WO2018224015A1 - 一种全自动显微扫描仪 - Google Patents

一种全自动显微扫描仪 Download PDF

Info

Publication number
WO2018224015A1
WO2018224015A1 PCT/CN2018/090292 CN2018090292W WO2018224015A1 WO 2018224015 A1 WO2018224015 A1 WO 2018224015A1 CN 2018090292 W CN2018090292 W CN 2018090292W WO 2018224015 A1 WO2018224015 A1 WO 2018224015A1
Authority
WO
WIPO (PCT)
Prior art keywords
axis
light source
scanning
micro
ball screw
Prior art date
Application number
PCT/CN2018/090292
Other languages
English (en)
French (fr)
Inventor
李昕昱
Original Assignee
李昕昱
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 李昕昱 filed Critical 李昕昱
Priority to CA3018492A priority Critical patent/CA3018492C/en
Publication of WO2018224015A1 publication Critical patent/WO2018224015A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/0004Microscopes specially adapted for specific applications
    • G02B21/002Scanning microscopes
    • G02B21/0024Confocal scanning microscopes (CSOMs) or confocal "macroscopes"; Accessories which are not restricted to use with CSOMs, e.g. sample holders
    • G02B21/0036Scanning details, e.g. scanning stages
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/06Means for illuminating specimens
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/0004Microscopes specially adapted for specific applications
    • G02B21/002Scanning microscopes
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/0004Microscopes specially adapted for specific applications
    • G02B21/002Scanning microscopes
    • G02B21/0024Confocal scanning microscopes (CSOMs) or confocal "macroscopes"; Accessories which are not restricted to use with CSOMs, e.g. sample holders
    • G02B21/0032Optical details of illumination, e.g. light-sources, pinholes, beam splitters, slits, fibers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/06Means for illuminating specimens
    • G02B21/08Condensers
    • G02B21/086Condensers for transillumination only
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/24Base structure
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/24Base structure
    • G02B21/241Devices for focusing
    • G02B21/245Devices for focusing using auxiliary sources, detectors
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/24Base structure
    • G02B21/26Stages; Adjusting means therefor
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/36Microscopes arranged for photographic purposes or projection purposes or digital imaging or video purposes including associated control and data processing arrangements
    • G02B21/361Optical details, e.g. image relay to the camera or image sensor
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/02Mountings, adjusting means, or light-tight connections, for optical elements for lenses
    • G02B7/023Mountings, adjusting means, or light-tight connections, for optical elements for lenses permitting adjustment
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/50Constructional details
    • H04N23/54Mounting of pick-up tubes, electronic image sensors, deviation or focusing coils
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/90Arrangement of cameras or camera modules, e.g. multiple cameras in TV studios or sports stadiums

Definitions

  • the invention relates to the field of microscopic scanning technology, in particular to a fully automatic microscopic scanner.
  • the pathological slice scanning system uses digital slice storage and browsing observation system. This working mechanism has great advantages compared with traditional pathological observation methods while meeting the needs of big data statistics and analysis.
  • the current top three hospitals need to scan 300 pathological sections every day.
  • the traditional microscopic scanning equipment is calculated according to an average of 15 sheets per hour, and about 120 scans are performed at full load for 8 hours a day, which is far from meeting daily needs. What's more, big data also requires a large amount of scanning of previously stored pathological sections.
  • the conventional scanning uses an area array camera, which can only be photographed after the motion scanning process.
  • This kind of movement-pause-photographing process is performed under a 40-fold mirror. If a 1.5-cm2 slice is to be scanned, it often needs to be repeated nearly a thousand times, which seriously limits the scanning speed.
  • the present application has been improved on the basis of this, and the continuous photographing without stopping in the whole photographing process of multiple slices is realized, which perfectly solves the above problems.
  • the base of the other micro-scanning device keeps moving, causing the scanned liquid to sway continuously, resulting in failure to be fast. Scan for a clear image.
  • the technical problem to be solved by the present invention is to provide a fully automatic microscopic scanner which can be moved through the front, rear, left and right and up and down directions of the lens by the microscopic platform mechanism to expand the microscopic scanning range and improve the scanning efficiency.
  • the microscopic platform mechanism In order to overcome the inefficiency of the existing microscopic scanning device, the inability to scan the liquid.
  • the present invention provides a fully automatic microscopic scanner comprising an image acquisition mechanism, a microscopic scanning mechanism, a carrier platform mechanism and a light source mechanism arranged in order from top to bottom, and the image acquisition mechanism and display
  • the micro-scanning mechanism is connected, and the micro-scanning mechanism and the image collecting mechanism realize movement in the X-axis, the Y-axis and the Z-axis direction under the action of the power control mechanism, and the loading platform mechanism and the light source mechanism are fixed;
  • the light source mechanism comprises a flat light source with a condensing mirror, and the flat light source is disposed directly under the tray of the load platform mechanism, and the light source area thereof is greater than or equal to the total area of the tray.
  • the image capture mechanism employs a line camera that uses a linear light source.
  • the light source mechanism further includes a light source housing and a light source controller, the flat light source is disposed at a top end of the light source housing, and a bottom end of the light source housing is provided with a plurality of heat dissipation fans, and the flat light source is The light source controller is connected and controlled to start and stop.
  • a water-cooling heat dissipating unit is further disposed around the side of the light source housing.
  • the distance of the flat light source from the bottom of the tray is 10 mm to 30 mm, and the brightness of the flat light source is not less than 800,000 lux.
  • the platform mechanism includes a platform having a rotating mechanism at the center, and two ends of the platform are symmetrically disposed with a tray area for placing an object to be detected, and under the action of the rotating mechanism, the two ends of the platform The tray area can be fixed directly above the light source mechanism.
  • the laser pre-focusing system includes a laser range finder and a controller connected thereto, the laser range finder being disposed beside the lens barrel of the micro scanning mechanism for detecting the scanning direction of the micro scanning mechanism Changing the height of the surface of the detected object in the area to be detected, and transmitting the detected value to the controller;
  • the controller after receiving data transmitted by the laser range finder, pre-calculating a focal length parameter required when the micro-scanning mechanism reaches the to-be-detected area, and transmitting the focal length parameter to the General control agency;
  • the total control mechanism controls the power control mechanism to drive the micro scanning mechanism to achieve fast focusing.
  • micro-scanning mechanism is provided with the laser range finder on both sides of the lens barrel in the left-right moving direction.
  • the laser emitting axial direction of the laser range finder is at an angle of 65 to 85 degrees with the surface of the platform mechanism.
  • the power control mechanism includes a Z-axis movement control unit, an X-axis movement control unit, and a Y-axis movement control unit.
  • the Z-axis movement control unit includes a Z-axis fixed block, a Z-axis fixed plate, a Z-axis ball screw and a Z-axis motor, and one side of the Z-axis fixed block fixes the micro-scanning mechanism, and the opposite side is fixedly disposed a Z-axis slider, a Z-axis screw nut is disposed at a center of the Z-axis fixing block, and the Z-axis fixing plate is used for fixing the Z-axis motor and the Z-axis ball screw and is provided with a vertical Z-axis guide rail
  • the Z-axis slider cooperates with the Z-axis guide rail
  • the Z-axis screw nut cooperates with the Z-axis ball screw
  • the Z-axis ball screw is connected with the Z-axis motor
  • the Z-axis ball wire The rod is driven by the Z-axis motor to drive the Z-axis fixing block to move up and down with respect to the Z-axis, thereby driving the micro-scanning mechanism
  • the X-axis movement control unit includes an X-axis fixed plate, an X-axis ball screw, and an X-axis motor for fixing the X-axis motor and the X-axis ball screw, and the level is set thereon
  • the X-axis guide rail is fixedly provided with an X-axis slider and an X-axis screw nut, and the X-axis slider cooperates with the X-axis guide rail, the X-axis screw nut and the X-axis ball screw
  • the X-axis ball screw is connected to the X-axis motor, and the X-axis ball screw drives the Z-axis fixed plate to move left and right under the action of the X-axis motor, thereby driving the Z-axis movement control unit
  • the micro scanning mechanism and the image collecting mechanism perform left and right movements relative to the loading platform mechanism
  • the Y-axis movement control unit includes a Y-axis fixed plate, a Y-axis support plate, a Y-axis ball screw and a Y-axis motor, and the X-axis fixed plate is vertically fixed above the Y-axis fixed plate, and the Y is fixedly disposed below a shaft slider and a Y-axis screw nut, the Y-axis support plate includes two support plates arranged in parallel, the two support plates are respectively vertically disposed at two ends of the Y-axis fixed plate, and A Y-axis guide rail is disposed, and the Y-axis ball screw and the Y-axis motor are fixed on any one of the support plates, and the Y-axis slide is matched with the Y-axis guide rail, and the Y-axis screw nut and the Y-axis ball screw Cooperating, the Y-axis ball screw is connected to the Y-axis motor, and the Y-axis ball screw drives the Y-
  • the microscopic scanning mechanism comprises more than one micro scanning unit, the micro scanning unit comprises an adjustable multiple of the optical lens barrel and the replaceable objective lens; the image acquisition mechanism comprises more than one line array camera, The micro-scanning unit and the line-array camera are equal in number and arranged one-to-one.
  • Each group of micro-scanning units and line-array cameras are respectively connected to a group of the Z-axis movement control units, and are respectively separated by corresponding Z-axis movement control units. control.
  • the Y-axis movement control unit further includes a Y-axis position sensor, and the Y-axis position sensor is configured to collect position information of the Y-axis fixed plate along the Y-axis guide rail;
  • the X-axis movement control unit further includes an X-axis position sensor for acquiring position information of the Z-axis fixing plate along the X-axis guide rail.
  • the fully automatic micro-scanner includes a base, the base is a hollow box, and the light source mechanism is fixedly disposed inside the box; the top plate of the box is provided with a device for fixing the load An opening of the platform mechanism; a plurality of support members are further disposed on the top plate of the box body, and the Y-axis support plate is fixedly disposed on the support member;
  • the fully automatic microscopy scanner further includes an outer shield disposed above the base, the side wall of the outer shield being provided with a display screen and an opening for replacing the tray of the loading platform mechanism,
  • the display screen is coupled to the image capture mechanism.
  • the invention also provides a fully automatic microscopic scanner comprising an image acquisition mechanism, a microscopic scanning mechanism, a carrier platform mechanism and a light source mechanism arranged in sequence from top to bottom, the image acquisition mechanism being connected with the microscopic scanning mechanism
  • the image capturing mechanism adopts a line camera, and the micro scanning mechanism and the image collecting mechanism realize movement in the X-axis, Y-axis and Z-axis directions under the action of the power control mechanism, and the loading platform mechanism is fixed.
  • the light source mechanism includes a linear light source with a condensing mirror disposed under the tray of the load platform mechanism, the light source mechanism is coupled to the power control mechanism, and is controlled by the power control mechanism
  • the X-axis and Y-axis directions are linked to the micro-scanning mechanism and the image capturing mechanism.
  • the light source mechanism further includes a light source housing and a light source controller, the linear light source is disposed at a top end of the light source housing, and the bottom end of the light source housing is provided with a plurality of heat dissipation fans, and the linear light source is The light source controller is connected and controlled to start and stop.
  • the laser pre-focusing system includes a laser range finder and a controller connected thereto, the laser range finder being disposed beside the lens barrel of the micro scanning mechanism for detecting the scanning direction of the micro scanning mechanism Changing the height of the surface of the detected object in the area to be detected, and transmitting the detected value to the controller;
  • the controller after receiving data transmitted by the laser range finder, pre-calculating a focal length parameter required when the micro-scanning mechanism reaches the to-be-detected area, and transmitting the focal length parameter to the General control agency;
  • the total control mechanism controls the power control mechanism to drive the micro scanning mechanism to achieve fast focusing.
  • the micro-scanning mechanism is provided with the laser range finder on both sides of the lens barrel in the left-right moving direction; the laser emitting axial direction of the laser range finder is opposite to the surface of the loading platform mechanism 65 to 85 degrees angle.
  • the power control mechanism includes a Z-axis movement control unit, an X-axis movement control unit, and a Y-axis movement control unit.
  • the Z-axis movement control unit includes a Z-axis fixed block, a Z-axis fixed plate, a Z-axis ball screw and a Z-axis motor, and one side of the Z-axis fixed block fixes the micro-scanning mechanism, and the opposite side is fixedly disposed a Z-axis slider, a Z-axis screw nut is disposed at a center of the Z-axis fixing block, and the Z-axis fixing plate is used for fixing the Z-axis motor and the Z-axis ball screw and is provided with a vertical Z-axis guide rail
  • the Z-axis slider cooperates with the Z-axis guide rail
  • the Z-axis screw nut cooperates with the Z-axis ball screw
  • the Z-axis ball screw is connected with the Z-axis motor
  • the Z-axis ball wire The rod is driven by the Z-axis motor to drive the Z-axis fixing block to move up and down with respect to the Z-axis, thereby driving the micro-scanning mechanism
  • the X-axis movement control unit includes an X-axis fixed plate, an X-axis ball screw, and an X-axis motor for fixing the X-axis motor and the X-axis ball screw, and the level is set thereon
  • the X-axis guide rail is fixedly provided with an X-axis slider and an X-axis screw nut, and the X-axis slider cooperates with the X-axis guide rail, the X-axis screw nut and the X-axis ball screw Cooperating with the rod, the X-axis ball screw is connected to the X-axis motor, and the light source mechanism is connected to the Z-axis fixing plate through a connecting plate, and the X-axis ball screw is driven by the X-axis motor
  • the Z-axis fixing plate moves left and right, thereby driving the Z-axis movement control unit, the light source mechanism, the micro-scanning mechanism and the image collecting mechanism to perform left-right movement with respect to the loading platform mechanism
  • the Y-axis movement control unit includes a Y-axis fixed plate, a Y-axis support plate, a Y-axis ball screw and a Y-axis motor, and the X-axis fixed plate is vertically fixed above the Y-axis fixed plate, and the Y is fixedly disposed below a shaft slider and a Y-axis screw nut, the Y-axis support plate includes two support plates arranged in parallel, the two support plates are respectively vertically disposed at two ends of the Y-axis fixed plate, and A Y-axis guide rail is disposed, and the Y-axis ball screw and the Y-axis motor are fixed on any one of the support plates, and the Y-axis slide is matched with the Y-axis guide rail, and the Y-axis screw nut and the Y-axis ball screw Cooperating, the Y-axis ball screw is connected to the Y-axis motor, and the Y-axis ball screw drives the Y-
  • the micro scanning mechanism comprises two micro scanning units, the image acquisition mechanism comprises two line camera, the micro scanning unit and the line camera are respectively arranged correspondingly, each group of micro scanning units And a line camera respectively connected to a group of the Z-axis movement control unit, and are separately controlled by the corresponding Z-axis movement control unit;
  • the two sets of micro scanning unit and the line array camera respectively correspond to two rows of items to be inspected, and the linear light source has an elongated structure, and the length direction thereof is perpendicular to the two rows of items to be detected, and then the power control mechanism is Under the action, the two sets of micro scanning unit and the line camera cooperate with the light source mechanism to simultaneously scan the two rows of items to be detected.
  • the present invention has at least the following advantages:
  • the invention realizes flexible adjustment of the line array camera and the microscopic scanning mechanism by adopting a line array camera and setting a power control mechanism, so that the movement can be realized in front, back, left and right and up and down directions, the microscopic scanning range is enlarged, and the scanning efficiency is improved. And by setting a flat linear light source with a long strip condenser, the effective area of the illumination is much larger than that of the conventional optical path, so that the fully automatic micro scanner can realize large-area high-speed scanning.
  • the invention improves the light source mechanism, designs a plurality of heat dissipation channels, and realizes effective release of high heat generated by a large-area, high-brightness, close-range light source, and provides significant innovation for improving the quality of scanned images. And it provides a favorable guarantee for high speed scanning efficiency.
  • the invention also provides a laser pre-focusing system, which is designed to pre-measure the focal length parameter of the detected area to be reached during the scanning process, and realize the micro scanning mechanism by the cooperation of the controller and the mechanical component. Fast focus for faster slice scanning and sharper scans, greatly improving scan rate and scan quality.
  • the invention also improves the setting angle of the laser range finder in the laser pre-focusing system, and can avoid the laser range finder in the vertical setting, the surface of the cover glass on the carrier platform mechanism is mistakenly considered as a cover during the vertical setting.
  • the surface of the object to be inspected at the lower part of the slide makes the reading inaccurate, resulting in an inability to obtain an accurate focal length parameter.
  • This improvement can greatly improve the accuracy of the measurement of the focal length parameter.
  • the invention can realize simultaneous scanning of multiple slices, and further improve the scanning speed so that the scanning speed is several times or several times of the scanning speed of the existing device. Scanning efficiency is improved by reducing the time required to replace the slices.
  • the power control mechanism of the invention can realize the movement of the X/Y/Z axis of the microscopic scanning mechanism and the image collecting mechanism conveniently and flexibly by setting a plurality of sets of ball screw power adjusting mechanisms, and the principle is simple, the control is simple, and the implementation is easy.
  • the present invention scans multiple slices at the same time and ends the scanning at the same time (depending on the multiple slices as a whole), it completely solves the problem that only one slice can be swept and the other slice can be scanned in the traditional mode.
  • Efficiency issues such a design requires a series of improvements from the traditional microscope's optical path, light source to camera to achieve scanning efficiency several times the prior art, not just to solve the problem of automatic placement of slices, but also to avoid automatic filming
  • the invention also improves the loading platform mechanism, not only makes the loading platform mechanism fixed during scanning, improves scanning quality, saves feeding time, improves scanning efficiency, and overcomes the existing automatic feeding mechanism. All kinds of defects.
  • the design of two or more microscopic scanning units of the present invention is to install different multiple lenses, which satisfies the requirement that one machine needs to scan different multiples at the same time, which is greatly convenient for customers to use.
  • the invention completely changes the movement mode of the traditional microscope--the movement of the detected object without moving the lens, and the new movement platform is fixed by the unique loading platform mechanism, and the power control mechanism is set to realize the new movement of the micro-scanning mechanism lens.
  • the form makes the invention easily and perfectly solve the problem that the conventional micro scanning device cannot scan the liquid detected object.
  • the present invention also provides a more favorable condition for realizing a larger area of pathological slice scanning by setting a scan mode in which the microscopic scanning unit and the line camera are linked with the light source mechanism.
  • FIG. 1 is a perspective view showing the structure of a first embodiment of the automatic micro scanner of the present invention.
  • Figure 2 is a front elevational view of the structure of the fully automated microscopy scanner of Figure 1.
  • Figure 3 is a right side elevational view of the fully automated microscanner of Figure 1.
  • Figure 4 is a rear elevational view showing the structure of the fully automatic micro scanner of Figure 1.
  • Fig. 5 is a perspective view showing the three-dimensional structure of two sets of Z-axis movement control units in the automatic micro-scanner of the present invention.
  • Figure 6 is a front elevational view showing the structure of a light source mechanism in the fully automatic micro scanner of the present invention.
  • Figure 7 is a schematic view showing the overall structure of the fully automatic microscopic scanner of the present invention.
  • Figure 8 is a schematic view showing the structure of the movable platform mechanism in the fully automatic microscopic scanner of the present invention.
  • Figure 9 is a schematic view showing the operation of the first embodiment of the automatic micro scanner of the present invention.
  • Figure 10 is a schematic view showing the structure of the light source mechanism in conjunction with the micro scanning unit in the fully automatic micro scanner of the present invention.
  • Figure 11 is a schematic view showing the operation of the second embodiment of the automatic micro-scanner of the present invention.
  • the automatic micro-scanner of the present embodiment includes an image pickup mechanism 9, a micro-scanning mechanism, a load platform mechanism 3, and a light source mechanism 31 which are disposed in order from top to bottom.
  • the image acquisition mechanism 9 employs a line camera to enable rapid scanning of pathological slices.
  • the micro scanning mechanism comprises an adjustable multiple of the optical lens barrel 17 and the interchangeable lens 11.
  • the image acquisition mechanism 9 is connected to the lens barrel 17, the lens 11 is located above the carrier platform mechanism 3, and the light source mechanism 31 is located at the loading platform. Directly below the agency 3.
  • the loading platform mechanism 3 and the light source mechanism 31 are fixedly disposed, and the micro scanning mechanism and the image collecting mechanism 9 can realize the movement of the X-axis, the Y-axis, and the Z-axis under the action of the power control mechanism, that is, The left and right, front and rear and up and down movements of the lens 11 relative to the loading platform mechanism 3 are used to expand the scanning range of the fully automatic microscopic scanner, improve scanning efficiency, and because the light source and the detected pathological slice are fixed, The image acquisition quality of the image acquisition mechanism 9 is improved.
  • the power control mechanism of the embodiment includes a Z-axis movement control unit, an X-axis movement control unit, and a Y-axis movement control unit.
  • the Z-axis movement control unit is configured to drive the micro-scanning mechanism and the image acquisition mechanism 9 to move up and down relative to the platform mechanism 3. It includes a Z-axis fixing block 24, a Z-axis fixing plate 25, a Z-axis ball screw 16 and a Z-axis motor 8. One side of the Z-axis fixing block 24 is fixed to the micro scanning mechanism, and the opposite side is fixedly provided with a Z-axis. a slider, a Z-axis screw nut is disposed at a center of the Z-axis fixing block 24, and the Z-axis fixing plate 25 is used to fix the Z-axis motor 8 and the Z-axis ball screw 16 and is provided with a Z-axis guide rail in the up and down direction 15.
  • the Z-axis slider cooperates with a Z-axis guide nut 15 that cooperates with a Z-axis ball screw 16 that is coupled to a Z-axis motor 8 that is coupled to a Z-axis ball
  • the rod 16 drives the Z-axis fixing block 24 to move up and down relative to the Z-axis fixing plate 25 under the action of the Z-axis motor 8, thereby driving the micro-scanning mechanism and the image collecting mechanism 9 to move up and down, that is, realizing the micro-scanning mechanism.
  • the lens 11 is moved up and down with respect to the load platform mechanism 3.
  • the X-axis movement control unit is configured to drive the Z-axis movement control unit to move left and right relative to the platform mechanism 3 . It includes an X-axis fixed plate 26, an X-axis ball screw 6 and an X-axis motor 5 for fixing the X-axis motor 5 and the X-axis ball screw 6, and having a horizontal X-axis guide thereon 10, the Z-axis fixing plate 25 is fixedly provided with an X-axis slider and an X-axis screw nut, and the X-axis slider cooperates with the X-axis guide rail 10, and the X-axis screw nut and the X-axis ball screw 6 In cooperation, the X-axis ball screw 6 is connected to the X-axis motor 5, and the X-axis ball screw 6 drives the Z-axis fixing plate 25 to move left and right under the action of the X-axis motor 5, thereby driving the Z-axis movement control unit.
  • the X-axis movement control unit further includes an X-axis drag chain 7 coupled to the z-axis fixing plate 25 for better controlling left and right movement of the z-axis fixing plate 25 along the X-axis guide rail 10.
  • the Y-axis movement control unit is configured to drive the X-axis movement control unit to move back and forth relative to the platform mechanism 3 .
  • the utility model comprises a Y-axis fixing plate 27, a Y-axis supporting plate 28, a Y-axis ball screw 13 and a Y-axis motor 14, wherein the X-axis fixing plate 26 is vertically fixed above the Y-axis fixing plate 27, and a Y-axis slider is fixedly disposed below the Y-axis fixing plate And a Y-axis screw nut, the Y-axis support plate 28 includes two support plates arranged in parallel, the two support plates are respectively vertically disposed at two ends of the Y-axis fixing plate 27, and the Y-axis guide rails are disposed thereon 4.
  • the Y-axis ball screw 13 and the Y-axis motor 14 are fixed on any one of the support plates, and the Y-axis slider cooperates with the Y-axis guide rail 4, and the Y-axis screw nut cooperates with the Y-axis ball screw 13
  • the Y-axis ball screw 13 drives the Y-axis fixing plate 27 to move back and forth under the action of the Y-axis motor 14, thereby driving the Y-axis movement control unit
  • the Z-axis movement control unit, the micro-scanning mechanism and the image acquisition mechanism move back and forth, that is, the lens 11 of the micro-scanning mechanism is moved back and forth relative to the platform mechanism 3.
  • the Z-axis movement control unit, the X-axis movement control unit and the Y-axis movement control unit in this embodiment can also realize the up, down, left and right, front and rear of the micro scanning mechanism and the image acquisition mechanism by using other existing mechanical transmission mechanisms. mobile.
  • the Y-axis movement control unit further includes a Y-axis position sensor 12 disposed under the Y-axis fixing plate 27 for use.
  • the position information of the Y-axis fixing plate 27 along the Y-axis guide rail 4 is collected.
  • the X-axis movement control unit further includes an X-axis position sensor disposed under the Z-axis fixing plate 25 for The positional information of the Z-axis fixed plate 25 along the X-axis guide rail 10 is acquired.
  • the fully automatic micro scanning mechanism comprises more than one micro scanning unit, and the image capturing mechanism 9 comprises more than one line camera, the micro scanning unit and the line camera are equal in number and arranged one-to-one.
  • Each set of micro-scanning units and line array cameras are respectively connected to a set of Z-axis movement control units and are individually controlled by corresponding Z-axis movement control units.
  • the micro scanning mechanism includes two micro scanning units, and the image capturing mechanism includes two line array cameras, and the two micro scanning units and the two line array cameras are arranged one by one, and each group of micro scanning
  • the unit and the line camera are respectively connected to a set of Z-axis movement control units and are individually controlled by the corresponding Z-axis movement control unit.
  • the two sets of Z-axis movement control units can be arranged at a distance for simultaneous scanning of the detected items on the tray below; the two sets of Z-axis movement control units can also be adjacently arranged, at this time two
  • the objective lens 11 of the micro scanning unit can be equipped with different magnifications of the lens, such as 20x, 40x lens, so that according to actual needs, under the action of the X-axis movement control unit, it is possible to select only one set of micro scanning unit.
  • the detected item is detected as shown in FIG.
  • the loading platform mechanism 3 includes one or more tray areas, and the tray area further includes a plurality of sites for placing the slides to realize simultaneous scanning of the multiple automatic scanners.
  • Pathological section As shown in FIG. 8, the platform mechanism 3 adopts a platform with a rotating mechanism at the center 30, and the two ends of the platform are symmetrically provided with a tray area on which the slide glass is placed, under the action of the rotating mechanism.
  • the tray areas at both ends of the platform may be sequentially fixed directly above the light source mechanism 31.
  • the tray area on one side of the platform is scanned, the tray area on the other side can be loaded, and after the scanning of the tray area on one side is completed, the other side tray area is rotated by the rotating mechanism.
  • the improvement of the loading platform mechanism not only makes the loading platform mechanism fixed during scanning, improves scanning quality, but also saves feeding time, improves scanning efficiency, and overcomes various defects brought by the existing automatic feeding mechanism.
  • the present invention sets a light source mechanism matched thereto to obtain a clear image.
  • the light source mechanism 31 includes a light source body, a light source housing, and a light source controller, and the light source body employs a flat light source 18 with a condensing mirror.
  • the flat light source 18 is a linear light source disposed at the top end of the light source housing.
  • the bottom end of the light source housing is provided with a plurality of heat dissipating fans 19 for dissipating heat for the light source body.
  • the flat light source 18 has a rectangular structure, and the light source area of the rectangular light source 18 is greater than or equal to the total area of the tray to be scanned on the platform mechanism 3, that is, the flat light source 18 is disposed on the load platform mechanism 3 to be scanned. Just below the plate.
  • the light source controller is coupled to the light source 18 and is used to control its start and stop.
  • the effective illumination area of the flat light source 18 is not less than 50-300 mm, and the brightness thereof is not less than 800000 lux, and the distance from the bottom of the tray is only 10 mm to 30 mm.
  • the area of the flat light source is large, the brightness is high, and the distance is close, a relatively high heat value is generated. If the high-heat heat-dissipating treatment is not performed in time, the focus of the detected object under the high power microscope may be seriously affected. Therefore, in this embodiment, a water-cooling heat dissipating unit 33 is disposed around the side of the light source housing. The water-cooling heat dissipating unit 33 and the plurality of cooling fans 19 together effectively solve the high heat problem caused by the large light source.
  • the fully automatic microscopy scanner further comprises a total control mechanism, which is connected with the image acquisition mechanism 9, the power control mechanism and the light source controller for controlling the image acquisition mechanism 9, the power control mechanism and the light source according to actual needs.
  • the action of the controller is performed to achieve fast scanning of the detected slice and data image acquisition.
  • the fully automatic microscopy scanner also includes a laser pre-focusing system coupled to the overall control mechanism.
  • the laser pre-focusing system includes a laser range finder and a controller connected thereto, the laser range finder being disposed beside the lens barrel of the micro scanning mechanism for detecting the scanning progress of the micro scanning mechanism The height of the surface of the object to be detected in the area to be detected changes in the direction, and the detected value is sent to the controller.
  • the controller After receiving the data transmitted by the laser range finder, the controller pre-calculates the focal length parameter required when the micro-scanning mechanism reaches the to-be-detected area, and transmits the focal length parameter to the general control mechanism, and the total control mechanism controls the power.
  • the control mechanism enables the power control mechanism to drive the micro-scanning mechanism to realize the Z-axis movement to complete the fast focus.
  • the laser pre-focusing system can well realize the continuous measurement of the focal length parameter of the detected area in the rapid scanning and slicing process of the fully automatic micro-scanner, and can quickly focus, and finally obtain the clear in the fast scanning mode. image.
  • the laser range finder is disposed on both sides of the lens barrel in the left and right moving direction of the micro scanning mechanism, so that the micro scanning mechanism can pre-measure the desired position when moving to the left or right on the X axis.
  • the focal length parameter of the detected area is achieved, and the slice scanning is more convenient, effective and fast.
  • the laser range finder is arranged in such a direction that the laser emitting axis of the laser range finder is at an angle of 65 to 85 degrees with the slice surface of the platform mechanism 3, thereby avoiding vertical During the setting process, the laser range finder will mistake the surface of the cover glass on the carrier platform mechanism 3 as the surface of the detected object in the lower part of the cover glass, so that the reading is not accurate, and the accurate focal length parameter cannot be obtained. .
  • the fully automated microscopy scanner includes a base 2.
  • the base 2 is a hollow box body, and the light source mechanism is fixedly disposed inside the box body; the top plate of the box body is provided with an opening for fixing the load platform mechanism 3; the top plate of the box body is further provided with a plurality of supports
  • the member 29 is fixedly disposed on the support member 29.
  • the microscopic scanning mechanism and the image capturing mechanism 9 are fixed above the top plate of the casing by the power control mechanism.
  • the top surface of the base 2 is further provided with a start button 23 and an emergency stop button 22, and the start button 23 and the emergency stop button 22 are connected to the above-mentioned overall control mechanism for realizing the operation of the fully automatic micro scanner.
  • the bottom of the box is provided with an adjustable foot pad 1 for adjusting the scanner to be in a horizontal state, which facilitates the collection of scan data.
  • the fully automatic microscopy scanner further includes an outer shield 20 disposed above the base 2, the side wall of the outer shield 20 being disposed There is a display screen 21 and an opening for replacing the tray on the loading platform mechanism 3, the display screen 21 is connected to the above total control mechanism for displaying image data collected by the line camera, and the power control mechanism and the light source mechanism The running state.
  • the working principle of the automatic micro-scanner of the embodiment is as follows: the carrier platform mechanism 3 and the light source mechanism 31 of the micro-scanner are fixed, and the micro-scanning mechanism and the image collecting mechanism 9 are fixed.
  • the movement of the X-axis, the Y-axis, and the Z-axis direction can be realized, that is, the left, right, front, back, and up and down movements of the lens 11 relative to the platform mechanism 3 are realized, and under the action of the overall control mechanism,
  • the actual situation realizes the control of the line array camera, the power control mechanism and the light source mechanism, thereby realizing the rapid microscopic scanning of the plurality of rows of the detected slices, and also predicting the focal length parameter of the object to be detected in the forward direction of the lens by the laser pre-focusing system. It can improve the scanning quality and speed more quickly and effectively, and display the image acquisition result through the display screen in real time, with fast detection speed, excellent detection quality and high efficiency.
  • the present embodiment is different from the above-described first embodiment in that the light source mechanism 31' of the fully automatic micro-scanner is connected to the power control mechanism and controlled by the power control mechanism. Linkage with the micro scanning mechanism and the image acquisition mechanism in the X-axis and Y-axis directions.
  • the light source mechanism 31' is connected to the Z-axis fixed plate through the connecting plate, and when the X-axis ball screw is driven by the X-axis motor to drive the Z-axis fixed plate to move left and right, the Z-axis fixed plate will The light source mechanism 31' is driven, and the Z-axis movement control unit, the micro-scanning mechanism, and the image acquisition mechanism are moved left and right with respect to the carrier platform mechanism 3.
  • the Y-axis fixing plate drives the light source mechanism 31', the X-axis movement control unit, the Z-axis movement control unit, The microscopic scanning mechanism and the image acquisition mechanism are moved back and forth with respect to the load platform mechanism 3.
  • the linkage of the light source mechanism 31' with the microscopic scanning mechanism and the image acquisition mechanism is realized, which provides favorable conditions for realizing a larger area of pathological slice scanning.
  • the two sets of microscopic scanning units and the line array camera respectively correspond to two rows of slices to be detected, and then only the linear light source is set.
  • the two sets of micro scanning units and the line camera can be linked to the linear light source simultaneously by the power control mechanism. Scanning two rows of items to be inspected saves light source costs.
  • two laser finder 32 are symmetrically disposed beside the lens barrel 17 of the micro scanning mechanism.
  • the two laser range finder 32 are respectively configured to detect a height change of the surface of the object to be detected in the scanning direction of the micro scanning mechanism, and send the detection value to the controller, and the controller pre-calculates the display.
  • the focal length parameter required by the micro-scanning mechanism to reach the area to be detected, and the focal length parameter is transmitted to the overall control mechanism, and the power control mechanism is controlled by the total control mechanism, so that the power control mechanism drives the micro-scanning mechanism to realize the Z-axis movement, and completes the fast focus. Finally, a clear image in the fast scan mode is obtained.
  • the above-mentioned fully automatic micro scanner can simultaneously scan multiple pathological slices by providing two or more microscopic scanning mechanisms and two or more linear array cameras corresponding thereto, and a plurality of trays and a large-area light source mechanism.
  • the unique light source mechanism design the scanning speed and scanning quality of the image acquisition mechanism are greatly improved, so that the automatic micro scanner has high scanning speed and high scanning quality.
  • the invention not only can easily replace the tray on the scanned platform mechanism, but also can scan and scan other customized trays (such as 96-well plates, etc.) in addition to scanning pathological slices, which is currently automatic microscopy.
  • the scanning device system cannot be reached.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Microscoopes, Condenser (AREA)

Abstract

一种全自动显微扫描仪,其中,图像采集机构(9)采用线阵相机,且显微扫描机构和图像采集机构(9)在动力控制机构作用下实现X/Y/Z轴移动,载物平台机构(3)和光源机构(31)固定不动。光源机构(31)包括带聚光镜的平板线性光源,平板线性光源的光源面积大于等于料盘总面积,且光源机构(31)具有散热风扇(19)和水冷散热单元(33),还包括总控制机构和与其连接的激光预对焦***,一种显微扫描机构和图像采集机构(9)与光源机构(31)联动的全自动显微扫描仪。通过镜头(11)的前后、左右及上下方向的灵活调节,以及独特设置的光源机构(31)和激光预对焦***,在载物平台(3)和光源(31)固定不动的情况下,实现准确、快速对焦,完成高效扫描,极大的扩展了显微扫描范围,提升了扫描质量。

Description

一种全自动显微扫描仪 技术领域
本发明涉及显微扫描技术领域,特别是涉及一种全自动显微扫描仪。
背景技术
近年来,随着计算机云技术及互联网+大数据等技术的飞速发展,病理切片图像的数字化采集应用已经成为一种必须。病理切片扫描***采用数字化切片存储和浏览观察***,这种工作机制较之传统病理学观察方式有着巨大的优越性的同时满足了大数据统计及分析的需要。
目前已有一些厂家利用显微镜加电动载物台来实现对病理切片的扫描,但该技术一方面由于脱不开传统显微镜结构,扫描病理切片时只能一次扫描一张,以至扫描效率低。很多厂家为了解决这一问题,进一步研发了多款自动进片上料机构,目的是解决人工进片上料和大规模扫描需要下的8小时以外无人值守扫描的问题。但此方法不能在根本上解决传统显微镜下一次扫描一张切片的低效率问题。另一方面,由于不同厂家或同一厂家不同批次病理切片(载玻片)的厚度不一致,因此经常造成自动进片上料机构故障,导致无人值守扫描设备机械故障直至显微扫描设备受损并停止工作,给第二天的工作带来严重影响。
特别是以目前一家三甲医院每天需要扫描病理切片300张为例,传统的显微扫描设备按照平均15张/小时计算,每天8小时满负荷扫描120张左右,这远远不能满足日常需要。更何况大数据下还需要大量扫描以前存放的病理切片。
另外,常规扫描采用面阵相机,在移动扫描过程中只能停稳后拍照。而这种移动—停顿—拍照的过程在40倍镜下,如需扫描一张1.5平方厘米切 片时,往往需要重复近千次,严重制约了扫描速度。而本申请在此基础上进行了改进,实现了在多张切片整体拍摄过程中不用停顿的连续拍照,完美解决了上述问题。
更为重要的是,如果被扫描物品(如96孔板内被检测物等)为液体,则由于其他显微扫描设备基座不停地运动,致使被扫描液体不停的晃动,导致无法快速扫描获得清晰的图像。
由此可见,上述现有的显微扫描设备在结构、方法与使用上,显然存在太多的不便与缺陷,而亟待加以进一步改进。如何能创设一种全新的自动显微扫描模式,使其在显微平台机构固定不动而通过镜头的前后、左右以及上下方向的移动(彻底改变传统显微的运动模式),扩大显微扫描范围,提高扫描效率,提升扫描图像质量,实属当前重要研发课题之一,成为当前业界极需改进的目标。
发明内容
本发明要解决的技术问题是提供一种全自动显微扫描仪,通过显微平台机构固定不动而使其通过镜头的前后、左右以及上下方向的移动,扩大显微扫描范围,提高扫描效率,从而克服现有的显微扫描设备效率低下、不能扫描液体等不足。
为解决上述技术问题,本发明提供一种全自动显微扫描仪,包括从上至下依次设置的图像采集机构、显微扫描机构、载物平台机构和光源机构,所述图像采集机构与显微扫描机构连接,所述显微扫描机构和图像采集机构在动力控制机构的作用下实现X轴、Y轴及Z轴方向的移动,且所述载物平台机构和光源机构固定不动;
所述光源机构包括带聚光镜的平板光源,所述平板光源设置于所述载物平台机构的料盘正下方,且其光源面积大于等于所述料盘的总面积。
作为本发明的一种改进,所述图像采集机构采用线阵相机,所述平板光源采用线性光源。
进一步改进,所述光源机构还包括光源壳体和光源控制器,所述平板 光源设置在所述光源壳体顶端,所述光源壳体的底端设置有多个散热风扇,所述平板光源与所述光源控制器连接并由其控制启停。
进一步改进,所述光源壳体的侧部周围还设有水冷散热单元。
进一步改进,所述平板光源离所述料盘底部的距离为10mm~30mm,所述平板光源的亮度不低于800000lux。
进一步改进,所述载物平台机构包括中心设有旋转机构的平台,所述平台的两端对称设有放置待检测物的料盘区,在所述旋转机构的作用下,所述平台两端的料盘区均可固定在所述光源机构的正上方。
进一步改进,还包括总控制机构和与其连接的激光预对焦***,所述总控制机构还与所述图像采集机构、动力控制机构和光源机构连接;
所述激光预对焦***包括激光测距仪和与其连接的控制器,所述激光测距仪设置在所述显微扫描机构的镜筒旁,用于检测所述显微扫描机构扫描前进方向上待检测区域中被检测物品表面的高度变化,并将检测值发送至所述控制器;
所述控制器,用于接收所述激光测距仪传送的数据后,预先计算出所述显微扫描机构到达所述待检测区域时需要的焦距参数,并将所述焦距参数传送至所述总控制机构;
所述总控制机构接收所述焦距参数后,通过控制所述动力控制机构,使其带动所述显微扫描机构实现快速对焦。
进一步改进,所述显微扫描机构在左右移动方向上的镜筒两侧均设有所述激光测距仪。
进一步改进,所述激光测距仪的激光发射轴向与所述载物平台机构的表面呈65~85度夹角。
进一步改进,所述动力控制机构包括Z轴移动控制单元、X轴移动控制单元和Y轴移动控制单元,
所述Z轴移动控制单元包括Z轴固定块、Z轴固定板、Z轴滚珠丝杆和Z轴电机,所述Z轴固定块的一侧固定所述显微扫描机构,其相对侧固定设 置Z轴滑块,所述Z轴固定块的中心处设置Z轴丝杆螺母,所述Z轴固定板用于固定所述Z轴电机和Z轴滚珠丝杆且其上设置有垂直Z轴导轨,所述Z轴滑块与Z轴导轨相配合,所述Z轴丝杆螺母与Z轴滚珠丝杆相配合,所述Z轴滚珠丝杆与Z轴电机连接,则所述Z轴滚珠丝杆在Z轴电机的作用下,带动Z轴固定块相对于Z轴固定板上下移动,进而带动所述显微扫描机构和图像采集机构相对于所述载物平台机构进行上下运动;
所述X轴移动控制单元包括X轴固定板、X轴滚珠丝杆和X轴电机,所述X轴固定板用于固定所述X轴电机和X轴滚珠丝杆,且其上设置有水平X轴导轨,所述Z轴固定板上固定设置有X轴滑块和X轴丝杆螺母,所述X轴滑块与X轴导轨相配合,所述X轴丝杆螺母与X轴滚珠丝杆相配合,所述X轴滚珠丝杆与X轴电机连接,则所述X轴滚珠丝杆在X轴电机的作用下,带动Z轴固定板左右移动,进而带动所述Z轴移动控制单元、显微扫描机构和图像采集机构相对于所述载物平台机构进行左右运动;
所述Y轴移动控制单元包括Y轴固定板、Y轴支撑板、Y轴滚珠丝杆和Y轴电机,所述Y轴固定板上方垂直固定所述X轴固定板,其下方固定设置有Y轴滑块和Y轴丝杆螺母,所述Y轴支撑板包括两块平行设置的支撑板,所述两块支撑板分别垂直的设置在所述Y轴固定板的两端,且其上均设有Y轴导轨,所述Y轴滚珠丝杆和Y轴电机固定在任一块支撑板上,所述Y轴滑块与Y轴导轨相配合,所述Y轴丝杆螺母与Y轴滚珠丝杆相配合,所述Y轴滚珠丝杆与Y轴电机连接,则所述Y轴滚珠丝杆在Y轴电机的作用下,带动所述Y轴固定板前后移动,进而带动所述X轴移动控制单元、Z轴移动控制单元、显微扫描机构和图像采集机构相对于所述载物平台机构进行前后运动。
进一步改进,所述显微扫描机构包括一个以上显微扫描单元,所述显微扫描单元包括可调节倍数的光学镜筒和可更换的物镜;所述图像采集机构包括一个以上线阵相机,所述显微扫描单元和线阵相机数量相等且一一对应设置,每一组显微扫描单元和线阵相机分别连接一组所述Z轴移动控 制单元,并由相应的Z轴移动控制单元单独控制。
进一步改进,所述Y轴移动控制单元还包括Y轴位置传感器,所述Y轴位置传感器用于采集Y轴固定板沿Y轴导轨的位置信息;
所述X轴移动控制单元还包括X轴位置传感器,所述X轴位置传感器用于采集Z轴固定板沿X轴导轨的位置信息。
进一步改进,所述全自动显微扫描仪包括底座,所述底座为中空箱体,所述箱体的内部固定设置所述光源机构;所述箱体的顶板上开设有用于固定所述载物平台机构的开口;所述箱体的顶板上还设置有多个支撑件,所述Y轴支撑板固定设置在所述支撑件上;
所述全自动显微扫描仪还包括设置在所述底座上方的外防护罩,所述外防护罩的侧壁上设置有显示屏和供调换所述载物平台机构上料盘的开口,所述显示屏与所述图像采集机构连接。
本发明还提供了一种全自动显微扫描仪,包括从上至下依次设置的图像采集机构、显微扫描机构、载物平台机构和光源机构,所述图像采集机构与显微扫描机构连接,所述图像采集机构采用线阵相机,所述显微扫描机构和图像采集机构在动力控制机构的作用下实现X轴、Y轴及Z轴方向的移动,所述载物平台机构固定不动;
所述光源机构包括带聚光镜的线性光源,所述线性光源设置于所述载物平台机构的料盘下方,所述光源机构与所述动力控制机构连接,并由所述动力控制机构控制实现在X轴、Y轴方向与所述显微扫描机构和图像采集机构的联动。
进一步改进,所述光源机构还包括光源壳体和光源控制器,所述线性光源设置在所述光源壳体顶端,所述光源壳体的底端设置有多个散热风扇,所述线性光源与所述光源控制器连接并由其控制启停。
进一步改进,还包括总控制机构和与其连接的激光预对焦***,所述总控制机构还与所述图像采集机构、动力控制机构和光源机构连接;
所述激光预对焦***包括激光测距仪和与其连接的控制器,所述激光 测距仪设置在所述显微扫描机构的镜筒旁,用于检测所述显微扫描机构扫描前进方向上待检测区域中被检测物品表面的高度变化,并将检测值发送至所述控制器;
所述控制器,用于接收所述激光测距仪传送的数据后,预先计算出所述显微扫描机构到达所述待检测区域时需要的焦距参数,并将所述焦距参数传送至所述总控制机构;
所述总控制机构接收所述焦距参数后,通过控制所述动力控制机构,使其带动所述显微扫描机构实现快速对焦。
进一步改进,所述显微扫描机构在左右移动方向上的镜筒两侧均设有所述激光测距仪;所述激光测距仪的激光发射轴向与所述载物平台机构的表面呈65~85度夹角。
进一步改进,所述动力控制机构包括Z轴移动控制单元、X轴移动控制单元和Y轴移动控制单元,
所述Z轴移动控制单元包括Z轴固定块、Z轴固定板、Z轴滚珠丝杆和Z轴电机,所述Z轴固定块的一侧固定所述显微扫描机构,其相对侧固定设置Z轴滑块,所述Z轴固定块的中心处设置Z轴丝杆螺母,所述Z轴固定板用于固定所述Z轴电机和Z轴滚珠丝杆且其上设置有垂直Z轴导轨,所述Z轴滑块与Z轴导轨相配合,所述Z轴丝杆螺母与Z轴滚珠丝杆相配合,所述Z轴滚珠丝杆与Z轴电机连接,则所述Z轴滚珠丝杆在Z轴电机的作用下,带动Z轴固定块相对于Z轴固定板上下移动,进而带动所述显微扫描机构和图像采集机构相对于所述载物平台机构进行上下运动;
所述X轴移动控制单元包括X轴固定板、X轴滚珠丝杆和X轴电机,所述X轴固定板用于固定所述X轴电机和X轴滚珠丝杆,且其上设置有水平X轴导轨,所述Z轴固定板上固定设置有X轴滑块和X轴丝杆螺母,所述X轴滑块与X轴导轨相配合,所述X轴丝杆螺母与X轴滚珠丝杆相配合,所述X轴滚珠丝杆与X轴电机连接,所述光源机构通过连接板与所述Z轴固定板连接,则所述X轴滚珠丝杆在X轴电机的作用下,带动Z轴固定板左 右移动,进而带动所述Z轴移动控制单元、光源机构、显微扫描机构和图像采集机构相对于所述载物平台机构进行左右运动;
所述Y轴移动控制单元包括Y轴固定板、Y轴支撑板、Y轴滚珠丝杆和Y轴电机,所述Y轴固定板上方垂直固定所述X轴固定板,其下方固定设置有Y轴滑块和Y轴丝杆螺母,所述Y轴支撑板包括两块平行设置的支撑板,所述两块支撑板分别垂直的设置在所述Y轴固定板的两端,且其上均设有Y轴导轨,所述Y轴滚珠丝杆和Y轴电机固定在任一块支撑板上,所述Y轴滑块与Y轴导轨相配合,所述Y轴丝杆螺母与Y轴滚珠丝杆相配合,所述Y轴滚珠丝杆与Y轴电机连接,则所述Y轴滚珠丝杆在Y轴电机的作用下,带动所述Y轴固定板前后移动,进而带动所述X轴移动控制单元、Z轴移动控制单元、光源机构、显微扫描机构和图像采集机构相对于所述载物平台机构进行前后运动。
进一步改进,所述显微扫描机构包括两个显微扫描单元,所述图像采集机构包括两个线阵相机,所述显微扫描单元和线阵相机分别对应设置,每一组显微扫描单元和线阵相机分别连接一组所述Z轴移动控制单元,并由相应的Z轴移动控制单元单独控制;
所述的两组显微扫描单元和线阵相机分别对应两排待检测物品,所述线性光源呈长条形结构,其长度方向与两排待检测物品垂直,则在所述动力控制机构的作用下,所述两组显微扫描单元和线阵相机联动所述光源机构同时对所述两排待检测物品进行扫描。
采用这样的设计后,本发明至少具有以下优点:
1、本发明通过采用线阵相机,并设置动力控制机构实现线阵相机和显微扫描机构的灵活调节,使其能实现前后、左右以及上下方向的移动,扩大显微扫描范围,提高扫描效率,且通过设置长条形带聚光镜的平板线性光源,使其照射的有效面积远远大于传统光路,使得该全自动显微扫描仪实现大面积的高速扫描。
2、本发明通过对光源机构的改进,设计多种散热渠道,实现对大面积、 高亮度、近距离的光源产生的高热量的有效释放,提供了显著地创新,为提升扫描图像的质量,且为高速度的扫描效率提供了有利保障。
3、本发明还通过设置激光预对焦***,首创性的设计了在扫描过程中预先测出将要达到的被检测区域的焦距参数,并通过控制器与机械部件的配合,实现显微扫描机构的快速对焦,达到更加快速的切片扫描,以及更加清晰的扫描图片,大大提高扫描速率和扫描质量。
4、本发明还通过对激光预对焦***中激光测距仪的设置角度改进,能避免垂直设置时激光测距仪在测距过程中会将载物平台机构上的盖玻片表面误认为盖玻片下部的被检测物品表面,使读数不准,导致不能得出准确的焦距参数,该改进能大大提高焦距参数的测定准确性。
5、本发明通过设置一个以上镜头和一个以上线阵相机,能实现多个切片的同时扫描,进一步提升扫描速度,使其扫描速度为现有设备扫描速度的数倍或数十倍。由于减少更换切片的时间,得以提高扫描效率。
6、本发明动力控制机构通过设置多组滚珠丝杆动力调节机构,能方便灵活的实现显微扫描机构和图像采集机构的X/Y/Z轴的移动,原理简单,控制简便,易于实现。
7、由于本发明在扫描过程中是多张切片同时开始和同时结束扫描(视多张切片为一个整体),彻底解决了传统模式下只能一张切片扫完再扫另一张切片的低效率问题,这样的设计需要从传统显微镜的光路、光源到拍摄相机等一系列改进才能达到扫描效率数倍于现有技术,而不只是解决自动放置切片的问题,同时也避免了因自动进片上料机构带来的种种不确定因素。不过,本发明还通过对载物平台机构的改进,不仅使载物平台机构在扫描时固定不动,提高扫描质量,还能节约上料时间,提高扫描效率,克服现有自动进片上料机构带来的种种缺陷。
8、本发明两个以上显微扫描单元安装不同倍数镜头的设计,满足了一台机器需要同时扫描不同倍数的需求,极大方便了客户使用。
9、本发明彻底改变了传统显微镜的运动方式--镜头不动而被检测物品 运动,通过特有的载物平台机构固定不动而设置动力控制机构实现显微扫描机构镜头的灵活调节的全新运动形式,使得本发明轻松完美的解决了常规显微扫描设备不能扫描液体被检测物的难题。
10、本发明还通过设置显微扫描单元和线阵相机与光源机构联动的扫描模式,为实现更大面积的病理切片扫描提供了更加有利的条件。还通过设置两组显微扫描单元和线阵相机联动一个线性光源同时对两排待检测物品的扫描模式,能起到节约成本、快速扫描的技术目的。
附图说明
上述仅是本发明技术方案的概述,为了能够更清楚了解本发明的技术手段,以下结合附图与具体实施方式对本发明作进一步的详细说明。
图1是本发明全自动显微扫描仪实施例一的立体结构示意图。
图2是图1中全自动显微扫描仪的结构前视图。
图3是图1中全自动显微扫描仪的结构右视图。
图4是图1中全自动显微扫描仪的结构后视图。
图5是本发明全自动显微扫描仪中两组Z轴移动控制单元相邻设置的立体结构示意图。
图6是本发明全自动显微扫描仪中光源机构的结构前视图。
图7是本发明全自动显微扫描仪的整体结构示意图。
图8是本发明全自动显微扫描仪中载物平台机构可转动的结构示意图。
图9是本发明全自动显微扫描仪实施例一的工作原理图。
图10是本发明全自动显微扫描仪中光源机构随显微扫描单元联动的结构示意图。
图11是本发明全自动显微扫描仪实施例二的工作原理图。
具体实施方式
实施例一
参照附图1至4所示,本实施例全自动显微扫描仪,包括从上至下依次设置的图像采集机构9、显微扫描机构、载物平台机构3和光源机构31。 该图像采集机构9采用线阵相机,能实现对病理切片的快速扫描。该显微扫描机构包括可调节倍数的光学镜筒17和可更换的镜头11,该图像采集机构9与镜筒17连接,镜头11位于载物平台机构3的上方,光源机构31位于载物平台机构3的正下方。
本实施例中该载物平台机构3和光源机构31固定设置,该显微扫描机构和图像采集机构9在动力控制机构的作用下可实现X轴、Y轴、Z轴方向的移动,即实现镜头11相对于载物平台机构3的左右、前后及上下的移动,以利于扩大该全自动显微扫描仪的扫描范围,提高扫描效率,且由于光源与被检测病理切片的固定不动,大大提高了该图像采集机构9的图像采集质量。
具体的,本实施例该动力控制机构包括Z轴移动控制单元、X轴移动控制单元和Y轴移动控制单元。
该Z轴移动控制单元,用于带动该显微扫描机构和图像采集机构9相对于该载物平台机构3进行上下运动。其包括Z轴固定块24、Z轴固定板25、Z轴滚珠丝杆16和Z轴电机8,该Z轴固定块24的一侧固定该显微扫描机构,其相对侧固定设置有Z轴滑块,该Z轴固定块24的中心处设置Z轴丝杆螺母,该Z轴固定板25用于固定Z轴电机8和Z轴滚珠丝杆16且其上设置有上下方向的Z轴导轨15,该Z轴滑块与Z轴导轨15相配合,该Z轴丝杆螺母与Z轴滚珠丝杆16相配合,该Z轴滚珠丝杆16与Z轴电机8连接,该Z轴滚珠丝杆16在Z轴电机8的作用下,带动Z轴固定块24相对于Z轴固定板25上下移动,进而带动该显微扫描机构和图像采集机构9上下移动,即实现该显微扫描机构的镜头11相对于载物平台机构3进行上下移动。
该X轴移动控制单元,用于带动该Z轴移动控制单元相对于该载物平台机构3进行左右运动。其包括X轴固定板26、X轴滚珠丝杆6和X轴电机5,该X轴固定板26用于固定X轴电机5和X轴滚珠丝杆6,且其上设置有水平X轴导轨10,该Z轴固定板25上固定设置有X轴滑块和X轴丝杆 螺母,该X轴滑块与X轴导轨10相配合,该X轴丝杆螺母与X轴滚珠丝杆6相配合,该X轴滚珠丝杆6与X轴电机5连接,则该X轴滚珠丝杆6在X轴电机5的作用下,带动Z轴固定板25左右移动,进而带动该Z轴移动控制单元、显微扫描机构和图像采集机构左右移动,即实现该显微扫描机构的镜头11相对于载物平台机构3进行左右移动。还有,本实施例中该X轴移动控制单元还包括与z轴固定板25连接的X轴拖链7,用于更好的的控制z轴固定板25沿X轴导轨10的左右移动。
该Y轴移动控制单元,用于带动该X轴移动控制单元相对于该载物平台机构3进行前后运动。其包括Y轴固定板27、Y轴支撑板28、Y轴滚珠丝杆13和Y轴电机14,该Y轴固定板27上方垂直固定X轴固定板26,其下方固定设置有Y轴滑块和Y轴丝杆螺母,该Y轴支撑板28包括两块平行设置的支撑板,该两块支撑板分别垂直的设置在Y轴固定板27的两端,且其上均设有Y轴导轨4,该Y轴滚珠丝杆13和Y轴电机14固定在任一块支撑板上,该Y轴滑块与Y轴导轨4相配合,该Y轴丝杆螺母与Y轴滚珠丝杆13相配合,该Y轴滚珠丝杆13与Y轴电机14连接,则该Y轴滚珠丝杆13在Y轴电机14的作用下,带动该Y轴固定板27前后移动,进而带动该Y轴移动控制单元、Z轴移动控制单元、显微扫描机构和图像采集机构前后移动,即实现该显微扫描机构的镜头11相对于载物平台机构3进行前后移动。当然,本实施例中的Z轴移动控制单元、X轴移动控制单元和Y轴移动控制单元还可采用现有其它机械传动机构实现该显微扫描机构和图像采集机构的上下、左右、前后的移动。
为了进一步控制该全自动显微扫描机构的镜头11前后移动的位置控制,该Y轴移动控制单元还包括Y轴位置传感器12,该Y轴位置传感器12设置在该Y轴固定板27下方,用于采集Y轴固定板27沿Y轴导轨4的位置信息。
还为了进一步控制该全自动显微扫描机构的镜头11左右移动的位置控制,该X轴移动控制单元还包括X轴位置传感器,该X轴位置传感器设置 在该Z轴固定板25下方,用于采集Z轴固定板25沿X轴导轨10的位置信息。
为了进一步提高扫描效率,该全自动显微扫描机构包括一个以上显微扫描单元,该图像采集机构9包括一个以上线阵相机,该显微扫描单元和线阵相机数量相等且一一对应设置,每一组显微扫描单元和线阵相机分别连接一组Z轴移动控制单元,并由相应的Z轴移动控制单元单独控制。
本实施例中显微扫描机构包括两个显微扫描单元,图像采集机构包括两个线阵相机,该两个显微扫描单元和两个线阵相机一一对应设置,每一组显微扫描单元和线阵相机分别连接一组Z轴移动控制单元,并由相应的Z轴移动控制单元单独控制。
当然,该两组Z轴移动控制单元可间隔一段距离设置,用于对其下方的料盘上的被检测物品进行同时扫描;该两组Z轴移动控制单元也可相邻设置,这时两个显微扫描单元的物镜11可安装不同放大倍数的镜头,如20倍、40倍镜头,这样可根据实际需要,在X轴移动控制单元的作用下,可选择只采用一组显微扫描单元对被检测物品进行检测,如附图5所示。
本实施例中该载物平台机构3包括一个及多个料盘区,该料盘区还包括多个用于放置载玻片的位点,以实现该全自动显微扫描仪同时扫描多个病理切片。还可如附图8所示,该载物平台机构3采用中心处30设有旋转机构的平台,该平台的两端对称设有放置载玻片的料盘区,在该旋转机构的作用下,该平台两端的料盘区均可依次固定在光源机构31的正上方。这样该平台一侧的料盘区在进行扫描时,另一侧的料盘区可以进行上料,待一侧扫描的料盘区扫描完成后另一侧料盘区在旋转机构的作用下旋转至光源机构的正上方,立即开始扫描,提高扫描效率。该载物平台机构的改进不仅使载物平台机构在扫描时固定不动,提高扫描质量,还能节约上料时间,提高扫描效率,克服现有自动进片上料机构带来的种种缺陷。
为适应上述全自动显微扫描仪中线阵相机的快速大范围扫描,本发明设置与其配套的光源机构,以得到清晰图像。参照附图6所示,该光源机 构31包括光源本体、光源壳体和光源控制器,该光源本体采用带聚光镜的平板光源18。该平板光源18采用线性光源,其设置在光源壳体顶端,光源壳体的底端设置有多个散热风扇19,用于为光源本体散发热量。该平板光源18采用长方形结构,该长方形结构的平板光源18的光源面积大于等于该载物平台机构3上待扫描料盘的总面积,即平板光源18设置于该载物平台机构3待扫描料盘的正下方。该光源控制器与该光源18连接并用于控制其启停。
本实施例中该平板光源18的有效光照区域不低于50~300mm,其亮度不低于800000lux,其离料盘底部的距离仅为10mm~30mm。这样由于该平板光源的面积大、亮度高、距离近,则会产生相当高的热量值。如果不及时对该高热量进行降温散热处理,会严重影响被检测物品在高倍显微镜下的聚焦,所以本实施例还在该光源壳体的侧部周围设置有水冷散热单元33。该水冷散热单元33和多个散热风扇19一起有效解决大光源带来的高热量问题。
该全自动显微扫描仪还包括总控制机构,该总控制机构与该图像采集机构9、动力控制机构和光源控制器连接,用于根据实际需要控制该图像采集机构9、动力控制机构和光源控制器的动作执行,实现对被检测切片的快速扫描和数据图像采集。
还为了更好的适应该线阵相机的快速扫描,以得到清晰的图像,该全自动显微扫描仪还包括与总控制机构连接的激光预对焦***。
参照附图9所示,该激光预对焦***包括激光测距仪和与其连接的控制器,该激光测距仪设置在显微扫描机构的镜筒旁,用于检测该显微扫描机构扫描前进方向上待检测区域中被检测物表面的高度变化,并将检测值发送至控制器。
该控制器用于接收该激光测距仪传送的数据后,预先计算出该显微扫描机构到达待检测区域时需要的焦距参数,并将该焦距参数传送至总控制机构,由总控制机构控制动力控制机构,使动力控制机构带动显微扫描机 构实现Z轴移动,完成快速对焦。该激光预对焦***能良好的实现在该全自动显微扫描仪快速扫描切片过程中连续的预先测出所要经过的被检测区域的焦距参数,并得以快速对焦,最终得到快速扫描模式下的清晰图像。
进一步改进,在该显微扫描机构左右移动方向上的镜筒两侧均设置该激光测距仪,这样无论该显微扫描机构在X轴上向左或向右移动时都可以预先测出所要达到的被检测区域的焦距参数,更加方便有效的、快速的实现切片扫描。
更进一步改进,本实施例中该激光测距仪的设置方向为:使该激光测距仪的激光发射轴向与载物平台机构3的切片表面呈65~85度夹角,这样能避免垂直设置时该激光测距仪在测距过程中会将载物平台机构3上的盖玻片表面误认为盖玻片下部的被检测物品表面,使读数不准,导致不能得出准确的焦距参数。
参照附图1和7所示,该全自动显微扫描仪包括底座2。该底座2为中空箱体,该箱体的内部固定设置该光源机构;该箱体的顶板上开设有用于固定该载物平台机构3的开口;该箱体的顶板上还设置有多个支撑件29,该Y轴支撑板28固定设置在该支撑件29上。该显微扫描机构和图像采集机构9通过该动力控制机构固定在该箱体的顶板上方。且该底座2的顶面上还设置有启动按键23和急停按钮22,该启动按键23和急停按钮22均与上述总控制机构连接,用于实现该全自动显微扫描仪的运行。
较优实施例为,该箱体的底部设置有可调节脚垫1,用于调整该扫描仪处于水平状态,利于扫描数据的采集。
为了对该图像采集机构9、显微扫描机构和动力控制机构进行保护,该全自动显微扫描仪还包括设置在该底座2上方的外防护罩20,该外防护罩20的侧壁上设置有显示屏21和供调换该载物平台机构3上料盘的开口,该显示屏21与上述总控制机构连接,用于显示上述线阵相机采集的图像数据,以及该动力控制机构和光源机构的运行状态。
参照附图9所示,本实施例全自动显微扫描仪的工作原理为:该显微 扫描仪的载物平台机构3和光源机构31固定不动,该显微扫描机构和图像采集机构9在动力控制机构的作用下可实现X轴、Y轴、Z轴方向的移动,即实现镜头11相对于载物平台机构3的左右、前后及上下的移动,并在总控制机构的作用下根据实际情况实现对线阵相机、动力控制机构和光源机构的控制,进而实现对多排被检测切片的快速显微扫描,还通过激光预对焦***对镜头前进方向上待检测物品的焦距参数预判,更加快速有效的提高扫描质量和速度,并实时通过显示屏显示图像采集结果,检测速度快、检测质量优、效率高。
实施例二
参照附图10和11所示,本实施例与上述实施例一的不同之处在于,该全自动显微扫描仪的光源机构31’与动力控制机构连接,并由该动力控制机构控制其实现在X轴、Y轴方向上与显微扫描机构和图像采集机构的联动。
具体的,本实施例中该光源机构31’通过连接板与Z轴固定板连接,则X轴滚珠丝杆在X轴电机的作用下,带动Z轴固定板左右移动时,Z轴固定板会带动该光源机构31’,以及Z轴移动控制单元、显微扫描机构和图像采集机构相对于载物平台机构3进行左右运动。还有,该Y轴滚珠丝杆在Y轴电机的作用下,带动Y轴固定板前后移动时,Y轴固定板会带动该光源机构31’、X轴移动控制单元、Z轴移动控制单元、显微扫描机构和图像采集机构相对于载物平台机构3进行前后运动。则实现了光源机构31’与显微扫描机构和图像采集机构的联动,为实现更大面积的病理切片扫描提供有利条件。
还有,当该全自动显微扫描仪具有如上述两组显微扫描单元时,该两组显微扫描单元和线阵相机分别对应两排待检测物品切片,这时只需将线性光源设置为长条形结构,并将其长度方向设置为与两排待检测物品切片垂直,则在动力控制机构的作用下,该两组显微扫描单元和线阵相机联动该一个线性光源就能同时对两排待检测物品进行扫描,节约光源成本。
还有,如附图10所述,同上述实施例一,该显微扫描机构的镜筒17旁分别设有两个对称设置的激光测距仪32。该两个激光测距仪32分别用于检测该显微扫描机构扫描前进方向上待检测区域中被检测物表面的高度变化,并将检测值发送至控制器,由控制器预先计算出该显微扫描机构到达待检测区域时需要的焦距参数,并将该焦距参数传送至总控制机构,由总控制机构控制动力控制机构,使动力控制机构带动显微扫描机构实现Z轴移动,完成快速对焦,最终得到快速扫描模式下的清晰图像。
本实施例二中的其余结构均与实施例一相同,在此不再赘述。
上述全自动显微扫描仪通过设置两个及以上显微扫描机构和两个及以上分别与其对应的线阵相机,以及多个料盘和大面积光源机构,能实现多张病理切片的同时扫描,工作时只需根据载物平台机构上载玻片的布置方式预先设定好动力控制机构的运动步骤,再配合激光预对焦***的检测,即可实现高效率的全自动显微扫描,能实现一次扫描切片30张以上的效率,为满足大数据下对病理切片统计及分析提供了极有力的支持。且由于独特的光源机构设计,大大提高了图像采集机构的扫描速度和扫描质量,使该全自动显微扫描仪扫描速度快,扫描质量高。
本发明不仅可以轻易更换被扫描载物平台机构上的料盘,达到除扫描病理切片以外,还可以方便更换扫描其他定制的料盘(如96孔板等),这是目前自动上片显微扫描设备***不能达到的。
以上所述,仅是本发明的较佳实施例而已,并非对本发明作任何形式上的限制,本领域技术人员利用上述揭示的技术内容做出些许简单修改、等同变化或修饰,均落在本发明的保护范围内。

Claims (19)

  1. 一种全自动显微扫描仪,包括从上至下依次设置的图像采集机构、显微扫描机构、载物平台机构和光源机构,所述图像采集机构与显微扫描机构连接,其特征在于,所述显微扫描机构和图像采集机构在动力控制机构的作用下实现X轴、Y轴及Z轴方向的移动,且所述载物平台机构和光源机构固定不动;
    所述光源机构包括带聚光镜的平板光源,所述平板光源设置于所述载物平台机构的料盘正下方,且其光源面积大于等于所述料盘的总面积。
  2. 根据权利要求1所述的全自动显微扫描仪,其特征在于,所述图像采集机构采用线阵相机,所述平板光源采用线性光源。
  3. 根据权利要求2所述的全自动显微扫描仪,其特征在于,所述光源机构还包括光源壳体和光源控制器,所述平板光源设置在所述光源壳体顶端,所述光源壳体的底端设置有多个散热风扇,所述平板光源与所述光源控制器连接并由其控制启停。
  4. 根据权利要求3所述的全自动显微扫描仪,其特征在于,所述光源壳体的侧部周围还设有水冷散热单元。
  5. 根据权利要求4所述的全自动显微扫描仪,其特征在于,所述平板光源离所述料盘底部的距离为10mm~30mm,所述平板光源的亮度不低于800000lux。
  6. 根据权利要求1所述的全自动显微扫描仪,其特征在于,所述载物平台机构包括中心设有旋转机构的平台,所述平台的两端对称设有放置待检测物的料盘区,在所述旋转机构的作用下,所述平台两端的料盘区均可固定在所述光源机构的正上方。
  7. 根据权利要求1至6任一项所述的全自动显微扫描仪,其特征在于,还包括总控制机构和与其连接的激光预对焦***,所述总控制机构还与所 述图像采集机构、动力控制机构和光源机构连接;
    所述激光预对焦***包括激光测距仪和与其连接的控制器,所述激光测距仪设置在所述显微扫描机构的镜筒旁,用于检测所述显微扫描机构扫描前进方向上待检测区域中被检测物品表面的高度变化,并将检测值发送至所述控制器;
    所述控制器,用于接收所述激光测距仪传送的数据后,预先计算出所述显微扫描机构到达所述待检测区域时需要的焦距参数,并将所述焦距参数传送至所述总控制机构;
    所述总控制机构接收所述焦距参数后,通过控制所述动力控制机构,使其带动所述显微扫描机构实现快速对焦。
  8. 根据权利要求7所述的全自动显微扫描仪,其特征在于,所述显微扫描机构在左右移动方向上的镜筒两侧均设有所述激光测距仪。
  9. 根据权利要求8所述的全自动显微扫描仪,其特征在于,所述激光测距仪的激光发射轴向与所述载物平台机构的表面呈65~85度夹角。
  10. 根据权利要求2所述的全自动显微扫描仪,其特征在于,所述动力控制机构包括Z轴移动控制单元、X轴移动控制单元和Y轴移动控制单元,
    所述Z轴移动控制单元包括Z轴固定块、Z轴固定板、Z轴滚珠丝杆和Z轴电机,所述Z轴固定块的一侧固定所述显微扫描机构,其相对侧固定设置Z轴滑块,所述Z轴固定块的中心处设置Z轴丝杆螺母,所述Z轴固定板用于固定所述Z轴电机和Z轴滚珠丝杆且其上设置有垂直Z轴导轨,所述Z轴滑块与Z轴导轨相配合,所述Z轴丝杆螺母与Z轴滚珠丝杆相配合,所述Z轴滚珠丝杆与Z轴电机连接,则所述Z轴滚珠丝杆在Z轴电机的作用下,带动Z轴固定块相对于Z轴固定板上下移动,进而带动所述显微扫描机构和图像采集机构相对于所述载物平台机构进行上下运动;
    所述X轴移动控制单元包括X轴固定板、X轴滚珠丝杆和X轴电机,所述X轴固定板用于固定所述X轴电机和X轴滚珠丝杆,且其上设置有水平X轴导轨,所述Z轴固定板上固定设置有X轴滑块和X轴丝杆螺母,所述X 轴滑块与X轴导轨相配合,所述X轴丝杆螺母与X轴滚珠丝杆相配合,所述X轴滚珠丝杆与X轴电机连接,则所述X轴滚珠丝杆在X轴电机的作用下,带动Z轴固定板左右移动,进而带动所述Z轴移动控制单元、显微扫描机构和图像采集机构相对于所述载物平台机构进行左右运动;
    所述Y轴移动控制单元包括Y轴固定板、Y轴支撑板、Y轴滚珠丝杆和Y轴电机,所述Y轴固定板上方垂直固定所述X轴固定板,其下方固定设置有Y轴滑块和Y轴丝杆螺母,所述Y轴支撑板包括两块平行设置的支撑板,所述两块支撑板分别垂直的设置在所述Y轴固定板的两端,且其上均设有Y轴导轨,所述Y轴滚珠丝杆和Y轴电机固定在任一块支撑板上,所述Y轴滑块与Y轴导轨相配合,所述Y轴丝杆螺母与Y轴滚珠丝杆相配合,所述Y轴滚珠丝杆与Y轴电机连接,则所述Y轴滚珠丝杆在Y轴电机的作用下,带动所述Y轴固定板前后移动,进而带动所述X轴移动控制单元、Z轴移动控制单元、显微扫描机构和图像采集机构相对于所述载物平台机构进行前后运动。
  11. 根据权利要求10所述的全自动显微扫描仪,其特征在于,所述显微扫描机构包括一个以上显微扫描单元,所述显微扫描单元包括可调节倍数的光学镜筒和可更换的物镜;所述图像采集机构包括一个以上线阵相机,所述显微扫描单元和线阵相机数量相等且一一对应设置,每一组显微扫描单元和线阵相机分别连接一组所述Z轴移动控制单元,并由相应的Z轴移动控制单元单独控制。
  12. 根据权利要求10所述的全自动显微扫描仪,其特征在于,所述Y轴移动控制单元还包括Y轴位置传感器,所述Y轴位置传感器用于采集Y轴固定板沿Y轴导轨的位置信息;
    所述X轴移动控制单元还包括X轴位置传感器,所述X轴位置传感器用于采集Z轴固定板沿X轴导轨的位置信息。
  13. 根据权利要求10所述的全自动显微扫描仪,其特征在于,所述全自动显微扫描仪包括底座,所述底座为中空箱体,所述箱体的内部固定设 置所述光源机构;所述箱体的顶板上开设有用于固定所述载物平台机构的开口;所述箱体的顶板上还设置有多个支撑件,所述Y轴支撑板固定设置在所述支撑件上;
    所述全自动显微扫描仪还包括设置在所述底座上方的外防护罩,所述外防护罩的侧壁上设置有显示屏和供调换所述载物平台机构上料盘的开口,所述显示屏与所述图像采集机构连接。
  14. 一种全自动显微扫描仪,包括从上至下依次设置的图像采集机构、显微扫描机构、载物平台机构和光源机构,所述图像采集机构与显微扫描机构连接,其特征在于,所述图像采集机构采用线阵相机,所述显微扫描机构和图像采集机构在动力控制机构的作用下实现X轴、Y轴及Z轴方向的移动,所述载物平台机构固定不动;
    所述光源机构包括带聚光镜的线性光源,所述线性光源设置于所述载物平台机构的料盘下方,所述光源机构与所述动力控制机构连接,并由所述动力控制机构控制实现在X轴、Y轴方向与所述显微扫描机构和图像采集机构的联动。
  15. 根据权利要求14所述的全自动显微扫描仪,其特征在于,所述光源机构还包括光源壳体和光源控制器,所述线性光源设置在所述光源壳体顶端,所述光源壳体的底端设置有多个散热风扇,所述线性光源与所述光源控制器连接并由其控制启停。
  16. 根据权利要求14所述的全自动显微扫描仪,其特征在于,还包括总控制机构和与其连接的激光预对焦***,所述总控制机构还与所述图像采集机构、动力控制机构和光源机构连接;
    所述激光预对焦***包括激光测距仪和与其连接的控制器,所述激光测距仪设置在所述显微扫描机构的镜筒旁,用于检测所述显微扫描机构扫描前进方向上待检测区域中被检测物品表面的高度变化,并将检测值发送至所述控制器;
    所述控制器,用于接收所述激光测距仪传送的数据后,预先计算出所 述显微扫描机构到达所述待检测区域时需要的焦距参数,并将所述焦距参数传送至所述总控制机构;
    所述总控制机构接收所述焦距参数后,通过控制所述动力控制机构,使其带动所述显微扫描机构实现快速对焦。
  17. 根据权利要求16所述的全自动显微扫描仪,其特征在于,所述显微扫描机构在左右移动方向上的镜筒两侧均设有所述激光测距仪;所述激光测距仪的激光发射轴向与所述载物平台机构的表面呈65~85度夹角。
  18. 根据权利要求14所述的全自动显微扫描仪,其特征在于,所述动力控制机构包括Z轴移动控制单元、X轴移动控制单元和Y轴移动控制单元,
    所述Z轴移动控制单元包括Z轴固定块、Z轴固定板、Z轴滚珠丝杆和Z轴电机,所述Z轴固定块的一侧固定所述显微扫描机构,其相对侧固定设置Z轴滑块,所述Z轴固定块的中心处设置Z轴丝杆螺母,所述Z轴固定板用于固定所述Z轴电机和Z轴滚珠丝杆且其上设置有垂直Z轴导轨,所述Z轴滑块与Z轴导轨相配合,所述Z轴丝杆螺母与Z轴滚珠丝杆相配合,所述Z轴滚珠丝杆与Z轴电机连接,则所述Z轴滚珠丝杆在Z轴电机的作用下,带动Z轴固定块相对于Z轴固定板上下移动,进而带动所述显微扫描机构和图像采集机构相对于所述载物平台机构进行上下运动;
    所述X轴移动控制单元包括X轴固定板、X轴滚珠丝杆和X轴电机,所述X轴固定板用于固定所述X轴电机和X轴滚珠丝杆,且其上设置有水平X轴导轨,所述Z轴固定板上固定设置有X轴滑块和X轴丝杆螺母,所述X轴滑块与X轴导轨相配合,所述X轴丝杆螺母与X轴滚珠丝杆相配合,所述X轴滚珠丝杆与X轴电机连接,所述光源机构通过连接板与所述Z轴固定板连接,则所述X轴滚珠丝杆在X轴电机的作用下,带动Z轴固定板左右移动,进而带动所述Z轴移动控制单元、光源机构、显微扫描机构和图像采集机构相对于所述载物平台机构进行左右运动;
    所述Y轴移动控制单元包括Y轴固定板、Y轴支撑板、Y轴滚珠丝杆和Y轴电机,所述Y轴固定板上方垂直固定所述X轴固定板,其下方固定设置 有Y轴滑块和Y轴丝杆螺母,所述Y轴支撑板包括两块平行设置的支撑板,所述两块支撑板分别垂直的设置在所述Y轴固定板的两端,且其上均设有Y轴导轨,所述Y轴滚珠丝杆和Y轴电机固定在任一块支撑板上,所述Y轴滑块与Y轴导轨相配合,所述Y轴丝杆螺母与Y轴滚珠丝杆相配合,所述Y轴滚珠丝杆与Y轴电机连接,则所述Y轴滚珠丝杆在Y轴电机的作用下,带动所述Y轴固定板前后移动,进而带动所述X轴移动控制单元、Z轴移动控制单元、光源机构、显微扫描机构和图像采集机构相对于所述载物平台机构进行前后运动。
  19. 根据权利要求18所述的全自动显微扫描仪,其特征在于,所述显微扫描机构包括两个显微扫描单元,所述图像采集机构包括两个线阵相机,所述显微扫描单元和线阵相机分别对应设置,每一组显微扫描单元和线阵相机分别连接一组所述Z轴移动控制单元,并由相应的Z轴移动控制单元单独控制;
    所述的两组显微扫描单元和线阵相机分别对应两排待检测物品,所述线性光源呈长条形结构,其长度方向与两排待检测物品垂直,则在所述动力控制机构的作用下,所述两组显微扫描单元和线阵相机联动所述光源机构同时对所述两排待检测物品进行扫描。
PCT/CN2018/090292 2017-06-07 2018-06-07 一种全自动显微扫描仪 WO2018224015A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CA3018492A CA3018492C (en) 2017-06-07 2018-09-25 Fully automatic microscopic scanner

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201710424258.8 2017-06-07
CN201710424258.8A CN107065160A (zh) 2017-06-07 2017-06-07 一种全自动显微扫描仪
CN201810457406.0 2018-05-14
CN201810457406.0A CN108627964B (zh) 2017-06-07 2018-05-14 一种全自动显微扫描仪

Publications (1)

Publication Number Publication Date
WO2018224015A1 true WO2018224015A1 (zh) 2018-12-13

Family

ID=59616284

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/CN2017/095135 WO2018223510A1 (zh) 2017-06-07 2017-07-31 一种全自动显微扫描仪
PCT/CN2018/090292 WO2018224015A1 (zh) 2017-06-07 2018-06-07 一种全自动显微扫描仪

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/095135 WO2018223510A1 (zh) 2017-06-07 2017-07-31 一种全自动显微扫描仪

Country Status (4)

Country Link
US (1) US11099369B2 (zh)
CN (2) CN107065160A (zh)
CA (1) CA3018492C (zh)
WO (2) WO2018223510A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110146504A (zh) * 2019-06-06 2019-08-20 安徽金盾三维高科技有限公司 弹壳物证特征图像采集测量装置
CN110308099A (zh) * 2019-07-10 2019-10-08 长春国科医工科技发展有限公司 一种医用显微成像光谱仪全自动高精度扫描结构
CN113903459A (zh) * 2021-11-25 2022-01-07 北京福乐云数据科技有限公司 基于鸿蒙操作***的医共体多参数检测***及方法
CN114083163A (zh) * 2021-11-17 2022-02-25 绵阳新能智造科技有限公司 一种远程激光刻蚀三轴装置

Families Citing this family (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107065160A (zh) 2017-06-07 2017-08-18 李昕昱 一种全自动显微扫描仪
TWI766898B (zh) * 2017-11-08 2022-06-11 創新服務股份有限公司 3d醫療顯微鏡
CN107893898A (zh) * 2017-12-22 2018-04-10 无锡市创恒机械有限公司 一种自动监测机构
CN110118728A (zh) * 2018-02-07 2019-08-13 深圳先进技术研究院 一种声学分辨率光声显微***
CN109164554B (zh) * 2018-11-06 2023-06-16 中国工程物理研究院激光聚变研究中心 一种米量级反射镜自动化柔性装校平台及装校方法
CN109491297B (zh) * 2018-12-12 2020-06-26 湖南爱威医疗科技有限公司 显微镜图片采集方法及***
CN109620159B (zh) * 2018-12-29 2024-04-02 深圳先进技术研究院 一种光声显微成像装置
CN109445084B (zh) * 2018-12-29 2024-05-28 李昕昱 一种显微扫描仪载物台
CN109754022B (zh) * 2019-01-24 2023-06-13 河池学院 一种基于卷积神经网络的甘蔗胚芽分类***
CN110031961B (zh) * 2019-04-08 2023-08-01 上海健康医学院 显微镜双向移动载玻片平台
CN109940360B (zh) * 2019-04-10 2020-04-24 武汉锐科光纤激光技术股份有限公司 透镜夹取装置及其夹取方法
CN110487786B (zh) * 2019-07-02 2020-07-03 南京诺源医疗器械有限公司 扫描仪
CN110794569B (zh) * 2019-11-14 2021-01-26 武汉兰丁智能医学股份有限公司 细胞微型显微图像采集装置及图像识别方法
CN111122583A (zh) * 2019-12-19 2020-05-08 苏州浚惠生物科技有限公司 显微扫描平台及工作区域平面度校准方法
CN111090212B (zh) * 2019-12-30 2021-08-13 中科慧远视觉技术(洛阳)有限公司 线光源调整机构
CN110967347B (zh) * 2019-12-31 2024-05-28 广东科卓半导体设备有限公司 一种导光板检测机
CN111122578B (zh) * 2020-01-16 2024-01-26 宁波舜宇仪器有限公司 一种料盘式病理切片扫描仪及切片扫描方法
CN111366503A (zh) * 2020-03-17 2020-07-03 宁波江丰生物信息技术有限公司 一种基于数字病理宫颈液基细胞学智能辅助阅片方法
CN111258048B (zh) * 2020-03-30 2022-03-18 范永涛 一种全封闭具有多区域扫描功能的倒置显微镜
CN111548904B (zh) * 2020-04-21 2023-06-16 通用生物(安徽)股份有限公司 一种基因测序用光学装置
CN111795918B (zh) * 2020-05-25 2024-03-01 中国人民解放军陆军军医大学第二附属医院 一种骨髓细胞形态学自动检测扫描结构及扫描方法
CN111735768B (zh) * 2020-07-31 2020-12-08 武汉精立电子技术有限公司 一种Micro LED屏幕的显微成像方法及装置
CN111855578B (zh) * 2020-08-14 2023-10-03 杭州医派智能科技有限公司 一种病理切片扫描仪
CN111796411A (zh) * 2020-08-24 2020-10-20 深圳市森美协尔科技有限公司 一种高精度显微镜x轴平移机构
CN112198652A (zh) * 2020-09-09 2021-01-08 安徽九陆生物科技有限公司 一种倒置式自动玻片扫描仪装置及其使用方法
CN112671990B (zh) * 2020-11-30 2022-07-12 重庆数宜信信用管理有限公司 一种壁挂式高拍仪
CN112198651B (zh) * 2020-12-03 2021-03-16 深圳市众凌泰科技有限公司 一种载玻片水冷***及方法
CN112748564A (zh) * 2021-01-29 2021-05-04 上海睿钰生物科技有限公司 一种显微装置及显微装置的调焦方法
CN112986201A (zh) * 2021-02-23 2021-06-18 苏州图墨医疗科技有限公司 一种自动荧光扫描检测设备及其方法
WO2022213648A1 (zh) * 2021-04-09 2022-10-13 上海杏脉信息科技有限公司 显微图像扫描装置及***
CN113204109A (zh) * 2021-06-04 2021-08-03 苏州丰泰医疗用品贸易有限公司 一种医学显微图像分析用全自动显微镜
CN114879353A (zh) * 2022-04-24 2022-08-09 广州广检技术发展有限公司 具有高精度自动对焦机构的显微镜
CN114683423A (zh) * 2022-06-01 2022-07-01 沈阳和研科技有限公司 一种划片机显微镜结构
CN115472516B (zh) * 2022-08-09 2024-04-05 江苏卓玉智能科技有限公司 一种晶圆检查机
CN116718120A (zh) * 2023-05-29 2023-09-08 苏州佳祺仕科技股份有限公司 一种工件尺寸检测装置及检测方法
CN117560452B (zh) * 2024-01-11 2024-04-09 陕西福路特光影科技有限公司 一种大幅面动态高清扫描装置及其扫描方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050088731A1 (en) * 2003-10-27 2005-04-28 Nikon Corporation Lens tube of microscope
CN202974843U (zh) * 2012-12-14 2013-06-05 王逸斐 一种病理切片全景扫描仪
CN203084281U (zh) * 2013-01-09 2013-07-24 长春迪瑞医疗科技股份有限公司 一种全自动显微镜成像装置
CN204065545U (zh) * 2014-07-29 2014-12-31 杭州卓腾信息技术有限公司 基于显微镜的数字切片扫描激光聚焦装置
CN204556662U (zh) * 2015-04-14 2015-08-12 苏州飞时曼精密仪器有限公司 一种光学原子力一体化扫描探针显微镜
CN107065160A (zh) * 2017-06-07 2017-08-18 李昕昱 一种全自动显微扫描仪
CN206818969U (zh) * 2017-06-07 2017-12-29 李昕昱 一种全自动显微扫描仪

Family Cites Families (48)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4720078Y1 (zh) 1968-08-17 1972-07-06
US4204045A (en) 1978-02-15 1980-05-20 Orion-Yhtyma Oy Device for examining microorganisms
US4248498A (en) 1978-06-29 1981-02-03 Georges Michael P Automatic microscope slide
JPS5946164B2 (ja) 1980-05-01 1984-11-10 ワイケイケイ株式会社 スライドフアスナ−チエンのスペ−ス形成装置
US4836667A (en) 1986-05-06 1989-06-06 Slidex Corporation Microscope
US5367401A (en) 1990-11-23 1994-11-22 Perceptive Scientific Instruments, Inc. Microscope slide rotary stage
US5428690A (en) * 1991-09-23 1995-06-27 Becton Dickinson And Company Method and apparatus for automated assay of biological specimens
EP0638832B1 (en) 1993-08-10 2000-03-22 Canon Kabushiki Kaisha Liquid crystal display apparatus
JP4229573B2 (ja) * 1999-06-09 2009-02-25 オリンパス株式会社 共焦点走査型顕微鏡、共焦点走査型顕微鏡における画像表示方法および画像表示処理をするための処理プログラムを記録した記録媒体
US6118582A (en) 1999-07-12 2000-09-12 Immuno Concepts, Inc. Slide holder
WO2001082327A2 (en) 2000-04-24 2001-11-01 Fei Company Collection of secondary electrons through the objective lens of a scanning electron microscope
JP2002221663A (ja) * 2001-01-29 2002-08-09 Nikon Corp 走査型共焦点顕微鏡
JP2003140053A (ja) * 2001-11-05 2003-05-14 Olympus Optical Co Ltd 光学顕微鏡別軸一体型走査型プローブ顕微鏡
JP2003185583A (ja) * 2001-12-18 2003-07-03 Fuji Photo Film Co Ltd スキャナ
US7076996B2 (en) 2002-10-31 2006-07-18 Veeco Instruments Inc. Environmental scanning probe microscope
US7773227B2 (en) 2004-06-04 2010-08-10 California Institute Of Technology Optofluidic microscope device featuring a body comprising a fluid channel and having light transmissive regions
WO2006078956A2 (en) * 2005-01-21 2006-07-27 Jmar Technologies, Inc. Systems and methods for a scanning boom microscope
CN100388045C (zh) * 2005-06-17 2008-05-14 麦克奥迪实业集团有限公司 显微镜的自动进片装置
CN200952996Y (zh) * 2006-09-07 2007-09-26 北京优纳科技有限公司 自适应切片扫描***
CN101075016A (zh) * 2006-12-31 2007-11-21 蔡勇 由led背光板构成的显微镜底照明光源
US20080180793A1 (en) * 2007-01-26 2008-07-31 Cellomics, Inc. High content screening system with live cell chamber
US20130201553A1 (en) 2008-02-04 2013-08-08 Scigene Corporation High capacity microscope slide incubation system and meethod
JP5313711B2 (ja) * 2009-01-29 2013-10-09 株式会社ミツトヨ 光学式測定装置
US20110266181A1 (en) 2010-03-04 2011-11-03 Sloan-Kettering Institute For Cancer Research Microscope slide holder and method of use
CA2809526C (en) 2010-10-22 2014-01-14 William Gelbart Automated slide scanning system for a microscope
US8519314B1 (en) * 2010-12-09 2013-08-27 Bruker Nano Inc. Focus assist through intensity control of light source
CN102427502B (zh) * 2011-10-01 2014-05-07 麦克奥迪实业集团有限公司 一种显微切片的扫描方法及扫描装置
US20130294826A1 (en) 2012-05-04 2013-11-07 Advanced Cell Diagnostics, Inc. Lock-in slide rack
CN102788756A (zh) * 2012-07-13 2012-11-21 上海凯度机电科技有限公司 多模态生物显微分析仪
EP2883813A4 (en) 2012-08-13 2016-04-13 Sony Corp SLIDE AND SLIDING TRANSPORT DEVICE
CN202974208U (zh) * 2012-12-24 2013-06-05 杨少龙 显微切片的扫描装置
CN103033408A (zh) * 2013-01-09 2013-04-10 山东英才学院 一种远程由玻璃切片获得数字切片的装置及方法
CN203083858U (zh) * 2013-01-09 2013-07-24 山东英才学院 一种远程由玻璃切片获得数字切片的装置
CN103852878B (zh) * 2014-01-08 2016-05-25 麦克奥迪实业集团有限公司 一种具有实时聚焦的显微切片快速数字扫描装置及其方法
CN205027634U (zh) 2015-10-20 2016-02-10 丹东百特仪器有限公司 带有扫描、拼接的动态颗粒图像粒度粒形分析仪
CN105223682B (zh) 2015-10-23 2017-06-16 武汉沃亿生物有限公司 一种载玻片装夹机构
CN205067373U (zh) * 2015-10-29 2016-03-02 宜兴爱特盟光电科技有限公司 一种面阵与线阵ccd相机组合的多角度扫描探头
TWI599793B (zh) * 2015-11-23 2017-09-21 財團法人金屬工業研究發展中心 組織玻片影像掃描系統
CN205374862U (zh) * 2015-12-18 2016-07-06 天津良益科技有限公司 一种显微镜载物台
CN205447294U (zh) * 2015-12-24 2016-08-10 东莞锐视光电科技有限公司 一种防尘式线光源
CN205537524U (zh) * 2016-03-25 2016-08-31 山西迪迈沃科光电工业有限公司 一种圆盘类小零件形位公差非接触式检测装置
CN205404951U (zh) * 2016-03-25 2016-07-27 张召凤 病理诊断显微镜
CN205956923U (zh) * 2016-08-25 2017-02-15 福建吉艾普光影科技有限公司 一种智能舞台灯用的出光机构
CN106254742B (zh) * 2016-08-31 2022-03-08 苏州朗坤自动化设备有限公司 一种双相机图像测量机构
EP3642601A4 (en) * 2017-06-22 2021-03-17 Huron Technologies International Inc. MSIA SCAN INSTRUMENT WITH INCREASED DYNAMIC RANGE
CN207850898U (zh) 2018-01-18 2018-09-11 帝麦克斯(苏州)医疗科技有限公司 用于放置载玻片的平台及数字病理切片扫描仪
CN109030371A (zh) 2018-10-25 2018-12-18 赛恩斯科学仪器(广州)有限公司 一种自动化切片扫描装置及切片扫描仪
CN109445084B (zh) 2018-12-29 2024-05-28 李昕昱 一种显微扫描仪载物台

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050088731A1 (en) * 2003-10-27 2005-04-28 Nikon Corporation Lens tube of microscope
CN202974843U (zh) * 2012-12-14 2013-06-05 王逸斐 一种病理切片全景扫描仪
CN203084281U (zh) * 2013-01-09 2013-07-24 长春迪瑞医疗科技股份有限公司 一种全自动显微镜成像装置
CN204065545U (zh) * 2014-07-29 2014-12-31 杭州卓腾信息技术有限公司 基于显微镜的数字切片扫描激光聚焦装置
CN204556662U (zh) * 2015-04-14 2015-08-12 苏州飞时曼精密仪器有限公司 一种光学原子力一体化扫描探针显微镜
CN107065160A (zh) * 2017-06-07 2017-08-18 李昕昱 一种全自动显微扫描仪
CN206818969U (zh) * 2017-06-07 2017-12-29 李昕昱 一种全自动显微扫描仪

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110146504A (zh) * 2019-06-06 2019-08-20 安徽金盾三维高科技有限公司 弹壳物证特征图像采集测量装置
CN110308099A (zh) * 2019-07-10 2019-10-08 长春国科医工科技发展有限公司 一种医用显微成像光谱仪全自动高精度扫描结构
CN114083163A (zh) * 2021-11-17 2022-02-25 绵阳新能智造科技有限公司 一种远程激光刻蚀三轴装置
CN113903459A (zh) * 2021-11-25 2022-01-07 北京福乐云数据科技有限公司 基于鸿蒙操作***的医共体多参数检测***及方法
CN113903459B (zh) * 2021-11-25 2022-06-24 北京福乐云数据科技有限公司 基于鸿蒙操作***的医共体多参数检测***及方法

Also Published As

Publication number Publication date
CN108627964A (zh) 2018-10-09
WO2018223510A1 (zh) 2018-12-13
CN107065160A (zh) 2017-08-18
CA3018492C (en) 2022-05-31
US11099369B2 (en) 2021-08-24
US20190033568A1 (en) 2019-01-31
CN108627964B (zh) 2020-04-21
CA3018492A1 (en) 2019-12-07

Similar Documents

Publication Publication Date Title
WO2018224015A1 (zh) 一种全自动显微扫描仪
CN104020554B (zh) 成像***和技术
KR101734628B1 (ko) 에러 신호를 이용한 포커스 및 이미징 시스템 및 기법들
JP6968221B2 (ja) 半導体デバイスの側面の検査装置
CN202974843U (zh) 一种病理切片全景扫描仪
CN103033919B (zh) 一种在自动扫描过程中自动补偿对焦的***及方法与应用
CN111855578B (zh) 一种病理切片扫描仪
CN113176274A (zh) 一种用于显示面板缺陷检测的自动对焦方法、装置及***
CN111679416A (zh) 显微镜玻片自动扫描仪
CN206818969U (zh) 一种全自动显微扫描仪
CN202453578U (zh) 基于油镜的全自动显微图像扫描采集装置
CN209727783U (zh) 用于数字切片扫描仪的精密对焦装置
CN210605181U (zh) 基于手机的细胞微型显微图像采集装置
CN112986201A (zh) 一种自动荧光扫描检测设备及其方法
JP2016205985A (ja) 測定装置
CN213633134U (zh) 一种病理切片扫描仪
JP6641177B2 (ja) 顕微鏡システム、顕微鏡システムの制御方法およびプログラム
CN220381370U (zh) 一种***形态学图像自动采集装置
CN213633135U (zh) 一种病理切片的扫描控制装置
CN218824959U (zh) 显微镜玻片自动扫描拍照***
CN210487630U (zh) 细微裂纹成像***
CN218271962U (zh) 一种高光谱智能检测装置
CN213633133U (zh) 一种病理切片的显微成像装置
CN213633136U (zh) 一种病理切片的精准送料装置
KR20140130759A (ko) 렌즈의 배열 방법 및 이를 탑재한 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18814064

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18814064

Country of ref document: EP

Kind code of ref document: A1