WO2018225510A1 - Air bubble formation device and air bubble formation method - Google Patents

Air bubble formation device and air bubble formation method Download PDF

Info

Publication number
WO2018225510A1
WO2018225510A1 PCT/JP2018/019795 JP2018019795W WO2018225510A1 WO 2018225510 A1 WO2018225510 A1 WO 2018225510A1 JP 2018019795 W JP2018019795 W JP 2018019795W WO 2018225510 A1 WO2018225510 A1 WO 2018225510A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
bubble
tubular body
mixed fluid
liquid
Prior art date
Application number
PCT/JP2018/019795
Other languages
French (fr)
Japanese (ja)
Inventor
崇 五島
蓮 高倉
天 深谷
Original Assignee
国立大学法人 鹿児島大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人 鹿児島大学 filed Critical 国立大学法人 鹿児島大学
Priority to JP2019523436A priority Critical patent/JP7094026B2/en
Publication of WO2018225510A1 publication Critical patent/WO2018225510A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F21/00Dissolving
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/20Mixing gases with liquids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles

Definitions

  • the present invention relates to a bubble forming apparatus and a bubble forming method.
  • Patent Document 1 discloses a bubble forming device that uses a tank to obtain a gas-liquid mixed fluid in which bubbles are dispersed in a liquid.
  • gas and liquid are pressurized in the tank, whereby the gas is dissolved in the liquid in the tank.
  • the gas dissolved in the liquid appears as bubbles in the liquid.
  • Patent Document 2 discloses a bubble forming device that uses a porous member to obtain a gas-liquid mixed fluid in which bubbles are dispersed in a liquid. This apparatus forms a gas-liquid mixed fluid in which bubbles are dispersed in a liquid by ejecting gas into the liquid through a porous member, and discharges the formed gas-liquid mixed fluid to the outside through a tubular discharge portion.
  • the bubble forming apparatus disclosed in Patent Document 1 alternately repeats pressurization of the tank and release to the atmospheric pressure by using the pressure regulating valve, and the gas-liquid is discharged from the tank when the pressure in the tank is increased to the atmospheric pressure. Release the mixed fluid. For this reason, during the period in which the tank is pressurized, the release of the gas-liquid mixed fluid is interrupted, and the gas-liquid mixed fluid cannot be obtained continuously.
  • Patent Document 2 can continuously discharge the gas-liquid mixed fluid from the discharge part, but there is room for improvement with respect to the refinement of bubbles contained in the gas-liquid mixed fluid.
  • Patent Document 2 does not disclose any specific configuration of the discharge part, and it is difficult to say that the discharge part substantially exhibits the action of miniaturizing bubbles.
  • An object of the present invention is to provide a bubble forming apparatus and a bubble forming method capable of continuously obtaining a gas-liquid mixed fluid containing bubbles refined by dissolution.
  • a bubble forming apparatus includes: Forming a gas-liquid mixed fluid including a liquid and bubbles dispersed in the liquid, and discharging the formed gas-liquid mixed fluid; Tubular body for bubble miniaturization that has a tubular shape with both ends opened, and that introduces the gas-liquid mixed fluid discharged from the discharge portion from one end and guides the introduced gas-liquid mixed fluid to the other end And comprising Due to the pressure at which the gas-liquid mixed fluid is discharged from the discharge portion, the internal pressure of the bubble miniaturization tubular body is increased to such an extent that the bubbles are dissolved in the liquid, and the bubbles of the bubbles due to the increased internal pressure are Dissolution in the liquid proceeds over a period in which the gas-liquid mixed fluid flows through the bubble miniaturization tubular body, whereby the bubbles contained in the gas-liquid mixed fluid are refined in the bubble miniaturization tubular body. Is done.
  • the bubble miniaturization tubular body is: When the cross-sectional area of the portion where the gas-liquid mixed fluid flows in the bubble miniaturization tubular body is X, and the path length of the bubble miniaturization tubular body along the flow path of the gas-liquid mixed fluid is Y, Y /
  • the length scale defined by X may be 250 [1 / mm] or more.
  • the bubble miniaturization tubular body is: A curved shape may be formed so that a centrifugal force that forms a Dean vortex in the gas-liquid mixed fluid acts on the gas-liquid mixed fluid inside the bubble miniaturization tubular body.
  • the bubble miniaturization tubular body may have a shape of being wound a plurality of times in a coil shape.
  • the bubble miniaturization tubular body By introducing the gas-liquid mixed fluid into the bubble miniaturization tubular body under the condition that the discharge part increases the internal pressure to a value higher than atmospheric pressure and 0.3 MPa or less, the bubble miniaturization tubular body The average diameter of the bubbles may be reduced to 1/5 or less.
  • a plurality of the bubble refining tubular bodies are connected to the discharge section so that the gas-liquid mixed fluid discharged from the discharge section flows in parallel through the plurality of bubble refining tubular bodies. Also good.
  • the discharge part is You may have the structure which can each adjust independently the flow volume of the said liquid which comprises the said gas-liquid mixed fluid, and the gas which comprises the said bubble of the said gas-liquid mixed fluid.
  • Temperature adjusting means for adjusting the temperature of the gas-liquid mixed fluid via the bubble miniaturization tubular body May be further provided.
  • the bubble forming method includes: Forming a gas-liquid mixed fluid including a liquid and bubbles dispersed in the liquid; and A bubble refining step of passing the gas-liquid mixed fluid formed in the pre-process through a bubble refining tubular body having a tubular shape with both ends opened, and In the bubble refinement step, the internal pressure of the bubble refinement tubular body is increased and increased by the pressure at which the gas-liquid mixed fluid is introduced into the bubble refinement tubular body so that the bubbles are dissolved in the liquid.
  • the bubbles contained in the gas-liquid mixed fluid are caused to progress by dissolving the bubbles in the liquid by the internal pressure generated over a period in which the gas-liquid mixed fluid flows through the bubble miniaturization tubular body. It refines in the tubular body for bubble refinement.
  • the average diameter may be reduced to 1/5 or less.
  • dissolution can be obtained continuously.
  • FIG. 1 is a conceptual diagram illustrating a configuration of a bubble forming device according to Embodiment 1.
  • FIG. 4 is a conceptual diagram illustrating a configuration of a bubble forming apparatus according to a second embodiment.
  • FIG. 5 is a conceptual diagram illustrating a configuration of a bubble forming apparatus according to a third embodiment. The graph which shows the frequency distribution according to the diameter of the bubble in the gas-liquid mixed fluid obtained in Example 1.
  • the bubble forming apparatus 400 discharges a gas-liquid mixed fluid FL including a liquid and bubbles dispersed in the liquid, and the discharge unit 100 discharges the gas-liquid mixed fluid FL.
  • a bubble miniaturization tubular body 200 through which the gas-liquid mixed fluid FL is passed.
  • the bubble miniaturization tubular body 200 has a tubular shape with both ends open.
  • the gas-liquid mixed fluid FL discharged by the discharge unit 100 is introduced from one end 201 of the bubble miniaturization tubular body 200.
  • the bubble miniaturization tubular body 200 guides the gas-liquid mixed fluid FL introduced from one end 201 to the other end 202 and continuously releases it from the other end 202.
  • the bubble miniaturization tubular body 200 has a coiled portion 203 having a shape wound a plurality of times in a coil shape from one end 201 to the other end 202.
  • the significance of the coiled portion 203 will be described later.
  • the discharge unit 100 includes a gas-liquid mixing chamber 10 formed of an air-tight and liquid-tight container communicating with one end 201 of the bubble miniaturization tubular body 200, a porous member 20 disposed in the gas-liquid mixing chamber 10, and a porous member.
  • a gas pump 30 that supplies gas into the gas-liquid mixing chamber 10 through the mass member 20 and a liquid pump 40 that supplies liquid to the gas-liquid mixing chamber 10 are provided.
  • the liquid pump 40 is connected to the gas-liquid mixing chamber 10 by a pipe 51.
  • the liquid pump 40 takes in the liquid from the liquid source LS and discharges the taken-in liquid into the gas-liquid mixing chamber 10 through the pipe 51. Thereby, the gas-liquid mixing chamber 10 is filled with the liquid.
  • the gas pump 30 is connected to the porous member 20 by a pipe 52.
  • the gas pump 30 takes in the gas from the gas source GS and discharges the taken-in gas into the gas-liquid mixing chamber 10 through the pipe 52 and the porous member 20.
  • the porous member 20 is immersed in the liquid in the gas-liquid mixing chamber 10.
  • the porous member 20 has a porous structure in which a large number of fine ventilation holes are formed, and gas supplied from the gas pump 30 is bubbled in the porous structure and released into the liquid. Thereby, in the gas-liquid mixing chamber 10, the gas-liquid mixed fluid FL in which bubbles are dispersed in the liquid is formed.
  • porous member 20 is specifically comprised by the porous membrane.
  • the porous member 20 is not limited to the porous film, and for example, a sintered body of metal or ceramics may be used as the porous member 20.
  • the discharge unit 100 has a configuration capable of independently adjusting the flow rates of the liquid constituting the gas-liquid mixed fluid FL and the gas constituting the gas-liquid mixed fluid FL.
  • the pipe 51 is provided with a valve 61, and the flow rate of the liquid can be adjusted by the valve 61.
  • the pipe 52 is also provided with a valve 62, and the gas flow rate can be adjusted by the valve 62.
  • the pipe 51 is provided with a pressure gauge 71 that measures the internal pressure of the pipe 51.
  • the pipe 52 is provided with a pressure gauge 72 that measures the internal pressure of the pipe 52. The user can check the flow rate of the liquid based on the measurement result of the pressure gauge 71, and can check the gas flow rate based on the measurement result of the pressure gauge 72.
  • the gas-liquid mixing chamber 10 is also provided with a pressure gauge 73 for measuring the internal pressure of the gas-liquid mixing chamber 10.
  • the user can check the pressure at which the gas-liquid mixed fluid FL is discharged from the discharge unit 100 to the bubble miniaturization tubular body 200 based on the measurement result of the pressure gauge 73.
  • the user can adjust the pressure indicated by the pressure gauge 73 to a desired value using the valves 61 and 62.
  • the internal pressure of the gas-liquid mixing chamber 10 is increased by the pressure at which the gas pump 30 discharges gas and the pressure at which the liquid pump 40 discharges liquid.
  • the gas-liquid mixed fluid FL flows from the gas-liquid mixing chamber 10 into the bubble miniaturization tubular body 200.
  • the gas-liquid mixed fluid FL introduced from one end 201 is guided to the other end 202 via the coiled portion 203 and discharged from the other end 202.
  • the inside of the bubble miniaturization tubular body 200 is not provided with a throttle portion for restricting the flow of the gas-liquid mixed fluid FL.
  • the cross-sectional area of the portion where the gas-liquid mixed fluid FL flows in the bubble miniaturization tubular body 200 is constant from the one end 201 to the other end 202.
  • the bubble miniaturization tubular body 200 has a sufficiently thin and long shape and also has a coil-shaped portion 203. For this reason, a pressure loss occurs in the bubble miniaturization tubular body 200. As a result, the internal pressure of the bubble miniaturization tubular body 200 increases.
  • the pressure at which the discharge unit 100 discharges the gas-liquid mixed fluid FL increases the internal pressure of the bubble miniaturization tubular body 200 to the extent that the bubbles are dissolved in the liquid. .
  • the dissolution of the bubbles into the liquid by the increased internal pressure proceeds over a period during which the gas-liquid mixed fluid FL flows through the bubble miniaturization tubular body 200.
  • the bubbles contained in the gas-liquid mixed fluid FL are refined in the bubble miniaturization tubular body 200.
  • the bubble refinement tubular body 200 is a gas-liquid mixture in the bubble refinement tubular body 200.
  • the cross-sectional area of the portion where the fluid FL flows is X and the path length of the bubble miniaturization tubular body 200 along the flow path of the gas-liquid mixed fluid FL is Y, the length scale defined by Y / X is 250 [1. / Mm] or more.
  • the inner diameter of the bubble miniaturization tubular body 200 is 5 [mm] or less, and the path length of the bubble miniaturization tubular body 200 is 5 [m] or more.
  • the length scale Y / X is preferably 500 [1 / mm] or more, and is 750 [1 / mm] or more. More preferably.
  • the bubble refining tubular body in the coiled portion 203 is used as another means for increasing the internal pressure of the bubble refining tubular body 200 to such an extent that the bubbles are dissolved in the liquid.
  • the number of turns of 200 is 5 or more.
  • the number of turns of the coil-shaped portion 203 is preferably 10 or more, and more preferably 15 or more.
  • the internal pressure of the bubble miniaturization tubular body 200 can be increased, for example, to a value higher than atmospheric pressure and 0.3 MPa or less. / 5 or less, more preferably 1/10 or less.
  • the average diameter of bubbles in the gas-liquid mixing chamber 10 is 10 [ ⁇ m] or less
  • the average diameter is 2 [ ⁇ m] or less, more preferably 1 [ ⁇ m] from the other end 202 of the bubble miniaturization tubular body 200.
  • a gas-liquid mixed fluid FL containing the following bubbles can be obtained.
  • the average diameter of the bubbles in the gas-liquid mixing chamber 10 is 1 [ ⁇ m] or less, the average diameter is 200 [nm] or less, more preferably 100 [nm] from the other end 202 of the bubble miniaturization tubular body 200.
  • a gas-liquid mixed fluid FL containing the following bubbles can be obtained.
  • a turbulent vortex TV is generated inside the bubble miniaturization tubular body 200 within a cross section parallel to the path length direction of the bubble miniaturization tubular body 200.
  • the turbulent vortex TV is configured so that the discharge unit 100 can generate the gas-liquid mixed fluid FL under the condition that the Reynolds number of the flow of the gas-liquid mixed fluid FL in the bubble miniaturization tubular body 200 is 3000 or more. This is realized by being introduced into the bubble miniaturization tubular body 200.
  • the turbulent vortex TV promotes the refinement of bubbles in the bubble refinement tubular body 200.
  • a Dean vortex DV is also formed in a cross section perpendicular to the path length direction of the bubble miniaturization tubular body 200.
  • the Dean vortex DV is formed by the centrifugal force acting on the gas-liquid mixed fluid FL in the coiled portion 203 described above.
  • the direction in which the centrifugal force acts on the gas-liquid mixed fluid FL is indicated by an arrow.
  • the Dean vortex DV also promotes the refinement of bubbles in the bubble refinement tubular body 200.
  • the coiled portion 203 described above plays not only a role of causing pressure loss in the bubble miniaturization tubular body 200 but also a role of forming the Dean vortex DV.
  • the bubbles are dissolved in the liquid in the bubble miniaturization tubular body 200. Progresses. For this reason, by continuously introducing the gas-liquid mixed fluid FL into the bubble miniaturization tubular body 200, the gas-liquid mixed fluid FL containing bubbles refined by dissolution can be obtained continuously.
  • the maximum pressure generated in the bubble forming apparatus 400 can be reduced as compared with the prior art. Specifically, it is sufficient to increase the internal pressure of the bubble miniaturization tubular body 200 to a value of 0.3 MPa or less, preferably 0.2 MPa or less. As described above, the pressure generated in the bubble forming apparatus 400 can be reduced as compared with the prior art, so that the bubble forming apparatus 400 can be prevented from becoming heavy, and the bubble forming apparatus 400 is unlikely to fail.
  • the internal pressure of the bubble forming apparatus 400 is higher than that in the case where the turbulent vortex TV and the Dean vortex DV are not generated. Even if it is low, the bubbles can be miniaturized to a desired size. That is, generating the turbulent vortex TV and the Dean vortex DV contributes to reducing the internal pressure of the bubble miniaturization tubular body 200.
  • the ratio of the bubble and the liquid in the gas-liquid mixed fluid FL before passage of the bubble miniaturization tubular body 200 can be adjusted independently using the valves 61 and 62, the passage after the passage of the bubble refinement tubular body 200 is reached.
  • the ratio of bubbles to liquid in the gas-liquid mixed fluid FL can also be adjusted independently.
  • the temperature of the gas-liquid mixed fluid FL is not positively adjusted.
  • the bubble forming device 400 adjusts the temperature of the gas-liquid mixed fluid FL via the bubble miniaturization tubular body 200. Means may further be provided. Specific examples thereof will be described below.
  • the bubble forming device 500 includes a temperature adjusting device 300 as temperature adjusting means for adjusting the temperature of the gas-liquid mixed fluid FL via the bubble miniaturizing tubular body 200.
  • the temperature adjustment device 300 includes a constant temperature liquid tank 310 in which the temperature adjustment liquid is stored, and a temperature adjuster 320 that maintains the temperature adjustment liquid in the constant temperature liquid tank 310 at a predetermined temperature.
  • a temperature adjuster 320 that maintains the temperature adjustment liquid in the constant temperature liquid tank 310 at a predetermined temperature.
  • water can be used as the temperature adjusting liquid.
  • the coil-shaped portion 203 of the bubble miniaturization tubular body 200 is made of a metal having good heat conduction, specifically copper, and is immersed in the temperature adjusting liquid in the thermostatic liquid bath 310. For this reason, the temperature of the gas-liquid mixed fluid FL can be adjusted via the coiled portion 203. Since the coiled portion 203 has a large surface area, the temperature of the gas-liquid mixed fluid FL can be easily adjusted.
  • the gas-liquid mixed fluid FL adjusted to a desired temperature can be obtained. Further, the solubility of the bubbles in the liquid in the bubble miniaturization tubular body 200 can be adjusted by the temperature of the gas-liquid mixed fluid FL. The bubbles are more easily dissolved in the liquid as the temperature of the gas-liquid mixed fluid FL is lower, and the bubbles are more difficult to dissolve in the liquid as the temperature of the gas-liquid mixed fluid FL is higher.
  • the bubbles are miniaturized using one bubble miniaturization tubular body 200, but the bubble forming apparatus 400 may include a plurality of bubble miniaturization tubular bodies 200. Specific examples thereof will be described below.
  • the bubble forming apparatus 600 includes two bubble refinement tubular bodies 210 and 220. Two bubbles are refined in the gas-liquid mixing chamber 10 of the ejection unit 100 so that the gas-liquid mixed fluid FL ejected from the ejection unit 100 flows in parallel through the two bubble miniaturization tubular bodies 210 and 220. Tubular bodies 210 and 220 are connected.
  • the bubbles can be refined in parallel in the bubble refinement tubular bodies 210 and 220, the bubbles can be refined efficiently.
  • Example 1 Using the bubble forming apparatus 400 shown in FIG. 1, a gas-liquid mixed fluid FL containing bubbles refined by the bubble refinement tubular body 200 was obtained. Air was used as the gas constituting the gas-liquid mixed fluid FL, and distilled water was used as the liquid.
  • a metal tube having an inner diameter of 4 [mm] and a path length of 10 [m] was used for the bubble miniaturization tubular body 200.
  • the length scale Y / X of this metal tube is 796 [1 / mm].
  • the diameter of the coiled portion 203 was about 20 [cm], and the number of turns of the coiled portion 203 was 15.
  • a gas-liquid mixed fluid FL in which air bubbles were dispersed in distilled water was formed.
  • the average diameter of the bubbles contained in the gas-liquid mixed fluid FL in the gas-liquid mixing chamber 10 was 1 [ ⁇ m].
  • the gas-liquid mixed fluid FL is It was made to introduce into the tubular body 200 for bubble miniaturization. Then, the gas-liquid mixed fluid FL containing bubbles refined by dissolution was continuously released from the other end 202 of the bubble refinement tubular body 200.
  • FIG. 6 shows the frequency distribution of bubbles in the gas-liquid mixed fluid FL discharged from the bubble miniaturization tubular body 200 by diameter.
  • Graph A shows the frequency distribution
  • graph B shows the cumulative frequency distribution.
  • the average diameter of the bubbles contained in the gas-liquid mixed fluid FL was 100 nm or less. That is, it was confirmed that the average diameter of the bubbles was reduced to 1/10 or less in the bubble refinement tubular body 200.
  • Example 2 A gas-liquid mixed fluid FL containing bubbles refined by dissolution was obtained under the same conditions as in Example 1 except that oxygen was used as the gas constituting the gas-liquid mixed fluid FL.
  • FIG. 7 shows the frequency distribution of bubbles in each gas-liquid mixed fluid FL by diameter.
  • Graph C shows the frequency distribution
  • graph D shows the cumulative frequency distribution.
  • the average diameter of the bubbles contained in the gas-liquid mixed fluid FL was 100 nm or less. That is, it was confirmed that the average diameter of the bubbles was reduced to 1/10 or less in the bubble refinement tubular body 200.
  • Example 3 A gas-liquid mixed fluid FL containing bubbles refined by dissolution was obtained under the same conditions as in Example 1 except that tap water was used as the liquid constituting the gas-liquid mixed fluid FL.
  • FIG. 8 shows the frequency distribution of the bubbles in the obtained gas-liquid mixed fluid FL by diameter.
  • Graph E shows the frequency distribution
  • graph F shows the cumulative frequency distribution.
  • the average diameter of the bubbles contained in the gas-liquid mixed fluid FL was 100 nm or less. That is, it was confirmed that the average diameter of the bubbles was reduced to 1/10 or less in the bubble refinement tubular body 200.
  • Example 4 A gas-liquid mixed fluid FL containing bubbles refined by dissolution was obtained under the same conditions as in Example 1 except that tap water was used as the liquid constituting the gas-liquid mixed fluid FL and oxygen was used as the gas. .
  • FIG. 9 shows the frequency distribution of air bubbles by diameter in the obtained gas-liquid mixed fluid FL.
  • Graph G shows the frequency distribution
  • graph H shows the cumulative frequency distribution.
  • the average diameter of the bubbles contained in the gas-liquid mixed fluid FL was 100 nm or less. That is, it was confirmed that the average diameter of the bubbles was reduced to 1/10 or less in the bubble refinement tubular body 200.
  • the coiled portion 203 is provided in the bubble miniaturization tubular body 200, but the coiled portion 203 is not essential. If a part of the bubble miniaturization tubular body 200 is curved, the Dean vortex DV can be formed. In addition, the formation of the Dean vortex DV is not essential when the bubbles are miniaturized. Even in a tubular body for air bubble refinement composed of straight pipes extending in a straight line, an increase in internal pressure due to pressure loss can occur, and air bubbles can be refined by the increased internal pressure.
  • FIG. 1 shows the gas source GS for easy understanding.
  • the gas when the gas is air, the gas source GS can be omitted.
  • the gas pump 30 when a cylinder into which gas is press-fitted is used as the gas source GS, the gas pump 30 can be omitted because the discharge pressure of the gas from the cylinder can be used.
  • a pressurized liquid is obtained as in the case of using tap water as the liquid, the liquid source LS and the liquid pump 40 may be omitted.
  • the cross-sectional area of the portion through which the gas-liquid mixed fluid FL flows in the bubble miniaturization tubular body 200 is constant from one end 201 to the other end 202, but this is not essential.
  • the cross-sectional area of the bubble miniaturization tubular body 200 may be different depending on the position of the bubble miniaturization tubular body 200 in the path length direction.
  • a throttle part that restricts the flow of the gas-liquid mixed fluid FL may be provided in the bubble miniaturization tubular body 200.
  • the cross-sectional area defining the length scale Y / X is the maximum value of the cross-sectional area in the bubble miniaturization tubular body 200.
  • the bubble forming apparatus 600 includes the two bubble refining tubular bodies 210 and 220.
  • the bubble forming apparatus 600 may include three or more bubble refining tubular bodies.
  • the dimensions and shapes of the plurality of bubble miniaturization tubular bodies may be different from each other.
  • the bubble forming apparatus and the bubble forming method according to the present invention can be used for forming a gas-liquid mixed fluid containing fine bubbles.

Abstract

A discharging part (100) discharges a gas-liquid fluid mixture (FL) that includes a liquid and air bubbles dispersed in the liquid. The gas-liquid fluid mixture (FL) discharged by the discharging part (100) is introduced to an air bubble atomizing tubular body (200) shaped into a tube having both ends open. The internal pressure of the air bubble atomizing tubular body (200) is increased by pressure with which the gas-liquid fluid mixture (FL) is discharged from the discharging part (100), to an extent in which the air bubbles dissolve into the liquid, and dissolution of the air bubbles into the liquid due to the increased internal pressure advances over a period in which the gas-liquid fluid mixture (FL) flows in the air bubble atomizing tubular body (200). Accordingly, the air bubbles included in the gas-liquid fluid mixture (FL) are atomized in the air bubble atomizing tubular body (200).

Description

気泡形成装置及び気泡形成方法Bubble forming apparatus and bubble forming method
 本発明は、気泡形成装置及び気泡形成方法に関する。 The present invention relates to a bubble forming apparatus and a bubble forming method.
 特許文献1に、タンクを用いて、液体中に気泡が分散した気液混合流体を得る気泡形成装置が開示されている。この装置では、まず、気体と液体とをタンク内で加圧することにより、タンク内で気体を液体に溶解させる。次に、タンク内の圧力を大気圧へと高めることにより、液体に溶解していた気体を液体中に気泡として出現させる。 Patent Document 1 discloses a bubble forming device that uses a tank to obtain a gas-liquid mixed fluid in which bubbles are dispersed in a liquid. In this apparatus, first, gas and liquid are pressurized in the tank, whereby the gas is dissolved in the liquid in the tank. Next, by increasing the pressure in the tank to atmospheric pressure, the gas dissolved in the liquid appears as bubbles in the liquid.
 特許文献2には、多孔質部材を用いて、液体中に気泡が分散した気液混合流体を得る気泡形成装置が開示されている。この装置は、多孔質部材を通して気体を液体中に噴出させることにより、液体中に気泡が分散した気液混合流体を形成し、形成した気液混合流体を管状の放出部を通して外部に放出する。 Patent Document 2 discloses a bubble forming device that uses a porous member to obtain a gas-liquid mixed fluid in which bubbles are dispersed in a liquid. This apparatus forms a gas-liquid mixed fluid in which bubbles are dispersed in a liquid by ejecting gas into the liquid through a porous member, and discharges the formed gas-liquid mixed fluid to the outside through a tubular discharge portion.
特開平11-207162号公報Japanese Patent Laid-Open No. 11-207162 特開2003-265939号公報JP 2003-265939 A
 特許文献1の気泡形成装置は、圧力調整弁を用いて、タンクの加圧と大気圧への解放とを交互に繰り返し、タンク内の圧力が大気圧へと高められる際に、タンクから気液混合流体を放出する。このため、タンクを加圧する期間は、気液混合流体の放出が中断され、気液混合流体を連続的に得ることができない。 The bubble forming apparatus disclosed in Patent Document 1 alternately repeats pressurization of the tank and release to the atmospheric pressure by using the pressure regulating valve, and the gas-liquid is discharged from the tank when the pressure in the tank is increased to the atmospheric pressure. Release the mixed fluid. For this reason, during the period in which the tank is pressurized, the release of the gas-liquid mixed fluid is interrupted, and the gas-liquid mixed fluid cannot be obtained continuously.
 特許文献2の気泡形成装置は、上記放出部から気液混合流体を連続的に放出することができるが、気液混合流体に含まれる気泡の微細化に関して改善の余地がある。特許文献2は、上記放出部の具体的な構成について何ら開示しておらず、上記放出部が気泡を微細化する作用を実質的に奏しているとは言い難い。 The bubble forming device of Patent Document 2 can continuously discharge the gas-liquid mixed fluid from the discharge part, but there is room for improvement with respect to the refinement of bubbles contained in the gas-liquid mixed fluid. Patent Document 2 does not disclose any specific configuration of the discharge part, and it is difficult to say that the discharge part substantially exhibits the action of miniaturizing bubbles.
 本発明の目的は、溶解によって微細化された気泡を含む気液混合流体を、連続的に得ることができる気泡形成装置及び気泡形成方法を提供することである。 An object of the present invention is to provide a bubble forming apparatus and a bubble forming method capable of continuously obtaining a gas-liquid mixed fluid containing bubbles refined by dissolution.
 上記目的を達成するために、本発明に係る気泡形成装置は、
 液体と前記液体中に分散した気泡とを含む気液混合流体を形成すると共に、形成した前記気液混合流体を吐出する吐出部と、
 両端が開口した管状をなしており、前記吐出部によって吐出される前記気液混合流体が一端から導入されると共に、導入された前記気液混合流体を他端へ案内する気泡微細化用管状体と、を備え、
 前記吐出部から前記気液混合流体が吐出される圧力によって、前記気泡微細化用管状体の内圧が、前記気泡が前記液体に溶解する程度に高められ、高められた前記内圧による前記気泡の前記液体への溶解が、前記気液混合流体が前記気泡微細化用管状体を流れる期間にわたって進行することにより、前記気液混合流体に含まれる前記気泡が、前記気泡微細化用管状体において微細化される。
In order to achieve the above object, a bubble forming apparatus according to the present invention includes:
Forming a gas-liquid mixed fluid including a liquid and bubbles dispersed in the liquid, and discharging the formed gas-liquid mixed fluid;
Tubular body for bubble miniaturization that has a tubular shape with both ends opened, and that introduces the gas-liquid mixed fluid discharged from the discharge portion from one end and guides the introduced gas-liquid mixed fluid to the other end And comprising
Due to the pressure at which the gas-liquid mixed fluid is discharged from the discharge portion, the internal pressure of the bubble miniaturization tubular body is increased to such an extent that the bubbles are dissolved in the liquid, and the bubbles of the bubbles due to the increased internal pressure are Dissolution in the liquid proceeds over a period in which the gas-liquid mixed fluid flows through the bubble miniaturization tubular body, whereby the bubbles contained in the gas-liquid mixed fluid are refined in the bubble miniaturization tubular body. Is done.
 前記気泡微細化用管状体が、
 前記気泡微細化用管状体における前記気液混合流体が流れる部分の断面積をX、前記気液混合流体の流路に沿う前記気泡微細化用管状体の経路長をYとしたとき、Y/Xで定義される長尺度が250[1/mm]以上である形状をなしていてもよい。
The bubble miniaturization tubular body is:
When the cross-sectional area of the portion where the gas-liquid mixed fluid flows in the bubble miniaturization tubular body is X, and the path length of the bubble miniaturization tubular body along the flow path of the gas-liquid mixed fluid is Y, Y / The length scale defined by X may be 250 [1 / mm] or more.
 前記気泡微細化用管状体が、
 前記気泡微細化用管状体の内部において、前記気液混合流体にディーン渦を形成させる遠心力が前記気液混合流体に作用するように、湾曲した形状をなしていてもよい。
The bubble miniaturization tubular body is:
A curved shape may be formed so that a centrifugal force that forms a Dean vortex in the gas-liquid mixed fluid acts on the gas-liquid mixed fluid inside the bubble miniaturization tubular body.
 前記気泡微細化用管状体が、コイル状に複数回巻かれた形状をなしていてもよい。 The bubble miniaturization tubular body may have a shape of being wound a plurality of times in a coil shape.
 前記吐出部が、大気圧より高く0.3MPa以下の値に前記内圧が高められる条件で、前記気液混合流体を前記気泡微細化用管状体に導入することにより、前記気泡微細化用管状体において、前記気泡の平均直径が、1/5以下に微細化されるように構成されていてもよい。 By introducing the gas-liquid mixed fluid into the bubble miniaturization tubular body under the condition that the discharge part increases the internal pressure to a value higher than atmospheric pressure and 0.3 MPa or less, the bubble miniaturization tubular body The average diameter of the bubbles may be reduced to 1/5 or less.
 前記気泡微細化用管状体を複数本備え、
 前記吐出部から吐出される前記気液混合流体が、複数本の前記気泡微細化用管状体を並列に流れるように、前記吐出部に複数本の前記気泡微細化用管状体が接続されていてもよい。
Provided with a plurality of the bubble miniaturization tubular body,
A plurality of the bubble refining tubular bodies are connected to the discharge section so that the gas-liquid mixed fluid discharged from the discharge section flows in parallel through the plurality of bubble refining tubular bodies. Also good.
 前記吐出部が、
 前記気液混合流体を構成する前記液体と、前記気液混合流体の前記気泡を構成する気体との流量を、各々独立に調整することができる構成を有していてもよい。
The discharge part is
You may have the structure which can each adjust independently the flow volume of the said liquid which comprises the said gas-liquid mixed fluid, and the gas which comprises the said bubble of the said gas-liquid mixed fluid.
 前記気泡微細化用管状体を介して前記気液混合流体の温度を調整する温度調整手段、
 をさらに備えてもよい。
Temperature adjusting means for adjusting the temperature of the gas-liquid mixed fluid via the bubble miniaturization tubular body;
May be further provided.
 本発明に係る気泡形成方法は、
 液体と前記液体中に分散した気泡とを含む気液混合流体を形成する事前工程と、
 前記事前工程において形成された前記気液混合流体を、両端が開口した管状をなす気泡微細化用管状体に通す気泡微細化工程と、を含み、
 前記気泡微細化工程では、前記気液混合流体を前記気泡微細化用管状体に導入する圧力によって、前記気泡微細化用管状体の内圧を、前記気泡が前記液体に溶解する程度に高め、高められた前記内圧による前記気泡の前記液体への溶解を、前記気液混合流体が前記気泡微細化用管状体を流れる期間にわたって進行させることにより、前記気液混合流体に含まれる前記気泡を、前記気泡微細化用管状体において微細化させる。
The bubble forming method according to the present invention includes:
Forming a gas-liquid mixed fluid including a liquid and bubbles dispersed in the liquid; and
A bubble refining step of passing the gas-liquid mixed fluid formed in the pre-process through a bubble refining tubular body having a tubular shape with both ends opened, and
In the bubble refinement step, the internal pressure of the bubble refinement tubular body is increased and increased by the pressure at which the gas-liquid mixed fluid is introduced into the bubble refinement tubular body so that the bubbles are dissolved in the liquid. The bubbles contained in the gas-liquid mixed fluid are caused to progress by dissolving the bubbles in the liquid by the internal pressure generated over a period in which the gas-liquid mixed fluid flows through the bubble miniaturization tubular body. It refines in the tubular body for bubble refinement.
 前記気泡微細化工程では、
 大気圧より高く0.3MPa以下の値に前記内圧が高められる条件で、前記気液混合流体を前記気泡微細化用管状体に導入することにより、前記気泡微細化用管状体において、前記気泡の平均直径を、1/5以下に微細化させてもよい。
In the bubble refinement process,
By introducing the gas-liquid mixed fluid into the bubble miniaturization tubular body under the condition that the internal pressure is increased to a value higher than atmospheric pressure and equal to or less than 0.3 MPa, The average diameter may be reduced to 1/5 or less.
 前記気泡微細化工程では、
 前記気泡微細化用管状体の内部に、レイノルズ数が3000以上の、前記気液混合流体の流れが形成される条件で、前記気液混合流体を前記気泡微細化用管状体に導入してもよい。
In the bubble refinement process,
Even if the gas-liquid mixed fluid is introduced into the bubble refining tubular body under the condition that the flow of the gas-liquid mixed fluid having a Reynolds number of 3000 or more is formed inside the bubble refining tubular body. Good.
 本発明によれば、気液混合流体が気泡微細化用管状体に導入されてから、気泡微細化用管状体から導出されるまでの期間に、気泡微細化用管状体において、気泡の液体への溶解が進行する。このため、溶解によって微細化された気泡を含む気液混合流体を、連続的に得ることができる。 According to the present invention, in the period from when the gas-liquid mixed fluid is introduced into the bubble miniaturization tubular body to when the gas-liquid mixed fluid is led out from the bubble miniaturization tubular body, Progresses in dissolution. For this reason, the gas-liquid mixed fluid containing the bubble refined | miniaturized by melt | dissolution can be obtained continuously.
実施形態1に係る気泡形成装置の構成を示す概念図。1 is a conceptual diagram illustrating a configuration of a bubble forming device according to Embodiment 1. FIG. 実施形態1に係る気泡微細化用管状体の経路長方向に平行な断面図。Sectional drawing parallel to the path | route length direction of the tubular body for bubble miniaturization which concerns on Embodiment 1. FIG. 実施形態1に係る気泡微細化用管状体の経路長方向に垂直な断面図。Sectional drawing perpendicular | vertical to the path | route length direction of the tubular body for bubble miniaturization which concerns on Embodiment 1. FIG. 実施形態2に係る気泡形成装置の構成を示す概念図。FIG. 4 is a conceptual diagram illustrating a configuration of a bubble forming apparatus according to a second embodiment. 実施形態3に係る気泡形成装置の構成を示す概念図。FIG. 5 is a conceptual diagram illustrating a configuration of a bubble forming apparatus according to a third embodiment. 実施例1で得た気液混合流体中の気泡の直径別頻度分布を示すグラフ。The graph which shows the frequency distribution according to the diameter of the bubble in the gas-liquid mixed fluid obtained in Example 1. FIG. 実施例2で得た気液混合流体中の気泡の直径別頻度分布を示すグラフ。The graph which shows the frequency distribution according to the diameter of the bubble in the gas-liquid mixed fluid obtained in Example 2. FIG. 実施例3で得た気液混合流体中の気泡の直径別頻度分布を示すグラフ。The graph which shows the frequency distribution according to the diameter of the bubble in the gas-liquid mixed fluid obtained in Example 3. FIG. 実施例4で得た気液混合流体中の気泡の直径別頻度分布を示すグラフ。The graph which shows the frequency distribution according to the diameter of the bubble in the gas-liquid mixed fluid obtained in Example 4. FIG.
 以下、図面を参照し、実施形態に係る気泡形成装置について説明する。図中、同一又は対応する部分に同一の符号を付す。 Hereinafter, a bubble forming apparatus according to an embodiment will be described with reference to the drawings. In the figure, the same or corresponding parts are denoted by the same reference numerals.
 [実施形態1]
 図1に示すように、本実施形態に係る気泡形成装置400は、液体とその液体中に分散した気泡とを含む気液混合流体FLを吐出する吐出部100と、吐出部100によって吐出される気液混合流体FLが通される気泡微細化用管状体200とを備える。
[Embodiment 1]
As shown in FIG. 1, the bubble forming apparatus 400 according to the present embodiment discharges a gas-liquid mixed fluid FL including a liquid and bubbles dispersed in the liquid, and the discharge unit 100 discharges the gas-liquid mixed fluid FL. A bubble miniaturization tubular body 200 through which the gas-liquid mixed fluid FL is passed.
 気泡微細化用管状体200は、両端が開口した管状をなしている。吐出部100によって吐出される気液混合流体FLは、気泡微細化用管状体200の一端201から導入される。気泡微細化用管状体200は、一端201から導入された気液混合流体FLを、他端202へ案内し、他端202から連続的に放出させる。 The bubble miniaturization tubular body 200 has a tubular shape with both ends open. The gas-liquid mixed fluid FL discharged by the discharge unit 100 is introduced from one end 201 of the bubble miniaturization tubular body 200. The bubble miniaturization tubular body 200 guides the gas-liquid mixed fluid FL introduced from one end 201 to the other end 202 and continuously releases it from the other end 202.
 また、気泡微細化用管状体200は、一端201から他端202までの間に、コイル状に複数回巻かれた形状をなすコイル状部203を有する。コイル状部203の意義については後述する。 Further, the bubble miniaturization tubular body 200 has a coiled portion 203 having a shape wound a plurality of times in a coil shape from one end 201 to the other end 202. The significance of the coiled portion 203 will be described later.
 吐出部100は、気泡微細化用管状体200の一端201と連通した気密かつ液密な容器よりなる気液混合室10と、気液混合室10内に配置された多孔質部材20と、多孔質部材20を通して気液混合室10内に気体を供給する気体ポンプ30と、気液混合室10に液体を供給する液体ポンプ40とを有する。 The discharge unit 100 includes a gas-liquid mixing chamber 10 formed of an air-tight and liquid-tight container communicating with one end 201 of the bubble miniaturization tubular body 200, a porous member 20 disposed in the gas-liquid mixing chamber 10, and a porous member. A gas pump 30 that supplies gas into the gas-liquid mixing chamber 10 through the mass member 20 and a liquid pump 40 that supplies liquid to the gas-liquid mixing chamber 10 are provided.
 液体ポンプ40は、配管51によって気液混合室10と接続されている。液体ポンプ40は、液体源LSから液体を取り込み、取り込んだ液体を、配管51を通して気液混合室10に吐出する。これにより、気液混合室10が液体で満たされる。 The liquid pump 40 is connected to the gas-liquid mixing chamber 10 by a pipe 51. The liquid pump 40 takes in the liquid from the liquid source LS and discharges the taken-in liquid into the gas-liquid mixing chamber 10 through the pipe 51. Thereby, the gas-liquid mixing chamber 10 is filled with the liquid.
 一方、気体ポンプ30は、配管52によって多孔質部材20と接続されている。気体ポンプ30は、気体源GSから気体を取り込み、取り込んだ気体を、配管52及び多孔質部材20を通して、気液混合室10内に吐出する。 On the other hand, the gas pump 30 is connected to the porous member 20 by a pipe 52. The gas pump 30 takes in the gas from the gas source GS and discharges the taken-in gas into the gas-liquid mixing chamber 10 through the pipe 52 and the porous member 20.
 多孔質部材20は、気液混合室10内で液体に浸っている。多孔質部材20は、多数の微細な通気孔が形成された多孔質構造を有しており、気体ポンプ30から供給される気体を多孔質構造において気泡化させて液体中に放出する。これにより、気液混合室10において、液体中に気泡が分散した気液混合流体FLが形成される。 The porous member 20 is immersed in the liquid in the gas-liquid mixing chamber 10. The porous member 20 has a porous structure in which a large number of fine ventilation holes are formed, and gas supplied from the gas pump 30 is bubbled in the porous structure and released into the liquid. Thereby, in the gas-liquid mixing chamber 10, the gas-liquid mixed fluid FL in which bubbles are dispersed in the liquid is formed.
 なお、多孔質部材20は、具体的には、多孔質膜によって構成されている。但し、多孔質部材20は多孔質膜に限られず、例えば、金属又はセラミックスの焼結体を多孔質部材20として用いてもよい。 In addition, the porous member 20 is specifically comprised by the porous membrane. However, the porous member 20 is not limited to the porous film, and for example, a sintered body of metal or ceramics may be used as the porous member 20.
 また、吐出部100は、気液混合流体FLを構成する液体と、気液混合流体FLの気泡を構成する気体との流量を、各々独立に調整することができる構成を有する。具体的には、配管51には、弁61が設けられており、弁61によって液体の流量を調整することができる。また、配管52にも、弁62が設けられており、弁62によって気体の流量を調整することができる。 Further, the discharge unit 100 has a configuration capable of independently adjusting the flow rates of the liquid constituting the gas-liquid mixed fluid FL and the gas constituting the gas-liquid mixed fluid FL. Specifically, the pipe 51 is provided with a valve 61, and the flow rate of the liquid can be adjusted by the valve 61. The pipe 52 is also provided with a valve 62, and the gas flow rate can be adjusted by the valve 62.
 また、配管51には、配管51の内圧を計測する圧力計71が設けられている。配管52には、配管52の内圧を計測する圧力計72が設けられている。ユーザは、圧力計71の計測結果によって液体の流量を確認することができ、圧力計72の計測結果によって気体の流量を確認することができる。 The pipe 51 is provided with a pressure gauge 71 that measures the internal pressure of the pipe 51. The pipe 52 is provided with a pressure gauge 72 that measures the internal pressure of the pipe 52. The user can check the flow rate of the liquid based on the measurement result of the pressure gauge 71, and can check the gas flow rate based on the measurement result of the pressure gauge 72.
 また、気液混合室10にも、気液混合室10の内圧を計測する圧力計73が設けられている。ユーザは、吐出部100から気泡微細化用管状体200に気液混合流体FLが吐出される圧力を、圧力計73の計測結果によって確認することができる。ユーザは、その圧力計73が示す圧力を、弁61及び62を用いて所望の値に調整することができる。 The gas-liquid mixing chamber 10 is also provided with a pressure gauge 73 for measuring the internal pressure of the gas-liquid mixing chamber 10. The user can check the pressure at which the gas-liquid mixed fluid FL is discharged from the discharge unit 100 to the bubble miniaturization tubular body 200 based on the measurement result of the pressure gauge 73. The user can adjust the pressure indicated by the pressure gauge 73 to a desired value using the valves 61 and 62.
 以下、気泡形成装置400の作用について説明する。 Hereinafter, the operation of the bubble forming apparatus 400 will be described.
 気体ポンプ30が気体を吐出する圧力と、液体ポンプ40が液体を吐出する圧力とによって、気液混合室10の内圧が上昇する。この結果、気液混合室10から気泡微細化用管状体200に、気液混合流体FLが流れ込む。気泡微細化用管状体200は、一端201から導入される気液混合流体FLを、コイル状部203を経由させて、他端202へ案内し、他端202から放出させる。 The internal pressure of the gas-liquid mixing chamber 10 is increased by the pressure at which the gas pump 30 discharges gas and the pressure at which the liquid pump 40 discharges liquid. As a result, the gas-liquid mixed fluid FL flows from the gas-liquid mixing chamber 10 into the bubble miniaturization tubular body 200. In the bubble miniaturization tubular body 200, the gas-liquid mixed fluid FL introduced from one end 201 is guided to the other end 202 via the coiled portion 203 and discharged from the other end 202.
 気泡微細化用管状体200の内部には、気液混合流体FLの流れを絞る絞り部は設けられていない。気泡微細化用管状体200における気液混合流体FLが流れる部分の断面積は、一端201から他端202にわたって一定である。 The inside of the bubble miniaturization tubular body 200 is not provided with a throttle portion for restricting the flow of the gas-liquid mixed fluid FL. The cross-sectional area of the portion where the gas-liquid mixed fluid FL flows in the bubble miniaturization tubular body 200 is constant from the one end 201 to the other end 202.
 しかし、気泡微細化用管状体200は、充分に細く長い形状を有していると共に、コイル状部203も有している。このため、気泡微細化用管状体200において圧力損失が生じる。この結果、気泡微細化用管状体200の内圧が上昇する。 However, the bubble miniaturization tubular body 200 has a sufficiently thin and long shape and also has a coil-shaped portion 203. For this reason, a pressure loss occurs in the bubble miniaturization tubular body 200. As a result, the internal pressure of the bubble miniaturization tubular body 200 increases.
 具体的には、吐出部100が気液混合流体FLを吐出する圧力、即ち気液混合室10の内圧によって、気泡微細化用管状体200の内圧が、気泡が液体に溶解する程度に高められる。このため、その高められた内圧による気泡の液体への溶解が、気液混合流体FLが気泡微細化用管状体200を流れる期間にわたって進行する。これにより、気液混合流体FLに含まれる気泡が、気泡微細化用管状体200において微細化される。 Specifically, the pressure at which the discharge unit 100 discharges the gas-liquid mixed fluid FL, that is, the internal pressure of the gas-liquid mixing chamber 10, increases the internal pressure of the bubble miniaturization tubular body 200 to the extent that the bubbles are dissolved in the liquid. . For this reason, the dissolution of the bubbles into the liquid by the increased internal pressure proceeds over a period during which the gas-liquid mixed fluid FL flows through the bubble miniaturization tubular body 200. Thereby, the bubbles contained in the gas-liquid mixed fluid FL are refined in the bubble miniaturization tubular body 200.
 気泡微細化用管状体200の内圧が、気泡が液体に溶解する程度に高められるようにするための一手段として、気泡微細化用管状体200は、気泡微細化用管状体200における気液混合流体FLが流れる部分の断面積をX、気液混合流体FLの流路に沿う気泡微細化用管状体200の経路長をYとしたとき、Y/Xで定義される長尺度が250[1/mm]以上である形状をなしている。 As a means for increasing the internal pressure of the bubble refinement tubular body 200 to such an extent that the bubbles are dissolved in the liquid, the bubble refinement tubular body 200 is a gas-liquid mixture in the bubble refinement tubular body 200. When the cross-sectional area of the portion where the fluid FL flows is X and the path length of the bubble miniaturization tubular body 200 along the flow path of the gas-liquid mixed fluid FL is Y, the length scale defined by Y / X is 250 [1. / Mm] or more.
 具体的には、気泡微細化用管状体200の内径は5[mm]以下であり、気泡微細化用管状体200の経路長は、5[m]以上である。なお、気泡微細化用管状体200における圧力損失を一層確実なものとするために、長尺度Y/Xは、500[1/mm]以上であることが好ましく、750[1/mm]以上であることがより好ましい。 Specifically, the inner diameter of the bubble miniaturization tubular body 200 is 5 [mm] or less, and the path length of the bubble miniaturization tubular body 200 is 5 [m] or more. In order to further ensure the pressure loss in the bubble miniaturization tubular body 200, the length scale Y / X is preferably 500 [1 / mm] or more, and is 750 [1 / mm] or more. More preferably.
 また、気泡微細化用管状体200の内圧が、気泡が液体に溶解する程度に高められるようにするためのもう一つの手段として、本実施形態では、コイル状部203における気泡微細化用管状体200の巻き数を、5以上としている。なお、気泡微細化用管状体200における圧力損失を一層確実なものとするために、コイル状部203の巻き数は、10以上であることが好ましく、15以上であることがより好ましい。 As another means for increasing the internal pressure of the bubble refining tubular body 200 to such an extent that the bubbles are dissolved in the liquid, in this embodiment, the bubble refining tubular body in the coiled portion 203 is used. The number of turns of 200 is 5 or more. In order to further ensure the pressure loss in the bubble miniaturization tubular body 200, the number of turns of the coil-shaped portion 203 is preferably 10 or more, and more preferably 15 or more.
 上述した構成により、気泡微細化用管状体200の内圧を、例えば、大気圧より高く0.3MPa以下の値に高めることができ、気泡微細化用管状体200において、気泡の平均直径を、1/5以下、より好ましくは1/10以下に微細化することができる。例えば、気液混合室10における気泡の平均直径が10[μm]以下の場合、気泡微細化用管状体200の他端202から、平均直径が2[μm]以下、より好ましくは1[μm]以下の気泡を含む気液混合流体FLを得ることができる。また、気液混合室10における気泡の平均直径が1[μm]以下の場合、気泡微細化用管状体200の他端202から、平均直径が200[nm]以下、より好ましくは100[nm]以下の気泡を含む気液混合流体FLを得ることができる。 With the configuration described above, the internal pressure of the bubble miniaturization tubular body 200 can be increased, for example, to a value higher than atmospheric pressure and 0.3 MPa or less. / 5 or less, more preferably 1/10 or less. For example, when the average diameter of bubbles in the gas-liquid mixing chamber 10 is 10 [μm] or less, the average diameter is 2 [μm] or less, more preferably 1 [μm] from the other end 202 of the bubble miniaturization tubular body 200. A gas-liquid mixed fluid FL containing the following bubbles can be obtained. When the average diameter of the bubbles in the gas-liquid mixing chamber 10 is 1 [μm] or less, the average diameter is 200 [nm] or less, more preferably 100 [nm] from the other end 202 of the bubble miniaturization tubular body 200. A gas-liquid mixed fluid FL containing the following bubbles can be obtained.
 また、気泡微細化用管状体200に気液混合流体FLが通されたとき、気泡微細化用管状体200の内部には渦が生じる。以下、これについて具体的に説明する。 Further, when the gas-liquid mixed fluid FL is passed through the bubble miniaturization tubular body 200, a vortex is generated inside the bubble miniaturization tubular body 200. This will be specifically described below.
 図2に示すように、気泡微細化用管状体200の内部には、気泡微細化用管状体200の経路長方向に平行な断面内で、乱流渦(Turbulent vortex)TVが生じる。この乱流渦TVは、吐出部100が、気泡微細化用管状体200の内部における気液混合流体FLの流れのレイノルズ数(Reynolds number)が3000以上となる条件で、気液混合流体FLを気泡微細化用管状体200に導入することで実現されたものである。この乱流渦TVによって、気泡微細化用管状体200における気泡の微細化が促進される。 As shown in FIG. 2, a turbulent vortex TV is generated inside the bubble miniaturization tubular body 200 within a cross section parallel to the path length direction of the bubble miniaturization tubular body 200. The turbulent vortex TV is configured so that the discharge unit 100 can generate the gas-liquid mixed fluid FL under the condition that the Reynolds number of the flow of the gas-liquid mixed fluid FL in the bubble miniaturization tubular body 200 is 3000 or more. This is realized by being introduced into the bubble miniaturization tubular body 200. The turbulent vortex TV promotes the refinement of bubbles in the bubble refinement tubular body 200.
 図3に示すように、気泡微細化用管状体200の経路長方向に垂直な断面内には、ディーン渦(Dean vortex)DVも形成される。このディーン渦DVは、上述したコイル状部203で気液混合流体FLに作用する遠心力によって形成される。図3には、気液混合流体FLに遠心力が作用する向きを矢印で示した。このディーン渦DVによっても、気泡微細化用管状体200における気泡の微細化が促進される。このように、上述したコイル状部203は、気泡微細化用管状体200に圧力損失を生じさせる役割のみならず、ディーン渦DVを形成する役割も果たしている。 As shown in FIG. 3, a Dean vortex DV is also formed in a cross section perpendicular to the path length direction of the bubble miniaturization tubular body 200. The Dean vortex DV is formed by the centrifugal force acting on the gas-liquid mixed fluid FL in the coiled portion 203 described above. In FIG. 3, the direction in which the centrifugal force acts on the gas-liquid mixed fluid FL is indicated by an arrow. The Dean vortex DV also promotes the refinement of bubbles in the bubble refinement tubular body 200. As described above, the coiled portion 203 described above plays not only a role of causing pressure loss in the bubble miniaturization tubular body 200 but also a role of forming the Dean vortex DV.
 以上説明した本実施形態に係る気泡形成装置400によれば、次の効果が得られる。 According to the bubble forming apparatus 400 according to the present embodiment described above, the following effects can be obtained.
 気液混合流体FLが気泡微細化用管状体200に導入されてから、気泡微細化用管状体200から導出されるまでの期間に、気泡微細化用管状体200において、気泡の液体への溶解が進行する。このため、気液混合流体FLを気泡微細化用管状体200に連続的に導入することにより、溶解によって微細化された気泡を含む気液混合流体FLを、連続的に得ることができる。 In the period from when the gas-liquid mixed fluid FL is introduced into the bubble miniaturization tubular body 200 to when it is led out from the bubble miniaturization tubular body 200, the bubbles are dissolved in the liquid in the bubble miniaturization tubular body 200. Progresses. For this reason, by continuously introducing the gas-liquid mixed fluid FL into the bubble miniaturization tubular body 200, the gas-liquid mixed fluid FL containing bubbles refined by dissolution can be obtained continuously.
 特許文献1に開示される従来技術では、タンク内での加圧により気体を液体に一旦完全に溶解させてから、所望サイズの気泡が出現するように、タンク内の圧力を大気圧へと高めていた。これに対して、本実施形態によれば、気体を液体に一旦完全に溶解させる工程を経る必要がなく、気泡を直接的に所望サイズへと微細化することができる。また、気泡を所望サイズへと微細化するために、気液混合流体FLを、気泡微細化用管状体200に一回通せば足りる。このため、溶解によって微細化された気泡を含む気液混合流体FLを、効率的に得ることができる。 In the prior art disclosed in Patent Document 1, after the gas is completely dissolved in the liquid by pressurization in the tank, the pressure in the tank is increased to atmospheric pressure so that bubbles of a desired size appear. It was. On the other hand, according to this embodiment, it is not necessary to go through the step of once completely dissolving the gas in the liquid, and the bubbles can be directly miniaturized to a desired size. Further, it is sufficient to pass the gas-liquid mixed fluid FL once through the bubble miniaturization tubular body 200 in order to miniaturize the bubbles to a desired size. For this reason, the gas-liquid mixed fluid FL containing the bubbles refined | miniaturized by melt | dissolution can be obtained efficiently.
 また、気体を液体に一旦完全に溶解させる工程を経る必要がないため、気泡形成装置400内において生じる最大圧力を、従来技術に比べて低減できる。具体的には、気泡微細化用管状体200の内圧は、0.3MPa以下の値、好ましくは0.2MPa以下の値に高めれば充分である。このように、気泡形成装置400内で生じる圧力を従来よりも低減できるため、気泡形成装置400の重厚化を抑えることができ、かつ気泡形成装置400に故障が生じにくい。 In addition, since it is not necessary to go through a step of completely dissolving the gas in the liquid, the maximum pressure generated in the bubble forming apparatus 400 can be reduced as compared with the prior art. Specifically, it is sufficient to increase the internal pressure of the bubble miniaturization tubular body 200 to a value of 0.3 MPa or less, preferably 0.2 MPa or less. As described above, the pressure generated in the bubble forming apparatus 400 can be reduced as compared with the prior art, so that the bubble forming apparatus 400 can be prevented from becoming heavy, and the bubble forming apparatus 400 is unlikely to fail.
 なお、気泡微細化用管状体200内で乱流渦TV及びディーン渦DVが生じるようにしたので、それら乱流渦TV及びディーン渦DVを生じさせない場合に比べると、気泡形成装置400の内圧が低くても、気泡を所望サイズへと微細化することができる。つまり、乱流渦TV及びディーン渦DVを生じさせることは、気泡微細化用管状体200の内圧を低減することに寄与している。 Since the turbulent vortex TV and the Dean vortex DV are generated in the bubble miniaturization tubular body 200, the internal pressure of the bubble forming apparatus 400 is higher than that in the case where the turbulent vortex TV and the Dean vortex DV are not generated. Even if it is low, the bubbles can be miniaturized to a desired size. That is, generating the turbulent vortex TV and the Dean vortex DV contributes to reducing the internal pressure of the bubble miniaturization tubular body 200.
 特許文献1に開示される従来技術では、タンク内における液体と気体の挙動がランダムであるため、タンク内の圧力が大気圧へと高められたときに得られる気液混合流体の、気泡と液体の割合を制御することが困難であった。これに対して、本実施形態では、気泡微細化用管状体200の形状が定まっているため、気泡微細化用管状体200を通過する前の気液混合流体FLにおける気泡と液体の割合と、気泡微細化用管状体200を通過した後の気液混合流体FLにおける気泡と液体の割合とが、無相関となりにくい。 In the prior art disclosed in Patent Document 1, since the behavior of the liquid and gas in the tank is random, bubbles and liquid of the gas-liquid mixed fluid obtained when the pressure in the tank is increased to atmospheric pressure. It was difficult to control the ratio of. On the other hand, in the present embodiment, since the shape of the bubble miniaturization tubular body 200 is fixed, the ratio of the bubbles to the liquid in the gas-liquid mixed fluid FL before passing through the bubble miniaturization tubular body 200, The ratio of bubbles to liquid in the gas-liquid mixed fluid FL after passing through the bubble miniaturization tubular body 200 is unlikely to be uncorrelated.
 そして、気泡微細化用管状体200の通過前の気液混合流体FLにおける気泡と液体の割合は、弁61及び62を用いて独立に調整できるので、気泡微細化用管状体200の通過後の気液混合流体FLにおける気泡と液体の割合も独立に調整できる。 And since the ratio of the bubble and the liquid in the gas-liquid mixed fluid FL before passage of the bubble miniaturization tubular body 200 can be adjusted independently using the valves 61 and 62, the passage after the passage of the bubble refinement tubular body 200 is reached. The ratio of bubbles to liquid in the gas-liquid mixed fluid FL can also be adjusted independently.
 [実施形態2]
 上記実施形態1では、気液混合流体FLを積極的に温度調整しなかったが、気泡形成装置400は、気泡微細化用管状体200を介して気液混合流体FLの温度を調整する温度調整手段をさらに備えてもよい。以下、その具体例について説明する。
[Embodiment 2]
In the first embodiment, the temperature of the gas-liquid mixed fluid FL is not positively adjusted. However, the bubble forming device 400 adjusts the temperature of the gas-liquid mixed fluid FL via the bubble miniaturization tubular body 200. Means may further be provided. Specific examples thereof will be described below.
 図4に示すように、本実施形態に係る気泡形成装置500は、気泡微細化用管状体200を介して気液混合流体FLの温度を調整する温度調整手段としての温度調整装置300を備える。温度調整装置300は、温度調整用液体が貯められる恒温液槽310と、恒温液槽310内の温度調整用液体を予め定められた温度に保つ温度調整器320とを有する。温度調整用液体には、例えば水を用いることができる。 As shown in FIG. 4, the bubble forming device 500 according to the present embodiment includes a temperature adjusting device 300 as temperature adjusting means for adjusting the temperature of the gas-liquid mixed fluid FL via the bubble miniaturizing tubular body 200. The temperature adjustment device 300 includes a constant temperature liquid tank 310 in which the temperature adjustment liquid is stored, and a temperature adjuster 320 that maintains the temperature adjustment liquid in the constant temperature liquid tank 310 at a predetermined temperature. For example, water can be used as the temperature adjusting liquid.
 本実施形態では、気泡微細化用管状体200のコイル状部203が、熱伝導の良好な金属、具体的には、銅よりなり、恒温液槽310内の温度調整用液体に浸っている。このため、コイル状部203を介して気液混合流体FLの温度を調整することができる。コイル状部203は、表面積が大きいため、気液混合流体FLの温度調整が容易である。 In the present embodiment, the coil-shaped portion 203 of the bubble miniaturization tubular body 200 is made of a metal having good heat conduction, specifically copper, and is immersed in the temperature adjusting liquid in the thermostatic liquid bath 310. For this reason, the temperature of the gas-liquid mixed fluid FL can be adjusted via the coiled portion 203. Since the coiled portion 203 has a large surface area, the temperature of the gas-liquid mixed fluid FL can be easily adjusted.
 本実施形態によれば、所望の温度に調整された気液混合流体FLを得ることができる。また、気液混合流体FLの温度によって、気泡微細化用管状体200内における気泡の液体への溶解度を調整することもできる。気液混合流体FLの温度が低い程、気泡が液体に溶けやすく、気液混合流体FLの温度が高い程、気泡が液体に溶けにくい。 According to this embodiment, the gas-liquid mixed fluid FL adjusted to a desired temperature can be obtained. Further, the solubility of the bubbles in the liquid in the bubble miniaturization tubular body 200 can be adjusted by the temperature of the gas-liquid mixed fluid FL. The bubbles are more easily dissolved in the liquid as the temperature of the gas-liquid mixed fluid FL is lower, and the bubbles are more difficult to dissolve in the liquid as the temperature of the gas-liquid mixed fluid FL is higher.
 [実施形態3]
 上記実施形態1では、1本の気泡微細化用管状体200を用いて気泡を微細化したが、気泡形成装置400は、気泡微細化用管状体200を複数本備えてもよい。以下、その具体例について説明する。
[Embodiment 3]
In the first embodiment, the bubbles are miniaturized using one bubble miniaturization tubular body 200, but the bubble forming apparatus 400 may include a plurality of bubble miniaturization tubular bodies 200. Specific examples thereof will be described below.
 図5に示すように、本実施形態に係る気泡形成装置600は、2本の気泡微細化用管状体210及び220を備える。吐出部100から吐出される気液混合流体FLが、2本の気泡微細化用管状体210及び220を並列に流れるように、吐出部100の気液混合室10に、2本の気泡微細化用管状体210及び220が接続されている。 As shown in FIG. 5, the bubble forming apparatus 600 according to this embodiment includes two bubble refinement tubular bodies 210 and 220. Two bubbles are refined in the gas-liquid mixing chamber 10 of the ejection unit 100 so that the gas-liquid mixed fluid FL ejected from the ejection unit 100 flows in parallel through the two bubble miniaturization tubular bodies 210 and 220. Tubular bodies 210 and 220 are connected.
 本実施形態によれば、気泡微細化用管状体210及び220において、気泡の微細化を並列に行うことができるので、気泡の微細化を効率的に行うことができる。 According to this embodiment, since the bubbles can be refined in parallel in the bubble refinement tubular bodies 210 and 220, the bubbles can be refined efficiently.
 [実施例1]
 図1に示した気泡形成装置400を用い、気泡微細化用管状体200によって微細化された気泡を含む気液混合流体FLを得た。気液混合流体FLを構成する気体には、空気を用い、液体には、蒸留水を用いた。
[Example 1]
Using the bubble forming apparatus 400 shown in FIG. 1, a gas-liquid mixed fluid FL containing bubbles refined by the bubble refinement tubular body 200 was obtained. Air was used as the gas constituting the gas-liquid mixed fluid FL, and distilled water was used as the liquid.
 また、気泡微細化用管状体200には、内径が4[mm]で経路長が10[m]の金属管を用いた。この金属管の上記長尺度Y/Xは、796[1/mm]である。また、コイル状部203の直径は約20[cm]であり、コイル状部203の巻き数は15とした。 Further, a metal tube having an inner diameter of 4 [mm] and a path length of 10 [m] was used for the bubble miniaturization tubular body 200. The length scale Y / X of this metal tube is 796 [1 / mm]. The diameter of the coiled portion 203 was about 20 [cm], and the number of turns of the coiled portion 203 was 15.
 まず、気液混合室10において、空気よりなる気泡が蒸留水に分散されてなる気液混合流体FLを形成した。気液混合室10における気液混合流体FLに含まれる気泡の平均直径は、1[μm]であった。 First, in the gas-liquid mixing chamber 10, a gas-liquid mixed fluid FL in which air bubbles were dispersed in distilled water was formed. The average diameter of the bubbles contained in the gas-liquid mixed fluid FL in the gas-liquid mixing chamber 10 was 1 [μm].
 次に、その気液混合流体FLを、気泡微細化用管状体200の内圧が0.2[MPa]に高められ、かつ気液混合流体FLの流れのレイノルズ数が3000以上となる条件で、気泡微細化用管状体200に導入させた。すると、気泡微細化用管状体200の他端202から、溶解によって微細化された気泡を含む気液混合流体FLが連続的に放出された。 Next, under the condition that the internal pressure of the bubble miniaturization tubular body 200 is increased to 0.2 [MPa] and the Reynolds number of the flow of the gas-liquid mixed fluid FL is 3000 or more, the gas-liquid mixed fluid FL is It was made to introduce into the tubular body 200 for bubble miniaturization. Then, the gas-liquid mixed fluid FL containing bubbles refined by dissolution was continuously released from the other end 202 of the bubble refinement tubular body 200.
 図6に、気泡微細化用管状体200から放出された気液混合流体FL中の気泡の直径別頻度分布を示す。グラフAは、度数分布を示し、グラフBは、累積度数分布を示す。気液混合流体FLに含まれる気泡の平均直径は、100nm以下であった。即ち、気泡微細化用管状体200にて、気泡の平均直径が1/10以下に微細化されたことが確認された。 FIG. 6 shows the frequency distribution of bubbles in the gas-liquid mixed fluid FL discharged from the bubble miniaturization tubular body 200 by diameter. Graph A shows the frequency distribution, and graph B shows the cumulative frequency distribution. The average diameter of the bubbles contained in the gas-liquid mixed fluid FL was 100 nm or less. That is, it was confirmed that the average diameter of the bubbles was reduced to 1/10 or less in the bubble refinement tubular body 200.
 [実施例2]
 気液混合流体FLを構成する気体に酸素を用いたこと以外は、実施例1と同じ条件で、溶解によって微細化された気泡を含む気液混合流体FLを得た。
[Example 2]
A gas-liquid mixed fluid FL containing bubbles refined by dissolution was obtained under the same conditions as in Example 1 except that oxygen was used as the gas constituting the gas-liquid mixed fluid FL.
 図7に、得られた気液混合流体FL中の気泡の直径別頻度分布を示す。グラフCは、度数分布を示し、グラフDは、累積度数分布を示す。気液混合流体FLに含まれる気泡の平均直径は、100nm以下であった。即ち、気泡微細化用管状体200にて、気泡の平均直径が1/10以下に微細化されたことが確認された。 FIG. 7 shows the frequency distribution of bubbles in each gas-liquid mixed fluid FL by diameter. Graph C shows the frequency distribution, and graph D shows the cumulative frequency distribution. The average diameter of the bubbles contained in the gas-liquid mixed fluid FL was 100 nm or less. That is, it was confirmed that the average diameter of the bubbles was reduced to 1/10 or less in the bubble refinement tubular body 200.
 [実施例3]
 気液混合流体FLを構成する液体に水道水を用いたこと以外は、実施例1と同じ条件で、溶解によって微細化された気泡を含む気液混合流体FLを得た。
[Example 3]
A gas-liquid mixed fluid FL containing bubbles refined by dissolution was obtained under the same conditions as in Example 1 except that tap water was used as the liquid constituting the gas-liquid mixed fluid FL.
 図8に、得られた気液混合流体FL中の気泡の直径別頻度分布を示す。グラフEは、度数分布を示し、グラフFは、累積度数分布を示す。気液混合流体FLに含まれる気泡の平均直径は、100nm以下であった。即ち、気泡微細化用管状体200にて、気泡の平均直径が1/10以下に微細化されたことが確認された。 FIG. 8 shows the frequency distribution of the bubbles in the obtained gas-liquid mixed fluid FL by diameter. Graph E shows the frequency distribution, and graph F shows the cumulative frequency distribution. The average diameter of the bubbles contained in the gas-liquid mixed fluid FL was 100 nm or less. That is, it was confirmed that the average diameter of the bubbles was reduced to 1/10 or less in the bubble refinement tubular body 200.
 [実施例4]
 気液混合流体FLを構成する液体に水道水を用い、気体に酸素を用いたこと以外は、実施例1と同じ条件で、溶解によって微細化された気泡を含む気液混合流体FLを得た。
[Example 4]
A gas-liquid mixed fluid FL containing bubbles refined by dissolution was obtained under the same conditions as in Example 1 except that tap water was used as the liquid constituting the gas-liquid mixed fluid FL and oxygen was used as the gas. .
 図9に、得られた気液混合流体FL中の気泡の直径別頻度分布を示す。グラフGは、度数分布を示し、グラフHは、累積度数分布を示す。気液混合流体FLに含まれる気泡の平均直径は、100nm以下であった。即ち、気泡微細化用管状体200にて、気泡の平均直径が1/10以下に微細化されたことが確認された。 FIG. 9 shows the frequency distribution of air bubbles by diameter in the obtained gas-liquid mixed fluid FL. Graph G shows the frequency distribution, and graph H shows the cumulative frequency distribution. The average diameter of the bubbles contained in the gas-liquid mixed fluid FL was 100 nm or less. That is, it was confirmed that the average diameter of the bubbles was reduced to 1/10 or less in the bubble refinement tubular body 200.
 以上、本発明の実施形態と実施例について説明したが、本発明はこれに限られない。例えば、以下に述べる変形も可能である。 As mentioned above, although embodiment and the Example of this invention were described, this invention is not limited to this. For example, the following modifications are possible.
 上記実施形態1では、気泡微細化用管状体200にコイル状部203を設けたが、コイル状部203は必須ではない。気泡微細化用管状体200の一部分が湾曲していれば、ディーン渦DVが形成され得る。また、気泡を微細化させるにあたり、ディーン渦DVの形成は必須ではない。直線状に延びる直管よりなる気泡微細化用管状体においても、圧力損失による内圧の上昇は生じ得、上昇した内圧で気泡が微細化され得る。 In the first embodiment, the coiled portion 203 is provided in the bubble miniaturization tubular body 200, but the coiled portion 203 is not essential. If a part of the bubble miniaturization tubular body 200 is curved, the Dean vortex DV can be formed. In addition, the formation of the Dean vortex DV is not essential when the bubbles are miniaturized. Even in a tubular body for air bubble refinement composed of straight pipes extending in a straight line, an increase in internal pressure due to pressure loss can occur, and air bubbles can be refined by the increased internal pressure.
 図1には、理解を容易にするために、気体源GSを示したが、例えば気体が空気である場合には、気体源GSを省略できる。また、気体源GSとして、気体が圧入されたボンベを用いる場合は、そのボンベからの気体の吐出圧を利用できるため、気体ポンプ30を省略し得る。また、液体として水道水を用いる場合のように、加圧された液体が得られる場合は、液体源LSと液体ポンプ40を省略し得る。 FIG. 1 shows the gas source GS for easy understanding. However, for example, when the gas is air, the gas source GS can be omitted. Further, when a cylinder into which gas is press-fitted is used as the gas source GS, the gas pump 30 can be omitted because the discharge pressure of the gas from the cylinder can be used. Further, when a pressurized liquid is obtained as in the case of using tap water as the liquid, the liquid source LS and the liquid pump 40 may be omitted.
 上記実施形態1では、気泡微細化用管状体200における気液混合流体FLが流れる部分の断面積が、一端201から他端202にわたって一定であったが、このことは必須ではない。気泡微細化用管状体200の断面積が、気泡微細化用管状体200の経路長方向の位置によって異なっていてもよい。例えば、気泡微細化用管状体200内に、気液混合流体FLの流れを絞る絞り部が設けられていてもよい。気泡微細化用管状体200の断面積が経路長方向の位置によって異なる場合、長尺度Y/Xを定義する断面積をXとは、気泡微細化用管状体200における断面積の最大値を指すものとする。 In the first embodiment, the cross-sectional area of the portion through which the gas-liquid mixed fluid FL flows in the bubble miniaturization tubular body 200 is constant from one end 201 to the other end 202, but this is not essential. The cross-sectional area of the bubble miniaturization tubular body 200 may be different depending on the position of the bubble miniaturization tubular body 200 in the path length direction. For example, a throttle part that restricts the flow of the gas-liquid mixed fluid FL may be provided in the bubble miniaturization tubular body 200. When the cross-sectional area of the bubble miniaturization tubular body 200 is different depending on the position in the path length direction, the cross-sectional area defining the length scale Y / X is the maximum value of the cross-sectional area in the bubble miniaturization tubular body 200. Shall.
 上記実施形態3では、気泡形成装置600が2本の気泡微細化用管状体210及び220を備えたが、気泡形成装置600は3本以上の気泡微細化用管状体を備えてもよい。また、それら複数本の気泡微細化用管状体の寸法及び形状が、互いに異なっていてもよい。 In the third embodiment, the bubble forming apparatus 600 includes the two bubble refining tubular bodies 210 and 220. However, the bubble forming apparatus 600 may include three or more bubble refining tubular bodies. Moreover, the dimensions and shapes of the plurality of bubble miniaturization tubular bodies may be different from each other.
 本発明は、その広義の精神と範囲を逸脱することなく、様々な変形が可能とされる。上記実施形態及び実施例は、本発明を説明するためのものであり、本発明の範囲を限定するものではない。本発明の範囲は、請求の範囲によって示される。請求の範囲内及びそれと同等の範囲内で施される様々な変形が、本発明の範囲内とみなされる。 The present invention can be variously modified without departing from the broad spirit and scope. The above embodiments and examples are for explaining the present invention and do not limit the scope of the present invention. The scope of the invention is indicated by the appended claims. Various modifications within the scope of the claims and equivalents thereof are considered within the scope of the present invention.
 本出願は、2017年6月7日に日本国に出願された特願2017-112245号に基づく。本明細書中に特願2017-112245号の明細書、特許請求の範囲、図面全体を参照として取り込むものとする。 This application is based on Japanese Patent Application No. 2017-112245 filed in Japan on June 7, 2017. The specification, claims, and entire drawings of Japanese Patent Application No. 2017-112245 are incorporated herein by reference.
 本発明に係る泡形成装置及び気泡形成方法は、微細化された気泡を含む気液混合流体の形成に用いることができる。 The bubble forming apparatus and the bubble forming method according to the present invention can be used for forming a gas-liquid mixed fluid containing fine bubbles.
 10…気液混合室、
 20…多孔質部材、
 30…気体ポンプ、
 40…液体ポンプ、
 51,52…配管、
 61,62…弁、
 71,72,73…圧力計、
 100…吐出部、
 200,210,220…気泡微細化用管状体、
 201…気泡微細化用管状体の一端、
 202…気泡微細化用管状体の他端、
 203…コイル状部、
 300…温度調整装置(温度調整手段)、
 310…恒温液槽、
 320…温度調整器、
 400,500,600…気泡形成装置、
 LS…液体源、
 GS…気体源、
 FL…気液混合流体、
 TV…乱流渦、
 DV…ディーン渦。
10: Gas-liquid mixing chamber,
20 ... porous member,
30 ... Gas pump,
40 ... Liquid pump,
51, 52 ... piping,
61, 62 ... valve,
71, 72, 73 ... pressure gauge,
100 ... discharge part,
200, 210, 220 ... Tubular body for bubble miniaturization,
201: one end of a tubular body for bubble miniaturization,
202 ... The other end of the tubular body for bubble miniaturization,
203 ... Coiled part,
300 ... temperature adjusting device (temperature adjusting means),
310 ... constant temperature bath,
320 ... temperature controller,
400, 500, 600 ... bubble forming device,
LS ... Liquid source,
GS ... Gas source,
FL: Gas-liquid mixed fluid,
TV ... turbulent vortex,
DV ... Dean vortex.

Claims (11)

  1.  液体と前記液体中に分散した気泡とを含む気液混合流体を形成すると共に、形成した前記気液混合流体を吐出する吐出部と、
     両端が開口した管状をなしており、前記吐出部によって吐出される前記気液混合流体が一端から導入されると共に、導入された前記気液混合流体を他端へ案内する気泡微細化用管状体と、を備え、
     前記吐出部から前記気液混合流体が吐出される圧力によって、前記気泡微細化用管状体の内圧が、前記気泡が前記液体に溶解する程度に高められ、高められた前記内圧による前記気泡の前記液体への溶解が、前記気液混合流体が前記気泡微細化用管状体を流れる期間にわたって進行することにより、前記気液混合流体に含まれる前記気泡が、前記気泡微細化用管状体において微細化される、
     気泡形成装置。
    Forming a gas-liquid mixed fluid including a liquid and bubbles dispersed in the liquid, and discharging the formed gas-liquid mixed fluid;
    Tubular body for bubble miniaturization that has a tubular shape with both ends opened, and that introduces the gas-liquid mixed fluid discharged from the discharge portion from one end and guides the introduced gas-liquid mixed fluid to the other end And comprising
    Due to the pressure at which the gas-liquid mixed fluid is discharged from the discharge portion, the internal pressure of the bubble miniaturization tubular body is increased to such an extent that the bubbles are dissolved in the liquid, and the bubbles of the bubbles due to the increased internal pressure are Dissolution in the liquid proceeds over a period in which the gas-liquid mixed fluid flows through the bubble miniaturization tubular body, whereby the bubbles contained in the gas-liquid mixed fluid are refined in the bubble miniaturization tubular body. To be
    Bubble forming device.
  2.  前記気泡微細化用管状体が、
     前記気泡微細化用管状体における前記気液混合流体が流れる部分の断面積をX、前記気液混合流体の流路に沿う前記気泡微細化用管状体の経路長をYとしたとき、Y/Xで定義される長尺度が250[1/mm]以上である形状をなしている、
     請求項1に記載の気泡形成装置。
    The bubble miniaturization tubular body is:
    When the cross-sectional area of the portion where the gas-liquid mixed fluid flows in the bubble miniaturization tubular body is X, and the path length of the bubble miniaturization tubular body along the flow path of the gas-liquid mixed fluid is Y, Y / The length scale defined by X has a shape of 250 [1 / mm] or more,
    The bubble forming apparatus according to claim 1.
  3.  前記気泡微細化用管状体が、
     前記気泡微細化用管状体の内部において、前記気液混合流体にディーン渦を形成させる遠心力が前記気液混合流体に作用するように、湾曲した形状をなしている、
     請求項1又は2に記載の気泡形成装置。
    The bubble miniaturization tubular body is:
    In the inside of the bubble miniaturization tubular body, the gas-liquid mixed fluid has a curved shape so that a centrifugal force that forms a Dean vortex acts on the gas-liquid mixed fluid.
    The bubble forming apparatus according to claim 1 or 2.
  4.  前記気泡微細化用管状体が、コイル状に複数回巻かれた形状をなしている、
     請求項3に記載の気泡形成装置。
    The bubble miniaturization tubular body has a shape wound a plurality of times in a coil shape,
    The bubble forming apparatus according to claim 3.
  5.  前記吐出部が、大気圧より高く0.3MPa以下の値に前記内圧が高められる条件で、前記気液混合流体を前記気泡微細化用管状体に導入することにより、前記気泡微細化用管状体において、前記気泡の平均直径が、1/5以下に微細化される、
     請求項1から4のいずれか1項に記載の気泡形成装置。
    By introducing the gas-liquid mixed fluid into the bubble miniaturization tubular body under the condition that the discharge part increases the internal pressure to a value higher than atmospheric pressure and 0.3 MPa or less, the bubble miniaturization tubular body In, the average diameter of the bubbles is refined to 1/5 or less,
    The bubble formation apparatus of any one of Claim 1 to 4.
  6.  前記気泡微細化用管状体を複数本備え、
     前記吐出部から吐出される前記気液混合流体が、複数本の前記気泡微細化用管状体を並列に流れるように、前記吐出部に複数本の前記気泡微細化用管状体が接続されている、
     請求項1から5のいずれか1項に記載の気泡形成装置。
    Provided with a plurality of the bubble miniaturization tubular body,
    A plurality of bubble miniaturization tubular bodies are connected to the discharge section so that the gas-liquid mixed fluid discharged from the discharge section flows in parallel through the plurality of bubble miniaturization tubular bodies. ,
    The bubble formation apparatus of any one of Claim 1 to 5.
  7.  前記吐出部が、
     前記気液混合流体を構成する前記液体と、前記気液混合流体の前記気泡を構成する気体との流量を、各々独立に調整することができる構成を有する、
     請求項1から6のいずれか1項に記載の気泡形成装置。
    The discharge part is
    The flow rate of the liquid constituting the gas-liquid mixed fluid and the gas constituting the bubbles of the gas-liquid mixed fluid can be independently adjusted,
    The bubble formation apparatus of any one of Claim 1 to 6.
  8.  前記気泡微細化用管状体を介して前記気液混合流体の温度を調整する温度調整手段、
     をさらに備える、
     請求項1から7のいずれか1項に記載の気泡形成装置。
    Temperature adjusting means for adjusting the temperature of the gas-liquid mixed fluid via the bubble miniaturization tubular body;
    Further comprising
    The bubble formation apparatus of any one of Claim 1 to 7.
  9.  液体と前記液体中に分散した気泡とを含む気液混合流体を形成する事前工程と、
     前記事前工程において形成された前記気液混合流体を、両端が開口した管状をなす気泡微細化用管状体に通す気泡微細化工程と、を含み、
     前記気泡微細化工程では、前記気液混合流体を前記気泡微細化用管状体に導入する圧力によって、前記気泡微細化用管状体の内圧を、前記気泡が前記液体に溶解する程度に高め、高められた前記内圧による前記気泡の前記液体への溶解を、前記気液混合流体が前記気泡微細化用管状体を流れる期間にわたって進行させることにより、前記気液混合流体に含まれる前記気泡を、前記気泡微細化用管状体において微細化させる、
     気泡形成方法。
    Forming a gas-liquid mixed fluid including a liquid and bubbles dispersed in the liquid; and
    A bubble refining step of passing the gas-liquid mixed fluid formed in the pre-process through a bubble refining tubular body having a tubular shape with both ends opened, and
    In the bubble refinement step, the internal pressure of the bubble refinement tubular body is increased and increased by the pressure at which the gas-liquid mixed fluid is introduced into the bubble refinement tubular body so that the bubbles are dissolved in the liquid. The bubbles contained in the gas-liquid mixed fluid are caused to progress by dissolving the bubbles in the liquid by the internal pressure generated over a period in which the gas-liquid mixed fluid flows through the bubble miniaturization tubular body. Making it fine in a tubular body for bubble miniaturization,
    Bubble formation method.
  10.  前記気泡微細化工程では、
     大気圧より高く0.3MPa以下の値に前記内圧が高められる条件で、前記気液混合流体を前記気泡微細化用管状体に導入することにより、前記気泡微細化用管状体において、前記気泡の平均直径を、1/5以下に微細化させる、
     請求項9に記載の気泡形成方法。
    In the bubble refinement process,
    By introducing the gas-liquid mixed fluid into the bubble miniaturization tubular body under the condition that the internal pressure is increased to a value higher than atmospheric pressure and equal to or less than 0.3 MPa, The average diameter is reduced to 1/5 or less.
    The bubble forming method according to claim 9.
  11.  前記気泡微細化工程では、
     前記気泡微細化用管状体の内部に、レイノルズ数が3000以上の、前記気液混合流体の流れが形成される条件で、前記気液混合流体を前記気泡微細化用管状体に導入する、
     請求項9又は10に記載の気泡形成方法。
    In the bubble refinement process,
    Introducing the gas-liquid mixed fluid into the bubble miniaturization tubular body under the condition that a flow of the gas-liquid mixed fluid having a Reynolds number of 3000 or more is formed inside the bubble miniaturizing tubular body;
    The bubble formation method according to claim 9 or 10.
PCT/JP2018/019795 2017-06-07 2018-05-23 Air bubble formation device and air bubble formation method WO2018225510A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019523436A JP7094026B2 (en) 2017-06-07 2018-05-23 Bubble forming device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-112245 2017-06-07
JP2017112245 2017-06-07

Publications (1)

Publication Number Publication Date
WO2018225510A1 true WO2018225510A1 (en) 2018-12-13

Family

ID=64566558

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/019795 WO2018225510A1 (en) 2017-06-07 2018-05-23 Air bubble formation device and air bubble formation method

Country Status (2)

Country Link
JP (1) JP7094026B2 (en)
WO (1) WO2018225510A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021062347A (en) * 2019-10-16 2021-04-22 住友金属鉱山株式会社 Method for operating reaction apparatus
JP2022514448A (en) * 2019-05-31 2022-02-14 ユ ヤン ホ Channel member for nanobubble generation, integrated flow path unit and nanobubble generator using this

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008188574A (en) * 2006-08-23 2008-08-21 Matsushita Electric Works Ltd Gas dissolving apparatus
EP2103344A1 (en) * 2008-03-18 2009-09-23 Min Chien Teng Gas-liquid mixer
JP2010194440A (en) * 2009-02-24 2010-09-09 Panasonic Electric Works Co Ltd Gas-liquid mixing apparatus
JP2011152513A (en) * 2010-01-27 2011-08-11 Panasonic Electric Works Co Ltd Gas-liquid mixture liquid generating apparatus
US20110301531A1 (en) * 2010-06-07 2011-12-08 James Richard Spears Pressurized Liquid Stream With Dissolved Gas
JP2013123701A (en) * 2011-12-16 2013-06-24 Panasonic Corp System and method for production of gas-dissolved solution
JP2014147870A (en) * 2013-01-31 2014-08-21 Shinwa Co Ltd Nano-bubble forming device of microbubble
JP2016155081A (en) * 2015-02-24 2016-09-01 株式会社テックコーポレーション Fine bubble generator and fine bubble generation method

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10216490A (en) * 1997-01-31 1998-08-18 Koa Corp:Kk Rapid mixing and dissolving device of gas into liquid
JP2007326063A (en) * 2006-06-09 2007-12-20 Hitachi Plant Technologies Ltd Microchemical reaction apparatus

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008188574A (en) * 2006-08-23 2008-08-21 Matsushita Electric Works Ltd Gas dissolving apparatus
EP2103344A1 (en) * 2008-03-18 2009-09-23 Min Chien Teng Gas-liquid mixer
JP2010194440A (en) * 2009-02-24 2010-09-09 Panasonic Electric Works Co Ltd Gas-liquid mixing apparatus
JP2011152513A (en) * 2010-01-27 2011-08-11 Panasonic Electric Works Co Ltd Gas-liquid mixture liquid generating apparatus
US20110301531A1 (en) * 2010-06-07 2011-12-08 James Richard Spears Pressurized Liquid Stream With Dissolved Gas
JP2013123701A (en) * 2011-12-16 2013-06-24 Panasonic Corp System and method for production of gas-dissolved solution
JP2014147870A (en) * 2013-01-31 2014-08-21 Shinwa Co Ltd Nano-bubble forming device of microbubble
JP2016155081A (en) * 2015-02-24 2016-09-01 株式会社テックコーポレーション Fine bubble generator and fine bubble generation method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022514448A (en) * 2019-05-31 2022-02-14 ユ ヤン ホ Channel member for nanobubble generation, integrated flow path unit and nanobubble generator using this
JP7174964B2 (en) 2019-05-31 2022-11-18 ユ ヤン ホ Channel member for nanobubble generation, integrated channel unit and nanobubble generator using the same
JP2021062347A (en) * 2019-10-16 2021-04-22 住友金属鉱山株式会社 Method for operating reaction apparatus
JP7299591B2 (en) 2019-10-16 2023-06-28 住友金属鉱山株式会社 Method of operating the reactor

Also Published As

Publication number Publication date
JPWO2018225510A1 (en) 2020-06-18
JP7094026B2 (en) 2022-07-01

Similar Documents

Publication Publication Date Title
JP4850947B2 (en) Filler
WO2018225510A1 (en) Air bubble formation device and air bubble formation method
US10744468B2 (en) System and method for feeding gas into liquid
EP3259543A1 (en) An apparatus and a method for generating droplets
JP2006272131A (en) Method and apparatus for reaction
WO2015072461A1 (en) Microbicidal liquid-generating device
KR20140093265A (en) Process and apparatus for gas-enriching a liquid
JP2007268390A (en) Bubble generating device
JP2018532590A (en) Carbonation duct and carbonation process for mixing gas and beverage
KR101922102B1 (en) Nano bubble generator
JP2013146714A (en) Microscopic bubble generation device
JP6067201B2 (en) Fine bubble generating method, fine bubble generating device, etc.
US20200156018A1 (en) Fine bubble generating method and fine bubble generating apparatus
JP5413726B2 (en) Gas-liquid mixing device
JP2006272132A (en) Method and apparatus for manufacture of chemical substance
KR101190788B1 (en) Micro bubble head and apparatus for generating microbubble including the same
JP2008212784A (en) Fine bubble generation apparatus
CN115443184A (en) Volkkov cavitation aerator
JP2013220370A (en) Electrolytic water generator
JP2018069220A (en) Gas phase and liquid phase mixture method and device of the same
JP3246682U (en) Nanobubble Generation System
Vorob’ev et al. Formation of the finely dispersed gas phase in upward and downward fluid flows
JPWO2018088482A1 (en) Fluid delivery device and fluid delivery system
TWI764774B (en) Gas-liquid mixing device and method
KR20180130070A (en) Nano-Bubble Generator

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18813421

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 2019523436

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18813421

Country of ref document: EP

Kind code of ref document: A1