WO2018221541A1 - Position detection device and position detection system - Google Patents

Position detection device and position detection system Download PDF

Info

Publication number
WO2018221541A1
WO2018221541A1 PCT/JP2018/020630 JP2018020630W WO2018221541A1 WO 2018221541 A1 WO2018221541 A1 WO 2018221541A1 JP 2018020630 W JP2018020630 W JP 2018020630W WO 2018221541 A1 WO2018221541 A1 WO 2018221541A1
Authority
WO
WIPO (PCT)
Prior art keywords
gnss
vehicle
unit
information
antenna
Prior art date
Application number
PCT/JP2018/020630
Other languages
French (fr)
Japanese (ja)
Inventor
浅野 晃
Original Assignee
株式会社京三製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社京三製作所 filed Critical 株式会社京三製作所
Priority to CN201880035663.3A priority Critical patent/CN110914710B/en
Publication of WO2018221541A1 publication Critical patent/WO2018221541A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61LGUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
    • B61L25/00Recording or indicating positions or identities of vehicles or trains or setting of track apparatus
    • B61L25/02Indicating or recording positions or identities of vehicles or trains
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/38Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
    • G01S19/39Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/40Correcting position, velocity or attitude
    • G01S19/41Differential correction, e.g. DGPS [differential GPS]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/38Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
    • G01S19/39Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/42Determining position
    • G01S19/50Determining position whereby the position solution is constrained to lie upon a particular curve or surface, e.g. for locomotives on railway tracks

Definitions

  • the present invention relates to a position detection device and a position detection system that detect a traveling position of a train (vehicle) based on a GNSS signal.
  • a technique for grasping the traveling position of a train for example, a technique for integrating the distance traveled by the train and detecting the traveling position of the train by a signal acquired from a speed generator (hereinafter referred to as “TG”). is there.
  • TG speed generator
  • GNSS Global Navigation Satellite System
  • a technique using GNSS for example, there is a technique of acquiring a radio wave from a GNSS satellite with a GNSS receiver provided in a train to detect the current position of the train or controlling the train speed (see Patent Document 1).
  • the present invention has been made in view of the above situation, and is to provide a technique for solving the above-described problems.
  • the present invention is a position detection apparatus, which is provided with a first GNSS antenna and a second GNSS antenna that receive a GNSS signal from a GNSS satellite and are provided at a predetermined distance in the front-rear direction of one vehicle, and the first GNSS antenna.
  • a first GNSS reception unit connected to the second GNSS antenna, a second GNSS reception unit connected to the second GNSS antenna, and a position calculation in which the first GNSS reception unit and the second GNSS reception unit calculate the position of the vehicle based on the GNSS signal.
  • an error information acquisition unit that acquires GNSS error information from the ground side equipment, and the position calculation unit reflects the GNSS error information when in a certain area from the ground side equipment.
  • the position calculation unit To calculate the position of the vehicle.
  • a database of routes on which the vehicle travels, and a verification unit that verifies whether or not the vehicle position calculation process based on the database and the GNSS signal can be executed, the position calculation unit, When it is determined that the verification unit is in a state where the vehicle position specifying process can be executed, the vehicle position calculation process based on the GNSS signal is executed, and the vehicle position calculation process can be executed. If it is determined that the vehicle is not in the state, the vehicle position specifying process may be executed based on the speed generator.
  • the present invention is a position detection system that calculates the position of the vehicle by using an on-board device mounted on the vehicle and a ground device installed on the ground side.
  • a first GNSS antenna and a second GNSS antenna that receive a GNSS signal from a GNSS satellite, provided at a predetermined distance in the direction, a first GNSS receiver connected to the first GNSS antenna, and a connection to the second GNSS antenna Error information for acquiring GNSS error information from the ground side equipment, the second GNSS receiving unit, a position calculating unit that calculates the position of the vehicle based on the GNSS signal, and the first GNSS receiving unit and the second GNSS receiving unit And an on-vehicle side communication unit that communicates with the ground device, wherein the ground device receives a GNSS signal from the GNSS satellite.
  • the third GNSS receiver From the third GNSS antenna, the third GNSS receiver connected to the third GNSS antenna, the position information of the third GNSS antenna, and the position information calculated from the GNSS signal received by the third GNSS antenna.
  • a ground side control unit that calculates the GNSS error information
  • a ground side communication unit that transmits the GNSS error information to the on-board device, wherein the position calculation unit of the on-board device is a position of the vehicle. Is calculated, the GNSS error information is reflected.
  • the present invention is a position detection system that calculates the position of the vehicle by an on-board device mounted on the vehicle, a ground device and a command center installed on the ground side, and the on-board device includes one A first GNSS antenna and a second GNSS antenna that receive a GNSS signal from a GNSS satellite, which are provided apart from each other by a predetermined distance in the longitudinal direction of the vehicle, a first GNSS receiver connected to the first GNSS antenna, and the second GNSS Notifying the command center of the second GNSS receiver connected to the antenna, the position information based on the GNSS signal of the first GNSS receiver and the second GNSS receiver, and the position of the vehicle based on the position information
  • a position calculation unit that calculates the error information, and error information acquisition that acquires correction information of the position of the vehicle from the command center
  • a vehicle-side communication unit that communicates with the ground device and the command center, and the ground device receives a GNSS signal from the GNSS satellite, and a third
  • Ground side control that holds the position information of the third GNSS antenna and calculates the GNSS error information from the position information calculated from the GNSS signal received by the third GNSS antenna and notifies the command center
  • a ground side communication unit that communicates with the on-board device and the command center, wherein the command center communicates with the on-vehicle device and the ground device and receives the first GNSS received from the on-board device.
  • NSS error information the corrected positional information of the vehicle on the basis, on the basis of the positional information after correction, performs operation control of the vehicle.
  • FIG. 1 is a diagram showing an outline of a train operation system 1 according to the present embodiment.
  • FIG. 2 is a block diagram of the train operation system 1.
  • FIG. 1 shows a state in which the head of the vehicle 10 traveling in the right direction in the figure has entered the platform 88.
  • the train operation system 1 includes a first GNSS unit 15, a second GNSS unit 16, and an on-board device 20 as a vehicle-side device, and a station platform as a ground-side device. 88 includes a ground device 60 and a third GNSS unit 61. Furthermore, the train operation system 1 includes a command center 70 that controls the vehicle 10 and the on-board device 20 as a ground-side device and performs overall operation management.
  • the calculation accuracy of the vehicle position in the vicinity of the station is improved by using the first GNSS unit 15 and the second GNSS unit 16 on the vehicle side and the third GNSS unit 61 on the ground side.
  • the ground device 60 transmits the GNSS information acquired by the third GNSS unit 61 to the on-vehicle device 20 when the train enters a predetermined communication area.
  • the absolute position of the third GNSS receiving unit 61a of the third GNSS unit 61 is known. For example, the difference between the acquired GNSS information and the absolute value (hereinafter referred to as “GNSS error”) is notified to the on-board device 20.
  • GNSS error the difference between the acquired GNSS information and the absolute value
  • the position information is calculated based on the GNSS information from the same GNSS satellite 98 as the third GNSS unit 61.
  • the on-board device 20 of the vehicle 10 may transmit position information from the first GNSS unit 15 and the second GNSS unit 16 and the ground device 60 may transmit GNSS error information of the third GNSS unit 61 to the command center 70 on the ground side.
  • the command center 70 can accurately correct the position of the vehicle 10, and can perform interlock control and signal control based on the train position (the corrected position of the vehicle 10).
  • the calculated position information is highly likely to contain the GNSS error calculated by the third GNSS unit 61. Therefore, in the on-board device 20, when the position information is calculated based on the GNSS information of the first GNSS unit 15 and the second GNSS unit 16, the GNSS error calculated by the third GNSS unit 61 is acquired and reflected as the GNSS error information. , GNSS error is eliminated. As described above, when the command center 70 acquires position information from the vehicle 10 or the ground device 60, the command center 70 may perform a process of eliminating a GNSS error. Hereinafter, a case where the GNSS error elimination process is mainly performed by the vehicle 10 and the ground device 60 will be described.
  • the first GNSS unit 15 includes a first GNSS antenna 15a and a first GNSS receiving unit 15b.
  • the second GNSS unit 16 includes a second GNSS antenna 16a and a second GNSS receiver 16b.
  • the first GNSS antenna 15 a is installed near the upper front end of the vehicle 10.
  • the second GNSS antenna 16 a is installed near the upper rear end of the vehicle 10.
  • the first GNSS antenna 15a and the second GNSS antenna 16a are installed apart from each other by a predetermined distance (hereinafter referred to as “installation distance a”). For example, when the length of the vehicle 10 is 20 m, the installation distance a is about 17 m.
  • the first GNSS receiver 15b calculates the position information of the first GNSS antenna 15a based on the GNSS signal received by the first GNSS antenna 15a, calculates the velocity vector at the position of the first GNSS antenna 15a, and outputs each calculation result to the vehicle. Output to the upper device 20.
  • the second GNSS receiver 16b calculates the position information of the second GNSS antenna 16a based on the GNSS signal received by the second GNSS antenna 16a, calculates the velocity vector at the position of the second GNSS antenna 16a, and outputs each calculation result to the vehicle. Output to the upper device 20.
  • the on-vehicle device 20 identifies the position of the vehicle 10 by comparing with the system-specific information provided in advance when the feature point of the speed vector is detected. Further, when the on-board device 20 acquires the position information of the third GNSS unit 61 from the ground device 60, the position information is corrected by reflecting the position information in the calculation results of the first GNSS unit 15 and the second GNSS unit 16. To do.
  • the on-board device 20 when the on-board device 20 detects a predetermined feature point where the speed vector changes, the on-board device 20 compares the information with the system-specific information (information in the operation data unit 31) provided in advance. When it is determined that the feature point matches the assumed feature point, it is determined that “there is a position recorded in the database”.
  • the feature points are, for example, the start point and end point when the trajectory 99 curves.
  • a GNSS test is performed to determine whether or not the position information calculation process based on the GNSS signal may be executed. Further, in an area such as a station (platform 88) that requires highly accurate position information, the GNSS error is corrected based on the position information on the ground side and the GNSS information at that point.
  • GNSS test The GNSS test is performed to improve the reliability of GNSS information. Only when the GNSS test is passed, the position information based on the GNSS information is used for specifying the position of the vehicle 10. For the GNSS test, two GNSS receivers (first GNSS receiver 15b and second GNSS receiver 16b) of the vehicle 10 are used.
  • the first GNSS antenna 15a and the second GNSS antenna 16a are installed at an installation distance a having no correlation.
  • the first GNSS antenna 15a and the second GNSS antenna 16a are installed at the front and rear ends of the vehicle 10 (for example, two locations on the leading side and the connecting side of the leading vehicle 10).
  • the installation distance a not only the installation distance a but also a non-correlated environment of the radio wave environment due to the roof of the vehicle 10 is constructed. That is, different fading environments are constructed for the first and second GNSS antennas 15a and 16a.
  • the two GNSS receivers are configured not to output erroneous information due to the same fading.
  • Position detection by integration of travel distance using speed information of GNSS information is performed by calculating the travel distance by integrating speed information after the absolute position is determined.
  • the “trace” test in FIG. 3A, the “position” test in FIG. 3B, and the “azimuth (Dp)” test in FIG. 3C are used. Only when the test is passed, the speed information based on the GNSS information is used. If the test fails, speed information from other speed detection means such as TG32 (see FIG. 5) is used. In the verification, the operation data unit 31 is referred to and compared with the recorded data.
  • “Trace” test is to determine whether or not the vehicle is traveling along a planned travel route.
  • “Position” test refers to whether or not the distance between the first and second GNSS antennas 15a and 16a obtained from the GNSS signal (“measured distance D” in FIG. 4 described later) matches the actual installation distance a. Judgment.
  • the “azimuth” test is to determine whether or not it coincides with a planned orientation (orbit orientation).
  • Absolute position detection using GNSS speed information For absolute position detection using GNSS speed information, speed vectors calculated by two GNSS receivers (first GNSS receiver 15b and second GNSS receiver 16b) are used. Use the fact that the curve of the orbit 99 changes every moment. The change in the velocity vector in the orbital curve is indistinguishable from the change due to the effects of GNSS failure, receiver failure, and fading if the following conditions (a) to (c) are satisfied. Is very low.
  • A The start point of the curve is scheduled to come by TG or the like before the curve start point.
  • B Pass the GNSS test from before the curve start point to after the curve end point.
  • Absolute position detection information is registered in the route database (operation data unit 31).
  • Position detection processing based on the curvature of the trajectory 99 will be described with reference to FIG.
  • the curvature radius R is used instead of the curvature.
  • the velocity vector V (V1, V2) obtained from the two GNSS receivers (the first GNSS receiver 15b and the second GNSS receiver 16b) is obtained when the vehicle 10 enters the curve 99b from the straight line 99a.
  • the angle ⁇ changes in accordance with the radius of curvature R.
  • an angle formed by the velocity vector V1 of the first GNSS antenna 15a and the velocity vector V2 of the second GNSS antenna 16a is defined as an angle ⁇ .
  • the radius of curvature R of the track 99 (curve 99b) is calculated by the following equation, and compared with the curvature (curvature radius) of the track 99 registered in the route database (operation data unit 31).
  • the velocity vector difference obtained from the first GNSS antenna 15a and the second GNSS antenna 16a is such that the trajectory 99 changes from the right curve 99d to the left curve 99e and from the left curve.
  • the sign (positive / negative) is reversed if the difference between the velocity vectors V1 and V2 is taken.
  • FIG. 6 is a diagram for explaining the concept of GNSS error correction.
  • measured fixed position information P3 (X3_0, Y3_0) of the third GNSS antenna 61b is recorded.
  • the position information P3 is a fixed value and is indicated by, for example, longitude / latitude.
  • the third GNSS receiver 61a calculates GNSS error information ⁇ P3 ( ⁇ x, ⁇ y), which is the difference between the position information P3_G (X3_g, Y3_g) obtained based on the GNSS satellite 98 and the fixed position information P3 (X3_0, Y3_0). To do.
  • the third GNSS receiver 61a transmits the GNSS error ⁇ P3 ( ⁇ x, ⁇ y) to the on-board device 20 as GNSS error information.
  • the first GNSS unit 15 and the first GNSS unit 15 can be substantially canceled, and the accuracy of the train position of the vehicle 10 calculated using the first GNSS unit 15 and the second GNSS unit 16 can be improved.
  • the ground device 60 includes a ground side operation control unit 62 and a ground communication unit 63.
  • the ground side operation control unit 62 holds the position information of the installation position of the third GNSS antenna 61b, acquires the GNSS signal received by the third GNSS unit 61, and calculates the position information of the installation position and the position information calculated from the GNSS signal, Difference (GNSS error information) is calculated and transmitted to the on-board device 20 via the ground communication unit 63.
  • the ground communication unit 63 communicates with the on-vehicle device 20 (on-vehicle communication unit 33).
  • the on-board device 20 is provided in the vehicle 10 in which the first GNSS unit 15 and the second GNSS unit 16 are installed, and controls the operation of the train (vehicle 10). Specifically, the on-board device 20 grasps the operation state of the train (the vehicle 10) by controlling the train speed, estimating the train position, or estimating the train direction, and the appropriate train. The operation is executed. The on-board device 20 communicates with the ground device 60 to directly or indirectly perform processing such as track closing.
  • the on-board device 20 includes a vehicle upper side operation control unit 30, a train state specifying unit 40, an operation data unit 31, a TG 32, an onboard communication unit 33, and a travel history unit 34.
  • the operation data unit 31 records information (operation information) of a route on which the train (vehicle 10) operates.
  • operation information there are route information on which the train (vehicle 10) travels, point information, direction Dp of the train traveling direction at each point, curve information (start point, end point, radius of curvature), speed limit information for each speed limit section, and the like. .
  • the traveling history unit 34 records the traveling history of the vehicle 10.
  • the TG 32 is a speed measuring device that measures a speed based on the rotation of a wheel that has been conventionally used.
  • the on-vehicle communication unit 33 transmits and receives information to and from the ground communication unit 63 of the ground device 60 and other external devices (for example, an operation command unit).
  • the vehicle upper side operation control unit 30 performs train operation control using the train state specifying unit 40, the TG 32, and the operation data unit 31.
  • train operation control for example, the position of the train (vehicle 10) is specified, the speed is calculated, and the calculation result is displayed on a predetermined display device. Either one of the speeds or both speeds may be displayed in the speed display.
  • the train state identification unit 40 includes a train position calculation unit 42, a train direction calculation unit 44, a GNSS verification unit 46, and a specific position detection unit 48.
  • the train position calculation unit 42 acquires position information detected from the first GNSS unit 15 and the second GNSS unit 16. In addition, the train position calculation unit 42 calculates the actual measurement distance D between the first GNSS antenna 15a and the second GNSS antenna 16a based on the position information output from the first and second GNSS units 15 and 16.
  • the train direction calculation unit 44 calculates the traveling direction (direction) of the vehicle 10 based on the position information acquired by the train position calculation unit 42.
  • the calculated traveling direction (azimuth) is output to the specific position detector 48.
  • the GNSS verification unit 46 performs the above GNSS verification process. That is, the GNSS test unit 46 performs the processes shown in the “trace” test in FIG. 3A, the “position” test in FIG. 3B, and the “azimuth” test in FIG. At this time, the GNSS verification unit 46 refers to the operation data unit 31.
  • the specific position detection unit 48 performs the absolute position detection process using the above-described GNSS speed information when it is determined that the GNSS test is acceptable.
  • the position information for various controls of the train (vehicle 10) performed by the vehicle upper side operation control unit 30 or the like is updated to the detected position information. That is, for example, even if an error has occurred due to idling or sliding of the wheel due to the use of TG32 in grasping the traveling state before the absolute position detection processing is executed, the error is appropriately Canceled.
  • the vehicle upper side operation control part 30 has a possibility that the wheel etc.
  • the specific position detection unit 48 has three types: (1) position detection based on the curvature of the track, (2) position detection based on the curve travel distance of the track, and (3) position detection based on the curve change point of the track.
  • the position detection method is selectively used. You may combine them as needed.
  • the specific position detection unit 48 acquires GNSS error information from the ground device 60 when the vehicle 10 is located within a predetermined distance from the ground device 60, and the position information detected by the first GNSS unit 15 and the second GNSS unit 16. To reflect.
  • the train position calculation unit 42 of the train state specifying unit 40 calculates position information based on the GNSS signals received by the first GNSS unit 15 and the second GNSS unit 16 (S10). Subsequently, the GNSS test unit 46 performs a GNSS test and determines whether or not the GNSS information can be used (S12).
  • the vehicle upper side operation control unit 30 When the GNSS test fails (N in S14), the vehicle upper side operation control unit 30 performs a train position calculation process using the TG 32 and performs operation control based on the train position calculation process (S16). When the GNSS test is passed (Y of S14), the vehicle upper side operation control unit 30 determines whether or not the vehicle is in an area where there is communication with the ground device 60 and the GNSS information of the ground device 60 (the third GNSS unit 61) is used ( S18).
  • the on-board device 20 receives the on-board GNSS data (the first GNSS unit 15, the first GNSS unit 15). Train position calculation using 2GNSS unit 16 GNSS information) is performed, and operation control based on the train position is performed (S20).
  • the on-board device 20 acquires GNSS error information from the ground device 60 (S22), and the on-vehicle GNSS data (the first GNSS data)
  • the GNSS error information is reflected in the GNSS information of the 1GNSS unit 15 and the second GNSS unit 16 (S24), the corrected train position is calculated, and operation control using the train position is performed (S26).
  • the first and second GNSS receivers connected to the first and second GNSS antennas 15 a and 16 a that are provided at a predetermined installation distance a forward and backward. Based on the information output from 15b and 16b, the absolute position of the train (vehicle 10) can be determined stably with high accuracy.
  • highly accurate train position detection is required. More specifically, it is necessary to set and release the closed section of the track at an appropriate timing.
  • the GNSS error information of the third GNSS unit 61 of the ground device 60 of the platform 88 is reflected in the position information obtained by the first GNSS unit 15 and the second GNSS unit 16 of the vehicle 10 to eliminate the error of the position information.
  • the operation control using the position information can be performed quickly and safely.

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Mechanical Engineering (AREA)
  • Sustainable Development (AREA)
  • Transportation (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Sustainable Energy (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Train Traffic Observation, Control, And Security (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Position Fixing By Use Of Radio Waves (AREA)
  • Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

Provided is a technique for using GNSS to detect the position of a train with high precision and accuracy. An on-board device (20) performs GNSS verification when calculating the position of a train on the basis of GNSS information of a first GNSS unit (15) and a second GNSS unit (16), and performs an absolute position sensing process in which GNSS speed information is used when the verification is successful. When a vehicle (10) is positioned within a prescribed range from an above-ground device (60), the on-board device (20) acquires GNSS error information from the above-ground device (60) and reflects said information against the position information detected by the first GNSS unit (15) and the second GNSS unit (16).

Description

位置検出装置及び位置検出システムPosition detection apparatus and position detection system
 本発明は、GNSS信号をもとに列車(車両)の走行位置を検知する位置検出装置及び位置検出システムに関する。 The present invention relates to a position detection device and a position detection system that detect a traveling position of a train (vehicle) based on a GNSS signal.
 列車の走行位置を把握する技術として、例えば速度発電機(以下、「TG」と称する。)から取得した信号により、列車が走行している距離を積算して列車の走行位置を検出する技術がある。また、GNSS(Global Navigation Satellite System)を用いた技術もある。GNSSを用いた技術では、例えば、GNSS衛星からの電波を列車に設けたGNSS受信装置で取得して列車の現在位置を検出したり、列車速度を制御する技術がある(特許文献1参照)。 As a technique for grasping the traveling position of a train, for example, a technique for integrating the distance traveled by the train and detecting the traveling position of the train by a signal acquired from a speed generator (hereinafter referred to as “TG”). is there. There is also a technology using GNSS (Global Navigation Satellite System). As a technique using GNSS, for example, there is a technique of acquiring a radio wave from a GNSS satellite with a GNSS receiver provided in a train to detect the current position of the train or controlling the train speed (see Patent Document 1).
特開2016-194497号公報JP 2016-194497 A
 ところで、特許文献1に開示の技術では、運行用のデータを用いて、カーブやトンネル等の特徴的な位置を検出した時に、走行位置を補正するが、そのような特徴的な位置から離れてしまうと、誤差の蓄積により走行位置の検出精度が低下してしまうという課題があった。 By the way, in the technique disclosed in Patent Document 1, when a characteristic position such as a curve or a tunnel is detected using data for operation, the traveling position is corrected, but the distance from such a characteristic position is corrected. As a result, there is a problem that the accuracy of detecting the traveling position is reduced due to the accumulation of errors.
 本発明は、以上のような状況に鑑みなされたものであって、上記課題を解決する技術を提供することにある。 The present invention has been made in view of the above situation, and is to provide a technique for solving the above-described problems.
 本発明は、位置検出装置であって、一つの車両の前後方向に所定距離だけ離間して設けられた、GNSS衛星からのGNSS信号を受信する第1GNSSアンテナ及び第2GNSSアンテナと、前記第1GNSSアンテナに接続された第1GNSS受信部と、前記第2GNSSアンテナに接続された第2GNSS受信部と、前記第1GNSS受信部及び前記第2GNSS受信部が前記GNSS信号にもとづき前記車両の位置を算出する位置算出部と、地上側の設備からGNSS誤差情報を取得する誤差情報取得部と、を備え、前記位置算出部は、前記地上側の設備から一定のエリア内にいる場合に、前記GNSS誤差情報を反映させて前記車両の位置を算出する。
 また、前記車両が走行する路線のデータベースと、前記データベースと前記GNSS信号にもとづく前記車両の位置の算出処理を実行できる状態にあるか否かを検定する検定部を備え、前記位置算出部は、前記検定部が前記車両の位置の特定処理を実行できる状態にあると判断した場合には、前記GNSS信号にもとづく前記車両の位置の算出処理を実行し、前記車両の位置の算出処理を実行できる状態に無いと判断した場合には、速度発電機にもとづいて前記車両の位置の特定処理を実行してもよい。
 また、前記位置算出部が前記GNSS信号にもとづく前記車両の位置の算出処理を実行する場合、前記第1GNSS受信部が算出する速度ベクトルと前記第2GNSS受信部が算出する速度ベクトルとの推移の特徴点と、前記データベースとを比較し、前記車両の位置の算出してもよい。
 本発明は、車両に搭載される車上装置と、地上側に設置される地上装置とによって、前記車両の位置を算出する位置検出システムであって、前記車上装置は、一つの車両の前後方向に所定距離だけ離間して設けられた、GNSS衛星からのGNSS信号を受信する第1GNSSアンテナ及び第2GNSSアンテナと、前記第1GNSSアンテナに接続された第1GNSS受信部と、前記第2GNSSアンテナに接続された第2GNSS受信部と、前記第1GNSS受信部及び前記第2GNSS受信部が前記GNSS信号にもとづき前記車両の位置を算出する位置算出部と、地上側の設備からGNSS誤差情報を取得する誤差情報取得部と、前記地上装置と通信する車上側通信部と、を備え、前記地上装置は、前記GNSS衛星からGNSS信号を受信する第3GNSSアンテナと、前記第3GNSSアンテナに接続された第3GNSS受信部と、前記第3GNSSアンテナの位置情報を保持し、前記第3GNSSアンテナが受信したGNSS信号から算出される位置情報とから、前記GNSS誤差情報を算出する地上側制御部と、前記GNSS誤差情報を前記車上装置へ送信する地上側通信部と、を備え、前記車上装置の前記位置算出部は、前記車両の位置を算出する場合に、前記GNSS誤差情報を反映させる。
 本発明は、車両に搭載される車上装置と、地上側に設置される地上装置及び指令センターとによって、前記車両の位置を算出する位置検出システムであって、前記車上装置は、一つの車両の前後方向に所定距離だけ離間して設けられた、GNSS衛星からのGNSS信号を受信する第1GNSSアンテナ及び第2GNSSアンテナと、前記第1GNSSアンテナに接続された第1GNSS受信部と、前記第2GNSSアンテナに接続された第2GNSS受信部と、前記第1GNSS受信部及び前記第2GNSS受信部の前記GNSS信号にもとづく位置情報を前記指令センターへ通知するとともに、前記位置情報をもとに前記車両の位置を算出する位置算出部と、前記指令センターから前記車両の前記位置の修正情報を取得する誤差情報取得部と、前記地上装置及び前記指令センターと通信する車上側通信部と、を備え、前記地上装置は、前記GNSS衛星からGNSS信号を受信する第3GNSSアンテナと、前記第3GNSSアンテナに接続された第3GNSS受信部と、 前記第3GNSSアンテナの位置情報を保持し、前記第3GNSSアンテナが受信したGNSS信号から算出される位置情報とから、前記GNSS誤差情報を算出し、前記指令センターへ通知する地上側制御部と、前記車上装置と前記指令センターと通信する地上側通信部とを備え、前記指令センターは、前記車上装置と前記地上装置と通信し、前記車上装置から取得した前記第1GNSS受信部及び前記第2GNSS受信部の前記GNSS信号にもとづく前記位置情報と、前記地上装置から取得した前記GNSS誤差情報と、をもとに前記車両の位置情報を補正し、補正後の位置情報をもとに、前記車両の運行管理を行う。
The present invention is a position detection apparatus, which is provided with a first GNSS antenna and a second GNSS antenna that receive a GNSS signal from a GNSS satellite and are provided at a predetermined distance in the front-rear direction of one vehicle, and the first GNSS antenna. A first GNSS reception unit connected to the second GNSS antenna, a second GNSS reception unit connected to the second GNSS antenna, and a position calculation in which the first GNSS reception unit and the second GNSS reception unit calculate the position of the vehicle based on the GNSS signal. And an error information acquisition unit that acquires GNSS error information from the ground side equipment, and the position calculation unit reflects the GNSS error information when in a certain area from the ground side equipment. To calculate the position of the vehicle.
In addition, a database of routes on which the vehicle travels, and a verification unit that verifies whether or not the vehicle position calculation process based on the database and the GNSS signal can be executed, the position calculation unit, When it is determined that the verification unit is in a state where the vehicle position specifying process can be executed, the vehicle position calculation process based on the GNSS signal is executed, and the vehicle position calculation process can be executed. If it is determined that the vehicle is not in the state, the vehicle position specifying process may be executed based on the speed generator.
In addition, when the position calculation unit executes the calculation process of the vehicle position based on the GNSS signal, a transition feature between a speed vector calculated by the first GNSS reception unit and a speed vector calculated by the second GNSS reception unit The point may be compared with the database to calculate the position of the vehicle.
The present invention is a position detection system that calculates the position of the vehicle by using an on-board device mounted on the vehicle and a ground device installed on the ground side. A first GNSS antenna and a second GNSS antenna that receive a GNSS signal from a GNSS satellite, provided at a predetermined distance in the direction, a first GNSS receiver connected to the first GNSS antenna, and a connection to the second GNSS antenna Error information for acquiring GNSS error information from the ground side equipment, the second GNSS receiving unit, a position calculating unit that calculates the position of the vehicle based on the GNSS signal, and the first GNSS receiving unit and the second GNSS receiving unit And an on-vehicle side communication unit that communicates with the ground device, wherein the ground device receives a GNSS signal from the GNSS satellite. From the third GNSS antenna, the third GNSS receiver connected to the third GNSS antenna, the position information of the third GNSS antenna, and the position information calculated from the GNSS signal received by the third GNSS antenna. A ground side control unit that calculates the GNSS error information, and a ground side communication unit that transmits the GNSS error information to the on-board device, wherein the position calculation unit of the on-board device is a position of the vehicle. Is calculated, the GNSS error information is reflected.
The present invention is a position detection system that calculates the position of the vehicle by an on-board device mounted on the vehicle, a ground device and a command center installed on the ground side, and the on-board device includes one A first GNSS antenna and a second GNSS antenna that receive a GNSS signal from a GNSS satellite, which are provided apart from each other by a predetermined distance in the longitudinal direction of the vehicle, a first GNSS receiver connected to the first GNSS antenna, and the second GNSS Notifying the command center of the second GNSS receiver connected to the antenna, the position information based on the GNSS signal of the first GNSS receiver and the second GNSS receiver, and the position of the vehicle based on the position information A position calculation unit that calculates the error information, and error information acquisition that acquires correction information of the position of the vehicle from the command center A vehicle-side communication unit that communicates with the ground device and the command center, and the ground device receives a GNSS signal from the GNSS satellite, and a third GNSS connected to the third GNSS antenna. Ground side control that holds the position information of the third GNSS antenna and calculates the GNSS error information from the position information calculated from the GNSS signal received by the third GNSS antenna and notifies the command center And a ground side communication unit that communicates with the on-board device and the command center, wherein the command center communicates with the on-vehicle device and the ground device and receives the first GNSS received from the on-board device. And the position information based on the GNSS signal of the second GNSS receiver and the position information acquired from the ground device And NSS error information, the corrected positional information of the vehicle on the basis, on the basis of the positional information after correction, performs operation control of the vehicle.
 本発明によると、GNSSを利用して列車(車両)の位置をより精度良く検出する技術を実現できる。 According to the present invention, it is possible to realize a technique for detecting the position of a train (vehicle) with higher accuracy using GNSS.
本実施形態に係る、GNSS信号による走行位置検出機能を備えた列車の構成を示す機能ブロック図である。It is a functional block diagram which shows the structure of the train provided with the traveling position detection function by a GNSS signal based on this embodiment. 本実施形態に係る、GNSS信号による走行位置検出機能を実行する際の検定処理原理を説明する図である。It is a figure explaining the verification process principle at the time of performing the traveling position detection function by a GNSS signal based on this embodiment. 本実施形態に係る、GNSS信号による走行位置検出機能を説明する図である。It is a figure explaining the traveling position detection function by the GNSS signal based on this embodiment. 本実施形態に係る、GNSS信号による走行位置検出機能を説明する図である。It is a figure explaining the traveling position detection function by the GNSS signal based on this embodiment. 本実施形態に係る、先頭の車両に搭載される車上装置の構成を示す機能ブロック図である。It is a functional block diagram which shows the structure of the on-board apparatus mounted in the head vehicle based on this embodiment. 本実施形態に係る、GNSS誤差補正の概念を説明する図である。It is a figure explaining the concept of the GNSS error correction based on this embodiment. 本実施形態に係る、GNSS信号による位置算出処理のフローチャートである。It is a flowchart of the position calculation process by a GNSS signal based on this embodiment.
 次に、本発明を実施するための形態(以下、単に「実施形態」という)を、図面を参照して具体的に説明する。 Next, modes for carrying out the present invention (hereinafter simply referred to as “embodiments”) will be specifically described with reference to the drawings.
 図1は、本実施形態に係る、列車運行システム1の概要を示した図である。図2は、列車運行システム1のブロック図である。図1では、図示右方向へ進む車両10の先頭がプラットホーム88に進入した状態を示している。 FIG. 1 is a diagram showing an outline of a train operation system 1 according to the present embodiment. FIG. 2 is a block diagram of the train operation system 1. FIG. 1 shows a state in which the head of the vehicle 10 traveling in the right direction in the figure has entered the platform 88.
 図1に示すように、列車運行システム1は、車両側の装置として、先頭の車両10に第1GNSS部15、第2GNSS部16及び車上装置20を備え、地上側の装置として、駅のプラットホーム88に地上装置60及び第3GNSS部61を備える。さらに、列車運行システム1は、地上側の装置として、車両10と車上装置20とを制御し運行管理を統括的に行う指令センター70を備える。 As shown in FIG. 1, the train operation system 1 includes a first GNSS unit 15, a second GNSS unit 16, and an on-board device 20 as a vehicle-side device, and a station platform as a ground-side device. 88 includes a ground device 60 and a third GNSS unit 61. Furthermore, the train operation system 1 includes a command center 70 that controls the vehicle 10 and the on-board device 20 as a ground-side device and performs overall operation management.
 本実施形態では、車両側の第1GNSS部15、第2GNSS部16と地上側の第3GNSS部61を用いて、駅(プラットホーム88)近傍地域での車両位置の算出精度を向上させる。 In the present embodiment, the calculation accuracy of the vehicle position in the vicinity of the station (platform 88) is improved by using the first GNSS unit 15 and the second GNSS unit 16 on the vehicle side and the third GNSS unit 61 on the ground side.
 地上装置60は、列車が所定の通信エリアに入ると、第3GNSS部61が取得したGNSS情報を車上装置20へ送信する。第3GNSS部61の第3GNSS受信部61aの絶対位置が分かっており、例えば、取得したGNSS情報と絶対値との差(以下、「GNSS誤差」という。)を車上装置20へ通知する。プラットホーム88の近くに存在する車両10(第1GNSS部15、第2GNSS部16)では、第3GNSS部61と同じGNSS衛星98からのGNSS情報をもとに位置情報を算出する。 The ground device 60 transmits the GNSS information acquired by the third GNSS unit 61 to the on-vehicle device 20 when the train enters a predetermined communication area. The absolute position of the third GNSS receiving unit 61a of the third GNSS unit 61 is known. For example, the difference between the acquired GNSS information and the absolute value (hereinafter referred to as “GNSS error”) is notified to the on-board device 20. In the vehicle 10 (the first GNSS unit 15 and the second GNSS unit 16) existing near the platform 88, the position information is calculated based on the GNSS information from the same GNSS satellite 98 as the third GNSS unit 61.
 また、車両10の車上装置20が第1GNSS部15及び第2GNSS部16による位置情報を、地上装置60が第3GNSS部61のGNSS誤差情報を、地上側の指令センター70に送信してもよい。この場合、指令センター70は、車両10の位置補正を正確に行うことができ、その列車位置(車両10の補正後の位置)にもとづいて連動制御や信号制御を行うことができる。 Further, the on-board device 20 of the vehicle 10 may transmit position information from the first GNSS unit 15 and the second GNSS unit 16 and the ground device 60 may transmit GNSS error information of the third GNSS unit 61 to the command center 70 on the ground side. . In this case, the command center 70 can accurately correct the position of the vehicle 10, and can perform interlock control and signal control based on the train position (the corrected position of the vehicle 10).
 算出された位置情報は、第3GNSS部61で算出したGNSS誤差が含まれている蓋然性が高い。そこで、車上装置20では、第1GNSS部15及び第2GNSS部16のGNSS情報をもとに位置情報を算出する場合に、第3GNSS部61で算出したGNSS誤差をGNSS誤差情報として取得し反映させ、GNSS誤差を排除する処理を行う。なお、上述のように、指令センター70が車両10や地上装置60から位置情報を取得する場合には、指令センター70がGNSS誤差を排除する処理を行ってもよい。以下では、主に車両10と地上装置60とによってGNSS誤差の排除処理を行うケースについて説明する。 The calculated position information is highly likely to contain the GNSS error calculated by the third GNSS unit 61. Therefore, in the on-board device 20, when the position information is calculated based on the GNSS information of the first GNSS unit 15 and the second GNSS unit 16, the GNSS error calculated by the third GNSS unit 61 is acquired and reflected as the GNSS error information. , GNSS error is eliminated. As described above, when the command center 70 acquires position information from the vehicle 10 or the ground device 60, the command center 70 may perform a process of eliminating a GNSS error. Hereinafter, a case where the GNSS error elimination process is mainly performed by the vehicle 10 and the ground device 60 will be described.
 車両10側の構成では、第1GNSS部15は、第1GNSSアンテナ15a及び第1のGNSS受信部15bを備える。第2GNSS部16は、第2GNSSアンテナ16aと第2GNSS受信部16bとを備える。 In the configuration on the vehicle 10 side, the first GNSS unit 15 includes a first GNSS antenna 15a and a first GNSS receiving unit 15b. The second GNSS unit 16 includes a second GNSS antenna 16a and a second GNSS receiver 16b.
 第1GNSSアンテナ15aは、車両10の上部前端近傍に設置される。第2GNSSアンテナ16aは、車両10の上部後端近傍に設置される。第1GNSSアンテナ15aと第2GNSSアンテナ16aとは、所定の距離(以下、「設置距離a」という)だけ離間して設置されている。例えば、車両10の長さが20mの場合、設置距離aは17m程度である。 The first GNSS antenna 15 a is installed near the upper front end of the vehicle 10. The second GNSS antenna 16 a is installed near the upper rear end of the vehicle 10. The first GNSS antenna 15a and the second GNSS antenna 16a are installed apart from each other by a predetermined distance (hereinafter referred to as “installation distance a”). For example, when the length of the vehicle 10 is 20 m, the installation distance a is about 17 m.
 第1GNSS受信部15bは、第1GNSSアンテナ15aが受信したGNSS信号をもとに第1GNSSアンテナ15aの位置情報を算出するとともに、第1GNSSアンテナ15aの位置における速度ベクトルを算出し、各算出結果を車上装置20に出力する。 The first GNSS receiver 15b calculates the position information of the first GNSS antenna 15a based on the GNSS signal received by the first GNSS antenna 15a, calculates the velocity vector at the position of the first GNSS antenna 15a, and outputs each calculation result to the vehicle. Output to the upper device 20.
 第2GNSS受信部16bは、第2GNSSアンテナ16aが受信したGNSS信号をもとに第2GNSSアンテナ16aの位置情報を算出するとともに、第2GNSSアンテナ16aの位置における速度ベクトルを算出し、各算出結果を車上装置20に出力する。 The second GNSS receiver 16b calculates the position information of the second GNSS antenna 16a based on the GNSS signal received by the second GNSS antenna 16a, calculates the velocity vector at the position of the second GNSS antenna 16a, and outputs each calculation result to the vehicle. Output to the upper device 20.
 車上装置20は、速度ベクトルの特徴点を検知したときに、予め備わるシステム固有の情報と比較して、車両10の位置を特定する。また、車上装置20は、地上装置60から第3GNSS部61の位置情報を取得した場合には、その位置情報を第1GNSS部15及び第2GNSS部16の算出結果に反映させ、位置情報を修正する。 The on-vehicle device 20 identifies the position of the vehicle 10 by comparing with the system-specific information provided in advance when the feature point of the speed vector is detected. Further, when the on-board device 20 acquires the position information of the third GNSS unit 61 from the ground device 60, the position information is corrected by reflecting the position information in the calculation results of the first GNSS unit 15 and the second GNSS unit 16. To do.
 ここで、図3~図5を参照して、GNSS信号による走行位置検出の原理及び位置情報の修正処理について説明する。本実施形態では、上述の様に車上装置20は、速度ベクトルが変化する所定の特徴点を検知したときに、予め備わるシステム固有の情報(運行用データ部31の情報)と比較して、想定されている特徴点と一致していると判断した場合には、「データベースに記録されている位置にある」と判断する。ここで、特徴点とは、例えば、軌道99がカーブする際のその始点や終点等である。なお、特徴点の検出処理の前には、GNSS信号にもとづく位置情報の算出処理を実行してもよい状態にあるか否かのGNSS検定を実行する。また、駅(プラットホーム88)等のような精度が高い位置情報を必要とするエリアでは、地上側の位置情報及びその地点のGNSS情報を基に、GNSS誤差を補正する。 Here, with reference to FIG. 3 to FIG. 5, the principle of detection of the traveling position by the GNSS signal and the correction process of the position information will be described. In the present embodiment, as described above, when the on-board device 20 detects a predetermined feature point where the speed vector changes, the on-board device 20 compares the information with the system-specific information (information in the operation data unit 31) provided in advance. When it is determined that the feature point matches the assumed feature point, it is determined that “there is a position recorded in the database”. Here, the feature points are, for example, the start point and end point when the trajectory 99 curves. Before the feature point detection process, a GNSS test is performed to determine whether or not the position information calculation process based on the GNSS signal may be executed. Further, in an area such as a station (platform 88) that requires highly accurate position information, the GNSS error is corrected based on the position information on the ground side and the GNSS information at that point.
 <基本技術>
 1.GNSS検定
 GNSS検定は、GNSS情報の信頼性を向上するために行うものである。GNSS検定に合格したときのみ、そのGNSS情報にもとづく位置情報が車両10の位置特定に使用される。GNSS検定には、車両10の2台のGNSS受信機(第1GNSS受信部15b、第2GNSS受信部16b)が用いられる。
<Basic technology>
1. GNSS test The GNSS test is performed to improve the reliability of GNSS information. Only when the GNSS test is passed, the position information based on the GNSS information is used for specifying the position of the vehicle 10. For the GNSS test, two GNSS receivers (first GNSS receiver 15b and second GNSS receiver 16b) of the vehicle 10 are used.
 上述の様に、第1GNSSアンテナ15aと第2GNSSアンテナ16aは相関の無い設置距離aで設置されている。具体的には、車両10の前後端(例えば先頭の車両10の先頭側と連結側の2箇所)に第1GNSSアンテナ15aと第2GNSSアンテナ16aが設置される。このとき、設置距離aだけで無く、車両10の屋根による電波環境の非相関環境が構築される。すなわち、第1及び第2GNSSアンテナ15a、16aに、異なるフェージング環境が構築される。これにより、2つのGNSS受信機(第1及び第2GNSS受信部15b、16b)が、同じフェージングの影響で誤情報を出力しないように構成される。 As described above, the first GNSS antenna 15a and the second GNSS antenna 16a are installed at an installation distance a having no correlation. Specifically, the first GNSS antenna 15a and the second GNSS antenna 16a are installed at the front and rear ends of the vehicle 10 (for example, two locations on the leading side and the connecting side of the leading vehicle 10). At this time, not only the installation distance a but also a non-correlated environment of the radio wave environment due to the roof of the vehicle 10 is constructed. That is, different fading environments are constructed for the first and second GNSS antennas 15a and 16a. Accordingly, the two GNSS receivers (first and second GNSS receivers 15b and 16b) are configured not to output erroneous information due to the same fading.
 GNSS検定の論理では、GNSS衛星98からの情報をシステム固有の情報と比較し、検定に合格したときのみGNSS情報を使用する。 In the logic of the GNSS test, information from the GNSS satellite 98 is compared with information unique to the system, and the GNSS information is used only when the test passes.
 2.GNSS情報の速度情報を用いた走行距離積算による位置検知
 GNSS情報の速度情報の積算による位置検知は、絶対位置が確定した後に、速度情報を積分して走行距離を算出することによってなされる。
2. Position detection by integration of travel distance using speed information of GNSS information Position detection by integration of speed information of GNSS information is performed by calculating the travel distance by integrating speed information after the absolute position is determined.
 GNSS検定論理には、図3(a)の「トレース」検定、図3(b)の「位置」検定、図3(c)の「方位(Dp)」検定が用いられる。検定に合格した場合のみGNSS情報にもとづく速度情報が利用される。検定に不合格の場合は、TG32(図5参照)等の他の速度検出手段からの速度情報が利用される。なお、検定の際には、運行用データ部31が参照され、記録されているデータと比較される。 For the GNSS test logic, the “trace” test in FIG. 3A, the “position” test in FIG. 3B, and the “azimuth (Dp)” test in FIG. 3C are used. Only when the test is passed, the speed information based on the GNSS information is used. If the test fails, speed information from other speed detection means such as TG32 (see FIG. 5) is used. In the verification, the operation data unit 31 is referred to and compared with the recorded data.
 「トレース」検定とは、予定されている走行経路を走行しているか否かを判断するものである。「位置」検定とは、GNSS信号から得られる第1及び第2GNSSアンテナ15a、16aの間隔(後述の図4の「実測距離D」)が、実際の設置距離aと一致しているか否かを判断するものである。「方位」検定とは、予定されている方位(軌道方位)と一致しているか否かを判断するものである。 “Trace” test is to determine whether or not the vehicle is traveling along a planned travel route. “Position” test refers to whether or not the distance between the first and second GNSS antennas 15a and 16a obtained from the GNSS signal (“measured distance D” in FIG. 4 described later) matches the actual installation distance a. Judgment. The “azimuth” test is to determine whether or not it coincides with a planned orientation (orbit orientation).
 3.GNSSの速度情報を用いた絶対位置検知
 GNSSの速度情報を用いた絶対位置検知には、2台のGNSS受信機(第1GNSS受信部15b、第2GNSS受信部16b)にて算出される速度ベクトルが軌道99のカーブで時々刻々と変化することを利用する。この軌道のカーブでの速度ベクトルの変化は、以下に示す条件(a)~(c)を満足していれば、GNSSの故障、受信機の故障、フェージングの影響に対しての変化と識別不能となる確率がきわめて低い。
(a)カーブ始点前にTG等によりカーブの始点が来ることが予定されている。
(b)カーブ始点前からカーブ終点後までGNSS検定に合格する。
(c)路線データベース(運行用データ部31)に絶対位置検知情報が登録されている。
3. Absolute position detection using GNSS speed information For absolute position detection using GNSS speed information, speed vectors calculated by two GNSS receivers (first GNSS receiver 15b and second GNSS receiver 16b) are used. Use the fact that the curve of the orbit 99 changes every moment. The change in the velocity vector in the orbital curve is indistinguishable from the change due to the effects of GNSS failure, receiver failure, and fading if the following conditions (a) to (c) are satisfied. Is very low.
(A) The start point of the curve is scheduled to come by TG or the like before the curve start point.
(B) Pass the GNSS test from before the curve start point to after the curve end point.
(C) Absolute position detection information is registered in the route database (operation data unit 31).
(1)軌道の曲率による位置検知
 図4を参照して軌道99の曲率にもとづく位置検知処理を説明する。ここでは、曲率の代わりに曲率半径Rを用いる。2台のGNSS受信機(第1GNSS受信部15b、第2GNSS受信部16b)から得られる速度ベクトルV(V1、V2)は、車両10が直線99aからカーブ99bに進入すると、軌道99(カーブ99b)の曲率半径Rに応じて角度θが変化する。ここで、第1GNSSアンテナ15aの速度ベクトルV1と第2GNSSアンテナ16aの速度ベクトルV2とがなす角を角度θとする。
(1) Position Detection Based on Curvature Curvature Position detection processing based on the curvature of the trajectory 99 will be described with reference to FIG. Here, the curvature radius R is used instead of the curvature. The velocity vector V (V1, V2) obtained from the two GNSS receivers (the first GNSS receiver 15b and the second GNSS receiver 16b) is obtained when the vehicle 10 enters the curve 99b from the straight line 99a. The angle θ changes in accordance with the radius of curvature R. Here, an angle formed by the velocity vector V1 of the first GNSS antenna 15a and the velocity vector V2 of the second GNSS antenna 16a is defined as an angle θ.
 この角度θから軌道99(カーブ99b)の曲率半径Rを次の式にて算出し、路線データベース(運行用データ部31)に登録された軌道99の曲率(曲率半径)と比較することにより、カーブ位置(始点C1と終点C2)を特定し、終点C2でθ=0度になった地点で絶対位置検知とする。
  Sin(θ/2)=(D/2)/R
  R=(D/2)/Sin(θ/2)
  D:GNSS信号にもとづいて算出される第1GNSSアンテナ15aと第2GNS
Sアンテナ16aとの実測距離。
From this angle θ, the radius of curvature R of the track 99 (curve 99b) is calculated by the following equation, and compared with the curvature (curvature radius) of the track 99 registered in the route database (operation data unit 31). A curve position (start point C1 and end point C2) is specified, and absolute position detection is performed at a point where θ = 0 degrees at the end point C2.
Sin (θ / 2) = (D / 2) / R
R = (D / 2) / Sin (θ / 2)
D: 1st GNSS antenna 15a and 2nd GNS calculated based on GNSS signal
Measured distance from S antenna 16a.
(2)軌道のカーブ走行距離による位置検知
 上記の軌道99の曲率(曲率半径R)による位置検知の場合、曲率が大きいと角度θが絶対値が小さくなるため、誤差によりカーブ位置を特定できないことがある。そこで、曲率が所定より大きい場合、軌道99のカーブ走行距離LRによる位置検知を行う。すなわち、軌道99がカーブ99bとなる始点C1から終点C2までのカーブ走行距離LRを算出し、路線データベース(運行用データ部31)に登録されたカーブ99bの距離と比較することにより、カーブ位置を特定し、カーブ終点でθ=0度になった地点で絶対位置検知とする。
(2) Position detection based on trajectory curve travel distance In the case of position detection based on the curvature (curvature radius R) of the above-mentioned trajectory 99, if the curvature is large, the angle θ becomes smaller in absolute value, and therefore the curve position cannot be specified due to an error. There is. Therefore, when the curvature is larger than a predetermined value, the position of the track 99 is detected based on the curve travel distance LR. That is, the curve travel distance LR from the start point C1 to the end point C2 at which the track 99 becomes the curve 99b is calculated and compared with the distance of the curve 99b registered in the route database (operation data unit 31). The absolute position is detected at a point where θ = 0 degrees at the end of the curve.
(3)軌道のカーブ変化点による位置検知
 図5に示す様に、第1GNSSアンテナ15a、第2GNSSアンテナ16aから得られる速度ベクトル差は、軌道99が右カーブ99dから左カーブ99eへ、左カーブから右カーブへと変化する場合、速度ベクトルV1とV2の差をとると、符号(正負)が逆転する。この軌道のカーブ変化点C3の前後でGNSS検定に合格し、前述の条件(a)と(b)を満足することにより、カーブ変化点C3を特定し、カーブ変化点C3で絶対位置検知とする。
(3) Position Detection Based on Trajectory Curve Change Point As shown in FIG. 5, the velocity vector difference obtained from the first GNSS antenna 15a and the second GNSS antenna 16a is such that the trajectory 99 changes from the right curve 99d to the left curve 99e and from the left curve. When changing to the right curve, the sign (positive / negative) is reversed if the difference between the velocity vectors V1 and V2 is taken. By passing the GNSS test before and after the curve change point C3 of the orbit, and satisfying the above conditions (a) and (b), the curve change point C3 is specified, and the absolute position is detected at the curve change point C3. .
(4)システムへの適用
 なお、上記の(1)~(3)の位置検知の方式は、適用線区に合わせて選択して組み組むことになる。
(4) Application to the system Note that the position detection methods (1) to (3) above are selected and assembled in accordance with the applicable line section.
 4.地上側のGNSS情報を用いた位置補正
 駅(プラットホーム88)等のような精度が高い位置情報を必要とするエリアでは、地上側の位置情報及びその地点のGNSS情報を基に、GNSS誤差を補正する。図6は、GNSS誤差補正の概念を説明する図である。
4). Position correction using ground-side GNSS information In areas that require highly accurate position information such as stations (platform 88), GNSS errors are corrected based on ground-side position information and GNSS information at that point. To do. FIG. 6 is a diagram for explaining the concept of GNSS error correction.
 第3GNSS受信部61aには、第3GNSSアンテナ61bの計測済み固定位置情報P3(X3_0、Y3_0)が記録されている。位置情報P3は、固定値であって、例えば経度・緯度で示される。第3GNSS受信部61aは、GNSS衛星98を基に得られた位置情報P3_G(X3_g、Y3_g)と固定位置情報P3(X3_0、Y3_0)との差であるGNSS誤差情ΔP3(Δx、Δy)を算出する。
  ΔP3(Δx、Δy)=(X3_g、Y3_g)-(X3_0、Y3_0)
            =(X3_g-X3_0、Y3_g-Y3_0)
第3GNSS受信部61aは、そのGNSS誤差ΔP3(Δx、Δy)をGNSS誤差情報として車上装置20へ送信する。
In the third GNSS receiver 61a, measured fixed position information P3 (X3_0, Y3_0) of the third GNSS antenna 61b is recorded. The position information P3 is a fixed value and is indicated by, for example, longitude / latitude. The third GNSS receiver 61a calculates GNSS error information ΔP3 (Δx, Δy), which is the difference between the position information P3_G (X3_g, Y3_g) obtained based on the GNSS satellite 98 and the fixed position information P3 (X3_0, Y3_0). To do.
ΔP3 (Δx, Δy) = (X3_g, Y3_g) − (X3_0, Y3_0)
= (X3_g-X3_0, Y3_g-Y3_0)
The third GNSS receiver 61a transmits the GNSS error ΔP3 (Δx, Δy) to the on-board device 20 as GNSS error information.
 車上装置20では、第1GNSS部15及び第2GNSS部16のGNSS情報P1_G(X1_g、Y1_g)、P2_G(X2_g、Y2_g)に、GNSS誤差ΔP3(Δx、Δy)を反映させ、修正後GNSS情報P1_0(X1_0、Y1_0)、P2_G(X2_0、Y2_0)を算出する。
  P1_0(X1_0、Y1_0)=(X1_g-Δx、Y1_g-Δy)
  P2_0(X2_0、Y2_0)=(X2_g-Δx、Y2_g-Δy)
The on-board device 20 reflects the GNSS error ΔP3 (Δx, Δy) in the GNSS information P1_G (X1_g, Y1_g) and P2_G (X2_g, Y2_g) of the first GNSS unit 15 and the second GNSS unit 16, and the corrected GNSS information P1_0. (X1_0, Y1_0), P2_G (X2_0, Y2_0) are calculated.
P1_0 (X1_0, Y1_0) = (X1_g−Δx, Y1_g−Δy)
P2_0 (X2_0, Y2_0) = (X2_g−Δx, Y2_g−Δy)
 ここで、GNSS誤差情報を適用する際の車両10(車上装置20)と地上装置60との距離を、同じGNSS衛星98を使用する十分に近い範囲にすることで、第1GNSS部15及び第2GNSS部16における計測誤差を実質的にキャンセルでき、第1GNSS部15及び第2GNSS部16を用いて算出する車両10の列車位置の精度を向上させることができる。 Here, by setting the distance between the vehicle 10 (onboard device 20) and the ground device 60 when applying the GNSS error information to a sufficiently close range using the same GNSS satellite 98, the first GNSS unit 15 and the first GNSS unit 15 The measurement error in the 2GNSS unit 16 can be substantially canceled, and the accuracy of the train position of the vehicle 10 calculated using the first GNSS unit 15 and the second GNSS unit 16 can be improved.
 <具体的技術>
 上記の絶対位置検知処理及びGNSS誤差補正処理を実行するための構成を図2を参照して説明する。
<Specific technology>
A configuration for executing the absolute position detection process and the GNSS error correction process will be described with reference to FIG.
 地上装置60は、地上側運行制御部62と、地上通信部63とを備える。地上側運行制御部62は、第3GNSSアンテナ61bの設置位置の位置情報を保持するとともに、第3GNSS部61が受信したGNSS信号を取得し、設置位置の位置情報とGNSS信号から算出する位置情報との差(GNSS誤差情報)を算出し、地上通信部63を介して車上装置20へ送信する。地上通信部63は、車上装置20(車上通信部33)と通信する。 The ground device 60 includes a ground side operation control unit 62 and a ground communication unit 63. The ground side operation control unit 62 holds the position information of the installation position of the third GNSS antenna 61b, acquires the GNSS signal received by the third GNSS unit 61, and calculates the position information of the installation position and the position information calculated from the GNSS signal, Difference (GNSS error information) is calculated and transmitted to the on-board device 20 via the ground communication unit 63. The ground communication unit 63 communicates with the on-vehicle device 20 (on-vehicle communication unit 33).
 車上装置20は、第1GNSS部15及び第2GNSS部16が設置された車両10に設けられており、列車(車両10)の運行を制御する。具体的には、車上装置20は、列車速度を制御したり、列車位置を推定したり、列車向きを推定したりすることで、列車(車両10)の運行状態を把握し、適切な列車運行を実行するものである。また、車上装置20は、地上装置60と通信を行い、線路閉鎖等の処理を直接的又は間接的に行う。 The on-board device 20 is provided in the vehicle 10 in which the first GNSS unit 15 and the second GNSS unit 16 are installed, and controls the operation of the train (vehicle 10). Specifically, the on-board device 20 grasps the operation state of the train (the vehicle 10) by controlling the train speed, estimating the train position, or estimating the train direction, and the appropriate train. The operation is executed. The on-board device 20 communicates with the ground device 60 to directly or indirectly perform processing such as track closing.
 車上装置20は、車上側運行制御部30と、列車状態特定部40と、運行用データ部31と、TG32と、車上通信部33と、走行履歴部34とを備える。 The on-board device 20 includes a vehicle upper side operation control unit 30, a train state specifying unit 40, an operation data unit 31, a TG 32, an onboard communication unit 33, and a travel history unit 34.
 運行用データ部31は、列車(車両10)が運行する路線の情報(運行情報)を記録している。運行情報として、列車(車両10)が走行する経路情報、地点情報、各地点における列車進行方向の方位Dp、カーブ情報(始点、終点、曲率半径)及び速度制限区間毎の制限速度情報等がある。 The operation data unit 31 records information (operation information) of a route on which the train (vehicle 10) operates. As operation information, there are route information on which the train (vehicle 10) travels, point information, direction Dp of the train traveling direction at each point, curve information (start point, end point, radius of curvature), speed limit information for each speed limit section, and the like. .
 走行履歴部34は、車両10の走行履歴を記録する。TG32は、従来より用いられている車輪の回転にもとづいて速度を計測する速度計測装置である。車上通信部33は、地上装置60の地上通信部63及び他の外部装置(例えば運行司令部等)と無線により情報を送受信する。 The traveling history unit 34 records the traveling history of the vehicle 10. The TG 32 is a speed measuring device that measures a speed based on the rotation of a wheel that has been conventionally used. The on-vehicle communication unit 33 transmits and receives information to and from the ground communication unit 63 of the ground device 60 and other external devices (for example, an operation command unit).
 車上側運行制御部30は、列車状態特定部40やTG32、運行用データ部31を用いて列車運行制御を行う。列車運行制御とは、例えば、列車(車両10)の位置を特定したり、速度を算出したりし、算出結果等を所定の表示装置に表示する。速度の表示には、いずれか一方の速度を表示させてもよいし、両方の速度を表示させてもよい。 The vehicle upper side operation control unit 30 performs train operation control using the train state specifying unit 40, the TG 32, and the operation data unit 31. With train operation control, for example, the position of the train (vehicle 10) is specified, the speed is calculated, and the calculation result is displayed on a predetermined display device. Either one of the speeds or both speeds may be displayed in the speed display.
 列車状態特定部40は、列車位置算出部42と、列車方位算出部44と、GNSS検定部46と、特定位置検出部48とを備える。 The train state identification unit 40 includes a train position calculation unit 42, a train direction calculation unit 44, a GNSS verification unit 46, and a specific position detection unit 48.
 列車位置算出部42は、第1GNSS部15及び第2GNSS部16から、それぞれが検出した位置情報を取得する。また、列車位置算出部42は、第1及び第2GNSS部15、16から出力される位置情報にもとづき、第1GNSSアンテナ15a、第2GNSSアンテナ16a間の実測距離Dを算出する。 The train position calculation unit 42 acquires position information detected from the first GNSS unit 15 and the second GNSS unit 16. In addition, the train position calculation unit 42 calculates the actual measurement distance D between the first GNSS antenna 15a and the second GNSS antenna 16a based on the position information output from the first and second GNSS units 15 and 16.
 列車方位算出部44は、列車位置算出部42が取得した位置情報をもとに、車両10の進行方向(方位)を算出する。算出された進行方向(方位)は、特定位置検出部48に出力される。 The train direction calculation unit 44 calculates the traveling direction (direction) of the vehicle 10 based on the position information acquired by the train position calculation unit 42. The calculated traveling direction (azimuth) is output to the specific position detector 48.
 GNSS検定部46は、上述のGNSS検定処理を行う。すなわち、GNSS検定部46は、図3(a)の「トレース」検定、図3(b)の「位置」検定、図3(c)の「方位」検定で示した処理を行う。このとき、GNSS検定部46は、運行用データ部31を参照する。 The GNSS verification unit 46 performs the above GNSS verification process. That is, the GNSS test unit 46 performs the processes shown in the “trace” test in FIG. 3A, the “position” test in FIG. 3B, and the “azimuth” test in FIG. At this time, the GNSS verification unit 46 refers to the operation data unit 31.
 特定位置検出部48は、GNSS検定が合格と判断された場合に、上述したGNSSの速度情報を用いた絶対位置検知処理を行う。絶対位置検知処理がなされると、車上側運行制御部30等が行う列車(車両10)の各種制御の為の位置情報が、検出された位置情報に更新される。すなわち、例えば、絶対位置検知処理が実行される前の走行状態の把握においてTG32が用いられたことで、車輪の空転や滑走などによって誤差が生じていた場合であっても、その誤差が適正にキャンセルされる。なお、車上側運行制御部30は、生じている誤差が所定以上に大きい場合、列車(車両10)の車輪等に不具合が発生している虞や運行用データ部31のデータの誤り等があると判断し、運転者に警告したり、車上通信部33を介して、運行司令部等へ通知してもよい。 The specific position detection unit 48 performs the absolute position detection process using the above-described GNSS speed information when it is determined that the GNSS test is acceptable. When the absolute position detection process is performed, the position information for various controls of the train (vehicle 10) performed by the vehicle upper side operation control unit 30 or the like is updated to the detected position information. That is, for example, even if an error has occurred due to idling or sliding of the wheel due to the use of TG32 in grasping the traveling state before the absolute position detection processing is executed, the error is appropriately Canceled. In addition, when the error which has arisen is larger than predetermined, the vehicle upper side operation control part 30 has a possibility that the wheel etc. of a train (vehicle 10) have malfunctioned, the error of the data of the data part 31 for operation, etc. It may be determined that the driver is warned, or the operation command unit or the like may be notified via the on-vehicle communication unit 33.
 絶対位置検知処理については、特定位置検出部48は、(1)軌道の曲率による位置検知、(2)軌道のカーブ走行距離による位置検知、(3)軌道のカーブ変化点による位置検知の3種類の位置検知方法が選択的に用いられる。必要に応じてそれらを組み合わせてもよい。 For the absolute position detection processing, the specific position detection unit 48 has three types: (1) position detection based on the curvature of the track, (2) position detection based on the curve travel distance of the track, and (3) position detection based on the curve change point of the track. The position detection method is selectively used. You may combine them as needed.
 また、特定位置検出部48は、車両10が地上装置60から所定距離内に位置する場合に、地上装置60からGNSS誤差情報を取得し、第1GNSS部15及び第2GNSS部16が検出した位置情報に反映させる。 The specific position detection unit 48 acquires GNSS error information from the ground device 60 when the vehicle 10 is located within a predetermined distance from the ground device 60, and the position information detected by the first GNSS unit 15 and the second GNSS unit 16. To reflect.
 以上の構成による処理を、図7のフローチャートを参照して纏めて説明する。
 車上装置20では、列車状態特定部40の列車位置算出部42が、第1GNSS部15及び第2GNSS部16が受信したGNSS信号をもとに、位置情報を算出する(S10)。つづいて、GNSS検定部46が、GNSS検定を行い、GNSS情報を使用できる状況にあるか否かを判断する(S12)。
The processing by the above configuration will be described collectively with reference to the flowchart of FIG.
In the on-board device 20, the train position calculation unit 42 of the train state specifying unit 40 calculates position information based on the GNSS signals received by the first GNSS unit 15 and the second GNSS unit 16 (S10). Subsequently, the GNSS test unit 46 performs a GNSS test and determines whether or not the GNSS information can be used (S12).
 GNSS検定が不合格の場合(S14のN)、車上側運行制御部30はTG32を用いた列車位置算出処理を行い、それにもとづく運行制御を行う(S16)。GNSS検定が合格の場合(S14のY)、車上側運行制御部30は地上装置60と通信があって地上装置60(第3GNSS部61)のGNSS情報を用いるエリアにあるかいなかを判断する(S18)。地上装置60(第3GNSS部61)のGNSS情報を用いるエリアでない場合(S18のN)、すなわちGNSS誤差情報を用いないエリアの場合、車上装置20は車上GNSSデータ(第1GNSS部15、第2GNSS部16のGNSS情報)を用いた列車位置算出を行い、それにもとづく運行制御を行う(S20)。 When the GNSS test fails (N in S14), the vehicle upper side operation control unit 30 performs a train position calculation process using the TG 32 and performs operation control based on the train position calculation process (S16). When the GNSS test is passed (Y of S14), the vehicle upper side operation control unit 30 determines whether or not the vehicle is in an area where there is communication with the ground device 60 and the GNSS information of the ground device 60 (the third GNSS unit 61) is used ( S18). When it is not an area using the GNSS information of the ground device 60 (the third GNSS unit 61) (N in S18), that is, in an area not using the GNSS error information, the on-board device 20 receives the on-board GNSS data (the first GNSS unit 15, the first GNSS unit 15). Train position calculation using 2GNSS unit 16 GNSS information) is performed, and operation control based on the train position is performed (S20).
 地上装置60(第3GNSS部61)のGNSS情報を用いるエリア内である場合(S18のY)、車上装置20は地上装置60からGNSS誤差情報を取得し(S22)、車上GNSSデータ(第1GNSS部15、第2GNSS部16のGNSS情報)にGNSS誤差情報を反映させ(S24)、修正後の列車位置を算出し、その列車位置を用いた運行制御を行う(S26)。 When it is in the area using the GNSS information of the ground device 60 (the third GNSS unit 61) (Y in S18), the on-board device 20 acquires GNSS error information from the ground device 60 (S22), and the on-vehicle GNSS data (the first GNSS data) The GNSS error information is reflected in the GNSS information of the 1GNSS unit 15 and the second GNSS unit 16 (S24), the corrected train position is calculated, and operation control using the train position is performed (S26).
 以上、本実施形態によれば、車両10において、前後に所定の設置距離aだけ隔てて設けられた第1及び第2のGNSSアンテナ15a、16aに接続された第1及び第2のGNSS受信部15b、16bから出力される情報をもとに、列車(車両10)の絶対位置を高精度に安定して決定することができる。特に、列車が駅に進入するような場合には、例えば、信号の切り替えや踏切の動作においてそれらを迅速かつ安全に行うためには、精度の高い列車位置検出が求められる。より具体的には、軌道の閉塞区間の設定・解除を適切なタイミングで行う必要がある。そのような場合に、プラットホーム88の地上装置60の第3GNSS部61のGNSS誤差情報を、車両10の第1GNSS部15、第2GNSS部16で得られる位置情報に反映させ、位置情報の誤差を排除でき、その位置情報を用いた運行制御を迅速・安全に行うことができる。 As described above, according to the present embodiment, in the vehicle 10, the first and second GNSS receivers connected to the first and second GNSS antennas 15 a and 16 a that are provided at a predetermined installation distance a forward and backward. Based on the information output from 15b and 16b, the absolute position of the train (vehicle 10) can be determined stably with high accuracy. In particular, when a train enters a station, for example, in order to quickly and safely perform signal switching and level crossing operations, highly accurate train position detection is required. More specifically, it is necessary to set and release the closed section of the track at an appropriate timing. In such a case, the GNSS error information of the third GNSS unit 61 of the ground device 60 of the platform 88 is reflected in the position information obtained by the first GNSS unit 15 and the second GNSS unit 16 of the vehicle 10 to eliminate the error of the position information. The operation control using the position information can be performed quickly and safely.
 以上、本発明を実施形態をもとに説明した。この実施形態は例示であり、それらの各構成要素の組み合わせにいろいろな変形例が可能なこと、また、そうした変形例も本発明の範囲にあることは当業者に理解されるところである。 The present invention has been described based on the embodiments. This embodiment is an exemplification, and it is understood by those skilled in the art that various modifications are possible for the combination of each of those components, and such modifications are also within the scope of the present invention.
1 列車運行システム(位置検出システム)
10 車両
15 第1GNSS部
15a 第1GNSSアンテナ
15b 第1GNSS受信部
16 第2GNSS部
16a 第2GNSSアンテナ
16b 第2GNSS受信部
20 車上装置(位置検出装置)
30 車上側運行制御部
31 運行用データ部
32 TG
33 車上通信部
34 走行履歴部
40 列車状態特定部
42 列車位置算出部
44 列車方位算出部
46 GNSS検定部
48 特定位置検出部
60 地上装置
61 第3GNSS部
61a 第3GNSS受信部
61b 第3GNSSアンテナ
62 地上側運行制御部
63 地上通信部
70 指令センター
88 プラットホーム
99 軌道
1 Train operation system (position detection system)
DESCRIPTION OF SYMBOLS 10 Vehicle 15 1st GNSS part 15a 1st GNSS antenna 15b 1st GNSS receiving part 16 2nd GNSS part 16a 2nd GNSS antenna 16b 2nd GNSS receiving part 20 On-board apparatus (position detection apparatus)
30 Vehicle upper side operation control unit 31 Data unit for operation 32 TG
33 On-vehicle communication unit 34 Travel history unit 40 Train state specifying unit 42 Train position calculating unit 44 Train heading calculating unit 46 GNSS verification unit 48 Specific position detecting unit 60 Ground device 61 Third GNSS unit 61a Third GNSS receiving unit 61b Third GNSS antenna 62 Ground side operation control unit 63 Ground communication unit 70 Command center 88 Platform 99 Orbit

Claims (5)

  1.  一つの車両の前後方向に所定距離だけ離間して設けられた、GNSS衛星からのGNSS信号を受信する第1GNSSアンテナ及び第2GNSSアンテナと、
     前記第1GNSSアンテナに接続された第1GNSS受信部と、
     前記第2GNSSアンテナに接続された第2GNSS受信部と、
     前記第1GNSS受信部及び前記第2GNSS受信部が前記GNSS信号にもとづき前記車両の位置を算出する位置算出部と、
     地上側の設備からGNSS誤差情報を取得する誤差情報取得部と、
     を備え、
     前記位置算出部は、前記地上側の設備から一定のエリア内にいる場合に、前記GNSS誤差情報を反映させて前記車両の位置を算出することを特徴とする位置検出装置。
    A first GNSS antenna and a second GNSS antenna that receive a GNSS signal from a GNSS satellite, provided at a predetermined distance in the front-rear direction of one vehicle;
    A first GNSS receiver connected to the first GNSS antenna;
    A second GNSS receiver connected to the second GNSS antenna;
    A position calculator that calculates the position of the vehicle based on the GNSS signal by the first GNSS receiver and the second GNSS receiver;
    An error information acquisition unit for acquiring GNSS error information from the equipment on the ground side;
    With
    The position calculation unit is configured to calculate the position of the vehicle by reflecting the GNSS error information when in a certain area from the facility on the ground side.
  2.  前記車両が走行する路線のデータベースと、
     前記データベースと前記GNSS信号にもとづく前記車両の位置の算出処理を実行できる状態にあるか否かを検定する検定部を備え、
     前記位置算出部は、前記検定部が前記車両の位置の特定処理を実行できる状態にあると判断した場合には、前記GNSS信号にもとづく前記車両の位置の算出処理を実行し、前記車両の位置の算出処理を実行できる状態に無いと判断した場合には、速度発電機にもとづいて前記車両の位置の特定処理を実行する
     ことを特徴とする請求項1に記載の位置検出装置。
    A database of routes on which the vehicle travels;
    A test unit that tests whether the vehicle position calculation process based on the database and the GNSS signal can be executed;
    When the position calculation unit determines that the verification unit is in a state in which the vehicle position specifying process can be performed, the position calculation unit performs the vehicle position calculation process based on the GNSS signal, and the vehicle position The position detection device according to claim 1, wherein when it is determined that the calculation process of the vehicle is not in a state where the calculation process can be executed, a process for specifying the position of the vehicle is executed based on a speed generator.
  3.  前記位置算出部が前記GNSS信号にもとづく前記車両の位置の算出処理を実行する場合、前記第1GNSS受信部が算出する速度ベクトルと前記第2GNSS受信部が算出する速度ベクトルとの推移の特徴点と、前記データベースとを比較し、前記車両の位置の算出することを特徴とする請求項2に記載の位置検出装置。  When the position calculation unit executes the calculation process of the position of the vehicle based on the GNSS signal, a feature point of transition between a speed vector calculated by the first GNSS reception unit and a speed vector calculated by the second GNSS reception unit; The position detection device according to claim 2, wherein the position of the vehicle is calculated by comparing with the database. *
  4.  車両に搭載される車上装置と、地上側に設置される地上装置とによって、前記車両の位置を算出する位置検出システムであって、
     前記車上装置は、
     一つの車両の前後方向に所定距離だけ離間して設けられた、GNSS衛星からのGNSS信号を受信する第1GNSSアンテナ及び第2GNSSアンテナと、
     前記第1GNSSアンテナに接続された第1GNSS受信部と、
     前記第2GNSSアンテナに接続された第2GNSS受信部と、
     前記第1GNSS受信部及び前記第2GNSS受信部が前記GNSS信号にもとづき前記車両の位置を算出する位置算出部と、
     地上側の設備からGNSS誤差情報を取得する誤差情報取得部と、
     前記地上装置と通信する車上側通信部と、
     を備え、
     前記地上装置は、
     前記GNSS衛星からGNSS信号を受信する第3GNSSアンテナと、
     前記第3GNSSアンテナに接続された第3GNSS受信部と、
     前記第3GNSSアンテナの位置情報を保持し、前記第3GNSSアンテナが受信したGNSS信号から算出される位置情報とから、前記GNSS誤差情報を算出する地上側制御部と、
     前記GNSS誤差情報を前記車上装置へ送信する地上側通信部と、
     を備え、
     前記車上装置の前記位置算出部は、前記車両の位置を算出する場合に、前記GNSS誤差情報を反映させることを特徴とする位置検出システム。
    A position detection system that calculates the position of the vehicle by an on-board device mounted on the vehicle and a ground device installed on the ground side,
    The on-board device is
    A first GNSS antenna and a second GNSS antenna that receive a GNSS signal from a GNSS satellite, provided at a predetermined distance in the front-rear direction of one vehicle;
    A first GNSS receiver connected to the first GNSS antenna;
    A second GNSS receiver connected to the second GNSS antenna;
    A position calculator that calculates the position of the vehicle based on the GNSS signal by the first GNSS receiver and the second GNSS receiver;
    An error information acquisition unit for acquiring GNSS error information from the equipment on the ground side;
    A vehicle upper side communication unit communicating with the ground device;
    With
    The ground device is
    A third GNSS antenna for receiving a GNSS signal from the GNSS satellite;
    A third GNSS receiver connected to the third GNSS antenna;
    A ground side controller that holds the position information of the third GNSS antenna and calculates the GNSS error information from the position information calculated from the GNSS signal received by the third GNSS antenna;
    A ground side communication unit for transmitting the GNSS error information to the on-board device;
    With
    The position calculation system of the on-vehicle apparatus reflects the GNSS error information when calculating the position of the vehicle.
  5.  車両に搭載される車上装置と、地上側に設置される地上装置及び指令センターとによって、前記車両の位置を算出する位置検出システムであって、
     前記車上装置は、
     一つの車両の前後方向に所定距離だけ離間して設けられた、GNSS衛星からのGNSS信号を受信する第1GNSSアンテナ及び第2GNSSアンテナと、
     前記第1GNSSアンテナに接続された第1GNSS受信部と、
     前記第2GNSSアンテナに接続された第2GNSS受信部と、
     前記第1GNSS受信部及び前記第2GNSS受信部の前記GNSS信号にもとづく位置情報を前記指令センターへ通知するとともに、前記位置情報をもとに前記車両の位置を算出する位置算出部と、
     前記指令センターから前記車両の前記位置の修正情報を取得する誤差情報取得部と、
     前記地上装置及び前記指令センターと通信する車上側通信部と、
     を備え、
     前記地上装置は、
     前記GNSS衛星からGNSS信号を受信する第3GNSSアンテナと、
     前記第3GNSSアンテナに接続された第3GNSS受信部と、
     前記第3GNSSアンテナの位置情報を保持し、前記第3GNSSアンテナが受信したGNSS信号から算出される位置情報とから、前記GNSS誤差情報を算出し、前記指令センターへ通知する地上側制御部と、
     前記車上装置と前記指令センターと通信する地上側通信部と
     を備え、
     前記指令センターは、前記車上装置と前記地上装置と通信し、前記車上装置から取得した前記第1GNSS受信部及び前記第2GNSS受信部の前記GNSS信号にもとづく前記位置情報と、前記地上装置から取得した前記GNSS誤差情報と、をもとに前記車両の位置情報を補正し、補正後の位置情報をもとに、前記車両の運行管理を行う位置検出システム。
    A position detection system for calculating the position of the vehicle by means of an on-board device mounted on the vehicle, a ground device and a command center installed on the ground side,
    The on-board device is
    A first GNSS antenna and a second GNSS antenna that receive a GNSS signal from a GNSS satellite, provided at a predetermined distance in the front-rear direction of one vehicle;
    A first GNSS receiver connected to the first GNSS antenna;
    A second GNSS receiver connected to the second GNSS antenna;
    A position calculation unit that notifies the command center of position information based on the GNSS signal of the first GNSS reception unit and the second GNSS reception unit, and calculates the position of the vehicle based on the position information;
    An error information acquisition unit for acquiring correction information of the position of the vehicle from the command center;
    A vehicle upper side communication unit communicating with the ground device and the command center;
    With
    The ground device is
    A third GNSS antenna for receiving a GNSS signal from the GNSS satellite;
    A third GNSS receiver connected to the third GNSS antenna;
    A ground side controller that holds position information of the third GNSS antenna, calculates the GNSS error information from position information calculated from a GNSS signal received by the third GNSS antenna, and notifies the command center;
    A ground side communication unit communicating with the on-board device and the command center,
    The command center communicates with the on-board device and the ground device, the position information based on the GNSS signal of the first GNSS receiving unit and the second GNSS receiving unit acquired from the on-board device, and the ground device. A position detection system that corrects the position information of the vehicle based on the acquired GNSS error information and manages the operation of the vehicle based on the corrected position information.
PCT/JP2018/020630 2017-06-01 2018-05-30 Position detection device and position detection system WO2018221541A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201880035663.3A CN110914710B (en) 2017-06-01 2018-05-30 Position detection system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017108891A JP6534701B2 (en) 2017-06-01 2017-06-01 Position detection system
JP2017-108891 2017-06-01

Publications (1)

Publication Number Publication Date
WO2018221541A1 true WO2018221541A1 (en) 2018-12-06

Family

ID=64455795

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/020630 WO2018221541A1 (en) 2017-06-01 2018-05-30 Position detection device and position detection system

Country Status (4)

Country Link
JP (1) JP6534701B2 (en)
CN (1) CN110914710B (en)
TW (1) TWI775864B (en)
WO (1) WO2018221541A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112578420B (en) * 2020-12-22 2022-08-30 卡斯柯信号有限公司 Locomotive running state detection method based on satellite positioning
TWI760261B (en) * 2021-07-14 2022-04-01 交通部臺灣鐵路管理局 Train speed monitoring system

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10267650A (en) * 1997-03-27 1998-10-09 Asia Kosoku Kk Instrument for automatically surveying linearity of road
JP2003294825A (en) * 2002-03-28 2003-10-15 Railway Technical Res Inst Method and system for detection of own position of train
JP2005247042A (en) * 2004-03-02 2005-09-15 Mitsubishi Electric Corp Operation server for train position detection management, on-vehicle equipment for train position detection management, method for train position detection management, system for train position detection management, and train position display device
JP2007284013A (en) * 2006-04-20 2007-11-01 Mitsubishi Electric Corp Vehicle position measuring device and vehicle position measuring method
JP2011024328A (en) * 2009-07-15 2011-02-03 Kyosan Electric Mfg Co Ltd Train control device
US20140292567A1 (en) * 2013-03-27 2014-10-02 Deere & Company Arrangement and Method for Position Finding Using a Handset
JP2016194497A (en) * 2015-04-02 2016-11-17 株式会社京三製作所 Position detection device

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101357644B (en) * 2008-09-08 2010-12-15 北京交通大学 Locomotive wheel diameter automatic calibration system and method based on satellite positioning
US10267892B2 (en) * 2010-10-04 2019-04-23 Qualcomm Incorporated Locating a device using a reference point to align location information
CN103625507B (en) * 2012-08-24 2016-02-24 河南蓝信科技股份有限公司 High Speed Railway Trains is followed the trail of close to method for early warning and system thereof
DE102014208541A1 (en) * 2014-05-07 2015-11-12 Continental Teves Ag & Co. Ohg Determination of redundant absolute positions with driving dynamics sensors
JP6279425B2 (en) * 2014-08-05 2018-02-14 公益財団法人鉄道総合技術研究所 Program and data generation device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10267650A (en) * 1997-03-27 1998-10-09 Asia Kosoku Kk Instrument for automatically surveying linearity of road
JP2003294825A (en) * 2002-03-28 2003-10-15 Railway Technical Res Inst Method and system for detection of own position of train
JP2005247042A (en) * 2004-03-02 2005-09-15 Mitsubishi Electric Corp Operation server for train position detection management, on-vehicle equipment for train position detection management, method for train position detection management, system for train position detection management, and train position display device
JP2007284013A (en) * 2006-04-20 2007-11-01 Mitsubishi Electric Corp Vehicle position measuring device and vehicle position measuring method
JP2011024328A (en) * 2009-07-15 2011-02-03 Kyosan Electric Mfg Co Ltd Train control device
US20140292567A1 (en) * 2013-03-27 2014-10-02 Deere & Company Arrangement and Method for Position Finding Using a Handset
JP2016194497A (en) * 2015-04-02 2016-11-17 株式会社京三製作所 Position detection device

Also Published As

Publication number Publication date
JP2018205048A (en) 2018-12-27
CN110914710B (en) 2023-06-27
TWI775864B (en) 2022-09-01
CN110914710A (en) 2020-03-24
TW201903433A (en) 2019-01-16
JP6534701B2 (en) 2019-06-26

Similar Documents

Publication Publication Date Title
JP5973024B1 (en) Position detection device
CN109581449B (en) Positioning method and system for automatically driving automobile
US6751535B2 (en) Travel controlling apparatus of unmanned vehicle
US8170796B2 (en) Ins based GPS carrier phase cycle slip detection and repairing
US11287524B2 (en) System and method for fusing surrounding V2V signal and sensing signal of ego vehicle
CN106643800B (en) Course angle error calibration method and automatic navigation driving system
CN103096247A (en) Method And System For Controlling Relative Position Between Vehicles Using A Mobile Base Station
CN109642955B (en) Train position detection device and method
JP2010234979A (en) Position detecting device and position detecting method in operation security system for railroad vehicle
KR101074638B1 (en) Lane determination method using steering wheel model
JP2007284013A (en) Vehicle position measuring device and vehicle position measuring method
WO2018221541A1 (en) Position detection device and position detection system
KR102174531B1 (en) Apparatus and method for location information correction of vehicle
JP5164874B2 (en) Train position measuring apparatus and train position measuring method
US9395448B2 (en) Information indication apparatus
JP5398500B2 (en) Train control device
JP2023016761A (en) Method for detecting presence of obstacle in gnss- and ins-based localization of vehicle
JP2008024146A (en) Calculation system of train door opening permission range
CN111561944A (en) Beam transporting vehicle operation path planning method and automatic driving operation control method
KR20200071883A (en) Autonomous Driving Warning Triangle Setting-up Method and System
JP2014163788A (en) In-vehicle device, and position correction method and position correction program thereof
WO2022168353A1 (en) Vehicle position estimation device, autonomous driving device, and vehicle position estimation method
US20230221126A1 (en) Vehicle position estimation device and vehicle position estimation method
JP2012225841A (en) Correction device, correction method and program for correction device
KR20090049501A (en) Method and apparatus for complementing position in vehicle

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18810646

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18810646

Country of ref document: EP

Kind code of ref document: A1