WO2015072461A1 - Microbicidal liquid-generating device - Google Patents

Microbicidal liquid-generating device Download PDF

Info

Publication number
WO2015072461A1
WO2015072461A1 PCT/JP2014/079874 JP2014079874W WO2015072461A1 WO 2015072461 A1 WO2015072461 A1 WO 2015072461A1 JP 2014079874 W JP2014079874 W JP 2014079874W WO 2015072461 A1 WO2015072461 A1 WO 2015072461A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid
flow path
gas
plasma
channel
Prior art date
Application number
PCT/JP2014/079874
Other languages
French (fr)
Japanese (ja)
Inventor
沖野 晃俊
秀一 宮原
貴也 大下
洋輔 渡辺
利寛 高松
雅一 柏
平野 正浩
一寛 西原
前田 重雄
Original Assignee
沖野 晃俊
Idec株式会社
秀一 宮原
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 沖野 晃俊, Idec株式会社, 秀一 宮原 filed Critical 沖野 晃俊
Publication of WO2015072461A1 publication Critical patent/WO2015072461A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N25/00Biocides, pest repellants or attractants, or plant growth regulators, characterised by their forms, or by their non-active ingredients or by their methods of application, e.g. seed treatment or sequential application; Substances for reducing the noxious effect of the active ingredients to organisms other than pests
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N59/00Biocides, pest repellants or attractants, or plant growth regulators containing elements or inorganic compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/20Mixing gases with liquids
    • B01F23/23Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids
    • B01F23/232Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids using flow-mixing means for introducing the gases, e.g. baffles
    • B01F23/2323Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids using flow-mixing means for introducing the gases, e.g. baffles by circulating the flow in guiding constructions or conduits
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/20Mixing gases with liquids
    • B01F23/23Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids
    • B01F23/234Surface aerating
    • B01F23/2341Surface aerating by cascading, spraying or projecting a liquid into a gaseous atmosphere
    • B01F23/23411Surface aerating by cascading, spraying or projecting a liquid into a gaseous atmosphere by cascading the liquid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/30Injector mixers
    • B01F25/31Injector mixers in conduits or tubes through which the main component flows
    • B01F25/312Injector mixers in conduits or tubes through which the main component flows with Venturi elements; Details thereof
    • B01F25/3124Injector mixers in conduits or tubes through which the main component flows with Venturi elements; Details thereof characterised by the place of introduction of the main flow
    • B01F25/31243Eductor or eductor-type venturi, i.e. the main flow being injected through the venturi with high speed in the form of a jet
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/50Circulation mixers, e.g. wherein at least part of the mixture is discharged from and reintroduced into a receptacle
    • B01F25/53Circulation mixers, e.g. wherein at least part of the mixture is discharged from and reintroduced into a receptacle in which the mixture is discharged from and reintroduced into a receptacle through a recirculation tube, into which an additional component is introduced
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/467Treatment of water, waste water, or sewage by electrochemical methods by electrolysis by electrochemical disinfection; by electrooxydation or by electroreduction
    • C02F1/4672Treatment of water, waste water, or sewage by electrochemical methods by electrolysis by electrochemical disinfection; by electrooxydation or by electroreduction by electrooxydation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/02Specific form of oxidant
    • C02F2305/023Reactive oxygen species, singlet oxygen, OH radical

Definitions

  • the present invention relates to a sterilizing liquid generating apparatus.
  • the micro-plasma discharge is generated in the pressurized gas in the gas-liquid mixing tank in which the liquid is stored, thereby generating the effective mist generated by the discharge.
  • a gas-liquid mixture in which bubbles containing components are present is generated.
  • the gas-liquid mixed liquid is sent to the mist generating section as a functional liquid containing ultra fine bubbles after large bubbles are removed in the defoaming section.
  • the present invention is directed to a sterilizing liquid generating apparatus, and an object thereof is to provide a sterilizing liquid having sterilizing power.
  • the sterilizing liquid generating apparatus includes a plasma generating unit that generates a plasma-containing gas, which is a gas containing plasma from a gas, and a mixture fluid obtained by mixing the plasma-containing gas and the liquid from the plasma generating unit.
  • the sterilizing liquid generating apparatus can provide a sterilizing liquid having sterilizing power.
  • the gas is oxygen or air.
  • FIG. drawing shows the microbubble production
  • FIG. 1 is a cross-sectional view showing a fine bubble generating device 1 which is a sterilizing liquid generating device according to an embodiment of the present invention.
  • the fine bubble generating device 1 includes a fine bubble generating nozzle 2, a pressurized liquid generating unit 3, a pressurized liquid channel 4, a storage unit 5, and a circulation channel 6.
  • the pressurized liquid channel 4 connects the pressurized liquid generating unit 3 and the fine bubble generating nozzle 2.
  • the tip of the fine bubble generating nozzle 2 is connected to the side wall 51 of the reservoir 5.
  • the pressurizing liquid generating unit 3 generates a pressurizing liquid 71 obtained by pressurizing and dissolving a gas in the liquid, and supplies the pressurizing liquid 71 to the fine bubble generating nozzle 2 through the pressurizing liquid channel 4.
  • the fine bubble generating nozzle 2 generates a liquid containing fine bubbles from the pressurized liquid 71 and supplies the liquid containing fine bubbles to the liquid stored in the reservoir 5 (hereinafter referred to as “reserved liquid 91”).
  • the fine bubbles are ultra fine bubbles having a diameter of less than 1 ⁇ m (micrometer). In the pressurized liquid production
  • the pressurized liquid generating unit 3 generates a pressurized liquid 71 in which air is pressurized and dissolved in the liquid. Further, a liquid containing fine air bubbles (so-called ultra fine bubbles) having a diameter of less than 1 ⁇ m is generated by the fine bubble generating nozzle 2 and supplied into the storage liquid 91 in the storage unit 5.
  • fluids such as the pressurized liquid 71 and the reservoir liquid 91 are indicated by a parallel oblique line with a broken line.
  • the pressurized liquid generation unit 3 includes a mixing nozzle 31, a dissolution channel unit 32, a pump 33, and a plasma generation unit 34.
  • the ultra fine bubble generating unit includes at least the dissolution channel unit 32 and the fine bubble generating nozzle 2.
  • a gas hereinafter referred to as “plasma-containing gas” or simply “gas” including the liquid pumped by the pump 33 to the mixing nozzle 31 that is the mixing unit and the plasma generated by the plasma generating unit 34.
  • plasma-containing gas gas
  • the dissolution flow path portion 32 which is a dissolution portion is pressurized and in a state where the pressure is higher than the atmospheric pressure (hereinafter referred to as “pressurized environment”), and the liquid ejected from the mixing nozzle 31 and the plasma are contained. While the fluid mixed with the gas (hereinafter referred to as “mixed fluid 72”) flows through the dissolution flow path portion 32 in a pressurized environment, the plasma-containing gas is pressurized and dissolved in the liquid and pressurized. Liquid 71 is produced.
  • a counter electrode is provided as a discharge unit inside the plasma generation unit 34. For example, a high voltage of about 10 kV is applied to cause discharge between the counter electrodes. Due to the discharge, plasma is generated in the gas passing through the discharge part.
  • FIG. 2 is an enlarged cross-sectional view showing the mixing nozzle 31.
  • the mixing nozzle 31 includes a liquid inlet 311, a gas inlet 319, and a mixed fluid outlet 312.
  • the liquid pumped by the pump 33 flows from the liquid inlet 311.
  • the plasma generator 34 is disposed at the gas inlet 319 of the mixing nozzle 31.
  • Plasma-containing gas flows from the gas inlet 319.
  • a mixed fluid 72 (see FIG. 1) in which the liquid flowing in from the liquid inlet 311 and the plasma-containing gas flowing in from the gas inlet 319 are mixed is ejected.
  • the liquid inlet 311, the gas inlet 319, and the mixed fluid outlet 312 are each substantially circular.
  • the flow path section of the nozzle flow path 310 from the liquid inlet 311 to the mixed fluid outlet 312 and the flow path cross section of the gas flow path 3191 from the gas inlet 319 to the nozzle flow path 310 are also substantially circular.
  • the channel cross section means a cross section perpendicular to the central axis of the flow path such as the nozzle flow path 310 and the gas flow path 3191, that is, a cross section perpendicular to the flow of fluid flowing through the flow path.
  • the area of the channel cross section is referred to as “channel area”.
  • the nozzle flow path 310 is a Venturi tube having a flow path area that becomes smaller in the middle of the flow path.
  • the mixing nozzle 31 includes an introduction portion 313, a first taper portion 314, a throat portion 315, a gas mixing portion 316, and a second portion that are continuously arranged in order from the liquid inlet 311 toward the mixed fluid outlet 312. A tapered portion 317 and a lead-out portion 318 are provided.
  • the mixing nozzle 31 also includes a gas supply unit 3192 in which a gas flow path 3191 is provided.
  • the flow path area is substantially constant at each position in the central axis J1 direction of the nozzle flow path 310.
  • the flow path area gradually decreases in the liquid flow direction (that is, toward the downstream side).
  • the throat 315 the flow path area is substantially constant.
  • the channel area of the throat 315 is the smallest in the nozzle channel 310. In the nozzle channel 310, even if the channel area slightly changes in the throat 315, the entire portion having the smallest channel area is regarded as the throat 315.
  • the flow channel area is substantially constant and is slightly larger than the flow channel area of the throat 315.
  • the second taper portion 317 the flow path area gradually increases toward the downstream side.
  • the flow path area is substantially constant.
  • the channel area of the gas channel 3191 is also substantially constant, and the gas channel 3191 is connected to the gas mixing unit 316 of the nozzle channel 310.
  • the liquid that has flowed into the nozzle channel 310 from the liquid inlet 311 is accelerated by the throat portion 315 and the static pressure is lowered, and the pressure in the nozzle channel 310 is reduced in the throat portion 315 and the gas mixing portion 316.
  • the plasma-containing gas is sucked from the gas inlet 319, passes through the gas flow path 3191, flows into the gas mixing unit 316, and is mixed with the liquid to generate the mixed fluid 72 (see FIG. 1).
  • the mixed fluid 72 is decelerated at the second tapered portion 317 and the outlet portion 318 to increase the static pressure, and is ejected into the dissolution channel portion 32 via the mixed fluid ejection port 312.
  • the dissolution channel section 32 includes a first horizontal channel 321, a second horizontal channel 322, a third horizontal channel 323, and a fourth horizontal channel 324 that are stacked in the vertical direction. And a fifth horizontal flow path 325.
  • first horizontal flow path 321, the second horizontal flow path 322, the third horizontal flow path 323, the fourth horizontal flow path 324, and the fifth horizontal flow path 325 are collectively indicated, “horizontal flow path 321”. ⁇ 325 ".
  • the horizontal flow paths 321 to 325 are portions that form an internal space through which liquid flows.
  • the horizontal flow paths 321 to 325 are pipe lines extending in the horizontal direction, and the cross section perpendicular to the longitudinal direction of the horizontal flow paths 321 to 325 is substantially rectangular. In the present embodiment, the width of the horizontal flow paths 321 to 325 is about 40 mm.
  • the mixing nozzle 31 is attached to the upstream end of the first horizontal flow path 321 (that is, the left end in FIG. 1), and the mixed fluid 72 after being ejected from the mixing nozzle 31 is It flows toward the right side in FIG. 1 under a pressurized environment.
  • the mixed fluid 72 immediately after being ejected from the mixing nozzle 31 is ejected from above the liquid level of the mixed fluid 72 in the first horizontal flow path 321, and is downstream of the first horizontal flow path 321. It collides directly with the liquid surface before colliding with the wall surface (that is, the right wall surface in FIG. 1).
  • the length of the first horizontal flow path 321 is set to the center of the mixed fluid ejection port 312 (see FIG. 2) of the mixing nozzle 31. It is preferable to make it larger than 7.5 times the vertical distance between the lower surface of one horizontal flow path 321.
  • a part or the whole of the mixed fluid ejection port 312 of the mixing nozzle 31 may be positioned below the liquid level of the mixed fluid 72 in the first horizontal flow path 321.
  • the mixed fluid 72 immediately after being ejected from the mixing nozzle 31 directly collides with the mixed fluid 72 flowing in the first horizontal flow channel 321 in the first horizontal flow channel 321 as described above.
  • a substantially circular opening 321 a is provided on the lower surface of the downstream end portion of the first horizontal flow path 321, and the mixed fluid 72 flowing through the first horizontal flow path 321 is located below the first horizontal flow path 321. It falls to the 2nd horizontal flow path 322 located through the opening 321a.
  • the fluid flowing through the horizontal flow paths 321 to 325 is not necessarily in a gas-liquid mixed state, but is simply referred to as “mixed fluid 72” hereinafter.
  • the mixed fluid 72 that has dropped from the first horizontal flow path 321 flows from the right side to the left side in FIG. 1 in a pressurized environment, and the downstream end of the second horizontal flow path 322.
  • the mixed fluid 72 dropped from the second horizontal flow path 322 flows from the left side to the right side in FIG. It drops to a fourth horizontal flow path 324 located below the third horizontal flow path 323 through a substantially circular opening 323a provided on the lower surface of the first horizontal flow path.
  • the mixed fluid 72 includes a liquid layer containing bubbles and a gas (ie, plasma-containing gas) layer positioned above the liquid layer. It is divided into.
  • the mixed fluid 72 that has dropped from the third horizontal flow path 323 flows from the right side to the left side in FIG. 1 in a pressurized environment, and the downstream end of the fourth horizontal flow path 324. It flows into the fifth horizontal flow path 325 located below the fourth horizontal flow path 324 (that is, falls) through a substantially circular opening 324a provided on the lower surface of the first horizontal flow path.
  • the fifth horizontal flow path 325 unlike the first horizontal flow path 321 to the fourth horizontal flow path 324, there is no gas layer, and in the liquid filling the fifth horizontal flow path 325, In the vicinity of the upper surface of the five horizontal flow paths 325, there are few bubbles of a size that can be visually recognized.
  • the mixed fluid 72 flowing in from the fourth horizontal flow path 324 flows from the left side to the right side in FIG.
  • the horizontal flow paths 321 to 325 of the dissolution flow path section 32 flow down from top to bottom while repeating steps gradually (that is, the flow in the horizontal direction and the flow in the downward direction are reduced).
  • the gas is gradually dissolved in the liquid under pressure.
  • the concentration of the gas dissolved in the liquid is approximately equal to 60% to 90% of the (saturated) solubility of the gas under a pressurized environment.
  • dissolve in the liquid exists in the 5th horizontal flow path 325 as a bubble of the magnitude
  • the dissolution channel unit 32 further includes an excess gas separation unit 326 extending upward from the upper surface on the downstream side of the fifth horizontal channel 325, and the excess gas separation unit 326 is filled with the mixed fluid 72.
  • the cross section perpendicular to the vertical direction of the surplus gas separation part 326 is substantially rectangular, and the upper end of the surplus gas separation part 326 is opened to the atmosphere via a pressure adjustment throttle part 327.
  • the bubbles of the mixed fluid 72 flowing through the fifth horizontal flow path 325 rise in the surplus gas separation unit 326 and are released into the atmosphere.
  • the pressurized liquid 71 dissolves a gas that is about twice or more the gas (saturated) solubility under atmospheric pressure.
  • the liquid of the mixed fluid 72 that flows through the horizontal flow paths 321 to 325 in the dissolution flow path section 32 can also be regarded as the pressurized liquid 71 that is being generated.
  • the fine bubble generating device 1 further includes a regulating valve 61, a pressure sensor 62, and a valve control unit 63.
  • the adjustment valve 61 is provided in the pressurizing fluid channel 4 and adjusts the pressure of the pressurizing fluid 71 in the pressurizing fluid channel 4.
  • the pressure sensor 62 is disposed above the first horizontal flow path 321 and measures the pressure in the dissolution flow path section 32 of the pressurized liquid generating section 3.
  • An exhaust valve 64 is also provided above the first horizontal flow path 321.
  • the measured value of the pressure in the dissolution flow path portion 32 output from the pressure sensor 62 is set to a predetermined pressure (preferably 0.1 MPa to 0.45 MPa).
  • the regulating valve 61 is controlled by the valve control unit 63.
  • the valve control unit 63 controls the adjustment valve 61 based on the output from the pressure sensor 62. Thereby, even if the viscosity of the mixed fluid 72 changes due to a temperature change or the like, the pressure change in the dissolution flow path portion 32 is reduced.
  • the adjusting valve 61 may be manually operated.
  • the pressurizing liquid 71 guided from the dissolution channel portion 32 to the pressurizing liquid channel 4 flows into the fine bubble generating nozzle 2.
  • FIG. 3 is an enlarged sectional view showing the fine bubble generating nozzle 2.
  • the fine bubble generating nozzle 2 includes a pressurized liquid inlet 21 through which the pressurized liquid 71 flows from the connection pipe 4 and a pressurized liquid outlet 22 that opens toward the stored liquid 91.
  • the pressurized liquid inlet 21 and the pressurized liquid outlet 22 are each substantially circular, and the cross section of the nozzle flow path 20 from the pressurized liquid inlet 21 toward the pressurized liquid outlet 22 is also substantially circular.
  • the fine bubble generating nozzle 2 includes an introduction portion 23, a taper portion 24, and a throat portion 25 that are sequentially arranged from the pressurized liquid inlet 21 toward the pressurized liquid outlet 22.
  • the flow channel area is substantially constant at each position in the direction of the central axis J ⁇ b> 2 of the nozzle flow channel 20.
  • the flow path area gradually decreases in the direction in which the pressurized liquid 71 (see FIG. 1) flows (that is, toward the downstream side).
  • the inner surface of the tapered portion 24 is a part of a substantially conical surface with the central axis J2 of the nozzle channel 20 as the center.
  • the angle ⁇ formed by the inner surface of the tapered portion 24 is preferably 10 ° or more and 90 ° or less.
  • the throat part 25 connects the taper part 24 and the pressurized liquid ejection port 22.
  • the inner surface of the throat portion 25 is a substantially cylindrical surface, and the flow path area is substantially constant in the throat portion 25.
  • the diameter of the channel cross section in the throat 25 is the smallest in the nozzle channel 20, and the channel area of the throat 25 is the smallest in the nozzle channel 20.
  • the length of the throat 25 is preferably 1.1 to 10 times the diameter of the throat 25, and more preferably 1.5 to 2 times. In the nozzle channel 20, even if the channel area slightly changes in the throat portion 25, the entire portion having the smallest channel area is regarded as the throat portion 25.
  • the fine bubble generating nozzle 2 is also provided continuously to the throat portion 25 and encloses the periphery of the pressurizing liquid jet port 22 away from the pressurizing liquid jet port 22, and the end of the enlarging unit 27
  • An enlarged portion opening 28 provided in the portion is provided.
  • the flow path 29 between the pressurized liquid jet port 22 and the enlarged portion opening 28 is a flow path provided outside the pressurized liquid jet port 22 and is hereinafter referred to as an “external flow path 29”.
  • the channel cross section of the external channel 29 and the enlarged portion opening 28 are substantially circular, and the channel area of the external channel 29 is substantially constant.
  • the diameter of the external flow path 29 is larger than the diameter of the throat portion 25 (that is, the diameter of the pressurized liquid ejection port 22).
  • an annular surface between the edge of the inner peripheral surface of the enlarged portion 27 on the side of the pressurized liquid jet port 22 and the edge of the pressurized liquid jet port 22 is referred to as a “jet port end surface 221”.
  • the angle formed by the central axis J2 of the nozzle flow path 20 and the external flow path 29 and the jet end face 221 is about 90 °.
  • the diameter of the external channel 29 is 10 mm to 20 mm, and the length of the external channel 29 is approximately equal to the diameter of the external channel 29.
  • an external channel 29 that is a recess is formed at the end opposite to the pressurizing liquid inlet 21, and the pressurizing liquid that is an opening smaller than the bottom at the bottom of the recess. It can be understood that the spout 22 is formed.
  • the flow path area of the pressurized liquid 71 between the pressurized liquid ejection port 22 and the stored liquid 91 in the storage unit 5 is expanded.
  • the flow rate of the pressurizing liquid 71 in the throat 25 is preferably 10 m to 30 m per second, and in this embodiment is about 20 m per second.
  • the plasma-containing gas in the pressurizing liquid 71 becomes supersaturated and precipitates in the liquid as fine bubbles.
  • the fine bubbles pass through the external flow path 29 of the enlarged portion 27 together with the pressurized liquid 71 and diffuse into the stored liquid 91 in the stored section 5.
  • the fine bubbles are deposited while the pressurized liquid 71 passes through the external flow path 29.
  • the fine bubbles generated by the fine bubble generating nozzle 2 include so-called ultra fine bubbles having a diameter of less than 1 ⁇ m as described above.
  • the storage liquid 91 in the storage section 5, that is, a liquid containing ultrafine bubbles (hereinafter referred to as “UFB liquid”) is a pressurized liquid from the storage section 5 through the circulation channel 6. It is returned to the pump 33 of the generator 3 and circulates to the reservoir 5 via the pressurized liquid generator 3 and the pressurized liquid channel 4. Thereby, the density of the ultra fine bubble in UFB liquid increases.
  • a plasma-containing gas of about 0.2 L / min is supplied from the mixing nozzle 31 while circulating the UFB liquid at a rate of about 4 L (liter) / min for a predetermined time. As a result, the UFB liquid is generated.
  • the density of the ultra fine bubbles in the UFB liquid is about 3.58 ⁇ 10 8 pieces / cm 3 .
  • the diameter of the ultra fine bubbles in the UFB liquid is distributed in a range of less than 1 ⁇ m with a center of about 100 nm (nanometers). The density and diameter of the ultra fine bubble can be measured by NS500 of NanoSight Limited.
  • the UFB liquid generated by the fine bubble generating device 1 exhibits high bactericidal power when the density of ultrafine bubbles in the liquid is 1.0 ⁇ 10 8 pieces / cm 3 or more.
  • the UFB liquid having a density of ultra fine bubbles of 1.0 ⁇ 10 8 pieces / cm 3 or more is also referred to as “sterilizing liquid”. That is, the fine bubble generating apparatus 1 is a sterilizing liquid generating apparatus that generates a sterilizing liquid having high sterilizing power.
  • FIG. 4 is an experimental result showing the sterilizing power of the UFB liquid generated by the fine bubble generating device 1.
  • 990 ⁇ L of the UFB solution immediately after being generated by the microbubble generator 1 was added to 10 ⁇ L (microliter) of the bacterial solution containing E. coli, and the decrease in the number of bacteria was measured.
  • the horizontal axis in FIG. 4 indicates the generation time of the UFB liquid.
  • the circulation flow rate of the pressurized liquid 71 and the supply flow rate of the plasma-containing gas when generating the UFB liquid are the same as described above.
  • the liquid and gas used for the production of the UFB liquid are pure water and oxygen.
  • the vertical axis in FIG. 4 indicates the number of bacteria (CFU (colony forming unit) / mL).
  • the plot with a generation time of 0 minutes indicates the number of bacteria when 990 ⁇ L of pure water is added to 10 ⁇ L of the bacterial solution.
  • the number of bacteria is about 1.0 ⁇ 10 6 CFU / mL.
  • the density of the ultra fine bubbles in the UFB liquid when the generation time is 1 minute, 5 minutes, 10 minutes, and 30 minutes is 0.62 ⁇ 10 8 pieces / cm 3 , 1.71 ⁇ 10 8 pieces / cm 3 , and 1.31 ⁇ 10 respectively. 8 pieces / cm 3 , 3.58 ⁇ 10 8 pieces / cm 3 .
  • the production time of the UFB liquid is 1 minute (that is, when the density of ultra fine bubbles is 0.62 ⁇ 10 8 cells / cm 3 )
  • the number of bacteria is up to about 0.5 ⁇ 10 6 CFU / mL. Decrease.
  • the generation time of the UFB solution is 5 minutes or more, the number of bacteria decreases to about 0 CFU / mL. From these, as described above, it can be seen that the UFB liquid having an ultrafine bubble density of 1.0 ⁇ 10 8 particles / cm 3 or more in the liquid is a sterilizing liquid having a high sterilizing power.
  • the liquid and the gas used for generating the UFB liquid in the fine bubble generating apparatus 1 are pure water and air
  • the UFB liquid having a density of ultrafine bubbles in the liquid of 1.0 ⁇ 10 8 pieces / cm 3 or more is Experiments confirmed that the sterilizing solution had a high sterilizing power.
  • FIG. 5 is a diagram showing the results of an experiment to reduce the number of bacteria when the UFB solution generated by the microbubble generator 1 is left for a predetermined time and then added to the bacterial solution.
  • the experimental conditions are the same as the experiment shown in FIG. 4 except that the UFB solution is allowed to stand after generation.
  • generation time of UFB liquid is 30 minutes.
  • the liquid and gas used for generating the UFB liquid are pure water and oxygen.
  • the horizontal axis in FIG. 5 indicates the time for which the UFB solution is left, and the vertical axis indicates the number of bacteria.
  • the UFB solution with a standing time after generation of 20 minutes or less shows a high sterilizing power like the UFB solution immediately after generation.
  • FIG. 6 shows the experimental results showing the bactericidal power of the UFB liquid generated by the microbubble generator 1 against various bacteria.
  • FIG. 6 shows the bactericidal power of the UFB solution against each of the above-mentioned Escherichia coli, Pseudomonas aeruginosa, enterococci and S. aureus.
  • 990 ⁇ L of the UFB solution immediately after being generated by the microbubble generator 1 was added to 10 ⁇ L of the bacterial solution containing Escherichia coli, Pseudomonas aeruginosa, enterococci, and Staphylococcus aureus, and the decrease in the number of bacteria was measured. did.
  • the number of bacteria contained in 10 ⁇ L of the bacterial solution before the addition of the UFB solution is about 1.0 ⁇ 10 6 .
  • the circulation flow rate of the pressurized liquid 71 and the supply flow rate of the plasma-containing gas when generating the UFB liquid are the same as described above.
  • the liquid and gas used for the production of the UFB liquid are pure water and oxygen.
  • the generation time of the UFB liquid is 5 minutes, and the density of the ultra fine bubbles in the UFB liquid is 1.0 ⁇ 10 8 pieces / cm 3 or more.
  • the UFB solution is added to each bacterial solution immediately after being generated by the fine bubble generating device 1. That is, the above UFB solution for 0 minutes is added to each bacterial solution.
  • FIG. 6 shows the target bacteria, and the vertical axis shows the number of bacteria remaining after the addition of the UFB solution (CFU / mL).
  • FIG. 6 also shows the number of remaining bacteria when 990 ⁇ L of pure water is added to 10 ⁇ L of each bacterial solution described above.
  • the number of bacteria increases from 1.0 ⁇ 10 6 CFU / mL or only slightly decreases.
  • UFB solution is added, the number of bacteria decreases to about 0 to 1.0 ⁇ 10 1 CFU / mL.
  • the UFB solution having an ultrafine bubble density of 1.0 ⁇ 10 8 cells / cm 3 or more is various bacteria such as Escherichia coli, Pseudomonas aeruginosa, enterococci and Staphylococcus aureus. It can be seen that the sterilizing liquid has a high sterilizing power.
  • the fine bubble generating device 1 can easily generate and provide a sterilizing liquid having an ultrafine bubble density of 1.0 ⁇ 10 8 pieces / cm 3 or more formed by the plasma-containing gas. .
  • the sterilizing liquid generated by the microbubble generator 1 has a high sterilizing power against various bacteria for a predetermined time, and after the predetermined time has passed, the sterilizing power of the sterilizing liquid will increase over time. It decreases with it. For this reason, such as when the sterilizing liquid is applied to the skin, the sterilizing liquid exhibits a desired sterilizing effect, and after a relatively short period of time, it has no sterilizing power (or has reduced sterilizing power). It can prevent (or suppress) long-term irritation to the skin.
  • the fine bubble generating apparatus 1 various gases other than oxygen and air may be used for generating the sterilizing liquid. Moreover, in the fine bubble production
  • the generation nozzle 2 other various structures may be provided.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Agronomy & Crop Science (AREA)
  • Dentistry (AREA)
  • Pest Control & Pesticides (AREA)
  • Plant Pathology (AREA)
  • Zoology (AREA)
  • Environmental Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Toxicology (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Chemistry (AREA)

Abstract

A minute gas bubble-generating device (1) is provided with: a plasma-generating unit (34) for generating a plasma-containing gas, which is a gas that contains plasma, from a gas; a mixing nozzle (31), which is a mixing section for mixing plasma-containing gas from the plasma-generating unit (34) with a liquid to generate a mixed fluid; and a dissolution flow channel unit (32), which is a dissolving section for generating a pressurized liquid by pressurizing the mixed fluid from the mixing nozzle (31) to pressurize and dissolve the plasma-containing gas in the liquid and for generating a microbicidal liquid containing 1.0 × 108/cm3 or more of ultrafine bubbles, which are formed using the plasma-containing gas by delivering the pressurized liquid. The minute gas bubble-generating device (1) provides a microbicidal liquid that has the ability to kill microbes.

Description

殺菌液生成装置Disinfectant generator
 本発明は、殺菌液生成装置に関する。 The present invention relates to a sterilizing liquid generating apparatus.
 近年、直径が1mm(ミリメートル)以下の微細な気泡を含む液体が多様な分野で利用されている。また、最近では、直径が1μm(マイクロメートル)未満の微細気泡(いわゆる、ウルトラファインバブル)を含む液体が、多様な分野において注目されており、当該液体を生成する装置が提案されている。 In recent years, liquids containing fine bubbles having a diameter of 1 mm (millimeter) or less have been used in various fields. Recently, a liquid containing fine bubbles (so-called ultra fine bubbles) having a diameter of less than 1 μm (micrometer) has been attracting attention in various fields, and an apparatus for generating the liquid has been proposed.
 特開2011-20005号公報(文献1)の装置では、無声放電によりオゾンを発生させるオゾン発生器を通過した空気が、水に混合されて気泡水が生成される。気泡水が加圧された後に減圧されることにより、3~30μm径のマイクロバブルが水中に発生する。そして、マイクロバブルが分散された電解質イオンを含む水が、流路中において振動機により振動されることにより、マイクロバブルが連続的に圧壊されてウルトラファインバブルが生成される。当該装置では、オゾンを含む気体をウルトラファインバブルにすることにより、殺菌や消臭が可能な機能水の生成が図られている。 In the apparatus of Japanese Patent Application Laid-Open No. 2011-20005 (Reference 1), air that has passed through an ozone generator that generates ozone by silent discharge is mixed with water to generate bubble water. Microbubbles having a diameter of 3 to 30 μm are generated in the water by reducing the pressure after the bubble water is pressurized. Then, the water containing the electrolyte ions in which the microbubbles are dispersed is vibrated by the vibrator in the flow path, whereby the microbubbles are continuously crushed to generate ultrafine bubbles. In the apparatus, the generation of functional water capable of sterilization and deodorization is achieved by making the gas containing ozone into ultra fine bubbles.
 特開2011-25203号公報(文献2)の機能ミスト生成装置では、液体が貯溜された気液混合槽において、加圧気体中にてマイクロプラズマ放電を発生させることにより、放電により生成された有効成分を含む気泡が存在する気液混合液が生成される。気液混合液は、脱気泡部において大きな気泡が取り除かれた後、ウルトラファインバブルを含む機能液としてミスト発生部に送られる。 In the functional mist generating apparatus disclosed in Japanese Patent Application Laid-Open No. 2011-25203 (reference 2), the micro-plasma discharge is generated in the pressurized gas in the gas-liquid mixing tank in which the liquid is stored, thereby generating the effective mist generated by the discharge. A gas-liquid mixture in which bubbles containing components are present is generated. The gas-liquid mixed liquid is sent to the mist generating section as a functional liquid containing ultra fine bubbles after large bubbles are removed in the defoaming section.
 ところで、文献1では、オゾンを含む気体を用いて生成されたウルトラファインバブルを含む液体を、殺菌に利用することが提案されているが、当該液体に有効な殺菌力を付与するための具体的な条件や方法は開示されていない。 By the way, in Document 1, it is proposed to use, for sterilization, a liquid containing ultrafine bubbles generated using a gas containing ozone, but a specific method for imparting effective sterilizing power to the liquid. No conditions or methods are disclosed.
 本発明は、殺菌液生成装置に向けられており、殺菌力を有する殺菌液を提供することを目的としている。 The present invention is directed to a sterilizing liquid generating apparatus, and an object thereof is to provide a sterilizing liquid having sterilizing power.
 本発明に係る殺菌液生成装置は、気体からプラズマを含んだ気体であるプラズマ含有ガスを生成するプラズマ生成部と、前記プラズマ生成部からの前記プラズマ含有ガスと液体とを混合して混合流体を生成する混合部と、前記混合部からの前記混合流体に基づき、前記プラズマ含有ガスにより形成されたウルトラファインバブルを1.0x10個/cm以上含む殺菌液を生成するウルトラファインバブル生成部とを備える。 The sterilizing liquid generating apparatus according to the present invention includes a plasma generating unit that generates a plasma-containing gas, which is a gas containing plasma from a gas, and a mixture fluid obtained by mixing the plasma-containing gas and the liquid from the plasma generating unit. A mixing unit to generate, and an ultrafine bubble generating unit that generates a sterilizing liquid containing 1.0 × 10 8 ultrafine bubbles / cm 3 or more of the plasma-containing gas based on the mixed fluid from the mixing unit. Is provided.
 当該殺菌液生成装置により、殺菌力を有する殺菌液を提供することができる。 The sterilizing liquid generating apparatus can provide a sterilizing liquid having sterilizing power.
 本発明の一の好ましい実施の形態では、前記気体が、酸素または空気である。 In one preferred embodiment of the present invention, the gas is oxygen or air.
 上述の目的および他の目的、特徴、態様および利点は、添付した図面を参照して以下に行うこの発明の詳細な説明により明らかにされる。 The above object and other objects, features, aspects, and advantages will become apparent from the following detailed description of the present invention with reference to the accompanying drawings.
一の実施の形態に係る微細気泡生成装置を示す断面図である。It is sectional drawing which shows the microbubble production | generation apparatus which concerns on one embodiment. 混合ノズルの拡大断面図である。It is an expanded sectional view of a mixing nozzle. 微細気泡生成ノズルの拡大断面図である。It is an expanded sectional view of a fine bubble production nozzle. UFB液の殺菌力を示す実験結果を示す図である。It is a figure which shows the experimental result which shows the bactericidal power of a UFB liquid. UFB液の殺菌力を示す実験結果を示す図である。It is a figure which shows the experimental result which shows the bactericidal power of a UFB liquid. UFB液の殺菌力を示す実験結果を示す図である。It is a figure which shows the experimental result which shows the bactericidal power of a UFB liquid.
 図1は、本発明の一の実施の形態に係る殺菌液生成装置である微細気泡生成装置1を示す断面図である。微細気泡生成装置1は、微細気泡生成ノズル2と、加圧液生成部3と、加圧液流路4と、貯溜部5と、循環流路6とを備える。加圧液流路4は、加圧液生成部3と微細気泡生成ノズル2とを接続する。微細気泡生成ノズル2の先端部は、貯溜部5の側壁部51に接続される。加圧液生成部3は、気体を液体に加圧溶解させた加圧液71を生成し、加圧液流路4を介して加圧液71を微細気泡生成ノズル2に供給する。微細気泡生成ノズル2は、加圧液71から微細気泡を含む液体を生成し、貯溜部5に貯溜された液体(以下、「貯溜液91」という。)に微細気泡を含む液体を供給する。当該微細気泡は、直径が1μm(マイクロメートル)未満のウルトラファインバブルである。加圧液生成部3では、様々な種類の気体を様々な種類の液体に加圧溶解させてよい。 FIG. 1 is a cross-sectional view showing a fine bubble generating device 1 which is a sterilizing liquid generating device according to an embodiment of the present invention. The fine bubble generating device 1 includes a fine bubble generating nozzle 2, a pressurized liquid generating unit 3, a pressurized liquid channel 4, a storage unit 5, and a circulation channel 6. The pressurized liquid channel 4 connects the pressurized liquid generating unit 3 and the fine bubble generating nozzle 2. The tip of the fine bubble generating nozzle 2 is connected to the side wall 51 of the reservoir 5. The pressurizing liquid generating unit 3 generates a pressurizing liquid 71 obtained by pressurizing and dissolving a gas in the liquid, and supplies the pressurizing liquid 71 to the fine bubble generating nozzle 2 through the pressurizing liquid channel 4. The fine bubble generating nozzle 2 generates a liquid containing fine bubbles from the pressurized liquid 71 and supplies the liquid containing fine bubbles to the liquid stored in the reservoir 5 (hereinafter referred to as “reserved liquid 91”). The fine bubbles are ultra fine bubbles having a diameter of less than 1 μm (micrometer). In the pressurized liquid production | generation part 3, you may press-dissolve various types of gas in various types of liquid.
 図1に示す微細気泡生成装置1では、加圧液生成部3により、液体に空気を加圧溶解させた加圧液71が生成される。また、微細気泡生成ノズル2により、直径が1μm未満の空気の微細気泡(いわゆる、ウルトラファインバブル)を含む液体が生成され、貯溜部5内の貯溜液91中に供給される。図1では、図の理解を容易にするために、加圧液71や貯溜液91等の流体に破線にて平行斜線を付す。 In the fine bubble generating device 1 shown in FIG. 1, the pressurized liquid generating unit 3 generates a pressurized liquid 71 in which air is pressurized and dissolved in the liquid. Further, a liquid containing fine air bubbles (so-called ultra fine bubbles) having a diameter of less than 1 μm is generated by the fine bubble generating nozzle 2 and supplied into the storage liquid 91 in the storage unit 5. In FIG. 1, in order to facilitate understanding of the drawing, fluids such as the pressurized liquid 71 and the reservoir liquid 91 are indicated by a parallel oblique line with a broken line.
 加圧液生成部3は、混合ノズル31と、溶解流路部32と、ポンプ33と、プラズマ生成部34とを備える。本実施の形態では、ウルトラファインバブル生成部は、溶解流路部32と微細気泡生成ノズル2とを少なくとも含む。加圧液生成部3では、ポンプ33により混合部である混合ノズル31に圧送された液体と、プラズマ生成部34により生成されたプラズマを含んだ気体(以下、「プラズマ含有ガス」または単に「気体」という。)とが、混合ノズル31により混合され、溶解流路部32内に向けて噴出される。溶解部である溶解流路部32内は加圧されて大気圧よりも圧力が高い状態(以下、「加圧環境」という。)となっており、混合ノズル31から噴出された液体とプラズマ含有ガスとが混合された流体(以下、「混合流体72」という。)が、溶解流路部32内を加圧環境下にて流れる間に、プラズマ含有ガスが液体に加圧溶解して加圧液71が生成される。プラズマ生成部34の内部には、放電部として対向電極が設けられ、例えば、10kV程度の高電圧が付与されることにより、対向電極間に放電が生じる。当該放電により、放電部を通過する気体中にプラズマが生じる。 The pressurized liquid generation unit 3 includes a mixing nozzle 31, a dissolution channel unit 32, a pump 33, and a plasma generation unit 34. In the present embodiment, the ultra fine bubble generating unit includes at least the dissolution channel unit 32 and the fine bubble generating nozzle 2. In the pressurized liquid generating unit 3, a gas (hereinafter referred to as “plasma-containing gas” or simply “gas”) including the liquid pumped by the pump 33 to the mixing nozzle 31 that is the mixing unit and the plasma generated by the plasma generating unit 34. Are mixed by the mixing nozzle 31 and ejected toward the dissolution channel portion 32. The dissolution flow path portion 32 which is a dissolution portion is pressurized and in a state where the pressure is higher than the atmospheric pressure (hereinafter referred to as “pressurized environment”), and the liquid ejected from the mixing nozzle 31 and the plasma are contained. While the fluid mixed with the gas (hereinafter referred to as “mixed fluid 72”) flows through the dissolution flow path portion 32 in a pressurized environment, the plasma-containing gas is pressurized and dissolved in the liquid and pressurized. Liquid 71 is produced. A counter electrode is provided as a discharge unit inside the plasma generation unit 34. For example, a high voltage of about 10 kV is applied to cause discharge between the counter electrodes. Due to the discharge, plasma is generated in the gas passing through the discharge part.
 図2は、混合ノズル31を拡大して示す断面図である。混合ノズル31は、液体流入口311と、気体流入口319と、混合流体噴出口312とを備える。液体流入口311からは、ポンプ33により圧送された液体が流入する。プラズマ生成部34は、混合ノズル31の気体流入口319に配置される。気体流入口319からは、プラズマ含有ガスが流入する。混合流体噴出口312からは、液体流入口311から流入した液体および気体流入口319から流入したプラズマ含有ガスが混合された混合流体72(図1参照)が噴出する。液体流入口311、気体流入口319および混合流体噴出口312はそれぞれ略円形である。 FIG. 2 is an enlarged cross-sectional view showing the mixing nozzle 31. The mixing nozzle 31 includes a liquid inlet 311, a gas inlet 319, and a mixed fluid outlet 312. The liquid pumped by the pump 33 flows from the liquid inlet 311. The plasma generator 34 is disposed at the gas inlet 319 of the mixing nozzle 31. Plasma-containing gas flows from the gas inlet 319. From the mixed fluid outlet 312, a mixed fluid 72 (see FIG. 1) in which the liquid flowing in from the liquid inlet 311 and the plasma-containing gas flowing in from the gas inlet 319 are mixed is ejected. The liquid inlet 311, the gas inlet 319, and the mixed fluid outlet 312 are each substantially circular.
 液体流入口311から混合流体噴出口312に向かうノズル流路310の流路断面、および、気体流入口319からノズル流路310に向かう気体流路3191の流路断面も略円形である。流路断面とは、ノズル流路310や気体流路3191等の流路の中心軸に垂直な断面、すなわち、流路を流れる流体の流れに垂直な断面を意味する。また、以下の説明では、流路断面の面積を「流路面積」という。ノズル流路310は、流路面積が流路の中間部で小さくなるベンチュリ管状である。 The flow path section of the nozzle flow path 310 from the liquid inlet 311 to the mixed fluid outlet 312 and the flow path cross section of the gas flow path 3191 from the gas inlet 319 to the nozzle flow path 310 are also substantially circular. The channel cross section means a cross section perpendicular to the central axis of the flow path such as the nozzle flow path 310 and the gas flow path 3191, that is, a cross section perpendicular to the flow of fluid flowing through the flow path. In the following description, the area of the channel cross section is referred to as “channel area”. The nozzle flow path 310 is a Venturi tube having a flow path area that becomes smaller in the middle of the flow path.
 混合ノズル31は、液体流入口311から混合流体噴出口312に向かって順に連続して配置される導入部313と、第1テーパ部314と、喉部315と、気体混合部316と、第2テーパ部317と、導出部318とを備える。混合ノズル31は、また、内部に気体流路3191が設けられた気体供給部3192を備える。 The mixing nozzle 31 includes an introduction portion 313, a first taper portion 314, a throat portion 315, a gas mixing portion 316, and a second portion that are continuously arranged in order from the liquid inlet 311 toward the mixed fluid outlet 312. A tapered portion 317 and a lead-out portion 318 are provided. The mixing nozzle 31 also includes a gas supply unit 3192 in which a gas flow path 3191 is provided.
 導入部313では、流路面積は、ノズル流路310の中心軸J1方向の各位置においてほぼ一定である。第1テーパ部314では、液体の流れる方向に向かって(すなわち、下流側に向かって)流路面積が漸次減少する。喉部315では、流路面積はほぼ一定である。喉部315の流路面積は、ノズル流路310において最も小さい。なお、ノズル流路310では、喉部315において流路面積が僅かに変化する場合であっても、流路面積がおよそ最も小さい部分全体が喉部315と捉えられる。気体混合部316では、流路面積はほぼ一定であり、喉部315の流路面積よりも少し大きい。第2テーパ部317では、下流側に向かって流路面積が漸次増大する。導出部318では、流路面積はほぼ一定である。気体流路3191の流路面積もほぼ一定であり、気体流路3191は、ノズル流路310の気体混合部316に接続される。 In the introduction part 313, the flow path area is substantially constant at each position in the central axis J1 direction of the nozzle flow path 310. In the first taper portion 314, the flow path area gradually decreases in the liquid flow direction (that is, toward the downstream side). In the throat 315, the flow path area is substantially constant. The channel area of the throat 315 is the smallest in the nozzle channel 310. In the nozzle channel 310, even if the channel area slightly changes in the throat 315, the entire portion having the smallest channel area is regarded as the throat 315. In the gas mixing unit 316, the flow channel area is substantially constant and is slightly larger than the flow channel area of the throat 315. In the second taper portion 317, the flow path area gradually increases toward the downstream side. In the derivation unit 318, the flow path area is substantially constant. The channel area of the gas channel 3191 is also substantially constant, and the gas channel 3191 is connected to the gas mixing unit 316 of the nozzle channel 310.
 混合ノズル31では、液体流入口311からノズル流路310に流入した液体が、喉部315で加速されて静圧が低下し、喉部315および気体混合部316において、ノズル流路310内の圧力が大気圧よりも低くなる。これにより、気体流入口319からプラズマ含有ガスが吸引され、気体流路3191を通過して気体混合部316に流入し、液体と混合されて混合流体72(図1参照)が生成される。混合流体72は、第2テーパ部317および導出部318において減速されて静圧が増大し、混合流体噴出口312を介して溶解流路部32内に噴出される。 In the mixing nozzle 31, the liquid that has flowed into the nozzle channel 310 from the liquid inlet 311 is accelerated by the throat portion 315 and the static pressure is lowered, and the pressure in the nozzle channel 310 is reduced in the throat portion 315 and the gas mixing portion 316. Becomes lower than atmospheric pressure. Thus, the plasma-containing gas is sucked from the gas inlet 319, passes through the gas flow path 3191, flows into the gas mixing unit 316, and is mixed with the liquid to generate the mixed fluid 72 (see FIG. 1). The mixed fluid 72 is decelerated at the second tapered portion 317 and the outlet portion 318 to increase the static pressure, and is ejected into the dissolution channel portion 32 via the mixed fluid ejection port 312.
 図1に示すように、溶解流路部32は、上下方向に積層される第1水平流路321と、第2水平流路322と、第3水平流路323と、第4水平流路324と、第5水平流路325とを備える。以下の説明では、第1水平流路321、第2水平流路322、第3水平流路323、第4水平流路324および第5水平流路325をまとめて指す場合、「水平流路321~325」と呼ぶ。水平流路321~325は、正確には、液体が流れる内部空間を形成する部位である。水平流路321~325は、水平方向に延びる管路であり、水平流路321~325の長手方向に垂直な断面は略矩形である。本実施の形態では、水平流路321~325の幅は、約40mmである。 As shown in FIG. 1, the dissolution channel section 32 includes a first horizontal channel 321, a second horizontal channel 322, a third horizontal channel 323, and a fourth horizontal channel 324 that are stacked in the vertical direction. And a fifth horizontal flow path 325. In the following description, when the first horizontal flow path 321, the second horizontal flow path 322, the third horizontal flow path 323, the fourth horizontal flow path 324, and the fifth horizontal flow path 325 are collectively indicated, “horizontal flow path 321”. ~ 325 ". The horizontal flow paths 321 to 325 are portions that form an internal space through which liquid flows. The horizontal flow paths 321 to 325 are pipe lines extending in the horizontal direction, and the cross section perpendicular to the longitudinal direction of the horizontal flow paths 321 to 325 is substantially rectangular. In the present embodiment, the width of the horizontal flow paths 321 to 325 is about 40 mm.
 第1水平流路321の上流側の端部(すなわち、図1中の左側の端部)には、混合ノズル31が取り付けられており、混合ノズル31から噴出された後の混合流体72は、加圧環境下にて図1中の右側に向かって流れる。本実施の形態では、混合ノズル31から噴出された直後の混合流体72は、第1水平流路321内の混合流体72の液面よりも上方から噴出し、第1水平流路321の下流側の壁面(すなわち、図1中の右側の壁面)に衝突する前に、上記液面に直接衝突する。混合ノズル31から噴出された混合流体72を液面に直接衝突させるためには、第1水平流路321の長さを、混合ノズル31の混合流体噴出口312(図2参照)の中心と第1水平流路321の下面との間の上下方向の距離の7.5倍よりも大きくすることが好ましい。 The mixing nozzle 31 is attached to the upstream end of the first horizontal flow path 321 (that is, the left end in FIG. 1), and the mixed fluid 72 after being ejected from the mixing nozzle 31 is It flows toward the right side in FIG. 1 under a pressurized environment. In the present embodiment, the mixed fluid 72 immediately after being ejected from the mixing nozzle 31 is ejected from above the liquid level of the mixed fluid 72 in the first horizontal flow path 321, and is downstream of the first horizontal flow path 321. It collides directly with the liquid surface before colliding with the wall surface (that is, the right wall surface in FIG. 1). In order to cause the mixed fluid 72 ejected from the mixing nozzle 31 to directly collide with the liquid surface, the length of the first horizontal flow path 321 is set to the center of the mixed fluid ejection port 312 (see FIG. 2) of the mixing nozzle 31. It is preferable to make it larger than 7.5 times the vertical distance between the lower surface of one horizontal flow path 321.
 加圧液生成部3では、混合ノズル31の混合流体噴出口312の一部または全体が、第1水平流路321内の混合流体72の液面よりも下側に位置してもよい。これにより、上述と同様に、第1水平流路321内において、混合ノズル31から噴出された直後の混合流体72が、第1水平流路321内を流れる混合流体72に直接衝突する。 In the pressurized liquid generating unit 3, a part or the whole of the mixed fluid ejection port 312 of the mixing nozzle 31 may be positioned below the liquid level of the mixed fluid 72 in the first horizontal flow path 321. As a result, the mixed fluid 72 immediately after being ejected from the mixing nozzle 31 directly collides with the mixed fluid 72 flowing in the first horizontal flow channel 321 in the first horizontal flow channel 321 as described above.
 第1水平流路321の下流側の端部の下面には、略円形の開口321aが設けられており、第1水平流路321を流れる混合流体72は、第1水平流路321の下方に位置する第2水平流路322へと開口321aを介して落下する。なお、水平流路321~325を流れる流体は、必ずしも気液混合状態であるとは限らないが、以下、単に、「混合流体72」と呼ぶ。第2水平流路322では、第1水平流路321から落下した混合流体72が加圧環境下にて図1中の右側から左側へと流れ、第2水平流路322の下流側の端部の下面に設けられた略円形の開口322aを介して、第2水平流路322の下方に位置する第3水平流路323へと落下する。第3水平流路323では、第2水平流路322から落下した混合流体72が加圧環境下にて図1中の左側から右側へと流れ、第3水平流路323の下流側の端部の下面に設けられた略円形の開口323aを介して、第3水平流路323の下方に位置する第4水平流路324へと落下する。図1に示すように、第1水平流路321~第4水平流路324では、混合流体72は、気泡を含む液体の層と、その上方に位置する気体(すなわち、プラズマ含有ガス)の層に分かれている。 A substantially circular opening 321 a is provided on the lower surface of the downstream end portion of the first horizontal flow path 321, and the mixed fluid 72 flowing through the first horizontal flow path 321 is located below the first horizontal flow path 321. It falls to the 2nd horizontal flow path 322 located through the opening 321a. The fluid flowing through the horizontal flow paths 321 to 325 is not necessarily in a gas-liquid mixed state, but is simply referred to as “mixed fluid 72” hereinafter. In the second horizontal flow path 322, the mixed fluid 72 that has dropped from the first horizontal flow path 321 flows from the right side to the left side in FIG. 1 in a pressurized environment, and the downstream end of the second horizontal flow path 322. It falls to the 3rd horizontal flow path 323 located under the 2nd horizontal flow path 322 through the substantially circular opening 322a provided in the lower surface. In the third horizontal flow path 323, the mixed fluid 72 dropped from the second horizontal flow path 322 flows from the left side to the right side in FIG. It drops to a fourth horizontal flow path 324 located below the third horizontal flow path 323 through a substantially circular opening 323a provided on the lower surface of the first horizontal flow path. As shown in FIG. 1, in the first horizontal flow path 321 to the fourth horizontal flow path 324, the mixed fluid 72 includes a liquid layer containing bubbles and a gas (ie, plasma-containing gas) layer positioned above the liquid layer. It is divided into.
 第4水平流路324では、第3水平流路323から落下した混合流体72が加圧環境下にて図1中の右側から左側へと流れ、第4水平流路324の下流側の端部の下面に設けられた略円形の開口324aを介して、第4水平流路324の下方に位置する第5水平流路325へと流入(すなわち、落下)する。第5水平流路325では、第1水平流路321~第4水平流路324とは異なり、気体の層は存在しておらず、第5水平流路325内に充満する液体内において、第5水平流路325の上面近傍に、視認可能な程度の大きさの気泡が僅かに存在する状態となっている。第5水平流路325では、第4水平流路324から流入した混合流体72が加圧環境下にて図1中の左側から右側へと流れる。 In the fourth horizontal flow path 324, the mixed fluid 72 that has dropped from the third horizontal flow path 323 flows from the right side to the left side in FIG. 1 in a pressurized environment, and the downstream end of the fourth horizontal flow path 324. It flows into the fifth horizontal flow path 325 located below the fourth horizontal flow path 324 (that is, falls) through a substantially circular opening 324a provided on the lower surface of the first horizontal flow path. In the fifth horizontal flow path 325, unlike the first horizontal flow path 321 to the fourth horizontal flow path 324, there is no gas layer, and in the liquid filling the fifth horizontal flow path 325, In the vicinity of the upper surface of the five horizontal flow paths 325, there are few bubbles of a size that can be visually recognized. In the fifth horizontal flow path 325, the mixed fluid 72 flowing in from the fourth horizontal flow path 324 flows from the left side to the right side in FIG.
 加圧液生成部3では、溶解流路部32の水平流路321~325を、段階的に緩急を繰り返しつつ上から下に流れ落ちる(すなわち、水平方向への流れと下方向への流れとを交互に繰り返しつつ流れる)混合流体72において、気体が液体に徐々に加圧溶解する。第5水平流路325においては、液体中に溶解している気体の濃度は、加圧環境下における当該気体の(飽和)溶解度の60%~90%にほぼ等しい。そして、液体に溶解しなかった余剰な気体が、第5水平流路325内において、視認可能な大きさの気泡として存在している。上下に隣接する水平流路321~325における混合流体72の流れの方向が逆向きであることにより、加圧液生成部3の小型化が実現される。 In the pressurized liquid generating section 3, the horizontal flow paths 321 to 325 of the dissolution flow path section 32 flow down from top to bottom while repeating steps gradually (that is, the flow in the horizontal direction and the flow in the downward direction are reduced). In the mixed fluid 72 (flowing alternately and repeatedly), the gas is gradually dissolved in the liquid under pressure. In the fifth horizontal flow path 325, the concentration of the gas dissolved in the liquid is approximately equal to 60% to 90% of the (saturated) solubility of the gas under a pressurized environment. And the excess gas which did not melt | dissolve in the liquid exists in the 5th horizontal flow path 325 as a bubble of the magnitude | size which can be visually recognized. Since the flow direction of the mixed fluid 72 in the horizontal channels 321 to 325 adjacent to each other in the upper and lower directions is reversed, the pressurized liquid generating unit 3 can be reduced in size.
 溶解流路部32は、第5水平流路325の下流側の上面から上方へと延びる余剰気体分離部326をさらに備え、余剰気体分離部326には混合流体72が充満している。余剰気体分離部326の上下方向に垂直な断面は略矩形であり、余剰気体分離部326の上端部は、圧力調整用の絞り部327を介して大気開放されている。第5水平流路325を流れる混合流体72の気泡は、余剰気体分離部326内を上昇して大気中に放出される。 The dissolution channel unit 32 further includes an excess gas separation unit 326 extending upward from the upper surface on the downstream side of the fifth horizontal channel 325, and the excess gas separation unit 326 is filled with the mixed fluid 72. The cross section perpendicular to the vertical direction of the surplus gas separation part 326 is substantially rectangular, and the upper end of the surplus gas separation part 326 is opened to the atmosphere via a pressure adjustment throttle part 327. The bubbles of the mixed fluid 72 flowing through the fifth horizontal flow path 325 rise in the surplus gas separation unit 326 and are released into the atmosphere.
 このように、混合流体72から余剰な気体が分離されることにより、少なくとも容易に視認できる大きさの気泡を実質的に含まない加圧液71が生成され、第5水平流路325の下流側の端部(すなわち、図1中の右側の端部)に接続された加圧液流路4へと送出される。本実施の形態では、加圧液71には、大気圧下における気体の(飽和)溶解度の約2倍以上の気体が溶解している。溶解流路部32において水平流路321~325を流れる混合流体72の液体は、生成途上の加圧液71と捉えることもできる。 In this manner, the excess gas is separated from the mixed fluid 72, whereby the pressurized liquid 71 that does not substantially include bubbles of a size that can be easily visually recognized is generated, and is downstream of the fifth horizontal channel 325. Is sent to the pressurized liquid flow path 4 connected to the end of this (that is, the right end in FIG. 1). In the present embodiment, the pressurized liquid 71 dissolves a gas that is about twice or more the gas (saturated) solubility under atmospheric pressure. The liquid of the mixed fluid 72 that flows through the horizontal flow paths 321 to 325 in the dissolution flow path section 32 can also be regarded as the pressurized liquid 71 that is being generated.
 微細気泡生成装置1は、調整弁61と、圧力センサ62と、弁制御部63とをさらに備える。調整弁61は、加圧液流路4に設けられて加圧液流路4内の加圧液71の圧力を調整する。圧力センサ62は、第1水平流路321の上方に配置され、加圧液生成部3の溶解流路部32内の圧力を測定する。第1水平流路321の上方には、排気弁64も設けられる。微細気泡生成装置1では、圧力センサ62から出力された溶解流路部32内の圧力の測定値が、予め定められた所定の圧力(好ましくは、0.1MPa~0.45MPa)となるように、弁制御部63により調整弁61が制御される。換言すれば、弁制御部63は、圧力センサ62からの出力に基づいて調整弁61を制御する。これにより、温度変化等により混合流体72の粘度が変化しても、溶解流路部32内の圧力変化が低減される。なお、調整弁61は手動で操作されるものでもよい。溶解流路部32から加圧液流路4へと導かれた加圧液71は、微細気泡生成ノズル2に流入する。 The fine bubble generating device 1 further includes a regulating valve 61, a pressure sensor 62, and a valve control unit 63. The adjustment valve 61 is provided in the pressurizing fluid channel 4 and adjusts the pressure of the pressurizing fluid 71 in the pressurizing fluid channel 4. The pressure sensor 62 is disposed above the first horizontal flow path 321 and measures the pressure in the dissolution flow path section 32 of the pressurized liquid generating section 3. An exhaust valve 64 is also provided above the first horizontal flow path 321. In the fine bubble generating device 1, the measured value of the pressure in the dissolution flow path portion 32 output from the pressure sensor 62 is set to a predetermined pressure (preferably 0.1 MPa to 0.45 MPa). The regulating valve 61 is controlled by the valve control unit 63. In other words, the valve control unit 63 controls the adjustment valve 61 based on the output from the pressure sensor 62. Thereby, even if the viscosity of the mixed fluid 72 changes due to a temperature change or the like, the pressure change in the dissolution flow path portion 32 is reduced. The adjusting valve 61 may be manually operated. The pressurizing liquid 71 guided from the dissolution channel portion 32 to the pressurizing liquid channel 4 flows into the fine bubble generating nozzle 2.
 図3は、微細気泡生成ノズル2を拡大して示す断面図である。微細気泡生成ノズル2は、接続配管4から加圧液71が流入する加圧液流入口21、および、貯溜液91に向かって開口する加圧液噴出口22を備える。加圧液流入口21および加圧液噴出口22はそれぞれ略円形であり、加圧液流入口21から加圧液噴出口22に向かうノズル流路20の流路断面も略円形である。 FIG. 3 is an enlarged sectional view showing the fine bubble generating nozzle 2. The fine bubble generating nozzle 2 includes a pressurized liquid inlet 21 through which the pressurized liquid 71 flows from the connection pipe 4 and a pressurized liquid outlet 22 that opens toward the stored liquid 91. The pressurized liquid inlet 21 and the pressurized liquid outlet 22 are each substantially circular, and the cross section of the nozzle flow path 20 from the pressurized liquid inlet 21 toward the pressurized liquid outlet 22 is also substantially circular.
 微細気泡生成ノズル2は、加圧液流入口21から加圧液噴出口22に向かって順に連続して配置される導入部23、テーパ部24および喉部25を備える。導入部23では、流路面積は、ノズル流路20の中心軸J2方向の各位置においてほぼ一定である。テーパ部24では、加圧液71(図1参照)の流れる方向に向かって(すなわち、下流側に向かって)流路面積が漸次減少する。テーパ部24の内面は、ノズル流路20の中心軸J2を中心とする略円錐面の一部である。当該中心軸J2を含む断面において、テーパ部24の内面の成す角度αは、10°以上90°以下であることが好ましい。 The fine bubble generating nozzle 2 includes an introduction portion 23, a taper portion 24, and a throat portion 25 that are sequentially arranged from the pressurized liquid inlet 21 toward the pressurized liquid outlet 22. In the introduction portion 23, the flow channel area is substantially constant at each position in the direction of the central axis J <b> 2 of the nozzle flow channel 20. In the taper portion 24, the flow path area gradually decreases in the direction in which the pressurized liquid 71 (see FIG. 1) flows (that is, toward the downstream side). The inner surface of the tapered portion 24 is a part of a substantially conical surface with the central axis J2 of the nozzle channel 20 as the center. In the cross section including the central axis J2, the angle α formed by the inner surface of the tapered portion 24 is preferably 10 ° or more and 90 ° or less.
 喉部25は、テーパ部24と加圧液噴出口22とを連絡する。喉部25の内面は略円筒面であり、喉部25では、流路面積はほぼ一定である。喉部25における流路断面の直径は、ノズル流路20において最も小さく、喉部25の流路面積は、ノズル流路20において最も小さい。喉部25の長さは、好ましくは、喉部25の直径の1.1倍以上10倍以下であり、より好ましくは、1.5倍以上2倍以下である。なお、ノズル流路20では、喉部25において流路面積が僅かに変化する場合であっても、流路面積がおよそ最も小さい部分全体が喉部25と捉えられる。 The throat part 25 connects the taper part 24 and the pressurized liquid ejection port 22. The inner surface of the throat portion 25 is a substantially cylindrical surface, and the flow path area is substantially constant in the throat portion 25. The diameter of the channel cross section in the throat 25 is the smallest in the nozzle channel 20, and the channel area of the throat 25 is the smallest in the nozzle channel 20. The length of the throat 25 is preferably 1.1 to 10 times the diameter of the throat 25, and more preferably 1.5 to 2 times. In the nozzle channel 20, even if the channel area slightly changes in the throat portion 25, the entire portion having the smallest channel area is regarded as the throat portion 25.
 微細気泡生成ノズル2は、また、喉部25に連続して設けられ、加圧液噴出口22の周囲を加圧液噴出口22から離間して囲む拡大部27、および、拡大部27の端部に設けられた拡大部開口28を備える。加圧液噴出口22と拡大部開口28との間の流路29は、加圧液噴出口22の外部に設けられた流路であり、以下、「外部流路29」という。外部流路29の流路断面および拡大部開口28は略円形であり、外部流路29の流路面積はほぼ一定である。外部流路29の直径は、喉部25の直径(すなわち、加圧液噴出口22の直径)よりも大きい。以下の説明では、拡大部27の内周面の加圧液噴出口22側のエッジと加圧液噴出口22のエッジとの間の円環状の面を、「噴出口端面221」という。本実施の形態では、ノズル流路20および外部流路29の中心軸J2と噴出口端面221との成す角度は約90°である。また、外部流路29の直径は10mm~20mmであり、外部流路29の長さは、外部流路29の直径におよそ等しい。微細気泡生成ノズル2では、加圧液流入口21とは反対側の端部に、凹部である外部流路29が形成され、当該凹部の底部に、当該底部よりも小さい開口である加圧液噴出口22が形成されている、と捉えられる。拡大部27では、加圧液噴出口22と貯溜部5内の貯溜液91との間における加圧液71の流路面積が拡大される。 The fine bubble generating nozzle 2 is also provided continuously to the throat portion 25 and encloses the periphery of the pressurizing liquid jet port 22 away from the pressurizing liquid jet port 22, and the end of the enlarging unit 27 An enlarged portion opening 28 provided in the portion is provided. The flow path 29 between the pressurized liquid jet port 22 and the enlarged portion opening 28 is a flow path provided outside the pressurized liquid jet port 22 and is hereinafter referred to as an “external flow path 29”. The channel cross section of the external channel 29 and the enlarged portion opening 28 are substantially circular, and the channel area of the external channel 29 is substantially constant. The diameter of the external flow path 29 is larger than the diameter of the throat portion 25 (that is, the diameter of the pressurized liquid ejection port 22). In the following description, an annular surface between the edge of the inner peripheral surface of the enlarged portion 27 on the side of the pressurized liquid jet port 22 and the edge of the pressurized liquid jet port 22 is referred to as a “jet port end surface 221”. In the present embodiment, the angle formed by the central axis J2 of the nozzle flow path 20 and the external flow path 29 and the jet end face 221 is about 90 °. The diameter of the external channel 29 is 10 mm to 20 mm, and the length of the external channel 29 is approximately equal to the diameter of the external channel 29. In the fine bubble generating nozzle 2, an external channel 29 that is a recess is formed at the end opposite to the pressurizing liquid inlet 21, and the pressurizing liquid that is an opening smaller than the bottom at the bottom of the recess. It can be understood that the spout 22 is formed. In the enlargement unit 27, the flow path area of the pressurized liquid 71 between the pressurized liquid ejection port 22 and the stored liquid 91 in the storage unit 5 is expanded.
 微細気泡生成ノズル2では、加圧液流入口21からノズル流路20に流入した加圧液71が、テーパ部24において徐々に加速されつつ喉部25へと流れ、喉部25を通過して加圧液噴出口22から噴流として噴出される。喉部25における加圧液71の流速は、好ましくは秒速10m~30mであり、本実施の形態では、秒速約20mである。喉部25では、加圧液71の静圧が低下するため、加圧液71中のプラズマ含有ガスが過飽和となって微細気泡として液中に析出する。微細気泡は、加圧液71と共に拡大部27の外部流路29を通過して、貯溜部5中の貯溜液91中へと拡散する。微細気泡生成ノズル2では、加圧液71が外部流路29を通過する間にも、微細気泡の析出が生じる。微細気泡生成ノズル2にて生成される微細気泡は、上述のように、直径が1μm未満のいわゆるウルトラファインバブルを含む。 In the fine bubble generating nozzle 2, the pressurized liquid 71 that has flowed into the nozzle flow path 20 from the pressurized liquid inlet 21 flows to the throat part 25 while being gradually accelerated in the tapered part 24, and passes through the throat part 25. It is ejected as a jet from the pressurized liquid ejection port 22. The flow rate of the pressurizing liquid 71 in the throat 25 is preferably 10 m to 30 m per second, and in this embodiment is about 20 m per second. In the throat 25, since the static pressure of the pressurizing liquid 71 decreases, the plasma-containing gas in the pressurizing liquid 71 becomes supersaturated and precipitates in the liquid as fine bubbles. The fine bubbles pass through the external flow path 29 of the enlarged portion 27 together with the pressurized liquid 71 and diffuse into the stored liquid 91 in the stored section 5. In the fine bubble generating nozzle 2, the fine bubbles are deposited while the pressurized liquid 71 passes through the external flow path 29. The fine bubbles generated by the fine bubble generating nozzle 2 include so-called ultra fine bubbles having a diameter of less than 1 μm as described above.
 図1に示すように、貯溜部5内の貯溜液91、すなわち、ウルトラファインバブルを含む液体(以下、「UFB液」という。)は、貯溜部5から循環流路6を介して加圧液生成部3のポンプ33へと戻され、加圧液生成部3および加圧液流路4を介して貯溜部5へと循環する。これにより、UFB液中のウルトラファインバブルの密度が増大する。図1に示す微細気泡生成装置1では、例えば、UFB液を約4L(リットル)/分で所定の時間だけ循環させつつ、約0.2L/分のプラズマ含有ガスを混合ノズル31から供給することにより、UFB液が生成される。UFB液の生成時間が、例えば30分である場合、UFB液中のウルトラファインバブルの密度は、約3.58x10個/cmとなる。UFB液中のウルトラファインバブルの直径は、約100nm(ナノメートル)を中心として1μm未満の範囲に分布する。ウルトラファインバブルの密度および直径は、ナノサイト社(NanoSight Limited)のNS500により測定できる。 As shown in FIG. 1, the storage liquid 91 in the storage section 5, that is, a liquid containing ultrafine bubbles (hereinafter referred to as “UFB liquid”) is a pressurized liquid from the storage section 5 through the circulation channel 6. It is returned to the pump 33 of the generator 3 and circulates to the reservoir 5 via the pressurized liquid generator 3 and the pressurized liquid channel 4. Thereby, the density of the ultra fine bubble in UFB liquid increases. In the fine bubble generating device 1 shown in FIG. 1, for example, a plasma-containing gas of about 0.2 L / min is supplied from the mixing nozzle 31 while circulating the UFB liquid at a rate of about 4 L (liter) / min for a predetermined time. As a result, the UFB liquid is generated. When the generation time of the UFB liquid is, for example, 30 minutes, the density of the ultra fine bubbles in the UFB liquid is about 3.58 × 10 8 pieces / cm 3 . The diameter of the ultra fine bubbles in the UFB liquid is distributed in a range of less than 1 μm with a center of about 100 nm (nanometers). The density and diameter of the ultra fine bubble can be measured by NS500 of NanoSight Limited.
 微細気泡生成装置1により生成されたUFB液は、液中のウルトラファインバブルの密度が1.0x10個/cm以上になると高い殺菌力を示す。以下の説明では、ウルトラファインバブルの密度が1.0x10個/cm以上の上記UFB液を「殺菌液」ともいう。すなわち、微細気泡生成装置1は、高い殺菌力を有する殺菌液を生成する殺菌液生成装置である。 The UFB liquid generated by the fine bubble generating device 1 exhibits high bactericidal power when the density of ultrafine bubbles in the liquid is 1.0 × 10 8 pieces / cm 3 or more. In the following description, the UFB liquid having a density of ultra fine bubbles of 1.0 × 10 8 pieces / cm 3 or more is also referred to as “sterilizing liquid”. That is, the fine bubble generating apparatus 1 is a sterilizing liquid generating apparatus that generates a sterilizing liquid having high sterilizing power.
 図4は、微細気泡生成装置1により生成されたUFB液の殺菌力を示す実験結果である。実験では、大腸菌(E.Coli)を含む菌液10μL(マイクロリットル)に対して、微細気泡生成装置1により生成された直後のUFB液990μLを加え、菌数の減少を測定した。図4中の横軸は、UFB液の生成時間を示す。UFB液を生成する際の加圧液71の循環流量およびプラズマ含有ガスの供給流量は、上記と同じである。UFB液の生成に利用する液体および気体は純水および酸素であり、UFB液では、酸素中にプラズマを発生させたプラズマ含有ガスのウルトラファインバブルが純水中に存在する。図4中の縦軸は菌数(CFU(colony forming unit )/mL)を示す。 FIG. 4 is an experimental result showing the sterilizing power of the UFB liquid generated by the fine bubble generating device 1. In the experiment, 990 μL of the UFB solution immediately after being generated by the microbubble generator 1 was added to 10 μL (microliter) of the bacterial solution containing E. coli, and the decrease in the number of bacteria was measured. The horizontal axis in FIG. 4 indicates the generation time of the UFB liquid. The circulation flow rate of the pressurized liquid 71 and the supply flow rate of the plasma-containing gas when generating the UFB liquid are the same as described above. The liquid and gas used for the production of the UFB liquid are pure water and oxygen. In the UFB liquid, ultrafine bubbles of plasma-containing gas in which plasma is generated in oxygen exist in the pure water. The vertical axis in FIG. 4 indicates the number of bacteria (CFU (colony forming unit) / mL).
 図4において、生成時間が0分のプロットは、菌液10μLに対して純水990μLを加えた場合の菌数を示す。この場合の菌数は、約1.0x10CFU/mLである。生成時間が1分、5分、10分、30分の場合のUFB液中のウルトラファインバブルの密度はそれぞれ、0.62x10個/cm、1.71x10個/cm、1.31x10個/cm、3.58x10個/cmである。 In FIG. 4, the plot with a generation time of 0 minutes indicates the number of bacteria when 990 μL of pure water is added to 10 μL of the bacterial solution. In this case, the number of bacteria is about 1.0 × 10 6 CFU / mL. The density of the ultra fine bubbles in the UFB liquid when the generation time is 1 minute, 5 minutes, 10 minutes, and 30 minutes is 0.62 × 10 8 pieces / cm 3 , 1.71 × 10 8 pieces / cm 3 , and 1.31 × 10 respectively. 8 pieces / cm 3 , 3.58 × 10 8 pieces / cm 3 .
 図4に示すように、UFB液の生成時間が1分の場合(すなわち、ウルトラファインバブルの密度が0.62x10個/cmの場合)、菌数は約0.5x10CFU/mLまで減少する。これに対し、UFB液の生成時間が5分以上の場合、菌数は約0CFU/mLまで減少する。これらのことから、上述のように、液中のウルトラファインバブルの密度が1.0x10個/cm以上のUFB液は、高い殺菌力を有する殺菌液であることがわかる。 As shown in FIG. 4, when the production time of the UFB liquid is 1 minute (that is, when the density of ultra fine bubbles is 0.62 × 10 8 cells / cm 3 ), the number of bacteria is up to about 0.5 × 10 6 CFU / mL. Decrease. On the other hand, when the generation time of the UFB solution is 5 minutes or more, the number of bacteria decreases to about 0 CFU / mL. From these, as described above, it can be seen that the UFB liquid having an ultrafine bubble density of 1.0 × 10 8 particles / cm 3 or more in the liquid is a sterilizing liquid having a high sterilizing power.
 微細気泡生成装置1においてUFB液の生成に利用する液体および気体が純水および空気の場合も同様に、液中のウルトラファインバブルの密度が1.0x10個/cm以上のUFB液は、高い殺菌力を有する殺菌液であることが実験により確認された。 Similarly, in the case where the liquid and the gas used for generating the UFB liquid in the fine bubble generating apparatus 1 are pure water and air, the UFB liquid having a density of ultrafine bubbles in the liquid of 1.0 × 10 8 pieces / cm 3 or more is Experiments confirmed that the sterilizing solution had a high sterilizing power.
 UFB液の生成に酸素を利用した場合について、UFB液中のOHラジカル、一重項酸素、オゾン、過酸化水素水の量を測定した結果、一重項酸素およびオゾンが微量だけ検出された。また、UFB液の生成に空気を利用した場合について、UFB液中のOHラジカル、一重項酸素、オゾン、過酸化水素水の量を測定した結果、OHラジカル、一重項酸素、オゾンが微量だけ検出された。 As a result of measuring the amounts of OH radicals, singlet oxygen, ozone, and hydrogen peroxide water in the UFB liquid when oxygen was used to generate the UFB liquid, only a trace amount of singlet oxygen and ozone was detected. In addition, when air is used to generate UFB liquid, the amount of OH radicals, singlet oxygen, ozone, and hydrogen peroxide water in the UFB liquid is measured. It was done.
 図5は、微細気泡生成装置1により生成されたUFB液を所定の時間だけ放置した後に菌液に加えた場合の菌数の減少実験の結果を示す図である。実験条件は、UFB液を生成後に放置する点を除き、図4に示す実験と同様である。また、UFB液の生成時間は30分間である。UFB液の生成に利用する液体および気体は、純水および酸素である。図5中の横軸はUFB液の放置時間を示し、縦軸は菌数を示す。図5に示すように、生成後の放置時間が20分以下のUFB液は、生成直後のUFB液と同様に高い殺菌力を示す。また、放置時間が30分以上のUFB液では、殺菌力は時間の経過に伴って低下する。 FIG. 5 is a diagram showing the results of an experiment to reduce the number of bacteria when the UFB solution generated by the microbubble generator 1 is left for a predetermined time and then added to the bacterial solution. The experimental conditions are the same as the experiment shown in FIG. 4 except that the UFB solution is allowed to stand after generation. Moreover, the production | generation time of UFB liquid is 30 minutes. The liquid and gas used for generating the UFB liquid are pure water and oxygen. The horizontal axis in FIG. 5 indicates the time for which the UFB solution is left, and the vertical axis indicates the number of bacteria. As shown in FIG. 5, the UFB solution with a standing time after generation of 20 minutes or less shows a high sterilizing power like the UFB solution immediately after generation. In addition, the sterilizing power of the UFB solution with a standing time of 30 minutes or more decreases with time.
 図6は、微細気泡生成装置1により生成されたUFB液の様々な細菌に対する殺菌力を示す実験結果である。図6では、上述の大腸菌、緑膿菌、腸球菌および黄色ブドウ球菌のそれぞれに対する当該UFB液の殺菌力を示す。当該実験では、大腸菌、緑膿菌、腸球菌および黄色ブドウ球菌をそれぞれ含む菌液10μLに対して、微細気泡生成装置1により生成された直後のUFB液990μLを加え、菌数の減少結果を測定した。UFB液の添加前の菌液10μLに含まれる細菌数は、約1.0x10個である。 FIG. 6 shows the experimental results showing the bactericidal power of the UFB liquid generated by the microbubble generator 1 against various bacteria. FIG. 6 shows the bactericidal power of the UFB solution against each of the above-mentioned Escherichia coli, Pseudomonas aeruginosa, enterococci and S. aureus. In this experiment, 990 μL of the UFB solution immediately after being generated by the microbubble generator 1 was added to 10 μL of the bacterial solution containing Escherichia coli, Pseudomonas aeruginosa, enterococci, and Staphylococcus aureus, and the decrease in the number of bacteria was measured. did. The number of bacteria contained in 10 μL of the bacterial solution before the addition of the UFB solution is about 1.0 × 10 6 .
 UFB液を生成する際の加圧液71の循環流量およびプラズマ含有ガスの供給流量は、上記と同じである。UFB液の生成に利用する液体および気体は純水および酸素であり、UFB液では、酸素中にプラズマを発生させたプラズマ含有ガスのウルトラファインバブルが純水中に存在する。UFB液の生成時間は5分であり、UFB液中のウルトラファインバブルの密度は1.0x10個/cm以上である。また、UFB液は、微細気泡生成装置1により生成された直後に各菌液に添加される。すなわち、上述の放置時間が0分のUFB液が各菌液に添加される。 The circulation flow rate of the pressurized liquid 71 and the supply flow rate of the plasma-containing gas when generating the UFB liquid are the same as described above. The liquid and gas used for the production of the UFB liquid are pure water and oxygen. In the UFB liquid, ultrafine bubbles of plasma-containing gas in which plasma is generated in oxygen exist in the pure water. The generation time of the UFB liquid is 5 minutes, and the density of the ultra fine bubbles in the UFB liquid is 1.0 × 10 8 pieces / cm 3 or more. Further, the UFB solution is added to each bacterial solution immediately after being generated by the fine bubble generating device 1. That is, the above UFB solution for 0 minutes is added to each bacterial solution.
 図6の横軸は対象となる細菌を示し、縦軸はUFB液の添加後に残存した菌数(CFU/mL)を示す。図6では、比較のために、上述の各細菌の菌液10μLに対してそれぞれ純水990μLを加えた場合の残存菌数も併せて示す。図6に示すように、上述のいずれの細菌の場合も、純水を添加した場合は菌数は1.0x10CFU/mLから増加するか、あるいは、僅かに減少するだけである。一方、UFB液を添加した場合、菌数は約0~1.0x10CFU/mLまで減少する。これらのことから、上述のように、液中のウルトラファインバブルの密度が1.0x10個/cm以上のUFB液は、大腸菌、緑膿菌、腸球菌および黄色ブドウ球菌等、様々な細菌に対して高い殺菌力を有する殺菌液であることがわかる。 The horizontal axis of FIG. 6 shows the target bacteria, and the vertical axis shows the number of bacteria remaining after the addition of the UFB solution (CFU / mL). For comparison, FIG. 6 also shows the number of remaining bacteria when 990 μL of pure water is added to 10 μL of each bacterial solution described above. As shown in FIG. 6, in any of the above-mentioned bacteria, when pure water is added, the number of bacteria increases from 1.0 × 10 6 CFU / mL or only slightly decreases. On the other hand, when UFB solution is added, the number of bacteria decreases to about 0 to 1.0 × 10 1 CFU / mL. From these, as described above, the UFB solution having an ultrafine bubble density of 1.0 × 10 8 cells / cm 3 or more is various bacteria such as Escherichia coli, Pseudomonas aeruginosa, enterococci and Staphylococcus aureus. It can be seen that the sterilizing liquid has a high sterilizing power.
 以上に説明したように、微細気泡生成装置1では、プラズマ含有ガスにより形成されたウルトラファインバブルの密度が1.0x10個/cm以上の殺菌液を容易に生成して提供することができる。また、微細気泡生成装置1により生成された殺菌液は、所定の時間だけ様々な細菌に対して高い殺菌力を有し、所定の時間の経過後は、殺菌液の殺菌力は時間の経過に伴って低下する。このため、当該殺菌液を皮膚に塗布する場合等、殺菌液は所望の殺菌効果を発揮するとともに、比較的短時間の後に、殺菌力のない(あるいは殺菌力が低下した)状態となるため、皮膚に長時間刺激を与えることを防止(または抑制)することができる。 As described above, the fine bubble generating device 1 can easily generate and provide a sterilizing liquid having an ultrafine bubble density of 1.0 × 10 8 pieces / cm 3 or more formed by the plasma-containing gas. . In addition, the sterilizing liquid generated by the microbubble generator 1 has a high sterilizing power against various bacteria for a predetermined time, and after the predetermined time has passed, the sterilizing power of the sterilizing liquid will increase over time. It decreases with it. For this reason, such as when the sterilizing liquid is applied to the skin, the sterilizing liquid exhibits a desired sterilizing effect, and after a relatively short period of time, it has no sterilizing power (or has reduced sterilizing power). It can prevent (or suppress) long-term irritation to the skin.
 微細気泡生成装置1では、様々な変更が可能であり、本実施の形態のような加圧溶解方式の他、細孔吹き出し攪拌方式、せん断方式、旋廻液流式などでもよい。 Various changes can be made in the fine bubble generating apparatus 1, and a pore blowing stirring method, a shearing method, a rotating liquid flow method, and the like may be used in addition to the pressure dissolution method as in the present embodiment.
 微細気泡生成装置1では、酸素および空気以外の様々な気体が殺菌液の生成に利用されてよい。また、微細気泡生成装置1では、プラズマ含有ガスにより形成されたウルトラファインバブルの密度が1.0x10個/cm以上の殺菌液を生成できるのであれば、加圧液生成部3および微細気泡生成ノズル2に代えて、他の様々な構造が設けられてもよい。 In the fine bubble generating apparatus 1, various gases other than oxygen and air may be used for generating the sterilizing liquid. Moreover, in the fine bubble production | generation apparatus 1, if the density of the ultra fine bubble formed with the plasma containing gas can produce | generate the disinfection liquid of 1.0x10 < 8 > piece / cm < 3 > or more, the pressurized liquid production | generation part 3 and a fine bubble will be produced. Instead of the generation nozzle 2, other various structures may be provided.
 上記実施の形態および各変形例における構成は、相互に矛盾しない限り適宜組み合わされてよい。 The configurations in the above embodiment and each modification may be combined as appropriate as long as they do not contradict each other.
 発明を詳細に描写して説明したが、既述の説明は例示的であって限定的なものではない。したがって、本発明の範囲を逸脱しない限り、多数の変形や態様が可能であるといえる。 Although the invention has been described in detail, the above description is illustrative and not restrictive. Therefore, it can be said that many modifications and embodiments are possible without departing from the scope of the present invention.
 1  微細気泡生成装置
 31  混合ノズル
 32  溶解流路部
 34  プラズマ生成部
DESCRIPTION OF SYMBOLS 1 Fine bubble production | generation apparatus 31 Mixing nozzle 32 Dissolution flow path part 34 Plasma production | generation part

Claims (2)

  1.  殺菌液生成装置であって、
     気体からプラズマを含んだ気体であるプラズマ含有ガスを生成するプラズマ生成部と、
     前記プラズマ生成部からの前記プラズマ含有ガスと液体とを混合して混合流体を生成する混合部と、
     前記混合部からの前記混合流体に基づき、前記プラズマ含有ガスにより形成されたウルトラファインバブルを1.0x10個/cm以上含む殺菌液を生成するウルトラファインバブル生成部と、
    を備える。
    A sterilizing liquid generator,
    A plasma generation unit that generates a plasma-containing gas that is a gas containing plasma from a gas;
    A mixing unit that mixes the plasma-containing gas and the liquid from the plasma generation unit to generate a mixed fluid;
    Based on the mixed fluid from the mixing unit, an ultra fine bubble generating unit that generates a sterilizing liquid containing 1.0 × 10 8 / cm 3 or more of ultra fine bubbles formed by the plasma-containing gas;
    Is provided.
  2.  請求項1に記載の殺菌液生成装置であって、
     前記気体が、酸素または空気である。
    It is a sterilization liquid production | generation apparatus of Claim 1, Comprising:
    The gas is oxygen or air.
PCT/JP2014/079874 2013-11-18 2014-11-11 Microbicidal liquid-generating device WO2015072461A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-238206 2013-11-18
JP2013238206 2013-11-18

Publications (1)

Publication Number Publication Date
WO2015072461A1 true WO2015072461A1 (en) 2015-05-21

Family

ID=53057395

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/079874 WO2015072461A1 (en) 2013-11-18 2014-11-11 Microbicidal liquid-generating device

Country Status (2)

Country Link
TW (1) TW201605538A (en)
WO (1) WO2015072461A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020033294A (en) * 2018-08-29 2020-03-05 学校法人 名城大学 Oxygen radical activation solution, manufacturing method therefor, and production method of crop
CN112742225A (en) * 2019-10-31 2021-05-04 佳能株式会社 Ultrafine bubble generating device and element substrate manufacturing method
US11877378B2 (en) 2021-10-08 2024-01-16 National Yang Ming Chiao Tung University Plasma fine bubble liquid generating apparatus

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11492274B2 (en) 2020-05-28 2022-11-08 National Chiao Tung University Liquid treatment apparatus
CN114904410B (en) * 2021-02-07 2023-07-28 佛山市顺德区美的洗涤电器制造有限公司 Microbubble generating device and cigarette machine

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006289236A (en) * 2005-04-08 2006-10-26 Sutai Rabo:Kk Apparatus for producing plasma discharge treated water, plasma discharge water, plant growth accelerating liquid, cosmetic water, ozone wash water for industrial use, ozone sterilization water for medical use, and ozone therapeutic water for medical use
JP2011020005A (en) * 2009-07-13 2011-02-03 Dainichi Kogyo:Kk Nano bubble generator
JP2011025203A (en) * 2009-07-28 2011-02-10 Panasonic Electric Works Co Ltd Functional mist generator
JP2012228644A (en) * 2011-04-26 2012-11-22 Institute Of National Colleges Of Technology Japan Liquid treating apparatus
JP2013039497A (en) * 2011-08-11 2013-02-28 Idec Corp Gas dissolving apparatus and microbubble generator
JP2013107060A (en) * 2011-11-24 2013-06-06 Junji Yugawa Nanobubble generator
JP2013146714A (en) * 2012-01-23 2013-08-01 Idec Corp Microscopic bubble generation device
JP2013154342A (en) * 2012-01-05 2013-08-15 Idec Corp Apparatus and method for producing smell-imparted liquid, smel-imparted liquid, alcoholic drink and apparatus for producing substance-imparted liquid
JP2014155920A (en) * 2013-01-17 2014-08-28 Idec Corp High density fine air bubble liquid generation method and high density fine air bubble liquid generation device
JP2014171463A (en) * 2013-03-12 2014-09-22 Idec Corp Plant processing method

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006289236A (en) * 2005-04-08 2006-10-26 Sutai Rabo:Kk Apparatus for producing plasma discharge treated water, plasma discharge water, plant growth accelerating liquid, cosmetic water, ozone wash water for industrial use, ozone sterilization water for medical use, and ozone therapeutic water for medical use
JP2011020005A (en) * 2009-07-13 2011-02-03 Dainichi Kogyo:Kk Nano bubble generator
JP2011025203A (en) * 2009-07-28 2011-02-10 Panasonic Electric Works Co Ltd Functional mist generator
JP2012228644A (en) * 2011-04-26 2012-11-22 Institute Of National Colleges Of Technology Japan Liquid treating apparatus
JP2013039497A (en) * 2011-08-11 2013-02-28 Idec Corp Gas dissolving apparatus and microbubble generator
JP2013107060A (en) * 2011-11-24 2013-06-06 Junji Yugawa Nanobubble generator
JP2013154342A (en) * 2012-01-05 2013-08-15 Idec Corp Apparatus and method for producing smell-imparted liquid, smel-imparted liquid, alcoholic drink and apparatus for producing substance-imparted liquid
JP2013146714A (en) * 2012-01-23 2013-08-01 Idec Corp Microscopic bubble generation device
JP2014155920A (en) * 2013-01-17 2014-08-28 Idec Corp High density fine air bubble liquid generation method and high density fine air bubble liquid generation device
JP2014171463A (en) * 2013-03-12 2014-09-22 Idec Corp Plant processing method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020033294A (en) * 2018-08-29 2020-03-05 学校法人 名城大学 Oxygen radical activation solution, manufacturing method therefor, and production method of crop
JP7100849B2 (en) 2018-08-29 2022-07-14 学校法人 名城大学 Oxygen radical activation aqueous solution and production method of agricultural products
CN112742225A (en) * 2019-10-31 2021-05-04 佳能株式会社 Ultrafine bubble generating device and element substrate manufacturing method
US11877378B2 (en) 2021-10-08 2024-01-16 National Yang Ming Chiao Tung University Plasma fine bubble liquid generating apparatus

Also Published As

Publication number Publication date
TW201605538A (en) 2016-02-16

Similar Documents

Publication Publication Date Title
WO2015072461A1 (en) Microbicidal liquid-generating device
US10596528B2 (en) Nanobubble-producing apparatus
KR101901539B1 (en) Method for generating high density micro-bubble liquid and device for generating high density micro-bubble liquid
US11745149B2 (en) Fine bubble generating apparatus, fine bubble generation method, suction device, and suction system
KR101969772B1 (en) Gas-dissolved water producing device for dissolving air or gas in liquid
WO2015064159A1 (en) Microbubble formation method, and microbubble formation device
KR101192809B1 (en) Apparatus for Generating Water Containing Micro-Nano Bubbles
JP2008086868A (en) Microbubble generator
JP6157688B1 (en) Fine bubble liquid production equipment
JP5006273B2 (en) Micro bubble generator
JP7193826B2 (en) Fine bubble generator
JP2005144320A (en) Fluid mixing apparatus
JP2018047019A (en) Nozzle for oral cavity washing device and oral cavity washing device
JP2017104841A (en) Fine bubble generator, and production method of water containing fine bubble
JP2014159010A (en) Water treatment apparatus
JP2013146714A (en) Microscopic bubble generation device
WO2017110766A1 (en) Device for anesthetizing live fish
US20200156018A1 (en) Fine bubble generating method and fine bubble generating apparatus
WO2013065355A1 (en) Ozone liquid generator and ozone liquid generation method
JP2010115586A (en) Microbubble generator
JP4364876B2 (en) Gas dissolving device
JP2007313437A (en) Gas-mixed water-generating apparatus and humidifying apparatus
WO2018003557A1 (en) Mist-generating device, mist-generating method, and sterilization/deodorization method
KR100680133B1 (en) A micro oxygen bubble generator
JP2015077570A (en) Structure of nozzle to be used in gas dissolution liquid manufacturing system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14862543

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14862543

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP