Or scattered. Further, it is reflected by a shading pattern (wiring pattern).
  • the illumination light has a wavelength at which the intensity of the light that is reflected or scattered from the coating layer 12 and incident on the imaging device is greater than the light that is reflected from at least the gray layer and incident on the imaging device 31, It is preferable that the light has a reduced influence of the shading pattern of the shading layer 11.
  • reducing the influence of the light and shade pattern means a case where these light and shade patterns when observing the defect are erased or thinly reflected so that the observation of the defect is not impaired. That is, the brightness contrast caused by the shading pattern is lower than when light other than this light is used.
  • the wavelength of the illumination light can be set based on the light transmittance in the coating layer 12.
  • the transmittance is expressed by the ratio of incident light having a specific wavelength passing through the sample in the optical and spectroscopic methods. As shown in FIG. 16, the radiation divergence of the incident light is I 0 , and the sample (coating layer 12) When the radiation divergence of the light that has passed through is I, the transmittance T is expressed by the following equation (7).
  • the light transmittance in the covering layer 12 may be 50% or less. Specifically, it is preferable that the observed wavelength of the illumination light of the illumination unit is 450 nm or less or 1000 nm or more if the coating layer 12 is a polyimide resin.
  • the influence of the shading pattern can be lowered (smaller) in the illumination light, and the light reflected or scattered from the coating layer 12 can be projected, so that the defect (crack) 50 can be stably formed. Can be detected.
  • the defect is detected at the pickup position P.
  • a defect detection apparatus 100 as shown in FIG.
  • the defect detection apparatus 100 can detect the defect 50 on the surface of the chip 21 at the bonding position Q and can be used for position confirmation (positioning) for observing the position of the island of the lead frame.
  • the die bonder shown in FIG. 2A, FIG. 2B, and the like includes a bonding portion that transports a workpiece such as the semiconductor chip 21 from the pick-up position P to the bonding position Q. In some cases, the workpiece is once placed on the intermediate stage, and the workpiece is picked up again from the intermediate stage and bonded.
  • the defect detection apparatus 100 shown in FIG. 1 can be arranged on the intermediate stage. As described above, if the defect detection apparatus 100 is arranged on the intermediate stage 101, the defect image on the observation image of the defect 50 formed on the workpiece with respect to the workpiece (semiconductor chip 21, die, etc.) on the intermediate stage. Can be observed, and the influence of the shading pattern (wiring pattern) can be reduced, and defects (cracks) can be detected stably. If this defect detection apparatus 100 is used, positioning can be performed also in this intermediate stage.
  • the table provided at the place where the defect detection apparatus 100 is disposed is such that the workpiece mounting portion is formed of a porous material.
  • the semiconductor chip 21 is sucked from below, and further, the collet 23 holds the semiconductor chip 21 against the porous material 102 from above as shown in FIG. 17B.
  • the semiconductor chip 21 is held uniformly on the entire table. For this reason, even if the workpiece is warped, the warp can be made flat by cooperating with the porous material 102 and the collet 23, and the warped portion can be prevented from being observed darkly during observation. .
  • the defect detection is performed at the pickup position, the bonding position, the intermediate stage, etc., but at least either before or after the pickup, that is, before or after the pickup.
  • defect detection can be performed both before and after pickup.
  • defect detection can be performed at least one of before and after bonding, that is, either before or after bonding, or both before and after bonding.
  • defect detection can be performed both before the workpiece supply and after the workpiece discharge from the intermediate stage.
  • a means for determining whether or not the detected defect 50 is defective as a product may be provided. That is, in the defect detection method performed by the defect detection apparatus 100, a criterion for determining whether or not the detected defect is defective as a product is set in advance, and this criterion is compared with the defect image on the observation image to determine whether the defect is defective. Judge whether it is good or non-defective.
  • the determination means can be configured by a control unit (not shown) that controls the imaging device 31.
  • the control unit can be configured by a microcomputer in which a ROM (Read Only Memory), a RAM (Random Access Memory), and the like are connected to each other via a bus with a CPU (Central Processing Unit) as a center.
  • a storage device is connected to the microcomputer.
  • the storage device stores determination criteria that are the determination criteria of the determination means.
  • the storage device can be composed of an HDD (Hard Disc Drive), a DVD (Digital Versatile Disk) drive, a CD-R (Compact Disc-Recordable) drive, an EEPROM (Electronically Eraseable and Programmable Read Only Memory), or the like.
  • the ROM stores programs executed by the CPU and data.
  • a product for example, the wafer 29, the semiconductor chip 21, or the die in which no defect is detected by the defect detection method or the detected defect is determined to be a non-defective product by the determination unit can be used.
  • the defect 50 on the observation image formed by the reflected light from the out-of-focus positions Fa and Fb is replaced by the defect 50 on the observation image formed by the reflected light from the focus position F.
  • the defect 50 since the defect 50 that cannot be seen with the existing apparatus can be seen, the defect 50 can be detected stably.
  • the illumination light emitted from the illumination means 32 is at a wavelength at which the intensity of the light that is reflected or scattered from the coating layer 12 and incident on the imaging device 31 is greater than the light that is reflected from at least the light and shade layer 11 and incident on the imaging device 31.
  • the light having the influence of the light and shade pattern of the light and shade layer 11 is made low, the light reflected or scattered from the coating layer 12 can be projected, and thus the defect 50 can be detected stably.
  • the die bonder it is possible to detect a defect 50 such as a surface crack in a work to be bonded at an arbitrary position of the die bonder.
  • a judgment criterion as to whether or not the defect detected by the defect detection method is defective as a product is set in advance and it is judged whether it is a defective product or a non-defective product, a workpiece (semiconductor chip etc. ) Defects (cracks) 50 can be detected, and shipment of defective products can be prevented. In the die bonder, positioning can be detected, and a stable and highly accurate bonding process can be performed.
  • a dicing process 105 for cutting a wafer into pieces and a process for bonding semiconductor chips separated in the dicing process (die bonding process 106).
  • a mold sealing step for sealing a semiconductor chip as a single piece with a resin.
  • a wire bonding step 107 for bonding wires. .
  • the semiconductor manufacturing method including such a process may include an inspection process using the defect detection method during the bonding operation. Even if the semiconductor manufacturing method includes a dicing step 105 and an inspection step, or a method including an inspection step and a mold sealing step 108, the dicing step 105, the inspection step, and the mold sealing are performed. And a stopping step 108.
  • the work may be a semiconductor device in which a defect is not detected by the defect detection method, or a detected defect is determined as a non-defective product by the defect detection method.
  • the workpiece may be a single piece assembly in which a plurality of individual pieces are gathered. As an individual piece aggregate, even if it is laminated in the vertical direction, even if it is arranged in parallel in the horizontal direction, or even a combination of laminated and arranged in parallel Good.
  • an object consisting of one piece or a set of a predetermined number of pieces and other objects to be assembled to the target At least one of the individual pieces can be inspected using the defect detection method. That is, only the object side consisting of one piece or a set of a predetermined number of pieces is inspected by the inspection method, or only the other piece side to be collected on the object is inspected. It can be inspected by a method, or both the object side and the other individual side can be inspected.
  • the conveyance of the workpiece is stopped at the detection position, and the worker is notified with at least one of an alarm sound and a warning light. Can be set to. Further, a defective product discharge mechanism is provided, and if a defect is found in the workpiece, the defective product can be set to be discharged out of the apparatus from the detection position.
  • the present invention is not limited to the above-described embodiment, and can be variously modified.
  • the defocusing unit in the embodiment, only the workpiece is moved up and down, but only the imaging device 31 is moved up and down. It is also possible to move the workpiece and the imaging device 31 up and down.
  • the optical system may be changed as a defocusing means.
  • an object (for example, thick glass) 46 having a refractive index different from that in the atmosphere is inserted between the imaging device 31 and the work.
  • a lens and a mirror variable focus lens, variable focus mirror
  • a window that can change the optical thickness
  • the defocusing means a plurality of optical systems and light receiving elements having different in-focus positions may be used.
  • the first imaging device 31a and the second imaging device 31b are provided, and the half mirror 45 is arranged so that the first imaging device 31a is defocused above the in-focus position.
  • the second imaging device 31b is defocused below the in-focus position.
  • the illumination or observation wavelength may be changed.
  • the illumination means 32 includes a first light source 36a and a second light source 36b, and the wavelength of light from the first light source 36a and the light from the second light source 36b. Change the wavelength.
  • the illumination means 32 includes an inspection light source 50, a positioning light source 51, an NA switching unit 52 that switches these light sources to electrically switch the NA on the illumination side, and a half mirror 46. It may be provided.
  • the defect on the observation image with respect to the defect formed on the workpiece can be enlarged and observed, and the influence of the shading pattern (wiring pattern) is reduced. Only a configuration capable of increasing the defect on the observation image with respect to the defect formed on the workpiece may be used.
  • the defect detection width when the defect becomes brighter is ⁇ Xl
  • the defect detection width when the defect becomes darker is ⁇ Xd
  • the relative angle between the opposing surface portions (crack angle) ) ⁇ 1 + ⁇ 2
  • a detection unit (not shown) that detects ⁇ and w by detecting the defect detection widths ⁇ Xl and ⁇ Xd from Equation 8 is provided in the control means 43, for example. May be. Thereby, the angle measurement of an inclined surface part can be performed.
  • a discrimination means for discriminating between a defect whose defect has changed to both bright and dark and a defect that has changed to only one of light and dark, for example, control means 43 may be provided. That is, the discriminating means discriminates that a defect (crack) having a slope changes to both bright and dark, and a defect (foreign matter etc.) having a slope to change only one of light and dark, and classifies the defect (crack). , Foreign matter, etc.). As a result, for example, it is possible to remove only workpieces having defects that have changed between light and dark, and the yield can be improved.
  • the discriminating means can also discriminate what kind of defect is based on the change in the size of the defect (enlarging or reducing), and the change and magnitude of the brightness of the defect. It is also possible to determine what kind of defect it is based on both of the above changes.
  • the imaging conditions can be appropriately set according to the defocus state. Further, even in the same defocus state, a plurality of images can be taken under a plurality of imaging conditions. For example, for a work whose defect is known to be black, if the average value of the surrounding (normal part) is set brightly, the contrast is easily obtained.
  • the film thickness of the coating layer is not limited to 1 ⁇ m to 100 ⁇ m, and the material of the coating layer is not limited to polyimide resin or silicone resin. That is, it is only necessary to be able to select illumination light that reduces the influence of the shading pattern (wiring pattern) when observing the surface of the coating layer, corresponding to the material of the coating layer and the film thickness of the coating layer.
  • the pattern pitch of the wiring pattern layer If is the wavelength level of light, diffraction occurs, and the light and shade pattern enters the imaging device (camera).
  • the illumination light that causes diffraction can be attenuated to reach the wiring pattern layer, and the diffracted light itself can be attenuated.
  • the embodiment is a pickup table.
  • the table having the above-described configuration is not limited to the pickup table, and may be another table such as an intermediate stage. Good. That is, according to the place where the defect detection apparatus of the present invention is arranged, it is preferable that the table of the place corresponding thereto is configured as described above.
  • the work placement part may be configured with an electrostatic chuck structure that attracts and holds the work by static electricity.
  • the mounting part is composed of an electrode provided with an electrode inside the dielectric layer, and the electrode is connected to a control power source to generate an electric charge on the electrode and place the workpiece on the mounting part by electrostatic attraction force. It may be fixed. In this case, first, the work is placed on the table, the work is attracted by static electricity and held on the table, and then the defect of the work is detected by the method described above.
  • the defect detection apparatus and the defect detection method according to the present invention can be applied to an apparatus other than a die bonder and which needs to detect a defect of a workpiece that is a part of a semiconductor product or semiconductor product.

Landscapes

  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Pathology (AREA)
  • Analytical Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)
  • Die Bonding (AREA)

Abstract

A defect detection device for detecting a defect comprising at least an inclined surface portion in a work as a part of a semiconductor product or a semiconductor product is provided with an inspection mechanism comprising: an illuminating means which irradiates the work with bright-field illumination light; and an image capture device which configures an observation optical system and with which an observation portion of the work irradiated by the illuminate means is observed. The inspection mechanism observes reflected light from the work that has exited from an out-of-focus position defocused from an in-focus position in an optical axis direction, and emphasizes a defect on an observed image formed by means of reflected light from the out-of-focus position, compared with a defect on an observed image formed by means of reflected light from the in-focus position.

Description

欠陥検出装置、欠陥検出方法、ウェハ、半導体チップ、ダイボンダ、半導体製造方法、および半導体装置製造方法Defect detection device, defect detection method, wafer, semiconductor chip, die bonder, semiconductor manufacturing method, and semiconductor device manufacturing method
 本発明は、ウェハ、このウェハから切断されて個片化されたチップ等のワークの表面に形成されるクラックを検出する欠陥検出装置、欠陥検出方法、ダイボンダ、ボンディング方法に関し、さらには、ウェハ、半導体チップ、半導体製造方法、および半導体装置製造方法に関するものである。 The present invention relates to a defect detection apparatus, a defect detection method, a die bonder, and a bonding method for detecting a crack formed on the surface of a work piece such as a wafer, a chip cut from the wafer, and the like, and further, a wafer, The present invention relates to a semiconductor chip, a semiconductor manufacturing method, and a semiconductor device manufacturing method.
 チップ(半導体チップ)に発生したクラックを検出する検出装置としては、従来から種々提案されている(特許文献1~特許文献3)。特許文献1では、半導体表面の画像を撮像手段によって撮像し、検出手段によってこの撮像手段から出力される複数のカラー信号の相関係数を求め、これら相関係数より半導体表面の欠陥を検出するものである。このため、変色・汚れ等の欠陥を検出することができるというものである。 Various detection devices for detecting a crack generated in a chip (semiconductor chip) have been conventionally proposed (Patent Documents 1 to 3). In Patent Document 1, an image of a semiconductor surface is picked up by an image pickup means, a correlation coefficient of a plurality of color signals output from the image pickup means is obtained by a detection means, and a defect on the semiconductor surface is detected from these correlation coefficients. It is. For this reason, defects such as discoloration and dirt can be detected.
 特許文献2では、主面側を封止する樹脂層が形成されたウェハの裏面側から、光軸を前記ウェハの主面に交差させて赤外光線を照射し、その反射光を受光しつつ撮像することによりウェハ内部に発生したクラックを検出するものである。すなわち、ダイシングにより個片化したウェハの裏面側から赤外光線を照射することにより、赤外光線をウェハに透過させることができ、ウェハ内部に生じたクラックの界面で乱反射した赤外光線の反射光を受光しつつこれを結像することによって、ウェハ内部に生じたクラックを顕像化することができるというものである。 In Patent Document 2, from the back surface side of the wafer on which the resin layer for sealing the main surface side is formed, the optical axis is intersected with the main surface of the wafer and irradiated with infrared rays, and the reflected light is received. By detecting an image, a crack generated in the wafer is detected. That is, by irradiating infrared rays from the back side of the wafer separated by dicing, the infrared rays can be transmitted to the wafer, and the reflected infrared rays diffusely reflected at the interface of the cracks generated inside the wafer. By forming an image while receiving light, a crack generated inside the wafer can be visualized.
 特許文献3では、半導体チップからの弾性波を検出することによって、半導体チップの変形およびクラックの発生を検出するものである。 In Patent Document 3, deformation of a semiconductor chip and occurrence of a crack are detected by detecting elastic waves from the semiconductor chip.
特開平6-82377号公報JP-A-6-82377 特開2008-45965号公報JP 2008-45965 A 特開2015-170746号公報JP2015-170746 A
 ところで、ワークとして、図23に示すように、配線パターンを配線パターン層1と、配線パターン層上にある被覆層2とを備えた半導体チップ3の場合がある。このような場合、照明光がこのワークの表面に入射された場合、照明光は、被覆層2の表面にて反射され、被覆層2を透過し、被覆層2に吸収され、被覆層2で散乱され、また、配線パターン層1から反射されたりする。 By the way, as shown in FIG. 23, the workpiece may be a semiconductor chip 3 having a wiring pattern layer 1 and a covering layer 2 on the wiring pattern layer. In such a case, when the illumination light is incident on the surface of the workpiece, the illumination light is reflected by the surface of the coating layer 2, passes through the coating layer 2, is absorbed by the coating layer 2, and It is scattered and reflected from the wiring pattern layer 1.
 このため、被覆層2の上面に形成された割れ等クラックを特許文献1等に記載された検出装置では検出しにくかった。また、特許文献2に記載の方法では、ウェハの裏面側から赤外光線を照射することにより、赤外光線をウェハに透過させて、ウェハ内部に生じたクラックを顕像化することができるというものであり、ウェハの表面のクラックを検出することができない。特許文献3では、半導体チップからの弾性波を検出して、クラックが発生しているか否か検出するものである。このため、クラックの位置の検出はできない。 For this reason, it was difficult to detect cracks such as cracks formed on the upper surface of the coating layer 2 with the detection apparatus described in Patent Document 1 and the like. Further, in the method described in Patent Document 2, by irradiating infrared rays from the back side of the wafer, the infrared rays can be transmitted through the wafer, and a crack generated inside the wafer can be visualized. And cracks on the surface of the wafer cannot be detected. In Patent Document 3, an elastic wave from a semiconductor chip is detected to detect whether or not a crack has occurred. For this reason, the position of the crack cannot be detected.
 本発明は、上記課題に鑑みて、ワークの表面に形成されたクラック等の欠陥の有無等を安定して検出することができる欠陥検出装置及び検出方法を提供する。また、クラック等の欠陥の有無等を安定して検出することが可能なダイボンダ及びボンディング方法を提供する。 In view of the above problems, the present invention provides a defect detection apparatus and a detection method that can stably detect the presence or absence of defects such as cracks formed on the surface of a workpiece. In addition, a die bonder and a bonding method capable of stably detecting the presence or absence of defects such as cracks are provided.
 本発明の欠陥検出装置は、半導体製品又は半導体製品の一部であるワークにおいて少なくとも傾斜面部を有する欠陥を検出する欠陥検出装置であって、前記ワークに対して明視野照明光を照射する照明器と、観察光学系を構成し、前記照明器にて照射された前記ワークの観察部位を観察する撮像装置と、を有する検査機構を備え、前記検査機構は、光軸方向において合焦位置からデフォーカスされた非合焦位置から射出された前記ワークからの反射光を観察し、前記非合焦位置からの反射光により形成された観察画像上の欠陥を、合焦位置からの反射光により形成された観察画像上の欠陥よりも強調するものである。ここで、半導体製品とは、製品として完成されたものだけではなく、製造途中段階の未完成のものも含む。ここで、合焦位置とは、合焦面(像面(センサ面)と共役な関係にある面)の任意の位置であり、非合焦位置とは、前記合焦面以外の位置である。物体面が合焦位置と一致していない場合をデフォーカスしているという。 A defect detection apparatus according to the present invention is a defect detection apparatus that detects a defect having at least an inclined surface portion in a semiconductor product or a work that is a part of the semiconductor product, and illuminates the work with bright-field illumination light. And an imaging device that constitutes an observation optical system and that observes the observation site of the workpiece irradiated by the illuminator, and the inspection mechanism is decoupled from the in-focus position in the optical axis direction. Observe the reflected light from the workpiece emitted from the focused out-of-focus position, and form a defect on the observed image formed by the reflected light from the out-of-focus position by the reflected light from the in-focus position. It emphasizes rather than defects on the observed image. Here, the semiconductor product includes not only a completed product but also an unfinished product in the middle of manufacturing. Here, the in-focus position is an arbitrary position on the in-focus surface (the surface having a conjugate relationship with the image surface (sensor surface)), and the out-of-focus position is a position other than the in-focus surface. . A case where the object plane does not coincide with the in-focus position is said to be defocused.
 本発明の欠陥検出装置によれば、明視野照明光を照射し、反射光を観察するものにおいて、ワークからの反射光を、光軸方向において合焦位置からずれた非合焦位置から見かけ上射出させる、いわゆるデフォーカスを行う。ここで、明視野照明光とは、観察光学系の主光線の延長方向から照明する(略平行光)ことである。これにより、非合焦位置からの反射光により形成された観察画像上の欠陥を強調することができ、見えにくい欠陥が見えやすくなったり、既存の装置では見えなかった欠陥が見えるようになったりすることができる。ここで、強調とは、画像上の欠陥を、合焦位置からの反射光により形成された観察画像上の欠陥よりも拡大したり、観察画像上の欠陥と、その他の部分とのコントラストを大きくしたりすることである。すなわち、本発明における強調とは、拡大するか、コントラストを大きくするか、の少なくともいずれかが生じていることをいう。 According to the defect detection apparatus of the present invention, in the case of irradiating bright-field illumination light and observing reflected light, the reflected light from the work is apparently seen from the out-of-focus position shifted from the in-focus position in the optical axis direction. The so-called defocusing is performed. Here, the bright field illumination light is illumination (substantially parallel light) from the extension direction of the principal ray of the observation optical system. As a result, defects on the observation image formed by the reflected light from the out-of-focus position can be emphasized, and defects that are difficult to see can be easily seen, or defects that cannot be seen with existing devices can be seen. can do. Here, enhancement means that the defect on the image is enlarged more than the defect on the observation image formed by the reflected light from the in-focus position, or the contrast between the defect on the observation image and other parts is increased. Is to do. That is, the emphasis in the present invention means that at least one of enlargement or increase in contrast occurs.
 前記構成において、合焦位置と非合焦位置との少なくとも非合焦位置を含む2つの異なる位置から反射光が射出されるものとしてもよい。この位置には合焦位置を含む。すなわち、少なくとも2つの異なる位置とは、合焦位置及び1つ以上の非合焦位置である場合と、2つ以上の非合焦位置である場合とがある。また、少なくとも1つの前記位置からの反射光に基づいて検査又は画像上のワークの位置を検出する位置決めを行うものであってもよい。これにより、観察光学系は、検査機能に加えて位置決め機能を有するものとなるとともに、合焦位置の近傍(被写界深度の範囲)で位置決めが必要な装置(特にダイボンダ等)に有効である。 In the above configuration, the reflected light may be emitted from two different positions including at least the out-of-focus position of the in-focus position and the out-of-focus position. This position includes the in-focus position. That is, the at least two different positions include a focus position and one or more non-focus positions, and two or more non-focus positions. In addition, positioning for detecting the position of the workpiece on the inspection or image may be performed based on the reflected light from at least one of the positions. As a result, the observation optical system has a positioning function in addition to the inspection function, and is effective for an apparatus (particularly a die bonder or the like) that requires positioning in the vicinity of the in-focus position (range of depth of field). .
 前記検査機構は、前記合焦位置を境界として、前記撮像装置に近接する側の非合焦位置と、前記撮像装置から離間する側の非合焦位置との夫々から射出された反射光に基づいて検査するものであってもよい。これにより、合焦位置を境界として、撮像装置に近接する側の非合焦位置における観察画像上の欠陥の色と、撮像装置から離間する側の非合焦位置における観察画像上の欠陥の色とが異なるものとなる。 The inspection mechanism is based on reflected light emitted from each of a non-focus position on the side close to the imaging device and a non-focus position on the side remote from the imaging device with the focus position as a boundary. May be inspected. Thus, with the focus position as a boundary, the color of the defect on the observation image at the non-focus position on the side close to the imaging device and the color of the defect on the observation image at the non-focus position on the side away from the imaging device Will be different.
 前記照明器側のNAが、観察光学系側のNAよりも小さいものとしてもよい。これにより、相対する一対の傾斜面を有する欠陥において、相対する面の傾斜面同士の相対角(本明細書においてクラック角といい、一方の面の傾斜角度をθ1(時計回り方向)、他方の面の傾斜角度をθ2(反時計回り方向)としたとき、θ1+θ2)が小さい場合であっても検査することが可能となる。 The NA on the illuminator side may be smaller than the NA on the observation optical system side. Thereby, in a defect having a pair of opposed inclined surfaces, the relative angle between the inclined surfaces of the opposing surfaces (referred to as a crack angle in this specification, the inclination angle of one surface is θ1 (clockwise direction), and the other When the inclination angle of the surface is θ2 (counterclockwise direction), it is possible to inspect even when θ1 + θ2) is small.
 前記ワークを非合焦位置に配置することにより、ワークからの反射光を光軸方向において合焦位置からずれた非合焦位置から射出させるようにしてもよい。また、前記検査機構が、ワークからの反射光を光軸方向において合焦位置からずれた非合焦位置から射出させるデフォーカス手段を備え、前記デフォーカス手段は、ワークと光学系とを光軸方向に相対移動させるもの、光学系を変更するもの、合焦位置の異なる複数の光学系及び受光素子を用いるもの、照明又は観察波長を変更するもの、のいずれかとすることができる。 By disposing the work in the out-of-focus position, the reflected light from the work may be emitted from the out-of-focus position shifted from the in-focus position in the optical axis direction. Further, the inspection mechanism includes defocusing means for emitting reflected light from the work from a non-focusing position shifted from the focusing position in the optical axis direction, and the defocusing means moves the work and the optical system to the optical axis. One that moves relative to the direction, one that changes the optical system, one that uses a plurality of optical systems and light receiving elements with different focus positions, and one that changes the illumination or observation wavelength can be used.
 照明手段側のNA及び観察光学系側のNAの少なくとも一方を可変可能な可変手段を設けてもよい。 A variable means capable of changing at least one of the NA on the illumination means side and the NA on the observation optical system side may be provided.
 ワークの傾き又はデフォーカス量に応じて、少なくとも観察光学系側又は照明器側のNAを設定するNA制御部を設けてもよい。 A NA control unit that sets at least the NA on the observation optical system side or the illuminator side may be provided according to the tilt or defocus amount of the workpiece.
 観察光学系における合焦位置から、100μm以上デフォーカスした位置で検査を行うものとしてもよい。 The inspection may be performed at a position defocused by 100 μm or more from the in-focus position in the observation optical system.
 検査対象のワークの欠陥が互いに方向の異なる一対の面部を有するとき、前記ワークの位置から前記非合焦位置までのデフォーカス量は、前記撮像装置の最小検出幅εmin、光軸に直交する線と一方の面部とのなす角θ1、光軸に直交する線と他方の面部とのなす角θ2、一対の面部の離間幅wから、εmin-w/(tan2θ1+tan2θ2)の式で算出される値よりも大きいものとすることができる。これにより、観察画像上の欠陥を拡大できる確実性を高めることができる。 When the defect of the workpiece to be inspected has a pair of surface portions having different directions, the defocus amount from the position of the workpiece to the out-of-focus position is orthogonal to the minimum detection width ε min of the imaging device and the optical axis The angle θ1 formed by the line and one surface portion, the angle θ2 formed by the line orthogonal to the optical axis and the other surface portion, and the separation width w between the pair of surface portions are calculated by the equation ε min −w / (tan2θ1 + tan2θ2). It can be greater than the value. Thereby, the certainty which can enlarge the defect on an observation image can be improved.
 前記構成において、検査対象のワークのθ1及びθ2が、観察光学系の開口数NAで制限されるとき、-sin-1(NA)≦θ1≦sin-1(NA)、かつ、-sin-1(NA)≦θ2≦sin-1(NA)とすることができる。 In the above configuration, when θ1 and θ2 of the workpiece to be inspected are limited by the numerical aperture NA of the observation optical system, −sin −1 (NA) ≦ θ1 ≦ sin −1 (NA) and −sin −1 (NA) ≦ θ2 ≦ sin −1 (NA).
 所定のデフォーカス量となるように前記デフォーカス手段を制御する制御部を設けてもよい。これにより、欠陥検出装置が自動的にデフォーカスを行う。この場合、制御部は、所定のパラメータに基づいてデフォーカス量を演算する演算部を備えてもよい。これにより、ユーザがパラメータを設定するのみで、欠陥検出装置が自動的にデフォーカス量を決定する。 A control unit that controls the defocusing means may be provided so that a predetermined defocus amount is obtained. As a result, the defect detection apparatus automatically performs defocusing. In this case, the control unit may include a calculation unit that calculates the defocus amount based on a predetermined parameter. As a result, the defect detection apparatus automatically determines the defocus amount only by setting the parameter by the user.
 前記照明手段は、検査用光源と、位置決め用光源と、前記光源を切替えて電気的に照明側のNAを切替えるNA切替部とを備えるものであってもよい。 The illumination unit may include an inspection light source, a positioning light source, and an NA switching unit that switches the light source to electrically switch the NA on the illumination side.
 デフォーカス量と離間幅とから、面部の傾斜角度及び欠陥幅を検出する検出部を備えてもよい。これにより、欠陥の面部の角度計測を行うことができる。 A detection unit that detects the inclination angle of the surface portion and the defect width from the defocus amount and the separation width may be provided. Thereby, the angle measurement of the surface part of a defect can be performed.
 合焦位置と非合焦位置との少なくとも非合焦位置を含む2つの異なる位置から検査するとき、欠陥の明暗の変化及び/又は欠陥の大きさの変化に基づいて欠陥を判別する判別手段を備えてもよい。すなわち、欠陥の明暗の変化と大きさの変化とのいずれか、又はこれらの両方を判別することにより、例えば、欠陥の分類(傾斜面を有するいわゆるクラック、異物等)を行うことができる。欠陥の大きさの変化とは、拡大したり縮小したりすることである。 A discriminating means for discriminating a defect on the basis of a change in the brightness of the defect and / or a change in the size of the defect when inspecting from two different positions including at least the out-of-focus position of the focus position and the non-focus position; You may prepare. That is, it is possible to classify defects (so-called cracks having a sloping surface, foreign matters, etc.) by discriminating either or both of a change in brightness and a change in size of a defect, or both of them. The change in the size of the defect means enlargement or reduction.
 前記ワークは多層構造からなり、検査対象の層から反射又は散乱されて撮像装置に入射する光の強度が、他層からの強度よりも大きい波長であってもよい。 The workpiece may have a multilayer structure, and the intensity of light reflected or scattered from the layer to be inspected and incident on the imaging device may be a wavelength larger than the intensity from other layers.
 前記構成において、前記ワークは、半導体製造工程に由来する濃淡パターンのある濃淡層と、この濃淡層の濃淡パターンを覆う被覆層とを備え、前記照明手段から照射される照明光は、少なくとも濃淡層から反射し前記撮像装置に入射する光よりも、前記被覆層から反射又は散乱されて撮像装置に入射する光の強度が大きい波長であり、前記濃淡層の濃淡パターンの影響を低くした光とすることができる。濃淡パターンの影響を低くするとは、欠陥を観察する際のこれらの濃淡パターンを消す乃至薄く映って欠陥の観察を損なわない場合をいう。すなわち、この光以外の光を用いたときよりも濃淡パターンによって生じる輝度コントラストが低くなることである。これにより、被覆層の表面から反射又は散乱された光を映し出すことができ、濃淡パターンによって生じる輝度コントラストが低くなって、濃淡パターンの影響を低く(少なく)することができる。 In the above-described configuration, the workpiece includes a shading layer having a shading pattern derived from a semiconductor manufacturing process, and a covering layer covering the shading pattern of the shading layer, and the illumination light irradiated from the illumination unit is at least a shading layer. The wavelength of the light that is reflected or scattered from the coating layer and incident on the imaging device is larger than the light that is reflected from and incident on the imaging device, and the influence of the shading pattern of the shading layer is reduced. be able to. Lowering the influence of the light and shade pattern means a case where these light and shade patterns at the time of observing the defect are erased or thinly reflected and the observation of the defect is not impaired. That is, the brightness contrast caused by the shading pattern is lower than when light other than this light is used. Thereby, the light reflected or scattered from the surface of the coating layer can be projected, the luminance contrast generated by the light and shade pattern is lowered, and the influence of the light and shade pattern can be reduced (small).
 被覆層は有機物層であり、また、その有機物層はポリイミド樹脂であるように設定できる。前記被覆層は膜厚が、1μm~100μmであるように設定できる。被覆層は2層以上の複数層からなり、各層が同一材質、各層が異なる材質、又は複数層の所定の層が同一材質とされるものであってもよい。 The covering layer is an organic layer, and the organic layer can be set to be a polyimide resin. The coating layer can be set to have a thickness of 1 μm to 100 μm. The covering layer may be composed of two or more layers, and each layer may be made of the same material, different materials in each layer, or a plurality of predetermined layers made of the same material.
 前記照明手段の照明光のうち観察される波長が、450nm以下又は1000nm以上であるのが好ましい。このように、観察される波長が、450nm以下又は1000nm以上であれば、被覆層がポリイミド樹脂にて構成され、かつ、濃淡パターンのある濃淡層が配線パターンの影響を安定して低くすることができる。 It is preferable that the observed wavelength of the illumination light of the illumination means is 450 nm or less or 1000 nm or more. Thus, if the observed wavelength is 450 nm or less or 1000 nm or more, the coating layer is made of polyimide resin, and the shading layer having the shading pattern can stably lower the influence of the wiring pattern. it can.
 前記構成において、ワークが載置されるテーブルを有し、このテーブルのワークの載置部が、ワークを吸引により引き付けて保持する多孔質材料にて形成されたものとできる。また、ワークが載置されるテーブルを有し、このテーブルのワークの載置部が、ワークを静電気により引き付けて保持する静電チャック構造にて構成されたものとできる。テーブルのワークの載置部が、多孔質材料からなるものであったり、静電チャック構造にて構成されていたりすると、ワークは、テーブルに対して全体的に均一に保持される。このため、ワークに反りがあっても平面状とすることができ、観察時に、反り部分が暗く観察されることを防止できる。 In the above-described configuration, it is possible to have a table on which a work is placed, and the work placing portion of the table is formed of a porous material that attracts and holds the work by suction. Moreover, it has a table on which a work is placed, and the work placing portion of the table can be configured by an electrostatic chuck structure that attracts and holds the work by static electricity. If the work placement part of the table is made of a porous material or has an electrostatic chuck structure, the work is held uniformly on the table as a whole. For this reason, even if the workpiece is warped, it can be made flat, and it is possible to prevent the warped portion from being observed darkly during observation.
 ワークとして、その濃淡パターンを配線パターンが構成するウェハであったり、ウェハを個片化した個片体(半導体チップ)等であったりする。すなわち、ワークとしては、リードフレームや基板に搭載される個片体(パッケージされないもの、すなわち、個片体が被覆されないもの)、複数の個片体で構成されるもの(単一の個片体を積み重ねたもの、複数の個片体の集合体)であってもよく、例えば、積層されたメモリチップ、SiP(System in Package)である。 The workpiece may be a wafer whose wiring pattern constitutes the shading pattern, or an individual piece (semiconductor chip) obtained by dividing the wafer into individual pieces. That is, as a workpiece, an individual piece mounted on a lead frame or a substrate (not packaged, that is, an individual piece not covered), or composed of a plurality of individual pieces (single piece For example, a stacked memory chip, SiP (System in Package).
 本発明の欠陥検出方法は、半導体製品又は半導体製品の一部である少なくとも傾斜面部を有する欠陥を検出する欠陥検出方法であって、前記ワークに対して明視野照明光を照射し、ワークからの反射光を、光軸方向において合焦位置からデフォーカスされた非合焦位置から射出させて、前記非合焦位置からの反射光により形成された観察画像上の欠陥を、合焦位置からの反射光により形成された観察画像上の欠陥よりも強調するものである。 The defect detection method of the present invention is a defect detection method for detecting a defect having at least an inclined surface part which is a semiconductor product or a part of the semiconductor product, and irradiates the workpiece with bright-field illumination light, The reflected light is emitted from a non-focus position defocused from the focus position in the optical axis direction, and defects on the observation image formed by the reflected light from the non-focus position are removed from the focus position. It emphasizes more than defects on the observation image formed by reflected light.
 本発明の欠陥検出方法によれば、明視野照明光を照射し、反射光を観察するものにおいて、ワークからの反射光を、光軸方向において合焦位置からずれた非合焦位置から見かけ上射出させる、いわゆるデフォーカスを行う。ここで、明視野照明光とは、観察光学系の主光線の延長方向から照明する(略平行光)ことである。これにより、非合焦位置からの反射光により形成された観察画像上の欠陥を強調することができ、見えにくい欠陥が見えやすくなったり、既存の装置では見えなかった欠陥が見えるようになったりすることができる。 According to the defect detection method of the present invention, in the case of irradiating bright field illumination light and observing reflected light, the reflected light from the work is apparently seen from the out-of-focus position shifted from the in-focus position in the optical axis direction. The so-called defocusing is performed. Here, the bright field illumination light is illumination (substantially parallel light) from the extension direction of the principal ray of the observation optical system. As a result, defects on the observation image formed by the reflected light from the out-of-focus position can be emphasized, and defects that are difficult to see can be easily seen, or defects that cannot be seen with existing devices can be seen. can do.
 本発明の第2の欠陥検出方法は、半導体製品又は半導体製品の一部であるワークにおいて少なくとも傾斜面部を有する欠陥を検出する欠陥検出方法であって、ワークを、多孔質材料にて形成されたワークの載置部を有するテーブルに載置して、前記多孔質材料の気孔を介してワークを吸引してテーブルに吸着させて、前記ワークに対して明視野照明光を照射し、ワークからの反射光を、光軸方向において合焦位置からデフォーカスされた非合焦位置から射出させて、前記非合焦位置からの反射光により形成された観察画像上の欠陥を、合焦位置からの反射光により形成された観察画像上の欠陥よりも強調するものである。 A second defect detection method of the present invention is a defect detection method for detecting a defect having at least an inclined surface portion in a semiconductor product or a workpiece that is a part of the semiconductor product, and the workpiece is formed of a porous material. Placed on a table having a work placement part, sucked the work through the pores of the porous material and adsorbed to the table, irradiated bright-field illumination light to the work, The reflected light is emitted from a non-focus position defocused from the focus position in the optical axis direction, and defects on the observation image formed by the reflected light from the non-focus position are removed from the focus position. It emphasizes more than defects on the observation image formed by reflected light.
 本発明の第3の欠陥検出方法は、半導体製品又は半導体製品の一部であるワークにおいて少なくとも傾斜面部を有する欠陥を検出する欠陥検出方法であって、ワークを、静電チャック構造にて構成されたワークの載置部を有するテーブルに載置して、ワークを静電気により引き付けてテーブルに保持させて、前記ワークに対して明視野照明光を照射し、ワークからの反射光を、光軸方向において合焦位置からデフォーカスされた非合焦位置から射出させて、前記非合焦位置からの反射光により形成された観察画像上の欠陥を、合焦位置からの反射光により形成された観察画像上の欠陥よりも強調するものである。 A third defect detection method of the present invention is a defect detection method for detecting a defect having at least an inclined surface portion in a semiconductor product or a workpiece that is a part of the semiconductor product, and the workpiece is configured with an electrostatic chuck structure. The workpiece is placed on a table having a placement portion, the workpiece is attracted by static electricity and held on the table, the field is irradiated with bright field illumination light, and the reflected light from the workpiece is reflected in the optical axis direction. The defect on the observation image formed by the reflected light from the out-of-focus position is observed by the reflected light from the in-focus position. It emphasizes more than defects on the image.
 欠陥検出方法として、前記欠陥検出装置を用いるものであってもよい。前記欠陥検出方法にて検出された欠陥が製品として不良か否かの判断基準を予め設定し、欠陥画像を判断基準によって、不良品か良品かの判断を行うものであってもよい。 As the defect detection method, the defect detection apparatus may be used. A criterion for determining whether or not the defect detected by the defect detection method is defective as a product may be set in advance, and the defect image may be determined based on the criterion for determining whether the defect is defective or non-defective.
 合焦位置と非合焦位置との少なくとも非合焦位置を含む2つの異なる位置から検査するとき、欠陥の明暗の変化及び/又は欠陥の大きさの変化に基づいて欠陥を判別するものであってもよい。欠陥の大きさの変化とは、拡大したり縮小したりすることである。 When inspecting from two different positions including at least a non-focus position, a focus position and a non-focus position, the defect is determined based on a change in the brightness of the defect and / or a change in the size of the defect. May be. The change in the size of the defect means enlargement or reduction.
 また、ウェハ、半導体チップとして、欠陥検出方法にて欠陥が検出されず又は検出された欠陥が前記欠陥検出方法にて良品と判断されているものを提供できる。 Further, it is possible to provide a wafer or semiconductor chip in which no defect is detected by the defect detection method or the detected defect is judged as a non-defective product by the defect detection method.
 半導体装置として、前記欠陥検出方法にて欠陥が検出されず又は検出された欠陥が前記欠陥検出方法にて良品と判断された個片体で構成されているものであってもよい。 As the semiconductor device, a defect may not be detected by the defect detection method, or the detected defect may be configured as a single piece that is determined to be a non-defective product by the defect detection method.
 本発明のダイボンダは、ピックアップポジションにてワークをピックアップし、このピックアップしたワークをボンディングポジョンに搬送して、そのボンディングポジションにてワークをボンディングするボンディング部を備えたダイボンダであって、前記欠陥検出装置を配置したものである。 The die bonder of the present invention is a die bonder provided with a bonding section for picking up a workpiece at a pick-up position, transporting the picked-up workpiece to a bonding position, and bonding the workpiece at the bonding position. Is arranged.
 本発明のダイボンダによれば、ボンディング部やボンディング部以外の位置、すなわちダイボンダの任意の位置で、ボンディングするワークにおける表面のクラック等の欠陥を検出することができる。すなわち、ボンディング動作前、ボンディング動作中、ボンディング動作後にワーク(半導体チップ等)の欠陥(クラック)を検出し、不良品の出荷を防止できる。また、半導体チップ(ダイ)を積層(スタック)する製品の場合には歩溜まりを大きく改善することができる。例えば、不良チップの上にチップをボンディングしたり、良品チップが積層されている上に不良チップを積層すると、その積層体が不良となったり、製品のランクが下がったりする。 According to the die bonder of the present invention, it is possible to detect defects such as cracks on the surface of the workpiece to be bonded at a position other than the bonding portion or the bonding portion, that is, an arbitrary position of the die bonder. That is, defects (cracks) of a workpiece (semiconductor chip or the like) can be detected before, during and after the bonding operation, and shipment of defective products can be prevented. In the case of a product in which semiconductor chips (die) are stacked, the yield can be greatly improved. For example, if a chip is bonded on a defective chip, or a defective chip is stacked on a non-defective chip, the stacked body becomes defective or the product rank is lowered.
 前記ダイボンダにおいて、ピックアップポジションでの位置決め検出を可能とし、ボンディングポジションでの位置決め検出を可能とするようにできる。 In the die bonder, it is possible to detect the position at the pickup position and to detect the position at the bonding position.
 ダイボンダとして、ピックアップポジションとボンディングポジションとの間にワークが搬送される中間ステージを有し、この中間ステージにおいても前記本発明の欠陥検出装置を配置したものであってもよく、さらには、ピックアップポジション、ボンディングポジション、ピックアップポジションとボンディングポジションとの間の中間ステージの内少なくとも一つでの位置決め検出が可能であってもよい。 The die bonder may have an intermediate stage in which a workpiece is transferred between a pickup position and a bonding position, and the intermediate stage may be provided with the defect detection device of the present invention. It may be possible to detect positioning at at least one of the intermediate positions between the bonding position and the pickup position and the bonding position.
 本発明の第1のボンディング方法は、ピックアップポジションにてワークをピックアップし、このピックアップしたワークをボンディングポジョンに搬送して、そのボンディングポジションにてワークをボンディングするボンディング工程を備えたボンディング方法であって、ピックアップ前とピックアップ後の少なくともいずれか一方において、ワークに対して前記欠陥検出装置にて欠陥を検出するものである。 A first bonding method of the present invention is a bonding method including a bonding step of picking up a workpiece at a pickup position, transporting the picked-up workpiece to a bonding position, and bonding the workpiece at the bonding position. The defect detection device detects a defect with respect to the workpiece at least one of before and after the pickup.
 本発明の第2のボンディング方法は、ピックアップポジションにてワークをピックアップし、このピックアップしたワークをボンディングポジョンに搬送して、そのボンディングポジションにてワークをボンディングするボンディング工程を備えたボンディング方法であって、ピックアップポジションとボンディングポジョンとの間に中間ステージを有し、中間ステージへのワーク供給前と中間ステージからのワーク排出後の少なくともいずれか一方において、ワークに対して前記欠陥検出装置にて欠陥を検出するものである。 A second bonding method of the present invention is a bonding method including a bonding step of picking up a workpiece at a pickup position, transporting the picked-up workpiece to a bonding position, and bonding the workpiece at the bonding position. , Having an intermediate stage between the pick-up position and the bonding position, and at least one of before the workpiece is supplied to the intermediate stage and after the workpiece is discharged from the intermediate stage, the defect detection device detects defects on the workpiece. It is to detect.
 本発明の第3のボンディング方法は、ピックアップポジションにてワークをピックアップし、このピックアップしたワークをボンディングポジョンに搬送して、そのボンディングポジションにてワークをボンディングするボンディング工程を備えたボンディング方法であって、ボンディング前とボンディング後の少なくともいずれか一方において、ワークに対して前記欠陥検出装置にて欠陥を検出するものである。 A third bonding method of the present invention is a bonding method including a bonding step of picking up a workpiece at a pickup position, transporting the picked-up workpiece to a bonding position, and bonding the workpiece at the bonding position. The defect is detected by the defect detection device with respect to the workpiece at least one of before bonding and after bonding.
 本発明の第4のボンディング方法は、ピックアップポジションにてワークをピックアップし、このピックアップしたワークをボンディングポジョンに搬送して、そのボンディングポジションにてワークをボンディングするボンディング工程を備えたボンディング方法であって、ボンディング工程へのワーク供給前と、ボンディング工程からのワーク排出後の少なくともいずれか一方において、前記記載の欠陥検出方法を用いた検査工程を行うものである。 A fourth bonding method of the present invention is a bonding method including a bonding step of picking up a workpiece at a pickup position, transporting the picked-up workpiece to a bonding position, and bonding the workpiece at the bonding position. The inspection process using the defect detection method described above is performed at least one of before supplying the work to the bonding process and after discharging the work from the bonding process.
 半導体製造方法は、前記欠陥検出方法を用いた検査工程を備え、さらに、ウェハを切断して個片化するダイシング工程と、個片化されてなる半導体チップを樹脂で封止するモールド封止工程の少なくともいずれか一方の工程を備えたものである。 The semiconductor manufacturing method includes an inspection process using the defect detection method, and further includes a dicing process for cutting the wafer into individual pieces, and a mold sealing process for sealing the semiconductor chips formed into individual pieces with a resin. It comprises at least one of the steps.
 半導体装置製造方法は、複数の個片体からなる個片体集合体を備えた半導体装置を製造する半導体装置製造方法であって、1個の個片体又は所定数の個片体の集合体からなる被対象物と、この被対象物に集合すべき他の個片体の少なくともいずれか一方を前記陥検出方法を用いて検査するものである。 A semiconductor device manufacturing method is a semiconductor device manufacturing method for manufacturing a semiconductor device having an individual body assembly made up of a plurality of individual bodies, and is an assembly of one individual body or a predetermined number of individual bodies. And at least one of another object to be assembled to the object is inspected by using the depression detection method.
 本発明では、非合焦位置からの反射光により形成された観察画像上の欠陥を、合焦位置からの反射光により形成された観察画像上の欠陥よりも拡大して観察したり、既存の装置では見えなかった欠陥を見えるようにできるので、安定して欠陥(クラック)を検出することができる。 In the present invention, the defect on the observation image formed by the reflected light from the out-of-focus position is observed more magnified than the defect on the observation image formed by the reflected light from the in-focus position. Since the defect that could not be seen by the apparatus can be seen, the defect (crack) can be detected stably.
本発明に係る欠陥検出装置の簡略図である。1 is a simplified diagram of a defect detection apparatus according to the present invention. 本発明のダイボンダを用いたボンディング工程を示す略図である。It is the schematic which shows the bonding process using the die bonder of this invention. ダイボンダの簡略斜視図である。It is a simplified perspective view of a die bonder. 本発明のダイボンダを示し、ピックアップポジションにおいて欠陥検出装置を備えたダイボンダの簡略図である。FIG. 2 is a simplified diagram of a die bonder showing a die bonder of the present invention and having a defect detection device at a pickup position. ウェハを示す簡略斜視図である。It is a simplified perspective view which shows a wafer. 被覆層が単層であるワークの要部拡大断面図である。It is a principal part expanded sectional view of the workpiece | work whose coating layer is a single layer. 被覆層が複層であるワークの要部拡大断面図である。It is a principal part expanded sectional view of the workpiece | work whose coating layer is a multilayer. 光の反射を示す説明図であり、照明器側のNAが、観察光学系側のNAよりも小さい場合を示す。It is explanatory drawing which shows reflection of light, and shows the case where NA by the side of an illuminator is smaller than NA by the side of an observation optical system. 光の反射を示す説明図であり、照明器側のNAが、観察光学系側のNAよりも大きい場合を示す。It is explanatory drawing which shows reflection of light, and shows the case where NA by the side of an illuminator is larger than NA by the side of an observation optical system. ワークに生じる欠陥(クラック)であり、一対の切断端面の上面に傾斜面部が形成された状態の簡略断面図である。It is a defect (crack) which arises in a work, and is a simplified sectional view in the state where an inclined surface part was formed on the upper surface of a pair of cut end faces. ワークに生じる欠陥(クラック)であり、一方の切断端面の上面に傾斜面部が形成された状態の簡略断面図である。It is a defect (crack) which arises in a work, and is a simplified sectional view in the state where an inclined surface part was formed on the upper surface of one cut end face. ワークに生じる欠陥(クラック)であり、断面V字形状とされた状態の簡略断面図である。FIG. 3 is a simplified cross-sectional view showing a defect (crack) generated in a workpiece and having a V-shaped cross section. ワークに生じる欠陥(クラック)であり、断面直角三角形状とされた状態の簡略断面図である。FIG. 3 is a simplified cross-sectional view showing a defect (crack) generated in a workpiece and having a cross-sectional right triangle shape. ワークに生じる欠陥(クラック)であり、谷折れ状にワークが切断されて、一対の切断端面の上面に傾斜面部が形成された状態の簡略断面図である。It is a defect (crack) which arises in a work, and is a simplified sectional view in the state where a work was cut in the shape of a trough, and an inclined surface part was formed on the upper surface of a pair of cut end faces. ワークに生じる欠陥(クラック)であり、山折れ状にワークが切断されて、一方の切断端面の上面に傾斜面部が形成された状態の簡略断面図である。FIG. 5 is a simplified cross-sectional view showing a defect (crack) generated in a workpiece, in which the workpiece is cut in a mountain shape, and an inclined surface portion is formed on the upper surface of one cut end surface. ワークに生じる欠陥(クラック)であり、谷折れ状にワークが折れ曲がった状態の簡略断面図である。It is a defect (crack) which arises in a work, and is a simplified sectional view in the state where a work was bent in the shape of a trough. ワークに生じる欠陥(クラック)であり、山折れ状にワークが折れ曲がった状態の簡略断面図である。It is a defect (crack) which arises in a work, and is a simplified sectional view in the state where a work was bent in the shape of a mountain. ワークに生じる欠陥(クラック)であり、谷折れ状にワークが切断されて、切断端面の上端から平坦に延びる傾斜面部が形成された状態の簡略断面図である。It is a defect (crack) which arises in a work, and is a simplified sectional view in the state where a work was cut in the shape of a trough, and an inclined surface part extended flat from the upper end of a cut end face was formed. ワークに生じる欠陥(クラック)であり、山折れ状にワークが切断されて、切断端面の上端から平坦に延びる傾斜面部が形成された状態の簡略断面図である。It is a defect (crack) which arises in a work, and is a simplified sectional view in the state where the work was cut in the shape of a mountain and the inclined surface part extended flat from the upper end of a cut end face was formed. 谷折れ状に切断された欠陥を有するワークの合焦位置及び非合焦位置の関係を示す説明図である。It is explanatory drawing which shows the relationship between the in-focus position and the out-of-focus position of the workpiece | work which has the defect cut | disconnected in the trough shape. 傾きθを有する物体面において、照明光と反射光との関係を示す説明図である。It is explanatory drawing which shows the relationship between illumination light and reflected light in the object surface which has inclination | tilt (theta). 合焦位置からの反射光による像と、非合焦位置からの反射光による像とがずれることを示す説明図である。It is explanatory drawing which shows that the image by the reflected light from a focus position and the image by the reflected light from a non-focus position shift | deviate. 谷折れ状に切断された欠陥を有するワークからの反射光束、非合焦位置Faを含む面の輝度断面、及び非合焦位置Fbを含む面の輝度断面を示す図である。It is a figure which shows the brightness | luminance cross section of the surface containing the reflected light beam from the workpiece | work which has the defect cut | disconnected in the shape of a trough, the surface containing the non-focus position Fa, and the surface containing the non-focus position Fb. 谷折れ状に切断された欠陥を有するワークの観察画像を示し、上方側の非合焦位置における画像である。The observation image of the workpiece | work which has the defect cut | disconnected by the trough shape is shown, and is an image in the upper non-focus position. 谷折れ状に切断された欠陥を有するワークの観察画像を示し、上方側の非合焦位置における画像である。The observation image of the workpiece | work which has the defect cut | disconnected by the trough shape is shown, and is an image in the upper non-focus position. 谷折れ状に切断された欠陥を有するワークの観察画像を示し、上方側の非合焦位置における画像である。The observation image of the workpiece | work which has the defect cut | disconnected by the trough shape is shown, and is an image in the upper non-focus position. 谷折れ状に切断された欠陥を有するワークの観察画像を示し、上方側の非合焦位置における画像である。The observation image of the workpiece | work which has the defect cut | disconnected by the trough shape is shown, and is an image in the upper non-focus position. 谷折れ状に切断された欠陥を有するワークの観察画像を示し、下方側の非合焦位置における画像である。The observation image of the workpiece | work which has the defect cut | disconnected in the valley | valley shape is shown, and is an image in the lower in-focus position. 谷折れ状に切断された欠陥を有するワークの観察画像を示し、下方側の非合焦位置における画像である。The observation image of the workpiece | work which has the defect cut | disconnected in the valley | valley shape is shown, and is an image in the lower in-focus position. 谷折れ状に切断された欠陥を有するワークの観察画像を示し、下方側の非合焦位置における画像である。The observation image of the workpiece | work which has the defect cut | disconnected in the valley | valley shape is shown, and is an image in the lower in-focus position. 山折れ状に切断された欠陥を有するワークの合焦位置及び非合焦位置の関係を示す説明図である。It is explanatory drawing which shows the relationship between the in-focus position and the out-of-focus position of the workpiece | work which has the defect cut | disconnected in the mountain shape. 山折れ状に切断された欠陥を有するワークからの反射光束、非合焦位置Faを含む面の輝度断面、及び非合焦位置Fbを含む面の輝度断面を示す図である。It is a figure which shows the brightness | luminance cross section of the surface including the reflected light beam from the workpiece | work which has the defect cut | disconnected in the mountain shape, the surface containing the non-focus position Fa, and the surface containing the non-focus position Fb. 傾斜角と最小デフォーカス量との関係を示すグラフ図である。It is a graph which shows the relationship between an inclination angle and the minimum defocus amount. 光の透過率の説明図である。It is explanatory drawing of the transmittance | permeability of light. 本発明のダイボンダのピックアップステージに半導体チップを吸着する方法を示し、吸着前を示す簡略図である。FIG. 6 is a simplified diagram showing a method for adsorbing a semiconductor chip on a pickup stage of a die bonder according to the present invention, and showing a state before adsorption. 本発明のダイボンダのピックアップステージに半導体チップを吸着する方法を示し、吸着途中を示す簡略図である。It is the simplified diagram which shows the method to adsorb | suck a semiconductor chip to the pick-up stage of the die bonder of this invention, and shows the middle of adsorption | suction. 本発明のダイボンダのピックアップステージに半導体チップを吸着する方法を示し、吸着後を示す簡略図である。It is the simplified diagram which shows the method of adsorb | sucking a semiconductor chip to the pick-up stage of the die bonder of this invention, and shows after adsorption | suction. 他のデフォーカス手段を備えた欠陥検出装置の簡略図である。It is a simplification figure of the defect detection apparatus provided with the other defocusing means. 他のデフォーカス手段を備えた欠陥検出装置の簡略図である。It is a simplification figure of the defect detection apparatus provided with the other defocusing means. 他のデフォーカス手段を備えた欠陥検出装置の簡略図である。It is a simplification figure of the defect detection apparatus provided with the other defocusing means. 他の照明手段を備えた欠陥検出装置の簡略図である。It is a simplification figure of the defect detection apparatus provided with the other illumination means. ダイボンダの簡略斜視図である。It is a simplified perspective view of a die bonder. ワークである半導体チップに照明光を照射させた状態の簡略断面図である。It is a simplified sectional view in the state where illumination light was irradiated to the semiconductor chip which is a work. 半導体製造工程図を示すブロック図である。It is a block diagram which shows a semiconductor manufacturing process figure.
 以下本発明の実施の形態を図1~図24に基づいて説明する。 Hereinafter, embodiments of the present invention will be described with reference to FIGS.
 図1に本発明に係るワークの欠陥検出装置の簡略図を示し、この欠陥検出装置は、半導体ウェハ29(図4参照)、この半導体ウェハ29を個片化した半導体チップ21(図2A、図2B参照)やダイ等のワークに形成されるクラック等の欠陥50(図7参照)の有無やその位置を検出するものである。 FIG. 1 shows a simplified diagram of a workpiece defect detection apparatus according to the present invention. This defect detection apparatus includes a semiconductor wafer 29 (see FIG. 4) and a semiconductor chip 21 obtained by dividing the semiconductor wafer 29 (FIG. 2A, FIG. 2B) or the presence or position of a defect 50 (see FIG. 7) such as a crack formed on a workpiece such as a die.
 ワークは、図5A、図5Bに示すように、濃淡パターンである濃淡層11と、この濃淡層11の濃淡パターンを覆う被覆層12とを有するものである。この場合、被覆層12は、図5Aでは一層から構成され、図5Bでは複数の層(この図例では、濃淡層側の第1層13とこの第1層13の上層の第2層14との2層)からなる。なお、濃淡パターンとして、配線パターンで構成することができ、配線パターンで構成した場合、濃淡層11を配線パターン層と呼ぶことができる。 As shown in FIG. 5A and FIG. 5B, the work has a shading layer 11 that is a shading pattern and a covering layer 12 that covers the shading pattern of the shading layer 11. In this case, the covering layer 12 is composed of one layer in FIG. 5A, and in FIG. 5B, a plurality of layers (in this example, the first layer 13 on the side of the light and dark layer and the second layer 14 on the upper side of the first layer 13) 2 layers). In addition, it can comprise with a wiring pattern as a light / dark pattern, and when comprised with a wiring pattern, the light / dark layer 11 can be called a wiring pattern layer.
 すなわち、本願発明において、濃淡パターンとしては、半導体製造工程に由来するものであって、半導体製造工程によって形成されるものであり、例えば、配線パターンにより生じるパターン、酸化や窒化したSiとこれらSiと異なるSiとを有することにより生じるパターン等がある。このように、ワークの濃淡パターンは、半導体製造工程によって形成されるものであればよく、その基材は半導体であったり、ガラスであったり、高分子材料であったりする。なお、半導体製造前工程のプロセスとして、リソグラフィー(イオン打ち込みやエッチング等も含む)及び、成膜工程等がある。 That is, in the present invention, the light and shade pattern is derived from the semiconductor manufacturing process and is formed by the semiconductor manufacturing process. For example, the pattern generated by the wiring pattern, oxidized or nitrided Si, and these Si and There are patterns and the like caused by having different Si. As described above, the shade pattern of the work may be formed by a semiconductor manufacturing process, and the base material thereof may be a semiconductor, glass, or a polymer material. Note that, as a pre-process for manufacturing a semiconductor, there are lithography (including ion implantation and etching), a film forming process, and the like.
 被覆層12としては、例えば、シリコーン樹脂やポリイミド樹脂等で構成できる。また、図5Bに示すように、複数層を有する場合、第1層13と第2層14とを同一材質であっても、相違する材質であってもよい。すなわち、図5Aに示すように、被覆層12が1層であれば、その材質をシリコーン樹脂やポリイミド樹脂等で構成でき、図5Bに示すように、被覆層12が複数層を有するものであれば、例えば、第1層13をポリイミド樹脂とし、第2層をシリコーン樹脂としたり、第1層13をシリコーン樹脂とし、第2層をポリイミド樹脂としたり、第1層13と第2層14とをポリイミド樹脂とし、第1層13と第2層14とをシリコーン樹脂としたりできる。また、第1層13と第2層14とを同一種の樹脂を用いる場合であっても、特性等が相違するものを用いてもよい。 The covering layer 12 can be made of, for example, a silicone resin or a polyimide resin. Further, as shown in FIG. 5B, in the case of having a plurality of layers, the first layer 13 and the second layer 14 may be made of the same material or different materials. That is, as shown in FIG. 5A, if the coating layer 12 is one layer, the material can be composed of silicone resin, polyimide resin, or the like, and the coating layer 12 has a plurality of layers as shown in FIG. 5B. For example, the first layer 13 is made of polyimide resin, the second layer is made of silicone resin, the first layer 13 is made of silicone resin, the second layer is made of polyimide resin, the first layer 13 and the second layer 14, May be a polyimide resin, and the first layer 13 and the second layer 14 may be a silicone resin. Moreover, even if it is a case where the same kind of resin is used for the first layer 13 and the second layer 14, those having different characteristics and the like may be used.
 被覆層12の厚さ寸法として、例えば、図5Aに示す単層であっても、図5Bに示すように、複数層であっても、例えば、1μm~100μmであるように設定でき、より好ましくは、1μm~20μm程度とすることができる。また、被覆層は3層以上であってもよく、この場合、各層が同一材質、各層が異なる材質、又は複数層の所定の層が同一材質とされるものであってもよい。 As the thickness dimension of the covering layer 12, for example, even if it is a single layer shown in FIG. 5A or a plurality of layers as shown in FIG. 5B, it can be set to be 1 μm to 100 μm, for example. Can be about 1 μm to 20 μm. Further, the coating layer may be three or more layers. In this case, each layer may be made of the same material, different materials of each layer, or a plurality of predetermined layers made of the same material.
 欠陥検出装置100は、本実施形態では図2B及び図22に示すようなダイボンダの任意の位置に配設される。ダイボンダは、ウェハ29(図4参照)から切り出されるチップ21をピックアップポジションPにてピップアップして、リードフレームなどの基板22のボンディングポジションQに移送(搭載)するボンディング部を備える。ウェハ29は、ダイシング工程によって、多数のチップ21に分断(分割)される。このため、このチップ21は図4に示すように、テーブル(ピックアップテーブル)上にマトリックス状に配列される。図2Bに示すダイボンダは、後述するように、ピックアップポジションPとボンディングポジションQとの間にテーブル(中間ステージ)が配置されている。このように中間ステージを配置した場合、ボンディング工程において、ウェハ29からピックアップしたワークを一旦中間ステージに載置し、この中間ステージから再度ワークをピックアップし、ボンディングするようにできる。本発明に係る欠陥検出装置100は、ピックアップポジションP、ボンディングポジションQ、中間ステージ上の少なくともいずれかの位置、ピックアップポジションPからボンディングポジションQまでのいずれかの位置、ボンディング部以外の位置に配置することになる。 In this embodiment, the defect detection apparatus 100 is disposed at an arbitrary position of the die bonder as shown in FIGS. 2B and 22. The die bonder includes a bonding unit that pips up a chip 21 cut out from a wafer 29 (see FIG. 4) at a pickup position P and transfers (mounts) the chip 21 to a bonding position Q of a substrate 22 such as a lead frame. The wafer 29 is divided (divided) into a large number of chips 21 by a dicing process. For this reason, the chips 21 are arranged in a matrix on a table (pickup table) as shown in FIG. In the die bonder shown in FIG. 2B, a table (intermediate stage) is disposed between the pickup position P and the bonding position Q, as will be described later. When the intermediate stage is arranged in this way, in the bonding process, the workpiece picked up from the wafer 29 is once placed on the intermediate stage, and the workpiece is picked up again from the intermediate stage and bonded. The defect detection apparatus 100 according to the present invention is arranged at a pickup position P, a bonding position Q, at least one position on the intermediate stage, any position from the pickup position P to the bonding position Q, and a position other than the bonding portion. It will be.
 テーブル(本実施形態ではピックアップテーブル101)は、図3に示すように、矩形状の多孔質材料102と、多孔質材料102を周囲から支持する支持部103とを備えており、図示省略の真空ポンプ等の吸引機構が接続されている。多孔質材料とは、小さな気孔が無数に空いている材料であって、金属、セラミックス等の種々のものがある。多孔質材料102は、例えば、メッシュ粒径が240、平均細孔径が55μm程度であるのが好ましい。多孔質材料102の上面がワークを載置する載置部となる。多孔質材料102にワークが載置された状態で、吸引機構が駆動すると、多孔質材料102及び支持部103の下方に形成された閉鎖空間、及び多孔質材料102の無数の気孔を介してワークが吸引され、ワークは全面的に多孔質材料102に吸着される。 As shown in FIG. 3, the table (in this embodiment, the pickup table 101) includes a rectangular porous material 102 and a support portion 103 that supports the porous material 102 from the periphery. A suction mechanism such as a pump is connected. The porous material is a material having innumerable small pores, and includes various materials such as metals and ceramics. The porous material 102 preferably has, for example, a mesh particle size of 240 and an average pore size of about 55 μm. The upper surface of the porous material 102 serves as a placement portion on which the workpiece is placed. When the suction mechanism is driven in a state where the workpiece is placed on the porous material 102, the workpiece is passed through the closed space formed below the porous material 102 and the support portion 103 and the countless pores of the porous material 102. Is sucked, and the work is entirely adsorbed by the porous material 102.
 多孔質材料102は、ワーク(チップ)の外径サイズよりも僅かに大きいものとなっている。例えば、チップサイズが10×15mmである場合、多孔質材料102の外周長さは、チップサイズ+0.1mm程度とするのが好ましい。これにより、チップは外周部まで多孔質材料102に吸着される。 The porous material 102 is slightly larger than the outer diameter size of the workpiece (chip). For example, when the chip size is 10 × 15 mm, the outer peripheral length of the porous material 102 is preferably about chip size + 0.1 mm. As a result, the chip is adsorbed to the porous material 102 up to the outer periphery.
 ピックアップテーブル101と吸引機構との間の流路には、真空圧を測定するための真空圧センサ104(又は流量センサ)を設けており、センサの値を読み取ることにより、ピックアップテーブル101においてワークが吸引されているか否かを判別することができる。 A vacuum pressure sensor 104 (or a flow rate sensor) for measuring the vacuum pressure is provided in the flow path between the pickup table 101 and the suction mechanism. It can be determined whether or not it is sucked.
 従来、ピックアップテーブル101等のテーブルに吸引口を設けてワークを吸引する場合は、吸引口の径は300μm程度と大きく、ワークをピックアップテーブル101等のテーブルに固定する際にワークが吸引口に引き込まれる。これにより、ワークの表面に傾きが発生し、暗く観察される場合があった。また、ワークの形成過程により残留応力が発生して、ワークに反りが生じ、反りの部分が暗く観察される場合があった。本実施形態では、ピックアップテーブル101のワークの載置部を多孔質材料102とすることによって、ワークは、ステージに対して全体的に均一に保持される。このため、ワークに反りがあっても平面状とすることができ、観察時に、反り部分が暗く観察されることを防止できる。また、ピックアップテーブル101には、従来設けていたような大きな吸引口を設けていないため、ワークが吸引口に引き込まれて傾きが発生し、暗く観察されることを防止できる。 Conventionally, when a suction port is provided in a table such as the pickup table 101 and the workpiece is sucked, the diameter of the suction port is as large as about 300 μm, and the workpiece is drawn into the suction port when the workpiece is fixed to the table such as the pickup table 101. It is. As a result, the surface of the workpiece is tilted and may be observed dark. Further, residual stress is generated by the process of forming the workpiece, the workpiece is warped, and the warped portion may be observed darkly. In the present embodiment, the workpiece is held on the entire stage uniformly by using the porous material 102 as the workpiece mounting portion of the pickup table 101. For this reason, even if the workpiece is warped, it can be made flat, and it is possible to prevent the warped portion from being observed darkly during observation. In addition, since the pickup table 101 is not provided with a large suction port as conventionally provided, it is possible to prevent the workpiece from being drawn into the suction port and tilted to be observed in the dark.
 このダイボンダは、図2Aに示すように、コレット(吸着コレット)23を備える。このコレット23は、図示省略の移動機構にて、ピックアップポジションP上での矢印a方向の上昇および矢印b方向の下降と、ボンディングポジションQ上での矢印c方向の上昇および矢印d方向の下降と、ピックアップポジションPとボンディングポジションQとの間の矢印e、f方向の往復動とが可能とされる。移動機構は、例えばマイクロコンピュータ等にて構成される制御手段にて前記矢印a、b、c、d、e、fの移動が制御される。なお、移動機構としては、シリンダ機構、ボールねじ機構、リニアモーター機構等の種々の機構にて構成することができる。 This die bonder includes a collet (adsorption collet) 23 as shown in FIG. 2A. This collet 23 is moved by an unillustrated moving mechanism in the direction of arrow a and in the direction of arrow b on the pickup position P, and in the direction of arrow c and in the direction of arrow d on the bonding position Q. The reciprocation between the pickup position P and the bonding position Q in the directions of arrows e and f is possible. In the moving mechanism, the movement of the arrows a, b, c, d, e, and f is controlled by a control unit configured by, for example, a microcomputer. In addition, as a moving mechanism, it can comprise with various mechanisms, such as a cylinder mechanism, a ball screw mechanism, and a linear motor mechanism.
 吸着コレット23はその下面に開口する吸着孔28を有するヘッド(吸着のノズル)24を備え、吸着孔28を介してチップ21が真空吸引され、このヘッド24の下端面(先端面)にチップ21が吸着する。この真空吸引(真空引き)が解除されれば、ヘッド24からチップ21が外れる。 The suction collet 23 includes a head (suction nozzle) 24 having a suction hole 28 opened on the lower surface thereof, and the chip 21 is vacuum-sucked through the suction hole 28, and the chip 21 is placed on the lower end surface (tip surface) of the head 24. Adsorbs. When this vacuum suction (evacuation) is released, the chip 21 is detached from the head 24.
 また、多数のチップ21に分断(分割)されたウェハ29は、例えばXYθテーブル25(図4参照)上に配置され、このXYθテーブル25には突き上げピンを備えた突き上げ手段が配置される。すなわち、突き上げ手段によって、ピックアップしようとするチップ21を下方から突き上げ、粘着シートから剥離しやすくする。この状態で、下降してきた吸着コレット23にこのチップ21が吸着する。 Further, the wafer 29 divided (divided) into a large number of chips 21 is arranged on, for example, an XYθ table 25 (see FIG. 4), and the XYθ table 25 is provided with push-up means having push-up pins. That is, the chip 21 to be picked up is pushed up from below by the pushing-up means, and is easily peeled off from the adhesive sheet. In this state, the chip 21 is adsorbed to the adsorbing collet 23 that has been lowered.
 すなわち、コレットをこのピックアップすべきチップ21の上方に位置させた後、矢印bのようにコレット23を下降させてこのチップ21をピックアップする。その後、矢印aのようにコレット23を上昇させる。 That is, after the collet is positioned above the chip 21 to be picked up, the collet 23 is lowered as shown by the arrow b to pick up the chip 21. Thereafter, the collet 23 is raised as indicated by an arrow a.
 次に、コレットを矢印e方向へ移動させて、このアイランド部の上方に位置させた後、コレットを矢印dのように下降移動させて、このアイランド部にチップ21を供給する。また、アイランド部にチップ21を供給した後は、コレットを矢印cのように上昇させた後、矢印fのように、ピップアップ位置Pの上方の待機位置に戻す。 Next, the collet is moved in the direction of arrow e and positioned above the island portion, and then the collet is moved down as indicated by arrow d to supply the chip 21 to the island portion. Further, after supplying the chip 21 to the island portion, the collet is raised as indicated by an arrow c, and then returned to the standby position above the pip-up position P as indicated by an arrow f.
 すなわち、コレット23を、順次、矢印b、a、e、d、c、fのように移動させることによって、ピックアップ位置Pでチップ21をコレット23でピックアップし、このチップ21をボンディング位置Qでチップ21に実装することになる。 That is, the collet 23 is sequentially moved as indicated by arrows b, a, e, d, c, and f, whereby the chip 21 is picked up by the collet 23 at the pickup position P, and the chip 21 is chipped at the bonding position Q. 21 to be mounted.
 ところで、ピックアップ位置Pにおいては、ピックアップすべきチップ21の位置確認(位置検出)を行い、ボンディング位置Qにおいても、ボンディングすべきリードフレームのアイランドの位置確認(位置検出)を行う必要がある。このため、一般には、ピックアップ位置Pの上方位置に配設された確認用カメラにてピックアップすべきチップ21を観察し、コレット23をこのピックアップすべきチップ21の上方に位置させ、また、ボンディング位置Qの上方位置に配設された確認用カメラにてリードフレームのアイランドを観察し、コレット23をこのアイランドの上方に位置させる。 Incidentally, it is necessary to confirm the position (position detection) of the chip 21 to be picked up at the pickup position P and to confirm the position (position detection) of the island of the lead frame to be bonded at the bonding position Q. For this reason, generally, the chip 21 to be picked up is observed with a confirmation camera disposed above the pickup position P, the collet 23 is positioned above the chip 21 to be picked up, and the bonding position The island of the lead frame is observed with a confirmation camera disposed above Q, and the collet 23 is positioned above the island.
 このため、ダイボンダではピックアップ位置Pに位置決め装置が配置される。この位置決め装置には、本発明にかかる欠陥検出装置100が含まれる。すなわち、位置決め装置は、図1に示すような検査機構30を備える。検査機構30は、チップ21を観察するための撮像装置31と、チップ21を照明する照明手段32と、照明手段32から照射された光を反射するハーフミラー33と、チップ21からの反射光を、光軸方向において合焦位置からずれた(デフォーカスされた)非合焦位置から射出させるデフォーカス手段39とを備える。ここで、合焦位置は、レンズに平行光束を入れたときに光軸上で光線が交わる位置であり、非合焦位置とは、前記した合焦位置以外の位置であり、合焦位置からデフォーカスされた位置をいう。 For this reason, in the die bonder, a positioning device is arranged at the pickup position P. This positioning apparatus includes the defect detection apparatus 100 according to the present invention. That is, the positioning device includes an inspection mechanism 30 as shown in FIG. The inspection mechanism 30 includes an imaging device 31 for observing the chip 21, an illumination unit 32 that illuminates the chip 21, a half mirror 33 that reflects light emitted from the illumination unit 32, and reflected light from the chip 21. And defocusing means 39 for emitting light from a non-focus position shifted (defocused) from the focus position in the optical axis direction. Here, the in-focus position is a position where the light beams intersect on the optical axis when a parallel light beam is put into the lens, and the out-of-focus position is a position other than the in-focus position described above, and from the in-focus position. This is the defocused position.
 観察光学系を構成する撮像装置31は、カメラ34とレンズ35とを有するものである。この場合のカメラ34としては、CCDやCMOSイメージセンサ等から構成できる。すなわち、照明波長の光を画像化できるものであればよい。このため、可視光、紫外、赤外に感度を持ったものを用いてもよい。また、レンズ35として、テレセントリックレンズやノンテレセントリックレンズ等で構成できる。撮像装置31は、制御手段43にて制御される。制御手段43は、欠陥検査を行う検査用プロセッサ44と、画像上のワークの位置を検出する(例えば画像マッチング)ための位置決め用プロセッサ45とを備えている。 The imaging device 31 constituting the observation optical system has a camera 34 and a lens 35. In this case, the camera 34 can be composed of a CCD, a CMOS image sensor, or the like. In other words, any device that can image light having an illumination wavelength may be used. For this reason, you may use what has a sensitivity in visible light, ultraviolet, and infrared. Further, the lens 35 can be constituted by a telecentric lens, a non-telecentric lens, or the like. The imaging device 31 is controlled by the control means 43. The control means 43 includes an inspection processor 44 that performs defect inspection and a positioning processor 45 that detects the position of the workpiece on the image (for example, image matching).
 照明手段32は、図1に示すように、光源36及びレンズ37を備えた明視野用照明器である。明視野照明とは、観察光学系31の主光線の延長方向から照明する(平行光)ことをいう。すなわち、一般的に明視野は、照明した光が反射もしくは透過した直接光を観察するもので、その場合の照明方法は、直接光照明法という。本実施形態であれば、ワーク表面(チップ21表面)の正常部分が明るく観察され、チップ21表面の大部分(正常部分)で反射された直接光を主に観察する。「観察光学系31の主光線の延長方向から照明する」とは、例えば特開2002-39956のように、発光手段からの射出光をレンズによって屈折させて平行に近い収束する向きの光とするとともに、このレンズで屈折させた光をハーフミラーによって反射させて、検査対象面の略全面に照射し、検査対象面で反射した光を、その光が収束する部位に設けた撮像手段に導く場合等を含む。 The illumination means 32 is a bright field illuminator provided with a light source 36 and a lens 37 as shown in FIG. Bright field illumination refers to illumination from the extension direction of the principal ray of the observation optical system 31 (parallel light). That is, in general, the bright field is for observing direct light reflected or transmitted by the illuminated light, and the illumination method in this case is called a direct light illumination method. In the present embodiment, the normal part of the workpiece surface (chip 21 surface) is observed brightly, and the direct light reflected by the majority (normal part) of the chip 21 surface is mainly observed. “Illuminate from the direction of extension of the principal ray of the observation optical system 31” means, for example, as disclosed in Japanese Patent Application Laid-Open No. 2002-39956, the light emitted from the light emitting means is refracted by a lens to be converged light that is nearly parallel. At the same time, when the light refracted by this lens is reflected by a half mirror and irradiated on substantially the entire surface of the inspection object, the light reflected by the inspection object surface is guided to an imaging means provided at a portion where the light converges Etc.
 本実施形態では、照明手段側のNA(開口数)が、観察光学系側のNAよりも小さいものとしている。すなわち、ワーク(チップ21)の傾いた面での反射(透過)で、図6A及び図6Bに示すように光線が傾く。この場合、図6Bのように、照明手段側のNAが、観察光学系側のNAよりも大きい場合、主光線以外は観察光学系の絞りで遮られて結像しない。このため、デフォーカスしても像の位置が変化しない(拡大されない)。一方、図6Aのように、照明手段側のNAが、観察光学系側のNAよりも小さい場合、観察光学系の絞りで遮られることがなく、デフォーカスすると像の位置が変化する(拡大される)。このため、ワークが傾いている場合や、クラック角が小さい場合であっても像を拡大することが可能となる。 In this embodiment, the NA (numerical aperture) on the illumination means side is smaller than the NA on the observation optical system side. That is, the light beam tilts as shown in FIGS. 6A and 6B due to reflection (transmission) on the tilted surface of the workpiece (chip 21). In this case, as shown in FIG. 6B, when the NA on the illumination means side is larger than the NA on the observation optical system side, images other than the principal ray are blocked by the stop of the observation optical system and do not form an image. For this reason, the position of the image does not change (not enlarged) even when defocused. On the other hand, as shown in FIG. 6A, when the NA on the illumination means side is smaller than the NA on the observation optical system side, it is not obstructed by the stop of the observation optical system, and the image position changes (enlarged) when defocused. ) For this reason, even when the workpiece is tilted or the crack angle is small, the image can be enlarged.
 照明手段側のNA及び観察光学系側のNAの少なくとも一方を可変可能な可変手段(図示省略)を設けている。可変手段としては、例えば開口絞り機構とすることができ、この開口絞り機構は、撮像装置31及び照明手段32のいずれか一方、又は両方に設けられる。開口絞り機構は、ワークの傾き又はデフォーカス量に応じて、所定のNAとなるように制御される。例えば、本実施形態では、開口絞り機構を撮像装置31及び照明手段32に夫々設けられており、後述する演算部41においてデフォーカス量が決定されると、このデフォーカス量から、NA制御部47においてNAが演算により決定されて、開口絞り機構を制御する。 A variable means (not shown) capable of changing at least one of the NA on the illumination means side and the NA on the observation optical system side is provided. The variable means may be, for example, an aperture stop mechanism, and this aperture stop mechanism is provided in either one or both of the imaging device 31 and the illumination means 32. The aperture stop mechanism is controlled to have a predetermined NA according to the workpiece tilt or the defocus amount. For example, in the present embodiment, an aperture stop mechanism is provided in each of the imaging device 31 and the illumination unit 32. When the defocus amount is determined by the calculation unit 41 described later, the NA control unit 47 is determined from the defocus amount. NA is determined by calculation to control the aperture stop mechanism.
 本実施形態のデフォーカス手段39は、撮像装置31の下方に設けられ、チップ21を載置するテーブル38と、このテーブル38を上下に往復動させる駆動手段(図示省略)にて構成される。駆動手段は、例えば、シリンダ機構、ボールねじ機構、リニアモーター機構等、公知公用の種々の機構(高精度であることが好ましい)にて構成することができる。これにより、チップ21は、図1の矢印のように上下動が可能なものとなって、撮像装置31に近接したり離間したりする。すなわち、デフォーカス手段39は、チップ21を上下動させて、チップ21を合焦位置に位置させたり、非合焦位置に位置させたりして、チップ21表面からの反射光を、光軸方向において合焦位置からずれた非合焦位置から射出させる、いわゆるデフォーカスを行う。 The defocusing means 39 of the present embodiment is provided below the image pickup device 31 and includes a table 38 on which the chip 21 is placed and a driving means (not shown) that reciprocates the table 38 up and down. The driving means can be constituted by various publicly known mechanisms (preferably highly accurate) such as a cylinder mechanism, a ball screw mechanism, and a linear motor mechanism. As a result, the chip 21 can move up and down as indicated by the arrow in FIG. 1, and moves closer to or away from the imaging device 31. In other words, the defocusing means 39 moves the chip 21 up and down to position the chip 21 at the in-focus position or the non-focus position, and reflects the reflected light from the surface of the chip 21 in the optical axis direction. In so-called defocusing, the light is emitted from a non-focus position shifted from the focus position.
 デフォーカス手段39(駆動手段)は、制御部40の制御に基づいて駆動される。制御部40は、例えば、CPU(Central Processing Unit)を中心としてROM(Read Only Memory)やRAM(Random Access Memory)等がバスを介して相互に接続されたマイクロコンピュータで構成できる。制御部40は演算部41を備えており、例えば後述する方法でユーザが所定のパラメータを設定するのみで、演算部41が自動的にデフォーカス量を決定する。 The defocusing means 39 (driving means) is driven based on the control of the control unit 40. The control unit 40 can be configured by a microcomputer in which a ROM (Read Only Memory), a RAM (Random Access Memory), and the like are connected to each other via a bus with a CPU (Central Processing Unit) as a center. The control unit 40 includes a calculation unit 41. For example, the calculation unit 41 automatically determines the defocus amount only when the user sets a predetermined parameter by a method described later.
 図1に示す欠陥検出装置は、例えば、ピックアップポジションPにて配置される。この場合、ワークがウェハ29となる。まず、ワークをピックアップテーブル101に載置して、多孔質材料102の気孔を介してワークを吸引して、ワークをピックアップテーブル101に吸着させる。また、撮像装置31の下方に別の明視野照明手段42を備え、この明視野照明手段42にてピックアップすべきチップ21の画像上の位置を検出し、位置決め用プロセッサ45にて画像マッチング処理等を行って、ワークの位置決めを行うことができる。その後、ワークの欠陥を検出する。 1 is arranged at a pickup position P, for example. In this case, the workpiece is the wafer 29. First, the workpiece is placed on the pickup table 101, the workpiece is sucked through the pores of the porous material 102, and the workpiece is adsorbed on the pickup table 101. Further, another bright field illumination means 42 is provided below the image pickup device 31, the bright field illumination means 42 detects the position of the chip 21 to be picked up on the image, and the positioning processor 45 performs image matching processing or the like. To position the workpiece. Thereafter, a defect of the workpiece is detected.
 ところで、ワーク表面の欠陥50には、例えば、図7に示すような種々の形状のものがある。図7Aは一対の切断端面51,52の上端に傾斜面部S,Sが形成されたものであり、図7Bは一方の切断端面51の上端に傾斜面部Sが形成されたものである。また、図7Cは断面V字形状の溝53が形成されたものであり、一対の傾斜面部Sが形成されている。図7Dは断面直角三角形状とされた溝54が形成されたものであり、傾斜面部Sが形成されている。図7Eは谷折れ状にワークの被覆層12が切断されて、一対の切断端面51,52の上端に傾斜面部S,Sが形成されたものであり、図7Fは山折れ状にワークの被覆層12が切断されて、一方の切断端面51の上端に傾斜面部Sが形成されたものである。図7Gは谷折れ状にワークの被覆層12が折れ曲がったものであり、折れ曲り線を介して傾斜面部S、Sが形成されたものであり、図7Hは山折れ状にワークの被覆層12が折れ曲がったものであり、折れ曲り線を介して傾斜面部S、Sが形成されたものであり、図7Iは谷折れ状にワークの被覆層12が切断されて、切断端面51,52の上端から平坦に延びる傾斜面部S,Sが形成されたものであり、図7Jは山折れ状にワークの被覆層12が切断されて、切断端面51,52の上端から平坦に延びる傾斜面部S,Sが形成されたものである。なお、この発明では、図7に示すような被覆層12の欠陥50(割れ、折れ曲がり、及び切断等であって、いずれかの位置に傾斜面部Sを有するもの)をワーク(ウエハや個片体等)の欠陥として検出することになる。 Incidentally, the defect 50 on the workpiece surface has, for example, various shapes as shown in FIG. FIG. 7A shows that the inclined surface portions S, S are formed at the upper ends of the pair of cut end surfaces 51, 52, and FIG. 7B shows the inclined surface portion S formed at the upper end of one of the cut end surfaces 51. FIG. 7C shows a groove 53 having a V-shaped cross section, and a pair of inclined surface portions S is formed. In FIG. 7D, a groove 54 having a right-angled triangular cross section is formed, and an inclined surface portion S is formed. FIG. 7E shows that the workpiece covering layer 12 is cut in a valley shape, and inclined surface portions S, S are formed at the upper ends of the pair of cut end surfaces 51, 52, and FIG. 7F shows a workpiece coating in a mountain shape. The layer 12 is cut, and an inclined surface portion S is formed at the upper end of one cut end surface 51. FIG. 7G shows that the workpiece covering layer 12 is bent in a valley shape, and the inclined surface portions S and S are formed via a bent line. FIG. 7H shows the workpiece covering layer 12 in a mountain shape. 7 is bent, and the inclined surface portions S and S are formed through the bent line. FIG. 7I shows that the workpiece covering layer 12 is cut in a valley shape, and the upper ends of the cut end faces 51 and 52 are cut. In FIG. 7J, the workpiece covering layer 12 is cut in a mountain-like shape, and the inclined surface portions S, S extending flatly from the upper ends of the cut end surfaces 51, 52 are formed. Is formed. In the present invention, a defect 50 (a crack, a bend, a cut and the like having an inclined surface portion S at any position) as shown in FIG. Etc.).
 前記本実施形態の欠陥検出装置100により、ワークに形成された欠陥50の観察画像上の欠陥画像を強調して観察することができる。強調とは、画像上の欠陥を、合焦位置からの反射光により形成された観察画像上の欠陥よりも拡大したり、観察画像上の欠陥と、その他の部分とのコントラストを大きくしたりすることである。すなわち、本発明における強調とは、拡大するか、コントラストを大きくするか、の少なくともいずれかが生じていることをいう。その理由について、例えば、図7I及び図8に示すような欠陥(谷折れ状で切断部を有するもの)を検出する場合について説明する。図8において、一方(図8の右側)の傾斜面部S1と他方(図8の左側)の傾斜面部S2との離間幅(クラック幅)をw、光軸に直交する線と一方の傾斜面部S1とのなす角(傾斜角)をθ1、光軸に直交する線と他方の傾斜面部S2とのなす角(傾斜角)をθ2、クラック角θをθ1+θ2とする。なお、図8において点線を照明光、実線を反射光とする。 The defect detection apparatus 100 of the present embodiment can emphasize and observe the defect image on the observation image of the defect 50 formed on the workpiece. Emphasis enlarges the defect on the image more than the defect on the observation image formed by the reflected light from the in-focus position, or increases the contrast between the defect on the observation image and other parts. That is. That is, the emphasis in the present invention means that at least one of enlargement or increase in contrast occurs. The reason for this will be described, for example, in the case of detecting a defect as shown in FIGS. 7I and 8 (those having a valley shape and having a cut portion). In FIG. 8, the separation width (crack width) between one (right side in FIG. 8) inclined surface portion S1 and the other (left side in FIG. 8) inclined surface portion S2 is w, a line perpendicular to the optical axis and one inclined surface portion S1. Is defined as θ1, the angle formed between the line perpendicular to the optical axis and the other inclined surface S2 is θ2, and the crack angle θ is θ1 + θ2. In FIG. 8, the dotted line is illumination light and the solid line is reflected light.
 図9に示すように、傾斜角θの傾斜を有するワーク表面(傾斜面部S)から平行光が発射されるとする。この場合、反射光L2の光線は照射光L1の光軸から2θ傾く。ワークが図10に示す合焦位置Fにある場合、フォーカス面と、照射光L1の主交線との交点を通り、かつ±NA(照明側開口数)の範囲に入る反射光は像IAを結ぶ。これにより、焦点の合っている像(物体面と合焦位置Fとが一致しているときの像)(図12参照)を得ることができる。 As shown in FIG. 9, it is assumed that parallel light is emitted from a workpiece surface (inclined surface portion S) having an inclination of an inclination angle θ. In this case, the light beam of the reflected light L2 is inclined 2θ from the optical axis of the irradiation light L1. When the workpiece is at the in-focus position F shown in FIG. 10, the reflected light that passes through the intersection of the focus surface and the main intersection line of the irradiation light L1 and falls within the range of ± NA (illumination side numerical aperture) is the image IA. tie. Thereby, an in-focus image (an image when the object plane and the in-focus position F coincide) can be obtained (see FIG. 12).
 図10に示すように、ワークを合焦位置Fから下方の非合焦位置Fbに移動させてデフォーカスすることにより、反射光の発射位置が光軸上で移動(下方にずれる)し、観察側レンズから見ると、合焦位置F上の位置ずれ量だけ図面上の左側に移動した点Pから発射されたように見える。これにより、像面では、像IBが像IAに対して平行方向のずれとして観測される。この場合、像の位置ずれ量は、フォーカス移動量×tan(2θ)として算出することができる。なお、欠陥を検査する前に照明側開口数NAを小さくして、被写界深度(ぼけを許容できる範囲)を大きくすればよい。これにより、デフォーカスした場合でも像がぼけないようにできる。 As shown in FIG. 10, when the work is moved from the in-focus position F to the lower non-focus position Fb and defocused, the reflected light emission position moves (shifts downward) on the optical axis and is observed. When viewed from the side lens, it appears to have been fired from a point P that has moved to the left in the drawing by the amount of displacement on the in-focus position F. Thereby, on the image plane, the image IB is observed as a shift in a direction parallel to the image IA. In this case, the image positional deviation amount can be calculated as focus movement amount × tan (2θ). Before inspecting the defect, the illumination-side numerical aperture NA may be reduced to increase the depth of field (the range in which blur can be allowed). This prevents the image from being blurred even when defocused.
 このように、谷折れ状の場合、ワークを物体面(合焦位置F)から下方の非合焦位置Fbにデフォーカスすると、図11に示すように、反射光束Aと反射光束Bとの見かけ上の位置がずれて広がる。これにより、非合焦位置Fbを含む面における輝度断面は、反射光束Aと反射光束Bとの像の間隔が広がり、欠陥50は黒く(暗く)拡大する(太る)。つまり、物体面から下方にデフォーカスする程、図12E~図12Gに示すように、画像上の欠陥は黒く拡大することになる。なお、図12Gは、物体面から最も離れた下方の非合焦位置における画像を示しており、欠陥50は最も拡大されている(太っている)。図12Eは、物体面に近い画像である。 In this way, in the case of the valley-folded shape, when the work is defocused from the object plane (focus position F) to the lower non-focus position Fb, as shown in FIG. The upper position spreads out. Thereby, in the luminance cross section on the surface including the out-of-focus position Fb, the interval between the images of the reflected light beam A and the reflected light beam B is widened, and the defect 50 is enlarged (thickened) black (darker). That is, as the focus is defocused downward from the object plane, as shown in FIGS. 12E to 12G, the defect on the image is enlarged black. FIG. 12G shows an image at the lower out-of-focus position farthest from the object plane, and the defect 50 is most enlarged (thickened). FIG. 12E is an image close to the object plane.
 また、谷折れ状の場合、ワークを物体面(合焦位置F)から上方の非合焦位置Faにデフォーカスすると、図11に示すように、反射光束Aと反射光束Bとの見かけ上の位置がずれて接近する。この場合、物体面から非合焦位置Fcまでは、反射光束Aと反射光束Bとが重ならないため、コントラストは大きくならず、画像上の欠陥は上方にデフォーカスする程小さくなる。そして、この非合焦位置Fcよりも上方にデフォーカスすると、反射光束Aと反射光束Bとが重なるため、画像上の欠陥は白く(明るく)なるとともに、重なり部分が拡大していくため、画像上の欠陥は上方にデフォーカスする程拡大されていく。非合焦位置Faを含む面における輝度断面は、反射光束Aと反射光束Bとが重なることから、画像上の欠陥は白くなってコントラストが大きくなり、クラック幅wの大きさとなる。そして、非合焦位置Faから上方にデフォーカスする程、図12A~図12Dに示すように、画像上の欠陥は白く拡大することになる。なお、図12Aは、物体面から最も離れた上方の非合焦位置における画像を示しており、欠陥50は最も拡大されている(太っている)。図12Dは、非合焦位置Fcに近い画像である。 Further, in the case of a valley fold, when the work is defocused from the object plane (focusing position F) to the upper non-focusing position Fa, as shown in FIG. The position shifts and approaches. In this case, since the reflected light beam A and the reflected light beam B do not overlap from the object plane to the out-of-focus position Fc, the contrast does not increase and the defect on the image becomes smaller as it is defocused upward. When defocusing is performed above the out-of-focus position Fc, the reflected light beam A and the reflected light beam B overlap each other, so that the defect on the image becomes white (brighter) and the overlapping portion expands. The upper defect is enlarged as it defocuses upward. In the luminance cross section on the surface including the out-of-focus position Fa, the reflected light beam A and the reflected light beam B overlap, so that the defect on the image becomes white, the contrast becomes large, and the crack width w becomes large. As the focus is defocused upward from the out-of-focus position Fa, as shown in FIGS. 12A to 12D, the defect on the image expands in white. FIG. 12A shows an image at an upper out-of-focus position farthest from the object plane, and the defect 50 is most enlarged (thickened). FIG. 12D is an image close to the out-of-focus position Fc.
 なお、図7Gのようにクラック幅wが存在しない欠陥である場合は、物体面から非合焦位置Fcの領域(コントラストが大きくならず、画像上の欠陥がwより小さくなる領域)が存在しないことになる。このため、物体面から下方にデフォーカスする程、画像上の欠陥は黒く拡大することになり、物体面から上方にデフォーカスする程、画像上の欠陥は白く拡大することになる。 When the defect does not have the crack width w as shown in FIG. 7G, there is no region from the object plane to the out-of-focus position Fc (the region where the contrast does not increase and the defect on the image is smaller than w). It will be. For this reason, as the image is defocused downward from the object plane, the defect on the image is enlarged black, and as the image is defocused upward from the object plane, the defect on the image is enlarged white.
 図7Jに示すような欠陥(山折れ状で切断部を有するもの)の場合、ワークを物体面(合焦位置F)から下方の非合焦位置Fbにデフォーカスすると、図13に示すように、反射光束Aと反射光束Bとの見かけ上の位置がずれて接近する。この場合、物体面から非合焦位置Fcまでは、反射光束Aと反射光束Bとが重ならないため、コントラストは大きくならず、画像上の欠陥は下方にデフォーカスする程小さくなる。そして、この非合焦位置Fcよりも下方にデフォーカスすると、反射光束Aと反射光束Bとが重なるため、画像上の欠陥は明るくなるとともに、重なり部分が拡大していくため、画像上の欠陥は下方にデフォーカスする程拡大されていく。非合焦位置Fbを含む面における輝度断面は、反射光束Aと反射光束Bとが重なることから、画像上の欠陥は白くなってコントラストが大きくなり、クラック幅wの大きさとなる。そして、非合焦位置Fbから下方にデフォーカスする程、画像上の欠陥は白く拡大することになる。 In the case of a defect as shown in FIG. 7J (having a cut portion in a mountain shape), when the work is defocused from the object plane (focus position F) to the lower non-focus position Fb, as shown in FIG. The apparent positions of the reflected light beam A and the reflected light beam B are shifted and approach each other. In this case, since the reflected light beam A and the reflected light beam B do not overlap from the object plane to the out-of-focus position Fc, the contrast does not increase and the defect on the image becomes smaller as it is defocused downward. When defocusing is performed below the out-of-focus position Fc, the reflected light beam A and the reflected light beam B overlap, so that the defect on the image becomes brighter and the overlapping portion expands. Is enlarged as it defocuses downward. In the luminance cross section on the surface including the out-of-focus position Fb, since the reflected light beam A and the reflected light beam B overlap, the defect on the image becomes white and the contrast becomes large, and the crack width w becomes large. Then, as the defocus is defocused downward from the out-of-focus position Fb, the defect on the image is enlarged in white.
 また、山折れ状の場合、ワークを物体面(合焦位置F)から上方の非合焦位置Faにデフォーカスすると、図14に示すように、反射光束Aと反射光束Bとの見かけ上の位置がずれて広がる。これにより、非合焦位置Faを含む面における輝度断面は、反射光束Aと反射光束Bとの像の間隔が広がり、欠陥50は黒く拡大する(太る)。つまり、物体面から上方にデフォーカスする程、画像上の欠陥は黒く拡大することになる。 In the case of a mountain fold, when the work is defocused from the object plane (focus position F) to the upper non-focus position Fa, the apparent reflected light beam A and reflected light beam B are apparent as shown in FIG. The position spreads out. Thereby, in the luminance cross section on the surface including the out-of-focus position Fa, the interval between the images of the reflected light beam A and the reflected light beam B is widened, and the defect 50 is enlarged (thickened) black. That is, as the image is defocused upward from the object plane, the defect on the image is enlarged black.
 なお、図7Hのようにクラック幅wが存在しない欠陥である場合は、物体面から非合焦位置Fcの領域(コントラストが大きくならず、画像上の欠陥がwより小さくなる領域)が存在しないことになる。このため、物体面から上方にデフォーカスする程、画像上の欠陥は黒く拡大することになり、物体面から下方にデフォーカスする程、画像上の欠陥は白く拡大することになる。 When the defect does not have a crack width w as shown in FIG. 7H, there is no region from the object plane to the out-of-focus position Fc (the region where the contrast does not increase and the defect on the image is smaller than w). It will be. For this reason, as the image is defocused upward from the object surface, the defect on the image is enlarged black, and as the image is defocused downward from the object surface, the defect on the image is enlarged white.
 このように、少なくとも2つの異なる位置から反射光が射出されることにより、観察画像上の欠陥を強調(拡大させるか、その他の部分とのコントラストを大きくするか、拡大及びコントラスト大の両方が生じるか)させて、欠陥検査を行うことができる。しかも、少なくとも1つの前記位置からの反射光に基づいて検査又は画像上のワークの位置を検出する位置決めを行うことができる。この場合、観察光学系における合焦位置から、100μm以上デフォーカスした位置で検査を行うのが好ましい。また、合焦位置Fを境界として、撮像装置31に近接する側(上方側)の非合焦位置Faと、撮像装置31から離間する側(下方側)の非合焦位置Fbとの夫々においてデフォーカスすることにより、夫々異なる色で欠陥50を検査することができる。 In this way, the reflected light is emitted from at least two different positions, so that the defect on the observed image is emphasized (enlarged, contrasted with other parts, or both enlarged and contrasted). And defect inspection can be performed. In addition, positioning for detecting the position of the workpiece on the inspection or image can be performed based on the reflected light from the at least one position. In this case, the inspection is preferably performed at a position defocused by 100 μm or more from the in-focus position in the observation optical system. Further, with the in-focus position F as a boundary, the non-focus position Fa on the side close to the image pickup device 31 (upper side) and the non-focus position Fb on the side farther from the image pickup device 31 (lower side). By defocusing, the defect 50 can be inspected with different colors.
 最小デフォーカス量zは、図11に示すように、欠陥が黒く(暗く)なる場合、数1、数2から、数3のように、光軸に直交する線Lと一方の面部とのなす角θ1、光軸に直交する線Lと他方の面部とのなす角θ2、クラック幅w、最小検出幅εminを用いて算出される。なお、Δx1とは一方の面部側の拡大量、Δx2とは他方の面部側の拡大量、ΔXdとは拡大した欠陥の寸法である。また、欠陥が白く(明るく)なる場合、数4、数5から、数6のように、θ1、θ2、w、εminを用いて算出される。なお、Δx1´(=Δx1)とは一方の面部側の拡大量、Δx2´(=Δx2)とは他方の面部側の拡大量、ΔXlとは拡大した欠陥の寸法である。
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000006
As shown in FIG. 11, when the defect becomes black (dark), the minimum defocus amount z is formed by the line L perpendicular to the optical axis and one surface portion as shown in Equations (1), (2), and (3). The angle θ1, the angle θ2 formed by the line L perpendicular to the optical axis and the other surface portion, the crack width w, and the minimum detection width ε min are calculated. Here, Δx1 is the amount of enlargement on one side, Δx2 is the amount of enlargement on the other side, and ΔXd is the size of the enlarged defect. Further, when the defect becomes white (brighter), the calculation is performed using θ1, θ2, w, and ε min as in Expression 6 and Expression 5. Note that Δx1 ′ (= Δx1) is an enlargement amount on one surface portion side, Δx2 ′ (= Δx2) is an enlargement amount on the other surface portion side, and ΔXl is a dimension of the enlarged defect.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000006
 図15に、最小検出幅εmin=10μm、クラック幅w=0μmにおけるクラック角θと最小デフォーカス量zとの関係をグラフで示す。また、観察光学系の開口数をNAとして、-sin-1(NA)≦θ1≦sin-1(NA)、かつ、-sin-1(NA)≦θ2≦sin-1(NA)とするのが好ましい。ここで、εminは、例えば撮像装置の分解能の1/5程度とする。これは、クラックは通常、線状に連続して発生すること、画像処理でダイナミックレンジ(DR)の10%程度の輝度変動を安定して検出できるもの、デフォーカスにより、周囲の輝度をDRの中央値とした場合、暗側で0、明側でDRに変化し、輝度変動が中央値と等しい、及び、中央値×1/5=DR×10%の条件を満たす場合である。 FIG. 15 is a graph showing the relationship between the crack angle θ and the minimum defocus amount z when the minimum detection width ε min = 10 μm and the crack width w = 0 μm. Further, assuming that the numerical aperture of the observation optical system is NA, −sin −1 (NA) ≦ θ1 ≦ sin −1 (NA) and −sin −1 (NA) ≦ θ2 ≦ sin −1 (NA) Is preferred. Here, ε min is, for example, about 1/5 of the resolution of the imaging apparatus. This is because cracks usually occur continuously in a line shape, brightness fluctuations of about 10% of the dynamic range (DR) can be stably detected by image processing, and the surrounding brightness is reduced to DR by defocusing. In the case of the median value, the dark side changes to 0, the bright side changes to DR, the luminance variation is equal to the median value, and the median value × 1/5 = DR × 10% is satisfied.
 制御部40には演算部41を備えており、所定のパラメータに基づいてデフォーカス量を演算する。例えば、演算部41が、前記数1に基づいてデフォーカス量を演算する場合、パラメータεmin、θ1、θ2、wが設定されると、演算部41が最小デフォーカス量zを数1に基づいて演算する。なお、ユーザがパラメータを設定する際、θ1とθ2とを独立して2つのパラメータを設定してもよいし、クラック角θ(θ1+θ2)として1つのパラメータを設定してもよい。1つのパラメータθとして設定する場合は、演算部41は、例えば、θ1=θ/2及びθ2=θ/2として演算したり、θ1=0及びθ2=θとして演算したり等、θをθ1とθ2とに分配して演算する。制御部40は、演算部41にて演算されたデフォーカス量に基づいて、デフォーカス手段39(駆動機構)の駆動を制御する。 The control unit 40 includes a calculation unit 41 and calculates a defocus amount based on a predetermined parameter. For example, when the calculation unit 41 calculates the defocus amount based on the formula 1, when the parameters ε min , θ1, θ2, and w are set, the calculation unit 41 sets the minimum defocus amount z based on the formula 1. To calculate. When the user sets parameters, two parameters may be set independently for θ1 and θ2, or one parameter may be set as the crack angle θ (θ1 + θ2). When setting as one parameter θ, the calculating unit 41 calculates θ as θ1, for example, calculating as θ1 = θ / 2 and θ2 = θ / 2, or calculating as θ1 = 0 and θ2 = θ. It distributes and calculates to θ2. The control unit 40 controls driving of the defocus unit 39 (drive mechanism) based on the defocus amount calculated by the calculation unit 41.
 ところで、ワークに照明光を照射すれば、図5A及び図5Bに示すように、被覆層12の表面において反射したり、被覆層12を透過したり、被覆層12に吸収されたり、被覆層12で散乱したりする。さらには、濃淡パターン(配線パターン)で反射したりする。 By the way, if the workpiece is irradiated with illumination light, as shown in FIGS. 5A and 5B, it is reflected on the surface of the coating layer 12, transmitted through the coating layer 12, absorbed by the coating layer 12, or coated layer 12. Or scattered. Further, it is reflected by a shading pattern (wiring pattern).
 しかしながら、被覆層12の表面の欠陥50を検出するためには、被覆層12の表面からの反射光が撮像装置31に入光すればよい。このため、照明光としては、少なくとも濃淡層から反射し前記撮像装置31に入射する光よりも、前記被覆層12から反射又は散乱されて撮像装置に入射する光の強度が大きい波長であり、前記濃淡層11の濃淡パターンの影響を低くした光であるのが好ましい。ここで、濃淡パターンの影響を低くするとは、欠陥を観察する際のこれらの濃淡パターンを消す乃至薄く映って欠陥の観察を損なわない場合をいう。すなわち、この光以外の光を用いたときよりも濃淡パターンによって生じる輝度コントラストが低くなることである。 However, in order to detect the defect 50 on the surface of the coating layer 12, the reflected light from the surface of the coating layer 12 may enter the imaging device 31. For this reason, the illumination light has a wavelength at which the intensity of the light that is reflected or scattered from the coating layer 12 and incident on the imaging device is greater than the light that is reflected from at least the gray layer and incident on the imaging device 31, It is preferable that the light has a reduced influence of the shading pattern of the shading layer 11. Here, reducing the influence of the light and shade pattern means a case where these light and shade patterns when observing the defect are erased or thinly reflected so that the observation of the defect is not impaired. That is, the brightness contrast caused by the shading pattern is lower than when light other than this light is used.
 この場合、被覆層12における光の透過率に基づいて照明光の波長を設定できる。透過率は、光学および分光法において、特定の波長の入射光が試料を通過する割合であらわされ、図16に示すように、入射光の放射発散度をI0とし、試料(被膜層12)を通過した光の放射発散度をIとしたときに、透過率Tは、次の数7で表される。 In this case, the wavelength of the illumination light can be set based on the light transmittance in the coating layer 12. The transmittance is expressed by the ratio of incident light having a specific wavelength passing through the sample in the optical and spectroscopic methods. As shown in FIG. 16, the radiation divergence of the incident light is I 0 , and the sample (coating layer 12) When the radiation divergence of the light that has passed through is I, the transmittance T is expressed by the following equation (7).
Figure JPOXMLDOC01-appb-M000007
 濃淡パターンの影響を低くした光として、被覆層12における光の透過率は50%以下であればよい。具体的には、照明手段の照明光のうち観察される波長が、前記被覆層12がポリイミド樹脂であれば、450nm以下又は1000nm以上とするのが好ましい。
Figure JPOXMLDOC01-appb-M000007
As the light having a reduced influence of the light and shade pattern, the light transmittance in the covering layer 12 may be 50% or less. Specifically, it is preferable that the observed wavelength of the illumination light of the illumination unit is 450 nm or less or 1000 nm or more if the coating layer 12 is a polyimide resin.
 このため、照明光に前記したように、濃淡パターンの影響を低く(小さく)することができ、被覆層12から反射又は散乱された光を映し出すことができるので、安定して欠陥(クラック)50を検出することができる。 For this reason, as described above, the influence of the shading pattern can be lowered (smaller) in the illumination light, and the light reflected or scattered from the coating layer 12 can be projected, so that the defect (crack) 50 can be stably formed. Can be detected.
 前記実施形態では、ピックアップポジションPでの欠陥の検出であったが、図1に示すような欠陥検出装置100をボンディングポジションQに配置することも可能である。このように、欠陥検出装置100をボンディングポジションQにおいて、チップ21の表面の欠陥50の検出を行うことができるとともに、リードフレームのアイランドの位置を観察する位置確認(位置決め)に用いることができる。 In the above embodiment, the defect is detected at the pickup position P. However, a defect detection apparatus 100 as shown in FIG. As described above, the defect detection apparatus 100 can detect the defect 50 on the surface of the chip 21 at the bonding position Q and can be used for position confirmation (positioning) for observing the position of the island of the lead frame.
 図2Aや図2B等に示すダイボンダは、半導体チップ21等のワークをピックアップポジションPからボンディングポジションQまで搬送するボンディング部を備えたものであるが、このようなボンディング工程において、ウェハ29からピックアップしたワークを一旦中間ステージに載置し、この中間ステージから再度ワークをピックアップし、ボンディングする場合もある。 The die bonder shown in FIG. 2A, FIG. 2B, and the like includes a bonding portion that transports a workpiece such as the semiconductor chip 21 from the pick-up position P to the bonding position Q. In some cases, the workpiece is once placed on the intermediate stage, and the workpiece is picked up again from the intermediate stage and bonded.
 このため、中間ステージ上に、図1に示す欠陥検出装置100を配置するようにできる。このように、欠陥検出装置100を中間ステージ101上に配置すれば、この中間ステージ上のワーク(半導体チップ21やダイ等)に対して、ワークに形成された欠陥50の観察画像上の欠陥画像を大きくして観察することができ、しかも、濃淡パターン(配線パターン)の影響を小さくでき、安定して欠陥(クラック)を検出することができる。この欠陥検出装置100を用いれば、この中間ステージにおいても位置決めを行うことができる。 Therefore, the defect detection apparatus 100 shown in FIG. 1 can be arranged on the intermediate stage. As described above, if the defect detection apparatus 100 is arranged on the intermediate stage 101, the defect image on the observation image of the defect 50 formed on the workpiece with respect to the workpiece (semiconductor chip 21, die, etc.) on the intermediate stage. Can be observed, and the influence of the shading pattern (wiring pattern) can be reduced, and defects (cracks) can be detected stably. If this defect detection apparatus 100 is used, positioning can be performed also in this intermediate stage.
 欠陥検出装置100を配置した場所(ピックアップポジションP、中間ステージ上、又はボンディングポジションQ)に設けられるテーブルは、ワークの載置部が多孔質材料にて形成されたものであるのが好ましい。この場合、図17Aに示すように、半導体チップ21を下方から吸引し、さらに図17Bに示すように、コレット23にて半導体チップ21を上方から多孔質材料102に対して押さえる工程を備えることで、図17Cに示すように、半導体チップ21は、テーブルに対して全体的に均一に保持される。このため、ワークに反りがあっても、多孔質材料102とコレット23とで協同して反りを規制して平面状とすることができ、観察時に、反り部分が暗く観察されることを防止できる。 It is preferable that the table provided at the place where the defect detection apparatus 100 is disposed (pickup position P, intermediate stage, or bonding position Q) is such that the workpiece mounting portion is formed of a porous material. In this case, as shown in FIG. 17A, the semiconductor chip 21 is sucked from below, and further, the collet 23 holds the semiconductor chip 21 against the porous material 102 from above as shown in FIG. 17B. As shown in FIG. 17C, the semiconductor chip 21 is held uniformly on the entire table. For this reason, even if the workpiece is warped, the warp can be made flat by cooperating with the porous material 102 and the collet 23, and the warped portion can be prevented from being observed darkly during observation. .
 ところで、前記ダイボンダでは、ピックアップポジション、ボンディングポジション、中間ステージ上等で、欠陥検出を行うようにしていたが、ピックアップ前とピックアップ後の少なくもいずれか一方、すなわち、ピックアップ前とピックアップ後とのいずれか、又はピックアップ前とピックアップ後との両者において、欠陥検出を行うようにできる。  By the way, in the die bonder, the defect detection is performed at the pickup position, the bonding position, the intermediate stage, etc., but at least either before or after the pickup, that is, before or after the pickup. Alternatively, defect detection can be performed both before and after pickup. *
 また、ボンディング前とボンディング後の少なくもいずれか一方、すなわち、ボンディング前とボンディング後とのいずれか、又はボンディング前とボンディング後との両者において、欠陥検出を行うようにできる。 Also, defect detection can be performed at least one of before and after bonding, that is, either before or after bonding, or both before and after bonding.
 さらには、中間ステージへのワーク供給前と中間ステージからのワーク排出後の少なくともいずれか一方、すなわち、中間ステージへのワーク供給前と中間ステージからのワーク排出後とのいずれか、又は中間ステージへのワーク供給前と中間ステージからのワーク排出後の両者において、欠陥検出を行うようにできる。また、ボンディング部以外でも欠陥検出を行うことができる。すなわち、ダイボンダ上の任意の位置に欠陥検出装置を配置し、ダイボンダ上の任意の位置で前記欠陥検出を行うことができる。 Further, at least one of before the workpiece supply to the intermediate stage and after the workpiece discharge from the intermediate stage, that is, either before the workpiece supply to the intermediate stage and after the workpiece discharge from the intermediate stage, or to the intermediate stage The defect detection can be performed both before the workpiece supply and after the workpiece discharge from the intermediate stage. In addition, it is possible to detect a defect other than the bonding portion. That is, a defect detection device can be arranged at an arbitrary position on the die bonder, and the defect detection can be performed at an arbitrary position on the die bonder.
 このように、図1に示す欠陥検出装置100において、検出された欠陥50が製品として不良か否かの判断手段を設けるようにしてもよい。すなわち、欠陥検出装置100にて行う欠陥検出方法において、検出された欠陥が製品として不良か否かの判断基準を予め設定し、この判断基準と観察画像上の欠陥画像を比較して、不良品か良品かの判断を行うようにする。 As described above, in the defect detection apparatus 100 shown in FIG. 1, a means for determining whether or not the detected defect 50 is defective as a product may be provided. That is, in the defect detection method performed by the defect detection apparatus 100, a criterion for determining whether or not the detected defect is defective as a product is set in advance, and this criterion is compared with the defect image on the observation image to determine whether the defect is defective. Judge whether it is good or non-defective.
 判断手段としては、撮像装置31を制御する制御部(図示省略)で構成できる。制御部は、例えば、CPU(Central Processing Unit)を中心としてROM(Read Only Memory)やRAM(Random Access Memory)等がバスを介して相互に接続されたマイクロコンピュータで構成できる。マイクロコンピュータには記憶装置が接続される。記憶装置には、前記判断手段の判断基準となる判断基準等が記憶される。記憶装置は、HDD(Hard Disc Drive)やDVD(Digital Versatile Disk)ドライブ、CD-R(Compact Disc-Recordable)ドライブ、EEPROM(Electronically Erasable and Programmable Read Only Memory)等から構成できる。なお、ROMには、CPUが実行するプログラムやデータが格納されている。 The determination means can be configured by a control unit (not shown) that controls the imaging device 31. The control unit can be configured by a microcomputer in which a ROM (Read Only Memory), a RAM (Random Access Memory), and the like are connected to each other via a bus with a CPU (Central Processing Unit) as a center. A storage device is connected to the microcomputer. The storage device stores determination criteria that are the determination criteria of the determination means. The storage device can be composed of an HDD (Hard Disc Drive), a DVD (Digital Versatile Disk) drive, a CD-R (Compact Disc-Recordable) drive, an EEPROM (Electronically Eraseable and Programmable Read Only Memory), or the like. The ROM stores programs executed by the CPU and data.
 このため、欠陥検出方法にて欠陥が検出されず又は検出された欠陥が前記判断手段にて良品と判断されたものを製品(例えば、ウェハ29、半導体チップ21、又はダイ)とすることができる。 For this reason, a product (for example, the wafer 29, the semiconductor chip 21, or the die) in which no defect is detected by the defect detection method or the detected defect is determined to be a non-defective product by the determination unit can be used. .
 このように、本発明では、非合焦位置Fa、Fbからの反射光により形成された観察画像上の欠陥50を、合焦位置Fからの反射光により形成された観察画像上の欠陥50よりも拡大して観察したり、既存の装置では見えなかった欠陥50を見えるようにできるので、安定して欠陥50を検出することができる。 Thus, in the present invention, the defect 50 on the observation image formed by the reflected light from the out-of-focus positions Fa and Fb is replaced by the defect 50 on the observation image formed by the reflected light from the focus position F. In addition, since the defect 50 that cannot be seen with the existing apparatus can be seen, the defect 50 can be detected stably.
 照明手段32から照射される照明光は、少なくとも濃淡層11から反射し撮像装置31に入射する光よりも、被覆層12から反射又は散乱されて撮像装置31に入射する光の強度が大きい波長であり、濃淡層11の濃淡パターンの影響を低くした光とすれば、被覆層12から反射又は散乱された光を映し出すことができるので、安定して欠陥50を検出することができる。 The illumination light emitted from the illumination means 32 is at a wavelength at which the intensity of the light that is reflected or scattered from the coating layer 12 and incident on the imaging device 31 is greater than the light that is reflected from at least the light and shade layer 11 and incident on the imaging device 31. In addition, if the light having the influence of the light and shade pattern of the light and shade layer 11 is made low, the light reflected or scattered from the coating layer 12 can be projected, and thus the defect 50 can be detected stably.
 前記ダイボンダによれば、ダイボンダの任意の位置で、ボンディングするワークにおける表面のクラック等の欠陥50を検出することができる。 According to the die bonder, it is possible to detect a defect 50 such as a surface crack in a work to be bonded at an arbitrary position of the die bonder.
 また、欠陥検出方法にて検出された欠陥が製品として不良か否かの判断基準を予め設定して、不良品か良品かの判断を行うものであれば、ボンディング動作中等にワーク(半導体チップ等)の欠陥(クラック)50を検出し、不良品の出荷を防止できる。前記ダイボンダにおいて、位置決め検出が可能であり、安定した高精度のボンディング工程を行うことができる。 In addition, if a judgment criterion as to whether or not the defect detected by the defect detection method is defective as a product is set in advance and it is judged whether it is a defective product or a non-defective product, a workpiece (semiconductor chip etc. ) Defects (cracks) 50 can be detected, and shipment of defective products can be prevented. In the die bonder, positioning can be detected, and a stable and highly accurate bonding process can be performed.
 ところで、半導体製造方法には、図24に示すように、ウェハを切断して個片化するダイシング工程105と、ダイシング工程にて個片化されてなる半導体チップをボンディングする工程(ダイボンディング工程106)と、個片体である半導体チップを樹脂で封止するモールド封止工程(モール工程108)とを備える場合があり、さらには、図24では、ワイヤをボンディングするワイヤボンディング工程107等がある。 Incidentally, in the semiconductor manufacturing method, as shown in FIG. 24, a dicing process 105 for cutting a wafer into pieces and a process for bonding semiconductor chips separated in the dicing process (die bonding process 106). ) And a mold sealing step (molding step 108) for sealing a semiconductor chip as a single piece with a resin. Furthermore, in FIG. 24, there is a wire bonding step 107 for bonding wires. .
 このため、このような工程を備えた半導体製造方法において、ボンディング動作中における前記欠陥検出方法を用いた検査工程を備えたものであってもよい。なお、半導体製造方法として、ダイシング工程105と検査工程とを備えたものであっても、検査工程とモールド封止工程108とを備えたものであっても、ダイシング工程105と検査工程とモールド封止工程108とを備えたものであってもよい。 For this reason, the semiconductor manufacturing method including such a process may include an inspection process using the defect detection method during the bonding operation. Even if the semiconductor manufacturing method includes a dicing step 105 and an inspection step, or a method including an inspection step and a mold sealing step 108, the dicing step 105, the inspection step, and the mold sealing are performed. And a stopping step 108.
 また、ワークとして、前記欠陥検出方法にて欠陥が検出されず又は検出された欠陥が前記欠陥検出方法にて良品と判断された個片体で構成されている半導体装置であってもよい。 Also, the work may be a semiconductor device in which a defect is not detected by the defect detection method, or a detected defect is determined as a non-defective product by the defect detection method.
 また、ワークとして、複数の個片体を集合させた個片体集合体であってもよい。個片体集合体として、上下に積層してなるものであっても、横方向に並設してなるものであっても、さらには積層したものと並設したものとの組み合わせであってもよい。このような個片体集合体からなる半導体装置を製造する場合、1個の個片体又は所定数の個片体の集合体からなる被対象物と、この被対象物に集合すべき他の個片体の少なくともいずれか一方を前記欠陥検出方法を用いて検査するように構成できる。すなわち、1個の個片体又は所定数の個片体の集合体からなる被対象物側のみを前記検査方法にて検査したり、対象物に集合すべき他の個片体側のみを前記検査方法にて検査したり、被対象物側及び他の個片体側の両者を検査したりできる。 Also, the workpiece may be a single piece assembly in which a plurality of individual pieces are gathered. As an individual piece aggregate, even if it is laminated in the vertical direction, even if it is arranged in parallel in the horizontal direction, or even a combination of laminated and arranged in parallel Good. When manufacturing a semiconductor device composed of such a single-piece assembly, an object consisting of one piece or a set of a predetermined number of pieces and other objects to be assembled to the target At least one of the individual pieces can be inspected using the defect detection method. That is, only the object side consisting of one piece or a set of a predetermined number of pieces is inspected by the inspection method, or only the other piece side to be collected on the object is inspected. It can be inspected by a method, or both the object side and the other individual side can be inspected.
 また、ダイボンダ等において、いずれかの検出位置で、そのワークに欠陥が見つかれば、その検出位置でワークの搬送を停止し、警報音と警報ライトの点灯の少なくともいずれか一方にて作業者に通知するように設定できる。また、不良品排出機構を設け、ワークに欠陥が見つかれば、その検出位置から装置外にその不良品を排出するように設定できる。 In addition, if a defect is found in the workpiece at any detection position in a die bonder, etc., the conveyance of the workpiece is stopped at the detection position, and the worker is notified with at least one of an alarm sound and a warning light. Can be set to. Further, a defective product discharge mechanism is provided, and if a defect is found in the workpiece, the defective product can be set to be discharged out of the apparatus from the detection position.
 本発明は前記実施形態に限定されることなく種々の変形が可能であって、例えば、デフォーカス手段としては、実施形態ではワークのみを上下動させる機構であったが、撮像装置31のみを上下動させたり、ワーク及び撮像装置31を上下動させるものであってもよい。 The present invention is not limited to the above-described embodiment, and can be variously modified. For example, as the defocusing unit, in the embodiment, only the workpiece is moved up and down, but only the imaging device 31 is moved up and down. It is also possible to move the workpiece and the imaging device 31 up and down.
 また、デフォーカス手段として、光学系を変更するものであってもよい。その一例として、例えば図18に示すように、撮像装置31とワークとの間に、大気中とは異なる屈折率を有する物体(例えば厚板ガラス)46を挿入する構成とする。また、光学系の変更としては、合焦位置を変更できるレンズ及びミラー(可変焦点レンズ、可変焦点ミラー)、又は光学的な厚みを変更できるウィンドウを用いてもよい。 Also, the optical system may be changed as a defocusing means. As an example, as shown in FIG. 18, for example, an object (for example, thick glass) 46 having a refractive index different from that in the atmosphere is inserted between the imaging device 31 and the work. Further, as the change of the optical system, a lens and a mirror (variable focus lens, variable focus mirror) that can change the focus position, or a window that can change the optical thickness may be used.
 また、デフォーカス手段として、合焦位置の異なる複数の光学系及び受光素子を用いるものであってもよい。例えば図19に示すように、第1の撮像装置31a及び第2の撮像装置31bを備えるとともに、ハーフミラー45を配置して、第1の撮像装置31aが合焦位置よりも上方にデフォーカスする側とし、第2の撮像装置31bが合焦位置よりも下方にデフォーカスする側とする。 Further, as the defocusing means, a plurality of optical systems and light receiving elements having different in-focus positions may be used. For example, as shown in FIG. 19, the first imaging device 31a and the second imaging device 31b are provided, and the half mirror 45 is arranged so that the first imaging device 31a is defocused above the in-focus position. The second imaging device 31b is defocused below the in-focus position.
 また、デフォーカス手段として、照明又は観察波長を変更するものであってもよい。例えば図20に示すように、照明手段32は、第1の光源36aと第2の光源36bとを有し、第1の光源36aからの光の波長と、第2の光源36bからの光の波長とを変更する。 Further, as the defocusing means, the illumination or observation wavelength may be changed. For example, as shown in FIG. 20, the illumination means 32 includes a first light source 36a and a second light source 36b, and the wavelength of light from the first light source 36a and the light from the second light source 36b. Change the wavelength.
 さらには、デフォーカス手段を備えていなくてもよい。すなわち、予め、ワークを非合焦位置に配置することにより、ワークからの反射光を光軸方向において合焦位置からずれた非合焦位置から射出させることができる。 Furthermore, it is not necessary to have a defocusing means. That is, by arranging the work in advance in the out-of-focus position, the reflected light from the work can be emitted from the out-of-focus position shifted from the in-focus position in the optical axis direction.
 図21に示すように、照明手段32は、検査用光源50と、位置決め用光源51と、これらの光源を切替えて電気的に照明側のNAを切替えるNA切替部52と、ハーフミラー46とを備えたものであってもよい。 As shown in FIG. 21, the illumination means 32 includes an inspection light source 50, a positioning light source 51, an NA switching unit 52 that switches these light sources to electrically switch the NA on the illumination side, and a half mirror 46. It may be provided.
 また、前記実施形態では、ワークに形成された欠陥に対する観察画像上の欠陥を大きくして観察でき、しかも、濃淡パターン(配線パターン)の影響を小さくするものであったが、欠陥検出装置として、ワークに形成された欠陥に対する観察画像上の欠陥を大きくできる構成のみであってもよい。 In the embodiment, the defect on the observation image with respect to the defect formed on the workpiece can be enlarged and observed, and the influence of the shading pattern (wiring pattern) is reduced. Only a configuration capable of increasing the defect on the observation image with respect to the defect formed on the workpiece may be used.
 少なくとも非合焦位置を含む2つの異なる位置から検査するとき、欠陥が明るくなる場合の欠陥検出幅をΔXl、欠陥が暗くなる場合の欠陥検出幅をΔXd、相対する面部同士の相対角(クラック角)をθ=θ1+θ2とすると、θ2=0、θ1=θとして、数8から、欠陥検出幅ΔXl及びΔXdの検出によりθ及びwを検出する検出部(図示省略)を、例えば制御手段43に設けてもよい。これにより、傾斜面部の角度計測を行うことができる。
Figure JPOXMLDOC01-appb-M000008
When inspecting from two different positions including at least the out-of-focus position, the defect detection width when the defect becomes brighter is ΔXl, the defect detection width when the defect becomes darker is ΔXd, and the relative angle between the opposing surface portions (crack angle) ) = Θ1 + θ2, assuming that θ2 = 0 and θ1 = θ, a detection unit (not shown) that detects θ and w by detecting the defect detection widths ΔXl and ΔXd from Equation 8 is provided in the control means 43, for example. May be. Thereby, the angle measurement of an inclined surface part can be performed.
Figure JPOXMLDOC01-appb-M000008
 少なくとも非合焦位置を含む2つの異なる位置から検査するとき、欠陥が明暗の両方に変化した欠陥と、明暗の一方のみに変化した欠陥とを判別する判別手段(図示省略)を、例えば制御手段43に設けてもよい。すなわち、判別手段は、明暗の両方に変化したものは傾斜がある欠陥(クラック)、明暗のいずれか一方のみに変化したものは傾斜がない欠陥(異物等)と判別し、欠陥の分類(クラック、異物等)を行うことができる。これにより、例えば、明暗に変化した欠陥を有するワークのみを除く等とすることができ、歩留まりを向上させることができる。また、判別手段は、欠陥の大きさの変化(拡大したり縮小したりすること)に基づいて、どのような欠陥であるかを判別することもでき、また、欠陥の明暗の変化と大きさの変化との両方に基づいて、どのような欠陥であるのかを判別することもできる。 When inspecting from two different positions including at least the out-of-focus position, a discrimination means (not shown) for discriminating between a defect whose defect has changed to both bright and dark and a defect that has changed to only one of light and dark, for example, control means 43 may be provided. That is, the discriminating means discriminates that a defect (crack) having a slope changes to both bright and dark, and a defect (foreign matter etc.) having a slope to change only one of light and dark, and classifies the defect (crack). , Foreign matter, etc.). As a result, for example, it is possible to remove only workpieces having defects that have changed between light and dark, and the yield can be improved. The discriminating means can also discriminate what kind of defect is based on the change in the size of the defect (enlarging or reducing), and the change and magnitude of the brightness of the defect. It is also possible to determine what kind of defect it is based on both of the above changes.
 デフォーカス状態に応じて、撮像条件(露光時間や照明光量など)を適宜設定することができる。また、同一のデフォーカス状態においても、複数の撮像条件で複数の画像を撮影することができる。例えば、欠陥が黒色になると分かっているワークに対しては、周囲(正常部)の平均値を明るく設定すると、コントラストがつきやすくなる。 The imaging conditions (exposure time, illumination light quantity, etc.) can be appropriately set according to the defocus state. Further, even in the same defocus state, a plurality of images can be taken under a plurality of imaging conditions. For example, for a work whose defect is known to be black, if the average value of the surrounding (normal part) is set brightly, the contrast is easily obtained.
 被覆層の膜厚としては、1μm~100μmに限定されるものではなく、また、被覆層の材質としても、ポリイミド樹脂やシリコーン樹脂に限るものではない。すなわち、被覆層の材質や被覆層の膜厚に対応して、被覆層の表面を観察する際に、濃淡パターン(配線パターン)の影響を低くする照明光の選択が可能であればよい。 The film thickness of the coating layer is not limited to 1 μm to 100 μm, and the material of the coating layer is not limited to polyimide resin or silicone resin. That is, it is only necessary to be able to select illumination light that reduces the influence of the shading pattern (wiring pattern) when observing the surface of the coating layer, corresponding to the material of the coating layer and the film thickness of the coating layer.
 ところで、450nm以下又は1000nm以上の範囲以外の波長の光(可視光)の照明光を用いた暗視野で観察する際に、照明光は配線パターン層に到達した場合に、配線パターン層のパターンピッチが光の波長レベルであれば、回折が発生して、濃淡パターンが撮像装置(カメラ)に入射することになる。しかしながら、可視光以外を使用することで回折を起こす照明光を減衰させ配線パターン層に到達するようにするとともに、回折光自身も減衰させることができる。 By the way, when the illumination light reaches the wiring pattern layer when observing in the dark field using the illumination light having a wavelength other than the range of 450 nm or less or 1000 nm or more (visible light), the pattern pitch of the wiring pattern layer If is the wavelength level of light, diffraction occurs, and the light and shade pattern enters the imaging device (camera). However, by using light other than visible light, the illumination light that causes diffraction can be attenuated to reach the wiring pattern layer, and the diffracted light itself can be attenuated.
 ワークの載置部が多孔質材料にて形成されたテーブルとして、実施形態ではピックアップテーブルであったが、前記構成を有するテーブルはピックアップテーブルに限られず、中間ステージ等、他のテーブルであってもよい。すなわち、本発明の欠陥検出装置が配置される場所に応じて、それに対応する場所のテーブルを前記のような構成とするのが好ましい。 As a table in which the workpiece mounting portion is formed of a porous material, the embodiment is a pickup table. However, the table having the above-described configuration is not limited to the pickup table, and may be another table such as an intermediate stage. Good. That is, according to the place where the defect detection apparatus of the present invention is arranged, it is preferable that the table of the place corresponding thereto is configured as described above.
 ワークの載置部が、ワークを静電気により引き付けて保持する静電チャック構造にて構成されていてもよい。すなわち、載置部は、誘電層の内部に電極を備えたものにて構成され、電極には制御電源に接続されて、電極に電荷を発生させて静電吸着力でワークを載置部に固定してもよい。この場合、まず、ワークをテーブルに載置して、ワークを静電気により引き付けてテーブルに保持させて、その後、前記した方法によりワークの欠陥を検出する。 The work placement part may be configured with an electrostatic chuck structure that attracts and holds the work by static electricity. In other words, the mounting part is composed of an electrode provided with an electrode inside the dielectric layer, and the electrode is connected to a control power source to generate an electric charge on the electrode and place the workpiece on the mounting part by electrostatic attraction force. It may be fixed. In this case, first, the work is placed on the table, the work is attracted by static electricity and held on the table, and then the defect of the work is detected by the method described above.
 テーブルのワークの載置部が、多孔質材料にて形成される場合や、静電チャック構造とする場合、ワークの反り方向は上に凸状となっていても、その反りを規制することができる。本発明の欠陥検出装置及び欠陥検出方法は、ダイボンダ以外の装置で、半導体製品又は半導体製品の一部であるワークの欠陥の検出が必要な装置に適用することが可能である。 When the workpiece mounting part of the table is made of a porous material or has an electrostatic chuck structure, even if the workpiece warping direction is convex upward, the warping can be regulated. it can. The defect detection apparatus and the defect detection method according to the present invention can be applied to an apparatus other than a die bonder and which needs to detect a defect of a workpiece that is a part of a semiconductor product or semiconductor product.
P     ピックアップポジション
Q     ボンディングポジション
S     傾斜面部
θ1、θ2  傾斜角
w   クラック幅
εmin 最小検出幅
11   濃淡層
12   被覆層
21   半導体チップ
29   ウェハ
30  検査機構
31   撮像装置
32   照明手段
39   デフォーカス手段
47   NA制御部
50   欠陥
52  NA切替部
P Pickup position Q Bonding position S Inclined surface portions θ1, θ2 Inclination angle w Crack width ε min Minimum detection width 11 Contrast layer 12 Cover layer 21 Semiconductor chip 29 Wafer 30 Inspection mechanism 31 Imaging device 32 Illumination means 39 Defocusing means 47 NA control section 50 Defect 52 NA switching part

Claims (21)

  1.  半導体製品又は半導体製品の一部であるワークにおいて少なくとも傾斜面部を有する欠陥を検出する欠陥検出装置であって、
     前記ワークに対して明視野照明光を照射する照明手段と、観察光学系を構成し、前記照明手段にて照射された前記ワークの観察部位を観察する撮像装置と、を有する検査機構を備え、
     前記検査機構は、光軸方向において合焦位置からデフォーカスされた非合焦位置から射出された前記ワークからの反射光を観察し、前記非合焦位置からの反射光により形成された観察画像上の欠陥を、合焦位置からの反射光により形成された観察画像上の欠陥よりも強調することを特徴とする欠陥検出装置。
    A defect detection apparatus for detecting a defect having at least an inclined surface portion in a workpiece that is a part of a semiconductor product or semiconductor product,
    An inspection mechanism having an illuminating unit that irradiates the workpiece with bright-field illumination light, an imaging optical system that constitutes an observation optical system and that observes the observation site of the workpiece irradiated by the illuminating unit,
    The inspection mechanism observes reflected light from the workpiece emitted from a non-focus position defocused from the focus position in the optical axis direction, and an observation image formed by the reflected light from the non-focus position A defect detection apparatus characterized in that the upper defect is emphasized more than a defect on an observation image formed by reflected light from a focus position.
  2.  合焦位置と非合焦位置との少なくとも非合焦位置を含む2つの異なる位置から反射光が射出されることを特徴とする請求項1に記載の欠陥検出装置。 The defect detection apparatus according to claim 1, wherein reflected light is emitted from two different positions including at least the out-of-focus position of the in-focus position and the out-of-focus position.
  3.  前記検査機構は、前記合焦位置を境界として、前記撮像装置に近接する側の非合焦位置と、前記撮像装置から離間する側の非合焦位置との夫々から射出された反射光に基づいて検査することを特徴とする請求項2に記載の欠陥検出装置。 The inspection mechanism is based on reflected light emitted from each of a non-focus position on the side close to the imaging device and a non-focus position on the side remote from the imaging device with the focus position as a boundary. The defect detection apparatus according to claim 2, wherein the defect detection apparatus performs inspection.
  4.  前記ワークを非合焦位置に配置することにより、ワークからの反射光を光軸方向において合焦位置からずれた非合焦位置から射出させることを特徴とする請求項1~請求項3のいずれか1項に記載の欠陥検出装置。 The reflected light from the work is emitted from a non-focus position shifted from the focus position in the optical axis direction by disposing the work at the non-focus position. The defect detection apparatus of Claim 1.
  5.  前記検査機構が、ワークからの反射光を光軸方向において合焦位置からずれた非合焦位置から射出させるデフォーカス手段を備え、前記デフォーカス手段は、ワークと光学系とを光軸方向に相対移動させるもの、光学系を変更するもの、合焦位置の異なる複数の光学系及び受光素子を用いるもの、照明又は観察波長を変更するもの、のいずれかであることを特徴とする請求項1~請求項4のいずれか1項に記載の欠陥検出装置。 The inspection mechanism includes a defocusing unit that emits reflected light from the workpiece from a non-focusing position shifted from the focusing position in the optical axis direction, and the defocusing unit moves the workpiece and the optical system in the optical axis direction. 2. One that is relatively moved, one that changes an optical system, one that uses a plurality of optical systems and light receiving elements with different in-focus positions, and one that changes illumination or observation wavelength. The defect detection apparatus according to any one of claims 4 to 4.
  6.  観察光学系における合焦位置から、100μm以上デフォーカスした位置で検査を行うことを特徴とする請求項1~請求項5のいずれか1項に記載の欠陥検出装置。 6. The defect detection apparatus according to claim 1, wherein inspection is performed at a position defocused by 100 μm or more from a focus position in the observation optical system.
  7.  デフォーカス量と離間幅とから、面部の傾斜角度及び欠陥幅を検出する検出部を備えたことを特徴とする請求項1~請求項6のいずれか1項に記載の欠陥検出装置。 The defect detection apparatus according to any one of claims 1 to 6, further comprising a detection unit that detects an inclination angle of the surface portion and a defect width from the defocus amount and the separation width.
  8.  前記ワークは多層構造からなり、検査対象の層から反射又は散乱されて撮像装置に入射する光の強度が、他層からの強度よりも大きい波長であることを特徴とする請求項1~請求項7のいずれか1項に記載の欠陥検出装置。 The work has a multi-layer structure, and the intensity of light reflected or scattered from a layer to be inspected and incident on an imaging device has a wavelength larger than the intensity from other layers. 8. The defect detection apparatus according to any one of 7 above.
  9.  前記ワークは、半導体製造工程に由来する濃淡パターンのある濃淡層と、この濃淡層の濃淡パターンを覆う被覆層とを備え、前記照明手段から照射される照明光は、少なくとも濃淡層から反射し前記撮像装置に入射する光よりも、前記被覆層から反射又は散乱されて撮像装置に入射する光の強度が大きい波長であり、前記濃淡層の濃淡パターンの影響を低くした光であることを特徴とする請求項8に記載の欠陥検出装置。 The workpiece includes a shading layer having a shading pattern derived from a semiconductor manufacturing process, and a covering layer covering the shading pattern of the shading layer, and the illumination light emitted from the illumination means reflects at least from the shading layer and It is a light whose intensity of light reflected or scattered from the coating layer and incident on the imaging device is larger than that incident on the imaging device, and in which the influence of the density pattern of the density layer is reduced. The defect detection apparatus according to claim 8.
  10.  前記被覆層は、有機物層であることを特徴とする請求項1~請求項9のいずれか1項に記載の欠陥検出装置。 10. The defect detection apparatus according to claim 1, wherein the coating layer is an organic material layer.
  11.  前記照明手段の照明光のうち観察される波長が、450nm以下又は1000nm以上であることを特徴とする請求項1~請求項10のいずれか1項に記載の欠陥検出装置。 The defect detection apparatus according to any one of claims 1 to 10, wherein the observed wavelength of the illumination light of the illumination means is 450 nm or less or 1000 nm or more.
  12.  ワークが載置されるテーブルを有し、このテーブルのワークの載置部が、ワークを吸引により引き付けて保持する多孔質材料にて形成されたことを特徴とする請求項1~請求項11のいずれか1項に記載の欠陥検出装置。 12. The table according to claim 1, further comprising a table on which a work is placed, wherein the work placing portion of the table is formed of a porous material that attracts and holds the work by suction. The defect detection apparatus of any one of Claims.
  13.  ワークが載置されるテーブルを有し、このテーブルのワークの載置部が、ワークを静電気により引き付けて保持する静電チャック構造にて構成されたことを特徴とする請求項1~請求項11のいずれか1項に記載の欠陥検出装置。 12. An electrostatic chuck structure having a table on which a workpiece is placed, and the workpiece placing portion of the table being attracted and held by static electricity. The defect detection apparatus according to any one of the above.
  14.  半導体製品又は半導体製品の一部であるワークにおいて少なくとも傾斜面部を有する欠陥を検出する欠陥検出方法であって、
     前記ワークに対して明視野照明光を照射し、ワークからの反射光を、光軸方向において合焦位置からデフォーカスされた非合焦位置から射出させて、前記非合焦位置からの反射光により形成された観察画像上の欠陥を、合焦位置からの反射光により形成された観察画像上の欠陥よりも強調することを特徴とする欠陥検出方法。
    A defect detection method for detecting a defect having at least an inclined surface in a semiconductor product or a work that is a part of a semiconductor product,
    The work is irradiated with bright-field illumination light, and reflected light from the work is emitted from a non-focus position defocused from the focus position in the optical axis direction, and reflected light from the non-focus position. The defect detection method characterized by emphasizing the defect on the observation image formed by the above-mentioned defect on the observation image formed by the reflected light from the in-focus position.
  15.  半導体製品又は半導体製品の一部であるワークにおいて少なくとも傾斜面部を有する欠陥を検出する欠陥検出方法であって、
     ワークを、多孔質材料にて形成されたワークの載置部を有するテーブルに載置して、
     前記多孔質材料の気孔を介してワークを吸引してテーブルに吸着させて、
     前記ワークに対して明視野照明光を照射し、ワークからの反射光を、光軸方向において合焦位置からデフォーカスされた非合焦位置から射出させて、前記非合焦位置からの反射光により形成された観察画像上の欠陥を、合焦位置からの反射光により形成された観察画像上の欠陥よりも強調することを特徴とする欠陥検出方法。
    A defect detection method for detecting a defect having at least an inclined surface in a semiconductor product or a work that is a part of a semiconductor product,
    Place the work on a table having a work placement part made of porous material,
    The workpiece is sucked through the pores of the porous material and adsorbed to the table,
    The work is irradiated with bright-field illumination light, and reflected light from the work is emitted from a non-focus position defocused from the focus position in the optical axis direction, and reflected light from the non-focus position. The defect detection method characterized by emphasizing the defect on the observation image formed by the above-mentioned defect on the observation image formed by the reflected light from the in-focus position.
  16.  半導体製品又は半導体製品の一部であるワークにおいて少なくとも傾斜面部を有する欠陥を検出する欠陥検出方法であって、
     ワークを、静電チャック構造にて構成されたワークの載置部を有するテーブルに載置して、
     ワークを静電気により引き付けてテーブルに保持させて、
     前記ワークに対して明視野照明光を照射し、ワークからの反射光を、光軸方向において合焦位置からデフォーカスされた非合焦位置から射出させて、前記非合焦位置からの反射光により形成された観察画像上の欠陥を、合焦位置からの反射光により形成された観察画像上の欠陥よりも強調することを特徴とする欠陥検出方法。
    A defect detection method for detecting a defect having at least an inclined surface in a semiconductor product or a work that is a part of a semiconductor product,
    The work is placed on a table having a work placing portion constituted by an electrostatic chuck structure,
    The work is attracted by static electricity and held on the table.
    The work is irradiated with bright-field illumination light, and reflected light from the work is emitted from a non-focus position defocused from the focus position in the optical axis direction, and reflected light from the non-focus position. The defect detection method characterized by emphasizing the defect on the observation image formed by the above-mentioned defect on the observation image formed by the reflected light from the in-focus position.
  17.  請求項14~請求項16のいずれか1項に記載の欠陥検出方法にて欠陥が検出されず又は検出された欠陥が請求項14~請求項16のいずれかに記載の欠陥検出方法にて良品と判断されていることを特徴とするウェハ。 The defect detection method according to any one of claims 14 to 16, wherein the defect is not detected by the defect detection method according to any one of claims 14 to 16, or the detected defect is a non-defective product by the defect detection method according to any one of claims 14 to 16. It is determined that the wafer is characterized.
  18.  請求項14~請求項16のいずれか1項に記載の欠陥検出方法にて欠陥が検出されず又は検出された欠陥が請求項14~請求項16のいずれかに記載の欠陥検出方法にて良品と判断されていることを特徴とする半導体チップ。 The defect detection method according to any one of claims 14 to 16, wherein the defect is not detected by the defect detection method according to any one of claims 14 to 16, or the detected defect is a non-defective product by the defect detection method according to any one of claims 14 to 16. A semiconductor chip characterized by being determined.
  19.  ピックアップポジションにてワークとしての個片体をピックアップし、このピックアップした個片体をボンディングポジョンに搬送して、そのボンディングポジションにてワークをボンディングするボンディング部を備えたダイボンダであって、前記請求項1~請求項13のいずれか1項に記載の欠陥検出装置を配置したことを特徴とするダイボンダ。 A die bonder comprising a bonding section for picking up a piece as a workpiece at a pickup position, transporting the picked piece to a bonding position, and bonding the workpiece at the bonding position. A die bonder comprising the defect detection device according to any one of claims 1 to 13.
  20.  前記請求項14~請求項16のいずれか1項に記載の欠陥検出方法を用いた検査工程を備え、さらに、ウェハを切断して個片化するダイシング工程と、個片化されてなる半導体チップを樹脂で封止するモールド封止工程の少なくともいずれか一方の工程を備えたことを特徴とする半導体製造方法。 A dicing step for cutting and dividing the wafer into individual pieces, and a semiconductor chip formed into individual pieces, comprising an inspection step using the defect detection method according to any one of claims 14 to 16 A method for manufacturing a semiconductor, comprising at least one of a mold sealing step of sealing a resin with a resin.
  21.  複数の個片体からなる個片体集合体を備えた半導体装置を製造する半導体装置製造方法であって、
     1個の個片体又は所定数の個片体の集合体からなる被対象物と、この被対象物に集合すべき他の個片体の少なくともいずれか一方を前記請求項14~請求項16のいずれか1項に記載の欠陥検出方法を用いて検査することを特徴とする半導体装置製造方法。
    A semiconductor device manufacturing method for manufacturing a semiconductor device including an individual piece assembly composed of a plurality of individual pieces,
    At least one of a target object composed of one piece or a set of a predetermined number of pieces and another piece to be gathered on the target is the above-mentioned claims 14 to 16. An inspection method using the defect detection method according to claim 1.
PCT/JP2018/021298 2017-06-07 2018-06-01 Defect detection device, defect detection method, wafer, semiconductor chip, die bonder, semiconductor manufacturing method, and semiconductor device manufacturing method WO2018225664A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201880037126.2A CN110741464B (en) 2017-06-07 2018-06-01 Defect detecting device, defect detecting method, die bonder, semiconductor manufacturing method, and semiconductor device manufacturing method
JP2018563639A JP6595130B2 (en) 2017-06-07 2018-06-01 Defect detection device, defect detection method, die bonder, semiconductor manufacturing method, and semiconductor device manufacturing method
SG11201911669SA SG11201911669SA (en) 2017-06-07 2018-06-01 Defect detection device, defect detection method, wafer, semiconductor chip, die bonder, semiconductor manufacturing method, and semiconductor device manufacturing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-112870 2017-06-07
JP2017112870 2017-06-07

Publications (1)

Publication Number Publication Date
WO2018225664A1 true WO2018225664A1 (en) 2018-12-13

Family

ID=64566693

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/021298 WO2018225664A1 (en) 2017-06-07 2018-06-01 Defect detection device, defect detection method, wafer, semiconductor chip, die bonder, semiconductor manufacturing method, and semiconductor device manufacturing method

Country Status (4)

Country Link
JP (1) JP6595130B2 (en)
CN (1) CN110741464B (en)
SG (1) SG11201911669SA (en)
WO (1) WO2018225664A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110534462A (en) * 2019-09-06 2019-12-03 武汉新芯集成电路制造有限公司 The air blister defect detection method and system of wafer bonding technique
CN113466128A (en) * 2020-03-30 2021-10-01 日本碍子株式会社 Method and apparatus for inspecting ceramic cylindrical honeycomb structure

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112711230B (en) * 2020-12-08 2022-12-13 占朗智能科技(上海)有限公司 Inspection process of automatic inspection equipment for workpiece production quality

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001150255A (en) * 1999-11-29 2001-06-05 Sanyo Electric Co Ltd Parts feeder
JP2007115870A (en) * 2005-10-20 2007-05-10 Shin Etsu Handotai Co Ltd Wafer crack inspecting apparatus, crack inspecting method and wafer manufacturing method
JP2008008740A (en) * 2006-06-29 2008-01-17 National Institute Of Advanced Industrial & Technology Method for detecting defect, and device therefor
JP2009074825A (en) * 2007-09-19 2009-04-09 Seiko Epson Corp Defect inspection method and defect inspection device
JP2014013802A (en) * 2012-07-04 2014-01-23 Mitsubishi Electric Corp Semiconductor test jig and semiconductor test method using the same

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007107945A (en) * 2005-10-12 2007-04-26 Olympus Corp Inspection device of substrate
TWI428686B (en) * 2006-12-05 2014-03-01 Hoya Corp Photomask inspecting apparatus, photomask inspecting method, method of producing a photomask for use in manufacturing a liquid crystal device and pattern transferring method
JP4389982B2 (en) * 2007-08-09 2009-12-24 オムロン株式会社 Substrate visual inspection device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001150255A (en) * 1999-11-29 2001-06-05 Sanyo Electric Co Ltd Parts feeder
JP2007115870A (en) * 2005-10-20 2007-05-10 Shin Etsu Handotai Co Ltd Wafer crack inspecting apparatus, crack inspecting method and wafer manufacturing method
JP2008008740A (en) * 2006-06-29 2008-01-17 National Institute Of Advanced Industrial & Technology Method for detecting defect, and device therefor
JP2009074825A (en) * 2007-09-19 2009-04-09 Seiko Epson Corp Defect inspection method and defect inspection device
JP2014013802A (en) * 2012-07-04 2014-01-23 Mitsubishi Electric Corp Semiconductor test jig and semiconductor test method using the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110534462A (en) * 2019-09-06 2019-12-03 武汉新芯集成电路制造有限公司 The air blister defect detection method and system of wafer bonding technique
CN113466128A (en) * 2020-03-30 2021-10-01 日本碍子株式会社 Method and apparatus for inspecting ceramic cylindrical honeycomb structure

Also Published As

Publication number Publication date
CN110741464A (en) 2020-01-31
JP6595130B2 (en) 2019-10-23
CN110741464B (en) 2021-03-19
JPWO2018225664A1 (en) 2019-06-27
SG11201911669SA (en) 2020-01-30

Similar Documents

Publication Publication Date Title
CN109564172B (en) Defect detecting device, defect detecting method, die bonder, semiconductor manufacturing method, and semiconductor device manufacturing method
JP6595130B2 (en) Defect detection device, defect detection method, die bonder, semiconductor manufacturing method, and semiconductor device manufacturing method
JP6465722B2 (en) Processing equipment
JP6103171B2 (en) System and method for inspecting a wafer
JP6505776B2 (en) Defect detection apparatus, defect detection method, wafer, semiconductor chip, die bonder, semiconductor manufacturing method, and semiconductor device manufacturing method
JP6688184B2 (en) Wide gap semiconductor substrate defect inspection system
JP4521240B2 (en) Defect observation method and apparatus
JP2007071803A (en) Defect observation method and its apparatus
US8396281B2 (en) Apparatus and method for inspecting substrate internal defects
US20090161094A1 (en) Wafer bevel inspection mechanism
JP6953446B2 (en) Particle detection method and device on the upper surface of glass, and incident light irradiation method
WO2018008512A1 (en) Defect detection device, defect detection method, wafer, semiconductor chip, semiconductor device, die bonder, bonding method, semiconductor manufacturing method, and semiconductor device manufacturing method
JPH0875429A (en) Bonding wire inspection method
US11244842B2 (en) Processing apparatus for detecting defects inside electronic component including illumination portion and imaging portion
WO2017074256A1 (en) Method and system to detect chippings on solar wafer
JPH05160231A (en) Bonding wire inspecting apparatus
CN112912794A (en) Lighting device
KR102284147B1 (en) Apparatus for inspecting dies
JP2008139126A (en) Flaw detector and flaw detection method
JP6101481B2 (en) Internal inspection device for workpieces with laminated structure
JP7191137B2 (en) Nanoprotrusion structure inspection device and nanoprotrusion structure inspection method
JP2014003113A (en) Component inspection device
KR20050117710A (en) Method of detecting defect of a wafer
JP2012112677A (en) Defect detection device and defect detection method
WO2022153763A1 (en) Device for inspecting semiconductor substrate and inspection method

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018563639

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18813158

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18813158

Country of ref document: EP

Kind code of ref document: A1