WO2018223390A1 - 半静态调度方法、装置及设备 - Google Patents

半静态调度方法、装置及设备 Download PDF

Info

Publication number
WO2018223390A1
WO2018223390A1 PCT/CN2017/087773 CN2017087773W WO2018223390A1 WO 2018223390 A1 WO2018223390 A1 WO 2018223390A1 CN 2017087773 W CN2017087773 W CN 2017087773W WO 2018223390 A1 WO2018223390 A1 WO 2018223390A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminal device
information
semi
resource
time
Prior art date
Application number
PCT/CN2017/087773
Other languages
English (en)
French (fr)
Inventor
唐珣
权威
张戬
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2017/087773 priority Critical patent/WO2018223390A1/zh
Publication of WO2018223390A1 publication Critical patent/WO2018223390A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/02Selection of wireless resources by user or terminal

Definitions

  • the present invention relates to the field of communications, and in particular, to a semi-static scheduling method, apparatus, and device.
  • SPS Semi-Persistent Scheduling
  • UE User Equipment
  • the base station may send an SPS activation message to the UE for activating the SPS resource, and may also send an SPS release message to the UE for releasing the SPS resource. Or the UE does not send valid user data in consecutive SPS resources, and the UE may directly release the SPS resource. After the UE releases the SPS resource and is in the SPS inactive state, the base station may adjust the periodic configuration of the SPS resource when the UE is in the SPS inactive state.
  • the technical problem to be solved by the embodiments of the present invention is to provide a semi-persistent scheduling method, which can solve the problem that the SPS resources cannot be adjusted in the SPS activation state in the prior art.
  • the first aspect provides a semi-persistent scheduling method, including: determining, by a terminal device, a first moment, where the first moment is a starting time of a semi-static scheduling resource; and in a semi-static scheduling activation state, the terminal device is The first information is determined within the first time period starting from the first time, and the first information is used by the terminal device to determine resource information of the semi-static scheduling resource after the second time.
  • the technical solution provided by the first aspect in the semi-static scheduling activation state, adjusts the resource information of the SPS after the second time according to the first information by using the first information determined within the first duration, thereby implementing activation in the semi-persistent scheduling.
  • the status implements the adjustment of the SPS resource information.
  • the second moment is determined by the terminal device according to the first moment, the first duration, and the second duration.
  • the resource information of the semi-static scheduling resource includes a period value of the semi-static resource. This can set the resource information of the SPS to the period value of the SPS.
  • the first information is patch bit padding bits information, or the number of times the patch jumps padding skipping.
  • the scheme can adjust the SPS period according to the information of the patch bit or the patch hopping.
  • the terminal device receives a first adjustment value from the base station, and the terminal device determines, according to the first information and the first adjustment value, the semi-static after the second moment The period value of the resource.
  • the method implements the acquisition manner of the first adjustment value, and increases or decreases the first adjustment value for the period of the SPS.
  • the padding bits information is a number of padding bits
  • the first information is The determining, by the terminal device, the resource information of the semi-persistent scheduling resource after the second time, the determining, by the terminal device, that the number of padding bits is greater than a first quantity threshold, the terminal device after the second time The period of the semi-static resource is increased by the first adjustment value; or the terminal device determines that the number of padding bits is less than a second quantity threshold, and the terminal device reduces the period of the semi-static resource after the second moment The first adjustment value.
  • the technical solution clarifies the specific expression form of the patch bit information as the number of patch bits, and provides how to adjust the SPS period according to the number of patch bits.
  • the first information is the number of times of the padding, and the first information is used by the terminal device to determine the resource information of the semi-persistent scheduling resource after the second time, including: The terminal device determines that the number of times of the padding skipping is greater than the first set number of times, and the terminal device increases the period of the semi-static resource by the first adjustment value after the second time; or the terminal device Determining that the number of times of the padding skipping is less than a second set number of times, the terminal device reducing the period of the semi-static resource by the first adjustment value after the second moment.
  • This technical solution clarifies how to adjust the SPS cycle according to the number of patch hops.
  • the padding bits information is a first ratio of padding bits to total bits
  • the first information is used by the terminal device to determine the semi-persistent scheduling resource after the second moment
  • the resource information includes: the terminal device determines that the first ratio is greater than a second set ratio, and the terminal device increases the period of the semi-static resource by the first adjustment value after the second moment; The terminal device determines that the first ratio is smaller than a third set ratio, and the terminal device reduces the period of the semi-static resource by the first adjustment value after the second moment.
  • the terminal device sends second information to the base station, where the second information is used to indicate that the terminal device supports semi-persistent scheduling period adjustment.
  • the foregoing technical solution determines that the capability of supporting the SPS period adjustment is sent to the base station according to the second information.
  • one or more of the first duration, the second duration, the first moment, and the first adjustment value are pre-configured; or the first One or more of the duration, the second duration, the first moment, and the first adjustment value are configured for a base station.
  • the second aspect provides a semi-persistent scheduling SPS method, including: the base station sends first control information to the terminal device, where the first control information is used by the terminal device to determine a starting time of the semi-persistent scheduling; Sending third information, the third information is used to instruct the terminal device to update the semi-persistently scheduled resource information; the resource information includes an SPS period.
  • the method provided by the second aspect supports the implementation of the method of the first aspect.
  • a third aspect provides a terminal device, where the terminal device includes: a determining unit, configured to determine a first moment, where the first moment is a starting time of a semi-persistent scheduling resource; and a processing unit, configured to perform semi-persistent scheduling In the active state, the first information is determined within a first duration starting at the first moment, the first information being used by the terminal device to determine resource information of the semi-static scheduling resource after the second moment.
  • the terminal device provided by the third aspect adjusts the resource information of the SPS after the second time according to the first information in the semi-static scheduling activation state by using the first information determined in the first duration, so that the terminal device is semi-static.
  • the scheduling activation state implements adjustment of SPS resource information.
  • a fourth aspect provides a base station, where the base station includes: a sending unit, configured to send a first control to a terminal device
  • the first control information is used by the terminal device to determine a start time of the semi-persistent scheduling SPS, and the sending unit is further configured to send the third information to the terminal device, where the third information is used to indicate that the terminal device is turned on.
  • the base station provided by the fourth aspect supports the adjustment of the SPS resource information by the terminal device in the third aspect in the semi-persistent scheduling activation state.
  • a computer readable storage medium having stored thereon a computer program, wherein the computer program, when executed by a processor, implements the method of the first aspect or the second aspect.
  • an apparatus comprising: one or more processors, a memory, a transceiver, and one or more programs, the one or more programs being stored in the memory, the program being The method provided by the first aspect or the second aspect is implemented when one or more processors are executed.
  • FIG. 1 is a schematic diagram of a long-term evolution network structure.
  • FIG. 2 is a schematic diagram of a network structure of a 5G NR.
  • FIG. 3 is a schematic flowchart diagram of an SPS method according to an embodiment of the present application.
  • FIG. 4 is a schematic flowchart diagram of an SPS method according to another embodiment of the present application.
  • FIG. 5 is a schematic flowchart of an SPS method provided by an embodiment of the present application.
  • FIG. 5A is a schematic diagram of a relationship between a frame and a subframe and a duration provided by an embodiment of the present application.
  • FIG. 6 is a schematic flowchart diagram of an SPS method according to another embodiment of the present application.
  • FIG. 6A is a schematic diagram of another frame and a relationship between a subframe and a duration according to an embodiment of the present application.
  • FIG. 7 is a schematic flowchart diagram of an SPS method according to still another embodiment of the present application.
  • FIG. 7A is a schematic diagram of still another frame and a relationship between a subframe and a duration according to an embodiment of the present application.
  • FIG. 8 is a schematic diagram of SPS cycle index values of the present application.
  • FIG. 8A is a schematic diagram of the relationship between the SR value and the SPS period of the present application.
  • FIG. 9 is a schematic structural diagram of a terminal device provided by the present application.
  • FIG. 10 is a schematic structural diagram of a base station provided by the present application.
  • FIG. 11 is a schematic structural diagram of another terminal device provided by the present application.
  • FIG. 12 is a schematic structural diagram of another base station provided by the present application.
  • FIG. 13A is a schematic structural diagram of hardware of a terminal device provided by the present application.
  • FIG. 13B is a schematic structural diagram of a hardware of a base station provided by the present application.
  • FIG. 1 is a schematic diagram of a network structure of Long Term Evolution (LTE). As shown in FIG. 1 , it includes a mobility management entity (English: Mobility Management Entity, MME) or a service gateway ( English: Serving Gateway (S-GW), each MME or S-GW is connected to at least one evolved base station (English: evolved Node B, eNB), and there are multiple cells or multiple UEs under each eNB.
  • MME Mobility Management Entity
  • S-GW Serving Gateway
  • eNB evolved Node B
  • FIG. 2 provides a network structure diagram of a fifth generation mobile communication technology (5th-Generation, 5G) New Radio (NR), as shown in FIG. 2, in a new air interface base station (English: New Radio) Under Node B, NR-NB, there may be one or more Transmission and Reception Points (TRPs), and one or more UEs may exist in one or more TRP ranges.
  • 5G fifth generation mobile communication technology
  • NR-NB New Radio
  • TRPs Transmission and Reception Points
  • UEs may exist in one or more TRP ranges.
  • FIG. 3 is a schematic diagram of an SPS method according to an embodiment of the present disclosure.
  • the method may be performed by a UE as shown in FIG. 1 or performed by a UE as shown in FIG. Taking the SPS resource adjustment as an example, the method in which the terminal device adjusts the SPS resource by itself may also be referred to as an implicit SPS method.
  • the method is shown in Figure 3 and includes the following steps:
  • Step S301 The terminal device determines a first moment, where the first moment may be a starting moment of a semi-static scheduling resource.
  • the first time in the foregoing step S301 may be pre-configured in the terminal device.
  • the first moment may be a network side device (for example, the eNB in FIG. 1 or the NR-NB as shown in FIG. 2).
  • the configuration or the indication is performed by using a configuration message or the indication information.
  • the network side device eNB or NR-NB
  • Step S302 In the semi-persistent scheduling activation state, the terminal device determines, in a first duration that starts at the first moment, the first information, where the first information is used by the terminal device to determine resource information of the semi-persistent scheduling resource after the second moment. .
  • the acknowledgment mode of the semi-static scheduling activation state in the foregoing step S302 may be that the terminal device may be considered to be in a semi-persistent scheduling activation state when receiving the SPS activation message but not releasing the SPS resource.
  • the resource information of the semi-persistent scheduling resource in the foregoing step S302 may be: an SPS period.
  • the terminal device of the technical solution provided by the application dynamically adjusts the SPS period according to the first information in the first duration in the semi-persistent scheduling activation state, and the technical solution does not need to interrupt the data transmission by the base station or the UE.
  • the terminal device can adjust the SPS period after the second time according to the first information in the first duration, so that the terminal device can adjust the resource without consuming additional physical downlink control channel (English: Physical Downlink Control Channel, PDCCH). SPS cycle.
  • the second moment in the foregoing step S302 may be determined according to the first moment, the first duration, and the second duration.
  • the foregoing first duration and the second duration may be pre-configured by the terminal device.
  • the base station may pass a message (for example, Radio Resource Control (RRC) message, media access control element (English: Media Access Control) Control Element, MAC CE) (or Downlink Control Information (DCI) message) is configured for the terminal device.
  • RRC Radio Resource Control
  • media access control element English: Media Access Control
  • MAC CE Media Access Control Element
  • DCI Downlink Control Information
  • the first moment or the second moment may be a specific time.
  • the first moment or the second moment may also be indexed by a frame number + a subframe number, or a frame number + a subframe number + symbol.
  • the first duration or the second duration may be a specific time period.
  • the first duration or the second duration may be the number of frames, the number of subframes, the number of TTIs, the number of symbols, or the number of SPS resources.
  • T1 takes (SFN1, subframe 1) as an example.
  • the first duration is 2 SPS periods
  • the second duration is 1 SPS period
  • the period may be 10 subframes
  • T2 T1+3*SPS period
  • each SFN includes 10 subframes as an example, and the T2 may specifically be (SFN4, subframe 1).
  • SFN is the system frame number (English: System Frame Number, SFN)
  • the first information may be: padding bits (English: padding bits) information or patch hopping (English: padding skipping).
  • the terminal device may receive the first adjustment value from the base station.
  • the first adjustment value may also be pre-configured at the terminal device.
  • the determining, by the terminal device, the period value of the SPS after the second time according to the first information and the first adjustment value may be:
  • the terminal device determines that the number of padding bits is greater than the first set threshold, the terminal device increases the period of the SPS by the first adjustment value after the second time.
  • the terminal device determines that the number of padding bits is less than the second set threshold, the terminal device reduces the period of the SPS by the first adjustment value after the second time.
  • the terminal device determines that the ratio is greater than the first set ratio threshold, the terminal device increases the period of the SPS by the first adjustment value after the second time; or the terminal device determines the ratio.
  • the second set ratio threshold is less than the second set ratio threshold, and the terminal device reduces the period of the SPS by the first adjustment value after the second moment.
  • the terminal device determines that the number of times is greater than the first set number of times, and the terminal device increases the period of the SPS by the first adjustment value after the second time; the terminal device determines that the number of times is less than the second setting.
  • the number of times threshold the terminal device reduces the period of the SPS by the first adjustment value after the second time.
  • the terminal device may send a second message to the base station before the step S301, where the second message is used to indicate that the terminal device has the capability of SPS period adjustment.
  • the indication field may be a value of 1 bit. Specifically, when the 1 bit value in the indication field is 1, the capability of the SPS period adjustment may be indicated. Otherwise, the indication of O is not Ability to adjust SPS cycles.
  • the second message may be the capability reporting information, and the terminal device may set the indication field of the SPS period adjustment capability of the capability reporting information to True to indicate that the terminal device has the capability of SPS period adjustment.
  • one or more of the first duration, the second duration, the first moment, and the first adjustment value are pre-configured; or the first duration, the second duration, and the first moment
  • One or more of the first adjustment values may be configured by the base station for the terminal device.
  • the foregoing configuration manners of the first duration, the second duration, the first moment, and the first adjustment value include, but are not limited to, the following combinations:
  • the mode A, the first duration, the second duration, and the first moment may be pre-configured for the terminal device, and the first adjustment value may be configured by the base station.
  • the pre-configuration manner of the foregoing first time may be that the terminal device pre-configures the first time to be the reception time delay of the SPS activation message, and the preset time is the first time instant.
  • the preset time may specifically be one or any combination of the number of frames, the number of subframes, the number of TTIs, the number of symbols, or the number of SPS resources.
  • the first time may be pre-configured for the terminal device, and the first duration, the second duration, and the first adjustment value may be configured by the base station.
  • the mode C, the first time, and the first adjustment value may be configured by the base station, where the first duration and the second duration may be pre-configured for the terminal device.
  • FIG. 4 is a SPS method according to another embodiment of the present application.
  • the method may be performed by an eNB as shown in FIG. 1 or performed by an NR-NB as shown in FIG. 2.
  • an eNB or an NR-NB is referred to as a base station.
  • the method is as shown in FIG. 4 and includes the following steps:
  • Step S401 The base station sends a third message to the terminal device, where the third message is used to indicate that the terminal device starts the resource configuration update of the SPS resource, and the resource configuration may be: a period of the SPS.
  • Step S402 The base station sends first control information to the terminal device, where the first control information is used by the terminal device to determine a start time, that is, a first time, of the SPS resource.
  • the first control information in the foregoing step S401 may be specifically: MAC CE or DCI information, and the DCI message may be an SPS activation message.
  • MAC CE MAC CE
  • DCI message may be an SPS activation message.
  • the method provided by the embodiment shown in FIG. 4 supports the implementation of the method provided by the embodiment shown in FIG.
  • the base station may further send a first adjustment value to the terminal device, where the first adjustment value may be used by the terminal device to update the period of the SPS.
  • the first adjustment value may be carried in a signaling, where the signaling includes, but is not limited to, an RRC message, a MAC CE, or a DCI message.
  • the first adjustment value may be carried in step S401.
  • the third message In the third message.
  • the base station may further send, to the terminal device, first duration information indicating the first duration.
  • the base station sends the second time information indicating the second time to the terminal device, where the second time information is the second time or the second time length, and the second time length is used by the terminal device to determine
  • the specific determination method can be referred to the description in the embodiment shown in FIG. 3, and details are not described herein again.
  • the base station sends an SPS adjustment condition to the terminal device, where the adjustment condition includes, but is not limited to, whether the number of padding bits is greater than a first set threshold threshold or whether the number of padding bits is less than a second set threshold threshold. Or whether the ratio of the padding bits to the total bits is greater than the first ratio threshold threshold or whether the ratio of the padding bits to the total bits is less than the second ratio threshold threshold; or whether the number of padding skipping is greater than the first threshold threshold or the number of padding skipping times Whether it is less than the second threshold threshold.
  • the adjustment condition includes, but is not limited to, whether the number of padding bits is greater than a first set threshold threshold or whether the number of padding bits is less than a second set threshold threshold. Or whether the ratio of the padding bits to the total bits is greater than the first ratio threshold threshold or whether the ratio of the padding bits to the total bits is less than the second ratio threshold threshold; or whether the number of padding skipping is greater than the first threshold threshold or the number of padding skipping times Whether it is less than the second threshold threshold.
  • the base station receives the second message sent by the terminal device, and the base station determines, according to the second message, that the terminal device has the SPS period adjustment capability, the specific expression form of the second message, and the second message.
  • the base station determines, according to the second message, that the terminal device has the SPS period adjustment capability, the specific expression form of the second message, and the second message.
  • FIG. 5 provides an SPS method, which is implemented in the technical scenario shown in FIG. 2, where the UE is pre-configured with a first duration T1, a second duration T2, and a first threshold. a threshold and a second threshold threshold, wherein the second threshold is smaller than the first threshold, where the duration is in the number of subframes, as shown in FIG. 5A, there are three SFNs, For the convenience of description, three SFNs are named as follows: SFN1, SFN2, and SFN3, each SFN includes 10 subframes, numbered 0-9, and the number of subframes of the T1 may be 11 subframes, and the number of frames of the T2 may be For 10 subframes, the method is as shown in FIG. 5, and includes the following steps:
  • Step S500 The UE sends a capability indication message to the NR-NB, where the capability indication message may include a first adjustment value X, where the indication field of the SPS period adjustment capability of the capability indication message is set to True.
  • Step S501 The NR-NB sends an SPS activation message to the UE.
  • Step S502 The UE extracts a frame number and a subframe number that are received by the SPS activation message, where the frame number and the subframe number may be specifically: subframe 1 of SFN1.
  • Step S503 The UE counts the number of padding bits between the subframe 1 of the SFN1 and the subframe 1 of the SFN2 (the range of T1 shown in FIG. 5A).
  • Step S504 When the UE determines that the number of padding bits is greater than the first threshold threshold, the UE updates the SPS period to tSPS+X after the second time, that is, after the subframe 2 of the SFN3, where the tSPS is the UE before the subframe 2 of the SFN3. SPS cycle value.
  • the UE in the embodiment shown in FIG. 5 counts the number of padding bits in the first time in the SPS activation state. If the number is greater than the number threshold range, the SPS period is increased by X at the second moment, so that the UE can The number of padding bits for one time automatically adjusts the SPS period, does not interrupt the data transmission process, and automatically adjusts the SPS period without consuming additional PDCCH control resources.
  • FIG. 6 is a method of an SPS according to another embodiment of the present application.
  • the method may be performed by a UE as shown in FIG. 1 or FIG. 2.
  • the UE is referred to as a terminal device.
  • the method adjusts the SPS period by the terminal device according to the information sent by the base station, and the method for the terminal device to passively adjust the SPS may also be referred to as an explicit SPS method.
  • the method is shown in Figure 6, and includes the following steps:
  • Step S601 The terminal device determines the first time in the semi-static scheduling activation state, and after receiving the first time, the receiving base station sends a fifth message, where the fifth message includes: resource information of the first SPS.
  • the resource information of the first SPS in the foregoing step S601 may be a first SPS period value or a first SPS index value, and the resource information of the SPS may also be: frequency domain location information, modulation coding. (English: Modulation and Coding Scheme, MCS) information, Hybrid Automatic Repeat Request (HARQ) process number, frequency hopping indication, channel quality indication (CQI) indication Or TTI length indicates any one or any combination.
  • MCS Modulation and Coding Scheme
  • HARQ Hybrid Automatic Repeat Request
  • CQI channel quality indication
  • TTI length indicates any one or any combination.
  • the foregoing SPS period index value may be used to indicate that the terminal device determines the first SPS period in the optional SPS period according to the index value.
  • For the mapping relationship between the SPS period index value and the SPS period refer to the schematic diagram shown in FIG. 8.
  • the foregoing fifth message may be multiple messages according to actual conditions, such as an RRC message, a MAC CE, or a DCI message.
  • the foregoing RRC message may specifically be an RRC reconfiguration message.
  • the base station does not send an RRC reconfiguration message to the UE to change the SPS period in the SPS activation state, because the RRC reconfiguration message may undergo HARQ retransmission or Radio Link Control (RLC) retransmission. Therefore, when the RRC reconfiguration message arrives at the UE, the base station cannot accurately know the time, that is, the time when the base station cannot confirm the RRC reconfiguration message received by the UE. Therefore, the second time instant of the new SPS period cannot be determined according to the arrival time of the RRC reconfiguration message. in order to Both the base station and the UE can learn the second time through the RRC reconfiguration message.
  • RLC Radio Link Control
  • the frame number and the subframe number that are valid for the specific new SPS period can be indicated in the RRC reconfiguration message (ie, the second At the moment, after receiving the RRC reconfiguration message, the UE adopts a new SPS period from the second moment, and the original SPS period is still used before the second moment. In this manner, a larger time margin needs to be set, that is, the interval between the first time and the second time is sufficiently long to ensure that the UE can receive the RRC reconfiguration message before the second time.
  • the determining, by the base station, that the UE successfully receives the RRC reconfiguration message may determine whether the RRC reconfiguration message is successfully received by receiving any one of the following UE feedback information.
  • the base station receives a status report indicating that the HARQ ACK or ARQ indicates successful transmission, or an RRC reconfiguration complete message.
  • the DL-Assignment or the UL-Grant information may be indicated in the RRC reconfiguration message.
  • the DL-Assignment may be changed without using the DCI.
  • the downlink SPS and the uplink SPS scenario may also be used. The DCI is not consumed to indicate a new UL-Grant.
  • the MAC CE is the control signaling of the MAC layer, may experience HARQ retransmission, but does not experience RLC retransmission, so the time required to receive the MAC CE is shorter than the time required to receive the RRC reconfiguration message.
  • the new SPS period and the effective time information (ie, the second time) may be indicated in the MAC CE, where the effective time may include a frame number and a subframe number, and the period information may be a specific period value or an index value, and the index value is used by the index value.
  • the mapping relationship between the index value and the period value may be as shown in FIG. 8 for the optional period value corresponding to the SPS-config IE.
  • the base station may determine that the UE successfully receives the MAC CE indication by receiving the HARQ ACK message.
  • the DL-Assignment or UL-Grant information is indicated in the MAC CE.
  • the foregoing DCI indication may be specifically an SPS reactivation message indication.
  • the base station sends a new SPS period to the UE by using the RRC reconfiguration information.
  • the UE After successfully receiving the RRC reconfiguration message, the UE returns an RRC reconfiguration complete message to the base station, where the base station determines.
  • the SPS reactivation message is sent to the UE to enable the new SPS period.
  • the UE receives the SPS reactivation message
  • the UE receives the SPS reactivation message at the receiving time or the receiving time delay. Start adopting the new SPS cycle.
  • the UE After receiving the SPS reactivation message, the UE starts to adopt a new SPS cycle.
  • the above SPS is taken as an example.
  • the original SPS period is 5 ms, and the SPS resources are allocated in subframe 1 and subframe 6.
  • the UE receives the RRC weight sent by the base station.
  • the configuration message in the SPS-config IE of the RRC reconfiguration message, the SPS period value is changed to 3 ms, and after the UE completes the operation required in the RRC reconfiguration message, the RRC reconfiguration complete message (SFN2, subframe 3) is fed back to the base station, After receiving the message, the base station confirms that the UE has completed the parameter configuration of the SPS period, and then sends an SPS reactivation message (for the uplink SPS) through the physical downlink control channel (English: Physical Downlink Control Channel, PDCCH) in (SFN2, subframe 8).
  • the physical downlink control channel English: Physical Downlink Control Channel, PDCCH
  • subframe n receives the activation message, which is valid in subframe n+4), and the new SPS period takes effect in (SFN3, subframe 2). If it is a downlink SPS, it is the first SPS opportunity at the time of receiving the SPS activation message, and the subsequent SPS opportunity is determined according to the new cycle.
  • the above-mentioned DCI message is an example of an SPS activation message
  • the base station may send an SPS activation message to the UE, where the SPS activation message directly indicates the SPS new period, and the UE receives the reception time of the SPS activation information as the corresponding SPS resource start time (ie, First time), the SPS opportunity is determined according to the new SPS period value after the starting time.
  • SPS resource start time ie, First time
  • the base station can confirm that the UE successfully receives the SPS activation message by using the ACK fed back by the UE; in the uplink SPS, the base station needs to retain the original SPS resource and the new SPS resource at the same time, and after receiving the data sent by the UE on the new SPS resource, Release the original SPS resource. If the UE fails to receive the SPS activation message, the base station continues to send a message on the original SPS resource, and the base station needs to retransmit the DCI indication.
  • the above manner of retaining the original SPS resource and the new SPS resource also applies to the mode based on the RRC reconfiguration message or the MAC CE indication. That is, after the base station configures a new SPS resource for the UE, the UE can send a message to the UE on the two resources simultaneously for the downlink. If the ACK is sent by the UE to the message on the new SPS resource, the UE is considered to have switched to the new SPS resource.
  • the uplink SPS base station can try to receive the uplink message on the two resources at the same time. If the uplink message is received on the new SPS resource, the UE is considered to have switched the new SPS resource, which avoids setting the reserved time too long.
  • the UE may also apply to the base station to adjust the SPS resources. For example, the UE informs the base station of the SPS resource that the UE desires to select, or the adjustment amount of the SPS resource, or one or more of the adjustment ranges of the SPS resource, through the RRC message or the MAC CE.
  • the UE informs the base station by using a scheduling request (English: Scheduling Request, SR), and the UE may send an SR to trigger the modification of the SPS period, and the SR carries the SPS period prompt information, for example, the SR carries 2 bits, and the 2 bits correspond to 4 possibilities, as shown in FIG. 8A. .
  • the base station can allocate a suitable SPS period to the UE according to the SR of the UE.
  • Step S602 The terminal device determines the second moment according to the fifth message, and the terminal device determines that the SPS resource information after the second moment may be the resource information of the first SPS.
  • the time after the terminal device delays the fourth time according to the receiving time of the DCI message is the second time.
  • the base station can determine the receiving moment of the DCI message.
  • the base station cannot estimate the reception time of the RRC message or the MAC CE message.
  • the second time can be carried in the RRC message or the MAC CE message.
  • the second time can also be carried in the DCI message.
  • the base station receives a second message sent by the terminal device, where the second message is used to indicate that the terminal device has the capability of SPS cycle adjustment.
  • the base station receives the scheduling request SR sent by the UE, and triggers the SPS period adjustment.
  • the UE carries the SPS periodic prompt information through the SR.
  • the SR carries the 2-bit information, and the corresponding relationship of the 2-bit information SPS period is as shown in FIG. 8A.
  • the SR includes 00, that is, the SPS period that the UE wants to configure is less than 5 ms, and the base station can configure the corresponding SPS period according to the request of the UE.
  • FIG. 7 is a SPS method according to another embodiment of the present application. The method may be performed by an eNB as shown in FIG. 1 or performed by an NR-NB as shown in FIG. 2. For convenience of description, the implementation is implemented. For example, an eNB or an NR-NB is referred to as a base station. The method is shown in Figure 7, and includes the following steps:
  • Step S701 The base station sends a third message to the terminal device, where the third message is used to instruct the terminal device to update the resource information of the SPS resource, where the resource information may be: an SPS period value.
  • Step S702 The base station sends first control information to the terminal device, where the first control information is used by the terminal device to determine a start time, that is, a first time, of the SPS resource.
  • the third message may be one of an RRC message, a MAC CE message, or a DCI message.
  • the foregoing first control information may specifically be an SPS activation message.
  • the foregoing third message may further include any one or a combination of the first adjustment value, the second time, the third duration, and the SPS period index value.
  • the foregoing third message may further include: a maximum value and a minimum value of the SPS period, so that the SPS period does not increase or decrease indefinitely.
  • the terminal device can start the automatic adjustment process of the SPS period.
  • the first three SPS opportunities ie 3 SPS cycles).
  • the preset condition is the number of MAC data units (PDUs) including padding bits.
  • the SPS period is increased by one subframe based on the original SPS period, if the number of MAC PDUs is Less than or equal to 1 reduces one subframe based on the original SPS period.
  • the statistical results are not included in the statistical results if they are NACK. Specifically, as shown in FIG.
  • (SFN3, subframe 1) is the last subframe in the cooling time, and the subframe is used as the starting position.
  • the next SPS opportunity calculated according to the 4-subframe SPS period appears in (SFN3, subframe 5), and subsequent SPS opportunities are calculated according to the 4-subframe SPS period.
  • FIG. 9 provides a terminal device 90, which may be a UE as shown in FIG. 1 or a UE as shown in FIG.
  • the terminal device 90 can include:
  • a determining unit 901 configured to determine a first moment, where the first moment is a starting time of a semi-static scheduling resource
  • the processing unit 902 is configured to determine, in a semi-persistent scheduling activation state, the first information, where the first information is used, after the second time period, the first information is used, and the first information is used by the terminal device to determine the location after the second time The resource information of the semi-static scheduling resource.
  • the terminal device 900 further includes:
  • the receiving unit 903 is configured to receive a first adjustment value from the base station, where
  • the processing unit 902 is further configured to determine, according to the first information and the first adjustment value, a period value of the semi-static resource after the second moment.
  • the processing unit 902 is further configured to: if the padding bits information is the number of the padding bits, determine that the number of the padding bits is greater than the first set threshold, and increase the period of the semi-static resource by the first adjustment value after the second time; Or determining that the number of padding bits is less than a second set threshold, and decreasing the period of the semi-static resource by the first adjustment value after the second moment.
  • the processing unit 902 is further configured to determine, according to the number of times that the first information is padding skipping, that the number of times is greater than the first set number of times, and increase the period of the semi-static resource by the first adjustment value after the second time Or determining that the number of times is less than a second set number of times, reducing a period of the semi-static resource to the first after the second time Adjust the value.
  • the processing unit 902 is further configured to: if the padding bits information is a first ratio of the padding bits to the total bits, determine that the first ratio is greater than the second set ratio, and increase the period of the semi-static resources after the second moment And determining, by the first adjustment value, that the ratio is less than a third set ratio, and reducing a period of the semi-static resource by the first adjustment value after the second moment.
  • the terminal device further includes:
  • the sending unit 904 is configured to send, to the base station, second information, where the second information is used to indicate that the terminal device can support semi-persistent scheduling period adjustment.
  • a base station 1000 is provided.
  • the base station may be an eNB as shown in FIG. 1 or an NR-NB as shown in FIG. 2, and the base station includes:
  • the sending unit 1001 is configured to send, to the terminal device, first control information, where the first control information is used by the terminal device to determine a starting time of the semi-persistent scheduling;
  • the sending unit 1001 is further configured to send, to the terminal device, third information, where the third information is used to instruct the terminal device to enable the resource information update of the semi-persistent scheduling; the resource information includes an SPS period.
  • the sending unit 1001 in the base station shown in FIG. 10 can also be used to implement the implementation of the embodiment shown in FIG. 4, and details are not described herein again.
  • the foregoing base station may further include:
  • the receiving unit 1002 is configured to receive second information from the terminal device.
  • the processing unit 1003 is configured to determine, according to the second information, the capability of the terminal device to have a semi-persistent scheduling period adjustment.
  • the present application also provides a computer readable storage medium storing a computer program for electronic data exchange, wherein the computer program causes the computer to execute the SPS method and the refinement scheme in the embodiment shown in FIG.
  • the present application also provides a computer readable storage medium storing a computer program for electronic data exchange, wherein the computer program causes the computer to execute the SPS method and the refinement scheme in the embodiment shown in FIG.
  • FIG. 11 is another terminal device 110 according to an embodiment of the present disclosure, where the terminal device includes:
  • the processing unit 1101 is configured to determine a first moment in a semi-persistent scheduling activation state
  • the communication unit 1102 is configured to send, by the receiving base station, a fifth message after the first time, where the fifth message includes: resource information of the first SPS.
  • the processing unit 1101 is further configured to determine, according to the fifth message, the second moment, where the terminal device determines that the SPS resource information after the second moment may be the resource information of the first SPS.
  • FIG. 12 is another base station 120 according to an embodiment of the present application.
  • the base station 120 includes:
  • the sending unit 1201 is configured to send, to the terminal device, a third message, where the third message is used to indicate that the terminal device starts the resource information update of the SPS resource, where the resource information may be: a period value of the SPS.
  • the sending unit 1201 is further configured to send, to the terminal device, first control information, where the first control information is used by the terminal device to determine a start time, that is, a first time, of the SPS resource.
  • FIG. 13A shows a possible structural diagram of the terminal device involved in the above embodiment.
  • the terminal device 1300 includes a processing unit 1302 and a communication unit 1303.
  • the processing unit 1302 is configured to control and manage the actions of the terminal device.
  • the processing unit 1302 is configured to support the terminal device to perform steps S301 and S302 in FIG. 3 and/or other processes for the techniques described herein.
  • the processing unit may also be used to support the terminal device to perform step S500, step S502-step S504, and/or other processes for the techniques described herein illustrated in FIG.
  • the processing unit can also be used to support the terminal device in performing steps 601 and S602 shown in FIG. 6 and/or other processes for the techniques described herein.
  • the communication unit 1303 is configured to support communication between the terminal device and the base station, for example, communication between the eNB and the UE in the LTE system, and communication between the NR-NB and the TRP in the NR system.
  • the terminal device may further include a storage unit 1301 for storing program codes and data of the terminal device.
  • the processing unit 1302 may be a processor or a controller, such as a central processing unit (CPU), a general-purpose processor, a digital signal processor (DSP), and an application-specific integrated circuit (Application-Specific). Integrated Circuit (ASIC), Field Programmable Gate Array (FPGA) or other programmable logic device, transistor logic device, hardware component, or any combination thereof. It is possible to implement or carry out the various illustrative logical blocks, modules and circuits described in connection with the present disclosure.
  • the processor may also be a combination of computing functions, for example, including one or more microprocessor combinations, a combination of a DSP and a microprocessor, and the like.
  • the communication unit 1303 may be a communication interface, a transceiver, a transceiver circuit, etc., wherein the communication interface is a collective name and may include one or more interfaces.
  • the storage unit 1301 may be a memory.
  • the apparatus for distributing metadata may be the apparatus for distributing metadata as shown in FIG. 7B.
  • FIG. 13B is a schematic diagram showing a possible structure of a base station involved in the foregoing embodiment.
  • the base station 1310 includes a processor 1312, a communication interface 1313, and a memory 1311.
  • the processing unit 1312 is configured to control and manage the actions of the base station.
  • the processing unit 1302 is configured to support the terminal device to perform steps S401 and S402 in FIG. 4 and/or other processes for the techniques described herein.
  • the processing unit may also be used to support the terminal device to perform step S501 shown in FIG. 5 and/or other processes for the techniques described herein.
  • the processing unit can also be used to support the terminal device in performing steps 701 and S702 shown in FIG. 7 and/or other processes for the techniques described herein.
  • the base station 1310 may further include a bus 1314.
  • the communication interface 1313, the processor 1312, and the memory 1311 may be connected to each other through a bus 1314.
  • the bus 1314 may be a Peripheral Component Interconnect (PCI) bus or an Extended Industry Standard Architecture (abbreviated). EISA) bus and so on.
  • PCI Peripheral Component Interconnect
  • EISA Extended Industry Standard Architecture
  • the bus 1314 can be divided into an address bus, a data bus, a control bus, and the like. For ease of representation, only one thick line is shown in Fig. 13B, but it does not mean that there is only one bus or one type of bus.
  • the storage medium may be a magnetic disk, an optical disk, a read-only memory (ROM), or a random access memory (RAM).

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明实施例公开了一种半静态调度方法,终端设备确定第一时刻,所述第一时刻为半静态调度资源的起始时刻;在半静态调度激活状态下,所述终端设备在以所述第一时刻开始的第一时长内确定第一信息,所述第一信息用于所述终端设备确定第二时刻之后的所述半静态调度资源的资源信息。本发明具有在半静态调整激活状态下调整半静态调度资源的优点。

Description

半静态调度方法、装置及设备 技术领域
本发明涉及通信领域,尤其涉及一种半静态调度方法、装置及设备。
背景技术
半静态调度(英文:Semi-Persistent Scheduling,SPS)能够周期地为用户设备(英文:User Equipment,UE)提供用于上行发送或下行接收的无线资源,适用于数据包周期发送或接收的场景。
基站可以向UE发送SPS激活消息,用于激活SPS资源,还可以向UE发送SPS释放消息,用于释放SPS资源。或者UE在连续多个SPS资源没有发送有效的用户数据,UE也可以直接释放SPS资源。UE释放SPS资源后处于SPS未激活状态,基站可以在UE处于SPS未激活状态下调整SPS资源的周期配置。
由此可知,现有技术在SPS未激活状态下进行SPS资源的调整,因此需要提供一种更灵活的SPS资源调度方法。
发明内容
本发明实施例所要解决的技术问题在于,提供一种半静态调度方法,可解决现有技术中不能在SPS激活状态下调整SPS资源的问题。
第一方面,提供一种半静态调度方法,包括:终端设备确定第一时刻,所述第一时刻为半静态调度资源的起始时刻;在半静态调度激活状态下,所述终端设备在以所述第一时刻开始的第一时长内确定第一信息,所述第一信息用于所述终端设备确定第二时刻之后的所述半静态调度资源的资源信息。
第一方面提供的技术方案在半静态调度激活状态下,通过在第一时长内确定的第一信息,根据该第一信息在第二时刻之后调整SPS的资源信息,从而实现在半静态调度激活状态实现SPS资源信息的调整。
在第一种可选实施方案中,所述第二时刻是所述终端设备根据第一时刻、第一时长和第二时长确定的。
在第二种可选实施方案中,所述半静态调度资源的资源信息包含所述半静态资源的周期值。该可以设定SPS的资源信息为SPS的周期值。
在第三种可选实施方案中,所述第一信息为补丁比特padding bits信息,或者补丁跳跃padding skipping的次数。该方案可以依据补丁比特或补丁跳跃的信息来实现对SPS周期的调整。
在第四种可选实施方案中,所述终端设备从基站接收第一调整值,所述终端设备根据所述第一信息和所述第一调整值确定所述第二时刻之后所述半静态资源的周期值。该方法实现了第一调整值的获取方式,并对该SPS的周期增加或减少第一调整值。
在第五种可选实施方案中,所述padding bits信息为padding bits数量,所述第一信息 用于所述终端设备确定第二时刻之后的所述半静态调度资源的资源信息,包括:所述终端设备确定padding bits数量大于第一数量阈值,所述终端设备在所述第二时刻之后将所述半静态资源的周期增加所述第一调整值;或者所述终端设备确定padding bits数量小于第二数量阈值,所述终端设备在所述第二时刻之后将所述半静态资源的周期减少所述第一调整值。该技术方案明确了补丁比特信息的具体表现形式为补丁比特的数量,并且提供了如何根据补丁比特的数量来调整SPS的周期。
在第六种可选实施方案中,所述第一信息为padding skipping的次数,所述第一信息用于所述终端设备确定第二时刻之后的所述半静态调度资源的资源信息,包括:所述终端设备确定所述padding skipping的次数大于第一设定次数,所述终端设备在所述第二时刻之后将所述半静态资源的周期增加所述第一调整值;或者所述终端设备确定所述padding skipping的次数小于第二设定次数,所述终端设备在所述第二时刻之后将所述半静态资源的周期减少所述第一调整值。该技术方案明确了如何根据补丁跳跃的次数来调整SPS的周期。
在第七种可选实施方案中,所述padding bits信息为padding bits与总比特的第一比值,所述第一信息用于所述终端设备确定第二时刻之后的所述半静态调度资源的资源信息,包括:所述终端设备确定所述第一比值大于第二设定比值,则所述终端设备在第二时刻之后将所述半静态资源的周期增加所述第一调整值;或者所述终端设备确定所述第一比值小于第三设定比值,所述终端设备在所述第二时刻之后将所述半静态资源的周期减少所述第一调整值。该技术方案明确了补丁比特信息的具体表现形式为补丁比特与总比特的第一比值,并且提供了如何根据第一比值来调整SPS的周期。
在第八种可选实施方案中,所述终端设备向基站发送第二信息,所述第二信息用于指示所述终端设备支持半静态调度周期调整。上述技术方案确定了依据第二信息向基站发送支持SPS周期调整的能力。
在第九种可选实施方案中,所述第一时长、所述第二时长、所述第一时刻、所述第一调整值中的一个或多个为预先配置的;或所述第一时长、所述第二时长、所述第一时刻、所述第一调整值中的一个或多个为基站配置的。
第二方面,提供一种半静态调度SPS方法,包括:基站向终端设备发送第一控制信息,所述第一控制信息用于终端设备确定半静态调度的起始时刻;所述基站向终端设备发送第三信息,所述第三信息用于指示终端设备更新所述半静态调度的资源信息;所述资源信息包括SPS周期。
第二方面提供的方法支持了第一方面方法的实现。
第三方面,提供一种终端设备,所述终端设备包括:确定单元,用于确定第一时刻,所述第一时刻为半静态调度资源的起始时刻;处理单元,用于在半静态调度激活状态下,在以所述第一时刻开始的第一时长内确定第一信息,所述第一信息用于所述终端设备确定第二时刻之后的所述半静态调度资源的资源信息。
第三方面提供的终端设备在半静态调度激活状态下,通过在第一时长内确定的第一信息,根据该第一信息在第二时刻之后调整SPS的资源信息,从而实现终端设备在半静态调度激活状态实现SPS资源信息的调整。
第四方面,提供一种基站,所述基站包括:发送单元,用于向终端设备发送第一控制 信息,所述第一控制信息用于终端设备确定半静态调度SPS的起始时刻;所述发送单元,还用于向终端设备发送第三信息,所述第三信息用于指示终端设备开启所述半静态调度的资源信息更新;所述资源信息包括SPS周期。
第四方面提供的基站支持了第三方面的终端设备在半静态调度激活状态对SPS资源信息的调整。
第六方面,提供一种计算机可读存储介质,其上存储有计算机程序,其中,所述计算机程序在被处理器执行时,实现第一方面或第二方面提供的方法。
第七方面,提供一种设备,包括一个或多个处理器、存储器、收发器,以及一个或多个程序,所述一个或多个程序被存储在所述存储器中,所述程序被所述一个或多个处理器执行时实现第一方面或第二方面提供的方法。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是一种长期演进的网络结构示意图。
图2是一种5G NR的网络结构示意图。
图3是本申请一实施例提供的一种SPS方法的流程示意图。
图4是本申请另一实施例提供的一种SPS方法的流程示意图。
图5是本申请实施例提供的SPS方法的流程示意图。
图5A是本申请实施例提供的帧以及子帧与时长之间的关系示意图。
图6是本申请又一实施例提供的SPS方法的流程示意图。
图6A是本申请实施例提供的另一种帧以及子帧与时长之间的关系示意图。
图7是本申请再一实施例提供的SPS方法的流程示意图。
图7A是本申请实施例提供的又一种帧以及子帧与时长之间的关系示意图。
图8是本申请的SPS周期索引值示意图。
图8A是本申请的SR值与SPS周期映射关系示意图。
图9是本申请提供的一种终端设备的结构示意图。
图10是本申请提供的一种基站的结构示意图。
图11是本申请提供的另一种终端设备的结构示意图。
图12是本申请提供的另一种基站的结构示意图。
图13A是本申请提供的一种终端设备的硬件结构示意图。
图13B是本申请提供的一种基站的硬件结构示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地 描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
参阅图1,图1为一种长期演进(英文:Long Term Evolution,LTE)的网络结构示意图,如图1所示,其包含移动性管理实体(英文:Mobility Management Entity,MME)或服务网关(英文:Serving Gateway,S-GW),每个MME或S-GW连接至少一个演进型基站(英文:evolved Node B,eNB),每个eNB下存在多个小区或多个UE。
参阅图2,图2提供一种第五代移动通信技术(5th-Generation,5G)新空口(New Radio,NR)的网络结构示意图,如图2所示,在新空口基站(英文:New Radio Node B,NR-NB)下,可能存在一个或多个发送接收点(英文:Transmission Reception Point,TRP),一个或多个TRP范围内可以存在一个或多个UE。
参阅图3,图3为本申请一实施例提供的一种SPS方法,该方法可以由如图1所示的UE执行或如图2所示的UE执行,本实施例提供的方法以终端设备自行调整SPS资源为例,该终端设备自行调整SPS资源的方法也可以称为隐式SPS方法。该方法如图3所示,包括如下步骤:
步骤S301、终端设备确定第一时刻,该第一时刻可以为半静态调度资源的起始时刻。
上述步骤S301中的第一时刻可以在终端设备内预配置,当然在一个优选实施例中,上述第一时刻可以为网络侧设备(例如图1中的eNB或如图2所示的NR-NB)通过一个配置消息或指示信息进行配置或指示,具体的,网络侧设备(eNB或NR-NB)通过向终端设备发送SPS激活消息,终端设备接收到该SPS激活消息的接收时刻即为第一时刻。
步骤S302、在半静态调度激活状态下,终端设备在以第一时刻开始的第一时长内确定第一信息,该第一信息用于终端设备确定第二时刻之后的半静态调度资源的资源信息。
上述步骤S302中的半静态调度激活状态的确认方式可以为,终端设备接收到SPS激活消息但未释放SPS资源时可以认为处于半静态调度激活状态。
在一种可选的技术方案中,上述步骤S302中的半静态调度资源的资源信息可以为:SPS周期。
本申请提供的技术方案的终端设备确定第一时刻后,在半静态调度激活状态下,依据第一时长内的第一信息来动态的调整SPS周期,此技术方案无需基站或UE中断数据传输,终端设备能够依据第一时长内的第一信息的情况在第二时刻之后调整SPS周期,所以能够在不消耗额外的物理下行控制信道(英文:Physical Downlink Control Channel,PDCCH)控制资源的前提下调整SPS周期。
在另一种可选的技术方案中,上述步骤S302中的第二时刻可以根据第一时刻、第一时长和第二时长确定。
上述第一时长和第二时长可以是终端设备预配置的,当然也可以是基站通过一个消息(例如无线资源控制(英文:Radio Resource Control,RRC)消息、媒体访问控制元素(英文:Media Access Control Control Element,MAC CE)(或下行控制信息(英文:Downlink Control Information,DCI)消息)对终端设备配置。下面以一个实际的例子来说明第二时刻的确认方法。为了便于说明,第一时刻可以为T1,第一时长可以为t1,第二时长可以为t2,第二 时刻为T2,则T2=T1+t1+t2。
上述第一时刻或第二时刻可以为一个具体的时间,当然在实际应用中,上述第一时刻或第二时刻还可以由帧号+子帧号,或帧号+子帧号+符号索引,或帧号+子帧号+传输时间间隔(英文:Transmission Time Interval,TTI)索引表示。上述第一时长或第二时长可以为具体的时间段,当然在实际应用中,上述第一时长或第二时长还可以为帧数量、子帧数量、TTI数量、符号数量或SPS资源的数量。
下面以一个实际的例子来举例来说明T2的确认方法,这里的T1以(SFN1,子帧1)为例,第一时长为2个SPS周期,第二时长为1个SPS周期,1个SPS周期可以为10个子帧,则T2=T1+3*SPS周期,每个SFN包含10个子帧为例,该T2具体可以为(SFN4,子帧1)。其中,SFN为***帧号(英文:System Frame Number,SFN)
在如图3所示的实施例中,上述第一信息可以为:补丁比特(英文:padding bits)信息或补丁跳跃(英文:padding skipping)的次数。
在如图3所示的实施例中,终端设备可以从基站接收第一调整值,当然该第一调整值也可以在终端设备预配置。终端设备根据该第一信息和第一调整值确定第二时刻之后SPS的周期值具体可以为:
如该padding bits信息为padding bits数量时,终端设备确定padding bits数量大于第一设定阈值时,终端设备在第二时刻之后将SPS的周期增加该第一调整值。
如该padding bits信息为padding bits数量时,终端设备确定padding bits数量小于第二设定阈值时,终端设备在第二时刻之后将SPS的周期减少该第一调整值。
如padding bits信息为padding bits与总比特的比值,终端设备确定该比值大于第一设定比值门限,则终端设备在第二时刻之后将SPS的周期增加第一调整值;或终端设备确定该比值小于第二设定比值门限,终端设备在该第二时刻之后将SPS的周期减少第一调整值。
如该第一信息为padding skipping的次数,终端设备确定该次数大于第一设定次数门限,终端设备在第二时刻之后将SPS的周期增加第一调整值;终端设备确定次数小于第二设定次数门限,终端设备在第二时刻之后将SPS的周期减少第一调整值。
可选的,在上述实施例中,终端设备可以步骤S301之前向基站发送第二消息,该第二消息用于指示终端设备具备SPS周期调整的能力。例如通过在第二消息中增加一个指示域,该指示域具体可以为1bit的值,具体的,该指示域中的1bit值为1时可以表示具备SPS周期调整的能力,反之,为O表示不具备SPS周期调整的能力。或者,第二消息可以为能力上报信息,终端设备可以将该能力上报信息的SPS周期调整能力的指示域设为True来表示该终端设备具有SPS周期调整的能力。
在如图3所示的实施例中,第一时长、第二时长、第一时刻、第一调整值中的一个或多个为预先配置的;或第一时长、第二时长、第一时刻、第一调整值中的一个或多个可以为基站为终端设备配置的。
例如,上述第一时长、第二时长、第一时刻、第一调整值的配置方式包括但不限于如下组合方式:
方式A、第一时长、第二时长、第一时刻可以为终端设备预配置,第一调整值可以为基站配置。
上述第一时刻的预配置的方式具体可以为,终端设备预配置第一时刻为SPS激活消息的接收时刻延时一预设时间为第一时间时刻。该预设时间具体可以为:帧数量、子帧数量、TTI数量、符号数量或SPS资源的数量中的一种或任意组合。
方式B、第一时刻可以为终端设备预配置,第一时长、第二时长、第一调整值可以为基站配置。
方式C、第一时刻、第一调整值可以为基站配置,第一时长、第二时长可以为终端设备预配置。
参阅图4,图4为本申请另一实施例提供的一种SPS方法,该方法可以由如图1所示的eNB执行或如图2所示的NR-NB执行,为了便于说明,本实施例将eNB或NR-NB称为基站。该方法如图4所示,包括如下步骤:
步骤S401、基站向终端设备发送第三消息,该第三消息用于指示终端设备开启SPS资源的资源配置更新,该资源配置具体可以为:SPS的周期。
步骤S402、基站向终端设备发送第一控制信息,该第一控制信息用于终端设备确定SPS资源的起始时刻即第一时刻。
上述步骤S401中的第一控制信息具体可以为:MAC CE或DCI信息,该DCI消息具体可以为SPS激活消息,该第一时刻确定方式可以参见如图3所示实施例中的描述,这里不再赘述。
如图4所示的实施例提供的方法支持了如图3所示实施例提供的方法的实现。
如图4所示的实施例,基站还可以向终端设备发送第一调整值,该第一调整值可以用于终端设备更新SPS的周期。
上述第一调整值可以携带在一个信令中发送,该信令包括但不限于:RRC消息、MAC CE或DCI消息,当然在实际应用中,上述第一调整值还可以携带在步骤S401中的第三消息中。
如图4所示的实施例,基站还可以向终端设备发送指示第一时长的第一时长信息。
如图4所示的实施例,基站向终端设备发送用于指示第二时刻的第二时刻信息,第二时刻信息为第二时刻或者第二时长,该第二时长用于所述终端设备确定第二时刻,具体的确定方法可以参见如图3所示实施例中的描述,这里不再赘述。
如图4所示的实施例,基站向终端设备发送SPS的调整条件,该调整条件包括但不限于:padding bits数量是否大于第一设定阈值门限或padding bits数量是否小于第二设定阈值门限;或者padding bits与总比特的比值是否大于第一比值阈值门限或padding bits与总比特的比值是否小于第二比值阈值门限;或者padding skipping的次数是否大于第一次数阈值门限或padding skipping的次数是否小于第二次数阈值门限。
可选的,本实施例中,基站接收终端设备发送的第二消息,该基站依据该第二消息确定该终端设备具有SPS周期调整能力,上述第二消息的具体表现形式以及在第二消息中携带具有SPS周期调整能够的方法可以参见如图3所示实施例的描述,这里不再赘述。
参阅图5,图5提供一种SPS方法,该方法在如图2所示的技术场景下实现,如图2所示的UE预配置有第一时长T1、第二时长T2、第一数量阈值门限和第二数量阈值门限,其中第二数量阈值小于第一数量阈值,这里时长以子帧数为例,如图5A所示,有3个SFN, 为了描述方便,这里将3个SFN命名为;SFN1、SFN2、SFN3,每个SFN包含10个子帧,编号为0-9,该T1的子帧数可以为11子帧,该T2的帧数可以为10子帧,该方法如图5所示,包括如下步骤:
步骤S500、UE向NR-NB发送能力指示消息,该能力指示消息可以包括第一调整值X,该能力指示消息的SPS周期调整能力的指示域设为True。
步骤S501、NR-NB向UE发送SPS激活消息。
步骤S502、UE提取SPS激活消息接收的帧号和子帧号,该帧号和子帧号具体可以为:SFN1的子帧1。
步骤S503、UE统计SFN1的子帧1到SFN2的子帧1之间padding bits数量(如图5A所示的T1范围)。
步骤S504、UE确定padding bits数量大于第一数量阈值门限时,UE在第二时刻即SFN3的子帧2以后将SPS周期更新至tSPS+X,其中,tSPS为UE在SFN3的子帧2之前的SPS周期值。
如图5所示实施例中的UE在SPS激活状态下,统计第一时间内的padding bits数量,如该数量大于数量阈值范围,则在第二时刻将SPS周期增加X,使得UE能够根据第一时间的padding bits数量自动调整SPS周期,不中断数据传输过程,不消耗额外的PDCCH控制资源的前提下自动调整SPS周期。
参阅图6,图6为本申请又一实施例提供的一种SPS方法,该方法可以由如图1或如图2所示的UE执行,为了便于说明,本实施例将UE称为终端设备,该方法以终端设备依据基站发送的信息调整SPS周期,该终端设备被动调整SPS的方法也可以称为显式SPS方法。该方法如图6所示,包括如下步骤:
步骤S601、终端设备在半静态调度激活状态下,终端设备确定第一时刻,在第一时刻后接收基站下发第五消息,该第五消息包括:第一SPS的资源信息。
在一个可选的技术方案中,上述步骤S601中的第一SPS的资源信息可以为第一SPS周期值或第一SPS索引值,上述SPS的资源信息还可以为:频域位置信息、调制编码方案(英文:Modulation and Coding Scheme,MCS)信息、混合自动重传请求(英文:Hybrid Automatic Repeat Request,HARQ)进程个数、跳频指示、上报信道质量指示(英文:Channel Quality Indication,CQI)指示或TTI长度指示任意一个或任意组合。上述SPS周期索引值可以用于指示终端设备依据该索引值在可选的SPS周期中确定第一SPS周期。该SPS周期索引值与SPS周期之间的映射关系可以参见如图8所示的示意图。
上述第一时刻的确定方式可以参见如图3所示实施例中的描述,这里不再赘述。
上述第五消息根据实际的情况可以为多种消息,例如RRC消息、MAC CE或DCI消息。
上述RRC消息具体可以是RRC重配置消息。通常基站在SPS激活状态下不会向UE发送RRC重配置消息改变SPS周期,因为RRC重配置消息可能会经历HARQ重传或无线链路层控制协议(英文:Radio Link Control,RLC)重传,所以该RRC重配置消息到达UE的时间,基站是无法准确得知的,即基站无法确认UE接收到RRC重配置消息的时间。所以无法根据RRC重配置消息的到达时间确定新的SPS周期的生效时刻即第二时刻。为了让 基站和UE都能够通过RRC重配置消息获知第二时刻,如该第五消息为RRC重配置消息,可以在RRC重配置消息中指示具体的新SPS周期生效的帧号和子帧号(即第二时刻),UE接收到该RRC重配置消息后,从第二时刻开始采用新SPS周期,在该第二时刻之前仍延用原SPS周期。此种方式,需要设置较大的时间余量即第一时刻与第二时刻之间的间隔要足够长,以保证在第二时刻之前,UE能够接收到RRC重配置消息。基站确定UE成功接收到该RRC重配置消息方式可以通过收到以下UE反馈信息中的任一个来确定是否成功接收到该RRC重配置消息。例如基站接收HARQ ACK或ARQ指示成功传输的状态报告,或RRC重配置完成消息。可选的,在RRC重配置消息中还可以指示DL-Assignment或UL-Grant信息,对于下行SPS场景,可以不消耗DCI来改变DL-Assignment;对于UE同时具有下行SPS和上行SPS场景,也可以不消耗DCI来指示新的UL-Grant。
对于MAC CE指示。MAC CE是MAC层的控制信令,可能经历HARQ重传,但不会经历RLC重传,所以接收MAC CE所需的时间相对接收RRC重配置消息所需的时间要短。在MAC CE中可以指示新的SPS周期和生效时刻信息(即第二时刻),其中生效时刻可以包含帧号和子帧号,周期信息可以是具体的周期值或是一个索引值,该索引值用于对应在SPS-config IE中的可选的周期值,索引值与周期值之间的映射关系可以如图8所示。基站可以通过收到HARQ ACK消息判断出UE成功收到该MAC CE指示。可选的,在MAC CE中指示DL-Assignment或UL-Grant信息。
对于DCI指示。上述DCI指示具体可以为SPS重激活消息指示,首先基站通过RRC重配置信息向UE发送新的SPS周期,UE在成功接收到RRC重配置消息后,向基站返回RRC重配置完成消息,基站在确定UE成功完成SPS周期重配置之后,通过向UE发送SPS重激活消息,使能新的SPS周期,即UE接收到SPS重激活消息之后,以SPS重激活消息的接收时刻或接收时刻延时一段时间开始采用新的SPS周期。即UE接收到SPS重激活消息之后,开始采用新的SPS周期。如图6A所示,以上行SPS为例,原SPS周期为5ms,SPS资源分配在子帧1和子帧6,在某一时刻(SFN1,子帧2),UE收到基站发来的RRC重配置消息,其中RRC重配置消息的SPS-config IE中,SPS周期值改变为3ms,UE完成RRC重配置消息中要求的操作后,向基站反馈RRC重配置完成消息(SFN2,子帧3),基站在收到该消息后确认UE已完成SPS周期的参数配置,随后在(SFN2,子帧8)通过物理下行控制信道(英文:Physical Downlink Control Channel,PDCCH)发送SPS重激活消息(对于上行SPS需要延后一段时间后生效,例如子帧n收到激活消息,在子帧n+4生效),在(SFN3,子帧2)新的SPS周期生效。如果是下行SPS,则在收到SPS激活消息的时刻就是第一个SPS机会,后续SPS机会按照新周期确定。
上述DCI消息以SPS激活消息为例,基站可以向UE发送SPS激活消息,该SPS激活消息直接指示SPS新周期,以UE接收到该SPS激活信息的接收时间作为对应的SPS资源起始时刻(即第一时刻),该起始时刻以后按照新的SPS周期值确定SPS机会。
在下行SPS,基站可以通过UE反馈的ACK确认UE成功接收到SPS激活消息;在上行SPS,基站需要同时保留原SPS资源和新SPS资源,在新SPS资源上收到UE发送的数据后,再释放原SPS资源。如果UE接收SPS激活消息失败,基站继续在原SPS资源上发送消息,此时基站需要重发DCI指示。
以上这种同时保留原SPS资源和新SPS资源的方式,同样也适用于基于RRC重配置消息或MAC CE指示的模式。即基站为UE配置新SPS资源后,对于下行可以同时在两个资源上向UE发送消息,若接收到UE针对新SPS资源上的消息发送的ACK,即认为UE已经切换到新SPS资源上;对于上行SPS基站可以同时在两个资源上尝试接收上行消息,如果在新SPS资源上接收到了上行消息,则认为UE已经切换新SPS资源上,这种方式避免了设置过长的预留时间。
除基站主动更改SPS周期外,UE还可以向基站申请调整SPS资源。例如通过UE通过RRC消息或MAC CE告知基站UE希望选择的SPS资源,或SPS资源的调整量,或SPS资源的调整范围中的一种或多种。
例如,UE通过调度请求(英文:Scheduling Request,SR)告知基站,UE可以发送SR触发修改SPS周期,通过SR携带SPS周期提示信息,例如SR携带2bit,2bit对应4种可能,如图8A所示。基站可以根据UE的SR为UE分配合适的SPS周期。
步骤S602、终端设备依据该第五消息确定第二时刻,终端设备确定第二时刻之后的SPS资源信息可以为第一SPS的资源信息。
上述步骤S602中的第二时刻的确定方式可以参见如图3所示实施例中的描述,这里不再赘述。
如图6所示的实施例中,如所述第五消息为DCI消息,终端设备依据DCI消息的接收时刻延时第四时长后的时刻即为第二时刻。对于DCI消息,其是属于物理层消息,基站可以确定出该DCI消息的接收时刻。对于RRC消息或MAC CE消息,由于RRC消息或MAC CE为高层消息,所以基站无法预估出该RRC消息或MAC CE消息的接收时刻。
如所述第五消息为RRC消息或MAC CE消息时,该第二时刻可以携带在RRC消息或MAC CE消息内,当然该第二时刻也可以携带在DCI消息内。如图6所示的实施例中,基站接收终端设备发送的第二消息,该第二消息用于表示该终端设备具备SPS周期调整的能力。上述第二消息的具体实现方式可以参见如图3所示实施例的描述。
可选的,上述方法在步骤S601之前,基站接收UE发送的调度请求SR触发SPS周期调整。UE通过SR携带SPS周期提示信息,例如SR携带2bit信息,2bit信息SPS周期的对应关系如图8A所示。例如,SR中包含00,即代表UE希望配置的SPS周期小于5ms,基站可以根据UE的请求配置相应的SPS周期。参阅图7,图7为本申请另一实施例提供的一种SPS方法,该方法可以由如图1所示的eNB执行或如图2所示的NR-NB执行,为了便于说明,本实施例将eNB或NR-NB称为基站。该方法如图7所示,包括如下步骤:
步骤S701、基站向终端设备发送第三消息,该第三消息用于指示终端设备更新SPS资源的资源信息,该资源信息具体可以为:SPS周期值。
步骤S702、基站向终端设备发送第一控制信息,该第一控制信息用于终端设备确定SPS资源的起始时刻即第一时刻。
如图7所示的实施例中,该第三消息可以为:RRC消息、MAC CE消息或DCI消息中的一种。上述第一控制信息具体可以为SPS激活消息。
可选的,上述第三消息还可以包括第一调整值、第二时刻、第三时长、SPS周期索引值中的任意一种或组合。
可选的,上述第三消息还可以包括:SPS周期的最大值和最小值,使SPS周期不会无限制的增加或缩小。
在终端设备接收到第三消息以后,终端设备可以开启SPS周期的自动调整过程,如图7A所示,原SPS周期=5个子帧,统计时间定义为counter=3,即从第一次SPS机会开始的三次SPS机会(即3个SPS周期)。假设如图7A所示的(SFN1,子帧1)中无padding bits,(SFN1,子帧6)中无padding bits,(SFN2,子帧1)中无padding bits。预设条件为包含padding bits的MAC协议数据单元(英文:Protocol Data Unit,PDU)个数,如果MAC PDU个数大于等于2则SPS周期在原SPS周期基础上增加一个子帧,如果MAC PDU个数小于等于1则在原SPS周期基础上减少一个子帧。冷却时间定义为couter=2,即两次SPS机会(即2个SPS周期)占用的时间。对于冷却时间,在统计时间段内最后几个MAC PDU,如果他们的ACK/NACK反馈落入冷却时间,那以第一次ACK/NACK反馈结果为准,即如果是ACK则该MAC PDU计入统计结果,如果是NACK则不计入统计结果。具体的,如图7A所示,(SFN1,子帧1)和(SFN1,子帧6)两次上行SPS发送都一次成功,基站反馈ACK,而(SFN2,子帧1)是统计时间内的最后一次SPS机会,且基站反馈的是NACK,则这一次MAC PDU不计入统计,所以最终的统计结果是2个MAC PDU没有padding bits,0个MAC PDU包含padding bits,所以SPS周期需要减少一个子帧。这样在冷却时间结束之后开始应用新的SPS周期,即SPS周期=4个子帧,具体的,(SFN3,子帧1)是冷却时间内的最后一个子帧,以此子帧为起始位置,下一个按照4子帧SPS周期计算得到的SPS机会出现在(SFN3,子帧5),后续SPS机会均按照4子帧SPS周期计算得到。
参阅图9,图9为本申请提供一种终端设备90,该终端设备90具体可以为如图1所示的UE或如图2所示的UE。该终端设备90可以包括:
确定单元901,用于确定第一时刻,所述第一时刻为半静态调度资源的起始时刻;
处理单元902,用于在半静态调度激活状态下,在以所述第一时刻开始的第一时长内确定第一信息,所述第一信息用于所述终端设备确定第二时刻之后的所述半静态调度资源的资源信息。
如图9所示实施例中的第一信息、第二时刻、半静态调度资源的资源信息的定义或说明可以参见如图3所示实施例的描述,这里不再赘述。
可选的,终端设备900还包括:
接收单元903,用于从基站接收第一调整值,
处理单元902,还用于根据所述第一信息和所述第一调整值确定所述第二时刻之后所述半静态资源的周期值。
处理单元902,还用于如padding bits信息为padding bits数量,确定padding bits数量大于第一设定阈值,在所述第二时刻之后将所述半静态资源的周期增加所述第一调整值;或者确定padding bits数量小于第二设定阈值,在所述第二时刻之后将所述半静态资源的周期减少所述第一调整值。
处理单元902,还用于如第一信息为padding skipping的次数,确定所述次数大于第一设定次数,在所述第二时刻之后将所述半静态资源的周期增加所述第一调整值;或者确定所述次数小于第二设定次数,在所述第二时刻之后将所述半静态资源的周期减少所述第一 调整值。
处理单元902,还用于如padding bits信息为padding bits与总比特的第一比值,确定所述第一比值大于第二设定比值,则在第二时刻之后将所述半静态资源的周期增加所述第一调整值;或者确定所述比值小于第三设定比值,在所述第二时刻之后将所述半静态资源的周期减少所述第一调整值。
可选的,终端设备还包括:
发送单元904,用于向基站发送第二信息,所述第二信息用于指示所述终端设备能够支持半静态调度周期调整。
上述第一时长、第二时长、第一时刻、第一调整值的配置方式可以参见如图3所示实施例的描述,这里不再赘述。
参阅图10,提供一种基站1000,该基站可以为如图1所示的eNB或如图2所示的NR-NB,该基站包括:
发送单元1001,用于向终端设备发送第一控制信息,所述第一控制信息用于终端设备确定半静态调度的起始时刻;
发送单元1001,还用于向终端设备发送第三信息,所述第三信息用于指示终端设备开启所述半静态调度的资源信息更新;所述资源信息包括SPS周期。
可选的,如图10所示的基站中的发送单元1001还可以用于实现如图4所示实施例的可选方案,这里不再赘述。
可选的,上述基站还可以包括:
接收单元1002,用于从所述终端设备接收第二信息;
处理单元1003,用于根据所述第二信息确定所述终端设备具有半静态调度周期调整的能力。
本申请还提供一种计算机可读存储介质,其存储用于电子数据交换的计算机程序,其中,所述计算机程序使得计算机执行如图3所示实施例中的SPS方法以及细化方案。
本申请还提供一种计算机可读存储介质,其存储用于电子数据交换的计算机程序,其中,所述计算机程序使得计算机执行如图4所示实施例中的SPS方法以及细化方案。
参阅图11,图11为本申请实施例提供的另一种终端设备110,该终端设备包括:
处理单元1101,用于在半静态调度激活状态下,确定第一时刻;
通信单元1102,用于在第一时刻后接收基站下发第五消息,该第五消息包括:第一SPS的资源信息。
处理单元1101,还用于依据该第五消息确定第二时刻,终端设备确定第二时刻之后的SPS资源信息可以为第一SPS的资源信息。
上述第二时刻、第五消息的技术方案可以参见如图6所示实施例的技术方案。
参阅图12,图12为本申请实施例提供的另一种基站120,该基站120包括:
发送单元1201,用于向终端设备发送第三消息,该第三消息用于指示终端设备开启SPS资源的资源信息更新,该资源信息具体可以为:SPS的周期值。
发送单元1201,还用于向终端设备发送第一控制信息,该第一控制信息用于终端设备确定SPS资源的起始时刻即第一时刻。
上述第三消息以及第一控制信息的描述以及细化方案可以参见如图7所示实施例。
在采用集成的单元的情况下,图13A示出了上述实施例中所涉及的终端设备的一种可能的结构示意图。
终端设备1300包括:处理单元1302和通信单元1303。处理单元1302用于对终端设备的动作进行控制管理,例如,处理单元1302用于支持终端设备执行图3中的步骤S301和S302和/或用于本文所描述的技术的其它过程。该处理单元还可以用于支持终端设备执行图5所示的步骤S500、步骤S502-步骤S504和/或用于本文所描述的技术的其它过程。该处理单元还可以用于支持终端设备执行图6所示的步骤601和步骤S602和/或用于本文所描述的技术的其它过程。通信单元1303用于支持终端设备与基站的通信,例如与LTE***中的eNB与UE之间的通信,又如NR***中的NR-NB与TRP之间的通信。终端设备还可以包括存储单元1301,用于存储终端设备的程序代码和数据。
其中,处理单元1302可以是处理器或控制器,例如可以是中央处理器(Central Processing Unit,CPU),通用处理器,数字信号处理器(Digital Signal Processor,DSP),专用集成电路(Application-Specific Integrated Circuit,ASIC),现场可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、晶体管逻辑器件、硬件部件或者其任意组合。其可以实现或执行结合本发明公开内容所描述的各种示例性的逻辑方框,模块和电路。所述处理器也可以是实现计算功能的组合,例如包含一个或多个微处理器组合,DSP和微处理器的组合等等。通信单元1303可以是通信接口、收发器、收发电路等,其中,通信接口是统称,可以包括一个或多个接口。存储单元1301可以是存储器。
当处理单元1302为处理器,通信单元1303为通信接口,存储单元1301为存储器时,本发明实施例所涉及的发布元数据的装置可以为图7B所示的发布元数据的装置。
参阅图13B所示,图13B示出了上述实施例中所涉及的基站的一种可能的结构示意图。基站1310包括:处理器1312、通信接口1313、存储器1311。处理单元1312用于对基站的动作进行控制管理,例如,处理单元1302用于支持终端设备执行图4中的步骤S401和S402和/或用于本文所描述的技术的其它过程。该处理单元还可以用于支持终端设备执行图5所示的步骤S501和/或用于本文所描述的技术的其它过程。该处理单元还可以用于支持终端设备执行图7所示的步骤701和步骤S702和/或用于本文所描述的技术的其它过程。可选的,基站1310还可以包括总线1314。其中,通信接口1313、处理器1312以及存储器1311可以通过总线1314相互连接;总线1314可以是外设部件互连标准(Peripheral Component Interconnect,简称PCI)总线或扩展工业标准结构(Extended Industry Standard Architecture,简称EISA)总线等。所述总线1314可以分为地址总线、数据总线、控制总线等。为便于表示,图13B中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。
本领域普通技术人员可以理解实现上述实施例方法中的全部或部分流程,是可以通过计算机程序来指令相关的硬件来完成,所述的程序可存储于一计算机可读取存储介质中,该程序在执行时,可包括如上述各方法的实施例的流程。其中,所述的存储介质可为磁碟、光盘、只读存储记忆体(Read-Only Memory,ROM)或随机存储记忆体(Random Access Memory,RAM)等。
以上所揭露的仅为本发明一种较佳实施例而已,当然不能以此来限定本发明之权利范 围,本领域普通技术人员可以理解实现上述实施例的全部或部分流程,并依本发明权利要求所作的等同变化,仍属于发明所涵盖的范围。

Claims (36)

  1. 一种半静态调度方法,其特征在于:
    终端设备确定第一时刻,所述第一时刻为半静态调度资源的起始时刻;
    在半静态调度激活状态下,所述终端设备在以所述第一时刻开始的第一时长内确定第一信息,所述第一信息用于所述终端设备确定第二时刻之后的所述半静态调度资源的资源信息。
  2. 根据权利要求1所述的方法,其特征在于,
    所述第二时刻是所述终端设备根据第一时刻、第一时长和第二时长确定的。
  3. 根据权利要求1所述的方法,其特征在于,
    所述半静态调度资源的资源信息包含所述半静态资源的周期值。
  4. 根据权利要求1-3任一项所述的方法,其特征在于,
    所述第一信息为补丁比特padding bits信息,或者补丁跳跃padding skipping的次数。
  5. 根据权利要求4所述的方法,其特征在于,
    所述终端设备从基站接收第一调整值,
    所述终端设备根据所述第一信息和所述第一调整值确定所述第二时刻之后所述半静态资源的周期值。
  6. 根据权利要求5所述的方法,其特征在于,
    所述padding bits信息为padding bits数量,所述第一信息用于所述终端设备确定第二时刻之后的所述半静态调度资源的资源信息,包括:
    所述终端设备确定padding bits数量大于第一数量阈值,所述终端设备在所述第二时刻之后将所述半静态资源的周期增加所述第一调整值;或者
    所述终端设备确定padding bits数量小于第二数量阈值,所述终端设备在所述第二时刻之后将所述半静态资源的周期减少所述第一调整值。
  7. 根据权利要求5所述的方法,其特征在于,
    所述第一信息为padding skipping的次数,所述第一信息用于所述终端设备确定第二时刻之后的所述半静态调度资源的资源信息,包括:
    所述终端设备确定所述padding skipping的次数大于第一设定次数,所述终端设备在所述第二时刻之后将所述半静态资源的周期增加所述第一调整值;或者
    所述终端设备确定所述padding skipping的次数小于第二设定次数,所述终端设备在所述第二时刻之后将所述半静态资源的周期减少所述第一调整值。
  8. 根据权利要求5所述的方法,其特征在于,
    所述padding bits信息为padding bits与总比特的第一比值,所述第一信息用于所述终端设备确定第二时刻之后的所述半静态调度资源的资源信息,包括:
    所述终端设备确定所述第一比值大于第二设定比值,则所述终端设备在第二时刻之后将所述半静态资源的周期增加所述第一调整值;或者
    所述终端设备确定所述第一比值小于第三设定比值,所述终端设备在所述第二时刻之后将所述半静态资源的周期减少所述第一调整值。
  9. 根据权利要求1所述的方法,其特征在于,
    所述终端设备向基站发送第二信息,所述第二信息用于指示所述终端设备支持半静态调度周期调整。
  10. 根据权利要求5所述的方法,其特征在于,
    所述第一时长、所述第二时长、所述第一时刻、所述第一调整值中的一个或多个为预先配置的;
    或所述第一时长、所述第二时长、所述第一时刻、所述第一调整值中的一个或多个为基站配置的。
  11. 一种半静态调度SPS方法,其特征在于,所述方法包括如下步骤:
    基站向终端设备发送第一控制信息,所述第一控制信息用于终端设备确定半静态调度的起始时刻;
    所述基站向终端设备发送第三信息,所述第三信息用于指示终端设备更新所述半静态调度的资源信息;所述资源信息包括SPS周期。
  12. 根据权利要求11所述的方法,其特征在于,
    所述基站向终端设备发送第一调整值,所述第一调整值用于所述终端设备更新所述半静态调度的周期值。
  13. 根据权利要求10或11所述的方法,其特征在于,
    所述基站向终端设备发送用于指示第一时长的第一时长信息。
  14. 根据权利要求13所述的方法,其特征在于,
    所述基站向所述终端设备发送用于指示第二时刻的第二时刻信息,所述第二时刻信息为第二时刻或者第二时长,所述第二时长用于所述终端设备确定所述第二时刻。
  15. 根据权利要求14所述的方法,其特征在于,
    所述基站向所述终端设备发送第四信息,所述第四信息用于指示所述半静态调度资源的调整条件。
  16. 根据权利要求15所述的方法,其特征在于,
    所述调整条件包括:
    补丁比特padding bits数量是否大于第一数量阈值或小于第二数量阈值;或者
    所述padding bits与总比特的第一比值是否大于第二设定比值或小于第三设定比值;或者
    补丁跳跃padding skipping的次数是否大于第一设定次数或小于第二设定次数。
  17. 根据权利要求11-16任意一项所述的方法,其特征在于,
    所述基站从所述终端设备接收第二信息,所述基站根据所述第二信息确定所述终端设备具有半静态调度周期调整的能力。
  18. 一种终端设备,其特征在于:所述终端设备包括:
    确定单元,用于确定第一时刻,所述第一时刻为半静态调度资源的起始时刻;
    处理单元,用于在半静态调度激活状态下,在以所述第一时刻开始的第一时长内确定第一信息,所述第一信息用于所述终端设备确定第二时刻之后的所述半静态调度资源的资源信息。
  19. 根据权利要求18所述的终端设备,其特征在于,
    所述第二时刻是所述终端设备根据第一时长和第二时长确定的。
  20. 根据权利要求18所述的终端设备,其特征在于,
    所述半静态调度资源的资源信息包含所述半静态资源的周期值。
  21. 根据权利要求18-20任一项所述的终端设备,其特征在于,
    所述第一信息为补丁比特padding bits信息,或者补丁跳跃padding skipping的次数。
  22. 根据权利要求21所述的终端设备,其特征在于,所述终端设备还包括:
    接收单元,用于从基站接收第一调整值,
    所述处理单元,还用于根据所述第一信息和所述第一调整值确定所述第二时刻之后所述半静态资源的周期值。
  23. 根据权利要求22所述的终端设备,其特征在于,
    所述处理单元,还用于如所述padding bits信息为padding bits数量,确定padding bits数量大于第一数量阈值,在所述第二时刻之后将所述半静态资源的周期增加所述第一调整值;或者确定padding bits数量小于第二数量阈值,在所述第二时刻之后将所述半静态资源的周期减少所述第一调整值。
  24. 根据权利要求22所述的终端设备,其特征在于,
    所述处理单元,还用于如所述第一信息为padding skipping的次数,确定所述次数大于第一设定次数,在所述第二时刻之后将所述半静态资源的周期增加所述第一调整值;或者确定所述次数小于第二设定次数,在所述第二时刻之后将所述半静态资源的周期减少所述第一调整值。
  25. 根据权利要求22所述的终端设备,其特征在于,
    所述处理单元,还用于如所述padding bits信息为padding bits与总比特的第一比值,确定所述第一比值大于第二设定比值,则在第二时刻之后将所述半静态资源的周期增加所述第一调整值;或者确定所述第一比值小于第三设定比值,在所述第二时刻之后将所述半静态资源的周期减少所述第一调整值。
  26. 根据权利要求18所述的终端设备,其特征在于,所述终端设备还包括:
    发送单元,用于向基站发送第二信息,所述第二信息用于指示所述终端设备具有半静态调度周期调整的能力。
  27. 根据权利要求22所述的终端设备,其特征在于,
    所述第一时长、所述第二时长、所述第一时刻、所述第一调整值中的一个或多个为预先配置的;或所述第一时长、所述第二时长、所述第一时刻、所述第一调整值中的一个或多个为基站配置的。
  28. 一种基站,其特征在于,所述基站包括:
    发送单元,用于向终端设备发送第一控制信息,所述第一控制信息用于终端设备确定半静态调度SPS的起始时刻;
    所述发送单元,还用于向终端设备发送第三信息,所述第三信息用于指示终端设备开启所述半静态调度的资源信息更新;所述资源信息包括SPS周期。
  29. 根据权利要求28所述的基站,其特征在于,
    所述发送单元,还用于向终端设备发送第一调整值,所述第一调整值用于所述终端设备更新所述半静态调度的周期值。
  30. 根据权利要求28或29所述的基站,其特征在于,
    所述发送单元,还用于向终端设备发送用于指示第一时长的第一时长信息。
  31. 根据权利要求30所述的基站,其特征在于,
    所述发送单元,还用于向所述终端设备发送用于指示第二时刻的第二时刻信息,所述第二时刻信息为第二时刻或者第二时长,所述第二时长用于所述终端设备确定所述第二时刻。
  32. 根据权利要求31所述的基站,其特征在于,
    所述发送单元,还用于向所述终端设备发送第四信息,所述第四信息用于指示所述半静态调度资源的调整条件。
  33. 根据权利要求32所述的基站,其特征在于,
    所述调整条件包括:
    补丁比特padding bits数量是否大于第一数量阈值或小于第二数量阈值;或者
    所述padding bits与总比特的第一比值是否大于第二设定比值或小于第三设定比值;
    或者补丁跳跃padding skipping的次数是否大于第一设定次数或小于第二设定次数。
  34. 根据权利要求28-33任意一项所述的基站,其特征在于,所述基站还包括:
    接收单元,用于从所述终端设备接收第二信息;
    处理单元,用于根据所述第二信息确定所述终端设备具有半静态调度周期调整的能力。
  35. 一种计算机可读存储介质,其特征在于,其存储有计算机程序,其中,所述计算机程序被处理器执行时,实现如权利要求1-17任一项所述的方法。
  36. 一种设备,其特征在于,包括一个或多个处理器以及存储器,所述存储器存储有计算机程序,所述计算机程序被所述一个或多个处理器执行时,实现如权利要求1-17任一项所述的方法。
PCT/CN2017/087773 2017-06-09 2017-06-09 半静态调度方法、装置及设备 WO2018223390A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/087773 WO2018223390A1 (zh) 2017-06-09 2017-06-09 半静态调度方法、装置及设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/087773 WO2018223390A1 (zh) 2017-06-09 2017-06-09 半静态调度方法、装置及设备

Publications (1)

Publication Number Publication Date
WO2018223390A1 true WO2018223390A1 (zh) 2018-12-13

Family

ID=64566070

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/087773 WO2018223390A1 (zh) 2017-06-09 2017-06-09 半静态调度方法、装置及设备

Country Status (1)

Country Link
WO (1) WO2018223390A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023145132A1 (en) * 2022-01-27 2023-08-03 Mitsubishi Electric Corporation Systems, apparatuses, and methods for semi-persistent scheduling in communication networks

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104853441A (zh) * 2014-02-17 2015-08-19 普天信息技术有限公司 一种半静态调度重配方法和***
CN105101428A (zh) * 2014-05-22 2015-11-25 中兴通讯股份有限公司 调度方法及***、终端、发送方法、基站及其调度方法
CN105592557A (zh) * 2014-11-17 2016-05-18 中兴通讯股份有限公司 半静态调度控制方法、装置及基站
CN105704828A (zh) * 2014-11-25 2016-06-22 中兴通讯股份有限公司 一种资源调度的方法和装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104853441A (zh) * 2014-02-17 2015-08-19 普天信息技术有限公司 一种半静态调度重配方法和***
CN105101428A (zh) * 2014-05-22 2015-11-25 中兴通讯股份有限公司 调度方法及***、终端、发送方法、基站及其调度方法
CN105592557A (zh) * 2014-11-17 2016-05-18 中兴通讯股份有限公司 半静态调度控制方法、装置及基站
CN105704828A (zh) * 2014-11-25 2016-06-22 中兴通讯股份有限公司 一种资源调度的方法和装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023145132A1 (en) * 2022-01-27 2023-08-03 Mitsubishi Electric Corporation Systems, apparatuses, and methods for semi-persistent scheduling in communication networks

Similar Documents

Publication Publication Date Title
US10361823B2 (en) Method and apparatus for transmitting uplink data in licensed-assisted access system
JP6096926B2 (ja) 無線電機通信ネットワークにおける無線機器間のd2d通信におけるharq送信を可能にして実行するための、ネットワークノード、無線機器、およびそれらにおける方法
KR102035402B1 (ko) 자동 재송신 요청(arq) 피드백 정보를 처리하기 위한 네트워크 노드, 무선 장치 및 그 방법들
WO2017193730A1 (zh) 自动重传的调度方法、终端、网络侧设备以及存储媒介
CN108809526B (zh) Rlc层的状态报告方法及装置、存储介质、用户设备
WO2015039313A1 (zh) 混合自动重传请求确认的传输方法、用户设备和基站
WO2018107400A1 (zh) 传输方法和装置
WO2012092815A1 (zh) 上行控制信息的调度及上报方法、***和设备
JP7228054B2 (ja) フィードバック情報送信方法及び装置
WO2017193282A1 (zh) 上行信息传输方法、基站与用户设备
WO2015070811A1 (zh) 传输数据的方法、基站和用户设备
WO2017016351A1 (zh) 一种上行数据的传输方法及装置
WO2014173333A1 (zh) 一种上行控制信息的发送方法及装置
WO2017113405A1 (zh) 一种跨载波调度方法、反馈方法及装置
EP3506540A1 (en) Data transmission method, network device and terminal device
TWI607635B (zh) 處理用於非執照頻帶的混合自動重傳請求運作的裝置及方法
WO2016119173A1 (zh) Pucch配置方法和装置
JP6685295B2 (ja) 基地局
JP6397059B2 (ja) ユーザ装置及び基地局
US20230283413A1 (en) Data and feedback relaying
WO2018081999A1 (zh) 传输信息的方法、网络设备和终端设备
WO2018027949A1 (zh) 一种通信方法、网络设备及终端
WO2018076361A1 (zh) 上行传输方法、终端设备和接入网设备
WO2015018009A1 (zh) 用于自动重传的方法、用户设备和基站
WO2018223390A1 (zh) 半静态调度方法、装置及设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17912528

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17912528

Country of ref document: EP

Kind code of ref document: A1